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Abstract

A feedback connection from the visual cortex has been shown to a�ect characteristics
of cells in the lateral geniculate nucleus (LGN) in the brain. Research of cortical
feedback have been performed with experiments and modelling, but its functional
role is still not resolved. Studies of cortical feedback on LGN cells found in literature
mainly focus on the feedback's spatial e�ect on the LGN cell. The aim for this thesis
is to study the feedback's temporal e�ects on LGN cells with the use of a newly
developed tool: A neural circuit simulation software, pylgn. This simulation tool
had not been tested prior to this thesis for scienti�c purposes by others than the
developer himself. Thus, this study is the �rst application of pylgn.

Results of simulations of the relay-cell response with the use of pylgn featured
e�ects in accordance with experimental research results found in literature, for ex-
ample, suppression of LGN cell response when stimulus sizes are magni�ed over a
certain diameter value. This thesis' study of e�ects from cortical feedback's tem-
poral features was performed by simulations of a neural network with separated
excitatory and inhibitory feedback components. Impact of delay and prolonging of
feedback was studied for each feedback component. The results revealed dependence
of the temporal oscillation of the neural response and the size of the stimulus for
an oscillating spot and a patch grating of lower spatial frequency (k = 1, 47/deg),
but no corresponding dependence for stimulus of a patch grating with higher spatial
frequency (k = 1, 47/deg). The results showed that the dependence of the temporal
oscillation of neural responses and the size of the stimulus occurred for delayed or
prolonged excitatory feedback. A temporal shift in the response was also observed
for delayed or prolonged excitatory feedback. The results also revealed that the
oscillations in neural response for delayed or prolonged inhibitory feedback were
less dependent of the patch size. This indicates that the e�ect of inhibitory feed-
back is simply to reduce response of LGN relay cells, while the excitatory feedback
potentially determines the behaviour of the LGN relay cell response.
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Sammendrag

Det er bevist at en kobling som gjennomfører tilbakesending av signaler fra den
visuelle hjernebarken (korteks) har e�ekt på egenskapene til nerveceller i lateral
geniculate nucleus (LGN) i hjernen. Forskning på kortikal tilbakesending av signaler
har blitt gjennomført med eksperimenter og modellering, men dens funksjonelle rolle
er fremdeles ikke avklart. Studer av kortikal tilbakesending funnet i litteraturen
fokuserer i hovedsak på tilbakesendingens romlige e�ekter på celler i LGN. Målet
med denne avhandlingen er å utforske kortikal tilbakesendings tidsmessige e�ekter på
celler i LGN ved å benytte et nylig utviklet verktøy: En simuleringsprogramvare for
nevrale kretser, pylgn. Før denne masteroppgaven hadde dette simuleringsverktøyet
ikke blitt testet til vitenskapelige formål av andre enn utvikleren selv. Dermed er
denne studien den første til å benytte seg av pylgn.

Resultater fra simuleringer av respons hos relay celler ved bruk av pylgn viste
e�ekter i samsvar med eksperimentelle resultater funnet i litteratur, for eksempel re-
duksjon i respons hos nerveceller i LGN når størrelsen på spotstimulusen forstørres
over en viss diameterverdi. Denne avhandlingens studie av e�ekter fra tidsmes-
sige egenskaper ved tilbakesendelse av signaler ble utført ved simulering av nevrale
nettverk med separerte komponenter for eksitatorisks og inhibitorisks tilbakesendelse
av signaler. Innvirkningen fra forsinkelse og forlengelse av tilbakesendte signaler ble
studert for hver komponent av tilbakesendingen. Resultatet avdekket avhengighet
mellom tidsmessig svigninger i den nevrale responsen og størerlse på spotstimulus
for en blinkende spot og for en spot med gittermønster med lav romlig frekvens
(k = 0, 49/deg), men ingen tilsvarende avhengighet for spotstimulus med høyere
romlig frekvens (k = 1, 47/deg). Resultatene viste at denne avhengigheten mel-
lom tidsmessig svingninger og størrelse på spotstimulus oppstod ved forsinkelse eller
forlengelse av eksitatoriske tilbakesendte signaler. En tidsmessig forskyvning av re-
spons ble også observert ved forsinket eller forlenget eksitatorisk tilbakesendelse.
Resultatene avslørte også at svingninger i respons ved forsinkede eller forlengede
inhibitoriske tilbakesendinger hadde en svakere avhengighet av størrelsen på spot-
stimulusen. Dette indikerer at den kvalitative e�ekten av inhibitorisk tilbakesendelse
fra korteks kun er å redusere nevral respons hos nerveceller i LGN, mens eksitatorisk
tilbakesending potensielt avgjør oppførselen til responsen hos en nervecelle i LGN.
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Chapter 1

Introduction

How the human mind works is one of the big questions. Studies of the human brain
are being performed in many academic disciplines, urging for an understanding of
how neurons and their connections can create our perception and ideas of the world
around us. Modelling of neural network combines the expertises of mathematics,
biology and computer science, and is therefore a powerful tool for gaining insight
in how the brain works. The human brain consists of about 100 billion nerve cells,
thus modelling an entire human brain is out of question with today's technology.
However, models of smaller networks provide useful knowledge of functionality of
brain. The topic of this thesis is processing of visual stimulus, and so the relevant
network of modelling is a simpli�cation of the early visual system of the brain.

The early visual system includes the retina in the eyes, the visual cortex in the
back of the brain, and the lateral geniculate nucleus (LGN) in-between. The LGN
is the least studied component of the early visual system, and it has been assumed
that the only function of the LGN is to relay sensory information to the cortex.
However, research has shown contradicting results during the last two decades [17],
and there has been a growing recognition that the LGN has a more signi�cant role in
the processing of visual information. A feedback connection from the visual cortex
has been shown to a�ect characteristics of LGN relay cells [1]. Most research on
the topic discuss the spatial e�ect of cortical feedback on LGN neurons. Little
attention has been given to temporal aspects, like delay and duration of response
to a stimulus. This thesis aims to elucidate e�ects from these temporal aspects
of the cortical feedback on LGN neurons. Experimental results have shown that
inhibitory feedback is delayed compared to the excitatory feedback [7]. Previously,
cortical feedback has been studied as a unity. This thesis will consider cortical
feedback as two separate feedback components, one excitatory and one inhibitory.
The objective of this thesis is to study temporal features of the separate cortical
feedback components on the relay cells in LGN; delay and prolonging are such two
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2 1. INTRODUCTION

features of cortical feedback. In summary, the research question of this thesis is
as follows: How does temporal delay and prolonging of separate excitatory and
inhibitory cortical feedback components e�ect the response of the LGN relay cells?

Because selectivity for stimulus size and frequency of gratings are fundamental
properties of visual neurons [1], it makes sense to explore the neural response for
stimuli with di�erent grating and di�erent sizes. The method performed to study
neural response has been the implementation of a neural circuit simulation tool
(pylgn) recently developed at Centre for Integrative Neuroplasticity (CINPLA) -
a strategic research initiative at the faculty of mathematics and natural sciences
at UiO. The mathematical model behind pylgn is the linear, mechanistic, �ring-
rate based eDoG model, that incorporates the in�uence of thalamocortical loops, in
addition to the feedforward responses. This thesis presents the �rst application of
pylgn, and the second objective of this thesis is simply to test this tool in cooperation
with the creator of the software.

How pylgn is implemented in general, and how it has been used for this thesis, is
explained in chapter 5. Chapter 2 establishes a general understanding of nerve cells,
the early visual system of the brain, and modelling concepts in neuroscience. Then
chapter 3 explains the concept of receptive �elds, which is an important, analytical
construction in the study of visual processing. An outline of the mathematical eDoG
model is given in chapter 4. Then, a brief introduction to spatial e�ects of cortical
feedback is given in chapter 6. The �nal two chapters present the results of the
simulations and a discussion the impact of the �ndings.



Chapter 2

Nerve Cells and Brain

2.1 Nerve Cells

There are about 100 billion (1012) nerve cells in the human brain. Each nerve cell
(or neuron) communicate with to up ten thousand other neurons. They are highly
adapted to generate nerve inpulses (i.e. brief electrical signals) in response to input.
This quality is re�ected by the neuron morphology. Figure 2.1 shows three examples
of nerve cells: A cortical pyramidal cell, a Purkinje cell and a stellate cell. All
nerve cells consist of a soma - a cell body containing the cell nucleus, a quantum of
dendrites - the receptive zone of the neuron, and an axon - a nerve �ber that conducts
nerve impulses from the soma to other cells. The dendrites typically branch out in
larg quantity from one side of the soma, as feathery attachments, to make contact
and receive synaptic input from other cells. The axon might be thousands of times
longer than the soma itself, and thus it can conduct nerve impulses throughout long
distances to nerve cells in other parts of the brain or the body [2][13].

2.1.1 Generation of Action Potentials

The nerve impulse (or action potential), which serves as information transmitter
among neurons, is generated due to a change in the voltage gradient across the neu-
ron membrane. The membrane of the nerve cell is �lled with ion channels and ion
pumps, permeable to certain ions: Mainly sodium (Na+), potassium (K+), calcium
(Ca2+), and chloride (Cl−). As these ions ether �ow or are pumped in and out of
a cell, there will be a change in the voltage gradient (i.e. the di�erence in electri-
cal potential) between the interior of a neuron and the surrounding extracellular
medium. The ion channels open and close in response to voltage changes, which is
provoced by signals from other neurons. When the ion consentration inside the cell
is in equilibruim with the exterior of the cell, the electrical potential between the
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4 2. NERVE CELLS AND BRAIN

Figure 2.1: Example of three neuron types. A) A cortical pyramidal cell. They are
the most common excitatory neurons in the mamalian cortical structure[?]. A pyramidal
cell's axon branch locally to provide feedback to nearby neurons, and also conducts signals
longer distances, to other parts of the brain. B) A Purkinje cell of the cerebellum. It's
dendrites have a great range to receive more information. C) A stellate cell of the cerebral
cortex. (From Dayan and Abbott's textbook [2]).
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interior and the exterior of the cell is called the resting potential, and is about -70
mV. If there is a �ow of negatively charged ions into the cell (or a �ow of positively
charged ions out of the cell), so that the electrical potential turns more negative,
the neuron experience hyperpolarizaion. The opposite process, when the membrane
potential is changes in the positive direction, the neuron experience a depolarization.
There is a threshold level for depolarization before a neuron generates an action po-
tential, usually arround 55 mV. An action potential is a �uctuation in the electrical
potential of about 100 mV across the cell membrane, that propagates (is �red) along
the axon [2].

