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Salmonid rickettsial septicemia (SRS) is a serious, infectious disease in Chilean salmon 
farming caused by Piscirickettsia salmonis, causing heavy losses to the salmonid indus-
try. P. salmonis belongs to the Gammaproteobacteria, order Thiotrichales. SRS was first 
described in Chile in 1989, and infection with P. salmonis has since been described from 
a high number of fish species and in several geographic regions globally. P. salmonis 
infection of salmonids causes multifocal, necrotic areas of internal organs such as liver, 
kidney, and spleen. Histologically and immunologically, the tissue response is the forma-
tion of granulomas, often with central suppuration. The exact sequence of infection is 
not known, but bacteria likely gain access to internal organs through mucosal surfaces 
and when infected, fish carry bacteria in macrophages. It has not been fully determined 
if the bacterium resides in the cytosol or “hide” within vesicular structures intracellularly, 
although there are indications that in vitro infection results in actin reorganization and 
formation of actin-coated vesicle within which the bacterium resides. Protection against 
lethal challenge is well documented in lab scale experiments, but protection from vacci-
nation has proven more difficult to attain long term under field conditions. Current vacci-
nation protocols include whole cell, inactivated and adjuvanted vaccines for injection for 
primary immunization followed by oral boost where timing of boost delivery is followed 
by measuring circulating antibody levels against the pathogen. Documentation also exist 
that there is correlation between antibody titers and protection against mortality. Future 
vaccination regimes will likely also include live-attenuated vaccines or other technologies 
such as DNA vaccination. So far, there is no documentation available for live vaccines 
and, for DNA vaccines, studies have been unsuccessful under laboratory conditions.
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iNTRODUCTiON

Salmonid rickettsial septicemia (SRS) was first observed in Chile in 1989 (1, 2), and the etiology 
of the disease was not understood at the time. It affected market-size Coho salmon (Onchorhyncus 
kisutch), and mortality was observed several weeks after transfer to seawater, reaching up to 90% 
(2). It was soon after documented that SRS was caused by infection with Piscirickettsia salmonis 
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TABLe 1 | Overview of host range and geography of reported cases of 
piscirickettsiosis.

Host Geography References

Salmo salar – Atlantisk laks Canada – Atlantic 
ocean

(4, 5, 66, 67)

Norway
Ireland
Scotland

Oncorhynchus gorbuscha – Pink salmon Canada – Pacific 
Ocean

(68)
Oncorhynchus tshawytscha – Chinook 
salmon
Salmo salar – Atlantic salmon

Oncorhynchus kisutch – Coho salmon Chile (2, 8, 69)
Oncorhynchus mykiss – rainbow trout
Oncorhynchus tshawytscha – Chinook 
salmon
Salmo salar – Atlantic salmon
Oncorhynchus masou – Masu salmon

Atractoscion nobilis – White sea bass USA (70)

Epinephelus melanostigma Grouper Taiwan (11)

FiGURe 1 | Macroscopic changes in Atlantic salmon infected with 
Piscrickettsia salmonis. Note small, gray foci in the liver parenchyma of 
varying sizes. Gills are found with a grayish surface and the heart is pale 
(courtesy of Prof. Sandra Bravo, Universidad de Austral, Chile).
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(3). Similar disease outbreaks have later been diagnosed in 
Ireland and Scotland (4), Norway (5), and the Atlantic and 
Pacific coasts of Canada (6). SRS still causes major losses in 
salmon farming in Chile, and current annual losses are esti-
mated at 250 million USD and the infection results in a high 
consumption of antibiotics toward the end of the production 
cycle (7). Disease outbreaks are seen in all salmonid species 
farmed in Chile, Chinook salmon (Oncorhynchus tshawytscha), 
rainbow trout (Oncorhynchus mykiss), and Atlantic salmon 
(Salmo salar L.) (7), and also in other species like Sakura salmon 
(Oncorhynchus masou) (8), and pink salmon (Oncorhynchus 
gorbuscha) (1). Infections with Rickettsia-like organisms (RLO) 
have been reported in Mediterranean sea bass (Dicentrarchus 
labrax) (9), white sea bass (Atractoscion nobilis) (10), grouper 
(Epinephelus melanostigma) (11), and five species of tilapia (12). 
Globally, infections with piscirickettsia and RLO cause severe 
losses in farmed fish species (Table 1).

