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Abstract

In this study we justify rigorously the approximation of the steep firing rate
functions with a unit step function in a two-population neural firing rate
model with steep firing rate functions. We do this justification by exploiting
the theory of switching dynamical systems. It has been demonstrated that
switching dynamics offer a possibility of simplifying the dynamical system
and getting approximations of the solution of the system for any specific
choice of parameters. In this approach the phase space of the system is
divided into regular and singular domains, where the limit dynamics can
be written down explicitly. The advantages of this method are illustrated by
number of numerical examples for different cases of the singular domains (i.e.
for black, white and transparent walls) and for specific choices of parameters
involved. General conditions have been formulated on these parameters to
give black, white and transparent walls. Further, the existence and stability
of regular and singular stationary points have been investigated. It has been
shown that the regular stationary points (i.e. stationary points inside the
regular domains) are always stable and this property is preserved for smooth
and sufficiently steep activation functions. In the most technical part of the
paper we have provided conditions on the existence and stability of singular
stationary points (i.e. those belonging to the singular domains). For the
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existence results, the implicit function theorem has been used, whereas the
stability of singular stationary points is addressed by applying the singular
perturbation analysis and the Tikhonov theorem.

Keywords: Two population firing rate model, Switching dynamics, Regular
and singular domains, Singular perturbation analysis, Implicit function
theorem and Tikhonov theorem.

1. Introduction

Neurons carry information from one part of the brain to another, which
can be described by various types of mathematical models [1, 2, 3, 4, 5, 6, 7].
The firing rate models have the coarsest level of detail. Here the probability
for firing action-potential is modeled. Existing firing rate models consist of
sets of differential equations, e.g. for synaptic-drive models [8, 9, 10, 11, 12]
each of the differential equations has the following general form:

τj
duj

dt
= −uj + Pj

(

∑

k

ωjkuk

)

(1)

Here uj is the synaptic drive from the neuron j, ωjk is the synaptic weight
from the presynaptic element k to the post synaptic element j, τj is the time
constant representing the decay of the synaptic drive uj following the action
potential in the element j. The function Pj represents the firing-rate function
converting the net synaptic drive to the firing rate [8, 10]. These firing rate
functions are given as sigmoidal functions i.e. they constitute a one - param-
eter family of increasing functions in the state variables, parameterized by
the steepness of the function, they assume values between 0 and 1 and they
approach the unit step function in the limit of infinite steepness.

Rate equation models also occur in other branches of mathematical biol-
ogy, for example in the study of gene regulatory networks [13, 14, 15, 16, 17,
18, 19]. A simple gene regulatory network model is given as

dyi
dt

= Fi(Z1, Z2, ..., Zn)−Gi(Z1, Z2, ..., Zn)yi, i = 1, 2, ..., n, (2)

and the functions Fi and Gi are the production and the relative degradation
rates of gene i, respectively, and yi stands for the gene product concentra-
tions. The functions Zj which are referred to as the activation functions are
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modeled by means of sigmoidal functions, just as as the firing rate functions
in the model (1). The model (2) has been studied in this limit in [13, 14, 20].
In this case the right hand side of (2) possesses jump discontinuities along
certain surfaces in the phase space. These surfaces are referred to as the
singular domains of the dynamical system. In the rest of the phase space
(referred to as the regular domains), the dynamical system (2) turns into a
system of coupled linear differential equations.

The problem studied in those papers consists in proving uniform conver-
gence of the solutions of (2) when the threshold functions become infinitely
steep. This gives, in particular, an algorithm of gluing the limit solutions
in the regular domains together with those in the singular domains. The
key tool in this analysis is the theory of switching dynamical systems and
singular perturbation theory [13, 14].

This serves as a background for the present study. Our aim is to justify
rigorously the approximation of the steep firing rate functions with a unit
step function in the firing rate model (1). We do this justification in a way
analogous to [13, 14]] for the gene regulatory networks of the type (2).

The paper is organized in the following way:

In section 2, we introduce the two-population (excitatory and inhibitory)
firing-rate model and derive an autonomous dynamical system using linear
chain trick [8, 21, 22]. In section 3, we establish the platform to investigate
the dynamics of the two population firing rate model using the theory of
switching dynamical systems. Some notions from this theory are defined in
this section, e.g. regular domains, singular domains and stationary points
corresponding to these domains (regular and singular stationary points). We
transform the actual dynamical system from the (ue, ui)–coordinates to the
new net input variables (x, y) in section 4. This transformation makes it
possible to perform the stability analysis of the singular stationary point us-
ing singular perturbation theory. Next, in section 5, the existence of regular
stationary points (RSP) and singular stationary points (SSP) are addressed.
We explore the existence of regular stationary points for finitely steep activa-
tion functions. We also formulate the conditions on the parameters providing
the existence of singular stationary points. In section 6, we investigate the
asymptotic stability of regular and singular stationary points. We also study
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the dynamics along black walls by applying singular perturbation theory and
the Tikhonov theorem [23, 24]. Section 7 contains main conclusions and an
outlook.

