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Summary

Safe and clean drinking water is a limited resource and pathogenic microorganisms
might pose a threat for consumers if the water is not treated properly. Coagulation-
and filtration is much used in drinking water treatment plants in Norway, but there
is a need for better documentation on virus removal in these plants.

Virus removal was recently studied in a pilot scale two media contact-filtration plant
at the Norwegian University of Life Sciences. The experiment measured turbidity,
headloss, E. Coli and two types of viruses at 8 filter depths, 12 times through an 18
hour long filtration cycle. In this thesis we have derived the mathematical models
that govern the removal of turbidity and virus in a rapid sand filter. We have also
fitted a mathematical filtration model to the measured turbidity so that later work
can solve the virus problem.

Two separate investigations were performed, one for the upper medium and one
for the lower medium. In each medium, models allowing particle detachment and
models that do not allow particles to detach were compared.

In the upper medium the model gave best fit to the measured data if the particles
were allowed to detach from the filter grains. In the lower medium the model
allowing particles to detach gave almost as good a fit to the measurements as the
model that did not allow the particles to detach. This could indicate that particles
detach in the upper medium and not in the lower medium.
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Samandrag

Reint og trygt drikkevatn er ein begrensa ressurs i verda, og patogene mikroor-
ganismar i drikkevatnet kan utgjere ein fare for konsumentane dersom vatnet ikkje
vert behandla riktig. Koagulering- og filtrering og er ein mykje brukt renseteknikk
i Noreg, men det er behov for betre dokumentasjon av virusfjerning i denne typen
anlegg.

Virusfjerning vart nyleg undersøkt i eit pilotskala to-media kontaktfiltreringsanlegg
i eit doktorgradsarbeid ved Norges miljø- og biovitenskapelige universitet. Forsøket
målte turbiditet, trykktap, E. Coli, og to typar virus, på 8 ulike djup i filteret, 12
gonger under ein 18 timar lang filtreringssyklus. I denne oppgåva har me utleia
dei matematiske modellane som skildrar korleis turbiditet og virus vert fjerna i
eit sandfilter. Me har også og tilpassa ein matematisk filtreringsmodell til målt
turbiditet, slik at seinare arbeid kan løyse virusproblemet.

Det var gjort to separate undersøkingar, ein for det øvre filtermediet og ein for
det nedre filtermediet. I kvar av media vart modellar som tillet at partiklar løs-
nar frå filtermediet og modellar som ikkje tillet at partiklar løsnar frå filtermediet
samanlikna.

For det øvre mediet gav modellen best samsvar med dei målte data når partiklane
fekk lov til løsne frå filtermediet. I det nedre mediet gav modellen som tillet at
partiklar løsnar nesten like godt samsvar med målte data som modellen som ikkje
tillet at partiklane fekk lov til å løsne. Dette kan være ein indikasjon på at partiklar
løsnar i det øvre mediet, medan dei ikkje løsnar i det nedre mediet.
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Chapter 1

Introduction

In this thesis we will examine the dynamic process inside a rapid sand filter using
mathematical filtration theory. We will first look at the role of rapid sand filters in
a drinking water treatment plant (DWTP) and present standard filtration theory.
Then we will derive mathematical methods that we will apply on real world data
in an attempt to adapt a mathematical filtration function.

1.1 Drinking water treatment

The goal of drinking water treatment is to treat raw water so that it is easy to
distribute, aesthetic, have a good taste and is safe to drink – all of this within a
reasonable budget. These factors are usually coupled, meaning that making the
water safer to drink may, if not done optimally, come at the expense of for example
budget, taste or corrosion of pipes. Since no raw water, DWTP, distribution sys-
tem or operating staff is similar, finding a general treatment procedure that works
under all of these conditions has not yet been achieved. However, there are some
common treatment processes that can be optimized for each individual treatment
plant (Eikebrokk, 2012).

1.1.1 The water treatment process

According to Folkehelseinstituttet (2016) the main components we wish to re-
move from the raw water are pathogenic micro-organisms, natural organic matter
(NOM), color, particles, corrosive components, taste and odour and organic micro-
pollutants. In addition we also need to remove iron, manganese, radon, hydrogen
sulphide and fluoride. Large particles can be removed in a pre-treatment stage,
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2 CHAPTER 1. INTRODUCTION

usually using a sieve (0,1 - 0,4 mm openings). In the next stage a chemical coag-
ulant is typically applied. The coagulant destabilizes the particles, making them
able to collide and form larger particles. By carefully stirring the water in a process
called flocculation, these particles will collide and form larger particles, flocs. The
flocs can be separated from the water using sedimentation or flotation. However, as
sedimentation and flotation are not able to remove all flocs it is often necessary to
apply filtration. Filtration can also be a part of the pre-treatment. It is important
to note that by filtration we mean deep bed filtration and not membrane filtration.

In order to inactivate microbial pathogens, most DWTP apply some kind of disin-
fection stage. Usually this is chlorination, ozonation or ultraviolet (UV) radiation.
All of these disinfection stages cause problems if applied on water with high con-
centrations of particles and/or NOM. The reaction between chlorine and natural
organic matter produces carcinogenic by-products (Boorman et al., 1999), parti-
cles can shield the pathogens from the UV radiation (Hijnen and Medema, 2010)
and ozonation has been reported to produce dangerous by-products such as bro-
mide (Havelaar et al., 2000). Therefore most DWTPs remove particles and natural
organic matter from the raw water before it is disinfected.

1.1.2 Rapid sand filtration

Rapid sand filtration has been applied in DWTPs since the early 20th century.
Originally its main purpose was to remove particles, but it can be designed to
remove NOM as well (Crozes et al., 1995). When NOM removal is the main goal,
the process typically involves higher coagulation doses and stricter regulation of pH
and is often referred to as enhanced coagulation (Edzwald and Tobiason, 1999).

In order to be effective, rapid sand filtration has to be preceded by a coagulation
stage. This process destabilizes the particles, making it easier for them to attach
to the filter grains (Bache and Gregory, 2010; O’Melia, 1985). Commonly used
coagulants are salts of iron and aluminum. There are many mechanisms involved
when a coagulant destabilizes particles. Mainly we divide them into four groups;
adsorption, sweep coagulation, compression of the electric double layer and bridging
(Amirtharajah and Mills, 1982). In a coagulation process all of these effects are
present, although effects of adsorption is considered more important in Norwegian
DWTPs.

Rapid sand filtration works by letting water flow down through a sand filter. Par-
ticles in the water will attach to the sand grains and thus be removed. There are
three different configurations of a rapid sand filter, conventional, direct and contact
filtration. In conventional filtration a flocculation step and a sedimentation step
precede the filtration step. This configuration is usually applied for raw waters
with high particle concentrations, such as water from rivers. If the water has lower
concentrations of particles, direct filtration or contact filtration can be applied. In
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direct filtration the filter is preceded by a flocculation stage. In contact filtration
the flocculation occurs inside the filter pores (Adin and Rajagopalan, 1989).

In a typical sand filter the water enters on top of the filter and flows down through
either two or three different layers of filter medium. The upper medium usually has
coarser grains with low mass density whereas the lower medium has finer grains with
higher mass density. The filter has a mechanism for cleaning, usually by applying
a combination of air and water with higher velocity in the up-flow direction. This
process is called backwashing. Due to the different mass densities in the different
medium, they will remain separated after backwashing, keeping the filter’s structure.
The overall performance of the sand filter can be monitored by looking at the
"turbidity" in the effluent. Turbidity is a measure of how much light that is reflected
90 degrees from a light beam. Many particles in the water causes more light to be
reflected. When the turbidity becomes too high, the removal capacity of the sand
filter has been exhausted and the filter needs to be backwashed. It is also possible
to monitor the pressure required for pushing water trough the filter, known as head
loss. If the head loss is too high, the filter is backwashed. In practice most DWTP
backwash based on previous experience, before the turbidity rises.

A sand filter is usually backwashed about one to three times per day. One filtration
cycle consists of two main stages. Initially, after a backwash, the particles will
deposit on filter grains that are clean . This is called the "initial stage". The rest
of the filtration cycle is called the "transient stage". The transient stage can be
divided into three smaller stages. Depending on the chemical conditions of the
water and the filter medium, the filter will start to capture particles. This is called
the "ripening stage". The filter has poor performance and the effluent water is
not distributed to consumers, but is directed to waste. After some time the filter
removal becomes stable and the effluent water can be distributed. This is called the
"working stage". After some more time the filter media cannot hold more particles.
This causes the effluent turbidity to rise and is called the "breakthrough stage".
After the breakthrough, the filter is backwashed and the cycle starts over again
(Jegatheesan and Vigneswaran, 2005).