eTiOLOGY

Piscirickettsia salmonis, the causative agent of SRS is a Gram-
negative, non-motile, non-encapsulated, 0.5–1.5 μm, intracellular 
bacterium (1, 13) that also grows in vitro in cell-free media (14–16). 
The bacterium is classified into a new family Piscirickettsiaceae 
in the phylum Proteobacteria, class Gammaproteobacteria, and 
order Thiotrichales (1). It was assigned to a new genus and species 
P. salmonis (13) with the type strain LF-89 (1, 17). It can infect a 
wide variety of cells lines, such as RTG-2, CHSE-214, RTS-11, and 
also Sf-21 cells (18), the latter being an insect cell line that yields 
high titer (19). The understanding is that P. salmonis replicates 
within membrane-bound cytoplasmic vacuoles by binary fission 
(12, 20), and P. salmonis survives and multiplies in macrophages 
(21). In Chile, the disease normally occurs 6–12  weeks after 
introduction to seawater, but it is seen throughout the produc-
tion cycle, resulting in high losses of larger fish. Moribund fish 
appear dark, anorexic or lethargic, and swim near the surface or 

edges of the cage (1, 17). Some fish may also present skin lesions: 
hemorrhages, petecchiae, nodules, and ulcers of varying size (20). 
Brain infection also occurs and the bacterium is also able to form 
biofilm under given conditions (22).

PATHOLOGY

Salmonid rickettsial septicemia in Atlantic salmon is often found 
with liver changes characterized by multifocal, necrotic areas of 
the hepatic parenchyma (Figure  1). Histologically, the typical 
tissue response to infection is the formation of granulomas, 
often with central suppuration and changes are seen in liver, 
spleen, and kidney (23), for this reason, the changes have been 
classified into the broad category of necrosis and inflamma-
tion but the principal changes are those of a granulomatous 
response that are more or less organized (5). At early stage 
of infection, granulomas typically consist of macrophages and 
a large number of neutrophils, often with central necrosis or 
suppuration (5) (Figure  2). Older granulomas consist of a 
central necrosis surrounded by connective tissue and fewer 
inflammatory cells. Perivascular infiltration of macrophages is 
also a typical finding (5).

PATHOGeNeSiS OF iNFeCTiON

The exact sequence of infection has not been clarified (23), but 
several studies indicate that the bacterium is able to penetrate 
through intact skin and gills followed by systemic invasion. 
Invasion through the oral and/or intestinal routes has also been 
suggested (24). To what extent the bacterium will survive passage 
through the stomach and the foregut is not known. Understanding 
infection routes are important for optimizing immunization 
protocols and will be discussed later.

The infection mechanisms at the cellular level are not under-
stood in detail and different alternatives have been proposed: (i) 
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FiGURe 2 | Organization of granulomas. In general, CD4 and CD8 cells 
play a role in the granulomatous response. CD4 cells activate the 
macrophages to enable them to kill the phagocytized pathogen, and CD8 
cells will play a role in killing the invading pathogen, likely through killing of 
infected macrophages. The precise involvement of these cells in the 
response to P. salmonis infection is not understood.

FiGURe 3 | Outer membrane vesicles of P. salmonis (Ps). Arrows point 
to membrane-coated vesicles (30). (A) Overview with bacterium (Ps).  
(B) Detail of vesicles (arrows).
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the bacteria locate in cytoplasmic vacuoles in infected cells (18, 
21), (ii) they are free in the cytoplasm, or (iii) reside outside 
cells (17). The localization in the intracellular compartment is 
tentative (18, 21) and has not been conclusively defined, and it 
is important as to what immune profile would be required for 
optimal protection. A recent study has shown that the bacterium 
is dependent on host cell clathrin for infection of macrophages, 
i.e., chloroquine treatment abolishes the infection (18). Further to 
this, results are indicative of the bacterium using actin through 
a disorganization process. Further, it seems that the bacterium 
induces de novo synthesis (of actin) to form vesicle in cytosolic 
compartments within which the bacterium resides (18) rather 
than using it for movement, as seen with Listeria monocytogenes 
(25). These responses could also facilitate export of the bacterium 
from the infected cells; however, this is more of a theory than 
actually proven experimentally (18). Further, there is also a 
possibility that the actin formation is involved in apoptosis 
induction in infected cells (26).

