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Abstract Biochar and its properties can be significantly al-
tered according to how it is produced, and this has ramifica-
tions towards how biochar behaves once added to soil. We
produced biochars from corncob and miscanthus straw via
different methods (slow pyrolysis, hydrothermal and flash car-
bonization) and temperatures to assess how carbon cycling and
soil microbial communities were affected. Mineralization of
biochar, its parent feedstock, and native soil organic matter
were monitored using 13C natural abundance during a 1-year
lab incubation. Bacterial and fungal community compositions
were studied using T-RFLP and ARISA, respectively. We
found that persistent biochar-C with a half-life 60 times higher
than the parent feedstock can be achieved at pyrolysis temper-
atures of as low as 370 °C, with no further gains to be made at
higher temperatures. Biochar re-applied to soil previously in-
cubated with our highest temperature biochar mineralized
faster than when applied to unamended soil. Positive priming
of native SOC was observed for all amendments but subsided
by the end of the incubation. Fungal and bacterial community
composition of the soil-biochar mixture changed increasingly
with the application of biochars produced at higher

temperatures as compared to unamended soil. Those changes
were significantly (P<0.005) related to biochar properties
(mainly pH and O/C) and thus were correlated to pyrolysis
temperature. In conclusion, our results suggest that biochar
produced at temperatures as low as 370 °C can be utilized to
sequester C in soil for more than 100 years while having less
impact on soil microbial activities than high-temperature
biochars.
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Abbreviations
CEC Cation exchange capacity
CC Corncob
δ13C Stable carbon isotope composition
MS Miscanthus
RDA Partial redundancy analysis

Introduction

Biochar is composed of condensed poly-aromatic structures
that are intrinsically resistant to microbial decomposition
(Kuzyakov et al. 2014; Marschner et al. 2008), meaning bio-
char can potentially remain in soil for hundreds if not thou-
sands of years (Preston and Schmidt 2006). Conversion of
biomass into biochar and its addition to soil is a climate
change solution which can sequester large amounts of biogen-
ic C, even in warm and moist climates where organic matter
turnover rates are typically high (Cheng et al. 2008). The
sustainable potential of biochar to mitigate climate change is
estimated at 1.8 Pg CO2–C equivalents per year (Woolf et al.
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2010). Achievement of this potential will require a thorough
understanding of the biochar production parameters that are
optimal for producing high yields of stable biochar C at the
lowest possible energy cost.

The resistance of biochar to microbial decomposition is
dependent on its chemical composition resulting from the heat
treatment, the highest treatment temperature reached during
production (the carbonization temperature), and properties of
the initial biomass (Conti et al. 2014; Enders et al. 2012).
There is consensus that biochars produced at higher tempera-
tures contain more aromatic structures, which confer intrinsic
recalcitrance (Singh et al. 2012), but it is still not clear whether
there is a temperature threshold at which relevant biomass
transformations take place or whether there is a continuous
response to production temperature (Wang et al. 2015).
Chemical recalcitrance is only one aspect of C persistence in
soil (Schmidt et al. 2011), and it is not clear which biochar
properties might influence the persistence of biochar in soil
through, e.g., physical and physicochemical protection mech-
anisms. Length of incubation has been shown to greatly influ-
ence the estimation of biochar mean residence time (Singh and
Cowie 2014; Wang et al. 2015). This adds to the difficulty of
comparing the persistence of materials from distinct incuba-
tion studies, and there is a need for incubation studies utilizing
more than a few biochars produced along a temperature series.

Although abiotic processes are known to contribute to the
degradation of biochar, soil microbes are the primary media-
tors of biochar decomposition (Wang et al. 2015). The com-
position and activity of microbial communities is influenced
by changes in soil physical and chemical properties. Since
biochar and hydrochar additions alter soil properties such as
pH and moisture content and aeration (Gul et al. 2015), it is
expected that the long-term persistence of biochars as well as
that of native soil C is impacted by these amendments
(Hernandez-Soriano et al. 2015). Charred plant residues con-
tain compounds that are a food source to soil microbes (Farrell
et al. 2013) or that act as signaling molecules that either stim-
ulate or inhibit microbial activity and plant growth (Graber
et al. 2010). For example, significant levels of organic com-
pounds toxic to soil microbes have been identified in
hydrochars (Becker et al. 2013), and this has contributed to
doubts regarding the use of hydrochar for application to soil
(Jandl et al. 2013). Reports in literature about the effect of
biochar on soil microbial communities are contrasting: chang-
es in soil physicochemical properties after biochar addition are
suggested to be transient with no long-term effects on soil
microbial communities (Quilliam et al. 2013) while signifi-
cant effects have also been observed (Kolton et al. 2011).
Adaptation of microbial communities in soils previously
amended with biochar might also affect the decomposition
of subsequent biochar additions to soil.

The present study aimed at testing four hypotheses: (1) the
persistence in soil of biochars made from miscanthus and

corncob feedstocks increases non-linearly with pyrolysis tem-
perature, with little gain in stability expected beyond a given
threshold; (2) biochar mineralization is not significantly in-
creased in soils previously amended with biochars; (3) prim-
ing effect is induced by carbonization products and is affected
by their production conditions; and (4) the soil microbial com-
munity composition is most affected by amendment with
hydrochar and other low-temperature products while higher
temperature biochars have a decreasing effect.

