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Abstract

We study existence and continuous dependence of the solutions to the Ham-
merstein operator equation under the transition from continuous nonlineari-
ties in the Hammerstein operator to the Heaviside nonlinearity in a vicinity
of the solution, corresponding to the discontinuous nonlinearity case. We
apply these results to corresponding problems arising in the neural activity
modeling.
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1. Introduction

We consider a special case of nonlinear operator equation with the Ham-
merstein operator, the nonlinear part of is either represented by the Heaviside
unit step function, or by a bounded continuous function. We are studying
existence and continuous dependence of the solutions to the Hammerstein
operator equation under the transition from continuous nonlinearities in the
Hammerstein operator to the Heaviside nonlinearity. To do this, we choose
an appropriate topology, where the Hammerstein operator with the Heaviside
nonlinearity becomes continuous in a vicinity of the solution, corresponding
to the case of the discontinuous Hammerstein operator nonlinearity. Then we
use methods of functional analysis and topological degree theory to establish
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the results needed. This study is strongly motivated by applications of some
problems arising in the neural activity modeling. Below we give a detailed
descriptions of these problems.

It is well-known (see e.g. [11], [9]) that electrical activity in the neocortex
is naturally studied in the framework of cortical networks. However, since the
number of neurons and synapses in even a small piece of cortex is immense,
a suitable modeling approach is to take a continuum limit of the neural
networks and, thus, consider so-called neural field models of the brain cortex
(rigorous justification of this limit procedure can be found in e.g. [4]). The
simplest model describing the macro-level neural field dynamics is the Amari
model [1]

∂tu(t, x) = −u(t, x) +
∫

Ξ

ω(x− y)f(u(t, y))dy, t ≥ 0, x ∈ Ξ ⊆ Rm. (1)

Here u(t, x) denotes the activity of a neural element u at time t and position
x. The connectivity function ω determines the coupling strength between the
elements and the non-negative function f(u) gives the firing rate of a neuron
with activity u. Neurons at a position x and time t are said to be active if
f(u(t, x)) > 0. Typically f is a smooth function that has sigmoidal shape.
Solvability of (1) in the case of a smooth firing rate function was proved
in [23], [3]. Particular attention in the neural field theory is usually given
to the localized stationary, i.e., time-independent, solutions to (1) (so-called
”bump solutions”, or simply ”bumps”), as they correspond to normal brain
functioning (see e.g [26]). Faugeras et al [8] proved existence and uniqueness
of the stationary solution to (1) as well as obtained conditions for this solution
to be absolutely stable, for the case of a bounded Ξ.

A common simplification of (1) consists of replacing a smooth firing rate
function by the Heaviside function. This replacement simplifies numerical
investigations of the model as well as allows to obtain closed form expres-
sions for some important types of solutions (see e.g. [1], [22] [17]). Existence
of the solution to (1) in the case of Heaviside firing rate function was proved
by Potthast et al [23]. Stability of the stationary solutions to (1) is usually
assessed by the Evans function approach (see e.g. [6], [22]). The analysis
of existence and stability of localized stationary solutions for a special class
of the firing rate functions, the functions that are ”squeezed” between two
unit step functions, was carried out in [13], [20], [15]. This analysis served
as a connection between stability\instability properties of the solutions to
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the models with the ”squeezing” Heaviside firing rate functions and the solu-
tion to the model with the ”squeezed” smooth firing rate function. However,
no rigorous mathematical justification of the passage from a smooth to dis-
continuous firing rate functions in the framework of neural field models was
given until the work by Oleynik et al [21], where continuous dependence of
the 1-bump stationary solution to (1) under the transition from a smooth
firing rate function to the Heaviside function was proved in the 1-D case.

On the other hand, more advanced neural field models have not been
studied in this respect. One example is the homogenized Amari model de-
scribing the neural field dynamics on both macro- and micro- levels

∂tu(t, x, xf) = −u(t, x, xf) +
∫

Ξ

∫

Y

ω(x− y, xf − yf)f(u(t, y, yf))dyfdy,

t ≥ 0, x ∈ Ξ, xf ∈ Y ⊂ Rk,

(2)

which was introduced in the pioneering work by Coombes et al [7]. Here xf is
the fine-scale spatial variable and Y is an elementary domain of periodicity
in Rk. As it was shown in [24], the solution to (2) is a weak two-scale limit
of solutions to the following family of heterogeneous neural field models

∂tu(t, x) = −u(t, x) +
∫

Ξ

ωε(x− y)f(u(t, y))dy,

ωε(x) = ω(x, x/ε), 0 < ε≪ 1,
t ≥ 0, x ∈ Ξ,

(3)

as ε→ 0, where ε corresponds to the medium heterogeneity.
The starting point for the investigation of the solutions to (2) was assum-

ing these solutions to be independent of the fine-scale variable, i.e. solutions
to the equation

∂tu(t, x) = −u(t, x) +
∫

Ξ

∫

Y

ω(x− y, xf − yf)f(u(t, y))dyfdy,

t > 0, x ∈ Ξ ⊆ Rm, xf ∈ Y .
(4)

This assumption was also supported by numerical evidence of non-existence
of the fine-scale-dependent solutions to (2) given in [19].

Existence and stability of the single bump and double bump stationary
solutions to (4) in 1-D were investigated in [25] and [18], respectively, for
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the case of the Heaviside firing rate function. Existence and stability of the
radially symmetric single bump stationary solutions to (4) in 2-D when f is
represented by the Heaviside unit step function were investigated in [5].

In the present research we extend the results of [21] to the homogenized
Amari model and, in addition to the single bump solutions in 1-D, consider
symmetric double bump solutions in 1-D and radially symmetric bump so-
lutions in 2-D. We formulate the following two main theorems: the theorem
on continuous dependence of the stationary solutions to (4) under the tran-
sition from continuous firing rate functions to the Heaviside function and the
theorem on solvability of the equation (4) based on the topological degree
theory. We emphasize here that the properties of existence of solutions to (4)
under the described transition and continuous dependence of these solutions
on the firing rate steepness do not depend on the stability\instability of the
solution to (4) with the Heaviside firing rate function. The latter remark
can be illustrated by comparison of the results of the papers [25], [18], and
[5] to the corresponding three special cases of (4), considered in the present
research:

1. Symmetric single bump solution to (4), m = k = 1.
2. Symmetric double bump solution to (4), m = k = 1.
3. Radially symmetric single bump solution to (4), m = k = 2.
We also stress that our results, in particular, mean that the approxi-

mation of the Heaviside function by piecewise linear firing rate functions
yields continuous dependence of the solutions to the corresponding neural
field equations. This property has particular importance for the theory of the
heterogeneous neural fields as the transition from the heterogeneous model
(3) to the homogenized model (2) can be justified for the piecewise linear
firing rate functions, but not for their Heaviside limit (see [24], [25]). Thus,
our results justify the usage of the Heaviside firing rate function in the frame-
works of [25], [18], and [5].

The paper is organized in the following way. In Section 2 we explain our
notations and state lemmas from functional analysis, which we refer to in the
subsequent sections. In Section 3 we study existence and continuous depen-
dence of the stationary solutions to (4) under the transition from continuous
firing rate functions to the Heaviside function, and formulate and prove the
corresponding two main theorems. Based on these theorems we investigate
in Section 4 the corresponding properties of the following types of solutions
to (4):

1. Symmetric single bump solutions in 1-D (Subsection 4.1).

4



2. Symmetric double bump solutions in 1-D (Subsection 4.2).
3. Radially symmetric single bump solutions in 2-D (Subsection 4.3).