According to Adin and Rebhun (1974), at any given time, only a small portion of the
filter bed takes part in the removal of particles. This suggests that the process can
be though of as a ripening and breakthrough front propagating through the filter
media. When the front reaches the end of the filter, the turbidity rises. Studies
have shown that there is a difference in the time to breakthrough between small and
large particles (Clark et al., 1992). This indicates that there are several ripening
and breakthrough fronts propagating through the filter media (Moran et al., 1993).

Norwegian regulations require at last two hygienic barriers in drinking water treat-
ment (Mattilsynet, 2011). Rapid sand filtration can, as a result of being able
to remove particles, also remove many microbial pathogens (Hijnen and Medema,
2010). Thus rapid sand filtration has been considered a hygienic barrier. Since tur-
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Parameter Filtralite Rådasand
Layer depth (m) 0.79 0.5
Grain size, nom. range (mm) 0.8-1.6 0.4-0.8
Effective grain size, d10 (mm) 0.95 0.4
Column diameter/d10 (-) 105 250
Uniformity coefficient d60/d10 (-) < 1.5 < 1.8
Primary porosity (-) 0.58 0.45
Bulk porosity (-) 0.80 0.45
Grain density (kg/m3) 1260 2600
Bulk density (kg/m3) 530 1440

Table 1.1: Data on filter materials (Nilsen, 2016).

bidity is correlated with the particle concentration (Clark et al., 1992), it has been
used as an indicator for the hygienic performance of the filter. However, Petterson
and Ashbolt (2016) pointed out a knowledge gap in the relation between turbidity
and virus removal, revealing that turbidity might be a poor indicator for virus re-
moval performance. This claim is supported by Eikebrokk (2012), who concluded
that more data was needed on virus removal during contact filtration and direct
filtration.

1.2 Pilot-scale filtration experiment

In order to examine the relation between turbidity and virus removal, a pilot-scale
filtration experiment was designed by Vegard Nilsen at Norwegian University of Life
Sciences (NMBU) (Nilsen, 2016). The experiment used water from the Glomma
river in order to have the same working conditions as found in most Norwegian
drinking water treatment plants. A transparent PVC cylinder with 10 cm diameter
was filled with two types of filter medium and a support layer at the bottom. A
schematic overview is presented in Figure 1.1. Figure 1.2 shows a picture of the pilot
plant. The upper medium used Filtralite as filter material and the lower medium
used Rådasand as filter material. The specifications of the filter materials can be
found in Table 1.1. The plant was equipped with systems for control, monitoring,
sampling and dosing of coagulant microorganisms. An online turbidity sensor was
installed on the inlet pipe in T1 and another sensor was installed in T2, downstream
of the filter. Thus the turbidity was measured continuously before and after the
filter throughout the filter cycle. The filtration rate was kept constant using a feed
pump. The coagulant used was PAX-18 (Kemira AS) and the pH was adjusted
using hydrochloric acid. The optimal dosing was found by testing in the plant
itself. In addition to manual sampling ports, ports for automatic sampling (A-H)
were installed. The automatic sampler could take 8 separate channels, and store
up to 12 sets of samples, corresponding to 96 samples in total. From these samples,
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Figure 1.1: Schematic overview of the pilot plant (Nilsen, 2016).
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Figure 1.2: The pilot plant (Nilsen, 2016).
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Parameter Value
Raw water turbidity (NTU) 0.7-0.8
Raw water color (mg Pt/l) 26
Raw water TOC (mg/l) 3.03 ± 0.61
Raw water UV absorption (1/m) 13.1
Layer 0.5
Raw water SUVA (l/(m mg)) > 4.3
Raw water pH (-) 7.3
Raw water alkalinity (mM) 0.28
Raw water temp (◦C) 15-16
Filtration rate (m/h) 5.9
Flow rate (l/min) 0.5
PAX-18 dose (mg Al/l) 1.5
HCl dose (mM) 0.12
Initial total headloss (cm) 26
s

Table 1.2: Raw water characteristics and operation conditions (Nilsen,
2016).

turbidity, E. coli and two types of viruses was measured throughout an 18 hours
long filtration cycle. The experiment was terminated when the turbidity reached
approximately 0,3 NTU in the outlet. These 96 samples should thus capture what
is normally regarded as a full filtration cycle. The measured turbidity was printed
in Figure 1.3

1.3 Filtration mechanisms and models

According to Herzig et al. (1970), the flow of a suspension through a porous medium
is a very complex process, due to the variety of mechanisms involved. Commonly,
we divide them into two categories, mechanical filtration , where particles are re-
tained due to effects from sieving and physiochemical filtration, where particles are
retained due to physical and chemical effects. As a thumb rule mechanical filtration
plays a role if (dp/dg > 0, 05), where dp is the diameter of a particle [L], and dg
is the diameter of a filter grain [L]. In deep bed filtration the particles we wish
to remove are smaller than the pores of the filter media. Thus if particles just
followed the streamlines the majority of the particles would not be captured by
the filter. Therefore there must exist transport mechanisms that transport parti-
cles across streamlines, attachment mechanisms that attach particles to the filter
medium and (possibly) detachment mechanisms that detach particles from the filter
medium (Jegatheesan and Vigneswaran, 2005). A complete filtration model should
be able to predict the initial removal efficiency of a clean bed without captured
particles, describe how already captured particles influence the removal efficiency
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and how they influence the flow through the medium (Nilsen, 2016). There are two
main approaches to this problem, the fundamental microscopic approach and the
phenomenological macroscopic approach.

1.3.1 Fundamental microscopic problem

In fundamental microscopic filtration theory we try to predict the initial removal
efficiency of a clean filter bed based on first-principle models. The idea is to make
mathematical descriptions of transport, attachment and detachment mechanisms
and try to predict an initial removal efficiency for the filter media. However, so far
these models only work well in well-controlled idealized settings (Tien and Ramaro,
2007).

1.3.2 Phenomenological macroscopic problem

In phenomenological macroscopic filtration theory we try to predict the dynamic
removal efficiency for the entire filter cycle. A common approach is to perform
experiments and then try to fit some mathematical model to the observations,
hopefully uncovering parameters or relationships that can be generalized to more
than one filter run or other experimental settings. According to Logan (2001) the
rapid sand filtration model is often assumed to be advection-dominated and one
dimensional. The following equation governing the particle-volume balance was
derived in Appendix A

∂

∂t
(σ + εc) + u

∂c

∂z
= 0, (1.1)

where σ is the retention, or the volume of deposited particles per volume of filter
[L3/L3], ε is the porosity given as volume of water per volume of filter [L3/L3], c
is the volume of particles in the water phase per volume of water [L3/L3] and u

is the Darcy velocity of the fluid [L/T]. z and t are the spatial [L] and temporal
[T] coordinates respectively. This equation remains the starting point for many
analyses (Horner et al., 1986; Tien and Ramaro, 2007; Herzig et al., 1970; Adin and
Rebhun, 1977; Alvarez, 2005).

In this thesis we are not going to find the filtration rate for viruses, but we will
briefly present the governing equations. Assuming the volume the viruses take
up is negligible compared to the volume of the particles, the following equation
governing the virus-volume balance can be derived in the exact same way as the
particle-volume balance derived in Appendix A

∂

∂t
(σv + εcv) + u

∂cv
∂z

= 0. (1.2)
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Where σv is the virus retention, that is, volume of deposited viruses per volume
of filter [L3/L3] and cv is the volume of viruses in the water phase per volume
water [L3/L3]. The temporal derivative of σ and σv in equation (1.1) and equation
(1.2) is called the filtration rate and describes the rate at which particles and virus
are removed (locally) from the suspension. An expression for the filtration rate is
needed in order to close the system, and there are many suggestions for the form of
the filtration rate expression, or the so called filtration function. Mainly they differ
as to whether particles are allowed to detach after they have attached. The first
study investigating the filtration rate was done by Iwasaki (1937). He discovered
through experiments that the particle concentration in the filter bed often follows
an exponential distribution throughout the filter media

∂c

∂z
= −λc(z, t).