2.1.2 Signal Transmission Between Nerve Cells

Located at the end of axons are synapses (gap junctions between neurons), con-
taining neurotransmitters. These neurotransmitters are released upon the arrival of
action potentials. The neurotransmitters are released from the pre-synaptic (trans-
mitting) cell's axon and defuse the short distance to the post-synaptic (receiving)
cell's dendrite. There the neurotransmitters bind to receptors, causing ion channels
to open. If the ion �ow is of the type that causes depolarisation in the post-synaptic
neuron, the synapse has an excitatory e�ect, and the post-synaptic neuron is more
likely to generate an action potential itself. If the ion �ow is of the type that causes
hyper-polarizing, the synapse have an inhibitory e�ect on the post-synaptic neu-
ron, and it is less likely to generate an action potential itself. The excitatory e�ect
on neurons encourages signals to be transmitted and spread throughout the brain.
The inhibitory feedback is important for the regulation of the signal transmission.
Without the inhibition the brain would have uncontrolled signal spreading, similar
to that of an epileptic episode.

2.2 Early Visual System

The early visual system span all across the brain, and its neurons make connections
in such way that make perception of the outside world possible for the brain. This
thesis deals with a selection neurons essential for visual stimuli processing. Figure
2.2 illustrates the early visual pathway in the brain, from retina, through the lateral
geniculate nucleus (LGN) and to the visual cortex. A schematic view of the neurons
and their signalling paths are shown in �gure 2.3.

2.2.1 Retina

The early visual system begins with the eyes, where light passes through the eye lens
and falls upon retina. Retina is �lled with rod and cone photoreceptor cells, that
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Figure 2.2: Pathway from the retina throught the lateral geniculate nucleus (LGN) of
the thalamus to the primary visual cortex in the human brain. (rom Dayan and Abbott's
textbook [2]).

Figure 2.3: Schematic view of the geniculate circuit for the X pathway. The neurons
involved are retinal ganglion cells (g), geniculate relay cells (r), intrageniculate interneurons
(i), thalamic reticular cells (t), and cortical cells (c). The excitatory connections are shown
as solid curves, while the inhibitory connections are shown with dashed curves. (From
Einevoll and Plesser, [3]).
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converts light into electrical signals. The retinal ganglion cells conduct the signals
out of the eye through their axons, which together forms the optic nerve. The retinal
ganglion cells conduct the electrical signal to the lateral geniculate nucleus (LGN)
in Thalamus, where it synapses onto LGN relay cells and interneurons. The signal
transmission from Retinal ganglion cells are excitatory, and so they cause further
generation of action potentials for the cells in LGN.

2.2.2 Lateral Geniculate Nucleus (LGN)

The LGN is one of several nuclei in Thalamus, which is a sub-cortical structure (i.e.
a structure located beneath cortex). It resides in each hemisphere in the middle of
the brain. Some ganglion axons cross the midline at the optic chaism and connect to
the LGN in the opposit hemisphere, providing information from both eyes to both
sides of the brain. The cellular population of the LGN of a cat consists of 75-80
% relay cells and 20-25 % interneurons [3]. Among interneurons and relay cells,
only the latter conduct signals out of the nucleus. Similar to retinal ganglion cells,
LGN relay cells make excitatory synapses, and so they relay signals that emerge
in retina. LGN relay cells make few intranuclear connections, but synapses on to
cells in the thalamic reticular nucleus (TRN) and cells in the primary visual cortex.
The local connections in the LGN is dominated by inhibition from interneurons. As
interneurons also receive retinal input, and synapse onto each other and relay cells
they are said to form a feedforward inhibitory pathway [2][8].

2.2.3 Thalamic Reticular Nucleus (TRN)

Another class of inhibitory neurons that suppress the LGN relay cells with inhibition
populates the visual sector of the thalamic retitular nucleus(TRN). The TRN is a
thin network of interconnected, inhibitory neurons that forms a shell around the
dorsal thalamus, and thus the LGN. As TRN cells both receive synaptic input
from, and transmit synaptic input to LGN relay cells, TRN cells are said to provide
feedback.

2.2.4 Visual Cortex

Located in the back of the brain is the visual cortex. Pyramidal cells and spiny
stellate cells are densely interconnected with each other in the visual cortex. Local
connection apart, cortical cells receive excitation from retina via LGN relay cells,
and transmit signals to TRN cells and interneurons of the LGN. Thus, the cortical
cells inhibit LGN relay cells indirectly via the TRN cells and the interneurons. In
other words the early visual system involves a loop for the visual signal transition,
whereas cortical cells are said to provide inhibitory feedback to LGN relay cells. This
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feedback contributes to up to 30 % of the input to the LGN. The signal transmission
through the cortiothalamic loop (i.e. pathway from LGN to cortex and back) takes
between three and ten milliseconds, depending on the pathway [1].

2.2.5 Features of LGN

The LGN has been appointed as relay center in the early visual system, but it plays
a more complex role in processing of visual stimuli than that. Cortical feedback
aside, the LGN does not merely copy retinal input. Visual resolution at the fovea,
where retinal ganglion cells receive input from photoreceptic cones, is limited by
cone spacing. However, perceptual acuity is greater than what the number of reti-
nal photoreceptors predicts. The explanation for the increased acuity lies in the
connections throughout the early visual system: In cat there are twice as many
LGN relay cells in LGN as there are retinal ganglion cells in retina. Each ganglion
cell diverge to target several relay cells, thereby upsampling the visual resolution.
Simulations preformed by Judith A. Hirsch et al. [8] suggest that LGN relay cells
receives, on average, input from about three di�erent retinal ganglion cells. Each
relay cell achieve a unique combination of retinal input. In this way the the LGN re-
lay cells interpolate retinal input. The result of upsampling and interpolating across
the retiogenucliate synapse is increased resolution of an image representation that
has been smoothed out. This process in thalamus is much alike techniques used in
digital image processing.

Finally, neurons are sensitive to contrast boarders, and for reasons to be discussed
in the chapter 3, neuron in the LGN sharpen the image representation. So the
introduced blur in the upscaled image representation is counteracted[12][8].

2.3 Modelling Neurons and Their Network

Neuroscience includes mathematical models of di�erent calibre. They all aim to
provide a deeper understanding of the human brain and its functionality. What
separates them are their methods. Mechanistic models explain how the functionality
of a system arise from the physical properties of the underlying parts. Descriptive
models explain evident properties of a system statistically based on experimental
data. Finally, interpretive models explain the functional roles of a system. Later on
it will become evident that this theses deals with both mechanistic and descriptive
models (receptive �eld models in section 3) [3].
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2.3.1 Challenges in Computational Neural Network
Modelling

When it comes to computational modelling of neurons there are many possibilities
regarding detail integration. Single neuron models may take into account details
like neuron morphology (soma, dendrites and axon), action potential generating
processes (ion concentrations and di�usion across cell membrane), and conductivity
(propagation of action potential within the neuron). If this level of detail was in-
cluded in models of neural network, a computer would have trouble regarding mem-
ory storage capability and time consumption, as these models would be extremely
computationally expensive. So when modelling neural networks simpli�cations are
needed.

2.3.2 Simpli�cations in Computational Neural Network
Modelling

One simpli�cation is to model neurons as simple points and thus neglect the neural
morphology. Then the remaining aspect of interest would be the neural connections.
Another simpli�cation is to address neural activity in a less complex manner, and
neglect the biological process of action potential generating. Neural activity can be
modelled as a series of spike times (i.e. times when action potentials were generated),
or even simpler: As a �ring rate (i.e. number of action potentials per second). When
considering �ring rates, temporal patterns of action potential �ring, which might
carry signi�cant information, are lost. However, the use of �ring rates is a great way
to evaluate which neurons respond to each other in a network. The combination of
these two simpli�cations is called a �ring-rate point-neuron model, and will be the
basis for the chapters to come.
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Chapter 3

Receptive Fields

DeAngelis et al. [7] describes receptive �elds as follows: "The receptive �eld is
a central construction in the conceptual and analytical framework that is used by
neurophysiologists to study the function of visually responsive neurons, because it
characterize the transformation between the visual image and the neuronal activity."
[7]. In other words: Receptive �eld is a commonly accepted concept created to tie
visual stimuli to neural response. The concept evolves around the fact that neurons
in the retina, LGN and primary visual cortex react to light stimuli within restricted
regions of the visual �eld. These restricted regions are receptive �elds, and each
individual neuron has its own exclusive receptive �eld. Neural networks in the
early visual system have commonly been modelled by receptive �eld models. A
function that describes the behaviour of receptive �elds (i.e. a kernel), W (x, y, τ),
are de�ned in the space-time domain, and ties the neuron responds to stimulus at
position (x, y) in the receptive �eld at time τ . The point of peak sensitivity within
the receptive �eld of a cell is the receptive �eld center. For some neurons the kernel
is space-time separable, and can be written as a product of two functions, one that
describes thespatial behaviour of the receptive �eld and the other one that descirbes
the temporal behaviour of the receptive �eld, W (x, y, τ) = Ws(x, y)Wt(τ) [2].

3.1 Modelling of Spatial Receptive Fields

Figure 3.1 A) is an example of a spatial structure of a receptive �eld, which is ap-
proximately spatiotemporal separable. This particular receptive �eld is determined
by the method of spike-triggered average stimuli for a neuron in the primary visual
�eld of a cat. In this case the stimuli were average between 50 ms and 100 ms prior
to an action potential. Figure 3.1B is a recreation of the same receptive �eld �tted
by a Gabor function. This �gure illustrates an important feature of receptive �elds:
The ON and OFF regions. The areas where the temporal receptive �eld function,

11



12 3. RECEPTIVE FIELDS

Figure 3.1: Spatial receptive �elds structure of simple cells. A) Spatial structure of
receptive �eld of a neuron in the primary visual cortex in cat. The upper plot is a three-
dimentional representation, with the horizontal direction acting as the x-y plane and the
vertical dimention incidating the magnitude and sign of Ws(x, y). The lower contour
plot represents the x-y plane. Regions with solid contour curves are ON areas where
Ws(x, y) > 0 and regions with dashed contours show OFF areas where Ws(x, y) < 0. B)
Construction of a receptive �eld by the use of a Gabor function with parameters �tted
to recreate the receptive �eld in A). (From Dayan and Abbot's textbook in theoretical
neuroscience [2]).
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Figure 3.2: Schematic and experimental pro�les of the receptive �eld on an ON center
LGN neuron of a cat. In the DoG model of the receptive �eld (left) the receptive �eld
has a centred ON region (+) and a surrounding OFF region (-). The �gure to the right
illustrates a two-dimensional spatial receptive �eld pro�le in the x-y plane for an ON center
X-cell, measured using a reverse correlation technique. ON regions are shaded green, and
are represented by solide contours. O� regions are shaded red and represented with dashed
contours. Colour saturation is porportional to strenght. (From Freeman et al. [7].)