Section 5 provides concluding remarks and outlook.

2. Preliminaries

In this section we provide an overview of the notation, introduce the main
definitions and formulate the main theorems we refer to.

For a metric space M with the distance ρM, and arbitrary S ⊂ M, ε > 0,
we denote BM(S, ε) =

⋃
s∈S

{m ∈ M | ρM(m, s) < ε}.
Definition 2.1. Let S be an arbitrary subset of the metric space M.

The set E is called ǫ-net for S if for any s ∈ S, one can find such e ∈ E that
ρM(e, s) ≤ ǫ, see [14].

Let B be a real Banach space equipped with the norm ‖ · ‖B and D
be an arbitrary open bounded subset of B. We denote by ∂D and D the
boundary and the closure ofD inB, respectively. We denote by deg(Φ, D, b0)
and ind(Φ, D) the degree and the topological index of an arbitrary operator
Φ : D → B, respectively (if they are well-defined).

Let µ be the Lebesgue measure on Rm, Ω be a compact subset of Rm,
Ξ ⊆ Rm, then:

Lq(Ξ, µ, R) be the space of functions η : Ξ → R with Lebesgue inte-
grable q-th power of the absolute value and the following norm ‖η‖Lq(Ξ,µ,R) =( ∫

Ξ

|η(x)|qdx
)1/q

, 1 ≤ q <∞.

Let Ck(Ω, R) be the space of functions ζ : Ω → R, whose first k deriva-
tives ζ(n) (n = 0, . . . , k, ζ(0) = ζ) are continuous, equipped with the norm

‖ζ‖Ck(Ω,R) =
k∑

n=0

max
x∈Ω

|ζ(n)(x)|.
Let Ck(Rm, R) be a locally convex space of functions ζ : Rm → R, whose

first k derivatives ζ(n) (n = 0, . . . , k, ζ(0) = ζ) are continuous, equipped with

the topology of uniform convergence of
k∑

n=0

max |ζ(n)| on compact subsets of

Rm.
We will not indicate q = 1 and k = 0 in the corresponding space notations.

Lemma 2.1. Let D be a open bounded subset of a real Banach space B,
Λ be a compact subset of R, and an operator T : Λ×D → B be continuous
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with respect to both variables and collectively compact (i.e., T (Λ, D) is a
pre-compact set in B). Assume that λn → λ0 and T (λn, bn) = bn. Then
the equation T (λ0, b) = b has at least one solution. Moreover, any limit
point of the sequence {bn} is a solution of this equation, i.e., if bn → b0 then
T (λ0, b0) = b0, see [21].

Definition 2.2. Let D be an open bounded subset of a real Banach
space B. The family {ht}, (t ∈ [0, 1]) of operators acting from D to B is
called homotopy if ht(b) is continuous with respect to (t, b) on [0, 1]×D, see
[12].

Lemma 2.2. (Homotopy invariance) Let D be an open bounded sub-
set of a real Banach space B. Suppose that {ht} is a homotopy of operators
ht : D → B and ht − I is compact for each t ∈ [0, 1]. If htb 6= b0 for any
b ∈ ∂D and t ∈ [0, 1], then deg(ht, D, b0) is independent of t, see [12].

Definition 2.3. Let D be an open bounded subset of D, where D is
an absolute neighborhood retract (see, e.g. [10]), D ⊂ B. The continuous
mapping ψ : D → D is called admissible provided that the fixed point set of
ψ is compact in B, see [10].

Lemma 2.3. (Topological invariance) Let ψ : D → D be an ad-
missible compact mapping and φ : D → D

′ be a homeomorphism. Then
φ◦ψ◦φ−1 : φ(D) → D

′ is also an admissible compact mapping and

ind(ψ,D) = ind(φ◦ψ◦φ−1, φ(D)),

see [10].

3. Main results

In this section we study existence and continuous dependence of station-
ary solutions to (4) when approximating the Heaviside activation function
by continuous functions. In order to do that, we consider the following ho-
mogenized Amari neural field equation

∂tu(t, x) = −u(t, x) +
∫

Ξ

∫

Y

ω(x− y, xf − yf)fβ(u(t, y))dyfdy,

t > 0, x ∈ Ξ ⊆ Rm, xf ∈ Y ⊂ Rk,

(5)

parameterized by β ∈ [0,∞).
We assume that the functions involved in (5) satisfy the following as-

sumptions:
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(A1) For any xf ∈ Y , the connectivity kernel ω(·, xf) ∈ C2(Ξ, R).

(A2) For any x ∈ R, the connectivity kernel ω(x, ·) ∈ L(Y , µ, R).
(A3) For β = 0, the activation function is represented by the Heaviside

unit step function

f0(u) =

{
0, u ≤ θ,
1, u > θ

with some threshold value θ.

(A4) For β > 0, functions of the family fβ : R → [0, 1] are non-decreasing,
continuous, and satisfying the following convergence conditions with respect
to the parameter β:

(i) fβ → fβ̂ uniformly on R as β → β̂, β̂ ∈ (0,∞);
(ii) for any ε > 0, fβ → f0 uniformly on R \BR(θ, ε) as β → 0.

Figure 1: Approximation of the Heaviside firing rate function (red) by continuous functions
(blue).

So, if the stationary solution to (5) exists, it satisfies the following equa-
tion

u(x) =

∫

Ξ

〈ω〉(x− y)fβ(u(y))dy,

〈ω〉(x) =
∫

Y

ω(x, xf)dxf ,

x ∈ Ξ ⊆ Rm, xf ∈ Y .

(6)
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We are interested here in one particular type of solutions, which possesses
the following properties.

Definition 3.1. Let θ > 0 be fixed. We say that u ∈ C1(Ξ, R) satisfies
the θ-condition if

(B1) there is a finite set of open bounded domains Θi ⊂ Ξ such that

u(x) > θ on Θ =
N⋃
i=1

Θi;

(B2) for any point x of the boundary B =
N⋃
i=1

Bi of Θ, it holds true that

u′(x) 6= 0;
(B3) there exist σ > 0 and r > 0 such that u(x) < θ − σ for all x ∈

Ξ \BRm(Θ, r).

Figure 2: Example of function U ∈ C1(R,R) satisfying θ-condition. Here Θ = (x1, x2) ∪
(x3, x4) ∪ (x5, x6), B = {x1, x2, x3, x4, x5, x6}.

Remark 3.1. Definition 3.1 implies Bi

⋂Bj = ∅ for any i, j = 1, . . . , N ,
i 6= j.

In this section we assume existence of the stationary solution U ∈ C1(Rm, R)
to (6), (Ξ = Rm), which corresponds to β = 0 and satisfies θ-condition. We
are interested here in conditions, which guarantee existence of solutions uβ
to (6) for β > 0 (i.e. in the case of continuous function fβ) and convergence
of these solutions to U as β → 0.

The following theorem provides conditions for convergence of the solutions
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uβ to (6), β > 0, (if these solutions exist) to the stationary solution U to (6)
at β = 0.

