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Abstract 25 

Climate change and its effects on grassland productivity vary across Europe. The Mediterranean 26 

and Nordic regions represent the opposite ends of a gradient of changes in temperature and 27 

precipitation patterns, with increasingly warmer and wetter winters in the north and increasingly 28 

warmer and drier summers in the south. Warming and elevated concentration of atmospheric 29 

CO2 may boost forage production in the Nordic region. Production in many Mediterranean areas 30 

is likely to become even more challenged by drought in the future, but elevated CO2 can to some 31 

extent alleviate drought limitation on photosynthesis and growth. In both regions, climate change 32 

will affect forage quality and lead to modifications of the annual productivity cycles, with an 33 

extended growing season in the Nordic region and a shift towards winter in the Mediterranean 34 

region. This will require adaptations in defoliation and fertilization strategies. The identity of 35 

species and mixtures with optimal performance is likely to shift somewhat in response to altered 36 

climate and management systems. It is argued that breeding of grassland species should aim to 37 

(i) improve plant strategies to cope with relevant abiotic stresses and (ii) optimize growth and 38 

phenology to new seasonal variation, and that plant diversity at all levels is a good adaptation 39 

strategy.  40 

  41 
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1. Climate change and Nordic versus Mediterranean grasslands 45 

The most contrasting regions of Europe in terms of climate are the Mediterranean and the Nordic 46 

regions, representing a latitudinal gradient in temperature (Metzger et al., 2005). Within these 47 

regions, there are gradients in both oceanicity and precipitation. According to the environmental 48 

classification and stratification of Europe made by Metzger et al., (2005), the largest 49 

environmental zones in the Nordic region are the Alpine North and the Boreal zones, but in the 50 

southern part of this region there are also Nemoral, Atlantic North and Continental zones. There 51 

is a strong west to east gradient of decreasing precipitation in the Nordic region. The 52 

Mediterranean region of Europe has a complex pattern of environmental zones (Mediterranean 53 

South, Mediterranean North and Mediterranean Mountains), largely determined by temperature 54 

(Metzger et al., 2005). While forage production from grasslands are limited by cold and dark 55 

winters in the Nordic region, it is limited by hot and dry summers in the Mediterranean region. 56 

Across Europe, climate change could raise significant challenges for grassland-based food 57 

production and other ecosystem services provided by grasslands, but may also imply some 58 

opportunities. The observed and projected climate change differs between Northern and Southern 59 

Europe (Kovats et al., 2014, Table 1). The average temperature over land surface during 2002-60 

2011 was 1.3 °C above the 1850-1899 average, with substantial differences between regions and 61 

seasons. In the Nordic region, both the observed and predicted warming is more rapid than the 62 

global average warming. Annual average temperatures have increased with more than 2 °C 63 

during 1847-2013, almost twice the global average increase, and both the observed and the 64 

predicted temperature increase is highest during late autumn, winter and spring (Uleberg et al., 65 

2014; Mikkonen et al., 2015; Ruosteenoja et al., 2016). The length of the thermal growing 66 

season has increased with about 1-2 weeks during the last 30 years, and has been predicted to 67 
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become 1-3 months longer by the end of the century as compared to the period 1971-2000 68 

(Ruosteenoja et al., 2011; Hanssen-Bauer et al., 2015). Annual precipitation in the Nordic region 69 

is predicted to increase considerably (up to around 20 % relative to 1971-2000 in some regions) 70 

by the end of the century, with more frequent episodes of extreme precipitation, and especially 71 

during winter (Lehtonen et al., 2014; Hanssen-Bauer et al., 2015). In the Mediterranean region, 72 

the climate is expected to become warmer and drier, particularly in summer (Giorgi and 73 

Lionello, 2008; Giannakopoulos et al., 2009; Lehtonen et al., 2014). Winters are also expected to 74 

become warmer, but to a lesser extent than summers, while winter precipitation may vary 75 

between regions (Giorgi and Lionello, 2008; Giannakopoulos et al., 2009; Hoerling et al., 2012). 76 

Increased inter-annual variability in summer and winter precipitation, as well as in summer 77 

temperatures, is also expected (Giorgi and Lionello, 2008). Changes in atmospheric CO2 78 

concentration, temperature and precipitation patterns are expected to affect plant productivity in 79 

a complex manner due to a set of mechanisms and interactions at different scales from the 80 

individual leaves to agroecosystems (Hatfield and Prueger, 2010; Xu et al., 2013). For 81 

grasslands, there are also important complicating factors such as plant competition and other 82 

plant-plant interactions, perennial growth habits, seasonal productivity patterns, and plant-animal 83 

interactions (Porter et al., 2014).  84 

 85 

Grasslands comprise a variety of vegetation types and management systems (e.g. Allen et al., 86 

2011; Huyghe et al., 2014; Peeters et al., 2014). A distinction is made between temporary and 87 

permanent grasslands. Temporary grasslands, also termed forage crops, are regularly re-88 

established (annually or at longer intervals), or constitute an element in a crop rotation. 89 

Permanent grasslands are grasslands that have either never been ploughed or not been ploughed 90 
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for at least five to ten years (definitions vary). Permanent grasslands can range from natural and 91 

semi-natural (not managed by other means than grazing or mowing) to agriculturally improved 92 

permanent grasslands (i.e. improved by fertilization). Both temporary and permanent grasslands 93 

may be harvested by mowing (meadows), grazing (pastures) or a combination, and consist of 94 

perennial, biennial and/or annual forage species, mainly grasses and legumes. Overviews of 95 

grassland production in the Nordic and Mediterranean regions of Europe were recently given by 96 