Ws(x, y), is positive are ON regions. The neural response is enhanced when the ON
regions are illuminated relative to the background level of illumination. The areas
where Ws(x, y) is negative are OFF regions. The neural response is enhanced when
the OFF regions are darkened relative to the background level of illumination. The
enhancement (excitation) of neural response when stimulated with the preferred lu-
minance is called "push". Contrarily, suppresion (inhibition) caused by darkening
an ON region or illuminating an OFF region, is called "pull". As neurons respond
to change in luminance contrast, they will react to both the onset and the o�set of a
stimulus. For example, onset of illumination in a receptive �eld's ON center causes
the push. O�set of illumination in the receptive �eld's ON center corresponds to
darkening, and causes the pull. This is an example of the so called push-pull e�ect
[8].

Elongated receptive �elds, like the one seen in �gure3.1, show selectivity for edges
in the corresponding direction as the receptive �eld is stretched [8][2]. In contrast to
the elongated spatial receptive �eld of simple cells in the primary visual cortex, the
receptive �eld of retinal ganglion cells and LGN cells has an approximately circular
center-surround organization. The center and the concentric ring have the opposite
polarities, as illustrated in �gure 3.2. The �gure show the result of measurement
of the receptive �eld (right) and the corresponding receptive �eld modelled by a
di�erence-of-Gaussion (DoG) funciton (left). The illustration of the measured re-
ceptive �eld clearly shows a center-surround structure, although the surround is
fairly weak. The receptive �eld seen in the �gure illustrate only one of the two
forms the center-surround receptive �eld can take. Figure 3.2 show an ON-center
receptive �eld (i.e. the ON region is in the center). On the other hand there are
the OFF-center receptive �elds, where the polarities are reversed [7][2]. The circular
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Figure 3.3: Two-dimensional view of the Gaussian functions for the excitatory center
region and the inhibitory surround region of the spatial receptive �eld of an ON centered
neuron, togehter with the di�erence-of-Gaussian function representing the total spatial
receptive �eld. The upper, green line is a Gauss function that illustrates the response
function for the exitatory center of the receptive �eld. The red line is a negative Gauss
curve, that illustrates the response function for the inhibitory surround of the receptive
�eld. The blue line in the middle represents the di�erence of the other two Gaussian func-
tions in the �gure, Ws(x, y). A and B are the amplitudes of the excitation and inhibition,
respectively. a and b measure the width of the center and surround, respectively. (From
Mobarhan [11]).

ON and OFF regions of the receptive �elds of LGN relay cells have conventionally
been modelled by Gaussian functions since this type of model was introduced by
Rodieck in 1965. Now di�erence-of-Gaussian (DoG) models are used to model re-
sponses for neurons in all of the early visual system. DoG models are descriptive
models, as their structure are �tted through experiments. The DoG �lters are of-
ten used in digital image processing for edge detecting, which is the same feature
provided by the center-surround receptive �elds of neurons in retina and LGN. The
di�erence-of-Gaussian function is described by the following equation:

Ws(x, y) =
A

πa2
e−(x2+y2)/a2 − B

πb2
e−(x2+y2)/b2 . (3.1)

A two-dimensional representation of each of the Gauss functions, together with the
di�erence between them are illustrated in �gure 3.3. In equation 3.1, A and B are
the amplitudes of the excitation and inhibition, respectively. The variables x and y
are the receptive �eld center's placement in the visual �eld. The parameters a and
b represent the width of the center and surround, respectively.

As indicated by the spatial center-surround receptive �eld structure of retinal
ganglion and LGN cells, they respond best to circular spots of light surrounded by
darkness (for ON center cells) or to dark spots surrounded by light (for OFF center
cells). However, if for example a spot of light on the ON-center cell expands to �ll
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the surround as well as the center, the push mechanism is put into e�ect. This will
suppress the excitation of the cell. This e�ect allows for edge detecting and reduces
response to di�use or homogeneous patterns. The image sharpening tendency of the
LGN derive from the fact that the pull area exceeds the push area for relay cells
whose receptive �elds lie within the central 10-15 degrees of visual space. Thus the
relay cells are more easily inhibited than exited, and are less likely to �re close to
messy edges.

3.2 Modelling of Temporal Receptive Fields

Receptive �eld illustrations like the one in �gure 3.3 embody only the spatial aspect
of the receptive �eld structure. However, the organization of the receptive �eld is
not static. The spatial structure of the receptive �eld of most neurons changes as a
function of time, and must therefore be characterized in the space-time domain. The
temporal aspect of receptive �elds is far less studied than the spatial. Only recently
have there been developed techniques to analyze the spatiotemporal characteristics
of neural receptive �elds.

Figure 3.4 shows a series of snap shots of the spatial receptive �eld of a neuron
in the primary visual cortex of a cat. The frames reveal the temporal development
of the neural receptive �eld. There is little correlation between the visual stimulus
and the upcoming spike more than 300 ms prior to the spike. In the early frame
that shows the spatial receptive �eld 255 ms prior to the spike, the ON and OFF
regions of the receptive �eld, similar to the one in �gure 3.1, are evident. As the
time approaches the spike time (τ = 0) this structure fades and reverses. The spatial
receptive �eld 75 ms prior to the spike time is reversed compared to at 210 ms prior
to the spike time. Thus, this cell is reactive to an aligned dark-light boundary
that reverts to a light-dark boundary with time. This is a so called called reversal
e�ect, and it is common in temporal receptive �elds. Worth pointing out is the fact
that even though the signs of the di�erent spatial regions change with time, their
locations and shapes remain fairly unchanged. This makes the receptive �eld in
�gure 3.4 space-time separable [7][2].

Figure 3.5 illustrates another way of visualising the dynamics of the receptive �eld
structure. From the x-t plot the one-dimensional spatial organisation as a function
of time is clear. The plot is constructed by obtaining one-dimensional pro�les of the
spatial structure at �nely spaced time intervals (5-10 ms) over a range of time values.
The one-dimensional pro�les are then stacked up to form a surface, that is plotted
as a contour map. The contour map in �gure 3.5 shows an ON center LGN cell of
a cat. This x-t plot shows deviation from separability, even though LGN cells are
approximated to be space-time separable. The temporal response of the surround
region is delayed slightly compared to the center region. Although the reversal e�ect
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Figure 3.4: Temporal evolution of a spatial receptive �eld. Each frame is a plot ofWs(~r, τ)
for di�erent times, τ , prior to the �ring of an action potential. Regions with solid contour
curves are ON areas whereWs(x, y) > 0 and regions with dashed contours show OFF areas
where Ws(x, y) < 0. The curves below the contour diagrams are one-dimentional plots of
the receptive �eld as a function of x alone. The receptive �eld is maximally di�erent from
zero for τ = 74 ms with the spatial receptive �eld reversed from what it was at τ = 210 ms.
(Figure and caption adapted from Dayan and Abbot's textbook in theoretical neuroscience
[2]).

Figure 3.5: Spatiotemporal receptive �eld pro�le (x-t plots) for a ON center X-cell in the
LGN of a cat. The horizontal axis represents space in the x-direction, and the vertical axis
represents time. Solid contours with green shading indicate ON regions, whereas broken
contours with red shading indicate OFF regions. For t < 50 ms, the receptive �eld has
an ON center and and an OFF surround region. However, for t > 50 ms, the receptive
�eld center becomes an OFF region, and the surround becomes an ON region. (Figure and
caption adapted from DeAngelis et al. [7]).
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Figure 3.6: A) Biphasic, B) exponantial decay, and C) Dirac δ-function. These functions
are used to model receptive �eld dynamics. Figure provided by Milad Mobarhan and
adapted in paint.

is evident, as the polarity of the regions in the receptive �eld switch after about 50
ms. Temporal reversal e�ect seen in �gure 3.4 and 3.5, can be described by the
following biphasic function:

Wt,biphasic(t) =


sin(πt/a) 0 ≤ t ≤ a

Bsin(πt/a) a ≤ t ≤ 2a

0 otherwise.

(3.2)

The biphasic function is illustrated in �gure 3.6 A. The parameter B is a damping
factor in the form of a positive number smaller than one, and a is the duration of
each phase of the signal. For example, the phase duration of the signal illustrated in
�gure 3.5 is about 50 ms. Other temporal kernels used in modelling neural networks
are the Dirac δ-function and the exponential decay function:

Wt,delta(t) = δ(t−∆) (3.3)

Wt,decay(t) = e−(t−∆)/τθ(t−∆)/τ. (3.4)

The Dirac δ-function and the exponential decay function are illustrated in �gure 3.6
B and C, respectively. θ(t) is the Heaviside step function. τ is the time constant
and ∆ is the delay. The biphasic, the δ- and the exponential decay functions are all
used for the simulation of an early visual system network in chapter 5.
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Chapter 4

The Mathematical Model (eDoG for
LGN Circuits)

The mathematical model behind the simulations in this thesis is the extended
di�erence-of-Gaussian (eDoG) model, introduced by Einevoll and Plesser [6]. The
eDoG model is a mechanistic, linear, point-neuron model, that links the �ring rate
of LGN relay cells to visual stimuli. The model is named after the mathemati-
cal function it applies to describe the spatial aspect of neural receptive �elds: The
di�erence-of-Gaussian function. The model has been designed to explore the e�ect
of cortical feedback on the response of LGN relay cells. The advantage of the eDoG
model is its e�ciency. Possible e�ects of cortical feedback on LGN cells can be
studied more easily than with extensive numerical simulations of neural networks.

4.1 Impulse-Response Function

The general accepted equation for relating the linear cell response to visual stimulus
in computational neurophysics is given by

R(~r, t) =

∫
τ

∫∫
~r0

W (~r − ~r0, τ)S(~r0, t− τ)d2~r0dτ. (4.1)

The neural response, R(~r, t), is related to the stimulus by the impulse-response
function, W(~r, τ). The impulse-response function determines how strongly, and
with what sign, the visual stimulus, S(~r, t), at point ~r = (x, y) and time t− τ a�ects
the �ring rate of the neuron at time t. Thus the impulse response function is closely
connected to the receptive �eld function. In fact, the impulse-response function
is the mirrored version of the receptive �eld function, F (~r) = W (−~r) [6]. The
spatial integral of equation 4.1 sums the contributions to the neural response over
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all to-dimensional space. The temporal integral sums the contributions to the neural
response from negative in�nity to positive in�nity (τ = −∞ to τ =∞) to satisfy the
general expression of the Fourier transform. The lower integration boundary could
as well have been set to zero, as it follows from causality that W (~r, τ < 0) = 0.
The equation assumes linearity; it holds for neurons where the contributions from
di�erent locations within the visual �elds sum in a linear matter. This is the case
for e.g. the X-cell in the cat retina and LGN, and simple cells in primary visual
cortex. Equation 4.1 is a convolution between the impulse-response function and
the stimulus, i.e.