Theorem 3.1. (Continuous dependence) Let the assumptions (A1)−
(A4) hold true, θ > 0 be fixed and U ∈ C1(Rm, R) satisfies the θ-condition.
Then there exists ε > 0 such that for any (sufficiently large) closed Ω ⊂ Rm,
if we assume existence of solutions uβ ∈ BC1(Ω,R)(U, ε) to the equation (6)
for any β ∈ (0, 1] (Ξ = Ω), then there exist a solution to (6) at β = 0 and
it is a limit point of the set {uβ}. Moreover, if the solution of (6) at β = 0
(Ξ = Ω), say u0, is unique then ‖uβ − u0‖C1(Ω,R) → 0.

Proof. We are going to apply Lemma 2.1, so we represent (6) in terms
of the parameterized operator equation

u = Fβu,

where
Fβ = W ◦Nβ. (7)

Here, for any β ∈ [0,∞), the Nemytskii operator

(Nβu)(x) = fβ(u(x)), (8)

and the linear integral operator

(Wu)(x) =

∫

Ξ

〈ω〉(x− y)u(y)dy. (9)

We introduce some important notations. For an arbitrary ε > 0, we
denote the open sets Θ+ε ⊂ Rm and Θ−ε ⊂ Rm such that U(x) > θ + ε

on Θ+ε =
N+ε⋃
i=1

Θ+ε
i and U(x) > θ − ε on Θ−ε =

N−ε⋃
i=1

Θ−ε
i , respectively. The

boundaries of these sets we denote as B+ε =
N+ε⋃
i=1

B+ε
i and B−ε =

N−ε⋃
i=1

B−ε
i ,

respectively.
By the virtue of the conditions (B1)− (B3) imposed on U ∈ C1(Rm, R)

and Remark 3.1, there exists ε0 ∈ (0, σ/2) such that

N+ε0 = N−ε0 = N, B ⊂ Θ−ε0 \Θ+ε0 ,

B−ε0
i

⋂B−ε0
j = ∅ for any i, j = 1, . . . , N, i 6= j.
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Choosing an arbitrary compact Ω, Θ−ε0 ⊂ Ω, for any u ∈ BC1(Ω,R)(U, ε0),
we get the conditions (B1), (B2) fulfilled and the following condition holding
true instead of (B3):

(B3(Ω)) u(x) < θ − σ/2 for all x ∈ Ω \Θ−ε0 .
Now we show that Nβ : BC1(Ω,R)(U, ε0) → L(Ω, µ, R) defined by (8) is

continuous at any β̂ ∈ [0,∞) uniformly on BC1(Ω,R)(U, ε0). For β̂ ∈ [0,∞),

and u ∈ BC1(Ω,R)(U, ε0), we estimate ‖Nβu − Nβ̂u‖L(Ω,µ,R), as β → β̂. The

case β̂ ∈ (0,∞) is trivial, as by the virtue of (A4), we immediately get

∫

Ω

|fβ(u(x))− fβ̂(u(x))|dx→ 0, β → β̂

uniformly with respect to u ∈ BC1(Ω,R)(U, ε0). So, we focus on the more

involved case β̂ = 0.

∫

Ω

|fβ(u(x))− f0(u(x))|dx =

=

∫

Θ+ε0
⋃
(Ω\Θ−ε0 )

|fβ(u(x))− f0(u(x))|dx+
∫

Θ−ε0\Θ+ε0

|fβ(u(x))− f0(u(x))|dx.

(10)
For all x ∈ Θ+ε0

⋃
(Ω \ Θ−ε0) and any u ∈ BC1(Ω,R)(U, ε0), u(x) belongs

to R \ BR(θ, ε0). Taking into account (A4), we get the first summand on
the right-hand side of (10) converging to 0 uniformly on BC1(Ω,R)(U, ε0), as
β → 0. Next,

∫

Θ−ε0\Θ+ε0

|fβ(u(x))− f0(u(x))|dx <
1

c0

‖U‖
C1(Ω,R)∫

−‖U‖
C1(Ω,R)

|fβ(s)− f0(s)|ds,

where 0 < c0 < |u′(x)| for all x ∈ Θ+ε0
⋃
(Ω\Θ−ε0) and any u ∈ BC1(Ω,R)(U, ε0)

(We assume here that ε0 < min
x∈Θ−ε0\Θ+ε0

|U ′(x)|, otherwise we repeat the pro-

cedure above with the new ε0 = ε1 < min
x∈Θ−ε1\Θ+ε1

|U ′(x)|). Finally, we notice

that assumption (A4) guarantees convergence to 0 of the expression on the
right-hand side of the latter inequality, as β → 0.
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Thus, for any compact Ω ⊂ Rm, Nβ : BC1(Ω,R)(U, ε0) → L(Ω, µ, R) is

continuous at any β̂ ∈ [0,∞) uniformly on BC1(Ω,R)(U, ε0), which means that
for all β ∈ [0,∞), the Nemytskii operator Nβ is a bounded mapping from
BC1(Ω,R)(U, ε0) to L(Ω, µ, R). We also notice that the operator W defined by
(9) (Ξ = Ω) is a linear and continuous mapping from L(Ω, µ, R) to C1(Ω, R)
provided that assumptions (A1) and (A2) hold true.

Thus, for any β ∈ [0,∞), Fβ : BC1(Ω,R)(U, ε0) → C1(Rm, R) and

‖Fβu−Fβ̂û‖C1(Ω,R) → 0, β → β̂, ‖u−û‖C1(Ω,R) → 0, where û ∈ BC1(Ω,R)(U, ε0).

Next, we prove that Fβ : BC1(Ω,R)(U, ε0) → C1(Ω, R) (β ∈ [0,∞)) are
collectively compact.

By the virtue of (A3), (A4), it suffices to show that for an arbitrary ǫ > 0,
the set {

∫
Ω

〈ω〉(x − y)κdy, κ ∈ [0, 1]} possesses a finite ǫ-net in C1(Ω, R).

We represent 〈ω〉 = (〈ω〉l), where 〈ω〉l ∈ C2(Ωl, R), Ωl is the orthogonal
projection of Ω to the axis OXl (l = 1, . . . ,m).

Choose an arbitrary l̂. Suppose that Ωl̂ = [a, b],

∫

[a,b]

〈ω〉l̂(a− s)ds = A,

∫

[a,b]

〈ω〉′
l̂
(a− s)ds = A′,

max
t∈[a,b]

∫

[a,b]

〈ω〉′′
l̂
(t− s)ds =M.

Then, for example, the set
{
αi + κjt, αi = i

A+ (b− a)(A′ + (b− a)M))

[(A+ (b− a)(A′ + (b− a)M)))/ǫ] + 1
,

κj = j
A′ + (b− a)M

[(A′ + (b− a)M)/ǫ] + 1
,

i = 0, 1, . . . , [(A+ (b− a)(A′ + (b− a)M))/ǫ] + 1,

j = 0, 1, . . . , [(A′ + (b− a)M)/ǫ] + 1, t ∈ [a, b]

}
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serves as the ǫ-net for {
∫
Ω

〈ω〉l̂(x − y)κdy, κ ∈ [0, 1]} ([z] denotes here the

integer part of z ∈ R). Due to arbitrary choice of the component
∫
Ω

〈ω〉l̂(x−
y)dy of

∫
Ω

〈ω〉(x−y)dy (l = 1, . . . ,m), we proved collective compactness of the

whole composition Fβ = W ◦Nβ (β ∈ [0,∞)) as acting from BC1(Ω,R)(U, ε0)
to C1(Ω, R).

