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Abstract

In the field of agriculture several technical advances have been implemented to meet the

growing demand with regards to food supply. As an indicator for grain yield in wheat

different indices have been tested and evaluated such as the Normalized Difference Veg-

etation Index (NDVI), MERIS Terrestrial Chlorophyll Index (MTCI) and the Leaf Area

Index (LAI). The first two is constructed to estimate differences in chlorophyll content

while the last one is used to indicate plant coverage. They all utilize the difference in

reflectance in the near infrared spectral band between healthy plants and either stressed

plants or non-plants.

This thesis had 96 wheat plots consisting of 24 cultivars given two different levels of

Nitrogen as fertilizer, 7.5 and 15 kg/daa. A multi-spectral camera, an agricultural robot

and a drone was applied to collect data throughout the season of growth. At the end

of said season traits such as grain yield and plant height was measured. The plant

height was digitally estimated by using digital surface models and a regression model.

The indices NDVI, MTCI and LAI were calculated based on scripts using Python. The

values for the last index was determined by using NDVI threshold values and the ratio

between predominantly green pixels to total pixels.

The correlation between NDVI and grain yield was not strong with the correlation be-

tween grain yield and MTCI being in the same realm of strength. LAI showed no

statistical significance on any set of data and carried no merit with regards to correla-

tions. It did however highlight the impact the inclusion of the near infrared spectral

band offers when estimating plant coverage.

The correlation between manual and digital plant height values was strong and can quite

possibly get stronger by enhancing the principals embedded in the method applied.
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Chapter 1

Introduction

In coherence with the increasing global population, with the estimated global population

to reach 9.1 billion in 2050[9], a demand for food follows suit. In one of the fields of

nutritional supply, more precisely in agriculture, several technological advances have

been implemented to meet such a demand. From mechanical approaches such as High-

Flex Tires to reduce soil compaction which in turn decrease grain yields[3] to Mini-

chromosome technology that permits faster and more precise methods to enhance wanted

traits[31]. In the realm of autonomy and the use of sensors the additions of driverless

tractors completing predetermined routes have been added with incorporated software

to evade obstacles. Further, sensors are utilized to monitor crops with regards to plant

health, watering needs, nitrogen levels and more. The study of this thesis will revolve

around sensory applications with segments of autonomy included.

The ability to predict grain yield prior to harvest is highly beneficial for optimal cultivar

selection while the implementation of digital assessment of plant height would have the

potential to eradicate the need for manual time consuming measuring methods. Both

aspirations have been entertained with the use of indices and digital models, respectively.

Addressing the former, indices such as NDVI (Normalized Difference Vegetation Index)

and MTCI (MERIS Terrestrial Chlorophyll Index) have served as estimators for biomass

and chlorophyll amount while LAI (Leaf Area Index) has served its purpose to gauge

plant coverage per unit area.

The aforementioned indices are dimensionless ratios of wavelengths of reflectance of

electromagnetic energy. The relationship between grain yield and NDVI has in other

3



4 CHAPTER 1. INTRODUCTION

studies been affirmed as correlative[20] in addition to the correlation between the index

and plant biomass[13]. Regarding the MTCI it has exhibited a direct linkage to actual

chlorophyll content[7] and exhibited a strong linear relationship with plant coverage[28].

A high correlation between biomass and the LAI have been shown as well[27]. This

index is based on the NDVI in many studies where a threshold value has been applied

to differentiate between plants and non-plants for the calculation of the index. This has

led to some amount of hindrance as the NDVI suffers from sensory saturation[15]. In

this thesis the same procedure to produce the index will be revisited accompanied by a

pixel sorting based approach.

In the field of digital mapping the geographic information system (GIS) has different

ways to visualize and collect data of the terrain being obtained by sensors. Different

models are frequently utilized to present elevation. Three commonly used models are

DSM (Digital Surface Model), DEM (Digital Elevation Model) and DTM (Digital Ter-

rain Model). The first one is based on light pulses emitted and captured on their return

by the sensor for acquiring the variable distance. The second shows only ground eleva-

tion with both man-made and natural objects eviscerated, such as roads and trees. The

third variation is created by contour lines as a result of stereo photogrammetry which

is initially in 2D before interpolated into a DEM.

Questions for this thesis to answer are:

• Will the NDVI and MTCI correlate with wheat grain yield?

• Will either or both of the approaches for the LAI correlate with grain

yield?

• Will the data from a collected DSM reflect the manually measured plant

heights?



Chapter 2

Theory

For this thesis correlations between different indices for biomass, chlorophyll and plant

coverage and the actual grain yield (GY) were calculated as well as the correlation

between digitally estimated plant heights versus manual measurements. Prior to further

dwelling on how to obtain mentioned data we will ponder the theory regarding wheat

growth and the components for the monitoring of this.

2.1 Wheat growth

In the process of photosynthesis wheat, as most other plants, absorb solar radiation

in the spectral waveband range known as Photosynthetically Active Radiation. This

is approximately in the same range as visible light[19]. Wheat, using its chlorophyll,

captures energy emitted from the sun in order to grow. The growth phases of wheat

(Triticum aestivum L.) has been compartmentalized by the Zadoks System[23] with its

stages organized and described in table 2.1. The stage numbers are the primary Zadoks

code with secondary stages omitted. The germination starts as soon as the kernel is

sown in stage 0 with some leaf development to complete stage 1. Stages 2-4 include a

vertical elongation and the head development followed by the emergence of said head

in stage 5. Flowering, the pollination, in stage 6 lasts for approximately 4 days where

the kernels grow to a size that is unaltered in the next phases. In the next three stages,

despite the absence of change in size, the kernel weight increases as the consistency

evolve from ”milky” to ”doughy” until hardened in the ripening stage.

5



6 CHAPTER 2. THEORY

Table 2.1: Wheat growth stages numerated by primary Zadoks code.

Stage Description

0 Germination

1 Seeding development

2 Tillering

3 Stem elongation

4 Boot

5 Head emergence

6 Flowering

7 Milk development in kernel

8 Dough development in kernel

9 Ripening

The highest levels of chlorophyll have been observed in the flowering phase and through-

out the ”milky” phase, namely stages 6 and 7[24], parallel with the aforementioned

growth of the kernels.

2.2 Reflectance

Whenever a particle with an electric charge, being either positive or negative, is being

accelerated an electromagnetic wave is created[18]. These waves contain energy which

may be transmitted to receiving matter resulting in absorption or reflection. The elec-

tromagnetic energy spectrum is divided into wavelengths with gamma rays in the lower

scope and long radio waves in the larger as shown in fig. 2.1. A continuous segment of

wavelengths is often referred to as a spectral band. One such aforementioned band is

the light visible to the human eye, ranging from approximately 390 to 700 nm providing

us with sensory experiences based on energy reflected from different matter absorbed in

our eyes known as ”seeing”.

It is possible to apply specific spectral bands to evaluate plant health and magnitude of

chlorophyll production as healthy plants have a higher reflectance of near infrared (NIR)

than unhealthy ones.[26]. This is because, absorption of energy at those relatively high

wavelengths would not suffice in the making of chlorophyll to the extent that the plant
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Fig. 2.1: Electromagnetic spectrum. (Source:www.pion.cz)

would overheat in the attempt[12]. Between the realms of visible light highly profitable

for chlorophyll construction and the less favored energy provided by longer wavelength

a spectral band exists named Red-Edge (REG) where the transition from low to high

reflectance is most radical. These bands are visualized in fig.2.2 with the reflectance

percentile for both a healthy and stressed plant along with the surrounding soil.

Fig. 2.2: Reflectance of healthy and stressed plants as well as soil in different spectral
bands. (Source:www.micasense.com)

We will now consider three indices where different bands and segments of the electro-

magnetic spectrum will be utilized.

2.2.1 Normalized Difference Vegetation Index (NDVI)

As healthy plants will have a higher reflectance of NIR than unhealthy ones and other

non-plant objects will appear lighter in that spectral band, as shown in fig.2.2. Thus

the difference between the reflectance of NIR and the color red would be higher than the

difference for an unhealthy specimen or for instance the ground. Further this difference
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is divided by the sum of both terms yielding the index

NDV I =
NIR−RED

NIR + RED
(2.1)

where NIR is the near infrared reflectance and RED is the red reflectance[1, 2, 17, 21, 25].

2.2.2 MERIS Terrestrial Chlorophyll Index (MTCI)

Observations have shown that with increased chlorophyll content there were both a

decrease in the difference between the reflectance of REG and RED and an increase in

the difference between the reflectance of NIR and REG[7]. Thus we obtain a new index

to describe chlorophyll content which is

MTCI =
NIR−REG

REG−RED
(2.2)

where NIR is the near infrared reflectance, REG is the red-edge reflectance and RED

being the red reflectance.

2.2.3 Leaf Area Index (LAI)

When evaluating plant coverage the measuring of leaf area index is widely applied both

with leaves who are and aren’t flat[6, 29]. The common approach has its basis in finding

the ratio between area consisting of leaves (vegetation) to the total area being evaluated.

It is dimensionless and given as

LAI =
Leaf area

Total area
(2.3)

This thesis will estimate this index using two different approaches, both of which will

be further described in the chapter 3.



Chapter 3

Materials and Methods

This chapter will encompass the methods applied in the making of this thesis rang-

ing from wheat growing facilitations, equipment implemented, different software and

algorithms for analysis.

3.1 Field Trial Setup

24 cultivars of wheat were planted on May 12th, 2016 at Vollebekk Research Farm

located in Ås, Akershus in Norway. The 24 cultivars represent the last 40 years of wheat

grown in Norway[30], also represented by two different levels of fertilizing, 7.5 kg/daa

and 15 kg/daa of Nitrogen, chronologically applied in the same historical time range.

These two levels of fertilization will from this point on in this thesis be named 8 kg/daa

and 15 kg/daa. The layout is presented in fig. 3.1 with each plot labelled with the

cultivar name in a total of 96 plots, 4 of each cultivar. This setup is known as an alpha

lattice split plot design, where each plot is labelled with the template Name Nitrogen

level Rep.number. The rep. number represents which fertilizing block each block is

located, starting from the left in fig. 3.1. For instance, Zebra 15 1 is the label for the

cultivar Zebra with 15 kg/daa of Nitrogen applied in the first of two instances of that

fertilizing level. Furthermore, each plot is given a number of four digits, with the second

being the row number and the last two the column numbers (the first digit is always

1), with 1101 being in the top left corner and 1812 in the bottom right corner in the

9



10 CHAPTER 3. MATERIALS AND METHODS

very same figure. Border plots on each side was also sown to buffer from environmental

stress factors.

Fig. 3.1: The field schematically visualized with the cultivar names and levels of Ni-
trogen referenced in the legend box. Border plots are not shown.

The seeding rate was 23 g/m2 and treatment of herbicides and fungicides were applied.

Heading dates were manually recorded, along with maturity dates and plant height (PH).

The number of days to heading (DH) and maturity (DM) were also noted. Heading and

maturity are referenced in table 2.1. Successive to maturing, the trial was harvested and

1000-kernel weight (TKW), hectoliter weight (HLW) and protein content were assessed.

3.2 Equipment

The experimental process revolved around three main apparatus, namely a multi-spectral

camera, an agricultural robot and an unmanned aerial vehicle (UAV). This section will

highlight these.

3.2.1 Multi-Spectral Camera

As mentioned in section 2.2 and in accordance to the purpose of obtaining sensory data

of the spectral bands from fig. 2.2 a multi-spectral camera from MicaSense named Parrot
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Sequoia was employed. It had five separate sensors, one for each spectral segment, being

near infrared, red-edge, green, red and commonly used RGB as shown in fig. 3.2.

Fig. 3.2: Parrot Sequoia camera with the five different sensors presented as well as
dimensions and miscellaneous features. (Source:www.micasense.com)

To adjust for weather conditions, gauge relative distance for DSM and picture storage,

a sunshine sensor served as an addition to the camera, shown in fig. 3.3. It had eight

photo diodes with four filters, one for each of the four wavebands seen in fig. 2.2. Its

low weight made for mounting of minimal hindrance.

Fig. 3.3: Sunshine sensor with features identified. (Source:www.micasense.com)

The camera could either be set to take pictures automatically at set intervals or manually,

either by pressing the button directly on the camera or by its Wi-Fi-connection.

Before either an automatic session of pictures were taken while attached to the UAV

or by the user manually while operating the agricultural robot a picture was taken of

the calibrated reflectance panel (CRP). Each session also included a picture of the very



12 CHAPTER 3. MATERIALS AND METHODS

same plate which has known values of reflectance for both the visible and near infrared

wavebands, shown in fig. 3.4.

Fig. 3.4: Here we see the CRP in the top right corner in the plastic box next to the
QR code in the spectral bands (a) Green, (b)Near infrared, (c) Red, (d) Red-Edge and
(e) in the bottom left corner in the RGB picture. Note that the RGB picture is rotated

180 degrees as a standard.