2. Model

The starting point is the simplified two-population synaptic drive model
with excitatory and inhibitory activities given by the Volterra equations

ue = αe ∗ Ze(ωeeue − ωeiui) (3a)

ui = αi ∗ Zi(ωieue − ωiiui), (3b)

where

(αm ∗ Zm(x))(t) =

∫ t

−∞

αm(t− s)Zm(x(s))ds. (4)

Here αm for m = e, i are the temporal kernels showing the impact of past
neural firing on the present activity levels in the network [8, 11, 12]. These
kernels are typically parameterized by a single time constant. In this study
the temporal kernels are modeled by means of exponentially decaying func-
tions

αe(t) = exp(−t) , αi(t) =
1

τ
exp(−

t

τ
). (5)

The functions um for m = e, i in (3) are the average activity levels for ex-
citatory and inhibitory populations. τ is the relative inhibition time which
is given as the ratio between inhibitory to excitatory time constants. The
connectivity parameters ωmn (m = e, i) model the connection strength (from
n to m cells) in the network. In this study, the parameters are assumed to
satisfy the following conditions:

0 < ωmn ≤ 1, 0 < θm ≤ 1, τ > 0. (6)

The activation function Zm for m = e, i is modeled by

Zm(xm) = H(qm, θm, xm) =

{

0 xm < 0
x
1/qm
m

x
1/qm
m + θ

1/qm
m

xm ≥ 0,
(7)

where H is called the Hill function. The parameter θm gives the threshold
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Figure 1: The Hill function for different values of the steepness parameter q at θ = 0.5.

values, while qm form = e, i measures the steepness of the firing rate function
and it is assumed to satisfy 0 < qm ≤ 1. In Fig.1 the Hill function is plotted
for different values of the steepness parameter q for a fixed threshold value
θ = 0.5 (for a detailed review see [18, 25]). For the sake of simplicity, we
assume that qe = qi = q. The system of Volterra equations (3) can be
converted to a 2D autonomous dynamical system by means of the linear
chain trick [8, 21, 22] using exponentially decaying temporal kernels (5):

u′e = −ue + Ze(ωeeue − ωeiui) (8a)

τu′i = −ui + Zi(ωieue − ωiiui). (8b)

For convenience, we write the model (8) in the vector form as

U
′

= F(U), F(U) = −D U+D G(ΩU), (9)

where

D =

[

1 0
0 τ−1

]

, U =

[

ue

ui

]

, Ω =

[

ωee −ωei

ωie −ωii

]

(10)
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and

G(ΩU) =

[

Ze(ωeeue − ωeiui)
Zi(ωieue − ωiiui).

]

(11)

The model (8), or equivalently the system (9)-(11), constitutes the basis of
the present study.

2.1. Wellposedness

The vector function F is continuously differentiable with respect to the
steepness parameter q > 0. Hence the initial value problem for (8) is locally
wellposed. In order to prove global wellposedness of the initial value problem
for (8), it will be sufficient to show that the vector function F is bounded by
some linear function. The nonlinear part of the vector function F is the Hill
function which is always bounded for the finite positive steepness q. Since
both eigenvalues of the matrix D are negative (λ1 = −1 < 0, λ2 = −

1

τ
< 0)

and the nonlinear part of F is bounded for a finite positive q, we get

|DG(ΩU)| ≤ ||D|| · |G(ΩU)| ≤ c1, (12)

where ||.|| is the matrix norm and c1 is some positive constant. Similarly, the
linear part of the function F is also bounded

|D U| ≤ ||D|| · |U| ≤ c2 · |U|, (13)

where c2 is also some positive constant. Combining (12) and (13) yields

|F(U)| ≤ c1 + c2 · |U|, (14)

which shows that the vector function F is bounded by some linear function
c1 + c2 ·U. Hence, the initial value problem (8) is globally wellposed.

3. Regular and singular domains

In this section, we first introduce the notions of regular and singular do-
mains with corresponding focal points in the phase space of the dynamical
system (8). Then, we give examples of three different versions of the singular
domains (black, white and transparent walls) by varying the parameters ωmn

and θm.
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In the limit q → 0, the Hill function (7) becomes the Heaviside step function
S:

S(xm) =







1, xm > θm
1

2
, xm = θm

0, xm < θm

(m = e, i). (15)

The threshold lines for the dynamical system (8) are defined as the disconti-
nuity lines

Le : ωeeue − ωeiui = θe (16a)

Li : ωieue − ωiiui = θi. (16b)

The dynamical system (8) with the step function (15) has the following fea-
tures:

The vector function F is discontinuous on the threshold lines Lm for m =
e, i, which are also called switching domains, singular domains, or walls
[14, 20, 25]. These walls divide the phase space of (8) into four different
regions called regular domains. In each of the four regular domains the vec-
tor function F becomes linear (with constant coefficients). In each regular
domain, all the trajectories of the system move toward a point attractor
called the focal point of the corresponding regular domain (see [14, 20, 25]
for further details).