R(~r, t) = W(~r, t)⊗ S(~r, t). (4.2)

The Fourier transform of equation 4.1:

R(~r, t) =
1

2π3

∫
ω

∫∫
~k

e−i(
~kr−ωt)W̃ (~k, ω)S̃(~k, ω)d2~kdω. (4.3)

W̃ (~k, ω) and S̃(~k, ω) are the Fourier transformed impulse-response function and
stimulus, respectively. The �ring rate, R(~r, t), is an in�nite sum over the drifting,
sinusoidal gratings speci�ed by the wave vector, ~k, and the angular frequency, ω.
The wave vector is related to the spatial frequency via ~|k| = 2πν. The angular
frequency is related to temporal frequency via ω = 2πf . The complex Fourier
transformed used for the transformation, and its inverse, are given by

ỹ(~k, ω) =

∫
t

∫∫
~r

e−i(
~kr−ωt)y(~r, t)d2~rdt, (4.4)

y(~r, t) =
1

(2π)3

∫
ω

∫∫
~k

ei(
~kr−ωt)ỹ(~k, ω)d2~kdω. (4.5)

4.2 Coupling Function

Neural response to input from another cell, as opposed to response to visual stimuli,
can be described as a convolution analogue with equation 4.1,

Rm(~r, t) =

∫
τ

∫∫
~r0

Kmn(~r − ~r0, τ)Rn(~r0, t− τ)d2~r0dτ

= Kmn(~r, t)⊗Rn(~r, t),

(4.6)

with Kmn(~r, t) corresponding to the impulse-response function and Rn(~r, t) corre-
sponding to the stimuli. Rm(~r, t) and Rn(~r0, t−τ) are the impulse-response functions
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of cell m and n, respectively. K̃mn(~r, t) is the coupling function, which describes the
transfer ratio from cell n to cell m. Equation 4.6 is Fourier transformed in the same
manner as shown above for equation 4.1.

4.3 The Geniculate Transfer Function

Einevoll and Plesser [5] introduce an important relation between a neuron's impulse-
response function and the coupling functions for the connected cells. This was done
by introducing a function for a drifting grating pattern of luminance as S̃(~k, ω) in
equation 4.3 for a retinal ganglion cell. Further the result of the equation for the
ganglion cells response was introduced into the Fourier transformed version of the
equation 4.6 for relay cell response. By comparing this calculation of relay cell
response with equation 4.3 for a relay cell response to visual stimulus, the relation
becomes evident. The transfer ratio from a ganglion cell to a relay cell is only
dependent of the coupling function K̃rg(~k, ω). As this will hold for the connection
between all the cells in the early visual system, the more general relationship can
be stated:

W̃m(~k, ω) = T̃mn(~k, ω)W̃n(~k, ω) (4.7)

Where T̃mn(~k, ω) is the geniculate transfer function. The transfer function is depen-
dent only of the coupling functions between the connected cells, rather than their
impulse-response functions.

4.4 Coupling Scheme

The derivation of the geniculate transfer function, T̃rg(~k, ω) between retinal ganglion
cell and LGN relay cells is based on knowledge of the neuronal connectivity in the
LGN. Einevoll and Plesser [6] modi�e the neural connections shown if �gure 2.3 into
the connections shown in �gure 4.1. The neurons in the latter �gure re�ect neuron
populations, and the coupling function for each connection is stated. Figure 4.1
illustrates that the feedforward inhibitory input from the LGN interneuron to the
relay cell is regarded as an indirect inhibition from the retinal ganglion cell. Thus
the ganglion cells are considered to provide both excitatory and inhibitory input
to the relay cell. Pathways from two ganglion cells, one ON-center and one OFF-
center, are included to emphasize the cross connection between cortical and relay
cells. The cortical cell populations provide both excitatory feedback and indirect
inhibitory feedback, as described in section 2.2.4. As mentioned in chapter 3.1, the
spatial receptive �eld of a simple cortical cell, as the one in �gure 3.1, imply that
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Figure 4.1: Schematic view of the simpli�ed geniculate circuit for ON-cells and OFF-cells
in the eDOG model. The neurons involved are retinal ganglion cells (G), geniculate relay
cells (R), and cortical cells (C). Figure collected from Mobarhan's documentation, [9].

cortical cells are orientation selective (i.e. they respond more signi�cant to a stim-
ulus with a speci�c orientation). The eDOG model consider a set of N mutually
uncoupled, orientation-selective cortical populations Cn, for n = 1, 2, ..., N . They
respond preferably to stimuli with orientation θn. Based on the impulse-response
function, the coupling function and the constructed representation of neural connec-
tivity presented in �gure 4.1, Einevoll and Plesser (2012) [6] present the following
coupling scheme for response of ON-center neurons in the early visual system:

RON
g (~r, t) = WON

g (~r, t)⊗ S(~r, t)

RON
c (~r, t) = KON

cnr (~r, t)⊗RON
r (~r, t)

RON
r (~r, t) = KON

rg (~r, t)⊗RON
g (~r, t)

+KON
rig (~r, t)⊗RON

g (~r, t)

+ ΣnK
ON
rcn (~r, t)⊗RON

cn (~r, t)

+ ΣnK
OFF−X
rcn (~r, t)⊗ROFF

cn (~r, t).

(4.8)
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In this set of equations Rg, Rr and Rcn are the responses of retinal ganglion cells,
relay cells, and cortical cells, respectively. S(~r, t) represents the visual stimulus.
KON

jk (j, k : g, r, cn) is the linear, spatiotemporal coupling function from ON-neurons
of type k onto ON neurons of type j. The coupling function decides how the �ring
rate of cell type k at position r0, and time t = 0 a�ects the �ring rate of cell type j at
position ~r a time τ later. The coupling function KON

rig represents the indirect signal
from ON ganglion cells, via interneurons, onto ON relay cells. KOFF−X

rcn represents
the cross-coupling feedback from cortical OFF cells onto relay ON cells. This set
of equations is the basis for the derivation of the LGN relay cell impulse response
function, W̃ON

r [6].

4.5 Impulse-Response Function of LGN Relay

Cells

Einevoll and Plesser [6] make three assumptions in order to derive an impulse-
response function for the LGN relay cell: Firstly the response functions for the
cortical cells are half-wave recti�ed functions, so that

RON
cn (~r, t) = [KON

cnr ⊗R
ON
r (~r, t)]+. (4.9)

Secondly the input to the half-wave rectifying function for the cortical OFF cell is
exactly the negative of the input to the half-wave rectifying function for the cortical
ON cell,

ROFF
cn (~r, t) = [−KON

cn ⊗R
ON
cn (~r, t)]+ (4.10)

Thirdly the cross-connected feedbacks from the ON and OFF cortical cells are phase-
reversed,

KOFF−X
rcn = −KON

rcn . (4.11)

Using these assumptions and the mathematical identity [x]+ − [−x]+ = x on the
coupling scheme in section 4.4, Einevoll and Plesser (2012) derive the following
equation for LGN relay impulse-response functions [6]:

W̃ON
r = T̃ON

rg (~k, ω)W̃ON
g (~k, ω)

=
K̃rg(~k, ω) + K̃rig(~k, ω)

1− ΣN
n=1K̃

ON
rcn (~k, ω)K̃ON

cnr (~k, ω)
.

(4.12)

The �rst and second term of the numerator represent the direct feedforward excita-
tion from retinal ganglion cells and the indirect feedforward inhibition via interneu-
rons, respectively. The sum in the denominator represents the corticothalamic loop
formed of all N cortical populations.
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As mentioned in chapter 3.1, simple cortical cells have elongated spatial receptive
�elds, and they are not spatiotemporal separable. Although this is the case for the
individual contribution of the sum, Einevoll and Plesser [6] ague for the possibility of
considering the sum as a whole as spatiotemporal separable. They point out that if
there were in�nitely many cortical populations, N =∞, with orientation preference
θn, the sum of their receptive �elds would include all 360 degrees of orientation pref-
erence, and thus be circular symmetric. So the sum in the denominator of equation
4.12 can be regarded as a circular, spatiotemporal separable receptive �eld, equal
to those of retinal ganglion and LGN relay cells. Even though no particular cortical
population responds strongly to a circular spot, all cortical populations respond to
some extent, and the sum of the many small responses from the total number of
cortical populations, will contribute to an overall signi�cant cortical feedback e�ect.
Equation 4.12 can then be rewritten as

W̃r(~k, ω) =
K̃rg(~k, ω) + K̃rig(~k, ω)

1− K̃rcr(~k, ω)
W̃g(~k, ω), (4.13)

where K̃rcr(~k, ω) is the summed loop (i.e. pathway from LGN to cortex and back)
coupling function of all cortical populations. In this equation all coupling functions
are spatiotemporal separable, so that each coupling function can be written as a
product of a spatial and a temporal factor: K̃(~k, ω) = f̃(~k)h̃(ω). Finally, Einevoll
and Plesser [6] merge the direct excitatory coupling function K̃rg with the indirect
inhibitory coupling function K̃rig. The result is a coupling function that contributes
with both push (directly from the ganglion cell) and pull (indirectly via the interneu-
ron). The �nal equation for the impulse-response function of the relay cell is given
by

W̃r(~k, ω) =
f̃ff(~k)h̃ff(ω)

1− f̃fb(~k)h̃fb(ω)
. (4.14)

In this equation the spatial and temporal part of the contribution (both push and
pull) from the ganglion coupling functions is given by f̃ff(k) and h̃ff(ω), respectively.
The spatial and the temporal part of the contribution (both push and pull) from the
coupling function for all cortical populations is given by f̃fb(k) and h̃fb(ω), respec-
tively. The new coupling functions are labelled "�" and "fb" for "feedforward" and
"feedback", respectively. Equation 4.14 is the foundation for the simulation tool
that will be used later on in this thesis.



Chapter 5

Simulation

Study of the cortical feedback's in�uence on LGN relay cell response is currently
being performed at Centre for Integrative Neuroplasticity (CINPLA). PhD candi-
date Milad Mobarhan at CINPLA has recently developed a simulation tool based
on Einevoll and Plesser's mathematical eDoG model, to aid this research. The sim-
ulation tool has been the foundation for the study of temporal aspects of cortical
feedback in this thesis.

5.1 Programming Tools

The following sections brie�y explain the general programming tools that has been
used for this thesis.

5.1.1 Python

Python is an interpreted, object-oriented, high-level programming language. The
advantage with Python is its simple syntax, which emphasizes readability and in-
creased productivity. Also, programme code written in python is easier to access
for the general scienti�c user, without too much experience with more low-level
programming. Python supports modules and packages, which encourages program
modularity and code reuse. The Python interpreter and the extensive standard li-
brary are available without charge for all major platforms. Python version 3.6.0 was
used for this thesis.

5.1.2 Spyder

Spyder is an open source, cross-platform integrated development environment (IDE)
for scienti�c programming in Python. It has advanced editing, interactive testing,
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debugging and introspection features. Spyder integrates commonly used libraries
such as matplotlib (interactive 2D/3D plotting), NumPy (linear algebra) and SciPy
(signal and image processing), along with IPython (interactive computing command
shell), and other open source software. Spyder is included in certain Python scienti�c
distributions, for example Anaconda. Spyder version 3.1.2 was used for this thesis.

