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It was recently shown that monotone gene action, i.e., order-preservation between
allele content and corresponding genotypic values in the mapping from genotypes to
phenotypes, is a prerequisite for achieving a predictable parent-offspring relationship
across the whole allele frequency spectrum. Here we test the consequential prediction
that the design principles underlying gene regulatory networks are likely to generate
highly monotone genotype-phenotype maps. To this end we present two measures
of the monotonicity of a genotype-phenotype map, one based on allele substitution
effects, and the other based on isotonic regression. We apply these measures to
genotype-phenotype maps emerging from simulations of 1881 different 3-gene regulatory
networks. We confirm that in general, genotype-phenotype maps are indeed highly
monotonic across network types. However, regulatory motifs involving incoherent
feedforward or positive feedback, as well as pleiotropy in the mapping between genotypes
and gene regulatory parameters, are clearly predisposed for generating non-monotonicity.
We present analytical results confirming these deep connections between molecular
regulatory architecture and monotonicity properties of the genotype-phenotype map.
These connections seem to be beyond reach by the classical distinction between additive
and non-additive gene action.
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INTRODUCTION
Quantitative genetics is the major theoretical foundation for
genetic studies in production biology, evolutionary biology, and
biomedicine. A core concept in quantitative genetics is the geno-
typic value, the mean observed phenotype for a given genotype.
It constitutes the basis for the genotype-to-phenotype (GP) map
concept. The shape of a given GP map is typically described
by the classical gene action terms: additivity, dominance, and
epistasis. Together with genotype frequencies in a given pop-
ulation, the GP map is the basis for decomposing observed
phenotypic variance into environmental variance and genetic
variance components including additive variance, dominance
variance and epistatic variance. This provides the basis for a
very successful theory when it comes to predicting selection
response and breeding values (Falconer and Mackay, 1996; Lynch
and Walsh, 1998) and more recent statistical genetics meth-
ods for mapping Quantitative Trait Loci (QTL) (Neale et al.,
2008). Quantitative genetics thus provides a mature machin-
ery for predicting the population level consequences of a given
GP map, but in order to understand several generic genetic
phenomena there is a stated need for new tools for disclos-
ing how the shape of the GP map is determined by underly-
ing biology (Jaeger et al., 2012; Moore, 2012; Gjuvsland et al.,
2013).

One such phenomenon is the resemblance between parents
and offspring. An explanation in quantitative genetic terms is
that the additive variance (VA) makes up a substantial part of

the phenotypic (VP) and genetic variance (VG). Hill et al. (2008)
showed that in populations with extreme allele frequencies, high
VA/VG ratios will arise regardless of the shape of the GP map.
However, for populations with intermediate allele frequencies a
much wider range of VA/VG ratios is observed (Wang et al., 2013).
In such populations, high VA/VG ratios cannot be fully accounted
for without considering properties of the GP map. Gjuvsland
et al. (2011) showed that a key feature of GP maps that give
high ratios of additive to genotypic variance (VA/VG), is a mono-
tone (or order-preserving) relation between gene content (the
number of alleles of a given type) and phenotype. This led to
the hypothesis that the regulatory circuitry of sexually reproduc-
ing organisms predominantly predisposes for highly monotone
genotype-phenotype maps.

Here we address the above hypothesis by a two-step approach.
First we provide methods and software tools for measuring
monotonicity of generic GP maps (i.e., sets of genotypic values).
Then we use these tools on the data generated by an extensive
simulation study of a broad collection of gene regulatory net-
work models. In these network models the steady state expression
levels serve as phenotypes and genetic variation is introduced
through parameters describing maximal production rates and
the shape of the gene regulation function. Such causally cohe-
sive genotype-phenotype (cGP) models [see Gjuvsland et al. (2013)
and references therein] allow us to identify relationships between
regulatory network architecture and properties of the resulting
GP maps.
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Our results confirm the prediction that the GP maps arising
from a wide range of gene regulatory network motifs are in gen-
eral highly monotone. In addition we show through numerical
as well as mathematical analysis that regulatory motifs involv-
ing incoherent feed-forward or positive feedback stand out in
their capacity to generate non-monotonicity. These relationships
between molecular regulatory architecture and properties of the
genotype-phenotype map—of substantial relevance to functional
genomics in general—are beyond reach by the standard distinc-
tion between additive and non-additive gene action.

Our approach can be applied to cGP models of a wide range of
biological systems at any level of model complexity. It opens for
a systematic study of the monotonicity properties of molecular
regulatory structures underlying the whole spectrum of physio-
logical regulation. This suggests that the concept of monotonicity
of GP maps can be used to build theory about heredity phrased
in terms of molecular mechanism, something which standard
genetic concepts and approaches appear to be incapable of.

MODELS AND METHODS
BACKGROUND ON MONOTONICITY OF GP MAPS
To ease understanding we provide a brief recapitulation of
the concept of monotonicity (or order-preservation) in GP
maps introduced in (Gjuvsland et al., 2011). We consider a
diploid genetic model with N biallelic loci (alleles indexed 1
and 2) underlying a quantitative phenotype. A genotype at a
single locus k is denoted by gk ∈ {11, 12, 22}. In the case of
two loci k and l there are 9 possible genotypes gkl = gkgl ∈
{1111, 1112, 1122, 1211, . . . , 2212, 2222}. The general N loci
genotype space � contains 3N genotypes g1g2 · · · gN (in con-
densed notation g1:N ) constructed by concatenating single locus
genotypes, � = {g1g2 · · · gN | gk ∈ {11, 12, 22}, k = 1, 2, . . . , N}.

For any locus k, the genotypic background, i.e., the allele com-
position of all loci except k, is g(k) = g1g2 . . . gk − 1gk + 1 . . . gN =
g1: k − 1gk + 1: N . For example, if N = 4 then g(2) = 112212
means that the genotypes of locus 1, 3, and 4 are 11,
22, and 12, respectively. We use the straightforward nota-
tion g1g2 . . . gk − 111gk + 1 . . . gN = g1:k − 111gk + 1: N to indicate a
genotype where gk = 11 while the background genotype is arbi-
trary. We will also use the compressed notation 11g(k)(or gener-
ally gkg(k)).

We use the 2-allele content (i.e., the number of 2-alleles) of
genotypes to define a partial order on the genotype space � (see
Figure 1, left panel for an illustration). For a particular locus k we
order the three genotypes sharing the same background genotype
g1: k − 1gk + 1: N as follows,

g1: k − 111gk + 1: N < g1: k − 112gk + 1: N < g1: k − 122gk + 1: N (1)

We call this the partial genotype order relative to locus k, and it
defines a strict partial order on �.