The representation (15) naturally divides the (ue, ui) plane into four disjoint
regular domains denoted by Ω1, Ω2, Ω3 and Ω4:

Ω1 = {(ue, ui) | ωeeue − ωeiui < θe , ωieue − ωiiui < θi}, (17a)

Ω2 = {(ue, ui) | ωeeue − ωeiui > θe , ωieue − ωiiui < θi}, (17b)

Ω3 = {(ue, ui) | ωeeue − ωeiui < θe , ωieue − ωiiui > θi}, (17c)

Ω4 = {(ue, ui) | ωeeue − ωeiui > θe , ωieue − ωiiui > θi}. (17d)

The regular and singular domains in (ue, ui) plane corresponding to (17) are
displayed in Fig.2.
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Figure 2: Regular and singular domains of the system (8). The regular domains Ω1, Ω2,
Ω3 and Ω4 are given by (17). The singular domains Le and Li given by (16) are marked
as blue and red lines, respectively. Input data for the plot: ωee = 0.6, ωei = 0.8, ωie = 0.8,
ωii = 0.2, θe = 0.1 and θi = 0.4.

By combining (8) and (15), we get four dynamical systems correspond-
ing to the four regular domains (17):

u′e = −ue , τu′i = −ui, (ue, ui) ∈ Ω1, (18a)

u′e = −ue + 1 , τu′i = −ui, (ue, ui) ∈ Ω2, (18b)

u′e = −ue , τu′i = −ui + 1, (ue, ui) ∈ Ω3, (18c)

u′e = −ue + 1 , τu′i = −ui + 1, (ue, ui) ∈ Ω4. (18d)
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Figure 3: Interpretation of the singular domains Li (red) and Le (blue) as white, transpar-
ent and black for the parameter sets given in Table 1. White and black walls are marked
with green and black colors (dashed), respectively. The integral curves in each regular
domain are represented by dashed arrows. (a) Transparent walls for the parameter set A.
(b) Transparent and white walls for the parameter set B. (c) Transparent and black walls
for the parameters set C (d) Transparent, white and black walls for the parameters set D
in the Table 1.

The focal points corresponding to the dynamical systems (18) are given
as

P1 = (0, 0) P2 = (1, 0) , P3 = (0, 1) , P4 = (1, 1), (19)

respectively. The location of the focal points P1, P2, P3 and P4 relative to the
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threshold lines Le and Li determines the behavior of solutions (see [14, 17,
18, 20, 26] for further details).

Definition 1. A subset of the singular domain Lm (m = e, i) is said to be
a black wall, if all the trajectories from both sides of the wall are attracted
toward the wall.

Definition 2. A subset of the singular domain Lm (m = e, i) is said to be a
white wall if all the trajectories are repelled from both sides of the wall.

Definition 3. A subset of the singular domain Lm (m = e, i) is said to be
transparent wall, if the trajectories cross the wall.

For the sake of simplicity, we further divide each of the singular domains
Le and Li into two parts.

Definition 4. The line segment L0
e consists of points satisfying

L0
e = {(ue, ui) | ωeeue − ωeiui = θe , ωieue − ωiiui < θi}, (20a)

while the line segment L1
e satisfy the conditions

L1
e = {(ue, ui) | ωeeue − ωeiui = θe , ωieue − ωiiui > θi}. (20b)

Definition 5. The line segment L0
i consists of points satisfying

L0
i = {(ue, ui) | ωeeue − ωeiui < θe , ωieue − ωiiui = θi}, (21a)

while line segment L1
i satisfy the conditions

L1
i = {(ue, ui) | ωeeue − ωeiui > θe , ωieue − ωiiui = θi}. (21b)

Fig. 3 shows examples of black, white and transparent walls. In Fig. 3d
the red line segment dashed with black color (L1

i ) is a black wall. The re-
maining part of this red line is denoted by L0

i and is a transparent wall. The
blue line dashed with green color (L1

e) is a white wall, whereas the remaining
part of this line (L0

e) is a transparent wall.

Next, we formulate conditions for a wall to be black, white and transpar-
ent.
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Proposition 1. (Conditions for black walls)

1. The singular domains L0
i and Le can never be black walls.

2. L1
i is black if

ωie − ωii < θi < ωie. (22)

Proposition 2. (Conditions for white walls)

1. L0
e is a white wall if

ωee > θe. (23)

2. L1
e is white wall if

ωee − ωei > θe. (24)

3. The wall Li can never be white.

Proposition 3. (Conditions for transparent walls)

1. The singular domain L0
i is always a transparent wall.

2. L1
i is a transparent wall if

ωie < θi (25a)

or

ωie − ωii > θi. (25b)

3. L0
e is a transparent wall if

ωee < θe. (26)

4. L1
e is a transparent wall if

ωee − ωei < θe. (27)

The proofs of Proposition 1, Proposition 2 and Proposition 3 proceed in
the same way. We prove Proposition 1 and omit the proofs of Proposition 2
and Proposition 3.
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Proof.