3.2.2 Agricultural Robot

As the title for this section implies a robot for agricultural needs was utilized, named

Thorvald, a prototype for future editions. It weighed approximately 150 kg and had a low

center of gravity. It utilized four 600 W motors with toothed belts for each wheel which

could be controlled independently allowing for easy manoeuvring and rotation around

its own center axis[4, 14]. Its built-in water proof PC computer used the software ROS

(Robotic Operating System) while its weather proof screen was displayed with high

brightness for outdoor use. Thorvald, both outdoors and as a digital visualization, is

shown in fig. 3.5.

A rig for the attachment of the camera was mounted at the front. This, as well as

the robot in action, can be seen in fig. 3.6. The camera and the sunshine sensor

were mounted using Velcro on both the bottom and top surface on the tip of the rig,

respectively.

The route travelled by Thorvald was one column at a time, travelling the length of the

field in opposite direction on each column in relation to the previous one, taking two

pictures for each plot. The camera was activated using a smart phone through Wi-Fi.
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Fig. 3.5: Thorvald both (a) outside and (b) digitally visualized. Here we see the
computer screen in the bottom part of the picture, next to the emergency stop button

and the power switch.

Fig. 3.6: Thorvald with (a) the rig for camera attachment shown (before attaching
sensor and camera and(b) in the midst of both the wheat and the process of photograph-

ing.

3.2.3 Unmanned Aerial Vehicle

A predetermined route was set up using a software application called Litchi for the DJI

Phantom 3 drone. Before lift-off the camera was set to take a picture every 1.5 seconds

until stopped by the user after landing. The UAV travelled at an altitude of 10 meters

the first days and 15 meters half way out in the growing season to cover a larger area

due to limitations in battery life. It flew in a very similar zigzag formation as Thorvald

for optimal coverage of the wheat field. Both the route formation and UAV are shown

in fig. 3.7 and 3.8, respectively.
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Fig. 3.7: The route travelled with the options for the software shown.

Fig. 3.8: The drone (without the camera) and yours truly.

A reoccurring obstacle was the loss of GPS signals which were imperative to a successful

completion of the route set for the UAV. For this reason it was resorted to manual

steering when necessary. This was accompanied by factors of hindrance being winds

not longer being automatically stabilized against by the gimbal and visual estimation

having to be made by the user. The latter revolved the user having to gauge when the

UAV had to switch direction after completing a column of wheat plots.

3.3 NDVI and MTCI

The pictures taken as the drone completed its route were uploaded to Atlas, which is

a cloud-based data platform by MicaSense. An example of all 5 cameras in action is

shown in fig. 3.9.

Atlas compiled the pictures and returned a composed visual data file of the field with

GPS coordinates and the earlier mentioned spectral bands incorporated, known as a

GeoTIFF (fig. 3.10).
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Fig. 3.9: A picture for each of the 5 cameras. The spectral bands presented are (a)
Green, (b)Near infrared, (c) Red, (d) Red-Edge and (e) RGB picture. Note that the

RGB picture is rotated 180 degrees as a standard.

Fig. 3.10: GeoTIFF as a product of compiling several pictures by Atlas software. The
purpose for this visualization is to show the whole field as one picture.

One of the contributors on this project, Gunnar Lange, developed a GUI, shown in

fig. 3.11, using Python software for extracting data from the GeoTIFF files by making

separate arrays for each spectral band data. By marking rectangles manually where the

field plots were, both the NDVI and MTCI values for each rectangle were calculated

by implementing formulas 2.1 and 2.2 in the source code before exporting the values to

separate data files. For later referencing the rectangle selection a picture file showing

where each enumerated rectangle was placed was also saved by his script. An example

of such a reference picture is shown in fig.3.11 (c). Note however that this visualization

is for giving the reader a sense of what it looks like and is not for visual inspection

due to the size of the figure. The complete set of reference pictures are included in the
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appendix.

Fig. 3.11: The GUI for NDVI and MTCI extraction from GeoTIFFs. Part (a) Shows
the main menu with all buttons semi-covered by the menu emerging after loading the
user custom named field. In this instance the field is named ”Morten”. Part (b) presents
a glimpse of marking rectangles in the midst of the process. Part (c) shows the reference

picture that is exported after a complete run.

The use of the GUI step by step is presented in the flowchart in fig.3.12.

After completing the steps in the GUI by applying the flowchart a text file with for each

index is created with mean values for each rectangle included.

3.4 Estimation of Plant Height

3.4.1 DSM Data Extraction

Atlas also returned a compiled visual data file of the field with every pixel containing

the geographical altitude relative to the mean sea level (MSL)[10] in meters, known as a

DSM. The file was compiled of pictures taken on day 67 (July 18th) which was close to

the date of manual measuring. By applying the Fiji (ImageJ) software one could easily

highlight rectangles and get the average data value for that area as demonstrated in fig.

3.13. Such a rectangle was made for each of the plots with the values being stored for

further analysis.

3.4.2 Regression Model

Considering the difference in height from fig. 3.13 late in the growing season, after

head emergence, such a low value of 14.9 cm did not reflect reality. Such a logical
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Fig. 3.12: Step by step usage of the GUI for NDVI and MTCI.

Fig. 3.13: DSM of the field compiled from pictures taken July 18th 2016 processed in
the Fiji software to measure (a) The ground level height at 79.431 m and (b) the wheat

plot height at 79.580 m.

dissonance was with high probability a product of uneven terrain in respect to the field

as a whole compared to sea level and also within its own framework. To accommodate

for said unbalanced surface an approach using linear regression was initiated. Both in
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the direction parallel to the rows and columns 9 measurements of ground height were

extracted 3 times, two outer lines and one center, to base the regression calculation on.

The next step consisted of averaging every group of three parallel points so that both

the row and column direction had 9 points for further calculation (see fig. 3.14).

Fig. 3.14: Points selected at ground level in the direction across (a) the rows and (b)
the columns. The strategy to characterize the soil surface as a line based on measured

heights in the field is illustrated in (c).

In order to attain a line to characterize the ground both across the direction of the rows

as well as the columns linear regression was applied to the nine points in said directions.

Origo was chosen as the top left corner in both fig. 3.14 a and b which served as a zero

point with its measurement to be subtracted from the other point values. Two linear

equations for each direction were generated which where

y = −0.005x− 0.197 (3.1)

for adjustment in the direction across the rows and

y = 0.081x + 0.004 (3.2)

for adjustment across the column direction.

3.4.3 Python Source Code

To implement the adjustments from the lines in the previous section two functions, one

for each equation, was written in Python:

def coladjust(colvalue ):

return (( colvalue *0.081*8)+0.004)*( -1)
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def rowadjust(rowvalue ):

return (rowvalue *0.005*16)+0.197

The returned value for adjusting was either positive or negative depending on whether

the line was decreasing or increasing, respectively. This was to adjust for either a drop

or a rise in the terrain. The number 8 and 16 from the functions ”coladjust” and

”rowadjust” served as maximum values for x in the correlating formula as the values

imported into these functions were fractions of the total path. Since the length of the

plots were roughly double the width, 8 points down the path across the rows were equal

to 16 points across the columns in reference to number of plots. Each wheat plot went

through the process of having its value from the Fiji software imported into the Python

script. Next the origo value would be subtracted before the adjustments in regards to its

placement on the field in terms of row and column number were implemented as shown

later in the same piece of source code:

sqnr = str(data_drone_dsm[i][0])

digitlist = [int(d) for d in str(sqnr)]

digitforcol = (digitlist [2]*10)+ digitlist [3]

digitforrow = digitlist [1]

valueforcol = (digitforcol +1)/14.0

valueforrow = (9- digitforrow )/8.0

valuefromdata = data_drone_dsm[i][1]

valuezero = float(valuefromdata) - geozero

valueadjust = valuezero + coladjust(valueforcol) + rowadjust(valueforrow)

Note that this piece of source code has several parts omitted leaving the most descriptive

part present. First it imported the variable ”sqnr” which was the square number, or

plot number, which was composed of four digits as mentioned in section 3.1. Next a list

of these four digits individually was made (”digitlist”) before the third and fourth digit

were joined together to form one number (”digitforcol”). To determine its placement

relative to the full length in the direction across the columns the number 1 was added

because of the buffer column and divided by 14 for the same reason (”valueforcol”).

For row adjustment, the digit had to be subtracted from 9 as origo was chosen in the

opposite corner from where the counting of rows originally occured and then divided by 8

(”valueforrow”). The final step involved the zero point, or origo value, being subtracted

from the value for the field plot (”valuezero”). Lastly, we obtain the value for the plot
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with adjustments being made respective to row and column number using the earlier

mentioned functions.

For a quick example of the process, let’s evaluate when wheat plot number 1511 and

its value 79.968 was imported. Its digit for column adjustment would be 11 while the

number for row adjustment would be 5, serving as x-values in the formulas 3.2 and 3.1

accordingly. The value would have the geozero value (79.643) subtracted and the values

from said formulas, by implementing their functions, serving as adjustments, giving us

79.968− 78.643 + (0.081 ∗ (11+1
14 ) ∗ 8 + 0.004)(−1) + 0.005(9−5

8 ) ∗ 16 + 0.197 = 1.003 (m).

These steps were repeated for day 57 (July 8th) where the DSM retrieved for that date

was complete in regards to no missing field areas when compiling took place. Formulas

similar to 3.2 and 3.1 were produced and defined as functions as can be seen in the

appendix. This was for the calculation of indices from formulas 3.3 and 3.4 presented

in section 3.6.

3.4.4 Plant Height Visualization

To visualize the values obtained in the previous segment for day 67 (July 18th) 96

rectangles were plotted in the same layout as the field using a separate Python script.

Each rectangle then received a color intensity with an equal magnitude for all three

components red, green and blue. That value was set equal to the wheat plot height

obtained from the previous script multiplied by 100 for the value in cm. With the

highest possible value being 255 for each component, which would be a white rectangle,

and 0 for a black one, the interval was highly applicable considering the values of height

being roughly around the 100 cm mark. This process is shown in the piece of source

code as follows:

xaxis = range (13)

yaxis = range (9)

axes = plt.gca()

axes.set_xlim ([ xaxis[0], xaxis [12]])

axes.set_ylim ([ yaxis[0], yaxis [8]])

for i in range(len(values )):

sqnr = str(data_drone_dsm[i][0])

digitlist = [int(d) for d in str(sqnr)]

digitforx = (digitlist [2]*10)+ digitlist [3]
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digitfory = digitlist [1]

axes.add_patch(patches.Rectangle ((digitforx -1,digitfory -1),1,1,\

facecolor="#%s%s%s" % (greenhexes[i],greenhexes[i],greenhexes[i])))

This condensed version of the source code shows the first two segments building the

outer rims of the field with the use of axes. Looking at the following for loop with the

range equal to the length of the ”values” list (96) we see that ”sqnr”, short for ”square

number” is set to the imported values from the last code presented in section 3.4.3.

That number is then split into digits in a list (”digitlist”) before the last two digits will

serve as column number while the third digit is the row number. These two numbers

will also be x- and y-values in the field plot made by the aforementioned axes. Lastly, a

rectangle will be plotted with the x- and y-values with their starting points being that

value minus 1 so that, for instance, the rectangle with row and column number equal to

1 fills out the rectangle of one increment in both x- and y-axis from the origo. The final

step is to let the rectangle be plotted with a color equal to the height value in cm. This

is done by letting the three components of RGB be equal to both each other and the

height value, set as arguments for ”facecolor” where the hex equivalent for the height

values are imported (omitted here).

The previous steps and source code was implemented for the later application of the Fiji

Software to let these values of color intensity be visualized in a 3D surface plot.

3.5 LAI

In the previous sections data was extracted from compiled GeoTIFFs and DSM files

received from the Atlas Software. For the LAI the pictures taken as the agricultural

robot, Thorvald, was utilized. To calculate the LAI two approaches were exercised which

are expanded upon in the following sections.

3.5.1 LAI by NDVI Thresholds

Gunnar Lange, mentioned in section 3.3, had written a script for extracting the NDVI

values from each wheat plot by importing both the near infrared and the red reflectance

pictures (fig. 3.15). A cropping of each picture followed to both focus on the center
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of the field while simultaneously remove interference by the robot itself. A GUI was

made for the script but it consisted of simply selecting the folder with all the subfolders

containing the picture, resulting in the non-existing need of a flowchart for the use of it

as seen in section 3.3.

Fig. 3.15: Pictures imported for the source code. The near infra red is demonstrated
in (a) while (b) is the red reflectance. Both pictures are taken concurrently June 13.

Looking at formula 2.3 we have the index defined as LAI = Leafarea
Totalarea . By setting a lower

threshold value for NDVI values we can consider the values above said threshold value to

identify plants while anything below identify either dead plants or non-plants. Letting

the amount of pixels above the threshold value to be divided by the total number of

pixels will result in the ratio between area of vegetation and area in total. Two thresholds

were chosen, 0.2 and 0.4. The former was derived from previous studies concluding the

threshold to vary between 0.08 and 0.4[8], hence an approximate mean from that interval

was chosen as well as the maximum value. This is demonstrated in fig. 3.16.

