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ABSTRACT

Fourier transform mid-infrared (FT-MIR) spectra of 
milk are commonly used for phenotyping of traits of 
interest through links developed between the traits and 
milk FT-MIR spectra. Predicted traits are then used 
in genetic analysis for ultimate phenotypic prediction 
using a single-trait mixed model that account for cows’ 
circumstances at a given test day. Here, this approach 
is referred to as indirect prediction (IP). Alternatively, 
FT-MIR spectral variable can be kept multivariate in 
the form of factor scores in REML and BLUP analy-
ses. These BLUP predictions, including phenotype 
(predicted factor scores), were converted to single-trait 
through calibration outputs; this method is referred to 
as direct prediction (DP). The main aim of this study 
was to verify whether mixed modeling of milk spectra 
in the form of factors scores (DP) gives better predic-
tion of blood β-hydroxybutyrate (BHB) than the uni-
variate approach (IP). Models to predict blood BHB 
from milk spectra were also developed. Two data sets 
that contained milk FT-MIR spectra and other infor-
mation on Polish dairy cattle were used in this study. 
Data set 1 (n = 826) also contained BHB measured in 
blood samples, whereas data set 2 (n = 158,028) did 
not contain measured blood values. Part of data set 
1 was used to calibrate a prediction model (n = 496) 
and the remaining part of data set 1 (n = 330) was 
used to validate the calibration models, as well as to 
evaluate the DP and IP approaches. Dimensions of FT-
MIR spectra in data set 2 were reduced either into 5 
or 10 factor scores (DP) or into a single trait (IP) with 
calibration outputs. The REML estimates for these 
factor scores were found using WOMBAT. The BLUP 
values and predicted BHB for observations in the vali-
dation set were computed using the REML estimates. 
Blood BHB predicted from milk FT-MIR spectra by 

both approaches were regressed on reference blood 
BHB that had not been used in the model develop-
ment. Coefficients of determination in cross-validation 
for untransformed blood BHB were from 0.21 to 0.32, 
whereas that for the log-transformed BHB were from 
0.31 to 0.38. The corresponding estimates in validation 
were from 0.29 to 0.37 and 0.21 to 0.43, respectively, 
for untransformed and logarithmic BHB. Contrary to 
expectation, slightly better predictions of BHB were 
found when univariate variance structure was used (IP) 
than when multivariate covariance structures were used 
(DP). Conclusive remarks on the importance of keep-
ing spectral data in multivariate form for prediction of 
phenotypes may be found in data sets where the trait of 
interest has strong relationships with spectral variables.
Key words: direct prediction, indirect prediction, 
β-hydroxybutyrate, milk spectra, dairy cattle

INTRODUCTION

Subclinical ketosis (SCK) is an economically impor-
tant metabolic disorder in early-lactation dairy cows. 
It is associated with reduced milk production (Duffield 
et al., 2009), reduced reproductive performance (Walsh 
et al., 2007), and increased risk of displaced abomasum 
(LeBlanc et al., 2005; Duffield et al., 2009) and clinical 
ketosis (Seifi et al., 2011). The disorder is closely re-
lated to the negative energy balance occurring in early 
lactation. Prevalence of SCK can vary between farms; 
reported prevalence rates range from 8.9 to 43% in the 
first 2 mo of lactation (McArt et al., 2012; van der Drift 
et al., 2012; Suthar et al., 2013).

Clinical and SCK are characterized by increased con-
centrations of ketone bodies (BHB, acetoacetate, and 
acetone) in milk and blood (Andersson, 1988). Blood 
BHB concentration has been used as a gold standard 
for detection of SCK and several studies have used a 
threshold of 1.2 (Duffield et al., 1997; van der Drift 
et al., 2012) to 1.4 mmol/L (Geishauser et al., 2000; 
Oetzel, 2004; Denis-Robichaud et al., 2014) to discrimi-
nate between cows with and without SCK. However, 
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the gold standard method does not allow for routine 
testing of all animals at risk at regular intervals due to 
some practical limitations, such as difficulty in blood 
sampling, especially for farmers or testing many blood 
samples at a time. Determination of ketone bodies in 
milk could make the sampling easier (Enjalbert et al., 
2001; de Roos et al., 2007). Milk sampling is performed 
monthly in the milk recording procedures. More rou-
tinely, measurements of milk BHB can be done by Fou-
rier transform mid-infrared (FT-MIR) spectroscopy 
analysis in milk samples at test days (de Roos et al., 
2007; van der Drift et al., 2012). Blood or milk BHB 
predicted from milk spectra could be used for detection 
of SCK in farm management for dairy cows.

The FT-MIR spectra acquisition of the milk sample 
is multivariate (e.g., 1,060 variables per sample). Hun-
dreds of these spectral variables are used for phenotyp-
ing of traits of interest (e.g., BHB) through links devel-
oped between the traits and milk spectra. The predicted 
phenotypes are then together with pedigree information 
and variance component estimates used in BLUP to 
calculate individual breeding values (EBV) and other 
random components included into the model; this is the 
conventional method used today for genetic evaluation 
of animals. Dagnachew et al. (2013b) referred to such 
an approach as indirect prediction (IP) and also pro-
posed an alternative approach called direct prediction 
(DP), where genetic analyses are directly applied on 
the milk FT-MIR spectral variables or on factor scores 
(latent traits). The BLUP predictions (EBV, herd test 
day, permanent environment, and residual) for the 
traits of interest are predicted as correlated traits to 
the corresponding random components of spectra. Milk 
FT-MIR spectral variables exhibit strong correlations 
among each other (Soyeurt et al., 2010; Dagnachew et 
al., 2013a), and a direct genetic analyses on such cor-
related spectral variables may result in better accuracy 
of genetic evaluations (Dagnachew et al., 2013b). In 
our study, the 2 approaches, IP and DP, were used 
to predict phenotypes using BLUP predictions of the 
random and fixed effects part of the models.

The 2 approaches (IP and DP) have been used to 
predict EBV for milk fat, protein, and lactose contents 
using Norwegian dairy goat data (Dagnachew et al., 
2013b). Those authors showed that accuracy of EBV 
were improved by 3 to 5% when DP was used compared 
with the IP approach; they also reported high rank 
correlation coefficients (0.93 to 0.96) between EBV pre-
dicted using IP and DP. However, independent chemi-
cal analyses (reference values) for the milk content were 
not available in that study (i.e., the study relied on 
phenotypes predicted based on the same spectra for 
both model calibration and evaluation). Recently, Bon-
fatti et al. (2017) compared the IP and DP approaches 

to estimate EBV for several traits related to fine com-
position and technological properties of milk and re-
ported rank correlations ranging from 0.07 to 0.96, but 
<0.5 for most traits. In the present study, we adopted 
the IP and DP approaches to predict phenotype (not 
EBV) for BHB having an independent reference value 
for this trait. Our hypothesis was that keeping spectra 
multivariate in the form of factor scores or latent traits 
throughout REML and BLUP analyses instead of con-
verting the spectra into single-trait before the genetic 
analyses should keep more information, and possibly 
also give a better prediction of the derived single-trait 
BHB after multiple-trait mixed modeling accounting 
for the cows’ circumstances. We hypothesized that 
with multivariate information, one variable may carry 
information about another variable and thus improve 
the predictions.