1. In this case the regular domain Ω1 containing the focal point P1(0, 0)
is bounded by the walls L0

i and L0
e. All integral curves in the regular

domain Ω1 move away from these walls and are attracted toward the
focal point P1. Hence, the walls L0

i and L0
e can never be black. The

only possibility for L1
e to be black is that

ωee − ωei < θe < −ωei. (28)

However, the condition (28) is not fulfilled for the present choice of the
parameters (6). Hence, the wall L1

e can never be black.

2. The wall L1
i is black if the focal point corresponding to the right side

regular domain Ω2 of the wall is to be found in the left side regular do-
main (Ω4) of the wall and vice versa. This results in the phase portrait
where all integral curves in these regular domains move toward the wall
L1
i . In order to produce this scenario, the parameters ωie, ωii and θi

must satisfy the inequality (22).

Parameters ωee ωei ωie ωii θe θi
Set A 0.3 0.9 0.8 0.5 0.5 0.2
Set B 0.6 0.6 0.9 0.5 0.1 0.2
Set C 0.3 0.5 0.9 0.5 0.4 0.8
Set D 0.3 0.4 0.32 0.2 0.1 0.15

Table 1: Sets of parameters used to demonstrate different behaviors of singular domains.
The parameter set A is used to demonstrate the transparent wall behavior. The set B
produces transparent and white walls. The set C is used to produce transparent and black
walls, while the set D generates black, white and transparent walls at the same time.

We summarize the results obtained in Proposition 1, Proposition 2 and
Proposition 3 in the phase plots of Fig. 4. From this figure we can infer
that the singular domain L0

e can never be a black wall. It becomes a white
wall for ωee > θe and a transparent wall for ωee < θe. The wall L1

e behaves
in the similar fashion as L0

e: it is a transparent wall for ωee − ωei < θe and a
white wall for ωee−ωei > θe. The singular domain L0

i is always a transparent
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wall, while the wall L1
i is black for the parameter regime ωie − ωii < θi < ωie

and transparent otherwise.

The parameter sets A − D in the table 1 give rise to different types of the
singular domains in accordance with the Proposition 1 - Proposition 3. In
Fig. 3, the singular domains Li and Le are represented by the red and blue
color lines, respectively. The direction of integral curves in each of the regu-
lar domains is represented by different color directed arrows (dashed). The
corresponding focal points (19) for each of the four regular domains are also
indicated with four different color dots.

More specifically, we have following behavior types of the singular domains
Le and Li for the parameter sets A-D in Table 1:

1. Both of the singular domains Le and Li are transparent walls for the
parameter set A in Table 1 (Fig. 3a).

2. The line segment L0
e of Le dashed with green color is a white wall,

whereas the remaining line segments L1
e and Li are transparent for the

parameter set B in Table 1 (Fig. 3b).

3. The line segment L1
i of Li dashed with black color stands for a black

wall, whereas the rest of line segments Le and L0
i are transparent walls

for the parameter set C in Table 1 ( see Fig. 3c).

4. The line segments L0
e and L1

i are a white and black wall, respectively,
while the line segments L0

i and L0
e are transparent walls for the param-

eter set D in Table 1 (Fig. 3d).

We conclude this section with discussing the notion of a stationary point
(steady state) for the system (8). An immediate adaptation of this notion to
our case gives the following definition:

Definition 6. A point P0(u
0
e, u

0
i ) is said to be a stationary point of the dy-

namical system (8) if

−u0
e + Ze(ωeeu

0
e − ωeiu

0
i ) = 0 (29a)

−u0
i + Zi(ωieu

0
e − ωiiu

0
i ) = 0. (29b)
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Figure 4: Phase plots based on the results obtained in Proposition 1, Proposition 2 and
Proposition 3 showing the parameter regimes for the black, white and transparent walls.
The parameter sets A-D are also marked in these phase plots: (a) Parameter regimes for
the wall L0

e to be white or transparent. (b) Parameter regimes for the wall L1

e to be white
or transparent. (c) Parameter regimes for the wall L1

i
to be black or transparent. The

condition (22) for the black wall is equivalent with 1 − ωii

ωie

< θi

ωie

< 1. The separatrices

between the regions producing black and transparent walls are θi

ωie

= 1− ωii

ωie

and θi

ωie

= 1

.