Fig. 3.16: The LAI composed of pictures from fig. 3.15 by using formula 2.1 and 2.3
with the red color showing the NDVI pixels above the threshold and the blue below. We
see the LAI above each figur when threshold values (a) 0.2 and (b) 0.4 were applied.
Here we see the higher threshold naturally produces a lower LAI as more pixels will not

be in the numerator for the index formula as they are less than the threshold.
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3.5.2 LAI by Green Pixel Ratio

Another approach to finding the ratio between the area of plants and area in total

consisted of obtaining the number of pixels that were mainly green and divide that by

the total number of pixels. This approach will be named the RGB approach from here

on out. A pixel is considered to be mainly green if the intensity of green is bigger than

both intensity of the red and blue components. By using the aforementioned source

code that extracts a mean value of both pictures taken for each plot we can adjust the

calculation part of the algorithm which is presented here:

RGB = img.open(’filename.JPG’)

RGB=np.array(RGB)

RGB = RGB [100:1500 ,100:1500]

Greens = RGB[:,:,1]

Reds = RGB[:,:,0]

Blues =RGB[:,:,2]

TotalPix = np.shape(Greens )[0]* np.shape(Greens )[1]

SuperGreens = 0

for i in range(np.shape(Greens )[0]):

for j in range(np.shape(Greens )[1]):

if Greens[i,j] > Reds[i,j] and Greens[i,j] > Blues[i,j]:

SuperGreens += 1

else:

SuperGreens += 0

LAI = float(float(SuperGreens )/float(TotalPix ))

The RGB picture is being imported, made into an array and then cropped. An array

for all values of green, red and blue pixels are made and the number of total pixels are

calculated based on the array size. This is followed by two for loops going through each

pixel which will increase the variable ”SuperGreens” by one for each pixel value with

a green value larger than both the red and blue ones. Finally the LAI is calculated by

dividing the number the loops made by the total number of pixels.
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3.6 Statistical Data Processing

In accordance with the field trial layout as described in section 3.1 the SAS software

was utilized for the analysis of variance using PROC MIXED (SAS code included in

appendix). It produced the least square means for three groups; one with the value for

each of the 24 different cultivars and two with the value for the cultivar within each

level of fertilizing, 8 and 15 kg/daa. The least square means for the same groups were

not only calculated for indices and plant height, but also for grain yield (GY), manually

measured PH, TKW, HLW, DM and DH. This software also presents the p-value needed

for potentially rejecting the null hypothesis claiming there is no differences between the

cultivars both dependently or independently with regards to the fertilizing differences.

The p-value is the probability of the occurrence of the measured parameter if the null

hypothesis is true. Thus, a low p-value will indicate that the null hypothesis may be

rejected and that the findings are significant.

Earlier studies have found negative correlations between between PH and GY[5] as well

as PH and chlorophyll content[11]. simultaneously, the NDVI and MTCI having been

created to indicate chlorophyll content and in turn hypothetically correlate positively

with GY. For that reason this thesis attempted to utilize the antagonistic relationship

between those two indices and PH. After the MTCI, NDVI and height estimation values

were extracted as previously described, two new parameters were introduced where each

of the indices were divided by the estimated plant height for the same field plot. These

ratio parameters were

MTCI × PH−1 =
MTCI

PH
(3.3)

where MTCI × PH−1 is the MTCI-PH-ratio [cm−1], MTCI is the MERIS Terrestrial

Chlorophyll Index and PH is the plant height [cm] and

NDV I × PH−1 =
NDV I

PH
(3.4)

where NDVI × PH−1 is the NDVI-PH-ratio [cm−1], NDVI is the Normalized Differential

Vegetation Index and PH is the plant height [cm]. These ratios were made to embolden
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the correlation to GY as they would hypothetically increase with an increase in the

numerators and a decrease in the denominators.





Chapter 4

Results and Discussion

After all data have been extracted, calculated and organized the next steps involve

analytical thinking as well as a critical assessment of the prior steps. This chapter will

encompass these topics.

4.1 Conducted Measurements

4.1.1 NDVI and MTCI

The MTCI extracted from pictures taken by the UAV had its peak values on day 15

and 22 which may be a result of high reflectance from the ground itself (fig. 4.1). Pixel

values were evaluated on soil areas on pictures taken by Thorvald which in turn were of

the highest value compared to the vegetation. This would empower the hypothesis of

high values because of soil reflectance. However, since the pictures taken while operating

Thorvald were not calibrated (see section 4.2.6) one cannot be too certain if this is the

case. The pictures used for MTCI and NDVI were a product of a GeoTIFF which in

turn was a result of several pictures taken by the UAV with calibration included.

27
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Fig. 4.1: The MTCI for all 96 wheat field plots. Part (a) shows for all days of picture
taking, while (b) has day 15 and 22 omitted. These values are retrieved from pictures

taken by the UAV.

Assuming day 15 and 22 produced misreadings one can see, as shown in fig. 4.1 (b) that

the peak values are around days 50-70, which is the same interval from where heading

occurred (stage 5 as referenced in section 2.1) to stages 6,7 and 8 prior to the final stage

of ripening. This is also true for the NDVI as shown in fig. 4.2.

Fig. 4.2: The NDVI for all 96 wheat field plots. Part (a) shows for all days of picture
taking with (b) having a more narrow interval for the axis of NDVI values to highlight

its peak period.
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The decline after day 84 seen both in fig. 4.1 and 4.2 is the ripening phase of the wheat

growth where chlorophyll breakdown happens to fully develop the grain with the enzyme

Chlorophyllase as a catalyst in the process[16].

The differences in fertilizing levels are shown in fig. 4.3 which show slightly lifted curves

at least in the interval of approximately days 50-70 with regards to MTCI. This interval

does not show particularly greater NDVI values but a smaller number of wheat plots

being below the maximum value.

Fig. 4.3: The MTCI and NDVI values for wheat plots given (a) 8k kg/daa and (b) 15
kg/daa of Nitrogen. Day 15 is omitted due to reason explained earlier yet day 22 was

kept in order to show the incline in the NDVI curves between day 22 and 36.

4.1.2 Estimation of Plant Height

As mentioned in section 3.4.4 a visualization of the wheat field was plotted with every

rectangle within having a color intensity equally to the estimated heights in cm. This

plot is presented in fig. 4.4.

Now that each rectangle with all the enclosed pixels, representing the wheat field, had

a value between 0 and 255 the Fiji software could be utilized to visualize these data

properties. Since all three components of RGB is equal these color intensities result

in different levels of gray. A 3D surface plot was made where the z-axis marks the

color intensity based on the RGB components, which in turn directly translates to the

estimated values of height in cm as shown in fig. 4.5.
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Fig. 4.4: The field plotted with all 96 rectangles with a color intensity between 0 and
255 equal to the height in cm. The colorbar on the side is a scaled version needed to

exert the needed interval for the values.

Fig. 4.5: Each wheat plot represented as a 3D surface plot with the z-axis to indicate
the height in cm.

The blocks shown here may influence the reader to evaluate the visualization as incorrect

due to the different height values does not reflect the even surface one thinks of when

mentally picturing a wheat field. It is however important to remember that several

cultivars with different levels of Nitrogen are included in this field trial and that the

differences in height were easily observed while photographing occurred.
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4.1.3 LAI

All 96 wheat plot values for the three approaches for estimating the LAI is presented in

fig. 4.6. These values are based on the pictures taken while utilizing Thorvald.

Fig. 4.6: LAI estimated by the NDVI threshold approach with thresholds equal to 0.2
(a) and 0.4 (b) and by dividing predominantly green pixels to total pixels (c). All values

are calculated using pictures taken by Thorvald.

As we see with regards to the NDVI threshold approaches they share the same curvature

but with lower values the higher the threshold is. The dump seen between days 30-50

is an anomaly as it should follow suit of the rise in the same interval for the NDVI (as

seen in section 4.1.1). When comparing the NDVI threshold approach to the RGB pixel

approach within the same interval we do not see this dump but a steady rise. This

difference may be in a lack of calibration for the spectral pictures used for the NDVI

threshold approach resulting in saturated pixels which in turn return false values. This

does not happen for the RGB approach as it simply utilizes a regular RGB camera.
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Pictures taken that way are precise enough to present the increase in green pixels from

day to day in the initial growth phase as the plants widen their coverage.

Still evaluating fig. 4.6 one can see that both approaches have a rather steep decline

after day 67. Being that the NDVI threshold approach produces an LAI comprised of

sorting out NDVI values classified as vegetation it is natural to see the same decline

as presented in fig. 4.2 from the very same period. The decline with regards to the

RGB approach is simply because the wheat is in its final stages after heading, kernel

development and ripening making for yellower heads. This of course has a major impact

on the algorithm which calculates the ratio of predominantly green pixels to all pixels.

This difference in wheat texture and color is shown with an example of cropped pictures

taken by Thorvald at two different days for the same wheat plot in fig. 4.7.

Fig. 4.7: Picture taken and cropped for counting predominantly green pixels at (a) day
41 with an LAI equal to 0.903 and (b) day 84 with an LAI equal to 0.661.

4.2 Statistical Analysis

4.2.1 P-values and Least Square Means for Traits

The probability (p-values) are presented in table 4.1 given that the null hypothesis

stating there is no difference within the groups measured is true. The three groups are

the cultivars, the fertilizing levels and the cultivars and fertilizing levels being affected

by each other (Cultivar × Nitrogen level).

Table 4.1: Probabilities for the groups, cultivar, Nitrogen level and Cultivar × Nitro-
gen level for the traits GY, TKW, HLW, DH, DM and PH (manually measured).

Group GY TKW HLW DH DM PH

Cultivars <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

Nitrogen level 0.1702 0.5373 0.3494 0.4777 0.1687 0.7349

Cultivar × N-level 0.1257 0.5136 0.6855 0.6803 0.1904 0.0151
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What clearly stands out (with the exception of Cultivar × Nitrogen level p-value for

plant height) is the significant findings in differences in the first group, Cultivars, for all

traits being that all values here are < 0.05 which serves as a cut-off value.

The least square means for traits (GY, TKW, HLW, DH, DM and PH) are presented in

table 4.2, 4.3 and 4.4 sorted by cultivars as only factor,cultivars treated with 8 kg/daa

of Nitrogen and with 15 kg/daa, respectively. PH in these tables refer to the manually

measured PH at the end of the growing season.
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Table 4.2: The least square means for traits for all cultivars

Cultivar GY [kg/ha] TKW [g] HLW [g] DH DM PH [cm]

Bjarne 598.700 34.226 78.689 54.047 104.460 66.808

Zebra 613.690 38.493 79.544 51.841 105.450 81.021

Demonstrant 655.400 37.107 80.951 55.062 107.840 72.823

Krabat 593.740 34.944 79.125 56.109 104.640 69.440

Mirakel 588.840 35.625 78.936 53.427 103.680 84.306

Rabagast 572.430 32.396 79.015 56.224 105.960 65.469

Seniorita 611.990 35.919 81.117 56.279 106.980 78.820

GN11644 616.260 36.083 81.799 51.981 102.050 67.933

GN11542 619.530 32.443 79.567 52.536 106.080 74.519

GN13618 663.950 37.532 79.300 52.732 108.620 71.829

Arabella 670.120 37.343 78.420 50.620 106.700 74.591

GN10521 606.920 32.757 77.949 53.762 107.690 73.439

SW01074 606.670 36.484 79.907 53.589 105.330 66.978

GN10637 591.490 35.566 82.694 57.278 108.330 76.885

SW11230 701.840 39.380 78.629 52.584 105.020 77.111

PS-1 608.700 35.207 79.383 55.593 104.330 76.565

SW11011 651.190 42.276 80.795 50.831 107.530 73.734

SW21074 624.590 36.428 81.511 53.438 106.910 74.223

Tjalve 562.220 36.016 78.891 55.809 103.930 74.798

Avle 556.500 32.778 77.962 54.739 103.560 71.411

Bastian 590.750 30.327 78.930 50.577 106.300 68.349

Runar 529.170 36.924 79.722 51.253 103.470 82.010

Reno 557.270 37.680 78.992 50.812 103.150 83.808

Polkka 524.710 34.867 80.247 53.377 101.480 84.630
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Table 4.3: The least square means for traits for all cultivars given 8 kg/daa of Nitro-
gen.