A genotype-phenotype map is a mapping G that assigns to
each genotype g ∈ � a real-valued genotypic value G(g) (the
mean trait value for a given genotype). We define monotonicity of
G in terms of how it transforms the partial genotype order to the
algebraic order of the genotypic values G(g). Without loss of gen-
erality we assume that the allele indexes at each locus have been
chosen such that G(1111 · · · 11) is the smallest of all homozygote
genotypic values. We call a genotype-phenotype map G monotone
or order-preserving with respect to locus k if it preserves the partial
genotype order relative to locus k, i.e., if,

G(g1: k − 111gk + 1: N) ≤ G(g1: k − 112gk + 1: N)

≤ G(g1: k − 122gk + 1: N) (2)

FIGURE 1 | Examples of partial genotype order and

genotype-phenotype maps. Left panel: The allele content defines a partial
order on genotype space. A two-locus example is shown. The plot at the
top displays the genotype at locus 1 (x-axis) and locus 2 (color) vs. the total
number of 2-alleles (y-axis) in the two-locus genotype. The resulting partial
ordering of genotypes is shown below. Right panel: Each lineplot shows
the 9 genotypic values (y-axis) for a single GP map, coding of genotype are
the same as in the left panel. GP maps that preserve the partial order of

genotypes are called monotone. Examples shown are an intra- and
interlocus additive map (A), a map showing partial dominance at both loci
(PD), and duplicate dominant (DD) epistasis (see Table 1 in Phillips, 1998).
GP maps that break the partial order of genotypes are called non-monotone,
examples shown are pure overdominance at both loci (OD),
additive-by-additive epistasis (A × A) and dominance-by-dominance epistasis
(D × D). The rightmost plot shows a GP map that is monotone w.r.t. locus
1, but non-monotone w.r.t. locus 2.
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for all genetic backgrounds of locus k. By allowing non-strict
inequalities we include GP maps showing complete dominance
and complete magnitude epistasis (Weinreich et al., 2005) in
the class of order-preserving GP maps. Conversely we call a GP
map non-monotone or order-breaking with respect to locus k if it
does not preserve the partial genotype order relative to locus k
for all backgrounds. Figure 1 (right panel) shows classical dom-
inance and epistasis patterns, categorized into monotone and
non-monotone GP maps.

STATISTICAL DECOMPOSITION OF GENOTYPE-PHENOTYPE MAPS
Given a genotype-phenotype map G as described above and
a corresponding vector of genotype frequencies f in a pop-
ulation, quantitative genetic provides methods for orthogonal
decomposition of genotypic values and resulting genetic vari-
ance in the population into additive and non-additive (dom-
inance and epistasis) components (Lynch and Walsh, 1998).
We performed such statistical decomposition with the func-
tion linearGPmapanalysis in the R package noia (http://
cran.r-project.org/package=noia; Le Rouzic and Alvarez-Castro,
2008) version 0.94.1. We assumed an idealized population where
all genotype frequencies are equal (1/3N ). In such a hypothetical
population the NOIA (Alvarez-Castro and Carlborg, 2007) statis-
tical and functional formulations and the unweighted regression
model proposed by Cheverud and Routman (1995) are equiv-
alent. Furthermore, the decomposition of genotypic values is
equivalent to decomposing G into a sum of additive and non-
additive GP maps, and the genetic variance in this case is simply
the variance of the 3N genotypic values in G. We used the NOIA
statistical formulation to decompose a GP map G into its addi-
tive and non-additive components, and computed the ratio of
additive to total genetic variance VA/VG as a measure of how
well the additive component describes the original GP map. In
case of the illustrative GP maps depicted in Figure 1, this gives
VA/VG = 1 for the fully additive GP map A, and VA/VG = 0 for
the pure overdominance (OD) and the pure epistasis (Cheverud
and Routman, 1996) maps A × A and D × D.

GENE REGULATORY NETWORK MODELS
Gene expression in eukaryotes is controlled through gene regu-
latory networks involving numerous regulatory mechanisms [see
e.g., Latchman (2005), for details]. Modeling of such gene regula-
tory networks is well-established, and available modeling frame-
works range from coarse-grained descriptions of the topology
of genome-wide networks to very detailed mechanistic models
describing the dynamics of small networks (De Jong, 2002; Schlitt
and Brazma, 2007; Karlebach and Shamir, 2008). In line with
a large number of authors we used ordinary differential equa-
tions (ODEs) to study a family of generic gene regulatory network
models containing three diploid genes X1, X2, and X3, organized
as a regulatory system where the rate of expression of each gene
can be regulated by the expression level of one or both of the other
genes. The wiring of the system is described by a 3 × 3 connec-
tivity matrix A with elements Akl ∈ {−1, 0, 1}. The signs of the
elements of A describe the mode of regulation, Akl = 0 indicates
that Xl is not a regulator of Xk, if Akl = 1 then Xl is an activa-
tor of Xk, and if Akl = −1 then Xl is a repressor of Xk. Gene

regulatory systems are often laid out visually as signed directed
graphs. There is a one-to-one correspondence between a con-
nectivity matrix and a signed directed graph, two examples are
illustrated in Figure 4. We used the sigmoid formalism (Mestl
et al., 1995; Plahte et al., 1998) in the diploid form (Omholt et al.,
2000) where the expression the two alleles of gene k is described
by the following ODEs,

ẋk1 = αk1Rk1(y1, y2, y3) − γk1xk1, (3)

ẋk2 = αk2Rk2(y1, y2, y3) − γk2xk2,

yk = xk1 + xk2, k = 1, 2, 3.

Here αki is the maximal production rate for allele i of gene Xk,
γki is the decay rate, while Rki is the gene regulation function
(dose-response function). If Xk has no regulators, we assume pro-
duction is always switched on i.e., Rki = 1. If Xk has a single
regulator Xl, the gene regulation function is given as Rki(yl) =
S(yl, θlki, plki), where S(y, θ, p) = yp/(yp + θp) if Xl is an activa-
tor and S(y, θ, p) = 1 − yp/(yp + θp) if it is a repressor. In both
cases the parameter θlki gives the amount of regulator needed
to get 50% of maximal production rate, and plki determines the
steepness of the response. In the case of two regulators Xl and
Xj we set Rki(yl, yj) = S(yl, θlki, plki)S(yj, θjki, pjki), corresponding
to the Boolean AND function. Modeling transcription regulation
by means of Hill functions and Boolean composition has a long
tradition in modeling of gene regulation and is widely used.

With three genes and up to two regulators per gene the number
of possible connectivity matrices is 6859. We further required that
the system is connected, and that X3 is downstream to both X1

and X2 so either X1 and X2 both regulate X3 directly (A31A32 �=
0), or one of them regulates X3 directly and the other one indi-
rectly (A31A12 �= 0 or A32A21 �= 0). This reduces the number of
distinct connectivity matrices to 3724. Finally, we identified pairs
of matrices that are symmetric with respect to interchanging X1

and X2 and picked just one matrix from each pair. The result-
ing 1881 connectivity matrices were used for our gene regulatory
simulations.

IDENTIFYING FEEDBACK LOOPS AND FEEDFORWARD MOTIFS
Feedback and feedforward motifs appear recurrently as regu-
latory building blocks in transcription networks across all liv-
ing organisms. These network motifs have several characteris-
tic features (Alon, 2007), negative feedback can for example
accommodate fast transcriptional responses and homeostasis,
while positive feedbacks are utilized as biological switches. We
went through all 1881 gene regulatory models and extracted
information about their feedback and feedforward loop charac-
teristics from their connectivity matrices. For each system we
computed three autoregulatory feedback loop products FL1 =
A11, FL2 = A22, FL3 = A33, three two-gene feedback loop prod-
ucts: FL12 = A21A12, FL13 = A31A13, FL23 = A23A32 and two
three-gene feedback loop products: FL123 = A32A21A13, FL213 =
A31A12A23. Non-zero loop products indicate that the system con-
tains the corresponding feedback loop, and the sign of the loop
product gives the sign of the feedback loop. We also computed
the products for two feedforward motifs: FFL32 = A32(A31A12),
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FFL31 = A31(A32A21). Again non-zero products indicate that the
system contains the corresponding feedforward motif, a positive
value corresponds to a coherent feedforward while a negative
value indicates incoherent feedforward. Figure 4 depicts the con-
nectivity matrix and the signed digraphs of a system with a
positive feedback loop as well as a system with incoherent feed-
forward. Spreadsheet S1 contains adjacency matrices and loop
products for all 1881 motifs.