Materials and methods

Soil and biochar materials

The soil used for incubation was a sandy loam Inceptisol
collected from an agricultural field in Rygge county, Norway
(59° 23′ 15″ N; 10° 46′ 26″ E). Soil consisted of 83 % sand,
11 % silt, and 6 % clay and had a TOC content of 12 g kg−1

(dw) and a C/N ratio of 12 (Eurofins AS, Norway). The soil
pH of 6.8 was determined in a 1:1 soil to water suspension.
The air-dried soil was sieved (<2 mm) and moistened to 60 %
WHC prior to pre-incubation at 20 °C for 14 days.

Two feedstocks were used to produce biochars and
hydrochars: chaffed straw from Miscanthus giganteus and
corncob frommaize (Zea mays, ZPMaize Hybrid 505) grown
in Serbia (Budai et al. 2014). In brief, corncob and miscanthus
were exposed to slow pyrolysis at temperatures from 369 to
796 °C, corncob alone was pyrolyzed at 235 °C to produce a
mild pyrolysis product, and both feedstocks were exposed to
hydrothermal carbonization at 230 °C (Table 1). Additional
corncob obtained from Waimanolo farm in Hawaii was ex-
posed to flash carbonization. Detailed descriptions of the bio-
char production methods are reported by Budai et al. (2014).
The resulting biochars and feedstocks were crushed through a
2-mm sieve with the exception of hydrochars which were
ground using a mortar and pestle. Information about the
yield, surface properties, and chemical composition of the
products are already reported by Budai et al. (2014) and are
summarized in Table 1. In addition, the yield of fixed C was
calculated according to Eq. 1 where ash content of both the
char and feedstock are corrected for:

Fixed C yield %ð Þ ¼ 100−%VM−%Ashchar
100−%Ashfeed

� �
ð1Þ

Incubation using the batch-flush headspace method

Long-term incubation

Incubation of soil samples equivalent to 20 g on a dry weight
basis was carried out at 20 °C in 120-mL incubation vials
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equipped with butyl rubber septa. Biochar, hydrochar, and
feedstock were added at rates of either 0.12 or 1.2 % by dry
weight, equivalent to 4 and 40 t ha−1, respectively, depending
on the expected mineralization rate of the amendment (see
Table 2 for biochar addition rates). These two different rates
were used so that production rate of CO2 would be fairly
similar among vials, so as to allow us to measure all samples
at common dates. The rates themselves were determined
based on our experience with soil incubation experiments
(Moni et al. 2015). Gravimetric water content of the biochar-
soil mixtures was 16.5 % (g/g). This was maintained by
injecting degasified water through the septa with a needle.
Septa were punctured at irregular locations during sampling
and replaced once tominimize gas diffusion through the septa.
Vial headspace was initially flushed with CO2-free air to re-
move atmospheric CO2, which would otherwise interfere with
partitioning the mineralized C to its source using two-pool
calculations, as used in similar studies (Fontaine et al. 2004).
At each measurement, the headspace was flushed with CO2-
free air at 200 mL min−1 for 4 min and the displaced gasses
collected in 1-L sampling gas bags. Both concentration and
13C isotopic composition of CO2 in these samples were

measured (see BEstimation of biochar mineralization^).
Measurements with the simultaneous flushing and sampling,
hereafter referred to as batch-flush headspace sampling, were
performed every 6 to 16 days with higher frequency at the start
of incubation. Frequent sampling ensured that headspace CO2

concentrations were not elevated to levels that would influ-
ence respiration rates. Biochar is a sorbent for CO2 (Creamer
et al. 2014), and even short exposure to laboratory air has the
potential to bias 13CO2 measurements with atmospheric air.
Because biochars produced at different temperatures have dif-
ferent CO2-sorption capacity (Creamer et al. 2014), it is im-
portant to reduce this artifact as much as possible in incubation
studies looking at biochar series of production temperature.
Our batch-flush headspace method was especially designed to
allow for the collection and measurement of all CO2 produced
by the biochar-soil mixtures while never exposing them to
atmospheric air throughout the incubation period.

Supportive incubation for previous biochar application

A supportive incubation experiment was performed for
60 days using the batch-flush headspace method described

Table 1 Chemical and physical properties of corncob (CC) and miscanthus (MS) exposed to hydrothermal carbonization (HTC), flash carbonization
(Flash), and slow pyrolysis (Slow) (Budai et al. 2014)

Feedstock/treatment HTT pH* CEC# SA** VM# Fixed C¤ C## H/C O/C Mg* K*
(°C) (in H2O) (cmolckg

−1) (m2g−1) (%) yield (%) (%) (ratio) (ratio) (%) (%)