5.1.3 Anaconda

Anaconda is an open data science platform powered by Python. It is a Python
distribution and a package and environment manager, which includes many of the
most popular Python packages for data science. An advantage with Anaconda is
that is a multi platform, and can be used with ease whether on all operative systems
Windows, macOS or Linux. Anaconda version 4.3.1 was used for this thesis.

5.1.4 GitHub

Git is a version control system (VCS) for tracking changes in computer �les, and
coordinating work on �les among multiple people. GitHub, a web-based Git, was
used for this thesis. An advantage of GitHub is that it o�ers all of the distributed
version control and source code management functionality of Git, but also provide its
own features: Access control and several collaboration features such as bug tracking,
feature requests, task management, and wikis for projects. The source code for the
neural circuit simulation tool by Milad Mobarhan is available on GitHub [11]. Also,
the application of pylgn that provides this thesis' results is available on GitHub [14].

5.2 Neural Circuit Simulation Tool (pylgn)

The LGN simulator is a �ring-rate based, visual stimulus-driven simulator of spa-
tiotemporal cell responses in LGN. The mathematical model behind this simulator
is Einevoll and Plesser's eDoG model from section 4. The LGN simulator is an
open source software, available on GitHub [11] for both C++ (lgn-simulator) and
Python (pylgn). For this thesis the python version of the simulator was used. The
application programming interface (API) for pylgn is found in the source code doc-
umentation [10], together with installation instructions. The network created to
study temporal aspects of cortical feedback with pylgn will be discussed, after a
simple example application is provided.



5.2. NEURAL CIRCUIT SIMULATION TOOL (PYLGN) 27

5.2.1 Example Application

This section illustrates the application of pylgn with a simple example. A modest
network consisting of two cell populations is constructed. It is assumed spatiotem-
poral separable receptive �elds for the neurons. The �rst step in implementing pylgn
is to create a network, which is done in the following way:

import pylgn

import pylgn.kernels.spatial as spl

import pylgn.kernels.temporal as tpl

network = pylgn.Network ()

Listing 5.1: Python code for creating a network with pylgn

The code above imports the pylgn package, including the spatial and temporal mod-
ules. The created network (named "network" in this case) is an object that contains
classes for creating and containing neuron, kernel and stimuli objects. The next step
in the implementation of pylgn is to create an integrator, as computational physic's
computer simulations often include. The purpose of an integrator is to numerically
integrate the contributions from inputs that are only calculated at discrete points.
In pylgn the integrator de�nes a spatial grid of a visual �eld, which the contributions
from stimuli are integrated over for space and time. The code below generates an
integrator with 2nt and 2ns spatial and temporal points, respectively. The temporal
and spatial resolutions are determined by dt and dr, respectively. If units are not
given the resolution arguments, "milliseconds" and "degrees" are used by default
for dt and dr, respectively. The integrator is constructed the following way:

integrator = network.create_integrator(nt=5,nr=7,

dt=1,dr=0.1)

Listing 5.2: Python code for creating the integrator with pylgn

Further, neurons can be added to the network using the network's create_* meth-
ods. The available neurons already implemented in pylgn are retinal ganglion cell,
LGN relay cell and cortical cell. Their attributes can be reviewed in pylgn's docu-
mentation [10]. For the ganglion cell, which unlike the other neurons receives visual
stimulus (as explained in chapter 2.2.1) the impulse-response function is given as an
argument. In the example below, the spatial and temporal impulse-response func-
tions, Wg,s and Wg,t are given as arguments. If no arguments are given the default
factors of the impulse-response function are a spatial DoG function and a tempo-
ral Dirac δ-function. Neuron's attributes are stored in a dictionary in the neuron
objects. Printing, for example, "vars(ganglion)" in the Spyder colsole displays the
attributes for the ganglion cell. A relay and a ganglion cell are constructed the
following way:
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ganglion = network.create_ganglion_cell(kernel =(Wg_s ,Wg_t))

relay = network.create_relay_cell ()

Listing 5.3: Python code for creating a ganglion cell and a relay cell with pylgn

Kernels can also be added to the network using create_* methods. The avail-
able spatial kernels already implemented in pylgn are Gauss, di�erence of Gaussian
(DoG) and Dirac delta. The available temporal kernels are Dirac delta, biphasic
and exponential decay. One can create and implement new kernels using the pro-
gramming function given in the plgn documentation [10] in the kernel section. The
example below creates a temporal and a spatial kernel for the coupling between
ganglion cell and relay cell. The network method connect() assigns kernels to
their respective neuron connection. The method has the following signature: con-
nect(source, target, kernel, weight), where "source" and "target" are the source and
target neurons, respectively. The argument "kernel" is the coupling function, and
"weight" is the connection weight (default is weight=1). If a separable coupling
function is implemented then a tuple consisting of the spatial and temporal part
is given as the "kernel" argument. Kernels are constructed and assigned in the
following way:

Krg_r = spl.create_dog_ft ()

Krg_t = tpl.create_delta_ft ()

network.connect(ganglion , relay , (Krg_r , Krg_t))

Listing 5.4: Python code for creating coupling functions and connecting neurons with
pylgn

The kernel parameters are stored in dictionaries among all other neuron attributes
in the neuron objects. The neuron attribute dictionary is quite long, therefore it is
more convenient to simply show a part of it. When writing into the Spyder console
"print(pylgn.closure_params(k))", where k is a random kernel, a print showing the
parameters of k is displayed. An example print of a dictionary with kernel param-
eters is seen in the box right below. The kernel used for the print was the DoG
coupling function Krg,r from above.

{'center ': {'params ': {'A': 1, 'a': array (0.62) * deg},

'type': 'create_gauss_ft '},

'surround ': {'params ': {'A': 0.85, 'a': array (1.26) * deg}, '

type':

'create_gauss_ft '}}

Listing 5.5: Print of dictionary containing DoG kernel parameters
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Last thing to be integrated in the network is the stimulus - this in not necessary
if one study only the impulse response function of a network, as the impulse re-
sponse is independent of stimulus. Stimulus is added to the network using the
network's stimulus.create_* methods. A full-�eld grating stimulus, like the one
created below, has several parameters, including angular frequency ω, wave num-
ber, k, orientation, θ, and contrast, c. The contrast is not set in this example, and it
will therefore be set do the pylgn's prede�ned default value, c = 1. All kernels in the
network will be Fourier transformed according to the transformation in section 4.1
when computing the impulse-response or the response of a cell with pylgn. This is
also the case for the stimulus. When using the analytical expression for the Fourier
transform of the grating stimulus, it is necessary to make sure that the chosen an-
gular and spatial frequencies exists within the transformed grid. The temporal and
spatial frequencies are determined by the number of points and resolution set in the
integrator. A simple way of choosing frequencies is to adapt values that has already
been created in the Fourier transformation of the integrator. This is done by col-
lecting the desired frequency element from the integrator's lists "spatial_freqs" and
"temporal_freqs" of transformed spatial and temporal frequencies, respectively. In
the example below element "3" and "1" are chosen from the spatial_freqs list and
the temporal_freqslists, respectively.

k_g = integrator.spatial_freqs [3]

w_g = -integrator.temporal_freqs [1]

stimulus = pylgn.stimulus.create_fullfield_grating_ft

(angular_freq=w_g , wavenumber=k_g , orient =0.0)

network.set_stimulus(stimulus)

Listing 5.6: Python code for creating stimulus with pylgn

Finally the relay cell response can be computed. The code in the box below computes
the response of the LGN relay cells, and animate the activity over time:

network.compute_response(relay)

pylgn.plot.animate_cube(relay.response)

Listing 5.7: Python code for computing LGN relay cell response and make an animated
plot with pylgn

5.2.2 Create Network

A bigger network than the one in the example above is needed to study the impact
of cortical feedback on the LGN relay cells. Spatiotemporal summation curves were
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made with pylgn to study temporal aspects of cortical feedback. For this purpose
the integrator arguments were set to nt = 10, nr = 7, dt = 1, dr = 0, 1. Thus this
is a grid with with 210 = 1024 temporal points and 27 = 128 spatial points. As the
spacing is 0,1 degree for the spatial points and 1 ms for the temporal points, the
grid reaches over 12,8 degrees in each directions for 1024 ms. This resolution will
be su�cient to see trends when responses are plotted.

5.2.3 Create Neurons

It was necessary to create more neurons than in the example to study cortical feed-
back. As mentioned in section 4.5, and as established by equation 4.14, the signals
from LGN interneurons and TRN cells are considered as a part of the feedforward
contribution from ganglion cells and feedback from cortical cells. For this reason
they do not need to be created as neurons, but as additional pull features of the
coupling functions. To study cortical feedback it will be necessary to create a pop-
ulation of retinal ganglion cells, LGN relay cells and cortical cells. For the purpose
of studying temporal delay e�ects for excitation and inhibition separately, two pop-
ulations of cortical cells were created and assigned separate coupling functions. One
cortical cell will represent the excitation and the other the inhibition of the corti-
cal feedback. The excitation derive from the direct feedback from the cortical cell
population itself, while the inhibition derive from the indirect feedback via the the
interneuron and the TRN cell populations - remember the coupling scheme in �gure
?? in section 2.2. The advantage gained by separating excitation and inhibition of
the cortical feedback is the opportunity to vary their parameters separately. It is
reasonable to assume that the inhibitory feedback will be delayed compared to the
excitatory feedback, as a result of synapses via interneurons and TRN cells. The
neurons in the main network were created by implementation of pylgn as showed
below:

ganglion = network.create_ganglion_cell ()

relay = network.create_relay_cell ()

cortical_exci = network.create_cortical_cell ()

cortical_inhi = network.create_cortical_cell ()

Listing 5.8: Python code for creating neurons for the main network with pylgn

The two neurons are labelled "exci" and "inhi", as one represents the excitatory and
inhibitory cortical feedback. From now on they will be referred to as "excitation
cell" and "inhibition cell".
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5.2.4 Choice of Coupling Functions and Parameters

The kernels used to form the main network is given in the following programme
code:

# create spatial kernels

Wg_s = spl.create_dog_ft(A=1.00, a=0.62 *pq.deg ,

B=0.85, b=1.26 *pq.deg)

Krg_s = spl.create_gauss_ft(A=1, a=0.1*pq.deg)

Kcr_s = spl.create_delta_ft ()

Krcr_exci_s = spl.create_gauss_ft(A=1, a=(0.1) *pq.deg)

Krcr_inhi_s = spl.create_gauss_ft(A=2, a=(0.9) *pq.deg)

# create temporal kernels

Wg_t=tpl.create_biphasic_ft(phase_duration =42.5 *pq.ms,

damping_factor =0.38,

delay =0 *pq.ms)

Krg_t = tpl.create_exp_decay_ft (18 *pq.ms, delay = 1 *pq.ms)