Now, if we keep in mind the properties proved and put T (λ, b) = Fβu,

Λ = [0, 1], D = BC1(Ω,R)(U, ε1), ε1 < ε0, by using Lemma 2.1, we complete
the proof. �

It is often easier to study existence of solutions satisfying θ-condition to
(6) when β = 0. The corresponding closed form expressions for the particular
types of solutions (satisfying θ-condition) to special cases of (6) can be found
e.g. in [1, 17, 22, 18, 25, 5].

The next theorem provides a tool for proving existence of solutions to (6)
for β ∈ (0,∞) using some knowledge about the solution to (6) at β = 0.

Theorem 3.2. (Existence) Let the conditions of Theorem 3.1 be
satisfied, the set Ω and the constant ε1 be taken from Theorem 3.1. As-
sume that there exists solution U ∈ C1(Rm, R) of (6) at β = 0, which
satisfies θ-condition and which is unique in BC1(Ω,R)(U, ε2) (ε2 < ε1), and
deg(I−F0, BC1(Ω,R)(U, ε2), 0) 6= 0, where the operator F0 : BC1(Ω,R)(U, ε1) →
C1(Ω, R) is given by (7). Then for any β ∈ (0, 1], there exists solution
uβ ∈ BC1(Ω,R)(U, ε2) to the equation (6).

Proof. We prove that the family {hβ}, β ∈ [0, 1],

hβ = I − Fβ (11)

is homotopy. Continuity of h(·)(·) on [0, 1]×BC1(Ω,R)(U, ε1) follows from the
proof of Theorem 3.1. It remains to prove that hβ(u) 6= 0 for any β ∈ [0, 1]
and u ∈ ∂BC1(Ω,R)(U, ε2).

Collective compactness of Fβ : BC1(Ω,R)(U, ε1) → C1(Ω, R) (β ∈ [0,∞)),
shown in the proof of Theorem 3.1, imply the following two possibilities for
any sequence {uβn

} ⊂ BC1(Ω,R)(U, ε1) (βn → 0) of solutions to (6):
1) uβn

converges to U , as βn → 0;
2) there exists such n̂ that for any n > n̂, ‖uβn

−U‖C1(Ω,R) > ε2 (without
loss of generality we can assume that βn̂ > 1).

This proves that (I−Fβ)(u) 6= 0 for any β ∈ [0, 1] and u ∈ ∂BC1(Ω,R)(U, ε1).
Finally, we apply Lemma 2.2 to the homotopy (11) and get existence of

solutions to (6) for any β ∈ (0, 1]. �
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Remark 3.2. The choice of the space C1(Ω, R) as a basic functional
space in this research is caused by the fact that even in the space of absolutely
continuous functions, any ball, centered at a function satisfying θ-condition,
contains functions, which do not satisfy θ-condition. The corresponding ex-
ample can be found in [21], in the proof of Lemma 3.7.

4. Bumps in neural field models

In this section we apply the theory developed to the stationary bump
solutions to the neural field model (5) in the following three special cases:

1. Symmetric single bump in 1-D.
2. Symmetric double bump in 1-D.
3. Radially symmetric single bump in 2-D.
Each subsection concludes with a theorem on existence and continuous

dependence of the stationary solutions of the corresponding type to the equa-
tion (5) when approximating the Heaviside activation function by continuous
functions.

4.1. Symmetric single bump in 1-D

We consider here the one-dimensional homogenized Amari model, i.e. the
model (5) with m = k = 1:

∂tu(t, x, xf) = −u(t, x, xf)+
∫

Ξ

∫

Y

ω(x−y, xf−yf)fβ(u(t, y, yf))dyfdy,

t > 0, x ∈ Ξ ⊆ R.

(12)

Here Y is some one-dimensional torus, the family of functions fβ : R → [0, 1]
satisfies assumptions (A3), (A4), and the function ω is typically decomposed
in the following way (see e.g. [25], [18]):

ω(x, xf) =
1

σ(xf)
χ
( |x|
σ(xf)

)
, (13)

where the function σ ∈ C(Y , (0,∞)) is Y-periodic and the function χ ∈
C2([0,∞), R)

⋂
L([0,∞), µ, R) satisfies the property:

lim
x→∞

χ(x) = 0. (14)

Thus, assumptions (A1), (A2) are also satisfied. We emphasize here that the
class of connectivity functions ω described above is rather wide. It contains
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all typical connectivity functions in use in the neural field theory (see e.g. [25],
[18] for the heterogeneous media case, and the review [2] for the homogeneous
media case).

Definition 4.1.1. Let θ > 0 be fixed. We define a symmetric single bump

solution to (12) to be a stationary solution U ∈ C1(Ξ, R) to (12), satisfying
the following properties:

• U(x) = U(−x) for all x ∈ R;

• the equation U(x) = θ has exactly two solutions x = −a, x = a, a > 0;

• U(x) > θ for all x ∈ (−a, a) and U(x) < θ for all x ∈ Ξ \ [−a, a].

The stationary symmetric single bump solution to (12) in the case β = 0
can be determined by the following expression (see e.g. [25]):

U(x) = W (x+ a)−W (x− a), (15)

where

W (x) =

x∫

0

〈ω〉(y)dy,

〈ω〉(x) =
∫

Y

ω(x, xf)dxf .

Due to the assumptions on the functions χ ∈ C2(R,R)
⋂
L(R, µ,R) and

σ ∈ C(Y , (0,∞)), and the corresponding properties of the connectivity ω
defined by (13), we get the following condition fulfilled:

lim
|x|→∞

〈ω〉(x) = 0. (16)

Using the latter expression, we easily obtain

lim
|x|→∞

U(x) = 0.

Thus, the bump solution U satisfies θ-condition.
We investigate existence and continuous dependence of stationary bump

solutions to (12), which are symmetric with respect to the ordinate axis, when
approximating the Heaviside activation function in (12) (the case β = 0) by
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continuous functions (β > 0). Indeed, due to the translational invariance
of the integration kernel ω with respect to the spatial variable x, the corre-
sponding operators Fβ (β ∈ [0, 1]) defined by (7) map even functions to even
functions. We, thus, consider solutions belonging to the space C1

e (Ξ, R) =
{u ∈ C1(Ξ, R), u(x) = u(−x) for all x ∈ Ξ}.

Lemma 4.1.1. Let the following condition be satisfied:

〈ω〉(2a) 6= 0. (17)

Then for any compact set Ω, Ω ∈ R, there exists such ε > 0 that the
symmetric single bump U defined by (15) is a unique solution to (12) in
BC1

e (Ω,R)(U, ε) when β = 0.
Proof. From the definition of the single bump solution it follows that

W (2a) = θ.

Thus, the condition (17) guarantees uniqueness of the solution U inBC1
e (Ω,R)(U, ε)

for some ε > 0. �
We emphasize that U is not an isolated solution to (12) in C1(Ξ, R) due

to the translation invariance of bumps in the homogenized neural field (12).
We now express (15) in terms of operator equality just as it was done in

Section 3:
U = F0U.

In order to apply Theorem 3.2, we need to calculate deg(I−F0, BC1
e (Ω,R)(U, ε), 0).

By the definition of the topological fixed point index, we get

deg(I − F0, BC1
e (Ω,R)(U, ε), 0) = ind(F0, BC1

e (Ω,R)(U, ε)).