Cultivar GY [kg/ha] TKW [g] HLW [g] DH DM PH [cm]

Bjarne 522.270 34.732 78.155 54.263 102.290 67.494

Zebra 528.250 39.258 79.268 51.653 102.150 80.350

Demonstrant 546.820 38.516 80.572 54.478 104.600 70.283

Krabat 524.070 35.459 78.745 56.249 102.450 67.898

Mirakel 493.510 35.755 78.439 52.527 100.110 83.398

Rabagast 510.390 32.993 78.738 55.427 103.280 64.483

Seniorita 560.410 31.809 80.497 55.958 106.830 79.158

GN11644 542.670 37.693 80.976 51.955 99.779 67.587

GN11542 544.130 33.382 78.755 52.233 101.790 74.267

GN13618 590.510 38.586 78.983 53.506 106.330 70.672

Arabella 576.270 36.989 77.698 50.181 104.240 76.935

GN10521 534.510 33.716 77.772 53.463 106.100 72.219

SW01074 549.540 36.666 79.500 52.830 101.890 67.250

GN10637 532.990 36.655 82.067 57.080 106.910 75.182

SW11230 587.590 40.236 77.734 52.326 101.720 78.726

PS-1 527.170 35.543 79.028 55.451 101.660 78.490

SW11011 576.460 42.593 80.228 51.806 104.660 75.860

SW21074 526.800 36.636 80.783 53.135 103.830 74.299

Tjalve 485.800 36.309 78.995 56.156 100.950 75.578

Avle 478.320 32.509 77.347 54.570 101.830 68.562

Bastian 532.740 31.100 78.181 50.352 103.220 69.219

Runar 467.420 37.000 78.881 50.883 99.725 84.648

Reno 516.250 37.859 78.819 50.791 101.040 83.089

Polkka 436.770 34.404 79.689 52.228 97.613 88.352
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Table 4.4: The least square means for traits for all cultivars given 15 kg/daa Nitrogen.

Cultivar GY [kg/ha] TKW [g] HLW [g] DH DM PH [cm]

Bjarne 675.120 33.720 79.223 53.832 106.630 66.123

Zebra 699.120 37.727 79.821 52.030 108.760 81.693

Demonstrant 763.980 35.698 81.329 55.645 111.080 75.364

Krabat 663.400 34.429 79.505 55.970 106.840 70.981

Mirakel 684.170 35.496 79.432 54.327 107.250 85.213

Rabagast 634.460 31.798 79.292 57.021 108.650 66.454

Seniorita 663.580 40.028 81.737 56.600 107.120 78.481

GN11644 689.850 34.474 82.623 52.008 104.330 68.279

GN11542 694.930 31.504 80.380 52.838 110.370 74.772

GN13618 737.390 36.479 79.618 51.957 110.920 72.986

Arabella 763.970 37.698 79.142 51.058 109.150 72.247

GN10521 679.340 31.797 78.126 54.061 109.290 74.659

SW01074 663.810 36.301 80.314 54.347 108.760 66.706

GN10637 649.990 34.477 83.321 57.476 109.760 78.589

SW11230 816.090 38.524 79.523 52.841 108.330 75.496

PS-1 690.240 34.870 79.739 55.736 107.000 74.640

SW11011 725.920 41.959 81.362 49.856 110.390 71.608

SW21074 722.380 36.220 82.239 53.741 110.000 74.147

Tjalve 638.650 35.724 78.786 55.463 106.900 74.018

Avle 634.680 33.047 78.576 54.909 105.290 74.260

Bastian 648.760 29.554 79.680 50.802 109.370 67.479

Runar 590.910 36.847 80.563 51.622 107.210 79.371

Reno 598.280 37.501 79.165 50.834 105.260 84.527

Polkka 612.640 35.329 80.805 54.525 105.340 80.907

Before further calculations it is evident that the doubling of fertilizer raised the average

GY the most with a slight increase in DM, DH and HLW. The tables 4.3 and 4.4 show

a slight decrease in TKW and PH but given the high values of p seen in table 4.1 for

these both TKW and PH there is more likely that the levels of Nitrogen did not produce

significant differences.
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4.2.2 Correlations between Traits

Prior to evaluating the indices correlation between the traits themselves are presented

in table 4.5. Note that the PH in this table and analysis is the manually measured plant

height at the end of the season of growth.

Table 4.5: Correlations between traits. These correlations are, as noted in section
4.2.1, a result of the least square means for the 24 cultivars only.

Trait GY TKW HLW DH DM

TKW 0.451

HLW 0.073 0.291

DH -0.181 -0.299 0.199

DM 0.593 0.106 0.200 0.131

PH -0.249 0.344 0.070 -0.184 -0.271

The strongest correlation is between GY and DM which is expected as cultivars getting

ripe at an earlier stage will stop the kernel development at an earlier stage.

4.2.3 P-values and Least Square Means for NDVI, MTCI, PH, NDVI

× PH−1 and MTCI × PH−1

The p-value for the indices NDVI, MTCI and LAI were not always <0.05 for any group

from day to day which may be because of several GeoTIFFs containing holes resulting

in missing data. For NDVI and MTCI the groups for Nitrogen level and Cultivar ×

Nitrogen level never exhibited statistical significance as their p-values were >0.05 for

each date. The final group, Cultivar, had a value of <0.05 for MTCI and NDVI six and

eight times throughout the season, respectively. This is illustrated in fig. 4.8 and fig.

4.9.
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Fig. 4.8: The -log of p-values for each group tested for the MTCI.

Fig. 4.9: The -log of p-values for each group tested for the NDVI.

Both figures are plotted using the -log value of the p-values. This is done to reflect

the higher levels of significance of lower p-values. It is evident that the Cultivar group

had the highest levels of significance throughout the days of taking pictures. Another

observation to be made from both figures is the drop in -log values within that very

same group in the interval of 50-60 days. A plausible explanation for this could be a

high level of saturated pixels which in turn level out differences between cultivars.

Since the Cultivar group mostly exhibited significance the following figure will favor the

24 members of said group. The least square means for all 24 cultivars for both the NDVI
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and MTCI are shown in fig. 4.10.

Fig. 4.10: The least square means for (a) the MTCI (with first two days omitted) and
(b) the NDVI. Both graphs are for the 24 cultivars.

One can see the resemblance between the graphs in figures 4.1 and 4.2 and those in fig.

4.10 with regards to curvature.

Due to several days having high p-values implying no significant difference amongst the

parameters tested for (between cultivars or nitrogen levels) as well as holes in the dataset

the correlation was recalculated by using the only two days (57 and 67) with complete

data and p-values low enough to indicate significant findings. These days were in the

interval between day 52 and 67 where heading occurs which, as seen in section 4.1.1,

have been the segment of time where the index values were the highest. A mean for

the two dates were utilized for further calculation. The same procedure was followed

with regards to PH, NDVI × PH−1 and MTCI × PH−1 as well. The least square means

for said five indices are presented in table 4.6, 4.7 and 4.8 sorted by cultivars as only

factor, cultivars treated with 8 kg/da of Nitrogen and with 15 kg/daa, respectively. PH

in these tables refer to the estimated PH.
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Table 4.6: The least square means for indices for all cultivars.

Cultivar NDVI MTCI PH [cm] NDVI × PH-1 [cm-1] MTCI × PH-1 [cm-1]

Bjarne 0.932 1.412 57.827 0.037 0.052

Zebra 0.927 1.539 65.549 0.027 0.043

Demonstrant 0.930 1.409 64.998 0.028 0.040

Krabat 0.926 1.429 66.680 0.029 0.042

Mirakel 0.935 1.380 68.823 0.027 0.037

Rabagast 0.930 1.435 60.243 0.041 0.061

Seniorita 0.937 1.375 65.980 0.032 0.043

GN11644 0.937 1.496 54.333 0.036 0.055

GN11542 0.929 1.377 63.796 0.032 0.045

GN13618 0.924 1.490 61.707 0.033 0.050

Arabella 0.924 1.339 56.463 0.041 0.055

GN10521 0.929 1.299 61.424 0.031 0.041

SW01074 0.927 1.303 59.599 0.033 0.046

GN10637 0.935 1.426 60.019 0.034 0.048

SW11230 0.934 1.477 63.641 0.031 0.046

PS-1 0.930 1.414 63.737 0.031 0.044

SW11011 0.921 1.431 62.678 0.029 0.044

SW21074 0.927 1.439 59.376 0.036 0.052

Tjalve 0.921 1.354 60.690 0.034 0.046

Avle 0.926 1.351 60.152 0.038 0.052

Bastian 0.932 1.424 59.186 0.035 0.050

Runar 0.931 1.441 68.080 0.026 0.038

Reno 0.925 1.370 69.518 0.026 0.037

Polkka 0.917 1.355 69.478 0.024 0.034
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Table 4.7: The least square means for indices for all cultivars given 8 kg/daa of
Nitrogen.

Cultivar NDVI MTCI PH [cm] NDVI × PH-1 [cm-1] MTCI × PH-1 [cm-1]

Bjarne 0.916 1.188 51.759 0.024 0.031

Zebra 0.907 1.342 59.932 0.018 0.027

Demonstrant 0.914 1.239 59.124 0.018 0.024

Krabat 0.914 1.288 57.988 0.021 0.029

Mirakel 0.919 1.164 61.843 0.018 0.022

Rabagast 0.914 1.279 51.736 0.029 0.042

Seniorita 0.925 1.214 56.801 0.023 0.030

GN11644 0.926 1.315 47.939 0.024 0.033

GN11542 0.913 1.218 56.076 0.022 0.030

GN13618 0.909 1.356 54.070 0.024 0.034

Arabella 0.909 1.192 46.932 0.031 0.040

GN10521 0.913 1.067 54.225 0.020 0.023

SW01074 0.915 1.173 51.312 0.023 0.030

GN10637 0.922 1.259 51.052 0.025 0.033

SW11230 0.921 1.326 56.434 0.021 0.029

PS-1 0.915 1.233 54.167 0.022 0.029

SW11011 0.906 1.256 53.776 0.020 0.028

SW21074 0.912 1.285 52.081 0.025 0.034

Tjalve 0.904 1.186 52.835 0.024 0.030

Avle 0.909 1.208 50.779 0.027 0.037

Bastian 0.916 1.285 52.501 0.022 0.030

Runar 0.916 1.221 59.767 0.016 0.022

Reno 0.915 1.232 64.199 0.017 0.023

Polkka 0.894 1.165 62.398 0.015 0.019



42 CHAPTER 4. RESULTS AND DISCUSSION

Table 4.8: The least square means for indices for all cultivars given 15 kg/daa of
Nitrogen.

Cultivar NDVI MTCI PH [cm] NDVI × PH-1 [cm-1] MTCI × PH-1 [cm-1]

Bjarne 0.949 1.636 63.894 0.018 0.030

Zebra 0.946 1.737 71.167 0.014 0.026

Demonstrant 0.946 1.578 70.871 0.015 0.025

Krabat 0.938 1.570 75.372 0.013 0.022

Mirakel 0.951 1.595 75.800 0.014 0.023

Rabagast 0.945 1.592 68.749 0.017 0.028

Seniorita 0.949 1.536 75.159 0.014 0.022

GN11644 0.947 1.678 60.727 0.019 0.032

GN11542 0.944 1.536 71.516 0.015 0.024

GN13618 0.939 1.624 69.343 0.015 0.026

Arabella 0.940 1.486 65.994 0.016 0.024

GN10521 0.946 1.530 68.623 0.016 0.026

SW01074 0.940 1.433 67.885 0.016 0.024

GN10637 0.948 1.593 68.986 0.015 0.025

SW11230 0.947 1.629 70.848 0.016 0.026

PS-1 0.946 1.595 73.307 0.014 0.024

SW11011 0.935 1.606 71.579 0.015 0.025

SW21074 0.942 1.594 66.670 0.016 0.027

Tjalve 0.939 1.522 68.544 0.016 0.025

Avle 0.942 1.493 69.526 0.016 0.024

Bastian 0.948 1.563 65.871 0.018 0.029

Runar 0.946 1.660 76.394 0.014 0.025

Reno 0.934 1.508 74.838 0.014 0.022

Polkka 0.940 1.545 76.561 0.014 0.023

Both NDVI and MTCI had a higher average least square mean in the 15 kg/daa group

compared to 8 kg/daa. This is parallel to GY in section 4.2.1. The average PH was in

fact higher for the 15 kg/daa group which is contrary to what was observed in section

4.2.1. This interesting finding has an effect of transference with regards to indices

NDV I × PH−1 and MTCI × PH−1 as they have PH in their denominators.
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4.2.4 Correlation between Grain Yield and NDVI, MTCI, PH, NDVI

× PH−1 and MTCI × PH−1

The correlation between the five indices in section 4.2.3 and GY is presented in table

4.9.

Table 4.9: Correlations for each index to GY within all groups. PH is here the
estimated heights.