However, this definition is only applicable if the threshold functions have
finite steepness (i.e. smooth). If they are infinitely steep, the solution of the
system (29) belongs to its continuity set, i.e. to one of the regular domains
of the system (8). This justifies the following definition:

Definition 7. The stationary point lying in one of the regular domains are
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called regular stationary points (RSP)

Yet, this definition is not alone sufficient for our purposes. For instance,
it does not work in the case of black walls, which attracts the trajectories and
therefore may also contain stationary points of the system. The coordinates
of such stationary points cannot be determined from the system (29), as they
belong to the discontinuity set of the right-hand side of the system (8). In
this case, the idea is to define such stationary points (called singular in the
sequel) as the limits of (proper) stationary points of the system (8) with
finitely steep threshold functions letting the steepness parameter q go to 0
(see [18, 20] for the details). Then we arrive at the following definition:

Definition 8. The stationary points lying in one of the singular domains are
called singular stationary points (SSP)

Let us only stress that this definition contains implicitly the requirement
that the approximating stationary points (for small positive q) converge to a
limit point belonging to a singular domain of the system (8). In Fig. 3d, some
of the trajectories move toward P1(0, 0) which is a regular stationary point
of the system (8), while some other trajectories approach the black wall L1

i

which is a red line dashed with black color. As the trajectories do not leave
this wall, it must contain an attracting point which is a singular stationary
point of the system (8). Note, however, that we cannot immediately find the
coordinates of this point, as we have no information about the behavior of
the trajectories in the black wall. The problem of finding the coordinates of
a singular stationary point and the trajectories of the system in the black
wall will be treated in the forthcoming sections.

4. The model in net input variables

In order to investigate the relationship between the evolution in the reg-
ular and the singular domains, we convert the dynamical system (8) into a
dynamical system in the variables x and y defined as

x = ωeeue − ωeiui , y = ωieue − ωiiui, (30)

where it is assumed that ωeiωie − ωeeωii 6= 0. We refer to x and y as the
net input variables. More specifically, the mapping from the actual activity
variables (ue, ui) to the net input variables (x, y) is shown in Fig. 5. In
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Figure 5: The mapping from the domain of the activity variables (ue, ui) to the domain of
the net input variables (x, y) corresponding to Fig. 3d. The blue line segment dashed with
green color and red line segment dashed with black color serve as white and black walls,
respectively. The remaining line segments of singular domains constitute transparent walls.
The integral curves in each regular domain are represented by dashed arrows. (a) Singular
and regular domains with the corresponding focal points in the (ue, ui) plane. (b) Singular
(x = θe and y = θi) and regular domains with the corresponding focal points in the (x, y)
marked with same color as in (a). The corresponding parameters are given by the set D
in the Table 1.

Fig. 5b the red line (y = θi) dashed with the black color represents a black
wall, while the blue line (x = θe) dashed with green color is a white wall. As
we know, singular stationary points may exist in the case of black walls.

In the matrix form the system (8) is equivalent to

U′ = −D U+D G(X), (31)

where the matrices D, U are defined in (10) and G, X are given as

X =

[

x
y

]

, G =

[

Ze(x)
Zi(y)

]

. (32)
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The transformation (30) can be expressed in the matrix form as

X = Ω U, (33)

where Ω is defined in (10). Now, using (33) and the fact that Ω by assump-
tion is invertible, we get

X′ = Ω (−D Ω−1X+D G(X)), (34)

or
X′ = Q (X), Q (X) = A X+B (X), (35)

where

A = −ΩD Ω−1 , B (X) = Ω D G (X). (36)

The vector function Q is given as

Q(q, x, y) =





Q1(q, x, y)

Q2(q, x, y)



 , (37)

where

Q1(q, x, y) = µ1 x + ν1 y + ωee Ze(x)−
1

τ
ωei Zi(y), (38)

Q2(q, x, y) = µ2 x + ν2 y + ωie Ze(x)−
1

τ
ωii Zi(y), (39)

so that the system (35) becomes

x′ = Q1(q, x, y) (40a)

y′ = Q2(q, x, y). (40b)

The coefficients µ1, ν1, µ2 and ν2 are defined as

µ1 =
−ωeiωie + τωeeωii

τd
, ν1 =

ωeeωei(1− τ)

τd
, (41a)

µ2 =
ωieωii(τ − 1)

τd
, ν2 =

−τωeiωie + ωeeωii

τd
, (41b)

d = ωeiωie − ωeeωii. (41c)
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Figure 6: Integral curves of the dynamical system (40) for different steepness q and for
the parameter set D in the Table 1, cf Fig. 1

The general formulae for the focal points of the system (40) are given as

P1(x1, y1) = (0, 0), (42a)

P2(x2, y2) = ((ωieν1 − ωeeν2)/c, (ωeeµ2 − ωieµ1)/c), (42b)

P3(x3, y3) = ((ωeiν2 − ωiiν1)/cτ, (ωiiµ1 − ωeiµ2)/cτ), (42c)

P4(x4, y4) = ((x2 + x3, y2 + y3), (42d)

where c = µ1ν2−µ2ν1. Fig. 6 shows the trajectories of the dynamical system
(40) for different steepness parameters q. There is no black wall-like behavior
if the steepness parameter q is sufficiently far from 0. As q approaches zero
(i.e. when the steepness becomes infinitely large), the appearance of a black
wall can be detected. The solutions approach this wall from both sides and
a special technique is required to understand what happens to the solutions
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in the wall.