Helgadóttir et al. (2014) and Porqueddu et al. (2016). Nordic grasslands are dominated by 97 

perennial grasses, with a few perennial legume species also present. Annual species are used 98 

only to a limited extent. There are both permanent and temporary grasslands, which are grazed or 99 

mown. Due to the lack of plant growth during winter, there is a strong reliance on harvested and 100 

conserved forage. In Mediterranean Europe, grasslands can be grazed from autumn to spring and 101 

may be mown in spring for hay production. Permanent grasslands can be dominated both by 102 

perennial and annual grasses, while temporary grasslands are often dominated by annual species. 103 

In summer, forage production can be completely or very limited by drought. Agro-silvopastoral 104 

systems are important in some areas. Annual and perennial grasses and legumes such as alfalfa 105 

(Medicago sativa L.) are to some extent cultivated as forage crops, which are sometimes 106 

irrigated. We here review the current research available related to the challenges and 107 

opportunities for forage production associated with changing climate in these two contrasting 108 

regions. We consider challenges and opportunities created by climate change in terms of forage 109 

productivity, forage quality and plant species composition (Section 2), while also assessing how 110 

utilization of plant traits and management practices could enable adaptation (Section 3). 111 

Although intimately linked to forage production, livestock production and the integration of 112 

mitigation and adaptation strategies is not within the scope of the present paper.  113 
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2. What are the challenges and opportunities of climate change in Nordic 114 

versus Mediterranean grasslands? 115 

2.1. Forage dry matter productivity 116 

In the Nordic region, the short growing season generally limits agricultural production (Peltonen-117 

Sainio et al., 2009). Thus, longer growing season is favourable, especially in spring when water 118 

supply and solar radiation is optimal for growth. In a modelling study, Höglind et al. (2013) 119 

found 11 % increase in annual dry matter (DM) yields of timothy (Phleum pratense L.) in 120 

northern Europe in 2040-2065 as compared to 1960-1990, with the largest increases in the 121 

western regions which were less water-limited than the eastern regions. This study assumed that 122 

farmers adjusted the timing and number of harvests, and that nutrient conditions were optimal, 123 

but did not take the effect of elevated CO2 on growth into account. Elevated atmospheric CO2 124 

concentration has the potential to increase photosynthetic rates and biomass production of C3 125 

plants (Ainsworth and Long, 2005; Soussana and Lüscher, 2007). In a study of timothy and 126 

lucerne mixtures in eastern Canada, which did take the effect of elevated CO2 into account, 5-35 127 

% increase in DM yield in 2020-2079 relative to 1971-2000 was estimated (Thivierge et al., 128 

2016). This occurred despite an increase in the duration of periods when high temperatures or 129 

water shortages limited the productivity. However, there are large uncertainties in the 130 

predictions. In pure grass stands the positive effect of temperature and CO2 on yield may be 131 

limited by N (Leakey et al., 2009; Piva et al., 2013), and it may not be possible to utilize all of 132 

the extended thermal growing season. Although temperatures increase, the unique photoperiod in 133 

Northern latitudes remains unchanged. Short days and low inclination of incoming solar 134 

radiation in autumn can limit the amount of photosynthetically active radiation to the point that it 135 
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becomes a restricting factor for growth, particularly at higher latitudes (Ruosteenoja and 136 

Räisänen, 2013, Uleberg et al., 2014; Virkajärvi et al., 2015).  137 

 138 

There are many uncertainties regarding winter stresses in a future climate (Rapacz et al., 2014). 139 

The type and severity of winter stresses depends not only on the minimum temperature during 140 

winter, but also largely on the presence or absence of a snow cover, and on factors that control 141 

the cold acclimation status of the plants. Decrease in long-term mean snowpack has been 142 

predicted toward the end of the century, although individual snow-rich winters will still occur 143 

(Räisänen and Eklund, 2011). Thus, there will be shorter duration of snow cover and eventually 144 

snow-free winters in some regions now characterized by stable snow cover. On the other hand, 145 

increased precipitation in areas where temperatures remain below freezing can give longer-146 

lasting snow cover in some areas (Johansson et al., 2011). Less snow cover can increase the 147 

occurrence, depth and duration of soil frost due to less insulation (Kellomäki et al. 2010; Bjerke 148 

et al., 2015), and was shown to affect annual productivity of grasslands in Canada and Germany 149 

(Vankoughnett et al., 2016; Zeeman et al., 2017). There has been an increase in frequency of 150 

winter warming events in northern Norway, Sweden, and Finland during the last 50 years 151 

(Vikhamar-Schüler et al., 2016). This has led to increased numbers of melt-days during winter 152 

by 3-7 days per decade, and a further increase in such events are projected. The combination of 153 

increased precipitation in the autumn and winter, milder and unstable temperatures, and frozen 154 

soils, may lead to ice cover or waterlogging. The risk of winter damage is expected to increase 155 

east of the Baltic Sea, even for the winter hardy species timothy, while the risk of spring frost 156 

damage is predicted to increase in the western part of the Nordic area (Höglind et al., 2013). In 157 

winter, when solar irradiation is insufficient for photosynthesis in northern latitudes, the carbon-158 
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economy and survival of the plants becomes increasingly important when temperatures exceed 159 