GENE REGULATORY NETWORK SIMULATIONS
The simulation were performed with the Python package
cgptoolbox (http://github.com/jonovik/cgptoolbox), using
the sigmoidmodel submodule, which contains an implemen-
tation of the gene regulatory network model (Equation 3) and
the connectivity matrix A. A similar simulation setup is found
in Gjuvsland et al. (2011) together with a discussion of gene
regulation functions and the genotype-parameter map in molec-
ular terms. We compared two different types of genotype-to-
parameter maps:

• Genotype to parameter map without pleiotropy: biallelic geno-
typic variation for all three loci was introduced through
the maximal production rates αki. For each Monte Carlo
simulation the allelic parameter values were sampled from
U(100, 200).

• Genotype to parameter map with pleiotropy: allelic parameter
values were sampled for maximal production rates αki (sam-
pled from U(100, 200)), regulation thresholds θlki (sampled
from U(20, 40)), and regulation steepnesses plki (sampled from
U(1, 10)).

All decay rates γki were set equal to 10. We assembled param-
eter sets for all 27 diploid genotypes, and for each genotypic
parameter set the system of Equation 3 was integrated numer-
ically until convergence to a stable state. The equilibrium value
of y3 was recorded as phenotype. Datasets where the system
failed to converge for one or more genotypes were discarded.
For each of the 1881 motifs we performed 1000 Monte Carlo
simulations.

Some Monte Carlo simulations lead to very little phenotypic
variation, in the sense that the span between the largest and small-
est of the 27 genotypic values was small. In order to avoid artifacts
arising from the numeric ODE solver tolerance, these essentially
flat GP maps were discarded. Further analysis of monotonic-
ity and variance components were only performed on GP maps
where the absolute range (maximum genotypic value – mini-
mum genotypic value) and relative range (absolute range/mean
genotypic value) were both > 0.01.

RESULTS
MEASURING MONOTONICITY OF GP MAPS
In the following we present two numerical measures for quan-
tifying monotonicity in a GP map G with N biallelic loci. The
first quantifies the monotonicity for individual loci by comparing
negative and positive allele substitution effects before weighting
the individual loci into an overall measure. The second utilizes
isotonic regression to quantify the distance between G and the
closest fully monotone GP map.

Measure 1: quantifying non-monotonicity by substitution effects
We first develop a measure of monotonicity based on the effects
of substituting a single allele at locus k,

s1(g(k)) = G(g1: k − 122gk + 1: N) − G(g1: k − 112gk + 1:N), (4)

s2(g(k)) = G(g1: k − 112gk + 1: N) − G(g1: k − 111gk + 1: N),

while keeping the background genotype g(k) = g1: k + 1gk + 1: N

fixed. Monotonicity as defined by Equation 2 is equivalent to
si(g(k)) ≥ 0 for i = 1, 2 across all genetic backgrounds of locus
k. By taking into account also the magnitude of the substitution
effects we can quantify the deviation from strict monotonicity. We
start with the set Sk = {si(g(k))} of single allele substitution effects
for locus k for i = 1, 2 and across all genotypic backgrounds g(k).
The total number of elements in Sk thus becomes 2 · 3N−1, and we
split the set into two disjoint subsets reflecting their sign; Sk+ =
{si(g(k)) ∈ Sk|si(g(k)) > 0} and Sk− = {si(g(k)) ∈ Sk|si(g(k)) < 0}.
We compute the sum of positive substitution effects and the sum
of absolute values of negative substitution effects,

Pk =
∑

Sk+

si(g(k)), (5)

Nk =
∑

Sk−

∣∣∣si(g(k))

∣∣∣ ,

and let Tk = Pk + Nk denote the overall sum of absolute substi-
tution effects. We then define the degree to which the GP map G
is monotone with respect to locus k by,

mk = |Pk − Nk|
Tk

=

∣∣∣∣∣
∑

g(k)

(
s1(g(k)) + s2(g(k))

)
∣∣∣∣∣

∑

g(k)

(|s1(g(k))| + |s2(g(k))|) . (6)

The absolute value in the numerator ensures that the measure mk

is invariant with respect to the choice of indexes for the two alle-
les of locus k. Interchanging the numbering of the alleles leads to
the mappings s1(g(k)) �→ −s2(g(k)), s2(g(k)) �→ −s1(g(k)), which
leaves the value of mk unchanged. By the triangle inequality
mk ≤ 1. If mk = 1, then G is monotonic with respect to locus k,
whereas mk < 1 implies that G is order-breaking w.r.t. locus k. If
mk = 0, then the positive substitution effects equal the negative
substitution effects in magnitude and we say that G is completely
order-breaking w.r.t. locus k. This measure distinguishes well
between the monotone and non-monotone maps in Figure 1.
Clearly m1 = m2 = 1 for the additive map (A) and GP maps
showing partial dominance and duplicate dominance epistasis. In
contrast, m1 = m2 = 0 for the maps showing pure OD and pure
epistasis (A × A and D × D).

In order to quantify the overall monotonicity of the GP map G
we introduce the degree of monotonicity (m) which is a weighted
mean of all mk, where the weights reflect the relative effect size of
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the loci in terms of Tk,

m =

N∑
k = 1

mkTk

N∑
k = 1

Tk

. (7)

As shown in Figure 3A, the degree of monotonicity is accordingly
1 for the monotone maps in Figure 1 while it is 0 for the pure OD
and pure epistasis maps. This definition of degree of monotonic-
ity allows us to establish a vocabulary that is analogous to the
classification of single locus dominance; i.e., a GP map is called
monotone if m = 1, (partially) non-monotone if m < 1 and purely
non-monotone if m = 0.

For example, the degree of monotonicity of the GP map
published by Cheverud and Routman (1995), with two loci
underlying 10-week body-weight (in grams) at 10 weeks in a
mouse F2 cross, may be computed as follows. After renaming the
two loci (B →1, A →2) and indexing alleles to conform to our
notation, the nine genotypic values (Table 1 in (Cheverud and
Routman, 1995)) are G(1111) = 31.23, G(1112) = 34.13,
G(1122) = 33.82, G(1211) = 34.89, G(1212) = 35.90,
G(1222) = 36.53, G(2211) = 34.12, G(2212) = 37.95, and
G(2222) = 36.84. From the line plot of this GP map (Figure 2,
left panel) we find that the GP map is non-monotone with
respect to both loci. Locus 1 shows marginal OD for the 11
genotype of locus 2 and locus 2 shows marginal OD for the
11 and 22 genotypes of locus 1. To compute the degree of
monotonicity, we start with the set of single allele substitution
effects for locus 1, S1 = {3.66,−0.77, 1.77, 2.05, 2.71, 0.31},
and divide this into sets of negative S1− = {−0.77} and pos-
itive effects S1+ = {3.66, 1.77, 2.05, 2.71, 0.31}. The sum N1

of elements in S1+ is 10.50 and P1 the sum of absolute values
of elements in S1− is 0.77, which gives T1 = P1 + N1 = 11.27.
From Equation 6 it follows that m1 = 0.86. Similarly, the sets
of substitution effects for locus 2 are S2− = {−1.11,−0.31} and
S2+ = {3.83, 0.63, 1.01, 2.90}. This gives, N2 = 1.42, P2 = 8.37,
T2 = 9.79, and m2 = 0.71. Inserting values for both loci into
Equation 7, the degree of monotonicity (m) of this GP map
is calculated to be 0.79. This value concords well with the

visual observation (Figure 2, left panel) that it does not deviate
substantially from a purely monotone map.