5. Existence of regular and singular stationary points

In the previous section we showed how to rewrite the system (8) in the
net input variables, which resulted in the equivalent system (40). In this
section we use this representation to investigate the existence of stationary
points for the system (40) (and thus for the system (8)) for small positive q
and for q = 0 (the limit case). We start with the analysis of the stationary
points that converge (as q → 0) to a regular stationary point (RSP) in the
sense of Definition 7.

Theorem 1. Assume that for q = 0 the dynamical system (40) possesses a
RSP (x⋆, y⋆). Then there exists a positive q0 > 0 such that for all 0 < q < q0
the system (40) has a stationary point (x(q), y(q)) which converges to the
RSP (x⋆, y⋆) as q → 0.

Proof. We prove this theorem by using the implicit function theorem. We
observe that the vector function Q defined by (37) satisfies the following
conditions:

1. Q : R+
0 × R

2 −→ R
2 is a smooth vector function, where R

+
0 = [0,∞) .

2. By assumption, Q(0, x⋆, y⋆) = O, where (x⋆, y⋆) belongs to a regular
domain.

3. The Jacobian J of the vector function Q evaluated at (0, x⋆, y⋆) is given
as

J =





∂Q1

∂x

∂Q1

∂y

∂Q2

∂x

∂Q2

∂y



 (0, x⋆, y⋆) =





µ1 ν1

µ2 ν2



 , (43)

where µ1, µ2, ν1 and ν2 are defined in (41). Simple computations reveal
that det(J) = 1

τ
6= 0.

The implicit function theorem guarantees that there exists a unique smooth
function x = x(q), y = y(q) defined on some interval 0 ≤ q < q0 such that

Q(q, x(q), y(q)) = O (44)
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with x(0) = x⋆ and y(0) = y⋆. This means that the dynamical system (40) has
a regular stationary point (x(q), y(q)) for 0 < q < q0, for which x(q) → x⋆,
y(q)→ y⋆ as q → 0.

Next, we investigate the existence of stationary points (x(q), y(q)) for the
system (40) for small positive q, which converge (as q → 0) to a singular
stationary point (SSP) (x∗, y∗) in the sense of Definition 8. No SSP can
belong to a transparent wall, while white walls can only contain unstable
SSP. That is why we restrict ourselves to the case of SSP belonging to black
walls. From Proposition 1 we know that the only possible black wall is L1

i ,
where x > θe and y = θi. Unlike Theorem 1, we now have not the exact value
of the coordinate x∗ of the SSP. The only a priori information we have is that
y∗ = θi. This is, of course, an additional difficulty, which we overcome by
replacing y with a new variable. This helps us to visualize the first coordinate
of the SSP using the implicit function theorem. For convenience, we use below
the following notation: Pq = (x(q), y(q)) (q > 0), P0 = (x∗, y∗).

Theorem 2. Assume that the system

µ1x+ ωee + ν1θi −
ωei

τ
Zi = 0 (45a)

µ2x+ ωie + ν2θi −
ωii

τ
Zi = 0 (45b)

has a solution (x∗, Z∗i ) satisfying the constraints x∗ > θe, 0 < Z∗i < 1. Then

1. ∃ q0 > 0 and Pq satisfying (44) for 0 < q < q0.

2. Pq → P0 ∈ L1
i as q → 0, where

P0 = (x∗, θi). (46)

Proof. As announced, we prove this theorem by using the implicit function
theorem. But this theorem is not applicable for the equilibrium condition (44)
due to the discontinuity of vector function Q in the limit (q → 0). In order
to overcome this problem, we express the equilibrium condition in terms of x
and Zi using the inverse Hill function

y = H−1(q, θi, Zi) = θi

(

Zi

1− Zi

)q

. (47)
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The equilibrium condition (44) in the new variables x and Zi is given by

f(q, x, Zi) =

[

fe(q, x, Zi)
fi(q, x, Zi)

]

=

[

0
0

]

, (48)

where

fe(q, x, Zi) = µ1x+ ν1θi

(

Zi

1− Zi

)q

+ ωeeZe(x)−
ωei

τ
Zi (49a)

fi(q, x, Zi) = µ2x+ ν2θi

(

Zi

1− Zi

)q

+ ωieZe(x)−
ωii

τ
Zi (49b)

and
(

Zi

1−Zi

)q

→ 1 (0 < Zi < 1), Ze(x) → 1 (x > θe) as q → 0 due to the

properties of the Hill function. We then make the following observations :

1. The mapping f : [0,∞)× (θe,∞)× (0, 1) −→ R×R is a smooth vector
function.

2. By the assumption (45), there exists a point (0, x∗, Z∗i ) ∈ [0,∞) ×
(θe,∞)× (0, 1) such that f(0, x∗, Z∗i ) = O.

3. The Jacobian J1 of the vector function f evaluated at (0, x∗, Z∗i ) is given
as

J1 =





∂f1
∂x

∂f1
∂Zi

∂f2
∂x

∂f2
∂Zi



 (0, x∗, Z∗i ) =





µ1
−ωei

τ

µ2
−ωii

τ



 . (50)

Using (41) we easily obtain that

det(J1) =
ωii

τ
.