Kcr_t = tpl.create_delta_ft ()

Krcr_exci_t = tpl.create_exp_decay_ft (1 *pq.ms,

delay = 2 *pq.ms)

Krcr_inhi_t = tpl.create_exp_decay_ft (1 *pq.ms,

delay = 20 *pq.ms)

Listing 5.9: Python code for creating the impulse-response function and coupling
functions for the main network with pylgn

As seen in the box above, the spatial part of the impulse-response function for
the ganglion cell, Wg,s, has been modelled as a spatial DoG, given by equation
3.1. The parameters for the DoG functions, A = 1.00, a = 0.62, B = 0.85, b =
1.26, are adapted from Mobarhan [10]. The temporal part of the impulse-response
function, Wg,t, has been modelled as a biphasic function, given by equation 3.2.
The parameters for the biphasic function, a = 042.5 ms and B = 0.38, were adapted
from Nordheim et. al. [16]. The box above shows that the kernel representing the
connection between ganglion and relay cell has been modelled as a spatial Gauss
function described by the �rst part of equation 3.1, and a temporal exponential decay
function from equation 3.4. The kernels Krcr,exci,s and Krcr,exci,t specify the thalamo-
cortico-thalamic loop for the excitatory cell. The kernels Krcr,inhi,s and Krcr,inhi,t

specify the thalamo-cortico-thalamic loop for the inhibitory cell. The spatial kernels
for the center and surround cell were modelled as Gauss functions, which correspond
to the �rst (center) and second (surround) part of equation 3.1. The box above shows
that the spatial parameters are set to A = 1, a = 0.1 for the excitatory cell and
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A = 2, a = 0.9 for the inhibitory cell. The temporal kernels for the excitatory and
inhibitory cell were modelled as exponential decay functions from equation 3.4. The
time constant, τ , is set to 1 for both the center cell and the surround cell. The
delays that are displayed in the box above are set to 2 ms and to 20 ms for the
center and the surround, respectively. The delay parameters are varied to obtain
di�erent spatiotemporal summation curves. As mentioned in section 2.2.4, the loop
has a time window between three to ten seconds, the delay parameter used to create
the summation plots represent an extreme value. This is chosen intentionally to
emphasize eventual e�ects of cortical feedback

Concluding the announcement of kernels and parameters is a remark of kernel
Kcr,s. The cortical loop is already accounted for by the kernel Krcr,cen and Kexci,inhi.
As seen in the box below, Krcr,cen and Kexci,inhi are assigned the connection from the
cortical cells to the relay cell. The connect() method that makes the connection
from the relay cell to the excitatory and inhibitory cortical cells need an argument
that does not interfere with the loop kernel. The solution is to choose a δ-function
from equation ?? for the spatial and temporal part of the kernel. This is a natural
solution because the Fourier-transformed of a δ-function is one when t = 0, which
is the default argument of the create_delta_ft() method.

# set impulse -response function

ganglion.set_kernel(kernel =(Wg_s ,Wg_t))

# set coupling functions

network.connect(ganglion , relay , (Krg_s , Krg_t), 1.0)

network.connect(cortical_exci , relay ,

(Krcr_exci_s , Krcr_exci_t), 0.6)

network.connect(cortical_inhi , relay ,

(Krcr_inhi_s , Krcr_inhi_t), -0.6)

network.connect(relay , cortical_exci , (Kcr_s , Kcr_t), 1.0)

network.connect(relay , cortical_inhi , (Kcr_s , Kcr_t), 1.0)

Listing 5.10: Python code for establishing the connections between the neurons in the
main network with pylgn

A �nal remark of the created network: In the kernel weight, as seen in the box
above, are all set to one, except for the loop kernel, which is set to positive and
negative 0.6. This parameter is chosen on the suggestion of Mobarhan. The cortical
feedback might be "turn o�" by setting the weight parameters for the cortical loop
to zero. The polarity (ON or OFF) of the receptive �eld regions might be inverted by
changing the signs of the weight parameters for the excitatory cell and the inhibitory
cell. Note that they should always be opposite.
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5.2.5 Stimuli

The stimuli often used to provoke neural response in visual experiments has been
either moving bars (gratings), a patch with dynamic or static grating, or a simple
�ashing spot. Pylgn implements two di�erent stimuli: "full-�eld grating" and "patch
grating". The stimuli integrated in pylgn are given by a mathematical functions
dependent of the wave number (spatial frequency), kpg, the angular frequency, ωpg,
the orientation, θ, the contrast C, and the patch diameter, d. This is seen by the
arguments of the stimulus.create_fullfield_grating_ft() method in the example
application in section 5.2.1. The function for a patch grating is given by

spg(~r, t) = C(1−Θ(~r − d/2))cos(kpg~r − ωpgt), (5.1)

where Θ(x) is the Heaviside step function. A static spot is obtained by setting
k = ω = 0. These are the two stimuli used for studying the e�ect of cortical feedback
in this thesis. An oscillating spot is created by setting the spatial frequency, kpg, of
the stimulus equal to zero.
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Chapter 6

Spatial E�ects of Cortical Feedback
on LGN Relay Cells,

It is desirable to compare the result provided by a model with the results from
corresponding experimental data, to verify that the model account for the same
qualitative tendencies as data. Experiments that remove cortical feedback (e.g. by
surgical or pharmacological means) are scarce in literature [6]. However, Sillito et
al [17] measured the e�ect of cortical feedback on the response properties of LGN
relay cells. One of their experiments involved comparing responses of LGN cells to
�ashing circular spots to circular patches of drifting gratings. The experiment reviled
that cortical feedback causes enhancement in the strength of patch suppression.
Patch suppression is the reduction of the response to a large spot, compared to
the maximum response to a spot covering just the receptive �eld center. This is
illustrated in �gure 6.1.

Figure 6.1: Illustration of patch suppression in a plot of response (y-axis) to stimuli with
increasing patch diameter (x-axis). (From Sillito et al. [1])
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The result of the experiment by Sillito et al. is summarised in �gure 6.2. The �gure
shows that for circular spots the patch suppression is qualitatively the same with and
without cortical feedback. For circular patches of drifting grating the experiment
reviled a similar suppression when the feedback was intact, while the suppression
was signi�cantly reduced in the absence of cortical feedback.

Figure 6.2: E�ect of cortical feedback in LGN cells for varying diameter of stimulus. Plot
a and b show responses to a �ashing spot. Plot c and d shos responses to patch grating.
Plot a and c are from neurons with intact cortical feedback. Plot b and d show response
of cells in the absence of feedback. (From Sillito et al. [17])
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6.1 Previous Work Including eDoG Model and

Pylgn

Mobarhan has used the experimental result provided by Sillito et al. [17] to explore
feedback and feedforward parameter for the eDoG model with pylgn. Mobarhan
plotted the center excitation and the surround inhibition for di�erent widths of the
center (arcr) and surround (brcr) excitation or inhibition, respectively. Figure 6.3
shows a di�erence-of-Gaussian function where "center excitation", and "surround
inhibition" are indicated. Figure 6.3 illustrate that the terms "center excitation"
and "surround inhibition" refers to the impulse-response function's max value of
excitation and max value of inhibition, respectively. Figure 6.4 shows two plots from
Mobarhans work [15]. The �gures illustrate center excitation (left) and surround
inhibition (right).

Figure 6.3: 2D plot of the spatial impulse-response function, Wr(x, y), for the LGN relay
cell modelled as a DoG function of the form in equation 3.1. The plot illustrates that the
"center excitation" is the maximum value of exitation, and that the "surround inhibition"
is the maximum value of inhibition. (From Mobarhan et al. [15])

From the experimental results of Sillito et al. it is established that feedback increase
suppression of response to a patch stimuli with a certain size. Thus, the tendencies
of interest is an increased excitation and inhibition. The sizes of the excitatory
and inhibitory receptive �eld areas providing results in correspondence with these
tendencies are chosen as Gaussian parameters for the mathematical model. Figure
6.4 is taken from Mobarhan's work [15]. The plots show that the suppression is
greatest for small excitatory center widths and larger inhibitory surround widths.
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This is the reason for the Gauss parameters a = 0.1 and a = 0.9 for the excitatory
and inhibitory spatial feedback kernels, krcr,ex and krcr,in, respectively, which are
described in section 5.

Figure 6.4: Plot of center excitation (left) and surround inhibition (right) for di�erent
widths of the center (arcr) and surround (brcr receptive �elds. (From Mobarhan et al. [15]).

This is just an example of parameter exploration by plotting and comparing to
experimental characteristics. More exploration have been done for the feedback,
kfb, and the feedforward, kff , coupling kernels [?].

6.2 Validation of Network

All though the intentions with the plots in section 6.1 is to tune parameters, the plots
will function as validation in this thesis. A method for validating the constructed
network presented in chapter 5, is to recreate previous work. If the created network
produces the same tendencies with the center excitation and surround inhibition as
Mobarhan's results in �gure 6.4, it can be concluded that the constructed network
is reliable. Figure 6.5 shows a corresponding plot that shows center excitation and
surround inhibition for the constructed network.

The plot in �gure 6.5 shows the same tendencies as the previous work of Mo-
barhan in �gure 6.3, thus the constructed network from chapter 5 is validated. The
programme code used to create �gure 6.5 is included in appendix B.
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Figure 6.5: Plot of center excitation (left) and surround inhibition (right) from the
impulse-response function for an LGN relay cell, according to the de�nition illustrated in
�gure 6.3. The simulation was preformed with integrator parameters: nt = 1, nr = 7,
dt = 1 ms, dr = 1 deg. The temporal kernels were modelled as Dirac δ-functions. DoG
parameters for the impulse response of ganglion cell, Wg,s: A = 1, a = 0.62.deg, B = 0.85,
b = 1.26. Gauss parameters for the coupling kernel krg,s: A = 1, a = 0.1. The excitatory
and inhibitory cell's Gauss parameters: A = 1 and A = 0.5, respectively, while a for
both cells were varied between zero and three degrees. Feedback weight: wfb,ex = 0, 5
and wfb,in = −0, 5. The remaining kernel weights were set to one. (Plot was generated in
Spyder).
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Chapter 7

Temporal E�ects of Cortical
Feedback on LGN Relay Cells

Section 5.2.4 explained that the temporal kernel for the feedback loop were chosen
to be the exponential decay function in equation 3.4. The parameters of equation
3.4 are the delay ∆, and time constant, τ . These parameters represent the temporal
features of cortical feedback in the constructed network. The time constant represent
the ratio of decay of function 3.4, i.e. it determines for how long the feedback is
e�ective on the response of the post-synaptic neuron. An increase in τfb for cortical
feedback is referred to as having a prolonged feedback. Another e�ect of increasing
τfb is a smaller maximum value of the temporal feedback kernel, as equation 3.4 in
normalised with respect to τfb itself. A relay cell's delay value represent the duration
of the feedback loop, i.e. the delay between the signal transmttion from the reley cell
and feedback received from cortex. As mentioned in section 2.2.4, the feedbackloop
takes between three and ten ms. Thus, a delay value of 30 ms is an extreme value;
an extreme value is chosen intentionally to emphasize possible in�uential e�ects. A
time constant value of 1 is also an extreme value, chosen for the same purpose. A
more reaonable value for the time constant of cortical feedback is 39 ms, accorting
to Norheim et al. [16]. In this chapter feedback with delay value set to 30 ms (as
opposed to 0 ms) are considered delayed, and feedback with time constant set to 39
ms (as opposed to 1 ms) are considered prolonged.