5
o
C and respiration increases. On the other hand, if temperatures remain cool, shorter winters 160 

could leave more C and N reserves in spring, increasing survival and spring DM production (Jing 161 

et al., 2013; Piva et al., 2013). Higher temperatures in autumn will shift cold acclimation of the 162 

plants to a time when less light is available. This can have impacts on growth cessation and cold 163 

acclimation of plants (Østrem et al., 2014; Dalmannsdottir et al., 2017, Ergon 2017), rendering 164 

them more vulnerable to winter stresses. In addition, waterlogged soils in combination with 165 

higher autumn temperatures have negative effects on cold acclimation of timothy (Jørgensen et 166 

al., 2016). Unstable winter temperatures and early springs can cause plants to de-acclimate, 167 

when there is still a risk of freezing (Jørgensen et al., 2010; Rapacz et al., 2014). The distribution 168 

of many weeds, pests and pathogens are limited to the north by harsh winters. With global 169 

warming, many of these species can be expected to spread northward (Jepsen et al., 2011; 170 

Juroszek and von Tiedemann, 2013; Svobodová et al., 2014). 171 

  172 

More severe and frequent droughts leading to reduced productivity through both reduced growth 173 

and reduced persistence, is considered the major climate challenge for forage production in the 174 

Mediterranean region in the future. The direct effect of heat stress is not likely to be of the same 175 

importance in grasslands as in grain crops, where heat stress during certain stages of 176 

reproductive development can be detrimental for yields. In the Mediterranean region, water 177 

availability will often be more limiting for photosynthesis than the atmospheric CO2 178 

concentration, but CO2 concentration still has important effects due to interactions with 179 

temperature and drought. Elevated CO2 can partly compensate for the reduced CO2 influx 180 

through stomata under moderate drought (Ainsworth and Long, 2005; Soussana et al., 2010). 181 
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Consequently, elevated CO2 enhances biomass production and improves water relations under 182 

drought (Clark et al., 1999). In addition, elevated CO2 contributes to water sparing (reduced 183 

transpiration due to less stomatal opening) during periods when sufficient water is available, 184 

leaving more water for later in the season, when the water reserves might otherwise be exhausted 185 

(Morgan et al., 2004).  186 

 187 

In Mediterranean Europe, the productivity of rainfed grasslands is limited during the dry 188 

summer. Changes in the seasonal patterns of temperature and precipitation are likely to shift 189 

productivity further towards cooler and wetter parts of the year. Projections of climate change 190 

impact on grassland productivity (Graux et al., 2013) indicated that summer yields may be 191 

reduced in Mediterranean France in the far future (2070-2099). However, in this study higher 192 

yields were predicted in autumn, winter and spring due to a combined effect of higher 193 

temperatures and CO2 levels, leading to an overall increase in productivity. In line with this, 194 

Dono et al. (2016), modelling productivity of semi-natural grasslands dominated by self-195 

reseeding annual species (no summer production) in the near future (2020-2030) in Sardinia, 196 

Italy, predicted decreased spring yields and higher autumn yields due to increased temperature 197 

and increased rainfall occurrence in October. In the same study, irrigated annual ryegrass crops 198 

were predicted to have increased yields in the near future. Model-based studies are affected by 199 

uncertainties and assumptions and, as Graux et al. (2013) pointed out, their study neither 200 

accounted for a possible increase in mortality of perennials during summer droughts, nor climate 201 

change-induced changes in species composition, both factors that may have importance in 202 

grasslands.  203 

 204 
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In summary, grassland productivity can be expected to increase in the Nordic region, and shift 205 

towards winter in the Mediterranean region, except on relatively moist or irrigated land (Table 1, 206 

Fig. 1).    207 

 208 

2.2. Forage quality and species composition 209 

Climate change may affect forage quality in different ways. Higher temperatures lead to earlier 210 

stem elongation, a faster rate of decline in cell wall digestibility of both vegetative and 211 

reproductive tillers during aging, and hence faster decline in the digestibility of forages (Groot et 212 

al., 2003; Thorvaldson et al., 2007; Bertrand et al., 2008; Bloor et al., 2010; Jing et al., 2013). In 213 

addition, higher standing biomass is associated with higher stem-to-leaf proportions and lower 214 

digestibility, at least in timothy (Bélanger and McQueen 1998; Bélanger et al., 2001), and thus 215 

climate change may lead to lower or higher digestibility through its effect on growth rate, stand 216 

density and competition for light. The effects of phenological development and standing biomass 217 

can largely be compensated by changes in defoliation regimes and fertilization (discussed 218 

below). Climate change may also affect forage quality through effects on species composition. 219 

Elevated CO2 tends to increase the competitive ability of legumes in legume-grass mixtures, if 220 

the legumes are not limited by minerals such as phosphorous (reviewed by Lüscher et al., 2004; 221 

Soussana and Lüscher, 2007; Soussana et al., 2010). This may compensate for the slight decrease 222 

in protein content of grasses at elevated CO2 (Soussana and Lüscher, 2007; Dumont et al., 2015). 223 

Dumont et al. (2015), in their meta-study of climate change effects on forage quality, found that 224 

elevated CO2 did not affect digestibility, but increased the total non-structural carbohydrate 225 

content by an average of 25 % and decreased N content by 8 %, reflecting the shift in the C:N-226 

ratio of the environment. N content increased with increasing drought level, and unlike other 227 
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sites, a decrease in herbage N concentration in response to elevated CO2 was not found at 228 