For random GP maps (randomly sampled genotypic values
as in (Gjuvsland et al., 2011)) there is a strong positive corre-
lation between the degree of monotonicity and the size of the
additive component (VA/VG) (Figure 3A). A similar relationship
was observed for three-locus random GP maps (Figure A1A).
All GP maps in Figure 3A with m < 0.1 have VA/VG < 0.1. At
the other end of the spectrum there is much more variation,
for instance the most extreme completely monotone map (the
duplicate dominant factors DD) has VA/VG as low as 0.375.

Measure 2: quantifying monotonicity by isotonic regression
This measure quantifies the monotonicity of a particular GP map
G in terms of the least-squares distance to the closest monotone
map. We build on the mathematical notation introduced in sec-
tion “Background on monotonicity of GP maps” where � is the
genotype space for N biallelic loci and a GP map is a function
that assigns a real-valued genotypic value G(g) to each genotype

A B

FIGURE 3 | Measures of monotonicity vs. additivity of GP maps.

Scatterplots showing VA/VG from unweighted regression vs. (A) degree of
monotonicity (m) and (B) R2

mono from isotonic regression. Black dots
correspond to the maps shown in Figure 1 together with
additive-by-dominance epistasis (A × D), a map with two loci showing
complete dominance (CD) and two classical epistasis types from Table 1 in
Phillips (1998); duplicate recessive genes (DR) and recessive epistasis (RE).
Red dots show 1000 random two-locus GP maps, while blue dots show the
same 1000 GP maps after rearranging genotypic values to introduce
order-preservation for 1 locus [see Model and Methods in Gjuvsland et al.
(2011)].

FIGURE 2 | Decomposition of genotype-phenotye map into

monotone and non-monotone components. Left panel:

Genotype-phenotype map G for two loci underlying 10-week
body-weight at 10 weeks in a mouse F2 cross. The GP map shown
here is equivalent to the one in the original publication [see Figure

3A in Cheverud and Routman (1995)], but we have changed indexing
of loci and alleles for consistency with the notation used here. The
GP map G is decomposed with isotonic regression into a (middle

panel) monotone component GM and a (right panel) non-monotone
component GN .
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g in �. For any particular GP map G, we identify the monotone
component of G as the map GM which minimizes the residual vari-
ance var(G − GM), i.e., GM is the monotone GP map which is
closest to G in the least-squares sense. For a given G the mono-
tone component GM is unique (Barlow and Brunk, 1972) and
can be computed numerically by isotonic regression (Leeuw et al.,
2009) of G subject to the partial ordering of genotypes defined
in Equation 1. Furthermore, the residual GN is orthogonal to
GM in the sense that

∑
g ∈ � GM(g)GN(g) = 0. This allows the

orthogonal decomposition,

G = GM + GN , (8)

of a genotype-phenotype map into a monotone component
GM and a non-monotone component GN such that var(G) =
var(GM) + var(GN). The orthogonality property allows us to
measure monotonicity of G in terms of the coefficient of deter-
mination R2

mono of the isotonic regression given by the ratio
R2

mono = var(GM)/var(G). In the case that G itself is monotone
for all loci we have R2

mono = 1, while order-breaking for one or
more loci will result in R2

mono < 1.
The isotonic regression approach can be illustrated in a

straightforward way on the two-locus GP map provided by
Cheverud and Routman (1995) (see text above and left panel of
Figure 2). The partial ordering of genotypes defined by Equation
1 is illustrated in Figure 1 (left panel). By isotone regression
(Leeuw et al., 2009) on this partial genotype ordering, the original
GP map is decomposed into a monotone and a non-monotone
component (Figure 2, middle and right panels), and the coeffi-
cient of determination (R2

mono) is 0.97.
Our simulation results for random GP maps show that R2

mono
is positively correlated to the size of the additive component
(Figure 3B for two-locus GPs maps and Figure A1B for three-
locus GP maps) and that for a given VA/VG the lower bound for
R2

mono is close to a straight line from (0, 0.2) to (1, 1). However,
due to the search for the closest monotone GP map, R2

mono will
not become zero even for purely overdominant or purely epistatic
maps. As shown in Figure A2, the two monotonicity measures are
highly correlated.

An R package for studying monotonicity in GP maps
We developed an R package gpmap for studying functional prop-
erties of GP maps. The package takes GP maps in the form of
vectors of genotypic values as input, and provides functions for
(i) determining whether the map is order-breaking or order-
preserving w.r.t. any given locus, (ii) the degree of monotonicity
m, (iii) R2

mono using isotonic regression from the isotone pack-
age (Leeuw et al., 2009), and (iv) plots of the original and
decomposed GP maps. Code example 1 (Box 1) below illustrates
the usage and functionality of the gpmap package. The package is
available from CRAN http://cran.r-project.org/package=gpmap
under GPLv3.

MONOTONICITY IN GP MAPS ARISING FROM GENE REGULATORY
NETWORKS
To search for generic relationships between monotonicity and
regulatory network structure, we used the above measures of

monotonicity to characterize GP maps emerging from the gene
regulatory network models (see Models and Methods). Based on
earlier results (Gjuvsland et al., 2007, 2011; Wang et al., 2013) we
hypothesized that incoherent feed forward (Figure 4, right panel)
or positive feedback (Figure 4, left panel) would be necessary in
order to obtain highly order-breaking GP maps, and we charac-
terized all 1881 networks in terms of these two properties. Table 1
shows the number of motifs falling into the resulting four cate-
gories. We summarized the number of Monte Carlo simulations
where all genotypic parameter sets gave convergence to a stable
steady state, and where the resulting GP maps were not essentially
flat (see Models and Methods for details). Motifs with less than
100 usable GP maps were discarded from further analysis. For
the genotype-to-parameter maps without pleiotropy (in the sense

Box 1 | Code example 1.

Code example for quantifying and visualizing monotonicity for
the two-locus GP map published in [14] using the R package
gpmap.

> library(gpmap) #load package
> data(GPmaps) #load dataset
> gp <- mouseweight #GP map from reference

[14]
>

> ## Tabulate genotypic values
> cbind(gp$genotype,gp$values)
>

> ## Plot the GP map
> plot(gp)
>

> ## Compute degree of monotonicity
> gp <- degree_of_monotonicity(gp)
> gp$degree.monotonicity.locus
> print(gp)
>

> ## Quantify monotonicity by isotonic
regression

> gp <- decompose_monotone(gp)
> print(gp)
>

> ## Plot decomposed GP map
> plot(gp,decomposed=TRUE)

FIGURE 4 | Connectivity matrices and signed directed graphs.

Connectivity matrix A and the corresponding signed directed graph for two
of the 1881 systems in the simulation study. The left panel depicts the
connectivity matrix and the signed digraph of a system with a positive
feedback loop between X1 and X2 while the right panel shows a system
with incoherent feedforward from X1 to X3.
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Table 1 | Frequencies (proportion of row total in parenthesis) of incoherent feedforward and positive feedback loops in subsets of the 1881

studied motifs.