To explore how delay and prolonging of the feedback components a�ect the re-
sponse of LGN relay cells, the response of an LGN relay cell were simulated for three
di�erent stimuli: An oscillating spot (kpg = 0 /deg), a patch grating with spatial fre-
quency kpg = 0, 49/deg, and a patch grating with spatial frequency kpg = 1, 47/deg.
Di�erent combinations of values for the time constants, τ , and the delay, ∆, for the
separate feedback components (excitatory and inhibitory) were explored in numer-
ous simulations for each stimuli. First, two simulations were run where the feedback

41
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components were sequentially "turned o�", by setting their feedback weight to zero.
This served as another validation of the constructed network, as the outcome is
foretold by de�nition, as explained in section 2.1.2. Secondly, simulations were done
for networks with both excitatory and inhibitory feedback components included.
Di�erent combinations of delay and prolonging of the feedback components were
implemented. For example, in�uence from a delayed excitatory feedback and a non-
delayed inhibitory feedback, was explored by a simulation were the delay parameters
were set accordingly: ∆fb,ex = 30ms and ∆fb,in = 0ms. The time constant was set
to 1 ms for the exploration of e�ects provoked by delay. Then the same test was
performed for both feedback components for delay, prolonging and a combination.

Neural response with respect to stimulus diameter and time are illustrated by
colour maps, inspired by Einevoll et al. [4]. The plots show the spatiotemporal
summation curve of LGN relay cell responses for stimulus diameters between zero
and three degrees, during a time window from zero to 1023 ms. Each colour map
presented in this chapter shows the result of a separate simulation of the constructed
network described in cahpter 5. The programme code that sett up the network and
simulates the LGN relay response to a visual stimuli and plots the summation curve
is included in appendix A. Parameters that are not de�ned in the following sections
have been set according to section 5.2.4 and apendix A.

7.1 Response to Oscillating Spot

Figure 7.1 show the responses of an LGN relay cell when the network is stimulated
with an oscillating spot with angular frequency ω = 6, 14 Hz, and cortical feedback
are excluded. Figure 7.2 show the relay cell's response to the same stimulus when
only inhibitory feedback is present. Figure 7.3 show the relay cell's response to
the same stimulus when only the excitatory feedback is present. Figure 7.2 reveals
reduction of neural response, and �gure 7.3 reveals enhancement in neural response.
These results agrees with theory, explained in chapter 2, and it is concluded that
the simulations with pylgn provide the expected results.

Figure 7.4 show the response of an LGN relay cell for six di�erent feedback sce-
narios for stimulus with an oscillating spot. All scenarios in �gure 7.4 includes both
excitatory and inhibitory feedback. In �gure 7.4A and 7.4B delay was added to the
excitatory and inhibitory feedback, respectively, excluding prolonging of feedback.
In �gure 7.4C and 7.4D prolonging was added to the excitatory and inhibitory feed-
back, respectively, excluding delay of feedback. In �gure 7.4E and 7.4F delay was
added to the excitatory and inhibitory feedback, respectively, while both feedback
components were prolonged. As the spot oscillates, it has a push-pull e�ect (ex-
plained in section 3.1) on the LGN relay cell, and the cell's response is expected to
oscillate with time (in the horizontal direction). The temporal oscillation is seen in
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Figure 7.1: LGN relay cell response to an oscillating spot with angular frequency ω = 6, 14
Hz. No cortical feedback (wfb,ex,in = 0). (Figure generated in Spyder.)

Figure 7.2: LGN relay cell response to an oscillating spot with angular frequency ω = 6, 14
Hz, and removed excitatory feedback. The inhibitory feedback is delayed and prolonged.
(Figure generated in Spyder.)
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Figure 7.3: LGN relay cell response to an oscillating spot with angular frequency ω = 6, 14
Hz, and removed inhibitory feedback. The excitatory feedback is delayed and prolonged.
(Figure generated in Spyder.)

all plots in �gure 7.4, as expected. What is also seen in the plots is that the temporal
oscillation varies with changes in spot size. In other words, the temporal oscillation
of neural response is dependent of spot size. This non-linearity is apparent in all
plots in �gure 3.1). Although, the tendencies are weaker the feedback scenarios in
�gure 7.4B and 7.4D. These two �gures both represent simulations where only the
inhibitory feedback was either delayed or prolonged, while the excitatory feedback
was neither. This result motivated to do an additional simulation, where the pro-
longing of the excitatory feedback was removed from the simulation that produced
the plot in �gure 7.4F. The result plot from the simulation is shown in �gure 7.5.
The new plot reveals a weaker dependence between the temporal oscillations and
the spot size than the corresponding plot in �gure 7.4F. This suggest that delay
and prolonging of inhibitory feedback provoke neural response where the temporal
oscillations are slightly less dependent of the spot size. It further indicates that
delay and prolonging of the the excitatory feedback enhances dependency between
oscillations and spot size. The response on the other hand seems to be reduced for
the feedback scenarios where the excitatory component was prolonged �gure 7.4C,
7.4E and 7.4F, compared to the remaining scenarios where the excitatory feedback
was not prolonged.

The plots in �gure 7.4 also indicate a relative tendency among themselves: the
left column shows a general suppression of relay cell response compared to the right
column. in other words, delay and prolonging of the excitatory feedback component
reduces relay cell response compared to delay and prolonging of the inhibitory feed-
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back component. It is evident that the inhibitory feedback is stronger compared
to the excitatory feedback when the excitatory feedback is delayed or prolonged.
The most relative suppression among the plots in �gure 7.4 is seen for the scenarios
where excitatory feedback are prolonged (7.4C, 7.4E and 7.4F). This suppression
of neural response probably occur because of the normalisation of equation 3.4 by
the time constant itself. In other words: Prolonged feedback have a lower response
values for higher values of τ with this choice of temporal feedback kernel.

Another evident divergence among the plots in �gure 7.4F is that delay and/or
prolonging of the excitatory feedback component (�gures 7.4A, 7.4C and 7.4E) result
in a temporal shift of the neural responses. The same tendency is not observed for
delay and/or prolonging of inhibitory feedback in the remaining plots of �gure 7.4.



46
7. TEMPORAL EFFECTS OF CORTICAL FEEDBACK ON LGN RELAY

CELLS

A Delayed excitatory feedback B Delayed inhibitory feedback

C Prolonged excitatory feedback D Prolonged inhibitory feedback

E Delayed excitation. Prolonged excitatory
and inhibitory feedback decay.

F Delayed inhibition. Prolonged excitatory
and inhibitory feedback decay.

Figure 7.4: Colour maps of LGN relay cell response to an oscillating spot with angular
frequency ω = 6, 14 Hz and cortical feedback weight: wfb = 0, 9. The plots show di�erent
scenarios for the cortical feedback. A) Delay: ∆ex = 30 ms, ∆in = 0 ms. Time constants:
τex,in = 1 ms. B) Delay: ∆ex = 0 ms, ∆in = 30 ms. Time constants: τex,in = 1 ms. C)
Delay: ∆ex,in = 0 ms. Time constants: τex = 39 ms, τin = 1 ms. D) Delay: ∆ex,in = 0
ms. Time constants: τex = 1 ms, τin = 39 ms. E) Delay: ∆ex = 30 ms, ∆in = 0 ms.
Time constants: τex,in = 39ms. F) Delay: ∆ex = 0 ms, ∆in = 30 ms. Time constants:
τex,in = 39 ms. Other parameters were set according to section 5.2.4. (Plots generated in
Spyder.)
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Figure 7.5: LGN relay cell response to an oscillating spot with angular frequency ω = 6, 14
Hz. Cortical feedback weight: wfb = 0, 9. Feedback delay: ∆ex = 0 ms, ∆in = 30 ms.
Feedback time constants: τex = 1 ms, τin = 1 ms. (Figure generated in Spyder).

7.2 LGN Rerlay cell Response to Patch Grating

The same procedure as in section 7.1 was preformed for LGN relay cell response
to a patch grating with angular frequency ω = 6, 14Hz and spatial frequency
k = 0, 49/deg. The neural response to this patch grating was identical as for the
oscillating spot. For this reason the pots are not included in this thesis, and it was
concluded that an angular frequency of 0,49/deg in a patch grating is not great
enough to provoke other responses than a simple spot.

Thereafter, the same procedure as in section 7.1 was preformed for relay cell
response to a patch grating with higher angular frequency ω = 6, 14Hz, and spatial
frequency k = 1, 47/deg. Figure 7.6 show the response of an LGN relay cell without
cortical feedback. Figure 7.7 show several simulations of the neural response where
cortical feedback are included, for the same feedback scenarios as for an oscillating
spot in the previous section. The plots in �gure 7.7 show the same tendency of
reduction in neural response as for an oscillating spot. In contrast to the response to
an oscillating spot, the responses in �gure 7.7 shows an approximately linear neural
response to the stimulus of higher spatial frequency. This justi�es an assumptions
for linearity for response of LGN relay cells to stimulus of patch grating with greater
spatial frequencies.
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Figure 7.6: LGN relay cell response to a �ashing spot with wave number =�1.47/deg and
angular frequency ω = 6, 14 Hz. (Figure generated in Spyder.)
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A Delayed excitatory feedback B Delayed inhibitory feedback

C Prolonged excitatory feedback D Prolonged inhibitory feedback

E Delayed excitation. Prolonged excitatory
and inhibitory feedback decay.

F Delayed inhibition. Prolonged excitatory
and inhibitory feedback decay.