Without loss of generality we assume that the fixed point U of the operator F0

is unique in BC1
e (Ω,R)(U, ε). Thus, F0 maps BC1

e (Ω,R)(U, ε) into some manifold
M ⊂ C1(Ω, R), M = {v = W (·+c)−W (·−c), c ∈ M ⊂ Ω}, where compact
set M is chosen in a such way that it contains cu for all u ∈ BC1

e (Ω,R)(U, ε)
(One can e.g. choose M to be a segment). We define the mapping φ : M → M
as

φ(c) = v(x), v(x) = W (x+ c)−W (x− c), x ∈ Ω. (18)

Lemma 4.1.2. The mapping φ : M → M defined by (18) is a homeo-
morphism, and M is an absolute neighborhood retract.
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Proof. First, we note that φ : M → M is a surjection by definition. In
order to prove that φ : M → M is an injection, we use the expression for the
Frechet derivative of φ taken at an arbitrary c ∈ M:

φ′(c) = 〈ω〉(·+ c)− 〈ω〉(· − c).

For sufficiently large set Ω = [−X,X], X ≫ a, the condition (16) implies
the following relation:

max
x∈[X−2a,X]

|〈ω〉(x)| < max
x∈[0,2a]

|〈ω〉(x)|. (19)

Thus, we have φ′(a) 6= 0, because assuming the contrary, we get 〈ω〉(x+
a)−〈ω〉(x−a) = 0, for all x ∈ Ω, which contradicts with (19). Summarizing
the described above properties of φ, we conclude that φ : M → M is a
homeomorphism. We also note that the set M is an absolute neighborhood
retract, since it is a compact convex subset of R. Thus, by properties of
homeomorphism, M = φ(M) is an absolute neighborhood retract, too. �

We now define F to be the restriction of F0 on M⋂
BC1

e (Ω,R)(U, ε), i.e.

F = F0|M⋂
B

C1
e (Ω,R)

(U,ε),

F : M⋂
BC1

e (Ω,R)(U, ε) → M.

Due to its definition, the mapping F : M⋂
BC1

e (Ω,R)(U, ε) → M is compact
and admissible. Using the properties of the topological fixed point index (see
e.g. [10]), we get

ind(F0, BC1
e (Ω,R)(U, ε)) = ind(F ,M⋂

BC1
e (Ω,R)(U, ε)).

Next, we apply Lemma 2.3 and obtain

ind(F ,M⋂
BC1

e (Ω,R)(U, ε)) = ind(φ−1◦F◦φ, φ−1(F(M⋂
BC1

e (Ω,R)(U, ε))).

Lemma 4.1.3. There exists such δ > 0 that the operator Ψ = φ−1◦F◦φ
maps BR(a, δ) to M.

Proof. Let u(x) = W (x+ c)−W (x− c), c ∈ M. Using the mean value
theorem, we estimate

‖u− U‖C1(Ω,R) ≤ 4‖〈ω〉‖C1(Ω,R)|c− a| < ε
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for all c ∈ BR(a, δ), where δ < ε/4‖〈ω〉‖C1(Ω,R). From the latter estimate we
conclude that

BR(a, δ) ⊂ φ−1(M⋂
BC1

e (Ω,R)(U, ε))

which, in turn, implies

Mδ = {v = W (·+ c)−W (· − c), c ∈ BR(a, δ)} ⊂ F(M⋂
BC1

e (Ω,R)(U, ε)).

Thus, we finally get

φ−1(Mδ) = BR(a, δ) ⊂ φ−1(F(M⋂
BC1

e (Ω,R)(U, ε))),

which concludes the proof. �
It is easy to see that a is a fixed point of the operator Ψ : BR(a, δ) → M.

Moreover, a is an isolated fixed point of Ψ due to the fact that U is an
isolated fixed point of F and topological invariance property of the index.
The topological index of a finite dimensional map can be calculated as

ind(Ψ, φ−1(F(M⋂
BC1

e (Ω,R)(U, ε))) = sgn(1−Ψ′(a)),

see e.g. [16].
It follows from the definition of the operator Ψ = φ−1◦F◦φ that

W (Ψ(c) + c)−W (Ψ(c)− c) = θ for all c ∈ BR(a, δ).

Using the implicit function theorem and the chain rule for differentiation, we
get

Ψ′(a) =
〈ω〉(0) + 〈ω〉(2a)
〈ω〉(0)− 〈ω〉(2a) .

Thus, deg(I − F0, BC1
e (Ω,R)(U, ε), 0) 6= 0 as soon as the following inequality

takes place:
〈ω〉(0) + 〈ω〉(2a)
〈ω〉(0)− 〈ω〉(2a) 6= 1.

Summarizing the results above and using Theorem 3.2 and Theorem 3.1,
we get the main result of the subsection.

Theorem 4.1.1. Let the family of functions fβ : R → [0, 1] (β ∈ [0,∞))
satisfy assumptions (A3) and (A4). Let also the connectivity kernel ω be
given by (13), where the function σ ∈ C(Y , (0,∞)) is Y-periodic and the even
function χ ∈ C2(R,R)

⋂
L(R, µ,R) satisfies (14). Finally, let the inequality

(17) be fulfilled. Then, for any sufficiently large Ω, Ω ⊂ R, and for each
β ∈ (0,∞), there exists solution uβ ∈ C1

e (Ω, R)) to (12) (Ξ = Ω). Moreover,
‖uβ − U‖C1(Ω,R)) → 0, as β → 0, where U ∈ C1

e (R,R)) is the stationary
bump solution to (12) (Ξ = R, β = 0), defined by (15).
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4.2. Symmetric double bump in 1-D

We keep here the modeling framework (12) under the same assumptions
on the functions involved as in the previous subsection.

Definition 4.2.1. Let θ > 0 be fixed. We define a symmetric double

bump solution to (12) to be a stationary solution U ∈ C1(Ξ, R) to (12),
satisfying the following properties:

• U(x) = U(−x) for all x ∈ R;

• the equation U(x) = θ has exactly four solutions x = −b, x = −a,
x = a, x = b, b > a > 0;

• U(x) > θ for all x ∈ (−b,−a)⋃(a, b) and U(x) < θ for all x ∈
(−a, a)⋃Ξ \ [−b,−a] \ [a, b].

The stationary (symmetric) double bump solution to (12) (β = 0) can be
written as

U(x) = W (x+ b)−W (x+ a) +W (x− a)−W (x− b), (20)

(see e.g. [18]).
Using the expression (16), we obtain

lim
|x|→∞

U(x) = 0.

It is easy to see now that the double bump solution U satisfies θ-condition.
Just as in the previous subsection, we investigate here existence and con-

tinuous dependence on the steepness of the function fβ : R → [0, 1] of the
stationary double bump solutions to (12) belonging to C1

e (Ξ, R).
Lemma 4.2.1. Let the following condition be satisfied:

{
〈ω〉(b− a)− 〈ω〉(2a) 6= 0,
〈ω〉(b− a) + 〈ω〉(b+ a) 6= 0.

(21)

Then for any compact set Ω, Ω ∈ R, there exists such ε > 0 that the
symmetric double bump U defined by (20) is a unique solution to (12) in
BC1

e (Ω,R)(U, ε) when β = 0.
Proof. From the definition of the single bump solution it follows that

{
W (b− a)−W (b+ a) +W (2b) = θ,
W (2b) +W (2a)− 2W (b+ a) = 0.