CC Feedstock 5.3 15± 0.5 2 ± 0.1 81± 0.5 17.7 48± 0.7 1.6 0.89 0.4 5.5

HTC 230 4.1 30± 0.5 4 ± 0.1 67± 0.1 60± 0.8 1.2 0.51 0.2 3.0

Flash 600 9.5 13± 0.4 39± 2.9 12± 0.1 83± 1.0 0.3 0.08 1.8 20.4

Slow 369 9.2 21± 0.2 2 ± 0.2 35± 1.0 25.2 74± 0.7 0.7 0.24 0.8 14.0

Slow 416 10.1 16± 0.5 4 ± 0.9 26± 0.2 24.3 79± 1.2 0.6 0.17 0.8 13.3

Slow 562 9.4 13± 1.3 45± 3.2 13± 0.1 25.3 87± 0.8 0.4 0.08 1.1 16.9

Slow 796 9.4 5 ± 0.0 27± 2.8 7 ± 0.1 24.9 92± 0.4 0.1 0.04 1.2 18.6

MS Feedstock 6.3 11 ± 0.2 2 ± 0.4 78± 0.8 13.7 48± 0.9 1.5 0.81 0.3 3.2

HTC 230 3.9 34± 0.4 6 ± 0.1 61± 0.9 62± 0.6 1.1 0.43 0.2 1.1

Slow 235 7.2 11 ± 0.7 3 ± 0.0 72± 1.9 17.9 46± 1.4 1.4 0.65 0.5 3.9

Slow 369 8.3 20± 0.4 3 ± 0.2 40± 0.3 26.1 67± 0.7 0.8 0.25 0.9 7.6

Slow 385 8.7 21± 0.5 5 ± 0.5 31± 0.7 27.3 68± 0.8 0.7 0.22 1.1 8.1

Slow 416 10.2 21± 0.5 10± 0.5 20± 0.4 26.2 74± 2.1 0.5 0.13 1.2 10.0

Slow 503 10.3 18± 0.5 40± 1.8 16± 0.6 28.3 65± 4.1 0.4 0.11 1.4 8.5

Slow 600 10.0 14± 0.1 183 ± 23.2 10± 1.3 27.8 72± 3.3 0.3 0.06 1.4 9.6

Slow 682 10.3 16± 0.3 62± 3.9 6 ± 0.4 26.4 76± 2.4 0.2 0.05 1.3 10.8

CEC cation exchange capacity, SA surface area, VM volatile matter, HTT highest treatment temperature

Set temperatures for hydrothermal carbonization, estimated values for flash carbonization (direct measurement was not possible), and directly measured
for slow pyrolysis
¤ Calculated according to Eq. 1

*n= 1

**n= 2–8
# n= 3
## n= 5
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above, to test for the effect of previous biochar application on
the mineralization rate of newly added biochar. Miscanthus
pyrolyzed at 416 °C (MS 416) was added to soils previously
incubated for 344 days with and without amendment, and
each soil was also incubated without the new biochar ad-
dition. Previous amendments consisted of miscanthus
(MS) feedstock and MS hydrochar applied at a rate of
0.12 %, and MS 368 and MS 682 (slow pyrolysis biochars
prepared at respective temperatures) applied at 1.2 %. New
biochar was added at a rate of 2.3 % by dry weight, corre-
sponding to 78 t ha−1 field application rates, and moisture
was maintained at 20 % of the soil mixture. The percentage
of C mineralized from amendment was calculated by the
isotopic mixing model (Eq. 2) in all vials, and mineraliza-
tion of the new biochar was taken as the difference be-
tween amendment mineralization in vials with and without
new biochar amendment.

Estimation of biochar mineralization

The concentration and 13C isotopic composition of headspace
CO2 was measured using a cavity ring-down spectrometer
(G1101-i, Picarro, INC., Sunnyvale, CA, USA) which had
been factory upgraded to reduce transient concentration re-
sponse, water vapor interference, and CH4 interference ac-
cording to Moni and Rasse (2014). In addition, a Nafion filter
with desiccator was installed on-line to further reduce possible
interaction with water vapor.

The percentage of CO2 derived from corncob and
miscanthus-derived residues (%C4 biomass) was calculated
using the traditional mixing model of Balesdent and Mariotti
(1996):

% C4 biomass ¼ 100 � δ13CMeas−δ13CSOC

δ13CC4 biomass−δ13CSOC
ð2Þ

Table 2 Modeled stability parameters of corncob (CC) and miscanthus (MS) exposed to hydrothermal carbonization (HTC), flash carbonization
(Flash), and slow pyrolysis (Slow)

Sample HTT δ13C Application
rate

Mineralization
after 364 days

Two component exponential model# R2 Estimated
half-life*¤

Priming of SOC
after 364 days

CL CR kL kR
(°C) (‰) (%

dw)
(g C
kg−1

soil)

(% of initial) (%) (%) (% year−1) (% year−1) (years) (%)

CC Feedstock 105 −12.82 0.12 0.6 33.8a 23.8 76.2 14.5 0.145 0.99 2.9a 2a

HTC 230 −12.90 0.12 0.7 15.3b 10.4 89.6 15.0 0.056 0.99 10.4b −1a

Flash 580 −12.97 1.2 9.8 0.6de <0.1 >99.9 0.005 0.99 138de 23a

Slow 369 −13.20 1.2 8.8 0.3f <0.1 >99.9 0.003 0.99 252e 7a

Slow 416 −13.37 1.2 9.3 0.5de <0.1 >99.9 0.005 0.99 143de 31a

Slow 562 −13.35 1.2 10.3 0.4ef <0.1 >99.9 0.004 0.98 191de 45a

Slow 796 −13.45 1.2 10.8 0.5de <0.1 >99.9 0.005 0.98 149de 58a

MS Feedstock 105 −12.38 0.12 0.6 38.7a 30.1 69.9 8.4 0.129 0.99 2.6a 16a

HTC 230 −12.62 0.12 0.8 10.1b 6.1 93.9 14.2 0.044 1.00 14.2bc 15a

Slow 235 −12.42 1.2 5.5 14.5b <0.1 >99.9 0.165 1.00 4.2a 47a

0.12 0.6 15.2b <0.1 >99.9 0.170 1.00 4.1a 24a

Slow 369 −12.70 1.2 7.9 0.5df <0.1 >99.9 0.004 1.00 172de 18a

Slow 385 −12.87 1.2 8 0.5df <0.1 >99.9 0.004 1.00 165de 33a

Slow 416 −13.15 1.2 8.7 0.6d <0.1 >99.9 0.006 0.98 118d 21a

Slow 503 −13.14 1.2 7.6 0.6de <0.1 >99.9 0.006 1.00 125de 2a

Slow 600 −13.19 1.2 8.5 0.3f <0.1 >99.9 0.003 0.99 232e 11a

Slow 682 −13.21 1.2 9 0.6de <0.1 >99.9 0.006 0.99 123de 51a

Soil C −27.28 1.2 4.1c 0.3 99.7 14.6 0.030 1.00 23.4c

Different letters indicate significant differences (P< 0.05) according to one-way ANOVATukey test for three replicates

