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  ABSTRACT 

  The main aim of this study was to compare accura-
cies of imputation and genomic predictions based on 
single and joint reference populations for Norwegian 
Red (NRF) and a composite breed (DFS) consisting 
of Danish Red, Finnish Ayrshire, and Swedish Red. 
The single nucleotide polymorphism (SNP) data for 
NRF consisted of 2 data sets: one including 25,000 
markers (NRF25K) and the other including 50,000 
markers (NRF50K). The NRF25K data set had 2,572 
bulls, and the NRF50K data set had 1,128 bulls. Four 
hundred forty-two bulls were genotyped in both data 
sets (double-genotyped bulls). The DFS data set (DS-
F50K) included 50,000 markers of 13,472 individuals, 
of which around 4,700 were progeny-tested bulls. The 
NRF25K data set was imputed to 50,000 density us-
ing the software Beagle. The average error rate for the 
imputation of NRF25K decreased slightly from 0.023 
to 0.021, and the correlation between observed and 
imputed genotypes changed from 0.935 to 0.936 when 
comparing the NRF50K reference and the NRF50K–
DFS50K joint reference imputations. A genomic BLUP 
(GBLUP) model and a Bayesian 4-component mixture 
model were used to predict genomic breeding values for 
the NRF and DFS bulls based on the single and joint 
NRF and DFS reference populations. In the multiple 
population predictions, accuracies of genomic breeding 
values increased for the 3 production traits (milk, fat, 
and protein yields) for both NRF and DFS. Accuracies 
increased by 6 and 1.3 percentage points, on average, 
for the NRF and DFS bulls, respectively, using the 
GBLUP model, and by 9.3 and 1.3 percentage points, 
on average, using the Bayesian 4-component mixture 
model. However, accuracies for health or reproduction 
traits did not increase from the multiple population 

predictions. Among the 3 DFS populations, Swedish 
Red gained most in accuracies from the multiple popu-
lation predictions, presumably because Swedish Red 
has a closer genetic relationship with NRF than Danish 
Red and Finnish Ayrshire. The Bayesian 4-component 
mixture model performed better than the GBLUP 
model for most production traits for both NRF and 
DFS, whereas no advantage was found for health or re-
production traits. In general, combining NRF and DFS 
reference populations was useful in genomic predictions 
for both the NRF and DFS bulls. 
  Key words:    imputation ,  genomic BLUP ,  Bayesian 
4-component mixture model ,  multiple population ge-
nomic prediction 

  INTRODUCTION 

  Simulation studies (e.g., de Roos et al., 2009) as well as 
analyses of real data (Brøndum et al., 2011; Lund et al., 
2011; VanRaden et al., 2012) have shown that genomic 
predictions can work across different populations. By 
combining different populations of the same breed or 
related breeds in the reference population, more infor-
mation is available for the estimation of marker effects. 
Hence, more accurate predicted breeding values will be 
obtained in genomic predictions. Accuracies increased 
when 3 related dairy cattle populations—Danish Red, 
Swedish Red, and Finnish Ayrshire—were combined 
into one reference population (Brøndum et al., 2011). 
Reliabilities increased by 10 percentage points, on aver-
age, when 4 European Holstein populations were com-
bined in the reference population (Lund et al., 2011). 
Increases in reliabilities from 6 to 45 percentage points 
were achieved by combining 6 Brown Swiss populations 
(Jorjani et al., 2011). However, most of the predictive 
accuracy, at least with density of 50,000 SNP, most 
likely comes from predicting the effect of large segments 
of chromosome or relationships, rather than individual 
QTL effects (Daetwyler et al., 2012; Wientjes et al., 
2013). 

for the Nordic Red cattle breeds 
  L.   Zhou ,*  B.   Heringstad ,†1 1

 U. S.   Nielsen ,§ and  M. S.   Lund *

  

  

 Received October 9, 2013.
 Accepted March 13, 2014.
   1   Corresponding authors:  bjorg.heringstad@nmbu.no  and  guosheng.

su@agrsci.dk 

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/4.0/


4486

Journal of Dairy Science Vol. 97 No. 7, 2014

Norwegian Red (NRF), with approximately 230,000 
cows, has good performance in health, fertility, and 
milk production. It is the main dairy breed in Nor-
way (95% of dairy cows). A previous study (Luan et 
al., 2009) reported that correlations of genomic EBV 
(GEBV) and daughter yield deviations for NRF varied 
widely between 0.12 and 0.62 for different traits and 
were low for health and reproduction traits. Danish 
Red (38,000 cows), Finnish Ayrshire (143,000 cows), 
and Swedish Red (116,000 cows) are important red 
dairy cattle populations in these Nordic countries. 
These 3 red cattle populations were merged into one 
composite breed (DFS), also named VikingRed, which 
currently has a joint genetic evaluation. The reliabili-
ties of genomic predictions of DFS averaged 0.28 for 
17 traits (Brøndum et al., 2011). The NRF breed is 
related to Swedish Red and Finnish Ayrshire (Olsen 
et al., 2011). Danish Red, Finnish Ayrshire, and NRF 
were also used in the Swedish Red breeding program 
(Bett et al., 2010). Because sires have been exchanged 
and used between these populations, some genetic links 
exist between NRF and DFS.