The main objective of our study was to verify whether 
multivariate mixed modeling of milk FT-MIR spectra 
that are in the form factor scores (DP) gives better 
prediction of blood BHB than the univariate (IP) ap-
proach, where traits are first predicted from the spectra 
and then the predicted traits used in genetic analysis 
for ultimate phenotypic prediction. To do so, the cur-
rent study developed prediction models for blood BHB 
from milk spectra and blood BHB measured by refer-
ence method.

MATERIALS AND METHODS

Data

Two data sets (referred to as data set 1 and data 
set 2) were used in our study, made available by the 
Polish Federation of Cattle Breeders and Dairy Farm-
ers, which provides the monthly milk recording of cows 
in Poland. Both data sets contained FT-MIR spectra 
of individual milk samples, pedigree information, milk 
yield, and other cow and farm information. The milk 
samples had been analyzed by the MilkoScan FT6000 
instrument (Foss Analytical A/S, Hillerød, Denmark). 
Major milk components, such as protein, fat, lactose, 
fat composition (both group and individual fatty ac-
ids), and ketone bodies (acetone and BHB), had been 
predicted using the Foss calibration and were available 
in the data sets.

Data Set 1. After merging the measured blood BHB 
and phenotypes predicted from the spectra with their 
corresponding spectral data, data set 1 consisted of 
data on 832 Polish Holstein Friesian cows (1,914 ob-
servations; i.e., at least 2 records per cow) that had 
been milked 2 or 3 times per day. The spectra and 
other phenotypes that were predicted from the spectra 
were recorded for each milking, whereas blood BHB 



6314 BELAY ET AL.

Journal of Dairy Science Vol. 100 No. 8, 2017

was measured only once using the glucometer Optium 
Xido (Abbott, Winey, UK) on test day at 1000 to 1400 
h. For better correlation between blood BHB and milk 
spectra, milk and blood samples from the same milking 
were used. The data were collected between September 
2013 and June 2014, and the cows were from 2 to 127 
DIM. Cows with <5 (n = 1) or >65 DIM (n = 4) or 
with duplicated records (n = 1) were excluded from 
analysis, resulting in 826 cows kept in 55 herds. Mean 
blood BHB concentrations at each DIM were calculated 
for the cows (826) and is depicted in Figure 1.

Cows in data set 1 were randomly divided into a 
calibration and a validation set. The calibration set 
(n = 496 cows from 31 herds) was used to develop a 
link between milk spectra and blood BHB, whereas the 
validation set (n = 330 cows from 24 herds) was used 
to validate the prediction model and for evaluation of 
the IP and DP approaches. Descriptive statistics of 
the calibration and validation sets of data set 1 are 
presented in Table 1. Phenotypic associations of the 
measured blood BHB with Foss-predicted milk BHB 
and predicted blood BHB from spectra of validation 
set by models developed in our study were estimated.

Data Set 2. The large data set (data set 2) origi-
nally contained 1,173,141 observations recorded from 
September to December 2014. Unlike data set 1, data 
set 2 did not contain BHB measured from blood. All 

cows with <5 (n = 67 observations) or >65 DIM (n 
= 934,600 observations) were excluded from analysis, 
resulting in 238,474 observations. Furthermore, cows 
with no pedigree information or with an unknown age 
at test day were removed from the data set. For better 
separation of animal effects from herd effects, herd test 
days (HTD) with less than 2 records were also ex-
cluded from the data set. Finally, 158,028 observations 
from 107,988 cows (daughters of 8,339 sires and 100,423 
dams) kept in 9,102 herds remained for estimation of 
(co)variance components of the spectra. A pedigree file 
containing animals with records and their ancestors was 
available. The total number of animals in the pedigree 
file that had a link to the data file were 469,751.

Selection of Spectral Variables

The major proportion of milk is water, hence the 
water spectrum influences the milk spectra. Both the 
O-H bending region (approximately between 1,620 and 
1,700 cm−1) and the O-H stretching region (above 3,025 
cm−1) of water are more or less opaque for the infrared 
light used, resulting in noise-like regions (Afseth et al., 
2010; Dagnachew et al., 2013a). Therefore, the 2 regions 
comprising 536 spectral data points were excluded and 
only the remaining 524 spectral data points (926–1,617 
cm−1 and 1,701–3,025 cm−1) were considered for further 
analysis. These 524 spectral variables are referred to as 
region I.

Spectral region between 1,803 and 2,800 cm−1 (262 
wave numbers) has been reported to have no specific 
bands or useful chemical information (Andersen et 
al., 2002; Iñón et al., 2004; Dagnachew et al., 2013a). 
Region I without these spectral variables (between 
1,803–2,800 cm−1) is referred to as region II (i.e., region 
II is a subset of region I).

Preprocessing of Spectra

Calibrations of prediction models, for relationship of 
milk spectra and blood BHB, and genetic analyses were 
performed on both unprocessed and preprocessed spec-
tra. The selected spectral variables were preprocessed 
by 2 methods. First, second derivatives of the spectra 
by the Savitzky-Golay (SG) numerical algorithm with 

Figure 1. Mean and SD of blood BHB (mmol/L) by DIM from 826 
lactating Polish dairy cows.

Table 1. Descriptive statistics for reference blood BHB (mmol/L) in data set 1 and its subsets: calibration, 
subset of calibration (extreme values ≤0.5 or ≥1.4 mmol/L), and validation sets

Data No. of cows Mean SD Minimum Maximum

Data set 1 826 0.760 0.743 0.1 6.3
Calibration set 496 0.734 0.725 0.1 6.3
Calibration subset 296 0.716 0.928 0.1 6.3
Validation set 330 0.800 0.768 0.1 5.5
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9 window-size and second-order polynomials were cal-
culated. Second, the spectra preprocessed by the SG 
were further preprocessed using extended multiplica-
tive signal correction (EMSC). Preprocessing was 
performed on both region I and region II.

Multivariate Calibration of Prediction Models

The calibration data set (n = 496) was used to de-
velop a link between blood BHB and milk spectra using 
the pls package (Mevik and Wehrens, 2007) implement-
ed in R (R Core Team, 2016). Partial least squares 
(PLS) regression analyses were done on all 496 blood 
BHB values in the calibration set, and on a subset with 
296 observations with extreme blood BHB values (low: 
<0.6 mmol/L, high: ≥1.4 mmol/L). In the analyses, 
blood BHB was used as a response variable (y) whereas 
unprocessed or preprocessed spectra (region I or II) 
were used as predictor variables (X).

The calibration models were cross-validated using 10 
random segments, and the optimum number of PLS 
factors were determined based on the first local mini-
mum value in root mean squared error of prediction of 
the cross-validation (RMSEcv). The calibration models 
were then applied to the validation data set. The PLS 
regression parameters, such as regression coefficients 
ˆ ,βPLS( )  matrices of weights (W) that reflect covariance 

structures between y and X, matrices of factor scores 
(T), matrices of y-loadings (Q), and matrices of X-
loadings (P), were used in the subsequent predictions 
and calculations. Predictions were performed following 
the DP or IP approaches. Figure 2 shows a schematic 
representation of these 2 prediction approaches.

DP

The DP approach has several steps: spectral variables 
dimension reduction into few factors, estimation of co-
variance components for the factor scores from data set 
2, prediction of random components for factor scores 
from the validation set using the estimated covariance 
components, and conversion of predicted factor scores 
into predicted blood BHB. The steps are described in 
detail in subsequent sections.