(22)
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Differentiation of this expression with respect to the parameter a gives us
{

〈ω〉(b− a)− 〈ω〉(b+ a) = 0,
〈ω〉(2a)− 〈ω〉(b+ a) = 0,

from where we get
〈ω〉(b− a)− 〈ω〉(2a) = 0.

Differentiating (22) with respect to the parameter b, we obtain
{

〈ω〉(b− a)− 〈ω〉(b+ a) + 2〈ω〉(2b) = 0,
〈ω〉(2b)− 〈ω〉(b+ a) = 0,

which implies
〈ω〉(b− a) + 〈ω〉(b+ a) = 0.

Thus, the condition (21) guarantees uniqueness of the solution U in
BC1

e (Ω,R)(U, ε) for some ε > 0. �
We express (20) in terms of the operator equality

U = F0U.

Without loss of generality we assume that the fixed point U of the operator F0

is unique in BC1
e (Ω,R)(U, ε). Thus, F0 maps BC1

e (Ω,R)(U, ε) into some manifold
M ⊂ C1(Ω, R),M = {v = W (x+d)−W (x+c)+W (x−c)−W (x−d), (c, d) ∈
M ⊂ R2}, where compact set M is chosen in a such way that it contains the
points (cu, du) for all u ∈ BC1

e (Ω,R)(U, ε) (One can e.g. choose M to be a
rectangle). We define the mapping φ : M → M as

φ((c, d)) = v(x),
v(x) = W (x+ d)−W (x+ c) +W (x− c)−W (x− d), x ∈ Ω.

(23)

Lemma 4.2.2. The mapping φ : M → M defined by (23) is a homeo-
morphism, and M is an absolute neighborhood retract.

Proof. First, we note that φ : M → M is a surjection by definition.
In order to prove that φ : M → M is an injection, we use the following
expressions for the Frechet derivatives of φ:

φ′
c((c, d)) = 〈ω〉(· − c)− 〈ω〉(·+ c)

φ′
d((c, d)) = 〈ω〉(·+ d)− 〈ω〉(· − d)

Assuming φ′
c((a, b)) = 0, we get 〈ω〉(x − a) − 〈ω〉(x + a) = 0, for all x ∈ Ω,

which contradicts with (19). We, thus, have φ′
c((a, b)) 6= 0. By the same
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way we obtain φ′
d((a, b)) 6= 0, which concludes the proof of the fact that

φ : M → M is a homeomorphism. As the set M is an absolute neighborhood
retract, then by properties of homeomorphism, the set M = φ(M) is an
absolute neighborhood retract, too. �

Just as in the previous subsection, we define

F = F0|M⋂
B

C1
e (Ω,R)

(U,ε),

F : M⋂
BC1

e (Ω,R)(U, ε) → M.

The mapping F : M⋂
BC1

e (Ω,R)(U, ε) → M is compact and admissible by its
definition. Using the properties of the topological fixed point index, we get

ind(F0, BC1
e (Ω,R)(U, ε)) = ind(F ,M⋂

BC1
e (Ω,R)(U, ε)).

Applying Lemma 2.3, we obtain

ind(F ,M⋂
BC1

e (Ω,R)(U, ε)) = ind(φ−1◦F◦φ, φ−1(F(M⋂
BC1

e (Ω,R)(U, ε))).

Lemma 4.2.3. There exists such δ > 0 that the operator Ψ = φ−1◦F◦φ
maps BR2((a, b), δ) to M.

Proof. Let u(x) = W (x + d) − W (x + c) + W (x − c) − W (x − d),
(c, d) ∈ M. Using the mean value theorem, we estimate

‖u− U‖C1(Ω,R) ≤ 4‖〈ω〉‖C1(Ω,R)(|c− a|+ |d− b|) < ε

for all (c, d) ∈ BR2((a, b), δ), where δ < ε/8
√
2‖〈ω〉‖C1(Ω,R). From the latter

estimate we conclude that

BR2((a, b), δ) ⊂ φ−1(M⋂
BC1

e (Ω,R)(U, ε))

which implies

Mδ ⊂ F(M⋂
BC1

e (Ω,R)(U, ε))
Mδ = {v = W (·+ d)−W (·+ c) +W (· − c)−W (· − d),

(c, d) ∈ BR2((a, b), δ)}.

Thus, we finally get

φ−1(Mδ) = BR2((a, b), δ) ⊂ φ−1(F(M⋂
BC1

e (Ω,R)(U, ε))),
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which concludes the proof. �
Due to the fact that U is an isolated fixed point of F and topological

invariance property of the index, (a, b) is an isolated fixed point of Ψ. Thus,
we get

Ψ((a, b)) = (Ψ1((a, b))Ψ2((a, b))),
Ψ((a, b)) = W (Ψ2((a, b)) + b)−W (Ψ1((a, b)) + a)+

+W (Ψ1((a, b))− a)−W (Ψ2((a, b))− b).

We calculate the topological index of a two-dimensional mapping as

ind(Ψ, φ−1(F(M⋂
BC1

e (Ω,R)(U, ε))) =

= sgn

(
det

(
(Ψ1)

′
a((a, b))− 1 (Ψ1)

′
b((a, b))

(Ψ2)
′
a((a, b)) (Ψ2)

′
b((a, b))− 1

))
.

The definition of the operator Ψ = φ−1◦F◦φ yields

W (Ψ2((c, d))+d)−W (Ψ1((c, d))+c)+W (Ψ1((c, d))−c)−W (Ψ2((c, d))−d) = θ

for all (c, d) ∈ BR(a, δ). We use the expressions

(U(a))′a = 0, (U(a))′b = 0, (U(b))′a = 0, (U(b))′b = 0.

Applying the implicit function theorem and the chain rule for differentiation,
we get

(Ψ1)
′
a((a, b)) =

〈ω〉(2a) + 〈ω〉(0)
〈ω〉(b+ a)− 〈ω〉(2a) + 〈ω〉(0)− 〈ω〉(b− a)

;

(Ψ1)
′
b((a, b)) =

−〈ω〉(b+ a)− 〈ω〉(b− a)

〈ω〉(b+ a)− 〈ω〉(2a) + 〈ω〉(0)− 〈ω〉(b− a)
;

(Ψ2)
′
a((a, b)) =

〈ω〉(b+ a) + 〈ω〉(b− a)

〈ω〉(2b)− 〈ω〉(b+ a) + 〈ω〉(b− a)− 〈ω〉(0);

(Ψ2)
′
b((a, b)) =

−〈ω〉(2b)− 〈ω〉(0)
〈ω〉(2b)− 〈ω〉(b+ a) + 〈ω〉(b− a)− 〈ω〉(0) .

Thus, deg(I−F0, BC1
e (Ω,R)(U, ε), 0) 6= 0 if the following inequality takes place:

2〈ω〉(b+a)〈ω〉(b−a)−2〈ω〉(2a)〈ω〉(2b)+
(
〈ω〉(2a)+〈ω〉(2b)

)(
〈ω〉(b+a)−〈ω〉(b−a)

)

(
〈ω〉(b+a)−〈ω〉(2a)+〈ω〉(0)−〈ω〉(b−a)

)(
〈ω〉(2b)−〈ω〉(b+a) + 〈ω〉(b−a)−〈ω〉(0)

) 6= 0.

(24)
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The following statement is obtained by summarizing the results above
and by using then Theorem 3.2 and Theorem 3.1.