Where λ is known as the filter coefficients (when it is treated as a constant) and has
to be determined through experiments. The main influence on the filter efficiency
is the retained particles σ. Thus the filtration function is often taken as a function
of the retained particles λ(σ) (Tien and Ramaro, 2007). Assuming that no particles
detach, the filtration rate for particles and virus was derived in Appendix B

∂σ

∂t
= uλ(σ)c. (1.3)

∂σv
∂t

= uλ(σ)cv. (1.4)

From observations λ is expected to go through a ripening stage, working stage and
a breakthrough stage. Thus we expect it to have the same qualitative shape as
the function plotted in Figure 1.4 (Jegatheesan and Vigneswaran, 2005). There are
many proposed parametric forms of λ(σ). The following equation was proposed by
Ives (1969) and is considered very general if particle detachment is negligible

λ(σ) = λ0

(
1 + βσ

ε0

)n1 (
1− σ

ε0

)n2 (
1− σ

σult

)n3

, (1.5)

where ε0, σult, λ0, β, n1, n2 and n3 are parameters that can be tuned to fit experi-
mental data. ε0 is the initial porosity of the filter medium given as volume of water
per volume filter [L3/L3] and σult is the maximum volume of deposited particles per
filter volume that the filter can hold [L3/L3] and λ0 is the initial removal efficiency
of the filter medium. It must be noted that σult cannot be larger than ε0 as the filter
stops filtering before it is full. Whether to include or not to include detachment
was long debated Ives (1969) and Mints (1966). Today’s view is that detachment
do play a role, especially in the later stages of the filtration cycle (Moran et al.,
1993) or during hydraulic shock loads (Kim and Lawler, 2006). In order to allow
particle detachment in our model Herzig et al. (1970) have suggested the following



1.3. FILTRATION MECHANISMS AND MODELS 11

0 20 40 60 80 100

turb

0

2

4

6

8

10

12

14

tu
rb

)

A filtration function

Figure 1.4: The proposed qualitative shape of the filtration function.

filtration function

∂σ

∂t
= uλ(σ)c+ b1σ. (1.6)

Here u, λ(σ) and c are the same as in equation (1.3) and b1 is a parameter that
needs to be estimated. For convenience we define two general filtration functions
for particles and for virus respectively

∂σ

∂t
= f (u, c, σ) , (1.7)

∂σv
∂t

= fv (u, cv, σ) . (1.8)

Equation (1.5) can be compared with simpler filtration functions in order to test
whether introducing the six fitting parameters makes any sense. In this thesis
we will compare equation (1.5) with a first-order polynomial (P1), a second-order
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polynomial (P2) and a third-order polynomail (P3)

λ(σ) = a0 + a1σ, (1.9)
λ(σ) = a0 + a1σ + a2σ

2, (1.10)
λ(σ) = a0 + a1σ + a2σ

2 + a3σ
3. (1.11)

Where a0, a1, a2 and a3 are parameters that must be determined through fitting
to data.

1.4 Problem statement

The ultimate goal of the experiment described in section 1.2 is to explain how virus
removal is related to particle removal using mathematical filtration theory. This
thesis will focus on finding a model that can describe the particle removal, so that
later work can continue with the virus removal problem.

In order to do so we will reformulate and simplify the mathematical equations
introduced above that govern the filtration cycle. These reformulations have been
published before (Herzig et al., 1970; Tien and Ramaro, 2007), but the derivations
were not easy to follow. This thesis will therefore emphasis transparency using
well-known mathematical techniques in the derivations.

The derived equations will be used to explore models with filtration rates given
as equation (1.7) with filtration functions given by equation (1.5), equation (1.9),
equation (1.10) and equation (1.11) fit the turbidity measured in the experiment
described in Section 1.2. An important aspect of this investigation will be to deter-
mine whether the particles must be allowed to detach in order to fit the data.



Chapter 2

Methods

2.1 Solving the forward problem

We wish to fit a particle-volume filtration model to the observed data. This requires
solving the volume balance equation (1.1) with a filtration rate given as equation
(1.7). Assuming that the the filter media is initially clean, for a given set of param-
eters the full closed system for particle-volume consentrations in the upper medium
can be written as

∂

∂t
(σ + εc) + u

∂c

∂z
= 0, (1.1)

∂σ

∂t
= f1 (u, c, σ) , (1.7)

c(0, t) = cinn, (2.1)
c(z, 0) = σ(z, 0) = 0, (2.2)

where z ∈ [0, z1], z1 is the coordinate for the end of the upper medium [L], cinn is
the particle-volume consentration of particles going in to the upper filter medium
[L3/L3] and f1 is the filtration function for the upper medium [1/L]. The output
from the upper medium becomes input for the lower medium, hence

∂

∂t
(σ + εc) + u

∂c

∂z
= 0, (1.1)

∂σ

∂t
= f2 (u, c, σ) , (1.7)

c(z1, t) = cupper, (2.3)
c(z, 0) = σ(z, 0) = 0, (2.4)

13
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Figure 2.1: Particles (black) generally take up more volume when strained
since they also occupy the volume in between them (grey).

where z ∈ [z1, z2], z2 is the coordinate for the end of the lower medium [L], cupper is
the particle-volume consentration of particles going out of the upper filter medium
[L3/L3] and f2 is the filtration function for the lower medium [1/L]. Solving this
system produces an output in the form of particle-volume concentrations and is
often called the "forward problem". Finding parameters that make the model con-
sistent with observations requires us to solve the forward problem many times with
different parameters. The parameters that best describe the observations is called
an optimum. This problem is called the "inverse problem". In order to solve the
inverse problem we need to develop a fast and reliable way of solving the forward
problem.

Solving equation (1.1) and equation (1.7) in their current form is hard and not very
efficient. According to Herzig et al. (1970) a common simplification is to assume
a constant porosity throughout the filter cycle. This assumption greatly simplifies
the forward problem. In this thesis we will mainly assume constant porosity, but
we will also present a more general derivation of the solution to the system where
the porosity may be allowed to change, see Appendix D. Now we will briefly discuss
what assumptions we are making when assuming constant porosity. According to
Figure 2.1, particles captured in a filter occupy more volume than they would in
the free water phase. Thus the porosity is a function of the captured particles and
how much volume the captured particles occupy. According to Herzig et al. (1970)
we can express the porosity as

ε = ε0 −
σ

1− εd
. (2.5)

Where εd is the porosity of the deposits [L3/L3] and ε0 is the initial porosity [L3/L3].
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Inserting equation (2.5) into equation (1.1) we get

∂

∂t

(
σ + ε0c−

σ

1− εd
c

)
+ u

∂c

∂z
= 0.

By the product rule

∂σ

∂t
+ ε0

∂c

∂t
− 1

1− εd

(
σ
∂c

∂t
+ c

∂σ

∂t

)
+ u

∂c

∂z
= 0.

For situations where the concentrations are low, this can be simplified to

ε0
∂c

∂t
+ u

∂c

∂z
= −∂σ

∂t
. (2.6)

According to Herzig et al. (1970) this is always true for deep filtration where con-
centrations are low.

2.1.1 Upwind scheme

The simplest way of solving equations on the form of equation (2.6) is applying a
finite difference method called upwind scheme (LeVeque, 1992; Richard E. Ewing,
2001). Inserting the general filtration function described by equation (1.7) into the
conservation equation (2.6) we get

ε0
∂c

∂t
+ u

∂c

∂z
= −f(u, c, σ). (2.7)

Rearranging

∂c

∂t
+ u

ε0

∂c

∂z
= − 1

ε0
f(u, c, σ). (2.8)

We wish to sequentially solve for c(z, t) and σ(z, t) with the two independent vari-
ables z and t on the intervals 0 ≤ z ≤ Lg and 0 ≤ t ≤ Tg. We proceed by dividing
the intervals into equally long subintervals, producing a grid over the region in
which we will attempt to approximate a solution. We define the step-length in the
z direction to be h = zj − zj−1 and the step-length in the t direction to be
k = tn − tn−1, thus h and k could then be written as

h = Lg
J
, k = Tg

N
.

where J is the total number of intervals along the z-axis, Lg is the length of the filter
medium, N is the number of intervals along the t-axis and Tg is the stopping time.
By discretizing the derivatives in equation (2.8) and equation (1.7) using forward
Euler differences for the temporal derivatives and backward Euler differences for
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the spatial derivatives we get

∂c

∂t
(zj , tn) ≈ cj,n+1 − cj,n

k
, (2.9)

∂c

∂z
(zj , tn) ≈ cj,n − cj−1,n

h
, (2.10)

∂σ

∂t
(zj , tn) ≈ σj,n+1 − σj,n

k
. (2.11)

Inserting these results into equation (2.8) and equation (1.7) and rearranging

cj,n+1 = −k
h

u

ε0
(cj,n − cj−1,n) + cj,n −

k

ε0
f(uj,n, cj,n, σj,n), (2.12)

σj,n+1 = kf(uj,n, cj,n, σj,n) + cj,n. (2.13)

Although suffereing from numerical diffusion (Richard E. Ewing, 2001), this scheme
will generate a stable solution if

ku

hε0
< 1, u > 0, (2.14)

given boundary conditions by equation (2.1) or equation (2.3) and initial condition
by equation (2.2). We will use the upwind scheme for comparisons with other
schemes.