Dataset Number of motifs Motifs containing

Incoh. feedforward No incoh. feedforward

Positive feedback No positive feedback Positive feedback No positive feedback

All motifs 1881 287 (0.153) 48 (0.026) 1294 (0.688) 252 (0.134)

GENOTYPE-TO-PARAMETER MAP WITHOUT PLEIOTROPY

Discarded motifs 868 152 (0.175) 0 715 (0.824) 1 (0.001)

Analyzed motifs 1013 135 (0.133) 48 (0.047) 579 (0.571) 251 (0.248)

GENOTYPE-TO-PARAMETER MAP WITH PLEIOTROPY

Discarded motifs 791 124 (0.157) 0 667 (0.84) 0

Analyzed motifs 1090 163 (0.149) 48 (0.044) 627 (0.575) 252 (0.231)

that genetic variation at one locus influences only a single param-
eter, see Model and Methods) 868 motifs were discarded, while
for the genotype-to-parameter map with pleiotropy (genetic vari-
ation at one locus influences three parameters) 791 motifs were
discarded. All (but one) discarded motifs contained at least one
positive feedback loop (Table 1). A plausible explanation for this
is that many motifs with positive feedback loops have a stable
steady state at, or very close to 0 for one or more state variables
regardless of parameter values, and this leads to essentially flat GP
maps.

The introduction of pleiotropy in the genotype to parame-
ter map has a marked effect on the monotonicity characteristics
of the associated GP map (Figure 5). When genetic variation
at a locus Xi affects only its maximal production rate the GP
maps come out as highly monotone (Figure 5A), with a large
majority being fully monotone or order-breaking for just a single
locus. When genetic variation at locus Xi affects the threshold and
steepness of the dose-response curve in addition to the maximal
production rate (pleiotropy in the genotype-to-parameter map),
the majority of GP maps still show order-breaking either for no
loci or just one locus (Figure 5B). But a considerable number of
GP maps are in this case order-breaking for two or three loci.
Furthermore, by dividing the motifs into the four groups given
in Table 1 it is evident that the regulatory anatomy of a network
determines its predisposition for non-monotonicity in its asso-
ciated GP map. Presence of incoherent feedforward or positive
feedback loops appears to be prerequisites for the majority of the
observed non-monotonic GP maps.

The class of motifs lacking both incoherent feedforward and
positive feedback contains very few order-breaking GP maps,
and with no pleiotropy in the genotype-to-parameter map we
observe only fully order-preserving GP maps for this class (cyan
in Figure 5A). In the Appendix we generalize this to an arbitrary
number of nodes and formally prove that without pleiotropy in
the genotype-to-parameter map, the presence of incoherent feed-
forward or positive feedback is indeed a necessary condition for
non-monotone GP maps to arise from networks with monotone
gene regulation functions.

The introduction of pleiotropy in the genotype-to-parameter
map increases the frequency of order-breaking GP maps substan-
tially (Figure 5B). Motifs lacking both incoherent feedforward

A B

FIGURE 5 | Order-breaking in motifs containing a single feedforward

loop. Summary of order-breaking for all motifs for which at least 100 (out of
1000) Monte Carlo simulations lead to GP maps with non-negligible
variation (see Models and Methods section “Gene regulatory network
simulations,” for detailed criteria). Results are shown for 1013 motifs with a
genotype-to-parameter map without pleiotropy (A) and 1090 motifs with a
genotype-to-parameter map with pleiotropy (B). Colors indicate classes of
motifs based on the presence/absence of incoherent feedforward and
positive feedback loops, see Table 1 for the number of motifs in each class.
A single boxplot summarizes, for all motifs in the given class, the proportion
of the GP maps (y-axis) that are order-breaking with respect to a given
number of loci (x-axis). For example, consider the red box at x = 0 in panel
(A). This boxplot contains results for motifs with both incoherent
feedforward and positive feedback and from Table 1 we find that the red
boxplot summarizes results for 135 motifs. From the y-axis we find that at
least half (box median at y = 1) of these 135 motifs result in only monotone
GP maps, while for the most extreme (end of whisker) of the 135 motifs
only 25% of the GP maps are monotone. Similarly, the cyan box is
compressed into a line at x = 0, y = 1 indicating that all 251 motifs that
lack both incoherent feedforward and positive feedback result in only
monotone GP maps.

and positive feedback may in this case lead to GP maps that are
order-breaking for one or two loci, but never for all three loci.
Using isotonic regression to quantify the overall monotonicity
of the GP maps reinforces the finding that incoherent feedfor-
ward and positive feedback predispose for non-monotonicity
(Figure 6). Figure 6 also shows that for all classes of motifs
the majority of GP maps are fully monotone, while the most
non-monotone GP maps (lowest R2

monovalues) are observed for
motifs with positive feedback. The differences between classes
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A B

FIGURE 6 | Empirical distribution functions for R2
mono. Summary of

R2
mono values from isotone regression for all motifs for which at least

100 (out of 1000) Monte Carlo simulations lead to GP maps with
non-negligible phenotypic variation (see Models and Methods section
“Gene regulatory network simulations,” for detailed criteria). Results are
shown for 1013 motifs with a genotype-to-parameter map without

pleiotropy (A) and 1090 motifs with a genotype-to-parameter map with
pleiotropy (B). Each panel is divided into 4 subplots containing classes
of motifs based on the presence/absence of incoherent feedforward
and positive feedback loops, see Table 1 for the number of motifs in
each class. Each curve shows, for a single motif, the empirical
distribution function value (y-axis) of R2

mono for all GP maps (x-axis).

of motifs are also evident when inspecting the additivity of
GP maps (Figure A3), but since monotone GP maps can still
be non-additive, the patterns are much more blurred than for
monotonicity.

DISCUSSION
Fisher’s (1918) regression on gene content and the concepts
derived from this, such as additive effects and dominance devia-
tion, provide the theoretical basis for most of quantitative genetics
(Falconer and Mackay, 1996; Lynch and Walsh, 1998). By regress-
ing on gene content, including the extensions by Cockerham
(1954), the genotype-phenotype map is decomposed into addi-
tive, dominant, and epistatic components. The use of gene con-
tent or the number (0, 1, or 2) of alleles with a particular index
in a genotype implies the same partial ordering of genotype
space as defined in Equation 1. Thus, our proposed definition
of monotonicity of GP maps, and in particular the use of iso-
tonic regression to quantify monotonicity, may be viewed as a
relaxation of the linearity assumption underlying current quan-
titative genetics theory. In this perspective the positive correlation
between monotonicity and additivity (Figure 3) is expected.

We have addressed GP maps with 2 and 3 loci as we consid-
ered an in-depth study of the properties of GP maps with higher
number of loci to be outside the scope of this study. Some general
observations can be made, though. Since m is a weighted aver-
age, the mk of major loci (i.e., for which Tk is large relative to∑

Tk) will tend to dominate. For instance, in a case with a single
major locus showing monotone gene action and several minor
loci showing order-breaking, the GP map will overall be close
to monotone (m close to 1). Conversely, order-preservation in a
number of minor loci would have little influence on m if major
loci have strongly non-monotone gene action. Isotonic regres-
sion gives an overall measure of monotonicity of a GP map, but
provides no locus-specific measures corresponding to mk. Similar

to the case for m, the gene action of major loci will have high
influence on the value of R2

mono.
The observation that monotonicity is an important prop-

erty of GP maps is in principle not new. For a single locus,
non-monotone gene action appears in the form of over- or
under-dominance, while complete and partial dominance as well
as additivity exemplify monotone gene action. Weinreich et al.
(2005) distinguished between sign epistasis and magnitude epista-
sis and showed that sign epistasis limits the number of mutational
trajectories to higher fitness. As sign epistasis reflects a non-
monotone GP relationship and magnitude epistasis reflects a
monotone one, this insight concords with our results. A similar
distinction has been proposed (Wang et al., 2010) for statisti-
cal interactions where removable interactions are those that can
be removed by a monotone transformation of the phenotype
scale, while non-monotonicity in the GP map leads to essential
interactions. Wu et al. (2009) developed a method to screen for
and test the significance of essential interaction in genome-wide
association studies. Isotonic regression has also recently been
applied to link genotype and phenotype data (Beerenwinkel et al.,
2011; Luss et al., 2012). Our treatment of monotonicity is more
general than these earlier works in three major ways. First, we
deal with monotonicity of the GP map as a whole rather than
either intra-locus (dominance vs. overdominance) or inter-locus
(magnitude vs. sign epistasis and removable vs. essential inter-
actions). Second, where the earlier treatments have focused on
classifying the type of gene action, we make use of quantitative
measures of monotonicity. Third, our approach combining the
concept of monotonicity with cGP models opens a direct link
between genetics and the theory of dynamical systems in the wide
sense.