Combining these 2 related breeds provides an inter-
esting approach to improve accuracies in their genomic 
predictions. Bayesian variable selection models have 
been shown to give a better persistence of genomic pre-
dictions (Gao et al., 2013). Because this joint data set 
includes many distant relationships across the breeds, 
we expect that these models would result in higher 
accuracies in genomic predictions than traditional 
genomic BLUP (GBLUP) models. In this study, our 
first objective was to investigate accuracies in imputa-
tion from 25,000 (25K) to 50,000 (50K) SNP for NRF 
bulls, using only the NRF data set or the NRF and 
DFS data sets together as the reference. The second 
objective was to investigate accuracies in genomic pre-
dictions for NRF and DFS using the single or joint 
NRF DFS reference population, and to compare the 
GBLUP model and a Bayesian 4-component mixture 
model in genomic predictions of different traits.

MATERIALS AND METHODS

Genotypic and Phenotypic Data

The SNP data for NRF consisted of 2 data sets of 
progeny-tested bulls: a data set with 2,572 bulls geno-
typed with 25,000-SNP chips (NRF25K; Affymetrix, 
Santa Clara, CA; Affymetrix, 2007) and a data set with 
1,128 bulls genotyped with the 54,001 SNP of the Bo-
vineSNP50 chip (NRF50K; Illumina Inc., San Diego, 
CA; Matukumalli et al., 2009). A total of 442 NRF 
bulls were genotyped using both the 25K and 50K chips 
(double-genotyped bulls). The DFS data (DFS50K) 
included genotypes of BovineSNP50 chips on Danish 
Red, Finnish Ayrshire, and Swedish Red. A total of 
13,427 genotyped animals were included in the DFS50K 
data set, of which around 4,700 were progeny-tested 
bulls, 3,440 were cows, and the rest were young bulls 
without progeny test results. The genetic correlations 
and number of common sires between DFS and NRF 
from Interbull international genetic evaluations are 
shown in Table 1 (http://interbull2.slu.se). According 
to the pedigree, 291 DFS bulls (242 Swedish Red, 44 
Finnish Ayrshire, and 5 Danish Red) have been used in 
the NRF population, and 58 NRF bulls have been used 
in the DFS population. In our data, 18% (864/4,741) of 
the progeny-tested bulls in the DFS50K data set have 
common sires with the NRF bulls, and 14% (366/2,572) 
of the NRF bulls have common sires with the DFS bulls. 
The 864 DFS bulls that had common sires with NRF 
bulls represent 6% (58/911), 17% (394/2,344), and 28% 
(412/1,486) of the Danish Red, Finnish Ayrshire, and 
Swedish Red bulls, respectively.

The 3 data sets (NRF25K, NRF50K, and DFS50K) 
were edited by removing SNP with minor allele fre-
quencies <0.001 and call rate (per locus) <0.1. After 
SNP editing, SNP common to both the NRF50K and 
DFS50K data sets were kept for further analyses. To 
impute the NRF from 25K to 50K, SNP in NRF25K 
that were not present in the 50K data set were excluded 

Table 1. Genetic correlations between a composite breed (Danish Red, Finnish Ayrshire, and Swedish Red; 
DFS) and Norwegian Red (NRF), and number of bulls in common, for some production and fertility traits 
according to Interbull international genetic evaluation December 2013 

Trait
Genetic  

correlation
No. of 

common bulls

Milk yield 0.91 66
Fat yield 0.90 67
Protein yield 0.89 67
56-d nonreturn rate of heifers 0.79 66
Interval from calving to first insemination 0.88 58
56-d nonreturn rate of cows 0.73 61
Cows’ ability to conceive1 0.71 53
Calving interval 0.86 53
1Calving interval (NRF) and interval from first to last insemination (DFS).
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from the NRF25K data set. In this procedure, around 
15,000 SNP in the 25K chip were removed. Finally, 
45,475 SNP were selected from the 50K chip. The num-
ber of SNP used from the 25K chip was 7,611. Among 
these 7,611 SNP, half of them had switched genotype 
by replacement of A  T and C  G, because of 
the inverse genotyping calling strategies of Illumina 
and Affymetrix companies. To validate the imputation 
accuracy, 500 SNP were randomly selected from the 
7,611 SNP of the NRF25K data set as a validation set. 
The NRF25K data set, with 2,130 (2,572 − 442) bulls, 
was imputed to 50K by (1) using only the NRF50K 
data set as the reference and (2) using the NRF50K 
and DFS50K data sets together as the reference. The 
Beagle software program (version 3.3.2; Browning and 
Browning, 2009) was used for imputation. To ensure 
that all the available information was used, all the 
genotyped individuals, including DFS cows, were used 
in the joint imputation.