Index

Group NDVI MTCI PH NDVI × PH-1 MTCI × PH-1

Cultivar 0.172 0.292 -0.333 0.221 0.315

8 kg/daa Nitrogen 0.373 0.392 -0.364 0.302 0.374

15 kg/daa Nitrogen 0.080 0.196 -0.284 0.067 0.178

Looking at table 4.9 we see that the correlation on any of the posts are not consider-

ably high with no value being >0.5 either positively or negatively. Other studies have

found correlations for NDVI of approximately the same magnitude (0.33)[22] and even

lower[11]. The MTCI have shown to be a suitable estimator for chlorophyll content[7]

which in turn has shown strong correlation to GY (0.63 and 0.69 for two different mea-

suring parameters)[11]. The correlation seen here for this index did not follow suit.

However, there are valuable considerations to be made. Firstly, there is a higher cor-

relation to GY for the 8 kg/daa Nitrogen group in comparison to the group with 15

kg/daa, which is true for both the NDVI and MTCI. This may indicate that the culti-

vars who utilize the given fertilizer more efficiently than others create a bigger difference

in GY which in turn result in a higher coefficient in correlation.

The PH (estimated) was in fact negative correlated with GY as seen in earlier studies

mentioned in section 3.6. Inspecting the last two indices presented in the table (NDVI

× PH−1 and MTCI × PH−1) in comparison with the first two (NDVI and MTCI) a

slight increase was produced. Even though this increase is small the approach should

not be dismissed as the indices included to construct the parameters themselves did not

result in high correlations to GY. There was in fact a decrease with this transformation

for the other groups, still an increase with regards to the Cultivar group is favourable

due to the low p-values for that category.



44 CHAPTER 4. RESULTS AND DISCUSSION

4.2.5 Correlation between Manual Measurements and Estimations in

Plant Height

The groups first presented in section 4.2.1 had correlations between the plant heights,

manually and algorithmically estimated, were 0.682, 0.586 and 0.605 for cultivars and 8

and 15 kg/daa of Nitrogen, respectively. This was based on digital estimations produced

on day 67 which were further visualized in section 4.1.2. To have the highest coefficient

of correlation in the Cultivar group also reflect the p-value of <0.0001 in regards to

cultivars in contrast to values far greater for Nitrogen level and cultivar × Nitrogen

level.

The correlation is relatively strong although a higher value was expected. This may

very well be a result of only 54 points split into 3 rows and 3 columns to establish a

model for the ground levels surrounding the wheat plots, whereas an increase in points

could quite possibly produce a higher correlation. One implementation for enhancing

the accuracy for the regression could be to have a line of points between every row and

column. This way one could for every row and column make a regression line based on

the mean value for points on each side. This is demonstrated in fig. 4.11.

Fig. 4.11: A possible implementation for regression to produce higher correlation.
The wheat plot (orange rectangle) have soil points with height values measured on each
corner. This figure shows the zooming in on one wheat plot and only a line made parallel
to the columns. In (a) we see four points surrounding the wheat plot soon to partake
in the creation of lines. Parallel points will merge with the mean used for regression
(shown with the green arrows). In (b) we see a part of the line made for the column

crossing through the wheat plot.

In fig. 4.11 we see the procedure explained further. The line shown in (b) is a part of

the line for the whole column where the position for this particular wheat plot on this

column will serve as x in the line formula.
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4.2.6 P-values and Least Square Means for LAI

The approach of implementing a NDVI threshold had p-values both > and < 0.05 with

regards to cultivars for both thresholds with no pattern emerging when evaluating the

data. The pictures taken for the calculation of this index were taken by Thorvald and

not by the UAV hence missing data is not the cause for error but rather because the

CRP was not utilized due to all pixels being saturated. For Nitrogen level and Cultivar

× Nitrogen level the p-values were always > 0.05 for both thresholds. The strategy of

calculating the ratio of predominantly green pixels to sum of pixels produced no p-value

< 0.05 on any day for any group. What was common across the three approaches were

the lowest p-values and hence most significant finding in difference amongst the cultivars

themselves. For that reason the least square means for this group, as with the indices

in section 4.2.3, were plotted in fig. 4.12.

Fig. 4.12: The least square means for (a) the LAI with the NDVI threshold of 0.2
and (b) the same index with the approach of calculating pixel ratio. The index with the
0.4 NDVI threshold is not included as its almost visually identical to (a), only lowered

relative to the least square LAI axis.

A resemblance can be seen between the least square means for the LAI plotted in fig.

4.12 and the previous plotted values in fig. 4.6.

The LAI is especially relevant prior to heading as a precursor to soil coverage and also

the ability both to compete with weed and to withhold moisture. An early date where

all three tactics (0.2 and 0.4 thresholds and RGB approach) had their lowest p-values

were selected for further analysis, which was day 36 (June 17th). The p-values for both

NDVI thresholds and RGB approach for this date is presented in table 4.10.
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Table 4.10: The p-values for all LAI approaches with regards to the groups for sta-
tistical testing.

Group LAI (0.2 threshold) LAI (0.4 threshold) LAI (RGB)

Cultivars 0.0037 0.0002 0.1078

Nitrogen level 0.3697 0.2891 0.5479

Cultivar × N-level 0.5335 0.3924 0.5110

We see the Cultivars group has the most entries with a p-value of statistical significance.

For the RGB approach the value for the group is not below this cut-off but still the lowest

value for this group in the days of wheat growth were LAI is particularly useful.

The least square means for day 36 is presented in table. 4.11



4.2. STATISTICAL ANALYSIS 47

Table 4.11: The least square means for LAI for both NDVI thresholds for cultivars
and for cultivars given 8 and 15 kg/daa of Nitrogen.

Cultivars 8 kg/daa N 15 kg/daa N

Cultivar 0.2 0.4 0.2 0.4 0.2 0.4

Bjarne 0.395 0.134 0.428 0.163 0.361 0.105

Zebra 0.463 0.228 0.464 0.225 0.462 0.232

Demonstrant 0.384 0.132 0.397 0.147 0.371 0.117

Krabat 0.415 0.175 0.431 0.199 0.399 0.151

Mirakel 0.427 0.172 0.420 0.172 0.435 0.172

Rabagast 0.420 0.175 0.401 0.167 0.440 0.184

Seniorita 0.433 0.183 0.454 0.208 0.413 0.158

GN11644 0.355 0.113 0.346 0.111 0.363 0.115

GN11542 0.388 0.141 0.360 0.115 0.415 0.166

GN13618 0.398 0.152 0.407 0.164 0.390 0.141

Arabella 0.363 0.123 0.371 0.131 0.354 0.116

GN10521 0.376 0.120 0.362 0.110 0.390 0.130

SW01074 0.354 0.121 0.350 0.119 0.357 0.122

GN10637 0.377 0.130 0.374 0.132 0.380 0.129

SW11230 0.438 0.204 0.469 0.225 0.407 0.183

PS-1 0.413 0.177 0.427 0.192 0.400 0.162

SW11011 0.376 0.148 0.399 0.172 0.353 0.124

SW21074 0.452 0.207 0.450 0.199 0.454 0.215

Tjalve 0.377 0.155 0.376 0.151 0.377 0.159

Avle 0.397 0.150 0.399 0.149 0.396 0.150

Bastian 0.383 0.129 0.380 0.123 0.387 0.134

Runar 0.388 0.145 0.409 0.169 0.366 0.121

Reno 0.400 0.157 0.421 0.178 0.379 0.137

Polkka 0.393 0.154 0.386 0.146 0.400 0.163

Not too unexpectedly we see in table 4.11 that the average LAI is higher for the 0.2

threshold than for 0.4. This is natural as more pixels will be recognized as plants

algorithmically. This is however of more statistical significance for the group Cultivars

in contrast to the other two being the p-value for both differences between Nitrogen
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levels and cultivars of different Nitrogen levels had high p-values as seen in table 4.10.

This same group is also most relevant with regards to table 4.12.

Table 4.12: The least square means for LAI using the RGB approach for cultivars
(second column) and for cultivars given 8 and 15 kg/daa of Nitrogen.

Cultivar Cultivar 8 kg/daa N 15 kg/daa N

Bjarne 0.564 0.653 0.475

Zebra 0.345 0.323 0.367

Demonstrant 0.470 0.532 0.408

Krabat 0.436 0.425 0.447

Mirakel 0.472 0.517 0.427

Rabagast 0.507 0.517 0.497

Seniorita 0.442 0.525 0.359

GN11644 0.529 0.585 0.473

GN11542 0.583 0.656 0.510

GN13618 0.459 0.442 0.475

Arabella 0.431 0.441 0.422

GN10521 0.599 0.694 0.505

SW01074 0.396 0.445 0.347

GN10637 0.464 0.421 0.506

SW11230 0.329 0.345 0.313

PS-1 0.379 0.388 0.369

SW11011 0.336 0.332 0.340

SW21074 0.482 0.453 0.511

Tjalve 0.408 0.290 0.527

Avle 0.361 0.290 0.432

Bastian 0.495 0.584 0.406

Runar 0.487 0.382 0.592

Reno 0.480 0.506 0.453

Polkka 0.388 0.412 0.364
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4.2.7 Correlation between Traits and LAI

Before evaluating different approaches for calculating LAI and their correlations with

different traits we will look at the correlations between themselves. These will be within

the Cultivar group as they had the lowest p-values and are presented in table 4.13.

Table 4.13: The correlations between the three different LAI least square means values
for the cultivars.

Index LAI (0.2 threshold) LAI (0.4 threshold)

LAI (0.4 threshold) 0.952

LAI (RGB) -0.255 -0.461

Not surprisingly, the correlation between the two threshold methods was high as they

followed the same procedures only with different cut-off-values. The RGB approach

produced negative correlations between the other two which may be because the RGB

camera does not go beyond the spectre of visible light in order to include the NIR

spectral band. This tells us that visual inspection and indices based on spectral bands

utilized to estimate chlorophyll content does not always go hand in hand.

The correlations between LAI and GY did not produce any strong relation, neither

positive nor negative, so for this section other traits were included as presented in table

4.14.

Table 4.14: The correlations between all LAI approaches and traits. This is for
differences in cultivars only.

LAI (0.2 threshold) LAI (0.4 threshold) LAI (RGB)

GY 0.075 0.092 -0.147

TKW 0.105 0.278 -0.564

HLW -0.060 0.033 -0.004

DH 0.163 0.131 0.005

DM 0.013 -0.049 0.130

PH 0.348 0.378 -0.264

As mentioned the correlations between LAI and GY is of no significance whatsoever

as can be said among most findings in table 4.14. Of the few exceptions the positive

correlation between LAI (0.4 threshold) and TKW is with some magnitude apparent

while a higher value is showing between PH and both the NDVI threshold LAI indices.
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This would indicate the plant growing both in terms of coverage and height. This would

agree with PH and GY being antagonistic with regards to correlation, but this is not

a safe conclusion to reach as it would have more merit if LAI were both positively

correlated to PH and negatively to GY which it is not. The RGB approach in regards

to plant height was a whole other story as it was negatively correlated. The RGB LAI

was also the one producing the biggest correlation, although negaive, with TKW. Why

a high visual coverage prior to heading would be negatively correlated to the final TKW

is not easily explained, but being the highest correlation it is worth mentioning. A

plausible reason, with regards to the p-values for the RGB LAI they were never below

statistic significance in difference between the cultivars. This approach utilized a simple

RGB (simple relative to multi-spectral cameras) to take pictures of very similar looking

field plots in term of coverage. For that reason this high negative correlation may very

well be dismissed altogether.

4.3 Reflections

To finish this chapter some reflections (of the cognitive kind) revolving the processes

producing these results should be included.

The use of the UAV was as mentioned earlier troublesome at times with too many

occurrences of having to steer manually. This was most likely the source of DSM and

GeoTIFF files having holes after compilation. However the ability to receive these

compiled data files was both time saving and convenient.

Thorvald on the other hand never had any obstacles while collecting data that halted

the process from day to day. However, the reason for the UAV having 4 more days of

taking pictures than Thorvald was because the wheat grew too high not to be damaged

as it passed through. Not being able to calibrate using the CRP also brought limitations

to the results.

To summarize, these two pieces of equipment brought much contrast when compared.

The UAV had several elements malfunctioning with no warnings whereas Thorvald con-

sistently responded to the input from the user in terms of manoeuvring. When the UAV

and its software and the GPS all worked the whole picture taking session could last

approximately 10 minutes while observing the UAV flying by. This was followed by easy
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uploading of pictures before receiving a compiled GeoTIFF/DSM file with calibration

included. A session of taking pictures while operating Thorvald however was a slow

process of approximately 45 minutes hoping rain to be absent due to the low ability to

handle water for this prototype. Adding in the possibilities of getting false date due

to no calibration selecting a superior between the two pieces of equipment is not an

uncomplicated task.





Chapter 5

Conclusion

After studying different platforms and sensory systems for this wheat field trial it is of

importance to evaluate questions asked in the initiation of this thesis.