2.1.2 Method of characteristics

It is common to simplify equation (2.6) by dropping the temporal derivative of c.
This has been done by Iwasaki (1937) and is the same as Tien and Ramaro (2007)
and Herzig et al. (1970) refers to as a formulation with a "corrected time". We found
the concept of corrected time to be a little vague, therefore we will use the method
of characteristics to arrive at the same results. Rearranging equation (2.6) we get

ε0
u

∂c

∂t
+ ∂c

∂t
= − 1

u

∂σ

∂t
. (2.15)

By the multivariate chain rule

dc

ds
= ∂c

∂t

dt

ds
+ ∂c

∂z

dz

ds
. (2.16)
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Equation (2.15) has the same form as equation (2.16) if we let

dt

ds
= ε0

u
, (2.17)

dz

ds
= 1, (2.18)

dc

ds
= − 1

u

∂σ

∂t
. (2.19)

Noticing that u and ε0 were held constant we integrate equation (2.17) and equation
(2.18) along s

t(s) = ε0
u
s+ t0, (2.20)

z(s) = s+ z0. (2.21)

Equation (2.20) and equation (2.21) are called the characteristic lines of equation
(2.15) and is illustrated in Figure 2.2. Rearranging equation (2.19) we get

z
1
(S)

t
1
(S)

z
2
(S)

t
2
(S)

Figure 2.2: The characteristic lines of equation (2.6)

∂σ

∂t
+ u

dc

ds
= 0. (2.22)
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According to Horner et al. (1986) this can be thought of as following a particle along
its path through the filter medium. We note that for small s, small ε0 and large u,
following the characteristic line defined by equation (2.20) and equation (2.21) is
approximately the same as following the t-axis. Using this approximation we can
simplify equation (2.22) into

∂σ

∂t
+ u

dc

dz
= 0. (2.23)

This is equivalent to what Herzig et al. (1970) refers to as the "3rd approximation".
Equation (2.23) and equation (1.7) can be solved sequentially using a simple forward
Euler scheme. Inserting equation (1.7) into equation (2.22) we get

dc

ds
= − 1

u
f(u, c, σ)., (2.24)

We wish to sequentially solve for c(z, t) and σ(z, t) along the z-axis and t-axis on
the interval 0 ≤ z ≤ Lg and 0 ≤ t ≤ Tg. We proceed by dividing the intervals
into equally long subintervals, producing a grid over the region in which we will
attempt to approximate a solution. We define the step-length along the z-axis to
be h = hj − hj−1 and the step-length along the t-axis to be k = tn − tn−1,
thus h and k could then be written as

h = Lg
J
, k = Tg

N
.

where J is the total number of intervals along the z-axis, Lg is the length of the
filter medium, N is the number of intervals along the t-axis and Tg is called stopping
time. By discretizing the derivatives in (1.7) and (2.22) using forward Euler we get

∂c

∂z
(zj , tn) ≈ cj+1,n − cj,n

h
,

∂σ

∂t
(zj , tn) ≈ σj,n+1 − σj,n

k
.

By inserting these results into equation (1.7) and equation (2.22) and rearranging
we get the following system which can be solved sequentially.

cj+1,n ≈ cj,n −
h

u
f(uj,n, cj,n, σj,n), (2.25)

σj,n+1 ≈ σj,n + kf(uj,n, cj,n, σj,n). (2.26)

With boundary conditions given by equation (2.1) or equation (2.3) and initial con-
dition given by equation (2.2) this scheme will converge towards the exact solution
for a fine spaced grid. However, it might be hard to know how fine the grid needs to
be. The scheme would also require quite a lot of computations, which is not good
when we need to solve our system many times. A good thing about this scheme is
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that it is able to handle many forms of f(u, c, σ).

2.1.3 Solving a system of ODEs

This method was first outlined by Herzig et al. (1970). It notices that if the
filtration-function is given in a specific form, the system can be reduced to two
ordinary differential equations, which in turn can be solved separately using stan-
dard software packages. We will use the method of characteristics to arrive at the
same results. These results was derived by Bjørn Fredrik Nilsen. By applying the
method of characteristics on equation (2.6) we get the mass balance equation (1.3)
and particle conservation on the form of equation (2.23)

∂σ

∂t
+ u

dc

dz
= 0, (2.27)

∂σ

∂t
= uλ(σ)c. (2.28)

Rearranging equation (2.28)

c = 1
uλ(σ)

∂σ

∂t
. (2.29)

Inserting equation (2.29) into equation (2.27)

∂σ

∂t
+ ∂

∂z

(
1

λ(σ)
∂σ

∂t

)
= 0. (2.30)

By the product rule and the chain rule

∂σ

∂t
+ ∂

∂σ

(
1

λ(σ)

)
∂σ

∂z

∂σ

∂t
+ 1
λ(σ)

∂

∂z

∂σ

∂t
= 0. (2.31)

Interchanging the order of the derivatives

∂σ

∂t
+ ∂

∂t

(
1

λ(σ)

)
∂σ

∂t

∂σ

∂z
+ 1
λ(σ)

∂

∂t

∂σ

∂z
= 0. (2.32)

By the product rule and the chain rule

∂σ

∂t
+ ∂

∂z

(
1

λ(σ)
∂σ

∂z

)
= 0. (2.33)

Rearranging

∂

∂t

(
σ + 1

λ(σ)
∂σ

∂z

)
= 0. (2.34)
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Which implies that

∂σ

∂z
+ λ(σ)σ = g. (2.35)

Where

g = g(z) = ∂σ

∂z
(z, 0) + λ(σ(z, 0))σ(z, 0).

From the initial conditions we have that

c(z, 0) = σ(z, 0) = 0, z ≥ 0.

Assuming that equation (2.28) holds for t = 0

∂σ

∂z
(z, 0) = 0 z ≥ 0,

∂σ

∂t
(z, 0) = uλ(σ(z, 0))c(z, 0) = 0.

Hence

g(z) = 0.

Thus it follows from equation (2.35)

∂σ

∂z
= −λ(σ)σ. (2.36)

A more general derivation of this equation (2.36) was done in Appendix C. Now
we need to find the particle concentration c in the water-phase. Since we know the
value of σ this can easily be done by solving equation (2.23) along z, but we can do
even better. Inserting equation (1.3) into equation (2.23) we get

∂c

∂z
= −λ(σ)c. (2.37)

Rearranging equation (2.36) and equation (2.37)

1
σ

∂σ

∂z
= −λ(σ),

1
c

∂c

∂z
= −λ(σ).
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Noticing that these equations have the same mathematical form we proceed by
integrating them along z

ln σ = A(σ) + k1,

ln c = A(σ) + k2.

Thus

ln c = ln σ + k.

We can determine k from the conditions at the inlet of the filter

ln
(
cin
σin

)
= k.

Thus

c

cin
= σ

σin
. (2.38)

2.2 Comparing the solution algorithms

Three different solution methods were derived, the upwind scheme, the sequential
forward Euler scheme and the system of ODEs. All of these solution methods were
tested with the same filtration functions and parameters. Although the upwind
scheme seems to suffer from numerical diffusion, the methods seem to give results
that are reasonably close to each other. This indicates that the results we get from
the methods can be trusted.

2.3 Error

In order to say something about how well our model fit the measured data we need
to introduce a way to measure the error. We proceed by organizing our model
estimates and observations into two vectors, respectively ~c and ~m, such that given
N observations let mi denote the i’th observed value and ci denote the value of the
model corresponding to that observation. We can define a way of measuring the
error by summing the squares

es = (c−m, c−m) =
N∑
i=1

(ci −mi)2
. (2.39)

However, this definition of error does not take into account that the turbidity can
be measured more accurately for low concentrations. We can let the smaller con-
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centrations play a bigger role by introducing the weighted norm M−1 defined as

|~x|M−1 =
√

(~x,M−1~x), (2.40)

where we have used the inner product notation. This norm is only defined for
positive-definite M . Further, it is more practical to study the relative errors. A
relative root mean square error in the M−1 norm can be defined as

RRMSEM−1 =

√
(~c− ~m,M−1(~c− ~m))

(~m,M−1 ~m) . (2.41)

We can weight the smallest observations by letting the weights, M , in equation
(2.41) be equal to diag(~m)

WRRMSEM−1 =

√(
~c− ~m, 1

~m (~c− ~m)
)(

~m, 1
~m ~m

) =

√√√√∑N
i=1

(ci−mi)2

mi∑N
i=1mi

. (2.42)

We can weight all observations equally by letting the weights,M , in equation (2.41)
be equal to the identity matrix, I