Monotonicity is a property of the GP map separate from
the allele frequencies, making it a physiological (Cheverud and
Routman, 1995) or functional (Hansen and Wagner, 2001)
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descriptor rather than a statistical one. The distinction between
physiological and statistical epistasis has lead to much debate
(Phillips, 2008). Zeng et al. (2005) argued the distinction was
unnecessary and potentially misleading. Although their argu-
ments around orthogonality and variance components are valid,
our results demonstrate very clearly that describing the properties
of the GP map without reference to any particular study popula-
tion is essential if we want to connect quantitative genetics with
regulatory biology.

It is clear from our results that positive feedback and incoher-
ent feedforward promote non-monotonicity. The clear-cut dif-
ferences in monotonicity between different classes of regulatory
networks, combined with the strong correlation between mono-
tonicity and additivity of GP maps, appear therefore to explain the
findings that regulatory systems with positive feedback give con-
siderably more statistical epistasis than those without (Gjuvsland
et al., 2007; Wang et al., 2013). Even though both incoherent feed-
forward and positive feedback predispose for non-monotone GP
maps, the underlying mechanisms are different for the two reg-
ulatory motifs. In the case of incoherent feedforward the sum of
direct and indirect effects may result in a non-monotone dose-
response relationship (Kaplan et al., 2008). That positive feedback
loops can give non-monotonicity is intuitively less clear, but in
the Appendix we show both results analytically. Positive feedback
predisposes for multiple steady states, and order-breaking might
also emerge from different genotypes corresponding to different
states. It should be noted, however that positive feedback is only
a necessary condition for multistationarity (Plahte et al., 1995),
and a positive loop in the connectivity matrix A of a system is
not necessarily active at any point during the time course of the
system.

Without any restrictions on the connectivity of a three-
gene system there are 39 = 19, 683 possible distinct networks.
The main restriction we imposed (see Models and Methods
for details) was a maximum of two regulators per gene, which
allowed us to use Boolean gene regulation functions already
established in the sigmoid formalism (Plahte et al., 1998). Other
model formalisms allowing an arbitrary number of regulators
are also available (Wagner, 1994, 1996; Siegal and Bergman,
2002) and could be extended to diploid forms and used in later
studies.

Although this study has focused on gene regulatory net-
works, the concept of monotone gene action applies to the
propagation of genetic variation across the whole physio-
logical hierarchy. One may therefore systematically use the
concepts and methods presented here to study the order-
preserving and order-breaking properties of genotype-phenotype
mappings that are associated with any regulatory structure
amenable for mathematical modeling. Through this it will be
possible to make a wide-ranging survey of which regulatory
anatomies promote monotonicity and which promote non-
monotonicity. We foresee that this classification may become
instrumental for predicting how phenotypic effects of genetic
variation propagate across generations in sexually reproducing
populations.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fgene.2013.00216/
abstract
Spreadsheet S1 | Excel spreadsheet with connectivity matrices and loop

products for all 1881 gene regulatory networks.
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APPENDIX
In this appendix we complement the simulation studies in the
main text with some analytic results for GP maps emerging from
ODE models of gene regulatory networks. We study a general-
ization of the gene network model in Equation (3) with an arbi-
trary number of loci and monotone gene regulation functions,
but restrict the analysis to genotype-parameter maps without
pleiotropy. In particular, we show that (i) if there are no posi-
tive feedback loops and no incoherent feedforward loops in the
network, the resulting GP maps are always monotone, (ii) a posi-
tive feedback loop or an incoherent feedforward loop may lead to
non-monotone GP maps. The results hold for phenotypes given
as the stable concentration of the product of one of the genes,
and under certain restrictions also for phenotypes given as a func-
tion of one or several stable gene product concentrations that is
monotonic with respect to each of its arguments.

GENE NETWORK MODEL
We consider a dynamic system consisting of n mutually inter-
acting diploid loci Xj, j ∈ N = {1, . . . , n}, regulating each other’s
expression. The time dependent output of Xj is denoted zj, and we
define z = [z1, z2, . . . , zn]. It goes without saying that zj in gen-
eral depends on the genotypes of all the genes even though we will
not always state this explicitly.

For a given genotype g = gjg(j) = ajbjg(j), where
gj ∈ {11, 12, 22} denotes the genotype and aj, bj ∈ 1, 2 denote
the indexes of the two alleles of locus Xj, the equations of motion
for Xj are

ż1
j = α

aj

j r
aj

j (z) − γ
aj

j z1
j ,

ż2
j = α

bj

j r
bj

j (z) − γ
bj

j z2
j ,

zj = z1
j + z2

j ,

(A1)

where z1
j and z2

j are the time-dependent outputs of the two

homologous copies of Xj. The two allele rate functions r1
j (z) and

r2
j (z) have range [0, 1] so that α1

j and α2
j represent the max-

imum production rates of the two alleles. We assume that all
dose-response functions in Equation (A1) are differentiable and
monotonic with respect to each of its arguments, and that for each
j, k, the signs of ∂r1

j /∂xk and ∂r2
j /∂xk in the stable point x are

equal. This model generalizes Eq. (3) to an arbitrary number of
loci and a broader class of gene regulation functions.

In the following we are only concerned with the steady states
of Equation (A1), and assume for simplicity that they have just
a single stable equilibrium point. Solving the equilibrium condi-
tions of Equation (A1) with respect to z1

j and z2
j and adding gives

fj(x) = μ
aj

j r
aj

i (x) + μ
bj

j r
bj

j (x) − xj = 0, j ∈ N, (A2)

where x = [x1, . . . , xn] is the stable point, μ
ai
j = α

aj

j /γ
aj

j and

μ
bj

j = α
bj

j /γ
bj

j . Since our definition of monotonicity of GP maps
does not depend on the numbering of alleles, we will without loss
of generality assume μ1

j ≤ μ2
j for all j.

The network architecture can be read out from the structure
of the system’s Jacobian matrix in the stable state x. We define the
elements of the Jacobian J for the set of functions fj defined in
Equation (A2) by

Jjk = Jjk(g) = ∂fj(x)

∂xk
, j, k ∈ N. (A3)

To the Jacobian J it is customary to assign a signed directed graph
G in which each locus Xk is represented by a node Xk, and in
which there is an arc from Xj to Xk if and only if Jkj �= 0, its sign
given by the sign of Jkj. A chain from Xj to Xk is a set of arcs in G
leading from Xj to Xk in which all intermediate nodes are visited
only once. The sign of a chain is equal to the product of the signs
of the Jij corresponding to the arcs in the chain. If there is a chain
from Xi to Xj and also a chain from Xj to Xi through a disjoint set
of nodes, the two chains constitute a proper feedback loop (FBL).
To each FBL is associated a loop product L which is the product
of the Jacobian elements corresponding to all the arcs in the loop.
The sign of the loop is given by the sign of L. Two chains from Xj

to Xi, i �= j, with only the endpoint nodes in common, constitute
a feedforward loop (FFL). If the two chains have opposite signs,
the FFL is incoherent (IFFL), otherwise it is coherent (CFFL).