Deregressed proofs (DRP) were used as the response 
variables in genomic predictions. For genomic predic-
tions of NRF bulls, DRP of all NRF and DFS bulls 
in the Norwegian scale were calculated from Interbull 
EBV in the Norwegian scale, and vice versa for genomic 
prediction of DFS bulls. The Mix99 program (Lidauer 
and Strandén, 1999; Strandén and Mäntysaari, 2010) 
was used to calculate DRP. Traits analyzed for NRF 
were milk yield, fat yield, protein yield, 56-d nonre-
turn rate of heifers (NR56H), interval from calving 
to first service (CFI), and 56-d nonreturn rate of cows 
(NR56C); traits analyzed for DFS were milk yield, 
fat yield, protein yield, and fertility index and mastitis 

index as composite traits. The fertility index combined 
CFI, interval from first to last insemination, and num-
ber of inseminations, whereas the mastitis index was 
calculated from clinical mastitis with SCC and udder 
conformation.

Only progeny-tested bulls with DRP were included in 
genomic predictions. Bulls were split into reference and 
validation populations by birth date: January 1, 2000, 
for the NRF data sets and October 1, 2001, for the 
DFS50K data set. To ensure enough bulls in the refer-
ence population, the cut-off date was set later for the 
DFS50K data set. All NRF bulls in the NRF25K and 
NRF50K data sets were used in the NRF single popula-
tion predictions, and all DFS bulls in the DFS50K data 
set were used in the DFS single population predictions. 
All NRF and DFS bulls with DRP were used in the 
multiple population predictions. Table 2 shows the 
number of bulls in the reference and validation popula-
tions used for genomic predictions for each trait and 
breed.

GBLUP Model

The GBLUP model (VanRaden, 2008) used in this 
study was

 y = 1 +Zg + eμ , 

where y was the vector of DRP, 1 was a vector of ones, 
μ was the population mean, g was the vector of ge-
nomic breeding values (GEBV), e was the vector of 
residuals, and Z was a design matrix allocating g to y. 

Table 2. Number of bulls in the reference and validation populations for each trait in the Norwegian Red (NRF) and a composite breed (DFS; 
Danish Red, Finnish Ayrshire, and Swedish Red), and multiple population genomic predictions 

Breed Trait1

Single population predictions2 Multiple population predictions

Reference Validation Reference Validation

NRF Milk yield 2,076 508 2,076 NRF + 3,3573 DFS 508
Fat yield 2,076 508 2,076 NRF + 3,357 DFS 508
Protein yield 2,076 508 2,076 NRF + 3,357 DFS 508
NR56H 2,076 508 2,076 NRF + 3,065 DFS 508
CFI 2,076 508 2,076 NRF + 3,325 DFS 508
NR56C 2,076 508 2,076 NRF + 3,324 DFS 508

DFS Milk yield 3,367 1,349 3,364 DFS + 2,353 NRF 1,349
Fat yield 3,367 1,349 3,364 DFS + 2,353 NRF 1,349
Protein yield 3,367 1,349 3,364 DFS + 2,353 NRF 1,349
Fertility 3,376 1,312 3,322 DFS + 2,353 NRF 1,312
Mastitis 3,367 1,341 3,363 DFS + 2,353 NRF 1,341

1NR56H = 56-d nonreturn rate of heifers, CFI = interval from calving to first service, and NR56C = 56-d nonreturn rate of cows. Fertility was 
a composite index that combined CFI, interval from first to last insemination, and number of inseminations; mastitis index was calculated from 
clinical mastitis with SCC and udder conformation.
2In single population predictions, the reference and validation populations contained individuals only from the NRF or the DFS data set. In 
multiple population predictions, the reference populations included individuals from both the NRF and DFS data sets.
3Number of bulls in the reference populations of single and multiple population predictions were different because some DFS bulls lacked EBV 
on the NRF scale.
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It was assumed that g G∼ N g0 2, σ( ) and e D∼ N e0 2, ,σ( )  
where G was the genomic relationship matrix (G-ma-
trix), σg

2 was the additive genetic variance, D was a di-
agonal matrix with weights on the residual variance, 
and σe