RRMSEM−1 =

√
(~c− ~m,~c− ~m)

(~m, ~m) =

√√√√∑N
i=1 (ci −mi)2∑N

i=1mi
2

. (2.43)

2.4 Solving the inverse problem

Solving the inverse problem involves minimizing some objective function (Bai and
Tien, 2000). Since our data seems to give more accurate measurements for smaller
observations the objective function should weight the smaller observations. Let M
be equal to diag(~m) and the M−1 norm be defined as in equation (2.40). The
objective function becomes

O(~p) = |~c− ~m,M−1(~c− ~m)| =
N∑
i=1

ci −mi√
mi

. (2.44)

Where O is the objective function and ~p contains the parameters given to the
objective function as a vector. This objective function was passed to MATLABs
built in function "lsqnonlin" and to an implementation of a Markov chain Monte
Carlo method made by Lars Molstad. Both functions try to minimize the sum of
squares.
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2.5 Adjusting the model to the measured data

In the experiment there were no direct measurements of the particle concentrations
in the water phase. Instead turbidity was measured, which we at best can hope is
proportional to the particle concentrations in the water phase (Clark et al., 1992).
Mathematically we get

σturb = ασ, (2.45)
cturb = αc. (2.46)

Where cturb is the turbidity in the water phase, σturb is the retained turbidity and
α is a scaling factor. The value of α is unknown, but it is believed that it should
not exceed 400 (Nilsen, 2016). It must be noted that α is different from raw water
to raw water as the particle-size distribution affects the measured turbidity (Clark
et al., 1992). The partial differential operators are linear, but the function lambda
might not be linear. Therefore, inserting equation (2.46) and (2.45) into equation
(2.36) we get

∂σturb

∂z
= −λ

(σturb

α

)
σturb. (2.47)

Inserting equation (2.46) and (2.45) into equation (1.6) we get

∂σturb

∂t
= uλ(σturb

α
)cturb + b1σturb. (2.48)

Inserting equation (2.46) and (2.45) into equation (2.23) we get

∂cturb

∂t
= −u∂cturb

∂z
. (2.49)

Inserting equation (2.46) and (2.45) into equation (2.38) we get

cturb

cturbin

= σturb

σturbin

. (2.50)

Using the Ives filtration function we proceed by inserting equation (2.45) into equa-
tion (1.5)

λ(σturb

α
) = λ0

(
1 + βσturb

ε0α

)n1(
1− σturb

ε0α

)n2(
1− σturb

σultα

)n3
. (2.51)

For this filtration function α has to be estimated as another free parameter. Insert-
ing equation (2.45) into equation (1.10)

λ
(σturb

α

)
= a0 + a1

σturb

α
+ a2

(σturb

α

)2
. (2.52)
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For this filtration function α just is just baked into constants a1 and a2 and we get

λ(σturb) = a0 + a1σturb + a2 (σturb)2
. (2.53)

The same can be done for all of the polynomials.

2.6 Boundary conditions

The boundary condition for the upper medium was set to the mean of the turbidity
recorded in the inlet T1 (see Figure 1.1) as the inlet turbidity should be constant
throughout the experiment. Only the 5 first turbidity values was used as the 7 other
turbidity values were assumed to be influenced by flocs settling on the turbidity
sensor.

For the lower medium the ideal boundary condition would be the solution from the
upper medium. This would allow a continuous solution throughout the upper and
the lower medium. However, as all of the solutions to the upper medium gave very
poor boundary conditions for the lower medium another approach using a spline of
the turbidity recorded in port D (see Figure 1.1) was used. This spline was plotted
along with observations from port E, F and G in Figure 2.3. The 10th observation
was removed since it was assumed to be an error in the measurements.
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Figure 2.3: Spline following the observations in port D.





Chapter 3

Results and discussion

For all optimization runs MATLABs built in method lsqnonlin and the Markov chain
Monte Carlo method gave approximately the same answers. The results shown in
this section is generated by the lsqnonlin method. For all simulations the value of
σturb was restricted to being positive only.

3.1 Attachment model

For models considering only attachment the ODE method using equation (2.36) and
equation (2.38) were applied. This method can not take filtration functions that
allow detachment, thus equation (1.3) was used for modelling the filtration rate.

3.1.1 Upper medium

For the upper medium a first-order polynomial (equation (1.9)), a second-order
polynomial (equation (1.10)), a third-order polynomial (equation (1.11)), Ives’ fil-
tration function with bounded α (equation (1.5)) and Ives’ filtration function with
unbounded α (equation (1.5)) were considered. The optimal filtration functions
λ(σturb) are shown in Figure 3.1. The weighted relative root mean square, as de-
fined by equation (2.42) and the relative root mean square, as defined by equation
(2.43) for the optimal filtration functions are shown in Table 3.1. The weighted
relative root mean square, as defined by equation (2.42), for different choices of
parameters was printed in Figure 3.2.

From Table 3.1 we can see that Ives’ filtration function with bounded α has a higher
error than the other functions. Even though it has 7 free parameters, it explains
the data less well than the first-order polynomial, which has only 2 free parameters.
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Figure 3.1: Optimal filtration functions for the upper medium consider-
ing attachment only. The upper and lower range is set by the largest and
smallest σturb present in the solution.

Filtration function Weighted RRMSE RRMSE
P1 0.3158 0.2058
P2 0.3010 0.2057
P3 0.2932 0.2008
Ives 0.3851 0.2854
Ives unbounded α 0.3005 0.2014

Table 3.1: Weighted RRMS and RRMS for the optimal filtration functions
in the upper medium considering attachment only.
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Figure 3.2: Plot of the weighted RRMS for different choices of parameters
for the first-order polynomial in the upper medium considering attachment
only. Dark blue colors represents parameters that give a good fit, yellow color
represents parameters that give a bad fit. White cells represents parameters
that gave large errors or NaN values. The white ∗ is the optimum found by
the inverse solver.
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a0 a1 a2 a3
P1 6.748 -0.014
P2 8.376 -0.037 4.658e-05
P3 11.940 -0.105 3.713e-4 -4.410e-7

λ0 β n1 n2 n3 α σult
Ives 6.780 0.017 0.001 0.883 0.045 400.000 0.800
Ivesα 8.573 15.753 2.628e-07 15.969 10.842 6.648e+03 0.799

Table 3.2: The parameters for the best filtration functions in the upper
medium considering attachment only. Ivesα denotes Ives filtration function
with unbounded α.

Ives’ filtration function with unbounded α gives a better fit. Looking at Figure
3.1 we see that Ives’ filtration function with unbounded α seems to have the same
qualitative shape as the second-order polynomial.

The best fit filtration functions in the upper medium are high for σturb = 0 and then
decreasing with σturb. This does not fit very well with the shape one would expect
for a typical filter cycle with a ripening period. However, by looking at Figure 3.3,
in the first turbidity recording (approximately after 1.3 hours), we can see that the
turbidity recorded in port A, B and C are already showing a rising trend, indicating
that breakthrough has already occurred in these ports. In other words, the ripening
part is over. Ripening can only be observed between port C and port D, and to
some extent between port B and C. Since the majority of the recordings do not
capture the ripening part we should not expect λ do have a ripening part either.
This could explain the observed qualitative shape of the best-fit filtration functions.

The errors for the polynomials from Table 3.1 indicate that going from a first-order
polynomial to a third-order polynomial does not generate a much better fit. Looking
at Figure 3.2 we see that the area around the optimum is relatively flat. This
could mean that there are many linear filtration functions that fit the observations
sufficiently well. The first-order polynomial was used to generate a solution for the
upper medium. The solution was printed in Figure 3.3

Different choices of initial values for the parameters were tested for Ives filtration
function in the upper medium. This led to convergence towards different optima or
just abortions due to low gradients. There were no such errors for the polynomials.
This could indicate that the problem is ill-posed for the Ives filtration function,
probably because it has too many parameters.

The parameters for for the best fit filtration functions in the upper medium are
shown in Table 3.2.
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Figure 3.3: Plot of the solution generated by a first-order polynomial in
the upper medium considering attachment only. The measured turbidity
was also plotted.
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Figure 3.4: The spread of the four most optimal solutions for the upper
medium considering attachment only.
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3.1.2 Lower medium

From Figure 3.3 and Figure 3.4 it is evident that the model for the upper medium
does not match the turbidity observed in port D very well. Looking at Figure 3.5
we see that there is no good optimum for a first-order polynomial in the lower
medium when the boundary conditions are set as the output from the upper media.
Further experimentations with higher order polynomials led to convergence towards
different optimums or just abortion due to low gradients. This could indicate that
the problem is ill-posed when the two media are solved separately.