Mediterranean sites. The authors suggested that this could be due both to water limitation on 229 

growth, and changes in species composition (higher legume proportion), leading to higher 230 

concentration of N in the forage. In some Mediterranean regions, e.g. in semi-arid Italy, semi-231 

natural grasslands are dominated by annual species that are maintained by seed banks (Cosentino 232 

et al., 2014). The species composition in these grasslands varies between years, depending on 233 

previous seed production, dormancy and germination. These are all processes strongly 234 

influenced by climatic conditions such as temperature and moisture, and therefore most likely 235 

affected by climate change (Ooi, 2012; Cosentino et al., 2014; Long et al., 2015). 236 

3. How to address these challenges and opportunities? 237 

Grassland management targets an optimal balance between forage yield, forage quality, yield 238 

stability and persistence (plant survival or reproduction). This can be achieved through a suitable 239 

choice of plant material, optimization of the defoliation and fertilization strategies, irrigation, 240 

drainage, soil management, control of unwanted organisms, and renovation or re-establishment 241 

of the grassland.  242 

 243 

3.1. Choice of plant material 244 

Choosing the best species and mixtures for sown grasslands can be a way to meet challenges and 245 

utilize opportunities raised by climate change. A harsh winter climate is the strongest limiting 246 

factor determining which perennial species can be cultivated in the Nordic region. Although 247 

there is considerable uncertainty regarding winter survival in the future, a longer growing season 248 

and milder winters may increase the prospective for using species and cultivars with higher yield 249 
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potential and feeding value. Currently, winter hardy species such as timothy, meadow fescue 250 

(Schedonorus pratensis Huds. syn. Festuca pratensis Huds.) and red clover (Trifolium pratense 251 

L.), are widely used (Helgadottir et al., 2014). Species like perennial ryegrass (Lolium perenne 252 

L.) and festulolium (×Festulolium Aschers. et Graebn.) are used in the southern Nordic area, and 253 

are of increased interest for the future climate also further north because of their high production 254 

capacity throughout the growing season as well as high nutritive value (Østrem et al., 2013). 255 

Including deep-rooted drought tolerant species like tall fescue (S. arundinaceus Schreb. syn. F. 256 

arundinacea Schreb.), fescue type festulolium, cocksfoot (Dactylis glomerata L.), red clover and 257 

lucerne in the mixtures can be a strategy to prevent yield reduction during drought periods. Tall 258 

fescue has a better nitrogen uptake, nitrogen use efficiency and water use efficiency, and a yield 259 

potential which is up to 50 % higher than perennial ryegrass in dry periods, most probably owing 260 

to its deeper rooting system (Cougnon, 2013; Cougnon et al., 2017). In addition, it can tolerate 261 

poorly drained soils (Barnes et al., 2003). However, the digestibility and animal preference is 262 

lower than in perennial ryegrass (Cougnon et al., 2014). Cultivation of whole crop maize (Zea 263 

mays L.) has increased during the last decades and the expected climate changes will further 264 

promote this development, at least in southern parts of the Nordic region (Elsgaard et al., 2012). 265 

This could be compatible with an increased use of legumes and total mixed ratio feeding 266 

strategies, where high protein forages can be complemented with low protein but high energy 267 

components, and thereby influencing what type of grasslands will be cultivated.  268 

 269 

A wide range of annual forage species showing adaptability to Mediterranean climate conditions 270 

are currently available in the market (e.g. oat (Avena sativa L.), italian ryegrass (L. multiflorum 271 

Lam.), crimson clover (T. incarnatum L.), egyptian clover (T. alexandrinum L.), common vetch 272 
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(Vicia sativa L.)) (Annicchiarico et al., 2013; Porqueddu et al., 2016). Despite an increasing use 273 

of annual self-reseeding species (mainly subterranean clover (T. subterraneaum L.) and 274 

Medicago spp.) for pasture improvement in dry environments (Porqueddu and Gonzalez, 2006), 275 

cultivars available in the seed market have often proved to be poorly adapted to the climatic 276 

conditions and management systems of Mediterranean Europe (Sulas, 2005; Salis et al., 2012; 277 

Porqueddu et al., 2016). Native genotypes of these species (e.g., rigid ryegrass (L. rigidum 278 

Gaud.) and burr medic (M. polymorpha L.)) have been selected (Porqueddu et al., 2001; Franca 279 

et al., 2005), but not adopted by the seed industry in Europe so far. Perennial forages such as tall 280 

fescue or cocksfoot can be a valuable alternative to annuals, if they can survive across successive 281 

summer droughts. Although most of the temperate origin cultivars available on the market are 282 

not drought persistent in Mediterranean areas (Lelièvre and Volaire 2009), a few cultivars with 283 

summer dormancy (Volaire and Norton, 2006) can tolerate severe successive droughts and 284 

survive in environments with annual rainfall as low as 300 mm (Annichiarico et al., 2011; 285 

Pecetti et al., 2009, 2011). Under chronic water shortages, perennial forage species have a 286 

number of advantages in comparison to the predominantly used annual species including (i) 287 

fewer inputs with less field preparation and fertilizer requirement, (ii) year-around soil cover 288 

reducing the risk of intense soil erosion, (iii) optimal use of water throughout all seasons, thus 289 

enhancing forage production in particular in autumn when cereals and annual species are not yet 290 

established and (iv) greater flexibility because of the multiple uses of these species (grazing, hay, 291 

silage). Therefore, perennial species are an excellent alternative to annual species, contributing to 292 

reduced production costs, to halt rangeland degradation and overall to confer greater security to 293 

rain-fed agricultural systems (Lelièvre and Volaire, 2009; Volaire et al., 2016). Cultivars of 294 

bulbous canary-grass (Phalaris aquatica L.) and tall fescue that express summer dormancy play 295 
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an increasing role in eastern Australia and the semi-arid environment of the Southern Great 296 