2 was the residual variance. Diagonal elements of 
D were calculated as d r rii i i= −( )1 2 2 , where ri was the 
accuracy of DRP for animal i (Su et al., 2012). The 
G-matrix was constructed by method 1 of VanRaden 
(2008), where the genomic relationship (gij) of individ-
ual i and j was calculated as

 g m m p pij
k

n

i k j k k k= −
=
∑ ∑

1

2 2 1, , / ( ), 

where mi,k and mj,k were the marker genotypes for 
individuals i and j at locus k with values 0 − 2pk, 
1 − 2pk, and 2 − 2pk for genotypes A1A1, A1A2, and 
A2A2, respectively; pk was the allele frequency of A2 
at locus k, and n was the total number of markers. 
Allele frequencies (p) were calculated individually for 
the NRF and DFS50K data sets in the single popula-
tion predictions but were recalculated after merging the 
NRF and DFS50K data sets for the multiple population 
predictions. When using the DFS50K data set, only 
progeny-tested bulls were included in the calculation 
of p. The G-matrices and their inverses were calculated 
using the Fortran program Gmatrix (Su and Madsen, 
2010). Genomic predictions using the GBLUP model 
and estimation of variance components were conducted 
by using the DMU package (Madsen and Jensen, 2010).

Bayesian Four-Component Mixture Model

We assumed that most SNP individually only ex-
plained very little variance and very few SNP effects 
explained large variance. Therefore, GEBV were also 
predicted using a Bayesian 4-component mixture model 
(Gao et al., 2013). The model was

 y 1 Mq e= + +μ , 

where y was the vector of DRP, 1 was a vector of ones, 
μ was the overall mean, M was the marker genotype 
matrix with 1, 2, 3, and 4 representing A, C, G, and T 
alleles, q was the vector of SNP effects, and e was the 
vector of residuals. The SNP effects q were assumed to 
be a mixture of 4 normal distributions:

 qi N N N N~ , , , , ,π π π ππ π π π1
2

2
2

3
2

4
20 0 0 0

1 2 3 4
δ δ δ δ( )+ ( )+ ( )+ ( )  

where δπ1
2 , δπ2

2 , δπ3
2 , and δπ4

2  were 4 different variances of 
SNP effects. Proportions of SNP (πi) in different classes 

of the normal mixture distribution were assumed known 
and set to π1 = 0.889, π2 = 0.1, π3 = 0.01, and π4 = 
0.001 with extremely small, small, medium, and large 
effects variance (Gao et al., 2013). Residuals were as-
sumed normally distributed with e D∼ N e0 2, ,δ( )  where 
D was the same weight matrix as in the GBLUP 
model. The prior distributions of SNP effects variance 
δπi

2( ) and residual variance δe
2( ) were uniform (0, +∞), 

where i indicated the 4 classes of the normal mixture 
distribution. Each of the Bayesian analyses was run as 
a single chain with a total length of 50,000 Markov 
chain samples by Gibbs sampling, with the first 20,000 
cycles discarded as burn-in. The Bayesian 4-component 
mixture model analyses were performed using the BayZ 
package (http://www.bayz.biz/).

Imputation Error Rate

Imputed genotypes of 500 randomly selected SNP 
from the NRF25K data set were compared with the ob-
served genotypes, and the imputation error rate for each 
SNP was measured as the proportion of individuals with 
incorrectly imputed genotypes among the 2,130 indi-
viduals in the validation data set. Correlations between 
observed and imputed genotypes were also calculated 
for each SNP. In addition, to determine the relationship 
between imputation error rates and genotyping errors, 
we compared the 442 double-genotyped NRF bulls for 
the 500 validation SNP. Due the observed genotype not 
being the real genotype of individuals, the real genotyp-
ing error could not be measured. Therefore, the geno-
type disagreement rate between the genotypes of 25K 
and 50K chips of the 442 double-genotyped NRF bulls 
was used here as a measure of the genotyping error rate.

Validations of Genomic Predictions

The GEBV of validation individuals were calculated 
from single and multiple population predictions us-
ing both the GBLUP and the Bayesian 4-component 
mixture models. Accuracies of genomic predictions 
were calculated as correlations between GEBV and 
DRP, which were a proxy of the actual accuracies of 
GEBV. Regression coefficients of DRP on GEBV were 
calculated and their deviations from 1 were used as 
a measure of prediction biases. To further investigate 
reasons for increased accuracies of the multiple popula-
tion predictions for the DFS bulls, accuracies of the 3 
DFS populations—Danish Red, Finnish Ayrshire, and 
Swedish Red—were calculated individually.

RESULTS

The average error rate for imputation of NRF25K 
from 25K to 50K was 0.023 when using the NRF50K 



Journal of Dairy Science Vol. 97 No. 7, 2014

4489

reference data set and 0.021 when using the NRF50K 
and DFS50K joint reference data set. The imputation 
error rates for the 500 SNP from the 2 imputations 
were highly correlated (r = 0.94). Correlations between 
observed and imputed genotypes were, on average, 
0.935 and 0.936 for the NRF50K reference imputation 
and the joint reference imputation. The imputation 
error rates were related to genotyping error rates (dis-
agreement rate of genotypes in the double-genotyped 
bulls), as shown in Figure 1. The correlations between 
imputation error rates and genotyping error rates were 
0.325 and 0.303 for the NRF imputation and the joint 
reference imputation.