Theorem 4.2.1. Let the family of functions fβ : R → [0, 1] (β ∈ [0,∞))
satisfy assumptions (A3) and (A4). Let also the connectivity kernel ω be
given by (13), where the function σ ∈ C(Y , (0,∞)) is Y-periodic and the even
function χ ∈ C2(R,R)

⋂
L(R, µ,R) satisfies (14). Finally, let the inequalities

(21) and (24) be fulfilled. Then, for any sufficiently large Ω, Ω ⊂ R, and for
each β ∈ (0,∞), there exists solution uβ ∈ C1

e (Ω, R)) to (12) (Ξ = Ω).
Moreover, ‖uβ − U‖C1(Ω,R)) → 0, as β → 0, where U ∈ C1

e (R,R)) is the
stationary double bump solution to (12) (Ξ = R, β = 0), defined by (20).

4.3. Radially symmetric single bump in 2-D

We now consider the two-dimensional homogenized Amari model, i.e. the
model (5) with m = k = 2:

∂tu(t, x, xf) = −u(t, x, xf)+
∫

Ξ

∫

Y

ω(x−y, xf−yf)fβ(u(t, y, yf))dyfdy,

t > 0, x ∈ Ξ ⊆ R2.

(25)

Here Y is some two-dimensional torus, the family of functions fβ : R → [0, 1]
satisfies assumptions (A3), (A4), and the connectivity function ω : R2×Y →
R is decomposed in the following way (see e.g. [5]):

ω(x, xf) =
1

σ(xf)
χ
( |x|
σ(xf)

)
, (26)

where σ ∈ C(Y , (0,∞)) is Y-periodic and χ ∈ C2([0,∞), R)
⋂
L([0,∞), µ, R).

Thus, assumptions (A1) and (A2) are also satisfied.
Definition 4.3.1. Let θ > 0 be fixed. We define a radially symmetric

single bump solution to (25) to be a stationary solution U ∈ C1(Ξ, R) to
(25), satisfying the following properties:

• U(x) = U(|x|), where x ∈ R2, x = |x| exp(iα), α ∈ [0, 2π);

• the equation U(x) = θ has only the solutions belonging to the set
{x, |x| = r} for some r > 0;

• U(x) > θ for all x ∈ BR2(0, r) and U(x) < θ for all x ∈ Ξ \BR2(0, r).
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The stationary radially symmetric single bump solution of the radius a
to (25) in the case β = 0 can be determined by the following expression (see
e.g. [5]):

U(x) = 2πa

∞∫

0

〈̂ω〉(r)J0(|x|r)J1(ar)dr, (27)

where 〈̂ω〉 is the Hankel transform (of order 0) of 〈ω〉,

〈ω〉(x) =
∫

Y

ω(x, xf)dxf ,

Jn is the Bessel function of the first kind of order n.
Let us assume that the following condition is satisfied:

∞∫

0

|〈̂ω〉(r)|r2dr <∞. (28)

For an arbitrary γ > 0, using the properties of Jn, we have

|U(x)| ≤ 2πa

γ∫

0

|〈̂ω〉(r)|dr + 2πa
∣∣∣

∞∫

γ

〈̂ω〉(r)J0(|x|r)J1(ar)dr
∣∣∣.

Due to the assumptions on the functions χ ∈ C2(R2, R)
⋂
L(R2, µ, R) and

σ ∈ C(Y , (0,∞)), and the corresponding properties of the connectivity func-
tion ω defined by (26), for an arbitrary ǫ > 0, we obtain:

2πa

γ(ǫ)∫

0

|〈̂ω〉(r)|dr < ǫ/2

for some γ(ǫ) > 0. By the properties of the Bessel function J0, for any γ > 0,
we have J0(sr) → 0 uniformly with respect to r ∈ [γ,∞), as s → ∞. Using
these facts and the estimate (28), we finally get

|U(x)| ≤ 2πa

γ(ǫ)∫

0

|〈̂ω〉(r)|dr + 2πa
∣∣∣

∞∫

γ(ǫ)

〈̂ω〉(r)J1(ar)dr
∣∣∣|J0(|x|r)| < ǫ
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for some γ(ǫ) > 0 and sufficiently large |x| ∈ R. Thus, we obtain

lim
|x|→∞

U(x) = 0, (29)

which means that the radially symmetric single bump solution U satisfies
θ-condition.

Remark 4.3.1. For the proof of (29) it is sufficient to assume that

∞∫

0

〈̂ω〉(r)J1(ar)dr <∞.

instead of the more strict condition (28). However, we will need the condition
(28) in the proofs below. We also stress here, that (28) is fulfilled for all
typical connectivity functions used in neural field modeling.

We introduce the space

C1
rs(Ξ, R) = {u ∈ C1(Ξ, R), u(x) = u(|x|) for all x ∈ Ξ}.

Lemma 4.3.1. Let the following condition be satisfied:

∞∫

0

〈̂ω〉(r)
(
J0(ar)J1(ar)+

ar

2
(J2

0 (ar)−2J2
1 (ar)−J0(ar)J2(ar))

)
dr 6= 0. (30)

Then for an arbitrary sufficiently large compact set Ω, Ω ⊂ R2, there exists
such ε > 0 that the symmetric single bump U defined by (27) is a unique
solution to (25) in BC1

rs(Ω,R)(U, ε) when β = 0.
Proof. From the definition of the radially symmetric single bump solu-

tion it follows that

2πa

∞∫

0

〈̂ω〉(r)J0(ar)J1(ar)dr = θ.

Thus, the condition (30) guarantees uniqueness of the solution U inBC1
rs(Ω,R)(U, ε)

for some ε > 0. �
We now express (27) in terms of operator equality just as it was done in

Section 3:
U = F0U.
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In order to apply Theorem 3.2, we calculate deg(I − F0, BC1
rs(Ω,R)(U, ε), 0).

By the definition of the topological fixed point index, we get

deg(I − F0, BC1
rs(Ω,R)(U, ε), 0) = ind(F0, BC1

rs(Ω,R)(U, ε)).

Without loss of generality we assume that the fixed point U of the operator F0

is unique in BC1
rs(Ω,R)(U, ε). Thus, F0 maps BC1

rs(Ω,R)(U, ε) into some manifold
M ⊂ C1(Ω, R),

M = {v = 2πc

∞∫

0

〈̂ω〉(r)J0(· r)J1(cr)dr, c ∈ M ⊂ R},

where compact set M is chosen in a such way that it contains cu for all
u ∈ BC1

rs(Ω,R)(U, ε) (One can e.g. choose M to be a segment). We define the
mapping φ : M → M as

φ(c) = v(x), v(x) = 2πc

∞∫

0

〈̂ω〉(r)J0(|x|r)J1(cr)dr, x ∈ Ω. (31)

Lemma 4.3.2. Let the following condition be satisfied:

∞∫

0

〈̂ω〉(r)J0(· r)
(
J1(ar) +

ar

2
(J0(ar)− J2(ar))

)
dr 6≡ 0. (32)

Then the mapping φ : M → M defined by (31) is a homeomorphism, and
M is an absolute neighborhood retract.

Proof. First, we note that φ : M → M is a surjection by definition. In-
jectivity of φ : M → M follows from the expression for the Frechet derivative
of φ taken at an arbitrary c ∈ M:

φ′(c) = 2π

∞∫

0

〈̂ω〉(r)J0(· r)
(
J1(cr) +

cr

2
(J0(cr)− J2(cr))

)
dr

and the condition (32). We also note that the set M is an absolute neighbor-
hood retract, since it is a compact convex subset of R. Thus, by properties
of homeomorphism, M = φ(M) is an absolute neighborhood retract, too. �
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We define F to be the restriction of F0 on M⋂
BC1

rs(Ω,R)(U, ε), i.e.