HTT highest treatment temperature

Original set temperatures for hydrothermal carbonization, estimated values for flash carbonization (direct measurement was not possible), and directly
measured for slow pyrolysis (Budai et al. 2014)
# Equation 3 was applied to cumulative data from the average of three replicates to obtain labile and recalcitrant carbon pool sizes and their mineral-
ization rates

*Of the total C pool
¤ Average of triplicates

752 Biol Fertil Soils (2016) 52:749–761



δ13CMeas is the isotopic composition of the evolved CO2

during incubation and δ13CSOC and δ13CC4 biomass are respec-
tive isotopic compositions of soil C and amendment. This
equation assumes that there is no isotopic discrimination dur-
ing the mineralization of feedstock, biochar, and SOC, i.e.,
that the δ13C of the emitted CO2 is equal to that of the corre-
sponding substrate. If isotopic discrimination were to happen,
it would mostly affect the early results of the incubation and
would not change the relative responses among samples as
long as this effect is consistent across biomass. The cumula-
tive amount of CO2, in percent of initial, emitted over 364 days
was calculated from individual headspace concentrations. The
two-component exponential model

Ctotal ¼ CLe
−kLtð Þ þ CRe

−kRtð Þ ð3Þ
was used to partition C between relatively labile and more
recalcitrant fractions of biochar (Nguyen et al. 2014; Singh
et al. 2012). CL and CR are the respective labile and recalci-
trant pool sizes, and kL and kR the respective decay constants
for these pools. For the abovementioned reasons of possible
early isotopic discrimination during decomposition, parame-
ters of the first are more uncertain than those of the second and
more meaningful recalcitrant pool. Half-life estimation of C4-
C was done using the parameters obtained from Eq. 4 and
solving for t, the half-life of the total C pool:

50 ¼ CL 1−e −kLtð Þ
� �

þ CR 1−e −kRtð Þ
� �

ð4Þ

Priming of SOC was calculated from the mineralization
rate of SOC in a sample amended with corncob or miscanthus
residue (Ratesample) and the mineralization rate of SOC in a
control sample containing only soil (RateSOC):

Priming %ð Þ ¼ RateSample−RateSOC
RateSOC

� 100% ð5Þ

Microbial community fingerprinting

Composition of bacterial and fungal communities was ana-
lyzed using terminal restriction fragment length polymor-
phism (T-RFLP) and automated ribosomal intergenic spacer
analysis (ARISA), respectively. The DNAwas first extracted
from soil-biochar mixtures using a PowerSoil DNA Isolation
kit (MOBIO Laboratories, Carlsbad, CA, USA) according to
the manufacturer’s instructions. Bacterial 16S rRNA genes
were amplified using primers 63F (5′-CAGGCCTAACA
CATGCAAGTC-3′), fluorescently labeled at the 5′ end with
FAM dye, and 1389R (5′-ACGGGCGGTGTGTACAAG-3′)
(Marchesi et al. 1998). Fungal internal transcribed spacers
(ITS) were amplified, using the primers ITS1F (5′-CTTGG
TCATTTAGAGGAAGTAA-3′) (Gardes and Bruns 1993)
fluorescently labeled at the 5′ end with Yakima Yellow® dye

and ITS4 (5′-TCCTCCGCTTATTGATATGC) (White et al.
1990). PCR were performed with 2 μL of diluted DNA tem-
plate (0.5 ng μL) in a total volume of 15 μL (Master Mix Kit,
Qiagen) and 0.05 mM of each primer. Biorad T100 thermal
cycler was used for the amplification with the following pro-
grams for T-RFLP: initial denaturation at 94 °C for 2 min,
followed by 30 cycles of 94 °C for 30 s, 57 °C for 45 s, and
72 °C for 90 s, followed by a final extension time at 72 °C for
10 min. For ARISA, PCR conditions consisted of an initial
denaturation at 95 °C for 5 min, followed by 35 cycles of
95 °C for 30 s, 55 °C for 30 s, and 72 °C for 60 s, followed
by a final extension time at 72 °C for 10 min. Bacterial PCR
products (10 μl) were digested with 10 U of the restriction
enzyme AluI and 1× restriction enzyme buffer (Thermo
Fisher) in a total volume of 15 μl at 37 °C for 3 h. After a
desalting step, 2 μl of PCR products were mixed with form-
amide containing 0.5 % of ROX-labeled GS500 (T-RFLP) or
GS2500 (ARISA) internal size standard (Applied Biosystems)
in a total volume of 12 μl and denatured at 94 °C for 3 min.
Samples were electrophoresed on an ABI 3730 PRISM® cap-
illary DNA sequencer (Applied Biosystems). The T-RFLP
and ARISA profiles obtained with the sequencer were ana-
lyzed using GeneMapper® v3.7 software (Applied
Biosystems). The fragments between 50 and 500 bp and peak
heights ≥50 fluorescence units were included in T-RFLP anal-
ysis and Amplicons between 200 and 1500 bp and peak
heights ≥100 fluorescence units were included for ARISA
analysis. Fragments having a relative abundance of <0.5 %
(peak area threshold) were removed from the matrices (Blaud
et al. 2015).