Thus the boundary condition for the lower medium was instead taken as a spline of
the turbidity observed in portD, as explained in section 2.6. For the lower medium a
first-order polynomial (equation (1.9)), a second-order polynomial (equation (1.10)),
a third-order polynomial (equation (1.11)), Ives filtration function with bounded α
(equation (1.5)) and Ives filtration function with unbounded α (equation (1.5))
were considered. The optimal filtration functions are shown in Figure 3.6. The
weighted relative root mean square, as defined by equation (2.42) and the relative
root mean square, as defined by equation (2.43) for the optimal filtration functions
was printed in Table 3.3. The weighted relative root mean square, as defined by
equation (2.42), for the first-order polynomial for different choices of parameters
was printed in Figure 3.7.

From Table 3.3 we can see that the two Ives filtration functions and the third-order
polynomial have approximately the same weighted error. Looking at Figure 3.6 we
see that Ives filtration functions seems to have a similar shape as the third-order
polynomial. This suggests that we can replace Ives filtration function with a third-
order polynomial, reducing the number of parameters from 7 to 4. Furthermore,
the best fit filtration functions in the lower medium are low for σturb = 0, then
increasing with σturb and then decreasing. This fit very well with the shape one
would expect for a typical filter cycle with a ripening period. However, for large
values of σturb the third-order polynomial starts to rise again. Physically this means
that very large values of σturb increases the filter efficiency. This is not supported
by observations from filtration theory. By looking at Figure 3.8 we can observe that
port E, F and G goes through a ripening, working and breakthrough stage. Since

Filtration function Weighted RRMSE RRMSE
P1 0.4007 0.2165
P2 0.3727 0.2309
P3 0.3278 0.2012
Ives 0.3288 0.2072
Ives unbounded α 0.3200 0.1879

Table 3.3: Weighted RRMSE and RRMSE for the optimal filtration func-
tions in the lower medium considering attachment only.
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Figure 3.5: Plot of the weighted RRMS for different choices of parameters
for the first-order polynomial in the lower medium considering attachment
only. Boundary conditions is set as the solution at the end of the upper
medium generated by a first-order polynomial. Dark blue colors represents
parameters that give a good fit, yellow color represents parameters that give
a bad fit. White cells represents parameters that gave large values or NaN
values.



3.1. ATTACHMENT MODEL 35

0 20 40 60 80 100 120

turb

0

2

4

6

8

10

12

14

(
tu

rb
)

Filtration functions lower medium

P1

P2

P3

Ives bounded 

Ives unbounded 

Figure 3.6: Optimal filtration functions for the lower medium consider-
ing attachment only. The upper and lower range is set by the largest and
smallest σturb present in the solution.
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Figure 3.7: Plot of the weighted RRMS for different choices of parameters
for the first-order polynomial lower medium considering attachment only.
Dark blue colors represents parameters that give a good fit, yellow color
represents parameters that give a bad fit. White cells represents parameters
that gave large errors or NaN values. The white ∗ is the optimum found by
the inverse solver.
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Figure 3.8: Solution generated by a third-order polynomial in the lower
medium considering attachment only. The measured turbidity was also plot-
ted.

all stages of the filtration cycle are to some extent captured by the observations, we
should expect λ(σturb) to reflect this by displaying a rising trend before decreasing
again. This could explain the observed qualitative shape of the best-fit filtration
functions.

Looking at Figure 3.7 we can observe that the optimum found by the inverse solver is
flatter than the optimum found in the upper medium, see Figure 3.2. This indicates
that there are more first-order polynomials that could explain the data for the lower
medium than for the upper medium and that the answers found in this medium
is more uncertain. This is supported by the error printed Table 3.3 where it is
suggested a the first-order polynomial is a less good model for this filter. The best
fit λ(σturb) for the third-order polynomial was used to generate a solution for the
lower medium. The solution was printed in Figure 3.8.

Different choices of initial values for the parameters was tested for Ives filtration
function in the lower medium. This led to convergence towards different optima or



38 CHAPTER 3. RESULTS AND DISCUSSION

0 2 4 6 8 10 12

Time (h)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
u

rb
id

it
y
 (

N
T

U
)

Solutions lower medium

P1

P3

Ives

Ives unbounded 

Figure 3.9: The spread of the four most optimal solutions for the lower
medium considering attachment only.
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a0 a1 a2 a3
P1 11.786 -0.114
P2 4.588 0.280 -0.004
P3 1.258 0.915 -0.022 1.313e-04

λ0 β n1 n2 n3 α σult
Ives 1.709 39.306 1.596 6.406 0.151 311.783 0.422
Ivesα 2.263 29.864 1.967 9.510 0.279 466.729 0.210

Table 3.4: The parameters for the best filtration functions in the lower
medium considering attachment only. Ivesα denotes Ives filtration function
with unbounded α.

just abortion due to low gradients. There were no such errors for the polynomials.
This could indicate that the problem is ill-posed for the Ives filtration function,
probably because it has too many parameters.

The parameters for for the best fit filtration functions in the lower medium are
shown in Table 3.4.

3.2 Attachment and detachment

For the model considering attachment and detachment the forward Euler scheme
described by equation (2.25) and equation (2.26) was applied. Equation (1.6) allow-
ing attachment and detachment was applied with two different filtration functions
λ(σturb) (for the attachment part) for the upper and the lower medium.

3.2.1 The upper medium

For the upper medium a first-order polynomial (equation (1.9)) and a second-order
polynomial (equation (1.10)) was considered for λ(σturb). Detachment was de-
scribed by the affine function b1σturb, as in equation (1.6). The best fit filtration
functions are shown in Figure 3.10. The weighted relative root mean square, as de-
fined by equation (2.42) and the relative root mean square, as defined by equation
(2.43) for the best fit λ(σturb) was printed in Table 3.5.

Filtration function λ(σ) Weighted RRMSE RRMSE
First-order polynomial 0.1762 0.1456
Second-order polynomial 0.1677 0.1367

Table 3.5: Weighted RRMS and RRMS for the optimal filtration functions
in the upper medium considering attachment and detachment.



40 CHAPTER 3. RESULTS AND DISCUSSION

0 2000 4000 6000

turb

20

30

40

50

60

70

80

90

100

(
tu

rb
)

Attachment upper medium

P1

P2

0 2000 4000 6000

turb

-1200

-1000

-800

-600

-400

-200

0

b
tu

rb

Detachment upper medium

P1

P2

Figure 3.10: Optimal filtration functions for the upper medium considering
attachment and detachment. The upper and lower range is set by the largest
and smallest σturb present in the solution.
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Figure 3.11: Solution generated by a linear attachment function and a
linear detachment function in the upper medium. The measured turbidity
was also plotted.

From Table 3.5 we see that the relative error for the first-order polynomial has
almost the same relative error as the second-order polynomial. Figure 3.10 indi-
cates that they qualitatively have the same shape, low in the beginning, and then
rising. Comparing the weighted error we get when detachment is introduced with
the weighted error when only attachment is considered, we see that the model al-
lowing detachment gives a much better fit. A solution generated by the first order
polynomial along with its corresponding linear detachment function was printed in
Figure 3.11. In this Figure we see that the model gives a rather good description
of the turbidity observed in port D.

The parameters for for the best fit filtration functions in the upper medium are
shown in Table 3.6.
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b1 a0 a1 a2
P1 -0.2536 20.4999 0.0159
P2 -0.3438 23.3927 0.0278 -1.9662e-06

Table 3.6: The parameters for the best fit first-order polynomial and the
second-order polynomial in the upper medium with detachment.

3.2.2 Lower medium

For the lower medium a first-order polynomial (equation (1.9)) and a second-order
polynomial (equation (1.10)) was considered for λ(σturb). Detachment was de-
scribed by the affine function b1σturb, as in equation (1.6). The best fit filtration
functions are shown in Figure 3.12. The weighted relative root mean square, as de-
fined by equation (2.42) and the relative root mean square, as defined by equation
(2.43) for the best fit λ(σturb) was printed in Table 3.7.

From Table 3.7 we see that the relative error for the first-order polynomial has al-
most the same relative error as the second-order polynomial. Figure 3.12 indicates
that they qualitatively have the same shape, low in the beginning and then rising.
Comparing the weighted error when detachment is introduced with the weighted
error when only attachment is considered we see that the model that allows de-
tachment only gives a slightly better fit. This could indicate that detachment do
not play a role in this medium. A solution generated by the first-order polynomial
along with its linear detachment function was printed in Figure 3.13.

The parameters for for the best fit filtration functions in the lower medium are
shown in Table 3.8.