The system’s phenotype could be any scalar quantity defined
by its equilibrium value x. In the following we assume the
genotype-phenotype map G(g) = xq(g), q ∈ N, for a given and
fixed q, and investigate the monotonicity properties of G(gkg(k))

with respect to genetic variation in any locus Xk for different back-
grounds g(k). In the following sections we analyse the causes of
order-breaking in G in the restricted case in which there is only
genetic variation in μ1

k and μ2
k , not in the shape of the dose-

response functions r1
k and r2

k , implying r1
k(x) = r2

k(x) = rk(x).
This is what we mean by a genotype-to-parameter map without
pleoitropy.

In the next sections we prove the following result:

Proposition 1. Assume all rate functions in Equation (A1) are
monotonic and that G is the mapping from g to xq for some fixed q
so that xq(g) is the phenotype. If there is no feedback loop (FBL) and
no feedforward loop (FFL) anywhere in the network corresponding
to the system Equation (A1), then necessarily mk = 1 for all k. If the
system contains either a single FFL or a single FBL, then G may be
non-monotone for some xk if the FFL is positive or the FBL is inco-
herent, but if the FBL is negative or the FFL is coherent, no order
breaking can occur for any xk.

At the end of this note we show that under some reasonable
conditions this result is also valid for more general phenotypes
depending on more than one xq.

NETWORKS WITHOUT LOOPS
We first consider networks containing no feedforward loop and
no feedback loop. In these networks there is at most one chain
from one node to another, and of course no autoregulatory loops.
If there is a chain from Xj to Xk, there is no chain from Xk to
Xj. Any node is either unregulated (constitutively expressed) or
regulated by one or several other nodes.
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We first prove a useful lemma.

Lemma 1. If xl(11g(j)) ≤ xl(12g(j)) ≤ xl(22g(j)) for any j and l
and there is an arc Xl → Xm with positive sign and no other chain
from Xl → Xm, then also xm(11g(j)) ≤ xm(12g(j)) ≤ xm(22g(j)).
If the sign of the arc is negative, then xm(11g(j)) ≥ xm(12g(j)) ≥
xm(22g(j)).

Proof. Suppressing the explicit dependence on other genes that
are not affected by genetic variation in Xj, we have

xm(11g(j)) = 2μ1
mrm(xl(11g(j))),

xm(12g(j)) = (μ1
m + μ2

m)rm(xl(12g(j))),

xm(22g(j)) = 2μ2
mrm(xl(22g(j))).

(A4)

Now, rm is monotonic by assumption. If it is monotonically
increasing,

xm(12g(j)) ≥ (μ1
m + μ2

m)rm(xl(11g(j))) ≥ xm(11g(j)),

xm(22g(j)) ≥ 2μ2
mrm(xl(12g(j))) ≥ xm(12g(j)),

(A5)

from which the assertion follows. If rm is monotonically decreas-
ing, we find the same relations with the inequality signs
reversed.

If there is no chain from Xj to Xq, genetic variation in Xj will

not be reflected in G, i.e. G(11g(j)) = G(12g(j)) = G(22g(j)), and
by definition does not give order-breaking. Then assume Xj is
upstream relative to Xq and that the chain from Xj to Xq is posi-
tive. We first let Xj be an unregulated node with no predecessor.
Then

xj(11g(j)) = 2μ1
j ,

xj(12g(j)) = μ1
j + μ2

j ,

xj(22g(j)) = 2μ2
j ,

(A6)

because r1
j = r2

j = 1. From this it follows that xj(11g(j)) ≤
xj(12g(j)) ≤ xj(22g(j)).

Repeated use of Lemma 1 leads eventually to xq(11g(j)) ≤
xq(12g(j)) ≤ xq(22g(j)), irrespective of the genotypic background
of Xj. If the chain from Xj to Xq is negative, the argument goes

in the same way, but then xq(11g(j)) ≥ xq(12g(j)) ≥ xq(22g(j)).
The above argument can be carried out in the same way if Xj

is not top-stream. It follows that in a network without FFBs
and FFLs and where genetic variation is restricted to μ1

k and
μ2

k , the genotype-phenotype map G(g) = xq(g) cannot be order-
breaking.

NETWORKS WITH A FEEDBACK LOOP
In this section we investigate the effects of feedback loops on
the degree of monotonicity. Assuming monotonic dose-response
functions and non-pleiotropic genetic variation, we show that a
positive feedback loop may lead to order breaking, while negative
feedback loops never do. We consider a network in which there is

no FFL and a single FBL with Xq as one of its members and Xk is
upstream of the loop.

Lemma 2. Consider a network with n nodes for which all dose-
response functions are monotonic and there is only genetic variation
in μ1

k and μ2
k. Asssume there is a chain from Xk to X1, that X1,

but not Xk, is member of a FBL with m nodes, and that there is no
other FBL and no FFL in the system. If Xq is in the loop, let the
loop be X1 → X2 → . . . → Xq → . . . → Xm → X1. If the FBL is
positive, there may be order-breaking in Xq due to genetic variation
in Xk, but no order-breaking can occur if the loop is negative. If Xq

is downstream of the loop, the same result applies.

Proof. With a single FBL and no FFL there is at most one directed
path from any node Xi to any other node Xj, and if there is a path
from Xi to Xj, there is no return path from Xj to Xi if either Xi

or Xj is not part of the FBL. We first consider the dependence
of x1 on xk. The direct regulators of node X1 are Xm and Xl, the
latter being the last but one node in the chain from Xk to X1. In
Plahte et al. (2013) we introduced the propagation functions xj =
pjk(xk) which express the effect on xj of genetic variation in Xk.
An important property of pjk is that it can be derived from all
the equilibrium conditions Equation (A2) except the equation for
fk. This implies that the effects on Xj of genotypic variation in
Xk are only expressed in terms of the variations in xk, while the
parameters expressing the genotype of Xk do not enter into the
function pjk .

We then have xl = plk(xk) and xm = pm1(x1). To make it easier
to use the results in Plahte et al. (2013) we rewrite the equilibrium
condition Equation (A2) as

Rj(x) − γjxj = 0, (A7)

where γj > 0. In the following, the Jacobian refers to this set
of equations, which has the same root and the same functional
dependencies between the variables as the original set. The signs

of the partial derivatives of Rj are the same as for r
aj

j and r
bj

j . The
equilibrium condition for X1 is then

γ1x1 = R1(plk(xk), pm1(x1))). (A8)

This equation defines x1 as a function of xk in an open domain
around the equilibrium point and with a derivative that can be
computed by implicit differentiation, i.e.

γ1
dx1

dxk
= ∂R1

∂xl
qlk + ∂R1

∂xm
qm1

dx1

dxk
, (A9)

where qij = p′
ij is the derivative of pij for all i, j.