Spectral Variables Dimension Reduction. Di-
rect genetic analysis to estimate (co)variance compo-
nents for the random effects of the mixed model of all 
the selected spectral variables (i.e., 524 or 262 spectral 
data points) simultaneously was not possible with cur-
rently available analytical packages used in quantita-
tive genetics. They are limited to fewer traits in multi-
trait analysis (Meyer, 2007; Madsen and Jensen, 2008; 
Gilmour et al., 2009). Moreover, many of the spectral 

variables are highly collinear and the redundancy needs 
to be removed or absorbed. Dimension reduction is usu-
ally done by principal component analysis (PCA), PLS 
regression, or factor analysis. In the current study, we 
reduced the dimension of the spectral variables into 
factor scores through a weight matrix (W) obtained 
from the PLS regression with respect to blood BHB, 
as described above. The PLS factors mainly contain 
information related to the response variable(s) in the 
regression, and hence are expected to give better pre-
diction than PCA components that contain general info 
in spectra. Previously, PCA was used on the same data 
set and results from such an analysis has been reported 
(Belay et al., 2015).

Estimation of Covariance Components for 
Factor Scores. A matrix of factor scores (T) were 
calculated for observations of spectra in data set 2 us-
ing the weight matrix (W) that had been obtained by 
PLS regression on the calibration part of data set 1:

 T = XW, [1.1]

where T is an n × c matrix of factor scores, with n 
being number of observations (n = 158,028) and c the 
number of factors. Numbers of factors were chosen by 
cross-validation in PLS regression for the calibration 
part of data set 1. X is an n × k spectral data matrix 
for data set 2, with k being number of spectral variables. 
W is a k × c weight matrix that reflects the covariance 
structure between milk spectra (X) and blood BHB 
(y); W is determined as a function of X and y by PLS 
regression in the calibration part of data set 1.

The factor scores characterize the relationship of 
the milk information to the blood BHB and give the 
relationship among the spectral variables. Factor scores 
were then treated as traits in multiple-trait mixed 
model analyses. A repeatability test day animal model 
was used to estimate variance components for the fac-
tor scores, T, from data set 2 (only spectra, no blood 
BHB). The model in matrix notation was

 t = Xb + Za + Wp + Hd + e, [1.2]

where t is a vector of factor scores (the t of 1 milk 
sample above the other); b is a vector of fixed effects of 
breed (2 levels), lactation number (1 to 4), herd size (3 
levels) × lactation stage (6 levels), and months of test 
(4 levels); a is a vector of random animal genetic ef-
fects; p is a vector of random permanent environmental 
effects; d is a vector of random HTD effects; and e is 
vector of random residual effects. X, Z, W, and H are 
design matrices that relate records to the correspond-
ing (fixed and random) effects. The 2 breed levels are 
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Polish Holstein-Friesian (black-white), which accounted 
for 86.4% of the records, and the other 15 breeds (such 
as Polish Holstein-Friesian red-white, Simental, Polish 
red-white, and so on), which accounted for 13.6% of 
the records all together. Herd size was defined based on 
number of cows with records per herd in the original 
data set (before edition) and categorized as small (<35 
cows), medium (35–99 cows), and large (≥100 cows). 
Each group contained similar numbers of cows. Days 

in milk (lactation stage) were categorized into 6 levels, 
each with 10 test days. Each of the 4 test months were 
modeled. The assumed (co)variance structure was

 var
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Figure 2. Schematic representation of the indirect (IP) and direct (DP) prediction approaches. In the IP, the phenotype for trait of interest 
(e.g., BHB) was predicted from milk spectra using regression coefficient (βPLS), and this predicted trait was analyzed with a genetic model for 
ultimate phenotypic prediction. In the DP, multiple predicted factor scores that were obtained through a weight matrix (W) were analyzed with 
a genetic multivariate model before predicted model components were combined through the y-loading (q) to eventually predict the phenotype. 

Reg = regression; Tv = factor scores for observations in the validation set; σ σ σ σa pe td e
2 2 2 2, , ,  and  = estimates of variance components for ge-

netic, permanent animal environment, herd test-day and residual, respectively; a, pe, td, and e = additive genetic, permanent animal environ-

mental, herd test-day, and residual effects, respectively; BHB�  = predicted BHB from spectra of data set 2 using the PLS regression-based 

prediction equation; BHBv�  = predicted BHB from spectra of validation set using the PLS regression-based prediction equation; BHBIP�  = 

predicted BHB using the IP approach; BHBDP�  = predicted BHB using the DP approach; BHBv = measured/reference blood in the validation 
set.
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where G is genetic covariance (5 × 5) matrix, P is the 
covariance (5 × 5) matrix for within-cow permanent 
environmental effects, H is the covariance (5 × 5) ma-
trix for HTD effects, and R is the residual covariance 
(5 × 5) matrix, I and A are identity and additive rela-
tionship matrices, respectively, and ⊗ is the Kronecker 
product.

The (co)variance component estimates were ob-
tained by the REML method using the multivariate 
average information-REML algorithm of WOMBAT 
(Meyer, 2007). These estimated variance components 
are population parameters that should characterize 
any data coming from the population. Preliminary 
bivariate analyses were performed and (co)variance 
component estimates from the bivariate analyses of the 
factor scores were pooled using the iterative summing 
of expanded part matrices approach (Mäntysaari, 1999) 
implemented in WOMBAT (Meyer, 2007). The pooled 
covariance matrices were priors in the multivariate 
REML.

BLUP Analyses for Factor Scores from Spec-
tra of Validation Set. Once (co)variance components 
were estimated for factor scores from the large spectral 
data set (data set 2), BLUP values could be calculated 
for the random components of any new data set from 
the population using the estimated (co)variance com-
ponents and the structural circumstances of the new 
data set (genetic relationship, permanent environment, 
and HTD design). Factor scores (Tv) for observations 
in the validation set (n = 330) were calculated using 
the weight matrix W from the model calibration and 
milk spectra of the validation set as follows. Neither 
blood BHB nor milk spectra in the validation set were 
used in the model development:

 Tv = XvW, [1.3]

where Tv is an nv × c matrix of factor scores, W is as 
defined in Eq. [1.1], and Xv is an nv × k spectral data 
matrix for the validation set, with k being number of 
spectral variables. The subscript v is used to indicate 
validation set.

A model similar to Eq. [1.2], with some modification 
in the fixed part of the model, was used to run BLUP 
for the Tv using the covariance components estimated 
with Eq. [1.2] and the I and A relevant for the valida-
tion set. In this model [1.4], fixed effects of lactation 
number (4 levels), lactation stage (6 levels), and year 
(2 levels) × season (2 levels: April to September and 
October to March) were fitted:

 tv = Xb + Za + Wp + Hd + e, [1.4]

where tv is a vector of factor scores for observations in 
the validation set (with the tv of 1 milk sample above 
the other), and other model elements were as defined 
in the Eq. [1.2].

Conversion of the Predicted Factor Scores into 
Predicted Blood BHB. In addition to predictions of 
the random effects ˆ ˆ ˆ ,a p d, , and ( )  predicted factor scores 

T̂v( ) were given directly by WOMBAT from the BLUP 
run for the factor scores of the validation set. These 
predicted factor scores in multivariate form were con-
verted into predicted blood BHB BHBDP

�( ) through the 

Y-loading matrix (Q) used in transposed vector form 
as

 BHBDP v
� = ′ˆ ,T q   

where q is a vector, not a matrix, as only a single re-
sponse variable was in the PLS regression analysis. It 
had dimension 1 × c, where c is the number of factors 
retained and it relates factors to response variables.