The genomic relationship coefficients between NRF 
and DFS bulls from the genomic relationship matrix 

are shown in Figure 2. Genomic relationship coeffi-
cients were higher within breeds or populations than 
across breeds or populations. Figure 2 also indicates a 
higher genomic relationship of Swedish Red and Danish 
Red with NRF than that between Finnish Ayrshire and 
NRF. The distribution of genomic relationship coeffi-
cients of the 3 DFS populations with NRF, shown in 
Figure 3, illustrates that most of DFS bulls have close 
to zero genomic relationship with NRF.

Correlations between GEBV and DRP for the NRF 
and DFS validation bulls, respectively, are shown in 
Tables 3 and 4. In general, when the NRF and DFS 
bulls were combined in the joint reference population, 
accuracies increased for all 3 production traits by both 
models. For milk, fat, and protein yields, accuracies 

Figure 1. Comparison of imputation error rates of imputations from ~25,000 (25K) to ~50,000 (50K) for Norwegian Red (NRF) using the 
NRF50K reference data set or the joint NRF50K and DFS50K reference data set (where DFS = composite breed including Danish Red, Finnish 
Ayrshire, and Swedish Red) and genotyping error rates for the 500 validation SNP. Imputation error rates were measured as the proportions of 
incorrectly imputed genotypes to total number of imputed genotypes in the validation data set. Genotyping error rates were measured as the 
genotypes disagreement rates in the 442 bulls genotyped with both 25K and 50K chips.
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increased on average by 6 and 1 percentage points for 
the NRF and DFS bulls, respectively, using the GB-
LUP model, and by 9 and 1 percentage points when 
using the Bayesian 4-component mixture model. For 
NRF, regression coefficients of DRP on GEBV (Table 

3) were similar for the single and multiple population 
predictions for the production traits, but the regression 
coefficients decreased slightly for the health and repro-
duction traits in the multiple population predictions. 
For DFS, there were no obvious difference in regression 

Figure 2. Genomic relationship coefficients among Norwegian Red (NRF) and composite breed (DFS) bulls, where DFS includes Danish 
Red (DNK), Finnish Ayrshire (FIN), and Swedish Red (SWE). The plot included 2,717 NRF, 923 Danish Red, 2,363 Finnish Ayrshire, and 
1,535 Swedish Red bulls.



Journal of Dairy Science Vol. 97 No. 7, 2014

4491

coefficients of DRP on GEBV for the single and mul-
tiple population predictions (Table 4).

Accuracies of predictions by the GBLUP model for 
the 3 DFS populations are shown in Table 5. Dan-
ish Red had lower accuracies compared with Finnish 

Ayrshire and Swedish Red. Only Swedish Red showed 
increased accuracies for all 3 production traits in the 
multiple population predictions, with an increase of 3 
percentage points for milk yield, 2 percentage points for 
fat yield, and 2 percentage points for protein yield. For 

Figure 3. Distribution of genomic relationship coefficients of 3 composite breed (DFS) populations with Norwegian Red (NRF), where DFS 
includes Danish Red (DNK), Finnish Ayrshire (FIN), and Swedish Red (SWE). The plot included 2,717 NRF, 923 Danish Red, 2,363 Finnish 
Ayrshire, and 1,535 Swedish Red bulls.
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Danish Red, accuracies increased by 2 and 1 percentage 
points for fat and protein yields, whereas the accuracy 
increased only for fat yield in Finnish Ayrshire (by 2 
percentage points).

Overall, the Bayesian 4-component mixture model 
obtained higher accuracies than the GBLUP model 
for production traits. It gave slightly higher accuracies 
than the GBLUP model for milk and protein yields in 
the multiple population predictions for both NRF and 
DFS bulls (Tables 3 and 4). The Bayesian 4-component 
mixture model performed better for multiple popula-
tion predictions of fat yield in the predictions of NRF 
but not for DFS. For fertility and health traits, the 
Bayesian 4-component mixture model and the GBLUP 
model gave similar accuracies in both the single and 
multiple population predictions.

For low heritability traits, such as health and fer-
tility, accuracies were lower and less affected by the 
reference populations (single or multiple) or by the 
prediction models. For predictions of the NRF bulls, 
accuracies tended to increase slightly (Table 3) for 
NR56H and NR56C in the multiple population predic-
tions by both the GBLUP and Bayesian 4-component 
mixture models. However, accuracies decreased for 
CFI in the multiple population predictions by both 
the models.