The two indices NDVI and MTCI were measured by algorithms and software based

on pictures taken by the UAV to hypothetically correlate with GY. The outcome was

not of noteworthy magnitude although the numbers were in agreement with other stud-

ies revolving the subject at hand, mostly with regards to NDVI. There was a double

edged sword involved in the procedure of selecting the data sets for these indices as

the interval of days best suited for correlation analysis also had the lowest of significant

p-values, possibly due to pixel saturation. Albeit correlations between the indices and

GY were low one should not to dismiss these indices altogether. This is stated because

of complications such as saturations and missing data in this study. Despite this rather

ambivalent status upon the completion of this study this thesis did exhibit indications

of the utilization of fertilizing. Those wheat plots treated with lower levels of fertilizing

levels did show a higher correlation to GY due to difference in utilization of Nitrogen

amongst the cultivars.

Another index evaluated for possible correlation to GY was the LAI, estimated using

three approaches. Two of these implemented different NDVI thresholds serving as cut-off

values to differentiate between plants and non-plants. The third one used regular RGB

pictures for the calculation of a ratio between predominantly green pixels to total pixels.

None of the three approaches provided statistical significance with any consistency from

day to day with regards to data. For this reason a particular date prior to the interval

53
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applied for NDVI and MTCI correlations analysis was chosen. This date was in an

important period of time where the wheat plants would be competing with weed while

having to withhold moisture. From this data no noteworthy correlations were produced

although some were apparent between PH and the NDVI threshold LAI indices. Albeit

this, negative correlations should have been present between these indices and GY to

be in accordance with findings in both this and other studies, which was not the case.

Considering the two very similar approaches implementing NDVI thresholds and the

RGB utilization there was a negative correlation exhibited between them. This might

demonstrate the impact the NIR band has with regards to estimating plant coverage

which the naked eye can not possibly include.

The most fruitful of correlations calculated, in the hopes of making the time consuming

manual measuring of plant height obsolete, was the correlation between manual mea-

surements and the digital estimations. Not only was it strong, it was also a product

of a method that could be enhanced through longer and more specified source codes

applying the same principals of which it was based on.

5.1 Further Research

This thesis is somewhat of a pilot study leading to a larger project at the Norwegian

University of Life Sciences (NMBU). This project includes building a virtual field and

the selection of genomes. This will facilitate for other theses and studies to be initiated.

In July this year a paper involving the very same topic of study, setup and people as

this thesis will be published as a part of a conference in France named IFAC 2017. It is

referenced in this thesis.

Concurrently with the writing of this thesis new generations of the agricultural robot,

Thorvald, are either near completion or in the works. Soon we will see versions with

narrower wheels and a higher clearance as to not damage the monitored vegetation.
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Appendix B

Python Source Codes and SAS

code

B.1 Script for Importing Values from Gunnar Langes Script

and Organizing for Further Analysis

infile = open(’robotLAI 0,2.txt’,’r’)

lines = infile.readlines ()

infile.close()

infile = open(’thorvaldnumbers.txt’,’r’)

numbers = infile.readlines ()

infile.close()

"""

The file ’robotLAI 0,2. txt ’ (as well asthose for 0.4 and RGB) all had

the template:

Date: 16.05.27

Sq.numb :1 LAI: value

Sq.numb :2 LAI: value

Sq.numb :3 LAI: value

... etc

The file ’thorvaldnumbers .txt ’ had 96 lines for the transformation

from the zigzag path Thorvald travelled to the square numbers assigned

in the field setup.

The first lines are:

96

81

80

65

B-1
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64

49

... etc

"""

for i in range (96):

values = []

a = int(numbers[i])

for j in range(a,979 ,98):

values.append(lines[j])

valuesfloats = []

for k in range(len(values )):

b = values[k].split()

c = b[2]

d = float(c)

valuesfloats.append(d)

print valuesfloats
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B.2 Script for Plotting MTCI and NDVI

import matplotlib.pyplot as plt

def emptysquare(value): # Function for setting ’EmptySquare ’ to 0.0

word = set(’a’)

if word & set(value):

return True

def zero_to_nan(values ): # Function setting 0.0 to ’nan ’ for plotting

return [float(’nan’) if x == 0.0 else x for x in values]

infile = open(’Drone_MTCI.txt’,’r’) # MTCI values for all 96 wheat plots

drone_mtci = infile.readlines ()

infile = open(’Drone_NDVI.txt’,’r’) # NDVI values for all 96 wheat plots

drone_ndvi = infile.readlines ()

infile = open(’Fields_grouped.txt’,’r’) # Fields grouped by cultivars

breeds = infile.readlines ()

"""

’Drone_MTCI .txt ’ and ’Drone_MTCI .txt ’ share this template for every line:

Sq.nr , 2016 _05_27 , 2016 _06_03 , 2016 _06_17 , ...

’Fields_grouped .txt ’ has this template for every line:

Sq.nr ,Breed_Nkg_rep ,Sq.nr ,Breed_Nkg_rep ,Sq.nr ,Breed_Nkg_rep ,Sq.nr , Breed_Nkg_rep

Another script was made with the same template as Fields_grouped only

it had only four rows , two for 8 kg of N and two for 15 kg.

"""

days_drone = [15 ,22 ,36 ,50 ,52 ,54 ,56 ,57 ,61 ,67 ,84 ,90 ,92 ,98]

days_drone_skip = [days_drone[i] for i in range(1,len(days_drone ))]

rownumber = 10 # number corresponding with cultivar number

breedlist = breeds[rownumber]

b_list = breedlist.split(’,’)

labellist = [’b-’,’r-’,’g-’,’y-’]

dotlist = [’b*’,’r*’,’g*’,’y*’]

for k in range(0,len(b_list )-1,2):

a = b_list[k]

b = str(a)

c = []

for i in b:

c.append(i)

number = ((int(c[1]) -1)*12)+( int(c[2])*10)+( int(c[3]))

data_drone_mtci = drone_mtci[number ].split(’, ’)
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data_drone_ndvi = drone_ndvi[number ].split(’, ’)

for i in range(1,len(data_drone_mtci )):

if emptysquare(data_drone_mtci[i]) == True:

data_drone_mtci[i] = 0

for i in range(1,len(data_drone_ndvi )):

if emptysquare(data_drone_ndvi[i]) == True:

data_drone_ndvi[i] = 0

data_drone_mtci = [float(data_drone_mtci[j]) for j in range(1,len(days_drone )+1)]

data_drone_ndvi = [float(data_drone_ndvi[j]) for j in range(1,len(days_drone )+1)]

data_drone_mtci_skip = [data_drone_mtci[i] for i in range(1,len(data_drone_mtci ))]

data_drone_ndvi_skip = [data_drone_ndvi[i] for i in range(1,len(data_drone_ndvi ))]

data_drone_mtci_skip = zero_to_nan(data_drone_mtci_skip)

data_drone_ndvi_skip = zero_to_nan(data_drone_ndvi_skip)

plt.subplot (2,1,1)

plt.plot(days_drone_skip ,data_drone_mtci_skip ,’%s’ % labellist[k/2],label=b_list[k+1])

plt.plot(days_drone_skip ,data_drone_mtci_skip ,’%s’ % dotlist[k/2])

plt.xlabel(’Days’)

plt.ylabel(’MTCI’)

plt.subplot (2,1,2)

plt.plot(days_drone_skip ,data_drone_ndvi_skip ,’%s’ % labellist[k/2],label=b_list[k+1])

plt.plot(days_drone_skip ,data_drone_ndvi_skip ,’%s’ % dotlist[k/2])

plt.xlabel(’Days’)

plt.ylabel(’NDVI’)

plt.legend(loc=’best’)

plt.show()
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B.3 Script for Making Regression Lines

"""

The following five functions are made from the formulas for regression :

y = slope * x + intercept

"""

def average(numbers ):

Sum = 0

for i in numbers:

Sum += i

return float(Sum)/ float(len(numbers ))

def meanXY(xlist ,ylist):

Sum = 0

for i in range(len(xlist )):

Sum += float(xlist[i])* float(ylist[i])

return Sum/len(xlist)

def XSquared(numbers ): # Takes the x-values as argument

Sum = 0

for i in numbers:

Sum += (float(i))**2

return Sum/len(numbers)

def slope(xmean ,ymean ,meanxy ,xsquared ):

return (( xmean*ymean)-meanxy )/(( xmean **2)- xsquared)

def intercept(xmean ,ymean ,slope):

return ymean - (slope*xmean)

"""

The next function takes a list as an argument , makes a new list starting at 0,

letting the next values be the differences instead of the original values.

This is to still keep the difference from list value to list value intact.

"""

def zerolist(values ):

listfromzero = [0]

for i in range(len(values )-1):

dif = (float(values[i+1])- float(values[i]))

listfromzero.append(dif+listfromzero[i])

return listfromzero

colxlist = range (9)

rowxlist = [i*2 for i in range (9)]

"""

The next six lists are the two groups of three lines of 9 points , one for rows
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and one for columns.

"""

colcords_upper = [78.697 ,78.792 ,78.852 ,78.928 ,78.986 ,79.087 ,79.157 ,79.246 ,79.381]

colcords_lower = [78.741 ,78.778 ,78.836 ,78.903 ,78.965 ,79.067 ,79.148 ,79.237 ,79.321]

colcords_center = [78.768 ,78.914 ,79.037 ,79.105 ,79.209 ,79.277 ,79.386 ,79.403 ,79.484]

rowcords_left = [78.690 ,78.642 ,78.697 ,78.743 ,78.760 ,78.885 ,78.885 ,78.859 ,78.733]

rowcords_right = [79.379 ,79.311 ,79.376 ,79.469 ,79.471 ,79.505 ,79.510 ,79.421 ,79.287]

rowcords_center = [79.989 ,78.935 ,79.016 ,79.096 ,79.155 ,79.154 ,79.161 ,79.080 ,78.968]

colcordsavg = []

rowcordsavg = []

"""

This for loop takes the 27 points for each direction and calculates 9

mean values based on those who are parallel with the direction.

"""

for i in range(len(colcords_upper )):

templist_col = [colcords_upper[i],colcords_lower[i],colcords_center[i]]

templist_row = [rowcords_left[i],rowcords_right[i],rowcords_center[i]]

colavg = average(templist_col)

rowavg = average(templist_row)

colcordsavg.append(colavg)

rowcordsavg.append(rowavg)

colavgzero = zerolist(colcordsavg)

rowavgzero = zerolist(rowcordsavg)

colxmean = average(colxlist)

colymean = average(colavgzero)

colxymean = meanXY(colxlist ,colavgzero)

colxsquared = XSquared(colxlist)

colslope = slope(colxmean ,colymean ,colxymean ,colxsquared)

colinter = intercept(colxmean ,colymean ,colslope)

rowxmean = average(rowxlist)

rowymean = average(rowavgzero)

rowxymean = meanXY(rowxlist ,rowavgzero)

rowxsquared = XSquared(rowxlist)

rowslope = slope(rowxmean ,rowymean ,rowxymean ,rowxsquared)

rowinter = intercept(rowxmean ,rowymean ,rowslope)

print ’Regression line for cols are y = %.3fx + %.3f’ % (colslope ,colinter)

print ’Regression line for rows are y = %.3fx %.3f’ % (rowslope ,rowinter)

"""

The last two lines gave us:

Regression line for cols are y = 0.081x + 0.004
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Regression line for rows are y = -0.005x -0.197

The other DSM used , with its own points , gave us:

Regression line for cols are y = 0.335x + ( -0.010)

Regression line for rows are y = -0.098x + (0.093)

"""
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B.4 Script for Producing Height Values Based on Regres-

sion Script

def coladjust(colvalue ): # colvalue is a fraction which is column number /14

return (( colvalue *0.081*8)+0.004)*( -1) # formula based on regression script

def rowadjust(rowvalue ): # rowvalue is a fraction which is row number /8

return (rowvalue *0.005*16)+0.197 # formula based on regression script

"""

For the other DSM used the functions were:

def coladjust(colvalue ):

return (( colvalue *0.335*8) -0.010)*( -1)

def rowadjust(rowvalue ):

return (rowvalue *0.098*16) -0.093

"""

geozero = 78.643 # zero point for regression axes obtained by Fiji

infile = open(’Drone_DSM_Fiji.txt’,’r’)

drone_dsm = infile.readlines ()

data_drone_dsm = [drone_dsm[i]. split(’, ’) for i in range(1,len(drone_dsm ))]

"""

The file ’Drone_DSM_Fiji .txt ’ were the values for each wheat

plot using Fiji. The file had this template for each line:

SquareNumber ,value

"""

values = []

for i in range(len(data_drone_dsm )):

sqnr = str(data_drone_dsm[i][0])

digitlist = [int(d) for d in str(sqnr)]

digitforcol = (digitlist [2]*10)+ digitlist [3]

digitforrow = digitlist [1]

valueforcol = (digitforcol +1)/14.0

valueforrow = (9- digitforrow )/8.0 # zero point for axes on opposite side of map

valuefromdata = data_drone_dsm[i][1]

valuezero = float(valuefromdata) - geozero

valueadjust = valuezero + coladjust(valueforcol) + rowadjust(valueforrow)

values.append(valueadjust)

for i in range(len(data_drone_dsm )):

print ’Square Number: %s : %.3f m’ % (data_drone_dsm[i][0], values[i])
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B.5 Script for Plotting the Wheat Field

import matplotlib.pyplot as plt

import matplotlib.patches as patches

infile = open(’Drone_DSM.txt’,’r’)

drone_dsm = infile.readlines ()

data_drone_dsm = [drone_dsm[i]. split(’, ’) for i in range(1,len(drone_dsm ))]

"""

’Drone_DSM.txt ’ is the result of the script adjusting heights based on

regression with this template for every line:

Sq.nr , Value.