IP

In this approach, BHB values were predicted from 
milk spectra using the PLS regression coefficient β̂PLS( ) 
estimated above, and the predicted phenotypes used in 
further analyses. This is the conventional approach 
used for genetic evaluation and other purposes in ani-
mal sciences or in other fields. The BHB was predicted 
as

 BHB PLS
� = Xˆ ,β  [2.1]

where BHB� is predicted BHB phenotype from spectra 
X of data set 2 through PLS regression coefficient 
β̂PLS( ) found in the calibration part of data set 1.
Covariance components and the corresponding vari-

ance ratios were estimated by REML for the predicted 
BHB by fitting single-trait animal model considering 
the same effects as in Eq. [1.2]:

 BHB� = + + + +Xb Za Wp Hd e. [2.2]

The model elements are as defined in Eq. [1.2], but with 
univariate variance structure. We assumed var ,a A( ) = σa

2  
var ,p I( ) = σpe2  var ,d I( ) = σd2  and var ,e I( ) = σe2  where σa

2 
is additive genetic variance, σpe

2  is permanent environ-
mental variance, σd

2 is HTD variance, and σe
2 is residual 

variance. The BHB were then predicted for observa-
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tions in the validation set BHBv
�( ) using the β̂PLS that 

was used in Eq. [2.1], but using spectra from the valida-
tion set (Xv; i.e., BHBv v PLS

� = X β̂ ).
Assuming similar effects as in Eq. [1.4], but with a 

single-trait animal model, BLUP solutions for fixed and 
random effects were found for BHBv

�  from validation 
set:

 BHBv
� = + + + +Xb Za Wp Hd e, [2.3]

where model elements were as defined in Eq. [1.2] and 
Eq. [2.2]. A similar variance structure as in Eq. [2.2] 
was assumed.

For this BLUP, run on BHBv
� , the variance compo-

nents used were estimated either from (1) single-trait 
REML (i.e., the one estimated in Eq. [2.2]), or (2) 
multiple-trait REML, as estimated in Eq. [1.2] after 
converting from multivariate covariance to univariate 
variance structures. The multivariate covariance struc-
ture from Eq. [1.2] for additive, permanent environmen-
tal, HTD, and residual covariance were converted into 
the corresponding univariate variance structure as

 ˆ ,σa
2 = ′qGq   

 ˆ ,σpe
2 = ′qPq  

 ˆ ,σd
2 = ′qHq  and 

 ˆ .σe
2 = qRq  [2.4]

Predicted blood BHB BHBIP
�( ) were directly obtained 

from WOMBAT together with predicted random ef-
fects and solutions for random residuals. Thus, we got 
2 vectors of predicted BHB for observations in valida-
tion set, 1 from DP BHBDP

�( ) and the other from IP 

BHBIP
�( ). In addition to these predicted BHB, we mea-

sured blood BHB (reference values), which had not 
been used in calibration, from observations in the vali-
dation set.

Evaluation of the IP and DP Approaches

The 2 sets of predicted blood BHB BHB  and BHBDP IP
� �( ) 

are 2 different predictions of blood BHB. Performance 
of the 2 approaches for prediction of BHB was evalu-
ated based on adjusted coefficient of determination 
(R2) estimated by regressing the IP or DP predicted 
blood BHB against measured blood BHB (reference 

values). Prediction with the IP or DP approach was 
also compared with prediction of BHB by PLS (using 
the PLS regression found in calibration on the milk 
spectra of the validation set).

RESULTS

Description of Reference Blood BHB

Table 1 shows descriptive statistics for reference 
blood BHB data. Content of BHB in the 826 blood 
samples analyzed ranged from 0.1 to 6.3 mmol/L, with 
an average of 0.760 mmol/L and a standard deviation 
of 0.743 mmol/L. More than 80% of the samples had 
<1.0 mmol/L. The most frequent concentrations ob-
served were 0.3, 0.4, and 0.6 mmol/L. Out of the 826 
cows sampled, 114 of them had a concentration ≥1.2 
mmol/L of blood BHB. Mean blood BHB concentration 
for all cows (826) at each DIM was calculated and is 
given in Figure 1. The mean blood BHB concentration 
was generally high around the beginning of lactation 
and decreased as DIM progressed. Mean and standard 
deviation of BHB in calibration set were lower than 
the corresponding values in the validation set (Table 
1). We also found a difference in ranges of BHB values 
between calibration and validation set.

Cross-Validation and Validation Results

The link between untransformed or log-transformed 
blood BHB and milk spectra was developed using PLS 
regression analysis on the calibration set (all, n = 496) 
and on its subset (n = 296 with extreme values). The 
results from such analyses are presented in Tables 2 
and 3. Based on the 3 sets of spectra (unprocessed and 
preprocessed by SG and EMSC), the 2 spectral regions 
(regions I or II), and the 2 categories of blood BHB val-
ues (all or extreme), 9 different prediction models were 
developed. The idea was to find models with the better 
fit. Five to 10 PLS factors were retained based on the 
first local minimum value in RMSEcv. Table 2 shows 
cross-validation and validation statistics for untrans-
formed blood BHB predicted using the 9 prediction 
models developed. In the cross-validations, averages of 
predicted values were the same as corresponding mean 
reference values, but with smaller standard deviations 
and ranges than the reference values. These results 
(i.e., the low variation and the reduced range of pre-
dicted values) indicate lack of precision of the models 
on high values. For untransformed blood BHB, the R2 
in cross-validation (R2

cv) ranged from 0.217 to 0.316, 
with RMSEcv ranging from 0.630 to 0.787 (Table 3). 
The RMSEcv were relatively high, which might be due 
to the lack of precision of the models on high values 
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of the data sets (Table 2) that had a high proportion 
of low values. This is evident from models developed 
based on extreme BHB values, where a majority of 
them were low with few high values. The logarithmic 
transformation of blood BHB values increased the R2

cv, 
ranging from 0.313 to 0.381. The RMSEcv for the log-
transformed blood BHB values were between 0.222 and 
0.278.

In the validation, predicted BHB contents (Table 2) 
were smaller than the corresponding reference values 
(Table 1). For untransformed blood BHB, R2 in valida-
tion (R2

v) ranged from 0.308 to 0.374, with root mean 
square error of validation (RMSEv) ranging from 
0.607 to 0.638 (Table 3). Similar to the cross-validation, 

log-transformation of BHB values increased R2 in the 
validation, except for the extreme blood BHB values. 
For both untransformed and log-transformed blood 
BHB, R2

v were generally higher than the corresponding 
estimates in cross-validation, except models developed 
on log-transformed extreme blood BHB values (Table 
3). The RMSEv for untransformed BHB were also lower 
than the corresponding RMSEcv, whereas the reverse 
was true for the log-transformed BHB. This indicates 
that prediction ability of models based on log-trans-
formed BHB could be compromised compared with the 
untransformed BHB.