Since ωii > 0 by (6), the Jacobian J1 is therefore non-degenerate. Hence by
the implicit function theorem there is a unique smooth solution Zi = Zi(q)
and x = x(q) of f(q, x, Zi) = O with Zi(0) = Z∗i and x(0) = x∗. This solution

corresponds to a point Pq with the coordinates (xq, θi(
Zi

1−Zi
)q) approaching the

point P0 with the coordinates (x∗, θi). This point is a SSP.
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Remark 1. The values x∗ and Z∗i in Theorem 2 can be calculated explicitly:

x∗ =
θiωei − d

ωii

, Z∗i =
ωie + θi

ωii

.

These formulae allow for a straightforward verification of the constraint as-
sumptions put on the solution of the system (45).

6. Stability analysis of regular and singular stationary points

In this section we study asymptotic stability of regular (RSP) and singular
(SSP) stationary points for the dynamical system (40). We first look at the
stability of RSP and their perturbations.

Theorem 3. Assume that the dynamical system (40) with q = 0 has a RSP
(x⋆, y⋆). Then it is asymptotically stable. Moreover, for small q > 0 the
stationary points (x(q), y(q)) of the system (40) constructed in Theorem 1
are all asymptotically stable, too.

Proof. By Theorem 1 the stationary points (x(q), y(q)) exist for some q-
interval about q = 0, where we also have continuous dependence on the pa-
rameter q. We now investigate the stability of the RSP by means of the
invariants (trace and determinant) of the Jacobian J of (43), i.e.

tr(J) = T = −(1 + 1/τ), (51)

det(J) = D = µ1 ν2 − µ2 ν1 = 1/τ. (52)

The stationary point is stable if T < 0 and D > 0 [8, 23]. We always get
tr(J) < 0 and det(J) > 0, because the time constant τ is strictly positive. We
observe that the Jacobian J depends continuously on the steepness parameter
q. Hence, there exists a small positive q0 such that tr(J) < 0 and det(J) > 0
for 0 < q < q0, from which it follows that the stationary points (x(q), y(q))
are asymptotically stable for some q-interval about q = 0.

Analysis of SSP again requires more technique than the above analysis of
RSP. To this end, we need to determine the dynamics of the system (40)
with q = 0 along the black walls, which we do by applying the singular
perturbation analysis (SPA) [14, 23, 24]. The results of our investigations
are summarized in the following theorem:

22



Theorem 4. Under the assumptions of Theorem 2, the SSP P0 ∈ L1
i given

by (46) satisfies the following conditions:

1. P0 is asymptotically stable.

2. The dynamics along the wall L1
i in a vicinity of P0 are given as

dx

dt
= µ1 x+ ν1 θi + ωee −

ωei

τ
Zi(x), (53)

where

Zi(x) =
τ(µ2 x + ν2 θi + ωie)

ωii

. (54)
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Figure 7: (a) Solutions of the system (40) with different initial conditions (circles) traced
out with different color curves in the (x,y)-plane moving to the stationary point (0, 0).
(b) Solutions of the system (55) with different initial conditions (circles) traced out with
different color curves in the (x, Zi)-plane converging to the stationary point (0.085, 0).
The corresponding parameters are given by the parameter set D in Table 1. The standard
MATLAB ODE solver (ode45) is used to demonstrate these results numerically for q =
0.005.
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Proof. From Theorem 2 we know that SSP exists and belongs to the black
(attracting) wall L1

i . Therefore, it is natural to assume that the SSP will be
asymptotically stable. However, a rigorous verification of this fact requires
information about the dynamics along the wall, which cannot be calculated
explicitly, as the right-hand side of the limit system (40) is discontinuous
along the walls.

Wishing to apply singular perturbation analysis, we transform the set of equa-
tions (40) to

x′ = µ1 x + ν1 H
−1(q, Zi, θi) + ωee Ze(x)−

1

τ
ωei Zi (55a)

q Z ′i =
Zi(1− Zi)

H−1(q, Zi, θi)
{µ2 x + ν2 H

−1(q, Zi, θi)+ωie Ze(x)−
1

τ
ωii Zi} (55b)

by means of the transformation
[

x
y

]

−→

[

x
Zi

]

, (56)

where Zi and H−1(q, Zi, θi) are given by (7) and (47), respectively. The
dynamical behavior of the solutions of the system (40)and (55) with different
initial conditions are given in Fig. 7a and Fig. 7b, respectively. We introduce
the stretching transformation

ζ =
t

q
(57)

and rewrite the system (55) as

dx

dζ
= q{µ1 x + ν1 H

−1(q, Zi, θi) + ωee Ze(x)−
1

τ
ωei Zi} (58a)

dZi

dζ
=

Zi(1− Zi)

H−1(q, Zi, θi)
{µ2x+ ν2 H

−1(q, Zi, θi) + ωieZe(x)−
1

τ
ωiiZi}. (58b)