Statistical analysis

Statistical differences induced by individual treatments were
obtained from one-way ANOVA and the Tukey test
(Sigmaplot 11.0). Cumulative C4 amendment mineralized af-
ter 364 days and the estimated half-life were log-transformed
so that normal distribution and equal variance requirements
were met before application of the one-way ANOVA Tukey
test. Curvilinear fitting of the two-pool model was conducted
with Sigma Plot 11.0.

For TRFLP and ARISA analysis, the total peak area for
each profile was normalized across peaks (i.e., the area under
each peak was divided by the total peak area of each sample)
to account for run-to-run variations (Blaud et al. 2015). The
similarity of Euclidean distances matrices obtained from each
profile was determined using a Mantel test performed on 105

permutations (Legendre and Fortin 1989). Partial redundancy
analyses (RDA) were performed to explore the relationships
betweenmicrobial community composition using either the T-
RFLP or ARISA dataset and biochar chemical properties. A
forward selection allowed to find the most significant
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(P< 0.005) variables. All multivariate analyses were per-
formed using the Bade4TkGUI^ package in R.

Results

Persistence of biochar series in soil

Cumulative organic C mineralized after 364 days revealed
three persistence ranges of materials, namely (1) non-
carbonized feedstocks (MS and CC) with low persistence,
(2) low-temperature materials prepared at ≤235 °C consisting
of hydrochars and a mild pyrolysis product (CC hydrochar,
MS hydrochar, andMS 235 °C) with intermediate persistence,
and (3) high-temperature biochars including slow pyrolysis
biochars produced at ≥369 °C and flash carbonization char
having high persistence (Fig. 1). A substantial fraction of the
non-carbonized feedstocks were mineralized in 1 year (34 and
39 % for CC and MS, respectively), while on average, only
0.5 % of high-temperature biochars were converted to CO2

(Fig. 1 and Table 2). In comparison, between 10 and 15 % of
hydrochar and mild pyrolysis products were mineralized,
which is about three times the proportion of SOMmineralized
(4 %) during the same incubation.

Carbon mineralization kinetics was used to further differ-
entiate the persistence of materials by fitting two-pool models
to the cumulative mineralization curves. The models were
able to describe the data well with r2 values ≥0.98 (Table 2).
For flash carbonization and all slow pyrolysis biochar treat-
ments, the labile pool was smaller than 0.1 %, indicating that
the labile C component of these chars is negligible.
Interestingly, the mild pyrolysis product did not have a signif-
icant labile pool. In contrast, non-carbonized feedstocks and
hydrochars consisted of two pools, namely a labile and recal-
citrant C pool (Table 2). SOM contained a small labile C pool.
The recalcitrant pools of hydrochars, which determine the
long-term residence time of the material, mineralized at rates
closest to that of soil C (Table 2). The mineralization rates of
high-temperature biochars were an order of magnitude lower
than this (Table 2).

Estimated half-life of the sum of labile and recalcitrant C
pools, obtained from the fitted models, provides a reliable
estimate of the long-term persistence of the materials. Unlike
the amount of cumulative C mineralized after 364 days, esti-
mated half-life of the total C pool also takes into consider-
ation the size of the more labile pool that controls the initial
C mineralization rate. The estimated half-lives reveal that
flash carbonization and slow pyrolysis at high tempera-
tures produced materials that were on average 60 times

Fig. 1 Cumulative mineralization of corncob (CC) and miscanthus (MS)
feedstocks, hydrochars (HTC), slow pyrolysis (Slow) chars, flash
carbonization (Flash) chars, and soil C. Mean values and positive

standard deviation error bars for three replicates are presented according
to a, b faster and c, d slower mineralizing residues
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more recalcitrant than non-carbonized feedstocks and on
average 7 times more recalcitrant than soil C. In compari-
son, mild pyrolysis at low temperatures produced a mate-
rial with a half-life that is comparable to that of feedstocks,
independent of the application rate. Hydrothermal carbon-
ization on the other hand produced materials that were
more recalcitrant than non-carbonized feedstocks in the
long-term (3.6 and 5.5 times for CC and MS), and the
half-lives of their total C were only slightly shorter or
comparable to that of soil C.

Highest treatment temperatures at or above 369 °C did not
have a substantial effect on biochar persistence with all esti-
mated half-lives of biochar total C pools comprised between
118 and 252 years. The statistical differences observed be-
tween the relatively more recalcitrant CC 369 and MS 600
and the relatively more labile MS 416 do not reveal a consis-
tent response to production temperature (Table 2). Pyrolysis at
235 °C generated a material with a half-life <5 years, which
was much shorter than that of any other slow pyrolysis bio-
char. The fixed C yields from proximate analysis were low for
both feedstocks and the mild pyrolysis product as compared to
biochars (Table 1). Increase in pyrolysis temperature did not
affect the fixed C yield of biochars.

On the basis of estimated half-lives of total C pools and
mineralization kinetics, we identified a total of four groups of
materials. First, non-carbonized feedstock, characterized by a
large labile C pool and the shortest estimated half-life of its
total C pools. Second, mild pyrolysis product produced at
low temperature (235 °C), which did not contain a labile C
pool but also displayed short estimated half-life of its total
C pools. Third, hydrochar, which had a sizable labile C
pool but displayed significantly longer half-life of its total
C pools than non-carbonized feedstock. Finally, slow py-
rolysis and flash carbonization biochar produced at tem-
peratures >370 °C, which was significantly more recalci-
trant than SOC.