In both cross-validation and validation, preprocessing 
of spectra either by SG or EMSC generally increased 

Table 2. Cross-validation and validation descriptive statistics1 for untransformed blood BHB (mmol/L) predicted from milk spectra using 
different calibration models

Model2

Cross-validation

 

Validation

Mean SD Minimum Maximum Mean SD Minimum Maximum

Unprocessed spectra          
 All BHB values with region I 0.734 0.389 0.014 2.721  0.756 0.443 −0.059 2.612
 Extreme BHB with region II 0.716 0.565 −0.156 3.304  0.756 0.598 −0.389 3.082
 All BHB values with region II 0.734 0.390 −0.017 2.506  0.745 0.444 −0.085 2.629
Second derivative spectra (SG)          
 All BHB values with region I 0.734 0.397 −0.119 2.551  0.746 0.425 −0.056 2.535
 Extreme BHB with region II 0.716 0.608 −0.436 2.905  0.774 0.623 −0.426 3.327
 All BHB values with region II 0.734 0.403 −0.118 2.257  0.733 0.429 −0.075 2.509
EMSC preprocessed spectra          
 All BHB values with region I 0.734 0.389 −0.118 2.114  0.732 0.403 −0.175 2.119
 Extreme BHB with region II 0.716 0.586 −0.845 2.900  0.730 0.593 −0.730 2.722
 All BHB values with region II 0.734 0.392 −0.260 2.159  0.724 0.405 −0.206 2.084
1Mean, SD, minimum, and maximum of predicted blood BHB values (mmol/L) are presented.
2Spectra were preprocessed by Savitzky-Golay (SG) algorithm and extended multiplicative signal correction (EMSC).

Table 3. Summary of partial least squares (PLS) regression prediction models for untransformed and log10-transformed blood BHB in cross-
validation and validation under unprocessed, second derivative (SG), and EMSC preprocessed1 spectra

Model
No. of  
factors2

Cross-validation3

 

Validation4

Untransformed BHB

 

Transformed BHB Untransformed BHB

 

Transformed BHB

RMSEcv R2
cv RMSEcv R2

cv RMSEv R2
v RMSEv R2

v

Unprocessed spectra             
 All BHB values with region I 6 (8) 0.6396 0.2109  0.2318 0.3198  0.6065 0.3738  0.2469 0.3964
 Extreme BHB with region II 5 0.7865 0.2760  0.2776 0.3130  0.6327 0.3186  0.2792 0.2277
 All BHB values with region II 5 (7) 0.6397 0.2172  0.2326 0.3169  0.6153 0.3554  0.2468 0.3966
Second derivative spectra (SG)             
 All BHB values with region I 5 0.6383 0.2201  0.2223 0.3730  0.6153 0.3554  0.2462 0.3999
 Extreme BHB with region II 5 0.7748 0.2875  0.2628 0.3814  0.6199 0.3457  0.2765 0.2421
 All BHB values with region II 5 (10) 0.6384 0.2186  0.2210 0.3807  0.6150 0.3562  0.2446 0.4075
EMSC preprocessed spectra             
 All BHB values with region I 5 (10) 0.6302 0.2368  0.2227 0.3701  0.6312 0.3217  0.2414 0.4228
 Extreme BHB with region II 5 0.7622 0.3159  0.2662 0.3718  0.6378 0.3075  0.2707 0.2741
 All BHB values with region II 5 (10) 0.6301 0.2351  0.2228 0.3690  0.6313 0.3216  0.2397 0.4309
1Spectra were preprocessed by Savitzky-Golay (SG) algorithm and extended multiplicative signal correction (EMSC).
2Number of PLS factors, and numbers of factors in parentheses were for models based on log-transformed blood BHB.
3RMSEcv = root mean squared error of the cross-validation; R2

cv = coefficient of determination of the cross-validation.
4RMSEv = root mean squared error of the validation; R2

v = coefficient of determination of the validation.
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R2 or reduced prediction errors, except for some models 
with untransformed BHB in the validation analyses. In 
validation, better results (high R2

v or low RMSEv) were 
obtained with unprocessed spectra for untransformed 
BHB and with EMSC for log-transformed BHB. In 
the cross-validation, better results were obtained with 
EMSC for untransformed BHB and with EMSC or SG 
for log-transformed BHB. Despite the large number of 
spectral variables contained in region I, it had no effect 
on the R2 of validation or cross-validation, except for 
validation of unprocessed spectra with untransformed 
BHB values (Table 3). Comparing the models with 
respect to the 2 sets of BHB values, prediction models 
with extreme BHB values (both untransformed and log-
transformed) had generally higher R2

cv and RMSEcv, 
but had lower R2

v than models with all BHB values 
(Table 3).

Genetic Parameters for the Factor Scores and BHB

Out of the 9 prediction models that were developed 
based on untransformed blood BHB, 4 of them were 
selected to be used in the genetic analysis for ultimate 

phenotypic prediction: 2 models from raw and 2 from 
SG preprocessed spectra of region II with all or ex-
treme BHB values. Models based on spectra of region 
I were not selected, as they did not give better ac-
curacy despite the large number of spectral variables 
in region I. Models developed based on log-transformed 
BHB were not used for genetic analyses, as IP and DP 
approaches can be evaluated independent of the BHB 
scale. Moreover, models based on log-transformed BHB 
had slightly higher prediction error in the validation 
than in the cross-validation, whereas the reverse is true 
for models from untransformed BHB (Table 3). Esti-
mates of variance ratios for each factor score, calculated 
from raw and preprocessed spectra using the 4 selected 
calibration models, are presented in Tables 4 and 5. 
Genetic variance ratios (heritabilities) for the 5 factor 
scores calculated from unprocessed spectra ranged from 
0.053 to 0.227 (Table 4) and from 0.081 to 0.158 (Table 
5) for SG preprocessed spectra. The corresponding 
variance ratios of the permanent environmental effects 
ranged from 0.070 to 0.213 and from 0.074 to 0.153. 
Variance ratios of the HTD ranged from 0.080 to 0.504 
and from 0.130 to 0.374 for the factors from raw and 

Table 4. Estimates of variance ratios for genetic, permanent environment (PE), herd test days (HTD), and 
residual random effects for the factor scores calculated from raw spectra in region II and all (or extreme1) 
blood BHB values

Factor  
score

Variance ratio2

Genetic PE HTD Residual

1 0.093 (0.093) 0.143 (0.143) 0.169 (0.169) 0.595 (0.595)
2 0.221 (0.227) 0.212 (0.213) 0.082 (0.080) 0.485 (0.480)
3 0.176 (0.180) 0.119 (0.122) 0.158 (0.166) 0.547 (0.531)
4 0.163 (0.156) 0.165 (0.162) 0.137 (0.130) 0.534 (0.552)
5 0.053 (0.056) 0.070 (0.075) 0.504 (0.480) 0.374 (0.388)
1Numbers in parentheses are variance ratio for factor scores calculated from raw spectra in region II and ex-
treme blood BHB values. 
2Ratio is relative to total phenotypic variance for each factor score. Standard error of variance ratios due to 
genetic, PE, HTD, and residual were 0.004–0.012, 0.004–0.01, 0.003–0.004, and 0.004, respectively.