Filtration function λ(σ) WeightedRMSE RMSE
First-order polynomial 0.3150 0.1907
Second-order polynomial 0.3084 0.1692

Table 3.7: Weighted RRMS and RRMS for the optimal filtration functions
in the lower medium considering attachment and detachment.
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Figure 3.12: Optimal filtration functions for the lower medium considering
attachment and detachment. The upper and lower range is set by the largest
and smallest σturb present in the solution.

b1 a0 a1 a2
P1 -1.1286 118.1499 0.1339
P2 -1.2120 135.5478 0.0637 1.3092e-04

Table 3.8: The parameters for the best fit first-order polynomial and the
second-order polynomial in the lower medium with detachment.
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Figure 3.13: Solution generated by a linear attachment function and a
linear detachment function in the lower medium. The measured turbidity
was also plotted.
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3.3 General discussion

3.3.1 Uncertainties in measurements

None of the models presented above gave a perfect fit to the measured data. Our
model should produce smooth lines, but looking at the recordings in Figure 1.3 we
see that turbidity does not follow completely smooth lines. Thus there are uncertain-
ties in the measurements and in the model. One uncertainty in the measurements
is that the turbidity from the auto-sampler was measured after the whole filter run
was complete. Thus residual-coagulant could have affected the samples. Other un-
certainties in the measurements include uncertainties in the apparatus measuring
the turbidity. It must also be noted that although the observations have a high
resolution they are only based on one filtration cycle.

3.3.2 Uncertainties in turbidity-particle relation

In our model we have assumed that the turbidity is proportional to the volume of
particles. This is true for unfiltered water where the distribution of particle sizes
can reasonably be assumed not to be changing, see section 2.5. However, from
previous studies we know that the breakthrough front propagates at different speed
for different particle sizes, see section 1.3.2. Thus the assumption that turbidity
is proportional to particle-volume is good for the early stages of the filtration and
increasingly worse with time. Further, larger particles will deposit more easily than
smaller particles, maing them deposit in the upper parts of the filter medium. Thus
the assumption that turbidity is proportional to particle-volume is good for the
upper parts of the filter medium and increasingly worse with depth.

3.3.3 Uncertainties in porosity

Another assumption is that the two filter media are completely separated; this is
not true as the two media will intermix a little in an interface zones between them.
Within one filter medium there will also be some sorting of grain-sizes, with the
finest grains on the top. This happens due to backwashing. As a result we do not
have two perfect homogeneous layers and the porosity is a function of filter depth.
In the models we have also assumed that the porosity is constant throughout the
filter cycle. We can better understand the effects of porosity by looking at the
characteristic lines of equation (1.1) defined by equation (C.5) and equation (C.6).
Here ε determines the slope of the characteristic line and is a function of time and
space. According to equation (2.5), as the particles deposit in the filter medium
the porosity decreases. Thus it follows that the slope of the characteristic line also
decreases. This indicates that the characteristic lines of equation (1.1) becomes
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similar to the characteristic lines of equation (2.23). However, this needs more
investigations.

3.3.4 Uncertainties in the boundary conditions

Finding a good spline for the boundary condition for the lower medium was not
easy. As can bee seen in Figure 2.3, the turbidity recorded in port D is actually
lower than the turbidity recorded in port E. This created large relative errors in the
first 6 hours of the filtration cycle. Attempts to fit a smoothed spline did not give
a much better fit. In the end a simple quadratic spline was used.

3.3.5 Uncertainties in the mathematical schemes

The mathematical method used to solve the system with only attachment is solving
a system of ordinary differential equations. This is a stable and fast method that
has been applied in other studies as well. For Ives filtration function the optimum
seemed to be very flat as the optimization routine gave different results and aborted
due to low gradients. For the polynomials there were no problems with low gradients
and there seems to be somewhat well-defined optima for the upper and the lower
medium, see Figure 3.2 and Figure 3.7. The mathematical method used to solve
the system when detachment is included is not so fast and reliable and the optima
have not been studied as closely as with the model considering only attachment.
However, the method gave a better fit to the measured data for the upper medium,
indicating that effects from detachment are important. There was no abortion due
to low gradients. A more reliable method for solving the forward problem was
derived but not implemented.

3.3.6 Whether to include detachment

In the upper medium the models fit better with the observations if particles are
allowed to detach. However, even if detachment is included in the model we do not
get the flattening tendency that the data shows towards the end of the filtration
runs, see Figure 1.3.

3.3.7 Retained particles

A plot of the retained turbidity considering only attachment and a third-order
filtration function at the end of the filtration cycle are shown in Figure 3.14. A
plot of the retained turbidity considering a affine attachment function and a linear
detachment function at the end of the filtration cycle are shown in Figure 3.15.
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Figure 3.14: The retained turbidity at T = 18 for different filter depths
considering attachment only. Boundary conditions are set as spline of ob-
servations in port D.
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Figure 3.15: The retained turbidity at T = 18 for different filter depths
considering attachment and detachment. Boundary conditions are set as
spline of observations in port D.
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The two solutions seem to give quite different results in the upper and the lower
medium. The sharp edge at z=0.8 in Figure 3.15 comes from a small error in the
implementation of the numerical scheme, where σ in the last row of the grid was
not taken into account. The two methods seem to give very different solutions in
the upper medium and not that much difference in the lower medium.
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Conclusions

In this thesis we wanted to find filtration functions that made the model fit to
measured data. We have developed two different methods that solve the forward
problem given a set of parameters, the forward Euler scheme and the method that
solves a system of ODEs. These methods seem to give the same results for a fine
spaced grid for models that only allow attachment. The forward Euler scheme was
extended to allow particles to detach.

When only attachment was considered the third-order polynomial gave the best
result in the upper medium. However, the third order polynomial did not perform
much better than a first-order polynomial. For the lower medium the third-order
polynomial gave almost as good fit as Ives filtration function. Here the first-order
polynomial gave poor results. When detachment was introduced the model for the
upper medium gave a much better fit, even if the model had very few parameters.
The retained turbidity at the end of the filter cycle was different between the model
that allowed detachment and the model that allowed only attachment. This hap-
pened even in the lower medium, where the errors was quite similar. However, in
order to conclude anything about particle removal more filtration runs are needed.

In this thesis we also wanted to find a more transparent derivation of Herzig’s
method for solving the system of ODEs. It turns out that the concept of "corrected
time" can be thought of as following a particle along its streamlines. It was also
shown in Appendix C that the general derivation of equation (2.36) does not need to
assume constant porosity. Although there were no time to implement these findings
in the solution algorithms, they can be used in further investigations. Further
investigations should study how changing porosity affects the filtration model.

It is recommended that further investigations focus on implementing a faster so-
lution method that allows detachment. This could be for instance the method of
lines or the method of characteristics method derived in Appendix D. It is also sug-

49
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gested that further investigations try to solve the two media simultaneous, if there
is a great need for a solution that is continuous on the interface between the filter
media.

As the ripening stage in the upper medium was over when the first measurement was
done, it is recommended that further experiments use a longer filter in the upper
part. From the simulations it seems that using a spline of the turbidity recorded
inside the media as a boundary condition to the forward problem gives meaningful
results. However, this might not be very representative for a real DWTP where the
filter medium is not so deep. A better suggestion might be to do more frequent
sampling in the early stages of the filtration cycle.
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Appendix A

Deriving the conservation
law

Let Ω be an arbitrary subinterval of the interval [0, Z], where Z is the length of our
porous filter media bed [L]. We start by dividing Ω into N subintervals, Ω = [z1, zN ].
The volume of the particles in each of these subintervals is approximately given as

∆Sn(t) ≈ ε(zn, t)c(zn, t)A(zn, t)∆zn.

Where ε(zn, t) is the porosity given as volume water per volume filter [L3/L3],
c(zn, t) is the volume concentration of particles in the water phase [L3/L3], A(zn, t)
is the cross sectional area [L2] and ∆ zn is the height of the porous media element
[L]. Then the total volume of the particles stored in our filter can be found by
summing all the contributions from the subintervals

S(t) ≈
N∑
n=1

ε(zn, t)c(zn, t)A(zn, t)∆zn.

Taking the Riemann-sum as ∆z → 0 we get

S(t) =
∫ zN

z1

ε(z, t)c(z, t)A(z, t)dz.

S(t) is only changing if particles are transported into Ω or if particles are attached
or detached inside Ω. Hence

∂S

∂t
= F + P, (A.1)
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where F denotes the particles transported across the boundary ∂Ω into Ω and P

denotes the attachement/detachment inside Ω. First we consider the transport term
F . Neglecting effects from diffusion and dispersion, particles are only transported
into and out of our system through the cross sections z1 and zN by the free water
masses

F (t) = (c(z1, t)u(z1, t)A(z1, t)− c(zN , t)u(zN , t)A(zN , t)) .