For predictions of DFS bulls (Table 4), the 2 models 
gave similar accuracies for fertility and mastitis, ex-
cept that the accuracy for mastitis from the Bayesian 
4-component mixture model decreased by 9 percentage 
points compared with that from the GBLUP model in 
the multiple population prediction. Generally, the mul-

Table 3. Correlations (r; SE in parentheses) of genomic EBV (GEBV) and deregressed proofs (DRP) and regression coefficients (b) of DRP 
on GEBV for the Norwegian Red (NRF) validation bulls from genomic predictions with the genomic BLUP (GBLUP) and the Bayesian 
4-component mixture models using either the single or multiple reference populations 

Trait1

GBLUP model Bayesian 4-component mixture model

Single-pop2 Multi-pop3 Single-pop Multi-pop

r (SE4) b r (SE) b r (SE) b r (SE) b

Milk yield 0.53 (0.038) 0.87 0.58 (0.036) 0.86 0.53 (0.038) 0.88 0.62 (0.035) 0.92
Fat yield 0.58 (0.036) 0.91 0.63 (0.035) 0.86 0.59 (0.036) 0.91 0.65 (0.034) 0.88
Protein yield 0.49 (0.039) 0.81 0.57 (0.037) 0.85 0.49 (0.039) 0.80 0.62 (0.035) 0.91
NR56H 0.35 (0.042) 0.83 0.37 (0.041) 0.73 0.35 (0.042) 0.81 0.38 (0.041) 0.76
CFI 0.36 (0.041) 1.08 0.35 (0.042) 0.90 0.36 (0.041) 1.03 0.34 (0.042) 0.84
NR56C 0.35 (0.042) 1.01 0.39 (0.041) 0.84 0.34 (0.042) 0.92 0.39 (0.041) 0.84
1NR56H = 56-d nonreturn rate for heifers, CFI = interval from calving to first service, and NR56C = 56-d nonreturn rate for cows.
2Single-pop predictions: only NRF bulls were included in the reference population.
3Multi-pop predictions: both NRF and composite breed (Danish Red, Finnish Ayrshire, and Swedish Red; DFS) bulls were included in the 
reference population.
4Standard errors (SE) of correlations were calculated as 1 22−( ) −( )r n , according to Snedecor and Cochran (1980), where r was the correlation 
of GEBV and DRP, and n was the number of individuals in the validation population.

Table 4. Correlations (r; SE in parentheses) of genomic EBV (GEBV) and deregressed proofs (DRP) and regression coefficients (b) of DRP 
on GEBV for the composite breed (Danish Red, Finnish Ayrshire, and Swedish Red; DFS) validation bulls from genomic predictions with the 
genomic BLUP (GBLUP) and the Bayesian 4-component mixture models using either the single or multiple reference populations 

Traits

GBLUP model Bayesian 4-component mixture model

Single-pop1 Multi-pop2 Single-pop Multi-pop

r (SE3) b r (SE) b r (SE) b r (SE) b

Milk yield 0.56 (0.023) 0.78 0.57 (0.022) 0.77 0.58 (0.022) 0.82 0.60 (0.022) 0.79
Fat yield 0.60 (0.022) 0.79 0.62 (0.021) 0.79 0.61 (0.022) 0.80 0.61 (0.022) 0.84
Protein yield 0.56 (0.023) 0.75 0.57 (0.022) 0.74 0.56 (0.023) 0.73 0.58 (0.022) 0.71
Fertility 0.44 (0.025) 1.02 0.44 (0.025) 1.02 0.44 (0.025) 0.99 0.45 (0.025) 1.03
Mastitis 0.46 (0.024) 0.87 0.48 (0.024) 0.88 0.46 (0.024) 0.94 0.39 (0.025) 1.11
1Single-pop predictions: only DFS bulls were included in the reference population.
2Multi-pop predictions: both DFS and Norwegian Red (NRF) bulls were included in the reference population.
3Standard errors (SE) of correlations were calculated as 1 22−( ) −( )r n , where r was the correlation of GEBV and DRP, and n was the number 
of individuals in the validation population.
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tiple population predictions did not improve accuracies 
in fertility and mastitis for the DFS bulls.

DISCUSSION

Accuracies of imputation for the NRF25K from the 
NRF50K reference and the joint NRF50K-DFS50K ref-
erence imputations were very similar. Although many 
animals (13,427) from a related population or breed 
were included in the reference data set, imputation ac-
curacies did not change much. The imputation error 
rates were similar to those reported in other studies. 
A previous study (Ma et al., 2013) reported that allele 
correct rates of imputation varied from 93.5 to 97.1% 
in the imputation from 3K to 50K using Swedish Red 
and Finnish Ayrshire data. The correlations between 
observed and imputed genotypes were >97.5% in the 
imputation from ~50,000 to ~777,000 for Fleckvieh 
cattle (Pausch et al., 2013). In other studies, genetic 
relationship has been found to be the key factor in 
improving imputation accuracies (Pausch et al., 2013). 
In our data, the 3 DFS populations were not very 
closely related with NRF. Among the 4,741 progeny-
tested DFS bulls, 28% (412/1,486), 17% (394/2,344), 
and 6% (58/911) Swedish Red, Finnish Ayrshire, and 
Danish Red bulls, respectively, had common sires with 
the NRF bulls. This level of relationship among the 
DFS and NRF bulls may explain the small increase in 
imputation accuracy when DFS animals were added.