Table 5. Estimates of variance ratios for genetic, permanent environment (PE), herd test day (HTD), and 
residual random effects for the factor scores calculated from Savitzky-Golay (SG) preprocessed spectra in 
region II and all (or extreme1) blood BHB values

Factor  
score

Variance ratio2

Genetic PE HTD Residual

1 0.097 (0.095) 0.140 (0.140) 0.169 (0.169) 0.595 (0.595)
2 0.081 (0.084) 0.118 (0.111) 0.257 (0.259) 0.544 (0.545)
3 0.158 (0.144) 0.114 (0.106) 0.209 (0.231) 0.519 (0.519)
4 0.102 (0.096) 0.086 (0.074) 0.376 (0.349) 0.437 (0.481)
5 0.113 (0.118) 0.118 (0.153) 0.173 (0.130) 0.595 (0.599)
1Numbers in parentheses are variance ratio for factor scores calculated from Savitzky-Golay (SG) preprocessed 
spectra in region II and extreme blood BHB values. 
2Ratio is relative to total phenotypic variance for each factor. Standard error of variance ratios due to genetic, 
PE, HTD, and residual is 0.006–0.008, 0.000–0.007, 0.003–0.004, and 0.004, respectively.
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preprocessed spectra, respectively. The corresponding 
variance ratios for the residual effects varied from 0.374 
to 0.595 and from 0.437 to 0.595.

Corresponding variance components for blood BHB 
were calculated from the estimated covariance struc-
tures of factor scores using Eq. [2.4]. Table 6 presents 
estimated variance ratios and variance components for 
genetic, PE, HTD, and residual of BHB. For BHB from 
unprocessed spectra, average estimates of variance ra-
tios (variance ratios for BHB from all and extreme BHB 
values were averaged within spectral sets) for genetic, 
PE, HTD, and residual were 0.110, 0.143, 0.277, and 
0.471, respectively. The corresponding values for BHB 
from SG preprocessed spectra were 0.086, 0.152, 0.340, 
and 0.423. Variance components for BHB were also 
estimated by univariate REML using Eq. [2.2], where 
spectral variables had first been converted into a single 
trait (BHB) through the PLS regression coefficient. 
Variance components and variance ratios for such BHB 
were slightly lower than the genetic parameters pre-
sented in Table 6, except the estimates for HTD, and 
estimated residual effects that were the same (Tables 
6 and 7).

Most of the factor scores and BHB that were predict-
ed from unprocessed spectra had higher estimates of 
heritability and proportion of variance due to PE and 
HTD effects than those from SG preprocessed spectra 
(Tables 4–7). The larger estimates for factors and BHB 
from unprocessed spectra may be due to unprocessed 
spectra possibly containing unwanted heritable varia-
tion, which could be removed by preprocessing. Spec-
tral preprocessing removes not only unwanted varia-
tions (such as variation in intensity of light sources, 
scattering, contaminants, optical path length, and so 
on) in spectra, but also some real molecular structures 
or milk constituents, which might be heritable.

Prediction Ability of the IP and DP Approaches

Performance of the IP and DP approaches were 
evaluated based on R2 estimated by regressing the 
IP- or DP-predicted blood BHB on the reference blood 
BHB values of the validation data set that had not 
been used in model calibrations. Table 8 presents the 
estimated R2 for the IP and DP approaches. The R2 
for the DP method were intermediate and ranged from 

Table 6. Multifactor (direct prediction) REML based estimates of variance ratios and variance components 
for genetic, permanent environment (PE), herd test day (HTD), and residual random effects for BHB found 
from raw or Savitzky-Golay (SG) preprocessed milk spectra from data set 2 (n = 158,028) using the 4 selected 
calibration models1

Model

Variance ratio (variance component)

Genetic PE HTD Residual

Unprocessed spectra     
 All BHB values with region II 0.111 (0.018) 0.142 (0.023) 0.279 (0.045) 0.468 (0.076)
 Extreme BHB with region II 0.109 (0.036) 0.144 (0.047) 0.275 (0.090) 0.473 (0.156)
Second derivative spectra (SG)     
 All BHB values with region II 0.083 (0.017) 0.158 (0.032) 0.342 (0.070) 0.416 (0.085)
 Extreme BHB with region II 0.088 (0.036) 0.145 (0.060) 0.337 (0.139) 0.430 (0.177)
1Estimated multivariate covariances have been converted into one-trait variance structure relevant for BHB 
prediction. Ratios are relative to total phenotypic variance for BHB from each model. Values in parentheses 
are estimates for variance components.

Table 7. Univariate (indirect prediction) REML based estimates of variance ratios and variance components 
for genetic, permanent environment (PE), herd test day (HTD), and residual random effects for BHB found 
from raw or Savitzky-Golay (SG) preprocessed milk spectra from data set 2 (n = 158,028) using the 4 selected 
calibration models1

Model

Variance ratio (variance component)

Genetic PE HTD Residual

Unprocessed spectra     
 All BHB values with region II 0.103 (0.017) 0.141 (0.023) 0.288 (0.047) 0.468 (0.076)
 Extreme BHB with region II 0.101 (0.033) 0.142 (0.047) 0.283 (0.094) 0.473 (0.156)
Second derivative spectra (SG)     
 All BHB values with region II 0.075 (0.015) 0.155 (0.032) 0.353 (0.072) 0.416 (0.085)
 Extreme BHB with region II 0.081 (0.033) 0.142 (0.059) 0.347 (0.143) 0.430 (0.178)
1Ratio is relative to total phenotypic variance for BHB from each model. Values in parentheses are estimates 
for variance components.



6322 BELAY ET AL.

Journal of Dairy Science Vol. 100 No. 8, 2017

0.263 to 0.298, whereas the corresponding estimates for 
IP method, when variance components from multiple 
REML were used, ranged from 0.281 to 0.301 and from 
0.278 to 0.306 when variance components from single-
trait REML were used (Table 8). The predictability 
of the IP approach was slightly higher compared with 
the predictability of the DP approach; this means that 
a more accurate prediction of BHB was found when 
univariate variance structure was used than when mul-
tivariate covariance structures were used. Predictability 
of the 2 approaches were compared with the predict-
ability of models given in Table 3 (PLS regression 
based predictions equations) for untransformed BHB 
in the validation analyses. The PLS regression-based 
prediction equations are the commonly used methods 
for phenotyping of trait of interest from milk FT-MIR 
spectra. Predictability of the IP and DP approaches 
were lower than predictability of equations developed 
based on the classical PLS regression in validation 
(Table 3).

As in the calibration models, preprocessing of spectra 
slightly improved accuracy of BHB prediction in both 
the IP and DP approaches. The improvement in ac-
curacy due to preprocessing was slightly better in DP 
than in IP approaches. This indicated that the DP ap-
proach could perform better with spectra that contain 
less noisy information; noisy information in multivari-
ate form could result in inferior performance.

DISCUSSION

Multivariate Calibration Models

The distribution of the data in the calibration set was 
slightly different than in the validation set, mainly due 
to lower mean and standard deviation of the reference 
values (Table 1). This could explain some difference 
in cross-validation and validation statistics. That the 

R2
v was generally higher than the R2

cv might be due to 
higher mean and standard deviation of the reference 
values in validation. It has been shown that R2 is highly 
dependent on distribution of the data and especially on 
the range of data (Grelet et al., 2016). Because of the 
way in which blood BHB was measured (i.e., values 
with few digits: 0.1, 0.2, …, 6.3), many samples had 
the same BHB values; this resulted in a large number 
of few distinct values. Such duplication in BHB values 
(not in the corresponding spectra) could also influence 
the R2

cv by reducing variation or range of values in 
the random segments used for the cross-validation. In 
the validation set, data were not divided into random 
segments, so existing variation in the blood BHB was 
available. That could possibly result in the higher ob-
served R2

v than R2
cv.