Where c(zn, t) is the volume of particles per volume water [L3/L3] and u(zn, t) is
the Darcy velocity of the fluid [L/T]. By the fundamental theorem of calculus

F (t) = −
∫ zN

z1

∂

∂z
[c(z, t)u(z, t)A(z, t)] dz. (A.2)

The last term P will in our case denote the rate at which particles attach and detach
inside Ω. The volume of the particles in each of the subintervals Ω = [z1, zN ] is
approximately given as

∆Wn(t) ≈ σ(zn, t)A(zn, t)∆zn.

Where σ is the retention, that is, volume of deposited particles per volume filter
[L3/L3]. Now the total volume of the particles stored in our filter can be found by
summing all the contributions from the subintervals

W (t) ≈
N∑
n=1

σ(zn, t)A(zn, t)∆zn.

Taking the Riemann-sum as ∆z → 0 we get

W (t) =
∫ zN

z1

σ(z, t)A(z, t)dz.

Letting P be the negative rate of change of W (t) we can define a general filtration
function

P = −∂W
∂t

= − ∂

∂t

∫ zN

z1

σ(z, t)A(z, t)dz. (A.3)

Combining (A.1), (A.2) and (A.3) we get

∂

∂t

∫ zN

z1

ε(z, t)c(z, t)A(z, t)dz = −
∫ zN

z1

∂

∂z
[c(z, t)u(z, t)A(z, t)] dz − ∂

∂t

∫ zN

z1

σ(z, t)A(z, t)dz,
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Assuming ε(z, t), c(z, t), σ(z, t) and A(z, t) are continuous differentiable in Ω we can
interchange derivation and integration∫ zN

z1

∂

∂t
[ε(z, t)c(z, t)A(z, t)dz] = −

∫ zN

z1

∂

∂z
[c(z, t)u(z, t)A(z, t)] dz −

∫ zN

z1

∂

∂t
[σ(z, t)A(z, t)] dz.

Rearranging and noticing that A(z, t) and u(z, t) were held constant in our experi-
ment ∫ zN

z1

∂

∂t
(cε) + u

∂c

∂z
+ ∂σ

∂t
dz = 0 (A.4)

Equation (A.4) holds for all intervals in Ω. We define f(z) = ∂
∂t (cε) + u ∂c∂z −

∂σ
∂t .

Assuming there exists an a in Ω where f(a) > 0. The continuity assumption leads
to f(z) > 0 for z ∈ Ωa where Ωa is an interval about a. This implies that we have
an interval Ωa where

∫
Ωa
f(z)dz > 0 which contradicts (A.4). Thus (A.4) is fulfilled

if and only if

∂

∂t
(σ + εc) + u

∂c

∂z
= 0.





Appendix B

Derivation of the filtration
rate

For particles we start with the simplified volume conservation equation given by
equation (2.23). For a model considering attachment only Iwasaki (1937) proposed
a exponential filtration rate

∂c

∂z
= −λc.

Inserting this into equation (2.23)

∂σ

∂t
= uλ(σ)c.

For virus we can simplify the volume conservation equation (1.2) by the method of
characteristics

∂σv
∂t

+ u
∂cv
∂z

= 0.

We assume that the virus is attached to larger particles. Thus λ for virus is depen-
dent on how many particles that is captured. We get

∂cv
∂t

= uλ(σ)cv.

Thus

∂σv
∂t

= uλ(σ)cv.
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Appendix C

Deriving the ODE system

The following derivation was done by Bjørn Fredrik Nielsen. It aims at deriving
equation (2.36) from equation (1.1)

∂

∂t
(σ + εc) + u

∂c

∂z
. (C.1)

Given a filtration rate on the form of equation (2.28) we have that

c = 1
uλ(σ)

∂σ

∂t
. (C.2)

Substituting F (σ) = 1
λ(σ) and inserting equation (C.2) into equation (C.1)

∂

∂t

(
σ + ε

u
F (σ)∂σ

∂t

)
+ ∂

∂z

(
F (σ)∂σ

∂t

)
= 0.

By the product rule and the chain rule

∂

∂t

(
σ + ε

u
F (σ)∂σ

∂t

)
+ ∂

∂σ
(F (σ)) ∂σ

∂z

∂σ

∂t
+ F (σ) ∂

∂z

(
∂σ

∂t

)
= 0.

Rearranging

∂

∂t

(
σ + ε

u
F (σ)∂σ

∂t

)
+ ∂

∂σ
(F (σ)) ∂σ

∂t

∂σ

∂z
+ F (σ) ∂

∂t

(
∂σ

∂z

)
= 0.

By the product rule and the chain rule

∂

∂t

(
σ + ε

u
F (σ)∂σ

∂t

)
+ ∂

∂t
(F (σ)) ∂σ

∂z
+ F (σ) ∂

∂t

(
∂σ

∂z

)
= 0.
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Simplifying

∂

∂t

(
σ + ε

u
F (σ)∂σ

∂t
+ F (σ)∂σ

∂z

)
= 0.

Which implies that

σ + ε

u
F (σ)∂σ

∂t
+ F (σ)∂σ

∂z
= g (C.3)

Where

g = g(z) = σ(z, 0) + ε

u
F (σ(z, 0))∂σ

∂t
(z, 0) + F (σ(z, 0))∂σ

∂z
(z, 0)

If we use the initial conditions

c(z, 0) = σ(z, 0) = 0 z ≥ 0

and assume that equation (C.2) also holds for t = 0, then

∂σ

∂z
(z, 0) = 0 z ≥ 0,

∂σ

∂t
= uλ(σ(z, 0))c(z, 0) = 0,

and hence

g(z) = 0, z ≥ 0.

It thus follows from equation (C.3) that

∂σ

∂z
+ ε

u

∂σ

∂t
= −λ(σ)σ.

Applying the method of characteristics

∂σ

∂s
= ∂σ

∂z

∂z

∂s
+ ∂σ

∂t

∂t

∂s
, (C.4)

∂z

∂s
= 1, (C.5)

∂t

∂s
= ε

u
, (C.6)

we find that

∂σ

∂s
= −λ(σ)σ.

Notice that this will also work for ε = ε(z, t).



Appendix D

Deriving the ODE system
with detachment

The following derivation was done by Bjørn Fredrik Nielsen. It aims at deriving a
solution method for the volume conservation equation (1.1) with a filtration rate
that allows detachment. Given a filtration rate on the form of equation (1.6) we
have that

c = 1
uλ(σ)

∂σ

∂t
− 1
uλ(σ)g(σ). (D.1)

Substituting F (σ) = 1
λ(σ) and G(σ) = g(σ)

λ(σ) and inserting equation (D.1) into equa-
tion (1.1)

∂

∂t
(σ + εc) + u

∂

∂z

(
F (σ)
u

∂σ

∂t
− G(σ)

u

)
= 0.

By the product rule and the chain rule

∂

∂t
(σ + εc) + ∂F

∂σ

∂σ

∂z

∂σ

∂t
+ F (σ) ∂

∂z

∂σ

∂t
− ∂G

∂σ

∂σ

∂z
= 0.

Rearranging

∂

∂t
(σ + εc) + ∂F

∂σ

∂σ

∂t

∂σ

∂z
+ F (σ) ∂

∂t

∂σ

∂z
− ∂G

∂σ

∂σ

∂z
= 0.

By the product rule and the chain rule

∂

∂t
(σ + εc) + ∂

∂t

(
F (σ)∂σ

∂z

)
− ∂G

∂σ

∂σ

∂z
= 0.
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Integration with respect to t from 0 to t̃

σ + εc+ F (σ)s∂σ
∂z
−
∫ t̃

0

∂G

∂σ

∂σ

∂z
dt = 0.

Inserting equation (D.1)

σ + ε

u
F (σ)∂σ

∂t
− ε

u
G(σ) F (σ)∂σ

∂z
−
∫ t̃

0

∂G

∂σ

∂σ

∂z
dt = 0.

Hence,

∂σ

∂z
+ ∂σ

∂t

ε

u
= −λ(σ)σ + ε

u
g(σ)− λ(σ)

∫ t̃

0

∂G

∂σ

∂σ

∂z
dt

Applying the method of characteristics

∂σ

∂s
= ∂σ

∂z

∂z

∂s
+ ∂σ

∂t

∂t

∂s
,

∂z

∂s
= 1,

∂t

∂s
= ε

u
.

Then

dσ

ds
= −λ(σ)σ + ε

u
g(σ)− λ(σ)

∫ t̃(s)

0

∂G

∂σ

∂σ

∂z
dt
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