F = F0|M⋂
B

C1
rs(Ω,R)

(U,ε),

F : M⋂
BC1

rs(Ω,R)(U, ε) → M.

Due to its definition, the mapping F : M⋂
BC1

rs(Ω,R)(U, ε) → M is compact
and admissible. We use the properties of the topological fixed point index
and get

ind(F0, BC1
rs(Ω,R)(U, ε)) = ind(F ,M⋂

BC1
rs(Ω,R)(U, ε)).

Next, we apply Lemma 2.3 and obtain

ind(F ,M⋂
BC1

rs(Ω,R)(U, ε)) = ind(φ−1◦F◦φ, φ−1(F(M⋂
BC1

rs(Ω,R)(U, ε))).

Lemma 4.3.3. Let the condition (28) be satisfied. Then there exists
such δ > 0 that the operator Ψ = φ−1◦F◦φ maps BR(a, δ) to M.

Proof. Let

u(x) = 2πc

∞∫

0

〈̂ω〉(r)J0(|x|r)J1(cr)dr, c ∈ M.

Using the mean value theorem and the properties of the Bessel function J1,
we estimate

‖u− U‖C1(Ω,R) ≤

2π
∥∥∥c

∞∫

0

〈̂ω〉(r)J0(| · |r)J1(cr)dr − a

∞∫

0

〈̂ω〉(r)J0(| · |r)J1(ar)dr
∥∥∥
C(Ω,R)

+

2π
∥∥∥− c

∞∫

0

〈̂ω〉(r)rJ1(| · |r)J1(cr)dr + a

∞∫

0

〈̂ω〉(r)rJ1(| · |r)J1(ar)dr
∥∥∥
C(Ω,R)

≤

2π
∥∥∥

∞∫

0

〈̂ω〉(r)J0(| · |r)(c
r

2
(J0(ξr)− J2(ξr)) + aJ1(ar))dr(a− c)

∥∥∥
C(Ω,R)

+

2π
∥∥∥

∞∫

0

〈̂ω〉(r)rJ1(| · |r)(c
r

2
(J0(ξr)− J2(ξr)) + aJ1(ar))dr(a− c)

∥∥∥
C(Ω,R)

,
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where ξ ∈ BR(a, |a− c|). The condition (28) implies that

‖u− U‖C1(Ω,R) ≤ N|c− a| < ε

for some N ∈ R and all c ∈ BR(a, δ), where δ < ε/N. From the latter
estimate we conclude that

BR(a, δ) ⊂ φ−1(M⋂
BC1

rs(Ω,R)(U, ε))

which, in turn, implies

Mδ ⊂ F(M⋂
BC1

rs(Ω,R)(U, ε))

Mδ =
{
v = 2πc

∞∫

0

〈̂ω〉(r)J0(| · |r)J1(cr)dr, c ∈ BR(a, δ)
}
.

Thus, we finally get

φ−1(Mδ) = BR(a, δ) ⊂ φ−1(F(M⋂
BC1

rs(Ω,R)(U, ε))),

which concludes the proof. �
Remark 4.3.2. The condition (28) is redundant for the the proof of the

statement in Lemma 4.3.3. However, the condition it can be relaxed to is
more cumbersome and harder to check.

It is easy to see that a is a fixed point of the operator Ψ : BR(a, δ) → M.
Moreover, a is an isolated fixed point of Ψ due to the fact that U is an
isolated fixed point of F and topological invariance property of the index.
The topological index of a finite dimensional map can be calculated as

ind(Ψ, φ−1(F(M⋂
BC1

rs(Ω,R)(U, ε))) = sgn(1−Ψ′(a)).

The definition of the operator Ψ = φ−1◦F◦φ implies that

2πc

∞∫

0

〈̂ω〉(r)J0(Ψ(c)r)J1(cr)dr = θ for all c ∈ BR(a, δ).

Using the implicit function theorem and the chain rule for differentiation, we
get

∞∫

0

〈̂ω〉(r)J0(ar)J1(ar) + ar
(
J ′
0a(ar)J1(ar)Ψ

′(a) + J0(ar)J
′
1a(ar)

)
dr = 0.
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From the latter expression we obtain the following sufficient condition for
Ψ′(a) 6= 1:

∞∫

0

〈̂ω〉(r)J0(ar)J1(ar) + a
(
J0(ar)J1(ar)

)′

a
dr 6= 0. (33)

Thus, deg(I − F0, BC1
rs(Ω,R)(U, ε), 0) 6= 0 provided that the inequality (33) is

fulfilled.
Summarizing the results above and using Theorem 3.2 and Theorem 3.1,

we get the main result of the subsection.
Theorem 4.3.1. Let the family of functions fβ : R → [0, 1] (β ∈ [0,∞))

satisfy assumptions (A3) and (A4). Let also the connectivity kernel ω be
given by (26), where the function σ ∈ C(Y , (0,∞)) is Y-periodic and the
function χ ∈ C2(R2, R)

⋂
L(R, µ,R) is radially symmetric. Finally, let the

conditions (28), (30), (32), and (33) be fulfilled. Then, for any sufficiently
large Ω, Ω ⊂ R, and for each β ∈ (0,∞), there exists solution uβ ∈ C1

rs(Ω, R))
to (25) (Ξ = Ω). Moreover, ‖uβ − U‖C1(Ω,R)) → 0, as β → 0, where U ∈
C1

rs(R
2, R)) is the stationary bump solution to (25) (Ξ = R2, β = 0), defined

by (27).

5. Conclusions and outlook

Using the methods of functional analysis and topological degree theory,
we proved theorems on existence and continuous dependence of the stationary
solutions to nonlinear operator equation with the operator of the Hammer-
stein type on the steepness of the Hammerstein nonlinearity. We applied
the theorems obtained to the m-dimensional homogenized Amari neural field
model (4) and proved theorems on existence and continuous dependence of
its stationary solutions under the transition from continuous firing rate func-
tions to the discontinuous Heaviside limit. These results serve as a justifica-
tion of the transition from the heterogeneous model (3) to the homogenized
model (4) in the case of the Heaviside firing rate function. We investigated
the following three types of stationary solutions to (4): symmetric single
bump solution in 1-D, symmetric double bump solution in 1-D, and radially
symmetric single bump solution in 2-D in the respect of their existence and
dependence on the firing rate steepness.

The present research can be considered as an extension to m-dimensional
homogenized neural field models of the results of the paper by Oleynik et
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al [21]. This extension was achieved by generalization of the model keeping
the methods of proofs similar to the ones used in [21]. The main distinction
in the proofs foundations is the choice of the basic spaces: we employ the
spaces of continuous functions on compact domains instead of the spaces of
integrable functions on R used by Oleynik et al. Our choice of the basic
spaces was conditioned by the possibility to facilitate and shorten the proofs
required and to obtain at the same time the results of [21] concerning single
bump solutions as a special case of our theorems.

The models of mathematical biology, in particular, the models arising
in genetics, incorporate approximation of the rapid switching between two
states of the model elements. This approximation is often modeled by means
of Heaviside function. Extension of the methods suggested in Section 3 to
other problems of mathematical biology can be considered as a further de-
velopment of the present study.
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