The R2
cv of the prediction models developed in our 

study were low, but in the range of estimates reported 
for untransformed milk BHB (0.10 to 0.64) or for log-
transformed milk BHB (0.09 to 0.63; de Roos et al., 
2007). Grelet et al. (2016) found R2

cv of 0.71 and R2
v 

of 0.63 for milk BHB, larger than estimates found in 
the current study. With blood BHB used as a reference 
value in calibration, Broutin (2015, 2016) also found 
higher R2

cv (0.7360 or 0.5999) than that observed in 
our study. The predictive ability of calibration models 
developed in the present study may not be sufficient to 
determine exact values of blood BHB, but may allow 
for a rough screening to distinguish cows with high or 
low values. It has been concluded that FT-MIR–pre-
dicted ketone bodies may be promising as screening 
tool for ketosis at herd level, but not accurate enough 
for management decisions at an individual animal level 
(de Roos et al., 2007; van der Drift et al., 2012; Grelet 
et al., 2016).

The correlations between reference BHB and pre-
dicted BHB obtained by the models developed in our 
study (averaged to 0.584) were higher than the correla-

Table 8. Coefficient of determination between reference blood BHB values and blood BHB predicted by the direct and indirect prediction 
approaches from milk spectra1

Calibration model

Indirect prediction (IP)

Direct prediction (DP)Variances from single REML Variances from multiple REML

Unprocessed spectra      
 All BHB values with region II 0.2865 0.2898 0.2692
 Extreme BHB with region II 0.2775 0.2805 0.2631
Second derivative spectra (SG)      
 All BHB values with region II 0.2943 0.2972 0.2804
 Extreme BHB with region II 0.3061 0.3091 0.2978
1In the IP approach, where spectral variables first converted into single-trait and then genetic analysis was applied on the trait for ultimate 
phenotypic prediction, variances estimated from single-trait REML or multiple REML (after converting into variance structure) were used. In 
the DP approach, spectral variables reduced to factor scores that were analyzed using multitrait genetic analysis and eventually combined into 
the phenotypic trait.
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tion between reference blood BHB and Foss-predicted 
milk BHB (0.567). This indicates that these models 
may be more appropriate to indicate ketosis, as they 
predict blood BHB instead of milk BHB. It also shows 
the interest of predicting blood values directly from 
FT-MIR spectra rather than using milk BHB from FT-
MIR spectra. The R2 between reference and predicted 
blood BHB (Table 3) also indicate that milk spectra 
would contain substantial amount of information about 
BHB. Reported phenotypic correlations between refer-
ence blood BHB and reference milk BHB vary widely, 
ranging from 0.66 to 0.89 (Enjalbert et al., 2001; Denis-
Robichaud et al., 2014; Friedrichs et al., 2015); cor-
relation coefficients found in the current study were in 
the lower range of the values reported in those studies. 
However, only Broutin (2016) reported on the correla-
tion between reference blood BHB and predicted blood 
BHB from milk spectra, finding a correlation of 0.7370.

Several factors could contribute to the degree of ac-
curacy of prediction models observed in our study. Re-
lationship between blood BHB and milk spectra might 
not be linear, which could in part explain the observed 
low R2. The R2 of prediction models and concentration 
of analyte (e.g., fat composition and so on) are known 
to have direct relationships (Soyeurt et al., 2006; Rut-
ten et al., 2009). Infrared absorbance is directly propor-
tional to concentration of analyte or substance (Beer’s 
law), indicating that analytes with very low concentra-
tions (e.g., BHB) are difficult to detect by the FT-MIR 
spectroscopy. The concentration of BHB in milk is very 
low (21.7 mg/L given its molar mass of 104.11 g/mol), 
which is below the detection limit (100 mg/L) of the 
FT-MIR spectroscopy (Dardenne et al., 2015). There-
fore, it is important to note that calibration of BHB in 
milk can only be done by indirect links with global milk 
composition, not by the specific spectral responses of 
BHB in milk (Grelet et al., 2016).

Moreover, the 2 information sources that were used 
in our study, milk spectra and blood BHB, were from 
different media (milk and blood). Genetic differences 
between cows in udder ketone body metabolism may 
exist and could influence excretion of ketone bodies 
from blood to milk (van der Drift et al., 2012). van der 
Drift et al. (2012) also found that the random effect of 
herd explained considerable variation in the probability 
of hyperketonemia for cows. Those authors explained 
the herd differences in the association between blood 
and milk ketone body concentrations by time of milk 
sampling, feeding, and blood sampling that were not 
identical on the different farms. Time of sampling (be-
fore or after feeding, morning or evening milking) could 
result in variation of BHB in blood and milk, as there 
might be difference in metabolism of BHB production 
in milk and blood.

Evaluation of the IP and DP Approaches

The slightly better prediction of blood BHB from 
milk FT-MIR spectra by the IP than the DP approach 
was not in line with our expectation. It is also in con-
trast to the work of Dagnachew et al. (2013b), who 
reported better prediction in accuracy of EBV for milk 
contents in goat by DP than IP approaches. Bonfatti et 
al. (2017) also reported results that are mostly in con-
trast with the work of Dagnachew et al. (2013b), who 
found high rank correlations (>0.94) between IP and 
DP predicted EBV of all traits investigated. Bonfatti 
et al. (2017) reported <0.5 rank correlations between 
EBV predicted by IP and DP for most traits included 
in their study. Reasons why the DP approach resulted 
in better prediction for EBV (e.g., Dagnachew et al., 
2013b), but not for phenotypic are not clear, but could 
be due to difference in methods of comparison (correla-
tion vs prediction error variance) and type of parame-
ters compared (phenotype vs EBV). Genetic parameter 
estimates (e.g., heritability) for BHB using covariance 
components (DP) after converting into univariate vari-
ance structure were higher (Table 6) than correspond-
ing estimates using variance components (IP; Table 7), 
indicating better information content in the DP ap-
proach. However, neither phenotypic prediction from 
the multivariate mixed model using spectral variables 
that were reduced into few components by PLS (Table 
8) nor principal component analysis (PCA; Belay et 
al., 2015) were promising. It is therefore important to 
verify if such results from the current study or previous 
studies (Dagnachew et al., 2013b; Belay et al., 2015) 
will be reproducible and to look for reasons behind the 
reported results for example using simulated data.