Plains in the USA, and can be used in regions with down to about 550 -500 mm precipitation per 297 

year (Oram and Lodge, 2003; Malinowski et al., 2005, 2009¸ Norton et al., 2016). Such cool 298 

season grasses were also found to be quite productive and successful in south-west Australia 299 

(Rogers et al., 1976; Biddiscombe et al., 1977) although until recently they have been poorly 300 

adopted by the seed industry. The association of summer dormant grasses and Mediterranean 301 

type alfalfa, combining the dehydration tolerance of the grass and the dehydration avoidance of 302 

the legume provides high functional complementarity for water use in summer and is advocated 303 

for drought prone areas (Volaire et al., 2016). 304 

 305 

Unstable conditions with large variation in weather within and between seasons increase 306 

uncertainty in forage production. Diversity among responses to critical weather factors improves 307 

resilience at both sward and farm level (Mäkinen et al., 2015). Seed and variety mixtures with 308 

components that have both desired traits and complementary niches can exploit temporal and 309 

spatial variation in environmental conditions, and be more stable and robust compared to 310 

monocultures or simple mixtures. Using mixtures is therefore considered a key strategy to 311 

maintain production in unpredictable and unstable environments (Maltoni et al., 2007; Volaire et 312 

al., 2014; Lüscher et al., 2014). Species and variety mixtures also tend to be more stable in 313 

forage quality than pure stands of one species (Sleugh et al., 2000; Sanderson, 2010; Ergon et 314 

al., 2016), and therefore allows for some flexibility in harvest times, which is desirable in rainy 315 

summers in the Nordic region. It may be possible to design optimized mixture compositions 316 

based on detailed experiments (Goslee et al., 2013). For example, mixtures of summer-dormant 317 

and summer-active perennial species may provide stable pastures exploiting available soil 318 
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moisture throughout the year in some Mediterranean regions (Norton et al., 2016). Similarly, 319 

grass-legume mixtures including both annuals and perennials proved to achieve higher yields and 320 

utilize a longer period for growth than pure stands, under dry Mediterranean conditions 321 

(Porqueddu and Maltoni, 2007; Maltoni et al., 2007). However, when a single environmental 322 

factor is dominant, yield and survival may depend largely on a specific trait rather than on 323 

functional diversity. For example, under severe summer water deficit, rooting depth enhanced 324 

water uptake and resilience of grass communities irrespectively of the level of species diversity 325 

in the communities (Barkaoui et al., 2016). Including N-fixing legumes in mixtures has several 326 

advantages, and can facilitate a better exploitation of elevated atmospheric CO2 concentration 327 

(Lüscher et al., 2004, 2014). However, since legumes require relatively high amounts of K and 328 

P, nodulation and N fixation may become limited by low nutrient supply and high or low 329 

temperatures (Nesheim and Boller, 1991; Irigoyen et al., 2014), and the conservation of legume 330 

forage can be challenging, particularly in a wet Nordic climate.  331 

 332 

3.2 Breeding for the future climate 333 

In order to meet the challenges and utilize the opportunities that climate change will bring, the 334 

plant material we cultivate should (i) exhibit growth cycles that better fit the new seasonal 335 

climate patterns, (ii) be able to cope with relevant stresses and have the right balance between 336 

growth potential, nutritive value and stress tolerance, and (iii) have the phenotypic plasticity or 337 

genetic diversity within populations that ensures yield stability under variable and unpredictable 338 

conditions. 339 

 340 
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The annual recurrent periods of winter stresses or summer droughts have led to the evolution of 341 

seasonal acclimation and de-acclimation processes regulating the level of resistance to seasonal 342 

stresses in perennial grasses (Laude, 1953, Volaire and Norton, 2006, Preston and Sandve, 343 

2013). These processes, which are largely regulated by temperature and photoperiod, correlate 344 

with changes in growth, reproductive development and dormancy status (Preston and Sandve, 345 

2013, Norton et al., 2009, Gillespie and Volaire, 2017), and latitudinal clines in responses to 346 

temperature and photoperiod have been described (Cooper, 1964). With global warming, there 347 

will be new combinations of temperature and photoperiod. This is particularly the case in the 348 

north where photoperiod changes dramatically during the course of a year. In order to utilize a 349 

longer growing season in Nordic Europe, and a shift in the growing season in Mediterranean 350 

Europe, we need species and varieties with temperature and photoperiod responses conferring an 351 

annual growth pattern that optimizes growth during the favourable part of the year and survival 352 

during the cold Nordic winter or dry Mediterranean summer  (Ergon, 2017). Resistance to winter 353 

stresses are still likely to be of high importance in the Nordic region in the future (see section 1). 354 