The last line before this comment made a split where the comma is.

"""

values = []

for i in range(len(data_drone_dsm )):

value = float(data_drone_dsm[i][1])

values.append(value *100) # from m to cm

xaxis = range (13)

yaxis = range (9)

hexes = [hex(int(i)) for i in values]

hexessplit = [i.split(’x’) for i in hexes]

greenhexes = [i[1] for i in hexessplit]

"""

From cm to integer to hex. This is because the color format in the bottom

of this script uses hex.

"""

axes = plt.gca()

axes.set_xlim ([ xaxis[0], xaxis [12]])

axes.set_ylim ([ yaxis[0], yaxis [8]])

for i in range(len(values )):

sqnr = str(data_drone_dsm[i][0])

digitlist = [int(d) for d in str(sqnr)]

digitforx = (digitlist [2]*10)+ digitlist [3]

digitfory = digitlist [1]

axes.add_patch(patches.Rectangle ((digitforx -1,digitfory -1),1,1,\

facecolor="#%s%s%s" % (greenhexes[i],greenhexes[i],greenhexes[i])))
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B.6 Script for plotting P-values

import matplotlib.pyplot as plt

import math as m

Days = [15 ,22 ,36 ,50 ,52 ,54 ,56 ,57 ,61 ,67 ,84 ,90 ,92 ,98]

infile = open(’ndvi p values groups.txt’,’r’)

table = infile.readlines ()

table = [table[i].split(’,’) for i in range(len(table ))]

"""

’ndvi p values groups.txt ’ had the template:

date ,date ,date ,date ... etc

p-value cultivar , p-value cultivar ... etc

p-value N-level , p-value N-level .... etc

p-value cult X N-level , p-value cult X N-level ... etc

"""

for i in range (1,4):

for k in range(len(table [0])):

table[i][k] = float(table[i][k])

Cults = [table [1][i] for i in range (14)]

Ferts = [table [2][i] for i in range (14)]

CultFert = [table [3][i] for i in range (14)]

Inst_cults = 0

Inst_ferts = 0

Inst_culfer = 0

for i in range(len(Cults )):

if Cults[i] > 0.05:

Inst_cults += 1

if Ferts[i] > 0.05:

Inst_ferts += 1

if CultFert[i] > 0.05:

Inst_culfer += 1

Cults = [-m.log10(i) for i in Cults]

Ferts = [-m.log10(i) for i in Ferts]

Cultfert = [-m.log10(i) for i in CultFert]

print ’p-value higher than 0.05:’

print ’%d times for Cultivar ’ % Inst_cults

print ’%d times for N-level’ % Inst_ferts

print ’%d times for cultivar X N-level’ % Inst_culfer

plt.plot(Days ,Cults ,’b-’,label=’Cultivar ’)

plt.xlabel(’Days’)
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plt.legend(loc=’best’)

plt.plot(Days ,Ferts ,’r-’,label=’N-level ’)

plt.xlabel(’Days’)

plt.ylabel(’P-values ’)

plt.legend(loc=’best’)

plt.plot(Days ,CultFert ,’g-’,label=’Cultivar X N-level’)

plt.xlabel(’Days’)

plt.ylabel(’-log P-values NDVI’)

plt.legend(loc=’best’)

plt.plot(Days ,Cults ,’b*’)

plt.plot(Days ,Ferts ,’r*’)

plt.plot(Days ,CultFert ,’g*’)

"""

This print read:

p-value higher than 0.05:

6 times for Cultivar

14 times for N-level

14 times for cultivar X N-level

"""
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B.7 Script for Calculating Correlations (General Version)

import matplotlib.pyplot as plt

"""

The following are functions needed to calculate

the coefficient of correlation ; r

"""

def average(numbers ):

Sum = 0

for i in numbers:

Sum += i

return float(Sum)/ float(len(numbers ))

def deviation(numbers ,average ): # deviation formula for correlation

Sum = 0

for i in numbers:

Sum += ((i-average )**2)

return Sum

def deviatemulti(xlist ,xmean ,ylist ,ymean):

Sum = 0

for i in range(len(xlist )):

first = xlist[i] - xmean

second = ylist[i] - ymean

Sum += first * second

return Sum

def correlation(sumdevmulti ,sumdevx ,sumdevy ):

nu = sumdevmulti

de1 = (sumdevx )**0.5

de2 = (sumdevy )**0.5

de = de1 * de2

return nu/de

infile = open(’Drone_NDVI.csv’,’r’)

table = infile.readlines ()

table = [table[i].split(’;’) for i in range(len(table ))]

"""

The file ’Drone_NDVI .csv ’ is a csv version of an Excel file.

The template for each line is:

Effect;Entry;N_level;Avling; NDVI_2016_05_27 ; NDVI_2016_06_03 .... etc

"""

infile = open(’16 BMLROBOT_lsmeans.csv’,’r’)

tablemat = infile.readlines ()
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tablemat = [tablemat[i]. split(’;’) for i in range(len(tablemat ))]

"""

The file ’16 BMLROBOT_lsmeans .csv ’ is a csv version of an Excel file.

The template for each line is:

Effect;Entry;N_level;DH;DM;Avling;TKW;HLW;PH;

"""

Days = [15 ,22 ,36 ,50 ,52 ,54 ,56 ,57 ,61 ,67 ,84 ,90 ,92 ,98]

Rs = []

column = 5 # column number to check correlation for in ’16 BMLROBOT_lsmeans .csv ’

print tablemat [0][ column]

for k in range (4,18 ,1):

YieldsCult = []

YieldsN8 = []

YieldsN15 = []

MeansCult = []

MeansN8 = []

MeansN15 = []

for i in range (1,25 ,1): # These lines are the cultivars group

YieldsCult.append(float(tablemat[i][ column ]))

value = table[i][k]

if len(value) < 2:

value = 0

else:

value = float(value)

MeansCult.append(value)

for i in range (27 ,74 ,2): # These lines are cults and cults X N-level

YieldsN8.append(float(tablemat[i][ column ]))

value8 = table[i][k]

YieldsN15.append(float(tablemat[i+1][ column ]))

value15 = table[i+1][k]

if len(value8) < 2:

value8 = 0

else:

value8 = float(value8)

if len(value15) < 2:

value15 = 0

else:

value15 = float(value15)

MeansN8.append(value8)

MeansN15.append(value15)

Meanslist = [MeansCult ,MeansN8 ,MeansN15]

Yieldslist = [YieldsCult ,YieldsN8 ,YieldsN15]

relations = []
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for i in range (3):

xmean = average(Meanslist[i])

ymean = average(Yieldslist[i])

devx = deviation(Meanslist[i],xmean)

devy = deviation(Yieldslist[i],ymean)

devmulti = deviatemulti(Meanslist[i],xmean ,Yieldslist[i],ymean)

r = correlation(devmulti ,devx ,devy)

relations.append(r)

Rs.append(relations)

print

print ’%s’ % table [0][k]

print ’Correlation: cultivars is %.3f’ % relations [0]

print ’Correlation: 8 kg of Nitrogen is %.3f’ % relations [1]

print ’Correlation: 15 kg of Nitrogen is %.3f’ % relations [2]

RsCult = [Rs[i][0] for i in range(len(Rs))]

RsN8 = [Rs[i][1] for i in range(len(Rs))]

RsN15 = [Rs[i][2] for i in range(len(Rs))]

plt.subplot (3,1,1)

plt.plot(Days ,RsCult ,’b-’,label=’Cultivar ’)

plt.plot(Days ,RsCult ,’b*’)

plt.xlabel(’Days’)

plt.ylabel(’Correlation NDVI to Yield’)

plt.ylim ( -0.6 ,0.6)

plt.legend ()

plt.subplot (3,1,2)

plt.plot(Days ,RsN8 ,’b-’,label=’8 kg N’)

plt.plot(Days ,RsN8 ,’b*’)

plt.xlabel(’Days’)

plt.ylabel(’Correlation NDVI to Yield’)

plt.ylim ( -0.6 ,0.6)

plt.legend ()

plt.subplot (3,1,3)

plt.plot(Days ,RsN15 ,’b-’,label=’15 kg N’)

plt.plot(Days ,RsN15 ,’b*’)

plt.xlabel(’Days’)

plt.ylabel(’Correlation NDVI to Yield’)

plt.ylim ( -0.6 ,0.6)

plt.legend ()

"""

The correlations for each day is plotted for each group and

also printed out.

Example:



B.7. SCRIPT FOR CALCULATING CORRELATIONS (GENERAL VERSION)B-15

NDVI_2016_07_01

Correlation : cultivars is -0.083

Correlation : 8 kg of Nitrogen is -0.100

Correlation : 15 kg of Nitrogen is 0.012

"""
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B.8 SAS code provided by Morten Lillemo

proc import datafile=’c:\sas \2016\16 bmlrobotsplit.csv ’ out=feltdata replace;

delimiter =’;’;

proc print;

proc mixed covtest data=feltdata;

class Entry N_level Rep Block Col;

model Avling = entry N_level entry*N_level /outp=resids;

random rep N_level*rep block(N_level*rep) Col /s;

lsmeans entry N_level entry*N_level ;

ods output LSMeans=lsm;

proc export data=resids outfile=’c:\sas \2016\ residuals.csv ’ replace;

delimiter =’;’;

proc export data=lsm outfile=’c:\sas \2016\ lsmeans.csv ’ replace;

delimiter =’;’;

run;
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Table C.1: Trait data part 1/4.

Sq.Nr. Entry Name N level Rep Block Col

1101 3 Demonstrant 8 1 1 1
1102 24 Polkka 8 1 1 2
1103 12 GN10521 8 1 1 3
1104 5 Mirakel 8 1 1 4
1105 2 Zebra 8 1 1 5
1106 23 Reno 8 1 1 6
1107 8 GN11644 8 1 2 7
1108 17 SW11011 8 1 2 8
1109 16 PS-1 8 1 2 9
1110 22 Runar 8 1 2 10
1111 11 Arabella 8 1 2 11
1112 21 Bastian 8 1 2 12
1201 4 Krabat 8 1 3 1
1202 13 SW01074 8 1 3 2
1203 7 Seniorita 8 1 3 3
1204 14 GN10637 8 1 3 4
1205 19 Tjalve 8 1 3 5
1206 20 Avle 8 1 3 6
1207 1 Bjarne 8 1 4 7
1208 9 GN11542 8 1 4 8
1209 15 SW11230 8 1 4 9
1210 18 SW21074 8 1 4 10
1211 6 Rabagast 8 1 4 11
1212 10 GN13618 8 1 4 12
1301 13 SW01074 15 1 1 1
1302 23 Reno 15 1 1 2
1303 18 SW21074 15 1 1 3
1304 16 PS-1 15 1 1 4
1305 5 Mirakel 15 1 1 5
1306 1 Bjarne 15 1 1 6
1307 19 Tjalve 15 1 2 7
1308 20 Avle 15 1 2 8
1309 12 GN10521 15 1 2 9
1310 11 Arabella 15 1 2 10
1311 6 Rabagast 15 1 2 11
1312 10 GN13618 15 1 2 12
1401 2 Zebra 15 1 3 1
1402 14 GN10637 15 1 3 2
1403 9 GN11542 15 1 3 3
1404 17 SW11011 15 1 3 4
1405 7 Seniorita 15 1 3 5
1406 21 Bastian 15 1 3 6
1407 3 Demonstrant 15 1 4 7
1408 24 Polkka 15 1 4 8
1409 22 Runar 15 1 4 9
1410 4 Krabat 15 1 4 10
1411 15 SW11230 15 1 4 11
1412 8 GN11644 15 1 4 12
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Table C.2: Trait data part 2/4. Table showing Heading date (HD, days after July
1st), PH [cm], DH,DM, Lodging, GY [kg/ha], TKW [g] and HLW [g]