Persistence in previously biochar-amended soils

The mineralization of MS 416 was significantly influenced by
the previous biochar amendment. WhenMS 416 was added to
soil previously exposed to MS 682 for 344 days, during the
following 60 days of incubation, it decomposed on average
twice than when it was incubated in soil previously ex-
posed to other treatments such as those with MS 369,
hydrochar, and non-carbonized feedstock or in the un-
amended soil (Fig. 2). Feedstock-treated soil led to faster
mineralization of newly added biochar than soil treated
with hydrochar or not treated with biochar. MS 416 min-
eralized at the same rate when added to soil previously
exposed to MS 369 or hydrochar, as when added to the
biochar-free control soil (Fig. 2).

Priming of soil C

Cumulated priming of native SOC after 364 days of incuba-
tion varied between −1 and 58 % across all treatments
(Table 2). Although this is a wide range, no statistical differ-
ences could be detected among individual treatments. Given
the absence of significant differences among individual treat-
ments, we explored group responses to see if general trends
would emerge. First, all priming responses were grouped by
feedstock of origin (Fig. 3a). The results from this analysis
suggest that feedstock has no influence on priming, as the
two responses were similar. Second, we grouped priming re-
sponses according to the four groups that we identified earlier:
(1) non-carbonized feedstocks, (2) hydrochars, (3) mild pyrol-
ysis product, and (4) biochars. The non-carbonized feedstocks
and hydrochars had similar priming responses, which were
lower than that of slow pyrolysis products (Fig. 3b). No dif-
ference in priming response occurred between the mild pyrol-
ysis products and high-temperature biochars. For these latter
products, the priming response ceased after 1 year of incuba-
tion when less than 5 % of the original SOC had mineralized.

Priming was also evaluated in a 60-day re-incubation ex-
periment conducted on samples previously incubated for
344 days. When samples were re-incubated without addition
of new biochar amendment, the priming response agreed with
those observed towards the end of the long-term experiment.
A slightly negative priming effect was observed for the MS
feedstock (−8 %) and hydrochar (−18 %) while positive prim-
ing responses were observed for slow pyrolysis biochars (MS
369 at 3 % and MS 682 at 12 %) (Fig. 4). New addition of a
high-temperature biochar, MS 416, did not modify these prim-
ing responses within 60 days: mineralization of soil C in MS-
and hydrochar-amended soils remained lower as compared to

Fig. 2 Cumulative Cmineralized from newly added biochar (MS 416) to
soils previously amended with miscanthus (MS) feedstock, hydrochar
(HTC), or slow pyrolysis biochars prepared at 369 and 682 °C. Positive
error bars are shown for averages of three replicates and statistical
differences are indicated using letters (P < 0.05, one-way ANOVA
Tukey test for three replicates)
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that of the soil control while the opposite was observed for
soils amended with slow pyrolysis biochars (Fig. 4).

Microbial community composition

The difference in microbial community composition between
control and amended soils increased with carbonization inten-
sity of the amendment (Fig. 5). The response of bacterial and
fungal communities was very similar, as suggested by the
Mantel test performed on T-RFLP and ARISA matrices
(r2 = 0.32; P<0.005). Flash carbonization char caused the
greatest change in microbial community composition of the
amended soil compared to control soil. For both bacterial and
fungal communities, the mineralization rate of the amendment
showed a significant (P<0.05) spearman correlation with the

first axis of the RDA that explained most of the variability
among treatments.

The RDA performed on T-RFLP and ARISA data showed
that the main parameters that significantly (P<0.005) shape
bacterial and fungal communities were the O/C ratio and pH
and, to a lesser extent, fC/VM ratio, and Mg and K
concentrations.

Discussion

Influence of pyrolysis temperature on biochar
mineralization rate

After 1 year of incubation, on average 0.5 % of our high-
temperature biochars were mineralized. This is less than or
comparable to mineralization of miscanthus biochar reported
elsewhere. After 87 days of incubation, Luo et al. (2011) ob-
served 0.73 and 0.16 %mineralization of miscanthus biochars
produced at 350 and 700 °C, respectively, while Bai et al.
(2013) observed 1.1 % mineralization of 575 °C miscanthus
biochar after 200 days of incubation. Mineralization rates of
corncob biochars have been little studied. There are a number
of potential explanations for the observed difference in min-
eralization rates, including soil type and length of incubation
(Wang et al. 2015). Similar to our findings, ryegrass biochar
produced at 400 °C has an annual decomposition rate of 0.5 %
over a 3.5-year period (Kuzyakov et al. 2009). With longer
incubation time of 8.5 years, decomposition of this char sta-
bilized at a much lower rate of <0.3 %, with a biochar half-life
of 278 years (Kuzyakov et al. 2014). Longer mean residence
time has also been reported after extending the 1-year incuba-
tion period to 2 years at room temperature (Fang et al. 2015).
This suggests that the half-life of biochar in short-term studies
is potentially underestimated. Results from the present 1-year

Fig. 3 Priming of SOC mineralization by feedstock and biochar
products, grouped either by a feedstock of origin (corncob (CC) and
miscanthus (MS)), or b by product production method (slow pyrolysis
(Slow), hydrothermal carbonization (HTC), and no treatment
(Feedstock)). Treatments consist of triplicate samples, and the number

of treatments within each group is shown in parentheses. Curves are
third-order polynomial fits for the group averages. No statistical differ-
ences in cumulative priming were detected between groups using the
Kruskal-Wallis one-way ANOVA on ranks

Fig. 4 Cumulative soil C mineralized with and without new biochar (MS
416) addition to soil previously exposed to feedstock (MS), hydrochar
(HTC), or biochar (MS 369 and MS 682). Standard deviation for
triplicates are shown except where marked (an asterisk symbol indicates
that only two replicates were used). Significant differences between
treatments are indicated using letters (P≤ 0.001, ANOVATukey test)
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incubation give an estimated half-life of 164 years for high-
temperature biochars produced by both slow pyrolysis and
flash carbonization. By contrast, our hydrochars of corncob
and miscanthus displayed half-lives of 10.4 and 14.2 years,
respectively, confirming that hydrochars are less resistant to
decomposition than biochars (Kammann et al. 2012).