The system (58) is referred to as the boundary layer equation and the dy-
namical behavior of this system with different initial conditions is explained
in Fig. 8a. The SPA now consists of letting q → 0 and calculating the limit
dynamics. In this limit, we obtain

lim
q→0

H−1(q, Zi, θi) = θi, and , Ze(x)→ 1 (59)
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if 0 < Zi < 1 and x > θe. Hence we get

dx

dζ
= 0 (60a)

dZi

dζ
=

Zi(1− Zi)

θi
{µ2x+ ν2 θi + ωie −

1

τ
ωiiZi} (60b)

to the leading order. The stationary points for the equation (58b) are given
as

Zi = 0, Zi = 1, , Zi = Zi =
τ(µ2 x + ν2 θi + ωie)

ωii

. (61)

Fig. 8b explains the dynamical behavior of the system (60) for different initial
conditions with constant x. Observe that Zi(x

∗) = Z∗i ∈ (0, 1). In a vicinity
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Figure 8: (a) Solutions of the system (58) with different initial conditions (circles) traced
with different color curves in (x, Zi)-plane for q = 0.005 converging to the stationary point
(0.085, 0)(diamond). (b) Solutions of the system (60) with initial conditions (0.11, 0.35)
and (0.11, 0.60) represented with red and green circles, respectively for q → 0. The rest
of the parameters are given by set D in the Table 1. The standard MATLAB ODE solver
(ode45) is used to demonstrate these results numerically.
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of x∗, we therefore have Zi(x) ∈ (0, 1). As ωii > 0, the point Zi is an isolated
asymptotically stable stationary point for the equation (60b) with the attractor
basin (0, 1). The equation (58a) in real time t for q → 0 gives therefore the
following dynamics along the black wall L1

i :

dx

dt
= µ1 x+ ν1θi + ωee −

1

τ
ωei Zi. (62)

As Zi(x
∗) = Z∗i ∈ (0, 1), the point x∗ becomes a (unique) stationary point

for (60b). The coefficient of x can be calculated explicitly:

µ1 −
ωei

τ

τ

ωii

µ2 =
1

ωii

(µ1ωii − µ2ωei) = −1 < 0. (63)

From (53), we then conclude that x∗ is an asymptotically stable stationary
solution of (60b), and P0 is an asymptotically stable SSP for the system (40).

7. Conclusions and discussions

In the present work we have justified rigorously the approximation of
the steep firing rate functions with a unit step function in a two-population
neural firing rate model with steep firing rate functions. We have done this
justification by exploiting the theory of switching dynamical systems. In this
approach the phase space of the dynamical system should be divided into
regular domains bounded by the singular (switching) domains. The exam-
ples of different types of singular domains for different choices of parameters
involved in the model have been provided.

The explicit general conditions for attracting (black), repellent (white) and
transparent walls have been derived (Proposition 1, Proposition 2 and Propo-
sition 3). For each specific type of the singular domain, these propositions
are conveniently expressed in terms of the parameters of the model: the con-
nection strength ωmn in the network and the threshold value θm for the firing
action potentials.

On the basis of the results obtained in these propositions, some generic struc-
ture of the singular domains has been discovered. For instance, it has been
found that only one of the four singular domains could be attracting, only
two of the domains could be repelling and one domain would always be trans-
parent. In addition, it has been shown that certain singular domains could
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change their type for different values of the parameters of the system. In
particular, the blackness condition requires that the excitatory-to-inhibitory
connection strength must be greater than the inhibitory threshold, while the
self inhibition connection plays the role of a control parameter. Hence, the
connection strength in the network plays a decisive role for different types of
the solution behavior close to the singular domains.

A special emphasis has been put on the problem of existence and asymp-
totic stability of the stationary regimes of the model. We have identified two
different types of such regimes: regular (belonging to the continuity set of
the simplified system where q = 0) and singular (belonging to the discontinu-
ity set of the simplified system). We have offered explicit formulas for both
types and demonstrated that in the generic situation the existence of the
stationary regimes in the simplified model are preserved in the ”real-world”
model, at least for small q > 0. Finally, we have demonstrated, using the
singular perturbation analysis technique, that the dynamics of the simplified
model (q = 0) and the dynamics of the ”real-world” model (for small q > 0)
would always mimic each other. We have also explained how the simplified
dynamics could be calculated explicitly.

Although the main results of the paper have been derived for the model
with two populations of neurons, we stress that our analysis can be in a sim-
ilar fashion performed for the N-population model as well. We also believe
that our technique, combining with the general linear chain trick [8, 21], can
be applied to the analysis of the dynamics of two or more population model
for more complicated types of temporal kernels.

Finally, we would like to point out the possibility of applying the ideas in
the present paper to networks with spatial structure. In a recent work by
Oleynik et al [27] the justification of the unit step approximation of firing rate
functions has been investigated by means of methods that are different from
classic SPA (i.e. by nonlinear functional analysis and the degree theory). In
a future investigation we intend to combine the methods of SPA with some
ideas from Oleynik et al [27].
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