Correlations between observed and imputed geno-
types for each of the 2,130 NRF validation bulls varied 
from 0.64 to 1.00, and around 150 individuals had 
correlations <0.9 from both the NRF50K reference 
and the joint reference imputation. Genotyping errors, 
which were measured as genotype disagreement rates 

in the 442 double-genotyped bulls in this study, are 
one possible reason for the lack of obvious increase 
in accuracies from the joint imputation. Low marker 
density around the SNP and low minor allele frequency 
of some particular SNP are other possible reasons for 
higher imputation error rates of these SNP. In general, 
the DFS data contributed very little information in the 
imputation of the NRF25K data.

The genomic relationship coefficients of NRF and 
DFS bulls describe the relationships within and be-
tween breeds and populations (Figures 2 and 3). The 
Swedish Red breed has a closer genomic relationship 
with NRF because Swedish Red has been used more 
in the NRF breeding program in recent years (Olsen 
et al., 2011). We detected some negative genomic rela-
tionship coefficients, mainly between Finnish Ayrshire 
and NRF (Figure 3), even though Finnish Ayrshire has 
been used in the breeding history of NRF (Olsen et al., 
2011). This was most likely caused by our strategy of 
choosing the base population in building the genomic 
relationship matrix. We simply chose all the progeny-
tested genotyped bulls from NRF and DFS as the base 
population. However, SNP allele frequencies differed 
among these 4 populations (results not shown). There-
fore, the multiple population allele frequencies were 
influenced more by the population with more individu-
als, which was NRF in our study. Negative genomic 
relationships were also reported for French Holsteins 
and Montbéliarde (Karoui et al., 2012). How to set the 
base population in the genomic relationship matrix is 
an important aspect for research in genomic predictions 
across breeds or populations.

Accuracies of GEBV for production traits improved 
(5–13 percentage points) for the NRF bulls in the mul-
tiple population prediction and slightly improved (1–2 

Table 5. Correlations (r) between genomic EBV (GEBV) and deregressed proofs (DRP) and regression coefficients (b) of DRP on GEBV for 
Danish Red (DNK), Finnish Ayrshire (FIN), and Swedish Red (SWE), from genomic predictions with the genomic BLUP model using either 
the single or multiple reference populations 

Reference  
population

Validation population

Trait

Milk yield Fat yield Protein yield

Population No. of bulls r b r b r b

Single-pop1 DNK 267 0.39 0.60 0.45 0.68 0.41 0.64
FIN 670 0.56 0.73 0.63 0.79 0.57 0.72
SWE 412 0.62 0.88 0.64 0.87 0.62 0.86
DFS all2 1,349 0.56 0.78 0.60 0.79 0.56 0.75

Multi-pop3 DNK 267 0.39 0.60 0.47 0.70 0.42 0.63
FIN 670 0.56 0.71 0.65 0.79 0.57 0.71
SWE 412 0.65 0.88 0.66 0.86 0.64 0.85
DFS all 1,349 0.57 0.77 0.62 0.79 0.57 0.74

1Single-pop predictions: Only composite breed (DFS; DNK, FIN, and SWE) bulls were included in the reference population.
2Accuracies calculated with DNK, FIN, and SWE combined as one breed.
3Multi-pop predictions: Both DFS and Norwegian Red (NRF) bulls were included in the reference population.
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percentage points) for DFS bulls. This may be because 
NRF has a relatively smaller reference data set, and 
the DFS data set therefore contributes more useful in-
formation to the predictions for the NRF bulls. Around 
3,300 DFS bulls were included in the reference data set 
in the multiple population predictions, and the num-
ber was 2,353 for the NRF bulls. Increased accuracies 
are due to the genetic relationship between NRF and 
DFS (Figure 2). In our data, 18% (864/4,741) of the 
DFS progeny-tested bulls had common sires with the 
NRF bulls, and 14% (366/2,572) of the NRF bulls had 
common sires with the DFS bulls. Generally, increased 
accuracies in the multiple population predictions dem-
onstrated that related populations or breeds are useful 
in genomic predictions of another population or breed. 
A previous report (Lund et al., 2011) noted that a large 
reference population increased reliabilities of European 
Holstein. Increased accuracies of genomic predictions 
by merging reference populations were also reported 
for other cattle breeds (Jorjani et al., 2011; VanRaden 
et al., 2012).