Our mild pyrolysis product had a shorter half-life than the
hydrochars despite similar proportions of the initial added
products were mineralized after 1 year of incubation.
Initially, the hydrochars decomposed faster, clearly displaying

the presence of a labile pool. However, once this labile pool
was exhausted, hydrochars decomposed at a slower rate than
mild pyrolysis products. Schulze et al. (2016) also found
hydrochars to have both a readily available C pool and a
slower mineralizable pool. While hydrothermal carbonization
of our feedstocks was found to transform hemicellulose
completely and cellulose partially (Calucci et al. 2013), cellu-
lose is not affected at temperatures of 200–230 ° C duringmild
pyrolysis treatment (Singh et al. 2013). The different transfor-
mations of cellulose between hydrothermal and mild pyrolysis
treatments may explain the slower decomposition rate of
hydrochars in the long than short run.

Because absolute mineralization rates obtained under lab-
oratory incubations are not necessarily representative of field
conditions (Ventura et al. 2014), we also used the comparative
mineralization response of biochar vs. native SOM as an in-
dicator of potential mineralization rates in the field. We found
that high-temperature biochars from both slow pyrolysis and
flash carbonization methods are 7 times more resistant to de-
composition than SOM while our hydrochars of corncob and
miscanthus displayed half-lives most similar to that of SOM.
Considering that the overall average mean residence time of
SOM in the field is estimated at 50 years (Schmidt et al. 2011)
with a half-life of about 35 years, high-temperature biochars
were 7 times more recalcitrant than SOM exceeding the 100-
year definition of permanent storage as given by Noble et al.
(2000).

Persistence in soil incubations increased dramatically for
our biochars prepared above temperatures of 235 °C and
reached a plateau for biochars prepared at 370 °C. This is
consistent with findings that the greatest change in biochar
properties occurs between 200 and 400 °C (Al-Wabel et al.
2013; Zhang et al. 2015). In addition, we show that there was
little gain if any in fixed C yield from proximate analysis
beyond the temperature threshold. A lack of increase in stable
C yield with increased production temperature indicates no
gain in C sequestration potential with increased carbonization
intensity (Masek et al. 2013). Braadbaart et al. (2004) identi-
fied a production temperature threshold of 310 °C for pea
biomass. By contrast, other studies have reported that produc-
tion temperatures above these values lead to increased recal-
citrance. For example, Fang et al. (2015) showed that biochar
produced at 550 °C has a mean residence time significantly
longer than that of biochar produced at 450 °C. Similar to our
results, Whitman et al. (2013) observed that production tem-
perature above or equal to 350 °C does not increase the per-
sistence of slow pyrolysis biochars in soil. The recent meta-
analysis by Wang et al. (2015) also points towards the exis-
tence of a threshold for recalcitrance based on pyrolysis tem-
perature. Our results strongly suggest that with no increase in
recalcitrance above a fairly low temperature threshold, maize
and miscanthus biochars can be tailored for their agronomic
potential without compromising biochar recalcitrance.

Fig. 5 Community composition of a bacteria from TRFLP and b fungi
from ARISA
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Biochar induced transient priming effect of soil C

Positive priming was observed within the 1-year period for all
amendments but subsided by the end of the incubation. Both
positive (Luo et al. 2011) and negative priming (Bamminger
et al. 2014a), as well as no priming (Nguyen et al. 2014) of
SOC by biochar addition has been reported in literature. Some
studies report that priming decreases or becomes negative for
higher temperature biochars and attribute this effect to reduced
volatile and labile matter in the higher temperature biochars;
contents of both residual pools was not sufficient to induce co-
metabolism of SOC (Luo et al. 2011; Zimmerman et al. 2011).
However, a meta-analysis by Wang et al. (2015) reveals that
slow pyrolysis products prepared below 374 °C led to on
average more negative priming of SOC than high-
temperature biochars. This indicates that several processes
contribute to biochar effects on SOC decomposition. Our re-
sults are in line with those ofWang et al. (2015) as we showed
that both feedstocks and hydrochars caused little positive
priming compared to those of slow pyrolysis products, inde-
pendent of production temperature. Therefore, co-metabolism
does not appear to be the main driving mechanism for priming
of SOM mineralization by our biochar series.

The largest priming effect we observed at any point in time
approached 90 % additional mineralization of SOC (Fig. 3),
and the largest overall priming effect in the first year was 58%
(Table 2). After one year, the priming effect diminished to zero
for all amended soils, indicating that long-term priming effects
are not likely to be substantial. Re-application of biochar in the
second experiment also did not change the trends observed at
the end of the long-term incubation. The transient nature of the
positive priming we observed was also seen by Luo et al.
(2011) using miscanthus biochar. Several studies have ob-
served first positive and then negative priming effects of bio-
char on SOC during their incubation (Maestrini et al. 2014;
Zimmerman et al. 2011). By contrast, studies have also ob-
served the opposite with first negative and then positive prim-
ing effects of hydrochar (Malghani et al. 2013). Apparent
positive priming (Blagodatskaya and Kuzyakov 2008) and
the absence of roots, which otherwise have a direct effect on
C turnover rates (Ventura et al. 2014), lead to the likely over-
estimation of priming of SOC measured in incubation studies
(Qiao et al. 2014). The transient nature of the response we
observed suggests that priming will have only minimal impact
on the C-sequestration gains obtained when incorporating bio-
char in agricultural fields.