In the DP approach, dimension of spectral variables 
can be reduced into a few factor scores by PLS re-
gression, as in the current paper, or into latent traits 
by PCA. Covariance components for the latent traits 
from PCA are population parameters that characterize 
any information coming from the population, as they 
represent any information available in the milk spectra, 
whereas covariance components for factor scores from 
PLS regression mainly contain information related to 
the particular trait used in the calibration. The PLS 
factors are thus expected to give better prediction of 
the trait than the one with latent traits from PCA. 
However, with PLS, information about other milk com-
position traits not included in the calibration may not 
be retained in the factor scores, as also indicated by 
Dagnachew et al. (2013b) and Bonfatti et al. (2017). 
The expected better prediction of traits with PLS 
model was confirmed. For example, prediction accuracy 
of DP was much lower than the IP approach when PCA 
was used (Belay et al., 2015) compared with when PLS 
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was used for spectral dimension reduction (Table 8). 
One possible reason for this could be that the retained 
8 latent traits from PCA, which explained 99% of the 
total spectral variation (Belay et al., 2015), did not 
contain as much relevant information about the blood 
BHB as those 5 PLS factors used in our study did. 
Dagnachew et al. (2013b) also used 8 latent traits to 
extract genetic component of the FT-MIR spectra and 
indicated the possible existence of relevant information 
in the remaining 1% of the total spectral variation. 
Interestingly, Bonfatti et al. (2017) also showed that a 
considerable amount of information needed to predict 
phenotypes is lost when using 99% of original spectral 
variability, and loss of such information could affect 
prediction of EBV from spectral information. Those 
authors further showed that information left in 0.01% 
of original spectral variability is fundamental for pre-
diction of some of the traits included.

Several possible reasons exist for the slightly lower 
prediction accuracy in the DP compared with the IP 
approach found in our study. It could be due to the low 
genetic correlations observed among the latent traits 
(factor scores). Expected improvement in accuracy of 
prediction from multivariate analysis would be due 
to its ability to account for the covariance among the 
traits. When the covariance or correlation among the 
traits are very low, multivariate analysis might not per-
form better than the univariate one. Any errors in the 
covariance estimation or the modeling of the observa-
tions may also have reduced the accuracy. The genetic 
and environmental parameters used in BLUP analysis 
are estimates and possibly contain errors. Use of esti-
mates with errors in multivariate analysis would affect 
accuracy of prediction (Schaeffer, 1984; Thompson and 
Meyer, 1986). Response to selection, which is directly 
proportional to accuracy of predicted breeding values, 
highly depends on the precision of the estimates and the 
applied variance components (Villanueva et al., 1993). 
Under such conditions, univariate models can provide 
more precise estimates than multitrait models. Accura-
cies will also depend on the relevance of the models 
used, and whether or not anything can be gained by 
using the mixed model.

Lack of enough information about contemporary 
cows in the validation data set with blood BHB sam-
ples could be another major contributing factor to the 
poor performance observed in multivariate analysis. If 
no structure of the random effects of the model exists in 
the data to be predicted, there may be no benefit from 
using a multivariate mixed model. The number of cows 
in the validation set were small and each cow had only 
1 measured blood BHB; hence, the cows in validation 
set could possibly be not well connected to each other 
genetically. In addition, almost all of the HTD classes 

contained only 1 cow, which might impose difficulty in 
separating herd effect from genetic effect of cows and 
contribute to low accuracy in the multivariate analysis. 
With FT-MIR spectra, for more contemporary cows 
in the validation, more info that is multivariate could 
have been available. An attempt was made to merge 
the validation set with data set 2 to increase amount 
of information in the validation set (such as increasing 
number cows in the HTD classes); however, as these 2 
data sets were collected in different years, they had only 
1 cow in common. Hence, we failed to use information 
in both data sets for better accuracy in multiple model.

In our study, correlations of blood BHB with milk fat 
(0.35), protein (−0.06), and lactose (−0.20) contents 
were low to medium, which might have contributed to 
the lower accuracy in DP. These milk contents were 
prediction from spectra by Foss calibration. For exam-
ple, Bonfatti et al. (2017) found a positive relationship 
between rank correlation and correlations of traits of 
interest with major sources of spectral variation (such 
as milk protein, fat, and lactose contents), and that 
variability of the traits of interest is better explained 
when they are highly correlated with the major sources 
of spectral variation. In addition, for traits more cor-
related with the major sources of spectral variation, 
the DP approach is more likely to be effective (Bonfatti 
et al., 2017). Those authors indicated that the better 
accuracy of EBV from the DP than from the IP that 
Dagnachew et al. (2013b) reported would be due to 
large contribution of milk protein, fat, and lactose con-
tents to spectral variation.

In addition, R2
cv of the calibration models could 

affect accuracy of the DP approach. For example, in 
Dagnachew et al. (2013b), R2

cv was very high (>0.94) 
and the multivariate model performed better than the 
univariate one, possibly as a consequence of this. In 
the current study, the predictive ability of the calibra-
tion models was much lower (explained less than 45% 
of the variation in the blood BHB, Table 3), and the 
multivariate models performed slightly inferior to the 
univariate ones (Table 8). From these 2 studies, we 
can see that accuracy of predicting breeding values or 
phenotype seems to depend on predictive ability of the 
calibration model. This could lead us to the conclusion 
that, for DP to work better, there should be a strong 
relationship between the trait of interest and spectral 
variables. In other words, we should first be sure that 
the univariate method (IP) is working well with the 
data on hand before embarking on the DP method. Un-
der such conditions, where the univariate method was 
found to be working, the multivariate method might 
perform better, but this should be an assumption that 
needs to be made. Bonfatti et al. (2017) reported that 
rank correlations between EBV obtained by the IP and 
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the DP approach are not related to the accuracy the 
calibration equations; however, the relationships be-
tween accuracies of EBV obtained by the 2 approaches 
and accuracy of calibration equations are not well es-
tablished.

Both the IP and DP approaches had lower predict-
ability for the phenotype than the predictability of equa-
tions developed based on the classical PLS regression. 
This indicated that inclusion of cows’ circumstances 
at a given test day into the IP or DP model did not 
improve prediction of blood BHB from milk FT-MIR 
spectra. Therefore, for phenotypic prediction, the clas-
sical PLS regression-based prediction equation seems 
to be the method of choice. In our study, information 
related to the cow was added into the models after PLS 
regression or in the mixed model analysis of predicted 
trait or factor scores. On the other hand, it has been 
shown that it is possible to directly add the informa-
tion to the spectra before PLS. For example, Vanlierde 
et al. (2015) included DIM directly into spectra using 
Legendre polynomial to predict methane, and predic-
tion equations developed in such a way were shown to 
be more robust than equations that did not integrate 
the DIM information. Similarly, Shetty et al. (2017) 
used milk yield and live weight as predictors along with 
spectral variables to predict residual feed intake and 
DMI. They showed improvement in accuracy of model 
that included spectral information along with milk 
yield and live weight as predictors for DMI. Therefore, 
inclusion of cows’ circumstances directly into spectra 
before PLS or using them as predictors along with 
spectral information during PLS can be an alternative 
to improve prediction accuracy for blood BHB from 
milk FT-MIR spectra.

CONCLUSIONS

In this study, predictive ability of the DP and IP 
approaches were evaluated using measured blood BHB 
and milk spectra-predicted blood BHB. A calibration 
and an independent validation data set was used. Ac-
curacy of prediction with the 2 approaches were simi-
lar. Slightly better prediction of BHB was found when 
univariate variance structure was used (IP) than when 
multitrait covariance structures were used (DP) in 
mixed models. Prediction accuracies of the developed 
calibration models were also low, which could partly be 
due to a weak relationship between milk spectra and 
blood BHB. Blood BHB log-transformation, spectral 
preprocessing, and use of extreme blood BHB values 
have improved prediction accuracy of the calibration 
models and the 2 approaches. Conclusive remarks on 
the importance of keeping spectral data in a multivari-
ate form for prediction of phenotype and model com-

ponents (EBV, HTD, and so on) may be found in data 
sets where the trait of interest has strong relationships 
with spectral variables.
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