Figure 7.7: Colour maps of LGN relay cell response to a �ashing spot wave number
ω = 1.47/deg and angular frequency ω = 6, 14 Hz. Cortical feedback weight wfb = 0, 9.
A) Feedback delay: ∆ex = 30 ms, ∆in = 0 ms. Feedback time constants: τex,in = 1 ms.
B) Feedback delay: ∆ex = 0 ms, ∆in = 30 ms. Feedback time constants: τex,in = 1 ms.
C) Feedback delay: ∆ex,in = 0 ms. Feedback time constants: τex = 39 ms, τin = 1 ms.
D) Feedback delay: ∆ex,in = 0 ms. Feedback time constants: τex = 1 ms, τin = 39 ms.
E) Feedback delay: ∆ex = 30 ms, ∆in = 0 ms. Feedback time constants: τex,in = 39ms.
F) Feedback delay: ∆ex = 0 ms, ∆in = 30 ms. Feedback time constants: τex,in = 39 ms.
Other parameters were set according to section 5.2.4. (Plots generated in Spyder.)
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7.3 Signi�cance of Results

The response of an LGN relay cell to an oscillating spot shows a non-linear e�ect;
the temporal oscillation of neural response is dependent of spot size. This is an inter-
esting feature, but it is not due to delay or prolonging of feedback components. One
could argue that the result is relevant for the research question, because the depen-
dence was strengthened when the excitatory feedback component was delayed or had
a higher time constant compared to the inhibitory feedback component. Though,
this is only a feature of the relationship between the excitatory and inhibitory feed-
back. Otherwise, the only evident e�ect of delay and prolonging of the separate
feedback components was due to the normalisation of the temporal feedback kernel.
So to answer the research question: The e�ect of delay and prolonging of separate
feedback components is none other than the intrinsic values of excitatory and in-
hibitory feedback. Obviously another research question should have been asked for
this thesis. Changes of delay and the time constant only reveal tendencies of in
excitatory and inhibitory feedback relative to each other, which is already known.
For example, when prolonging the excitatory feedback component it is also reduced
in value, and the inhibition from the cortical feedback will have a greater e�ect. If
anything, the results of the simulations in this thesis demonstrated the uselessness
of comparing the time constant to the delay.

The potential in such an e�cient mathematical model designed to explore the
e�ects of cortical feedback, incorporated into a relative intuitive and applicable sim-
ulation tool, should have been used in a more constructive way than demonstrated
in this thesis. At least the second objective of this thesis can be answered more
constructively. The simulations of responses of LGN relay cells performed with
pylgn have shown results in accordance with general accepted theory. For example,
suppression of LGN cell response when stimulus sizes are magni�ed over a certain
diameter value. The application of the circuit simulation software is intuitive from a
programming perspective. The only downside have been the need for guiding in the
choice of grid parameters compared to the kernel parameters. Consideration of grid
parameters compared to kernel parameter is necessary due to the transformation of
kernels into Fourier space, as this demands that the kernels converge to zero within
the de�ned grid. This makes the simulation software less intuitive for the general
user. Nevertheless, pylgn provides a great range of opportunities for research of
neural responses to stimuli.

The network constructed with pylgn for this thesis, which separated the excita-
tory and inhibitory feedback components could come in handy if applied on a better
manner. A better manner would be to explore temporal aspects of delay alone,
and keep the time constant as a constant. Another idea is to explore the temporal
aspect of cortical feedback with a non-linear mathematical model. Although, the
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non-linearities evident in these simulations are minimal compared to the general
neural response, so a simpli�ed, linear mathematical model like the eDoG model
should be su�cient for future exploration of this kind. Another idea for future work
is the exploration of non-separable time kernels, which is a possibility with pylgn.
All in all, pylgn has a lot of potential, though used to study wrong temporal aspects
in this thesis.
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Appendix A

Programme Code for Simulation of
Response in LGN Relay Cell to
Di�erent Stimuli with Pylgn

# -*- coding: utf -8 -*-

import quantities as pq

import numpy as np

import matplotlib.pyplot as plt

import os

import pylgn

import pylgn.kernels.spatial as spl

import pylgn.kernels.temporal as tpl

# variables

w_fb = 0.9 # 0 -> no feedback.

k_pg_index = 3 # 0-> k=0. 1-> k=0.49. 3-> k=1.47.

exDelay = 5

inDelay = 20

exTau = 39

inTau = 39

# diameters

mask_size = np.linspace(0, 6, 40)*pq.deg

# list to store spatiotemporal summation curves for each

weight

responses = []
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# create network

network = pylgn.Network ()

# create integrator

integrator = network.create_integrator(nt=10, nr=7, dt=1*pq.ms

, dr=0.1*pq.deg)

# create spatial kernels

Wg_s = spl.create_dog_ft(A=1, a=0.62* pq.deg , B=0.85, b=1.26* pq

.deg)

Krg_s = spl.create_gauss_ft(A=1, a=0.1*pq.deg)

Kcr_s = spl.create_delta_ft ()

Krcr_exci_s = spl.create_gauss_ft(A=1, a=(0.1)*pq.deg)

Krcr_inhi_s = spl.create_gauss_ft(A=2, a=(0.9)*pq.deg)

# create temporal kernels

Wg_t = tpl.create_biphasic_ft(phase_duration =42.5* pq.ms,

damping_factor =0.38, delay =0 *

pq.ms)

Krg_t = tpl.create_exp_decay_ft (18*pq.ms, delay = 0 *pq.ms)

Kcr_t = tpl.create_delta_ft ()

Krcr_exci_t = tpl.create_exp_decay_ft(exTau*pq.ms, delay =

exDelay*pq.ms)

Krcr_inhi_t = tpl.create_exp_decay_ft(inTau*pq.ms, delay =

inDelay*pq.ms)

# create neurons

ganglion = network.create_ganglion_cell(kernel =(Wg_s , Wg_t))

relay = network.create_relay_cell ()

cortical_exci = network.create_cortical_cell ()

cortical_inhi = network.create_cortical_cell ()

# connect neurons

network.connect(ganglion , relay , (Krg_s , Krg_t), 1.0)

network.connect(cortical_exci , relay , (Krcr_exci_s ,

Krcr_exci_t), w_fb)

network.connect(cortical_inhi , relay , (Krcr_inhi_s ,

Krcr_inhi_t), -w_fb)

network.connect(relay , cortical_exci , (Kcr_s , Kcr_t), 1.0)

network.connect(relay , cortical_inhi , (Kcr_s , Kcr_t), 1.0)



57

st_summation_curve = np.zeros([len(mask_size), integrator.Nt])

/ pq.s

for i, d in enumerate(mask_size):

# create stimulus

k_pg = integrator.spatial_freqs[k_pg_index]

w_pg = integrator.temporal_freqs [1] #=6.14 Hz. Set to 0

for static stimuli

stimulus = pylgn.stimulus.create_patch_grating_ft(

wavenumber=k_pg ,

angular_freq=w_pg ,

mask_size=d)

network.set_stimulus(stimulus)

# compute

network.compute_response(relay , recompute_ft=True)

st_summation_curve[i, :] = relay.center_response

responses.append(st_summation_curve)

# save fig

if k_pg_index == 0:

form = 'FS'

else:

form = 'PG'

if w_fb == 0:

feedback = 'NoFB'

else:

feedback = 'FB'

my_path = ' ' # insert path

my_file = '{}_k{}_{} _exDelta {} _inDelta {} _exTau {} _inTau {}.png'.

format(feedback ,

k_pg_index , form , exDelay , inDelay , exTau , inTau)

# clear network

network.clear()

# xmin , xmax , ymin , ymax:

extent = [integrator.times.min(), integrator.times.max(),

mask_size.min(), mask_size.max()]
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vmin = -9

vmax = 9

# visualize

plt.imshow(responses [0], extent=extent , origin="lower", aspect

="auto",

vmin=vmin , vmax=vmax , cmap='Blues_r ', )

plt.title("Response")

plt.ylabel("Patch size (deg)")

plt.xlabel("Time (ms)")

plt.colorbar(aspect =23)

plt.savefig(os.path.join(my_path , my_file), format='png')

plt.show()

Listing A.1: Plotting Spatiotemporal Summation Curve for Di�erent Stimuli



Appendix B

Plotting Impulse-Response for
Spatial Parameters

import quantities as pq

import numpy as np

import matplotlib.pyplot as plt

import pylgn

import pylgn.kernels.spatial as spl

import pylgn.kernels.temporal as tpl

center_excit_norm = 0.397736473073

surround_inhib_norm = 0.0302344189143

a_rcr_vec = np.linspace (0.1, 3.0, 30) * pq.deg

b_rcr_vec = np.linspace (0.1, 3.0, 30) * pq.deg

center_excit = np.zeros([len(b_rcr_vec), len(a_rcr_vec)])

surround_inhib = np.zeros([len(b_rcr_vec), len(a_rcr_vec)])

for i, b_rc in enumerate(b_rcr_vec):

for j, a_rc in enumerate(a_rcr_vec):

network = pylgn.Network ()

# create integrator

integrator = network.create_integrator(nt=1, nr=7, dt

=1*pq.ms, dr=1*pq.deg)

# create spatial kernels
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Wg_s = spl.create_dog_ft(A=1, a=0.62* pq.deg , B=0.85, b

=1.26* pq.deg)

Krg_s = spl.create_gauss_ft(A=1, a=0.1*pq.deg)

Kcr_s = spl.create_delta_ft ()

Krcr_cen_s = spl.create_gauss_ft(A=1, a=(a_rc))

Krcr_sur_s = spl.create_gauss_ft(A=0.5, a=(b_rc))

# create temporal kernel

delta_t = tpl.create_delta_ft ()

# create neurons

ganglion = network.create_ganglion_cell(kernel =(Wg_s ,

delta_t))

relay = network.create_relay_cell ()

cortical_cen = network.create_cortical_cell ()

cortical_sur = network.create_cortical_cell ()

# connect neurons

network.connect(ganglion , relay , (Krg_s , delta_t),

1.0)

network.connect(cortical_cen , relay , (Krcr_cen_s ,

delta_t), 0.5)

network.connect(cortical_sur , relay , (Krcr_sur_s ,

delta_t), -0.5)

network.connect(relay , cortical_cen , (Kcr_s , delta_t),

1.0)

network.connect(relay , cortical_sur , (Kcr_s , delta_t),

1.0)

network.compute_irf(relay)

center_excit[i, j] = np.real(relay.irf [0]. max()) /

center_excit_norm

surround_inhib[i, j] = np.real(relay.irf [0]. min()) /

surround_inhib_norm

# visualize

fig , (ax1 , ax2) = plt.subplots(nrows=1, ncols=2, figsize =(8,

4), sharey="row")

# xmin , xmax , ymin , ymax:
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extent = [a_rcr_vec.min(), a_rcr_vec.max(), b_rcr_vec.min(),

b_rcr_vec.max()]

im1 = ax1.imshow(center_excit , extent=extent , origin="lower",

aspect="auto", cmap="Blues_r")

ax1.set_title("Center excitation")

ax1.set_ylabel("$b_{rcr}$")

ax1.set_xlabel("$a_{rcr}$")

plt.colorbar(im1 , ax=ax1)

im2 = ax2.imshow(surround_inhib , extent=extent , origin="lower"

, aspect="auto", cmap="Blues_r")

ax2.set_title("Surround inhibition")

ax2.set_xlabel("$a_{rcr}$")

plt.colorbar(im2 , ax=ax2)

plt.tight_layout ()

plt.show()

Listing B.1: Plotting Impulse response for Spatial Parametersæ
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