Plants encounter many stresses during winter: freezing, anoxia due to ice encasement or water-355 

saturated soils, soil movements due to freeze-thaw cycles, winter pathogens, starvation and 356 

dehydration due to frozen soils. Specific resistance mechanisms to these stresses exist, but they 357 

are also largely interconnected through genetics and physiology. Central to winter survival is 358 

proper cold acclimation in autumn and sufficient maintenance of a cold acclimated state in 359 

spring. During cold acclimation, leaf elongation ceases, a number of stress responses are elicited, 360 

and organic reserves accumulate. Both cold acclimation in autumn and deacclimation in spring 361 

are mainly controlled by temperature. However, light is also important in at least three different 362 

ways: (i) high irradiance combined with low temperature increases the photosystem II excitation 363 
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pressure, eliciting signalling pathways leading to cold acclimation, (ii) light is the energy source 364 

for the accumulation of organic reserves, and (iii) photoperiod is a developmental signal 365 

influencing growth, cold acclimation and deacclimation. Due to these reasons, the shift of cold 366 

acclimation and deacclimation into shorter photoperiods may affect the ability of plants to cope 367 

with winter stresses (Dalmannsdottir et al., 2017). A more detailed and quantitative 368 

understanding of interactions between temperature and light on winter survival in different 369 

species is needed. Breeding activities may need to focus on adjusting the timing of growth 370 

cessation and cold acclimation in autumn, and the opposite process in spring, to new temperature 371 

and photoperiod combinations. For example, at high latitudes, perennial ryegrass and festulolium 372 

tend to cease growth in autumn too late for sufficient cold acclimation (Østrem et al., 2014). It 373 

will however, be necessary to manage the trade-off between optimal timing with respect to 374 

winter survival, and utilization of the longer growing season to increase production (Ergon, 375 

2017). In order to utilize the potential for higher productivity in the north, there is also a need for 376 

strong regrowth capacity and tolerance to more frequent harvesting or grazing. For timothy, the 377 

priorities would likely be to improve tolerance to harvesting and grazing, better regrowth 378 

capacity and spring growth. Perennial ryegrass needs better winter survival, particularly 379 

improved timing of growth cessation and cold acclimation, as well as resistance to psycrophilic 380 

pathogenic fungi (Abdelhalim et al., 2016), while for tall fescue, work is ongoing to combine the 381 

high yield and drought tolerance with an acceptable digestibility and animal preference 382 

(Humphreys et al., 2012, Helgadottir et al., 2014, Cougnon et al., 2015; Fariaszewska et al., 383 

2016).  384 

 385 
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Drought escape (i.e. when plants survive the dry summer as seeds; Long et al., 2015) and 386 

hardseededness (which allows a more persistent seed bank; Taylor, 2005) are the main adaptive 387 

strategies of annual species in Mediterranean grasslands. Based on the predicted changes in 388 

precipitation, with an overall reduced growth period in the driest Mediterranean regions, annual 389 

species will need earlier seed maturation for reliable seed set in shorter growing seasons, as well 390 

as mechanisms (i.e. regulation of seed dormancy and germination) ensuring the presence of a 391 

seedbank under the expected seasonal patterns of temperature and water availability (Porqueddu 392 

et al., 2016). A low requirement for dormancy release gives the potential for early germination 393 

and higher yield, but at the risk of seedling mortality due to false breaks. Given the uncertainty 394 

and the expected climatic variability, intra- and interspecific variation in regulation of dormancy 395 

release in cultivars and seed mixtures appears to be a good strategy.  In the past, breeding efforts 396 

in tall fescue and cocksfoot have mainly been directed towards use in temperate areas with 397 

summer active material that are short lived under drought, and there are therefore very few 398 

cultivars adapted to severe drought currently available in southern Europe (Lelièvre and Volaire, 399 

2009). Persistence during severe drought is governed by mechanisms different from those 400 

conferring resistance to moderate droughts (Milbau et al., 2005; Volaire et al., 2009). Plants with 401 

responses resulting in resistance under moderate drought and maintenance of shoot growth have 402 

to either avoid or tolerate leaf dehydration. At moderate drought, the maintenance of biomass 403 

production can be achieved primarily by maximizing soil water capture while maintaining 404 

stomatal gas exchange and transpiration (Blum, 2009). A deep root system with a high density of 405 

roots at depth (Carrow, 1996; Wasson et al., 2012; White and Snow, 2012) and maintenance of 406 

leaf area, leaf relative water content, leaf cell turgor and photosynthetic capacity (Morgan, 1988; 407 

Serraj and Sinclair, 2002) are traits that are associated with high yield in water-limited 408 
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environments. Plant responses resulting in survival under severe drought, however, are mainly 409 

associated with growth cessation, dehydration avoidance and tolerance occurring in young 410 

tissues including basal meristematic tissues. When conditions improve, the surviving meristems 411 

can generate new leaves if the adult leaves are dead (Van Peer et al., 2004; Zwicke et al., 2015). 412 

In some species and genotypes from very dry areas, survival of basal meristematic tissues is 413 

achieved through summer dormancy (Volaire and Norton, 2006). In these plants, photoperiod 414 

and temperature induce (even under irrigation) cessation or reduction of shoot growth, various 415 

degrees of foliage senescence and a dehydration tolerance of meristems. The reduction in leaf 416 

tissue reduces total plant water loss (Gepstein, 2004; Munne Bosch and Alegre, 2004). A 417 

minimum water supply to the meristematic tissues is maintained (Karcher et al., 2008; 418 