Change in microbial community composition
with pyrolysis temperature

In our experiments, soil microbial community composition
was strongly affected by the degree of carbonization across
our biochar series produced at different temperatures. The

main properties affecting soil microbial composition were
pH and O/C ratio. The pH values of our biochars progressive-
ly increased with production temperature up to a plateau of 10
(Budai et al. 2014). Other studies have reported that the pres-
ence of basic sites on biochar structures increases with pro-
duction temperature (Li et al. 2014) and that the pH-10 plateau
corresponds to carbonate formation in biochars (Yuan et al.
2011). Soil pH is a major driver of microbial community com-
position (Fierer and Jackson 2006; Rousk et al. 2010;
Watzinger et al. 2014). Prayogo et al. (2014) found that bio-
char application rate of 2 %was able to change soil pH but not
0.5 % rate while both application rates influenced microbial
community composition analyzed by phospholipid fatty acid
analysis. Our 1 % biochar application rate had no significant
effect on soil pH implying that the effect on microbial com-
munity composition was linked to pH of the biochar itself and
not average pH of the soil. This suggests that the effect of
biochar pH on microbial community composition in soil was
localized on the biochar particles themselves or in their imme-
diate vicinity.

It has been suggested that biochar might affect the micro-
bial genome extraction efficiency (Lehmann et al. 2011), po-
tentially due to a binding effect similar to that reported for
CO2 (Creamer et al. 2014) and herbicides (Graber et al.
2012). Although it is impossible to ascertain that such an
effect was not present in our study, we think that it is unlikely
to bias our results. First, it is not clear why this effect would
translate into gene-specific responses. Second, in a pre-
analysis of our results (data not shown), we found no effect
of high-surface area as measured by BETN2, a good proxy for
sorption, on the microbial community composition of the soil-
biochar mixtures. However, it should be mentioned that the
taxonomic resolution of molecular fingerprints used here
(TRFLP and ARISA) only give information on the dominant
microbial communities. The use of next generation sequenc-
ing techniques can provide a better insight on the real micro-
bial diversity (Delmont et al. 2014).

The correlation between the ratio fixed C to volatile matter
and microbial community composition in our study is proba-
bly due to the fact that this ratio is a powerful indicator of
biochar carbonization degree. More fixed C and less volatile
matter lead to greater impact on community composition.
Contrary to our findings, we expected mild pyrolysis products
with high volatile matter content to induce larger microbial
community shifts in soil than high pyrolysis products.
Available C is metabolized by microbes, and labile pools of
C are known to decrease by increasing production temperature
(Al-Wabel et al. 2013). The addition of non-carbonized feed-
stocks and hydrochars caused a small shift in soil microbial
community composition while high-temperature biochars
with lower volatile matter had a much greater effect.
Therefore, available C did not have a strong effect on the
microbial community composition, at least not after 1 year
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of incubation. As Chen et al. (2015) pointed out, a selection
for species capable of decomposing BC-rich refractory
material^ is a more likely produced the shift in microbial
community composition observed with biochars produced at
increasing temperature. However, the molecular fingerprints
we used here could not confirm this hypothesis. As already
reported, only changes in the dominant microbial populations
could be detected by TRFLP and ARISA.

Other studies using low taxonomic resolution techniques
determined changes in dominant microbial communities of
soil amended with biochar. Using phospholipid fatty acid fin-
gerprints, Jiang et al. (2015) showed that biochar addition
altered microbial community composition after 30 months of
incubation mostly in favor of Gram (+) bacteria, confirming
previous results obtained after shorter incubation (Bamminger
et al. 2014b). In our study, changes observed on the dominant
microbial populations may be explained by the modification
of the soil microbial habitats Gul et al. 2015). As suggested by
the RDA, these changes could be related to a combination of
factors such as pH and organic composition of biochar as
shown by the O/C ratio, but also the content of inorganic
elements like Mg, and K. All these factors may create new
niches for rare microbial populations, and also affect the dom-
inant populations.

The fact that the largest impact on soil microbial commu-
nity composition was induced by high-temperature biochars is
fully supported by the results of our second experiments
where biochar was added to soil previously incubated with
biochar. We observed that recently applied biochar mineral-
ized fastest in soils previously incubated with high-
temperature biochar (Fig. 2). The soil metabolic quotient is
known to be affected by biochar amendments (Bamminger et
al. 2014b; Ng et al. 2014) and several studies have shown a
modified microbial activity after the addition of biochar
(Mitchell et al. 2015). Our results from both microbial com-
munity composition and soil re-incubation indicate that the
greatest impact on microbial communities is seen with high-
temperature biochars.

Conclusion

Our results from a 1-year incubation study show that biochars
with long residence time in soils can be produced from
miscanthus and corncob feedstocks when a threshold temper-
ature requirement of 370 °C is reached, and there is no gain in
recalcitrance beyond this value. Molecular fingerprints indi-
cate that changes in biochar properties affect both bacterial
and fungal community composition and these effects increase
by increasing production temperature up to 800 °C. In partic-
ular, changes in pH and O/C correlate with these microbial
responses. The response of the soil microbial community is
complex, with transient priming effects, increased change in

community composition with biochar carbonization intensity,
and increased biochar mineralization rate upon addition to soil
previously exposed to biochar. The mechanisms behind these
effects need to be better understood if we want to predict the
long-term stability of biochar in soil.
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