Sq.Nr. HD PH DH DM Lodging GY TKW HLW

1101 7 67 56 101 0 366.67 37.0 79.5
1102 7 85 56 94 0 300 34.0 79.0
1103 7 70 56 103 0 350 32.1 77.2
1104 5 85 54 98 0 366.67 34.9 77.0
1105 4 81 53 100 0 383.33 38.1 78.0
1106 4 87 53 98 0 383.33 36.4 77.7
1107 4 67 53 95 0 433.33 39.0 79.9
1108 3 76 52 101 0 500 42.3 79.1
1109 6 80 55 98 0 416.67 35.4 78.0
1110 1 86 50 95 0 416.67 36.4 77.5
1111 0 79 49 98 0 483.33 37.0 76.2
1112 1 69 50 100 0 450 30.5 77.0
1201 7 67 56 101 0 483.33 36.2 78.8
1202 3 67 52 101 0 550 37.0 79.2
1203 7 80 56 104 0 533.33 31.7 79.8
1204 8 75 57 106 0 516.67 37.4 81.7
1205 7 75 56 100 0 483.33 35.8 78.5
1206 6 70 55 101 0 466.67 33.1 77.3
1207 5 66 54 102 0 550 35.3 77.2
1208 3 75 52 101 0 583.33 32.9 78.7
1209 3 80 52 102 0 633.33 40.2 77.4
1210 4 76 53 102 0 600 35.2 79.6
1211 6 65 55 101 0 550 32.3 78.1
1212 3 70 52 105 0 616.67 38.0 78.6
1301 5 65 54 106 0 583.33 37.1 79.4
1302 3 87 52 104 5 550 38.4 78.7
1303 4 76 53 107 0 666.67 37.1 81.8
1304 7 76 56 104 5 666.67 35.5 79.7
1305 5 86 54 105 10 650 37.3 79.0
1306 6 69 55 104 5 650 33.8 78.8
1307 8 72 57 105 0 650 36.8 78.9
1308 7 75 56 104 5 616.67 33.1 78.2
1309 5 76 54 109 0 683.33 31.4 77.8
1310 3 75 52 108 0 766.67 36.8 79.1
1311 9 65 58 108 0 650 30.6 78.9
1312 3 72 52 113 5 750 37.2 79.8
1401 3 79 52 109 5 683.33 38.2 79.6
1402 9 75 58 109 5 650 35.6 83.2
1403 3 75 52 109 0 700 32.3 80.2
1404 1 71 50 110 5 733.33 42.2 80.0
1405 8 76 57 107 5 683.33 49.7 81.6
1406 3 67 52 109 0 633.33 29.7 80.0
1407 7 74 56 112 0 750 35.7 81.6
1408 5 82 54 104 0 616.67 35.2 81.6
1409 3 80 52 106 50 566.67 35.3 80.5
1410 7 71 56 106 0 666.67 34.7 79.8
1411 3 75 52 109 30 833.33 38.0 79.6
1412 2 67 51 104 0 666.67 34.5 82.6
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Table C.3: Trait data part 3/4.

Sq.Nr. Entry Name N level Rep Block Col

1501 10 GN13618 15 2 1 1
1502 4 Krabat 15 2 1 2
1503 24 Polkka 15 2 1 3
1504 17 SW11011 15 2 1 4
1505 23 Reno 15 2 1 5
1506 13 SW01074 15 2 1 6
1507 15 SW11230 15 2 2 7
1508 8 GN11644 15 2 2 8
1509 5 Mirakel 15 2 2 9
1510 9 GN11542 15 2 2 10
1511 21 Bastian 15 2 2 11
1512 19 Tjalve 15 2 2 12
1601 16 PS-1 15 2 3 1
1602 7 Seniorita 15 2 3 2
1603 11 Arabella 15 2 3 3
1604 18 SW21074 15 2 3 4
1605 3 Demonstrant 15 2 3 5
1606 6 Rabagast 15 2 3 6
1607 2 Zebra 15 2 4 7
1608 14 GN10637 15 2 4 8
1609 20 Avle 15 2 4 9
1610 12 GN10521 15 2 4 10
1611 22 Runar 15 2 4 11
1612 1 Bjarne 15 2 4 12
1701 4 Krabat 8 2 1 1
1702 2 Zebra 8 2 1 2
1703 8 GN11644 8 2 1 3
1704 19 Tjalve 8 2 1 4
1705 10 GN13618 8 2 1 5
1706 18 SW21074 8 2 1 6
1707 22 Runar 8 2 2 7
1708 13 SW01074 8 2 2 8
1709 21 Bastian 8 2 2 9
1710 6 Rabagast 8 2 2 10
1711 12 GN10521 8 2 2 11
1712 3 Demonstrant 8 2 2 12
1801 17 SW11011 8 2 3 1
1802 15 SW11230 8 2 3 2
1803 16 PS-1 8 2 3 3
1804 23 Reno 8 2 3 4
1805 7 Seniorita 8 2 3 5
1806 20 Avle 8 2 3 6
1807 11 Arabella 8 2 4 7
1808 14 GN10637 8 2 4 8
1809 9 GN11542 8 2 4 9
1810 24 Polkka 8 2 4 10
1811 1 Bjarne 8 2 4 11
1812 5 Mirakel 8 2 4 12
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Table C.4: Trait data part 4/4. Table showing Heading date (HD, days after July
1st), PH [cm], DH,DM, Lodging, GY [kg/ha], TKW [g] and HLW [g]

Sq.Nr. HD PH DH DM Lodging GY TKW HLW

1501 3 72 52 107 0 683.33 35.5 79.6
1502 7 71 56 106 0 650 33.8 79.6
1503 6 80 55 105 5 583.33 35.1 80.4
1504 1 71 50 109 5 716.67 42.5 82.8
1505 1 81 50 103 10 600 36.8 79.6
1506 6 69 55 108 0 666.67 35.7 81.2
1507 5 76 54 109 5 783.33 38.7 79.5
1508 4 70 53 106 0 683.33 34.1 82.7
1509 6 85 55 109 50 666.67 33.9 79.5
1510 5 75 54 113 10 683.33 31.5 80.3
1511 1 70 50 111 20 666.67 30.2 79.1
1512 6 75 55 110 15 600 34.4 78.5
1601 6 72 55 109 30 666.67 33.5 79.5
1602 7 79 56 108 5 666.67 30.2 81.7
1603 1 70 50 111 5 783.33 37.4 79.1
1604 5 72 54 112 0 750 34.6 82.4
1605 6 75 55 111 0 783.33 34.4 81.2
1606 7 70 56 110 0 650 31.8 79.6
1607 3 82 52 110 5 750 38.6 80.1
1608 8 82 57 112 10 716.67 34.7 83.5
1609 5 75 54 108 5 716.67 33.3 79.1
1610 5 75 54 111 0 750 32.5 78.6
1611 1 80 50 110 50 683.33 38.6 81.0
1612 3 65 52 109 30 716.67 34.4 79.6
1701 7 66 56 105 0 550 35.0 79.0
1702 3 78 52 104 0 583.33 40.0 80.4
1703 2 67 51 103 0 600 36.5 81.8
1704 7 75 56 103 0 533.33 37.1 79.8
1705 5 70 54 109 0 650 39.1 79.5
1706 4 75 53 107 0 550 38.0 82.1
1707 3 84 52 104 5 516.67 38.1 80.0
1708 5 68 54 105 0 616.67 37.0 80.1
1709 1 70 50 106 0 600 32.2 79.1
1710 6 66 55 108 0 616.67 34.0 79.5
1711 3 75 52 110 0 666.67 35.3 78.2
1712 5 72 54 109 0 633.33 40.0 81.5
1801 2 75 51 105 0 550 43.0 81.0
1802 3 77 52 101 0 583.33 40.2 78.1
1803 6 77 55 102 0 550 35.8 79.7
1804 1 80 50 102 5 516.67 38.9 79.7
1805 6 77 55 109 0 583.33 32.2 81.4
1806 5 70 54 102 0 483.33 32.2 77.6
1807 2 75 51 109 0 666.67 36.8 79.0
1808 8 76 57 109 0 616.67 35.9 82.8
1809 3 75 52 104 0 616.67 33.5 79.0
1810 1 92 50 101 0 516.67 34.1 80.3
1811 5 69 54 104 0 616.67 33.8 79.3
1812 3 81 52 102 5 550 35.9 79.8
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Table C.5: Values extraced from DSM using Fiji and estimated values part 1/2. All
in meters.

SqNr Fiji Value 18.07 Est.value 18.07 Fiji Value 08.07 Est.value 08.07

1101 79.283 0.820 76.061 0.341
1102 79.283 0.774 76.289 0.378
1103 79.307 0.752 76.409 0.306
1104 79.473 0.872 76.627 0.333
1105 79.460 0.812 76.786 0.300
1106 79.564 0.870 77.061 0.384
1107 79.470 0.730 77.126 0.258
1108 79.610 0.823 77.396 0.336
1109 79.716 0.883 77.514 0.263
1110 79.775 0.896 77.793 0.350
1111 79.729 0.804 77.825 0.191
1112 79.759 0.787 78.047 0.221
1201 79.397 0.924 76.428 0.512
1202 79.406 0.887 76.524 0.417
1203 79.514 0.949 76.759 0.460
1204 79.494 0.883 76.855 0.365
1205 79.543 0.885 77.064 0.382
1206 79.595 0.891 77.203 0.330
1207 79.651 0.901 77.412 0.348
1208 79.764 0.967 77.687 0.431
1209 79.815 0.972 77.817 0.370
1210 79.840 0.951 77.935 0.296
1211 79.878 0.943 78.103 0.273
1212 79.895 0.913 78.298 0.276
1301 79.384 0.901 76.661 0.549
1302 79.544 1.015 76.927 0.624
1303 79.513 0.938 77.011 0.516
1304 79.610 0.989 77.263 0.577
1305 79.704 1.036 77.416 0.538
1306 79.632 0.918 77.520 0.451
1307 79.718 0.958 77.748 0.488
1308 79.815 1.008 77.892 0.440
1309 79.856 1.003 78.081 0.438
1310 79.869 0.970 78.256 0.421
1311 79.934 0.989 78.432 0.406
1312 79.952 0.960 78.564 0.346
1401 79.350 0.857 76.929 0.621
1402 79.463 0.924 77.037 0.538
1403 79.547 0.962 77.290 0.599
1404 79.573 0.942 77.454 0.572
1405 79.656 0.978 77.618 0.544
1406 79.604 0.880 77.714 0.449
1407 79.746 0.976 77.932 0.476
1408 79.893 1.076 78.127 0.479
1409 79.941 1.078 78.341 0.502
1410 79.948 1.039 78.514 0.483
1411 79.938 0.983 78.636 0.414
1412 79.852 0.850 78.710 0.296
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Table C.6: Values extraced from DSM using Fiji and estimated values part 2/2. All
in meters.

SqNr Fiji Value 18.07 Est.value 18.07 Fiji Value 08.07 Est.value 08.07

1501 79.362 0.859 77.090 0.586
1502 79.478 0.929 77.293 0.598
1503 79.566 0.971 77.502 0.615
1504 79.532 0.891 77.583 0.505
1505 79.614 0.926 77.776 0.506
1506 79.625 0.891 77.945 0.484
1507 79.742 0.962 78.163 0.511
1508 79.686 0.859 78.235 0.391
1509 79.927 1.054 78.516 0.481
1510 79.903 0.984 78.648 0.421
1511 79.968 1.003 78.777 0.359
1512 79.954 0.942 78.953 0.343
1601 79.354 0.841 77.228 0.528
1602 79.421 0.862 77.451 0.560
1603 79.363 0.758 77.549 0.466
1604 79.441 0.790 77.719 0.445
1605 79.536 0.838 77.905 0.439
1606 79.589 0.845 78.093 0.436
1607 79.670 0.880 78.323 0.475
1608 79.702 0.865 78.466 0.426
1609 79.792 0.909 78.622 0.391
1610 79.859 0.930 78.737 0.314
1611 79.967 0.992 79.002 0.388
1612 79.835 0.813 79.076 0.270
1701 79.260 0.737 77.245 0.349
1702 79.306 0.737 77.505 0.418
1703 79.264 0.649 77.599 0.320
1704 79.353 0.692 77.747 0.277
1705 79.417 0.709 77.939 0.277
1706 79.443 0.689 78.129 0.276
1707 79.548 0.748 78.407 0.363
1708 79.525 0.678 78.484 0.248
1709 79.597 0.704 78.688 0.261
1710 79.725 0.786 78.775 0.156
1711 79.700 0.715 79.087 0.277
1712 79.764 0.732 79.261 0.259
1801 79.193 0.660 77.383 0.291
1802 79.264 0.685 77.610 0.327
1803 79.309 0.684 77.774 0.299
1804 79.459 0.788 78.003 0.337
1805 79.448 0.730 78.091 0.233
1806 79.467 0.703 78.249 0.200
1807 79.471 0.661 78.393 0.153
1808 79.581 0.724 78.627 0.195
1809 79.656 0.753 78.823 0.200
1810 79.844 0.895 79.109 0.294
1811 79.703 0.708 79.203 0.197
1812 79.835 0.793 79.410 0.212
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Appendix D

GeoTIFF/DSM files and
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D.1 GeOTIFF/DSM files
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