From Lemma 1 it follows that there is no order breaking in Xl,
in other words, qlk has a fixed sign. Consider then qm1. There is
just a single chain from X1 to Xm, and Equation (13) in Plahte
et al. (2013) gives

qm1(x1) = (−1)m − 1 DVV CU

D(11)
. (A10)

Here U is the set of nodes in this chain, CU is its chain prod-
uct, i.e. the product of the Jacobian elements corresponding to
the arcs in the chain, V = N \ U , D(11) is the subdeterminant of J
with row 1 and column 1 deleted, and DVV is the subdeterminant
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of J composed of the rows and columns V . Because there is
no feedback loop among the nodes represented in D(11) and
DVV , only the diagonal degradation terms contribute to these
two determinants. Hence D(11) = (−1)n − 1 ∏

i �= 1 γi. Similarly,

DVV = (−1)n − m ∏
i∈V γi, giving qml = γ1CU/�U , where �U =∏

i∈U γi. Finally, we note that P = (∂R1/∂xm)CU is the loop
product of the loop.

Solving Equation (A9) with respect to dx1/dxk and using all
these expressions lead to

γ1
dx1

dxk
= �U

�U − P

∂x1

∂xl
q1k. (A11)

The sign of ∂x1/∂xl is independent of the genotype of Xk and the
sign of q1k is fixed. Genotypic variation in Xk may change the
magnitude of P, but its sign is fixed because all Jacobi elements
have fixed sign independent of the system parameters. Thus,
genotypic variation in Xk does not alter the sign of dx1/dxk if
the loop is negative (P < 0), while for a positive loop the sign
of �U − P may switch. In the latter case, an increase in xk due to
genetic variation in Xk may increase x1 in some cases and decrease
it in others, leading to order breaking. As there is only a single
chain from X1 to Xq, no order breaking in X1 implies no order
breaking in Xq, while order breaking in X1 may propagate to Xq.
The same result follows if Xq is downstream a node in the loop
because order breaking in this node may propagate to Xq.

FEEDFORWARD LOOPS (FFLS)
A feedforward loop (FFL) is a motif in the network in which there
are two different chains C1 and C2 from one particular node to
another particular node. To each chain Ci is associated a chain
product Pi defined as the product of the Jacobian elements corre-
sponding to the arcs in Ci. If P1 and P2 have equal signs, the FFL
is coherent, otherwise it is incoherent.

In a network with a single feedforward loop and no feedback
loops we now investigate the effect on G(g) = xq(xk(g)) of genetic
variation in Xk for varying background g(k). Our starting point
is again Equation (A7). We first let Xk and Xq be the initial and
terminal nodes in the FFL. The two chains C1 and C2 leading
from Xk to Xq comprise ρ1 and ρ2 nodes including Xk and Xq,
respectively. Let the set of nodes in C1 and C2 be XU1 and XU2 ,
respectively, where U1 and U2 are the corresponding subsets of
N, and let V1 and V2 be their complements.

Roughly speaking, the derivative of the propagation function
pqk(xk) can be expressed as a sum of terms, each term correspond-
ing to one of the chains leading from Xk to Xq (Plahte et al., 2013).
To the chain Ci is assigned the chain weight wi given by

wi = (−1)ρi−1 DViVi

D(kk)
, i = 1, 2, (A12)

where DViVi is the Jacobian subdeterminant for the nodes not
included in Ci, and D(kk) is the Jacobian subdeterminant for all
nodes except Xk. Because there are two chains from Xk to Xq, the
derivative of pqk is a sum of two terms:

dpqk

dxk
= w1P1 + w2P2, (A13)

where P1 and P2 are the two chain products, and w1 and w2 their
weights (Plahte et al., 2013). When there is no feedback loop in
the system, only the diagonal elements in J stemming from the
term −γixi in Equation (A7) contribute to the determinants DViVi

and D(kk):

DViVi = (−1)n−ρi
∏

j∈Vi

γj,

(A14)
D(kk) = (−1)n−1

∏

j �=k

γj.

Altogether this gives

dxq

dxk
= dpqk

dxk
= γk

�1
P1 + γk

�2
P2, (A15)

where �1 and �2 are the products of the γj in the two chains,
respectively. The chain products P1 and P2 depend on the geno-
type gk of Xk as well as on the genotypic background g(k), but
their signs S1 and S2 are invariant under genotypic variation. It
is easy to see that a negative autoregulatory loop, which is a com-
mon feature in gene regulatory networks, would not invalidate
the conclusion, but a positive autoregulatory loop might.

If the FFL is incoherent, P1 and P2 have opposite signs, imply-
ing that the sign of dxq/dxk may vary. If the FFL is coherent,
however, no order-breaking can occur.

If Xk is upstream relative to the initial node Xinit of the FFL,
it follows from the above section on networks without loops that
there will be no order-breaking in Xinit, and the above argument
is still valid.

MORE GENERAL PHENOTYPES
In real life, relevant phenotypes are not direct gene products,
but rather functions of the concentrations of one or several gene
products. Let the phenotype G(g) be a function of xU(g), G =
h(xU(g)), where U is a subset of N, and assume that for any
u ∈ U , ∂h/∂xu has fixed sign for all genotypes. To analyse this
case we extend the original system Equation (A2) to

μ
ai
i rai

i (x(g)) + μ
bi
i rbi

i (x(g)) − xi(g) = 0, i = 1, . . . , n,

h(xU(g)) − xn + 1 = 0,

(A16)

and apply our above results to this system, in which G(g) =
xn + 1(g), i.e. q = n + 1. If there are two nodes among XU which
have a common predecessor Xk, then there will exist two chains
from Xk to Xn + 1. These two chains constitute a feedforward loop
with Xn + 1 as final node. If this FFL is incoherent, order breaking
due to genetic variation in Xk may occur even if there is no order
breaking in the original system comprising the nodes X1, . . . , Xn.
If the FFL is coherent, order breaking only occurs if it occurs in
the original system.

REFERENCES
Plahte, E., Gjuvsland, A. B., and Omholt, S. W. (2013). Propagation of genetic
variation in gene regulatory networks. Phys. D 256–257, 7–20. doi: 10.1016/j.
physd.2013.04.002

www.frontiersin.org November 2013 | Volume 4 | Article 216 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Genetic_Architecture/archive


Gjuvsland et al. Monotonicity is a key feature of genotype-phenotype maps

A B

FIGURE A1 | Measures of monotonicity vs. additivity of GP maps with

three loci. Scatterplots showing VA/VG from unweighted regression vs. (A)

degree of monotonicity (m) and (B) R2
mono. Red dots show 1000 random

three-locus GP maps, blue dots show the same 1000 GP maps after sorting
to introduce order-preservation for 1 locus while green dots show the same
1000 GP maps after sorting to introduce order-preservation for 2 loci [see
Model and Methods in Gjuvsland et al. (2011)].

FIGURE A2 | Comparing measures of monotonicity GP maps.

Scatterplots showing degree of monotonicity (m) vs. R2
mono. Black dots

correspond to the maps shown in Figure 1. Red dots show 1000 random
two-locus GP maps, while blue dots show the same 1000 GP maps after
sorting to introduce order-preservation for 1 locus [see Model and Methods
in Gjuvsland et al. (2011)].
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A B

FIGURE A3 | Empirical distribution functions for additivity of GP maps.

Summary of VA/VG from unweighted regression for all motifs for which at
least 100 (out of 1000) Monte Carlo simulations lead to GP maps with
non-negligible phenotypic variation (see Models and Methods section “Gene
regulatory network simulations,” for detailed criteria). Results are shown for
1013 motifs with a genotype-to-parameter map without pleiotropy (A)

and1090 motifs with a genotype-to-parameter map with pleiotropy (B). Each
panel is divided into 4 subplots containing classes of motifs based on the
presence/absence of incoherent feedforward and positive feedback loops,
see Table 1 for the number of motifs in each class. Each curve shows, for a
single motif, the empirical distribution function value (y-axis) of VA/VG from
unweighted regression for all GP maps (x-axis).
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