Danish Red showed relatively lower accuracies of 
GEBV compared with Finnish Ayrshire and Swedish 
Red in both the DFS single population predictions 
and the multiple population predictions (Table 5). 
This is probably because the Danish Red breed has 
weaker genetic links to Finnish Ayrshire and Swedish 
Red (Brøndum et al., 2011). This was also clear from 
the genomic relationship coefficients of Danish Red 
with Finnish Ayrshire and Swedish Red (Figure 2). 
Among the 3 DFS populations, accuracies increased 
most for Swedish Red. This is because Swedish Red 
has the closest genetic links with NRF. Thus, a ten-
dency exists that the closer the relationship between 
the populations or breeds, the greater the increase in 
accuracies when going from the single population to the 
multiple population genomic predictions. The genomic 
prediction methods are better to predict the effects of 
relatively large chunks of chromosome from key ances-
tors, and these large chunks of chromosome are more 
likely to be shared between closely related breeds or 
populations that have common ancestors. These results 
also confirm the recent arguments that close or fam-
ily relationships strongly contribute to accuracies in 
single-breed genomic predictions (Legarra et al., 2008; 
Habier et al., 2010; Daetwyler et al., 2012; Wientjes et 
al., 2013).

Little or no increased accuracy was observed for 
health and fertility traits in the multiple population 
predictions, which agree with results of a previous 
study (Heringstad et al., 2011). In addition, the regres-
sion coefficients of DRP on GEBV deviated slightly 
further from 1 in the multiple population predictions 
for health and reproduction traits of NRF, indicating 

more prediction bias in the joint predictions. One pos-
sible reason is the differences in definitions and genetic 
evaluation of health and reproduction traits for NRF 
and DFS. For NRF, fertility was evaluated as separate 
traits, including NR56H, CFI, and NR56C. However, 
these traits were combined as an index for DFS. Genes 
or QTL may have different roles in each of the above-
mentioned traits, and their effects may become weak 
or diffuse in the combined index trait. Other possible 
reasons are that heritability of health and reproduction 
traits are low, and the genetic correlations between NRF 
and DFS of these traits are lower than for production 
traits (Table 1). Reliabilities of the DRP of DFS on the 
Norwegian scale and reliabilities of the DRP of NRF 
on the DFS scale for these traits are lower than for 
production traits. The less accurate information (DRP) 
from another population or breed is less useful in the 
multiple population predictions. It is also possible that 
more QTL have small effects affecting health and re-
production traits, and our current SNP density (50K) 
and models are not efficient in capturing these QTL.

It is assumed that most markers have very small 
effects and very few markers have large effects for 
complicated traits such as health and fertility. Bayes-
ian models, which are consistent with this assump-
tion, could therefore be better in genomic predictions 
of these traits. Many studies reported that Bayesian 
models showed higher accuracies than GBLUP models. 
A previous study (Hayes et al., 2010) reported that the 
BayesA model was better than the GBLUP model for 
fat percentage of Holstein. A Bayesian mixture model 
(BayesR) that had higher accuracies than the GBLUP 
model for milk, fat, and protein yields of Australian 
Holstein and Jersey (Erbe et al., 2012). Another study 
(Gao et al., 2013) reported that a Bayesian mixture 
model performed better than the GBLUP model, espe-
cially when there were fewer genetic links between the 
reference and validation populations.

In the present study, the Bayesian 4-component 
mixture model performed slightly better than the GB-
LUP model for the production traits but similar to the 
GBLUP model for the health and reproduction traits. 
Higher accuracy of the Bayesian 4-component mixture 
model in production traits could be explained by the 
fact that some QTL have large effects for production 
traits, and their effects are more accurately estimated 
by the Bayesian 4-component mixture model than the 
GBLUP model. For health and reproduction traits, the 
Bayesian 4-component mixture model had accuracies 
similar to that of the GBLUP model in both single 
and multiple population predictions. No advantage of 
the Bayesian 4-component mixture model in the single 
population predictions could be explained by low heri-
tability of these traits. More QTL with smaller effects 



Journal of Dairy Science Vol. 97 No. 7, 2014

4495

may relate to these traits, and dominance and epistasis 
effects may also explain the larger amount of genetic 
variance in these traits than production traits. There-
fore, more research is needed for genomic predictions in 
low heritability traits.

CONCLUSIONS

The average error rates of NRF25K decreased 
slightly from 0.023 to 0.021, and the correlation be-
tween observed and imputed genotype changed from 
0.935 to 0.936, when comparing imputation using the 
NRF50K reference and the joint NRF50K-DFS50K ref-
erence populations. For production traits, accuracies of 
GEBV increased in the multiple population predictions 
for the NRF and DFS bulls by both the GBLUP and 
Bayesian 4-component mixture models. For health and 
reproduction traits, we found no obvious advantages 
of the multiple population predictions. The multiple 
population genomic predictions were beneficial for pro-
duction traits in both NRF and DFS. Swedish Red, 
which has closer relationship with NRF, had more gain 
in accuracies from single population to multiple popu-
lation predictions.
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