McWilliam and Kramer, 1968; Volaire and Lelievre, 2001), and high concentrations of fructans 419 

and dehydrins contribute to osmoregulation and membrane stabilisation of these tissues (Hincha 420 

et al., 2000; 2002). High carbohydrate reserves are associated with superior plant resilience and 421 

recovery after severe drought (Boschma et al., 2003). Thus, to interpret low leaf water potential 422 

or high foliage senescence as responses associated with drought sensitivity and poor adaptation 423 

may be correct if maintained production under drought is the target, but highly misleading if 424 

drought survival during severe drought is the focus. Making the distinction between the 425 

responses of mature and young meristematic tissues is crucial when analysing the strategies of 426 

perennial grasses to contrasting drought intensities. It may be possible to combine drought 427 

resilience of perennial forage species with high biomass productivity in rainy seasons, as recently 428 

shown by crossing summer dormant with summer active and highly productive genotypes of 429 

cocksfoot (Kallida et al., 2016). Breeding programs are now starting to focus on the 430 

improvement of drought survival instead of targeting the maintenance of growth under moderate 431 
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drought (Volaire et al., 2014). A broadening of the gene pools of most of the currently used 432 

species is probably necessary (Mäkinen et al., 2016), and future breeding, irrespective of crop 433 

species, demands efficient ways to incorporate wild adapted genetic resources and exotic 434 

material into the current breeding base (Helgadóttir et al., 2014). As argued above, the use of 435 

forage legumes has many advantages including nitrogen fixation, utilization of elevated CO2 and 436 

improvement of forage quality. In spite of this, there are only a few species used in the Nordic 437 

region, and the breeding efforts in the Mediterranean region have been limited. Many annual and 438 

perennial legume species, and their rhizobial symbionts, have been collected and developed into 439 

varieties and rhizobial strains now widely used in Mediterranean climates in Australia (Nichols 440 

et al., 2012). This suggests that varieties of a larger number of legume species could also be 441 

developed for use in different regions of Europe. Interestingly, although the Nordic and 442 

Mediterranean regions of Europe represent very different climates, there is some common 443 

ground in the adaptation of perennial grassland species to these climates: (i) seasonal regulation 444 

of growth and dormancy or quiescence, whether it is the winter or the summer that needs to “be 445 

survived”, are likely to be regulated by similar molecular signalling systems responding to 446 

temperature and photoperiod (Gillespie and Volaire, 2017; Ergon, 2017), and (ii) tolerance of the 447 

tissue to seasonal stresses, whether it is freezing or drought, is partly based on the same 448 

mechanisms, both regarding induction of tolerance and the protective mechanisms themselves 449 

(Dolferus, 2014).  450 

 451 

3.3. Adapting grassland management 452 

The expected increase in rate of phenological development, and in some cases productivity, 453 

requires adaptation of defoliation and fertilization regimes. Moreover, in grasslands, the 454 
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constraints on utilization of the CO2 fertilizing effect caused by photosynthetic acclimation can 455 

largely be overcome through defoliation (maintaining sink strength) and use of legumes 456 

(maintaining N availability), provided that there are sufficient amounts of water and other 457 

nutrients available (Soussana and Hartwig, 1996; Rogers et al., 1998; Picon-Cochard et al., 458 

2004). Höglind et al. (2013) predicted that the earlier spring and higher temperatures would 459 

allow for one more cut per growing season in Northern Europe during the future period 2040-460 

2065 compared to 1961-1990. In an attempt to reduce costs linked to an extra cut, farmers may 461 

decide to increase grazing. However, as N use efficiency of swards can be considerably lower 462 

under grazing compared to cutting (Nevens and Reheul, 2003), and as climate change is expected 463 

to create a higher potential for leaching in grazed grassland compared to cut grassland (Saarijärvi 464 

et al.,  2004, Stuart et al., 2011), N fertilization has to be judiciously adjusted to prevailing 465 

management practices and climatic conditions in grazed systems to avoid excessive N leaching. 466 

In the current Nordic climate, excessive precipitation frequently causes problems with farm 467 

operations (Peltonen-Sainio et al., 2009, Olesen et al., 2011). Increased precipitation and 468 

waterlogged soils could make establishment of new leys, application of fertilizer, and harvesting 469 

challenging in some years, and is likely to increase nutrient runoff during winter (Saarijärvi et 470 

al., 2007, Edwards et al., 2007; Deelstra et al., 2011). With increased precipitation levels, care is 471 

needed to minimize soil compaction during farm operations, and maintain or improve drainage 472 

systems, particularly on some soil types (Rivedal et al., 2016). In the driest Mediterranean semi-473 

natural grasslands dominated by annual species, grazing by livestock is recognized as the main 474 

driver influencing vegetation dynamics, species diversity and grassland productivity (Köchy et 475 

al., 2008; Carmona et al., 2012; Sternberg et al., 2015), and thus needs to be managed carefully, 476 

e.g. through the use of flexible stocking (Pahl et al., 2016). Similarly, the persistence of  477 
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perennial forage species during a severe drought is affected by the defoliation regime in spring 478 

(Boschma et al., 2003) which can be detrimental if too intense, to the accumulation of water 479 

soluble carbohydrates ensuring drought survival of meristematic tissues (Volaire, 1994; Volaire 480 

and Gandoin, 1996).  The exploitation of alternative forage resources in wooded grasslands 481 

could be a strategy to cope with the foreseen reduced pasture production (Moreno and Pulido, 482 

2009; Del Prado et al., 2014). Such alternative forages may include tree leaves and shrubs, which 483 

can alleviate feed shortages, or even fill feed gaps in the winter and especially in the summer in 484 

small-scale livestock farms in dry to semi-arid climates (Papanastasis et al., 2008). 485 

4. Conclusions and perspectives for research priorities 486 

Climate change can increase grassland productivity due to higher temperatures, longer growing 487 

seasons and higher CO2 concentration, if there is sufficient amount of water available. However, 488 

water limitation will occur increasingly, particularly in the Mediterranean region during summer. 489 

Water limitation of forage production can to some extent be alleviated by higher CO2 490 

concentration, which increases the water use efficiency, and by a shift in productivity towards 491 

the cooler part of the year in Mediterranean climates. The effect of climate change on plant 492 

winter survival in the Nordic region is difficult to predict due to interactions between 493 

temperature and snow cover on winter stress levels, and the interactions between temperature 494 

and light factors on cold acclimation and deacclimation processes. Other uncertainties regarding 495 

increased forage production in the Nordic region in the future climate includes water saturated 496 

soils and soil compaction, practical problems with cultivation and harvesting, and increasing 497 

occurrence of weeds, pests and diseases. Climate change can affect forage quality in several 498 
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ways in both Nordic and Mediterranean regions through its effects on plant growth and 499 

development as well as species composition.  500 

 In the face of unstable and uncertain climatic conditions, a high diversity of cultivated forage 501 

species, high intraspecific genetic diversity, and the use of species and variety mixtures can 502 

enhance productivity and resilience of grasslands. In both the Mediterranean and Nordic regions, 503 

climate change will lead to changes in the annual growth patterns of grassland species (both 504 

growth rates and timing of growth), prompting adaptations of fertilization and defoliation 505 

regimes (timing and intensity). Breeding and research efforts should be stimulated towards (i) 506 

improving plant strategies to cope with relevant stresses in appropriate ways (e.g. maintenance of 507 

growth under moderate stress and survival under severe stress), (ii) optimizing the regulation of 508 

growth so that it fits new seasonal climate and defoliation patterns (e.g. increase growth potential 509 

during the cooler part of the year in the Mediterranean region or during spring in the Nordic 510 

region, and improve regrowth capacity after defoliation in the Nordic region), and (iii) utilizing 511 

plant diversity at all levels (e.g. develop mixtures with inter- and intraspecific variation in 512 

responses to climatic variables).  513 
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Figure legend 915 

 916 

Figure 1. Effects of climate change on forage production. Temperature, atmospheric [CO2] 917 

and precipitation can all affect grassland yields (positive effects indicated by pointed arrows and 918 

negative effects indicated by blunted arrows). In addition, they interact (indicated by broken 919 

lines): elevated [CO2] improves drought tolerance under moderate drought due to a decrease in 920 

stomatal conductance, and higher temperatures promotes drought by increasing 921 

evapotranspiration, while drought reduces evaporative cooling and exacerbates heat stress. (A) In 922 

the Nordic region increased temperature and elevated [CO2] will increase grassland productivity 923 

during the growing season. More precipitation will probably have a positive effect on 924 

productivity in many areas, but can also have negative effects through water logging, soil 925 

compaction and nutrient leakage. In the Mediterranean region, the negative effect of less 926 

precipitation will override the positive effect of elevated [CO2] during summer and in dry regions 927 

(B), but during the rest of the year, and in less dry areas, the positive effects of increased 928 

temperature and elevated [CO2] will override the negative effect of less precipitation (C).    929 

 930 
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Table 1. The main climatic changes and their effects in Nordic vs. Mediterranean grasslands during 

the growing season and the unfavorable season. 

  Nordic Mediterranean 

Growing 

season 

Current timing April - early June  to 

Mid-September - early November1 

 

October - June 

 

 

 

Predicted seasonal  

changes 

 

 

1) Extension of thermal growing season by 

1-3 months by the end of the century2,3 

2) Increase in temperature and 

precipitation*, 3-7 

1) Growing season will shift towards 

winter17,18 due to drier summers and 

warmer winters 

2) Higher temperatures and more 

frequent droughts4,20-22  

  

Effects on 

productivity 

 

1) Increase in productivity if plant 

available water does not become limiting1 

2) Lengthening of growing season can be 

utilized mostly in spring due to lack of 

light in late autumn8,9  

3) One extra cut per year in many regions1 

 

 

1) Increase in productivity when 

water is not limiting, higher CO2 

concentration will limit yield 

reduction due to drought stress17,18,23  

 Plant material and 

breeding needs 

1) More intra- and interspecific diversity, 

broader genetic material with more 

response diversity10,11 

2) Higher regrowth capacity 

3) Maintenance of growth in water-

saturated soils and during dry spells  

1) More intra- and interspecific 

diversity24-26 

2) Utilization of cooler parts of the 

year for increased growth 

3) Maintenance of growth under 

moderate drought 

Unfavorable 

season 

Current timing Mid-September - early November to 

April - early June1 

June - early October 

 

 Predicted seasonal  

changes 

1) Shorter winters with more precipitation 

and higher temperatures4,5,7,12  

2) Delayed cold acclimation/growth 

cessation and earlier deacclimation/spring 

regrowth9 

3) Decrease or increase in snow cover, soil 

frost and ice encasement, depending on 

temperature level, precipitation and 

interactions between them13-16  

 

1) Longer summers with higher 

temperatures and more frequent and 

severe droughts and heat waves4,20,21 

2) Altered timing or conditions 

during critical phases of life and 

growth cycles27-29  

 Effects on 

productivity 

1) Increased or decreased winter mortality 

due to higher or lower stress levels and 

changes in growth cycle, plant C and N 

acquisition and use, acclimation and 

deacclimation1,9,17 

 

1) Decreased productivity or longer 

non-productive dry season, higher 

summer mortality17,18 

 Plant material and 

breeding needs 

1) More intra- and interspecific diversity, 

broader genetic material with more 

response diversity10,11 

3) Utilize earlier spring and later autumn 

without losing ability to survive winters9 

1) More intra- and interspecific 

diversity24-26 

2) Stronger summer dormancy and 

active recovery after drought in 

perennials30-32  

3) more persistent seed banks of 

annuals33-35  
*change associated with high uncertainty 
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