All referred studies have been carried out in  vitro and 
translation to in  vivo conditions carries some uncertainty but 
the cell types (SHK-1) used for in  vitro studies derive from 
Atlantic salmon macrophages (18), a cell type that is infected 

by P.  salmonis in vivo (21, 26, 27). To what extent compartmen-
talized localization of P. salmonis within vesicles would have 
a bearing on pathogenicity is not known but from a general 
viewpoint, it might play a role in immune evasion and likely 
also impact what immune mechanisms will be needed to obtain 
protective immunity, but this has not been studied in any detail 
for P. salmonis. Immune mechanisms and vaccination strategies 
will be discussed below.

Lipid A has also been implicated as playing a role in pathogen-
esis (3) and immunity. There has been speculation that the lipid 
A moiety of P. salmonis plays a role in disseminated intravascular 
coagulation of salmon (3), but this remains to be proven. It also 
seems somewhat speculative since salmonids do not express 
TLR-4 receptors (28) on any cell types. Further to this, salmonids 
are insensitive to LPS exposure when administered parentally 
(28, 29), aligned with the lack of TLR-4 receptors. Doses of 
2–4  mg/ml of partly purified LPS originating from Escherichia 
coli or fish-pathogenic vibrios can be injected intraperitoneally 
(i.e., vaccinated) without treated individuals developing any signs 
of circulatory disturbance or clinical symptoms of shock (own 
observations). Even though it remains to be shown what role, if 
any, lipid A plays in pathogenesis of SRS and also for immune 
protection.

More recently, it has been proposed that P. salmonis delivers 
some of its virulence factors via or by outer membrane vesicles 
(OMVs) to the infected cell (30). Similar OMV structures were 
also observed when the bacterium was grown in liquid media and 
HspP60 (heat shock protein) likely from the bacteria was found 
in these vesicles (30) (Figure 3).

SPReAD OF iNFeCTiON

During natural infections, P. salmonis is transmitted horizontally 
from fish-to-fish without the need for physical contact (31, 32). 
No vector or intermediate host has been identified (17), and 
during experimental trials, the pathogen has been observed in 
the milt and celomic fluid of adult brood fish, and also in fry of 
infected brood fish, suggesting that the bacterium is transmitted 
vertically (33). P. salmonis has also been reported from outbreaks 
in freshwater (1), but is primarily a pathogen that causes clinical 
disease in sea water.
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TABLe 2 | Summary of documented, immunoreactive antigens of 
P. salmonis.

Reference immunoreactive antigens of Piscirickettsia salmonis

Kuzyk et al. (71) 6 immunoreactive Ag (2 carbohydrates). Low humoral 
response in salmonids infected with these Ag

Barnes et al. (72) 6 immunoreactive Ag (2 carbohydrates, 4 proteins). 
One of the proteins homologous to Hsp60 of Rickettsia 
tsutsugamushi

Jones et al. (73) 9 protein bands and several non-protein bands were 
detected by immunoblot. Antigenic homogeneity 
observed among geographically diverse strains

Jamett et al. (74) Developed and tested 6 monoclonal antibodies against 
P. salmonis

Marshall et al. (75) Immunological characterization of Chaperon protein 
(membrane associated structural component)

4

Evensen Vaccination against SRS in Salmonids

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 482

DiSeASe PReveNTiON

Disease prevention strategies include reduced stress, improved 
husbandry practices (lower density, avoid transport/contact 
between farms, restrict movements of well-boats, fish, and 
people, separation of year-classes etc.), screening of brood stock, 
and vaccination. Current disease control practices also include 
use of antibiotics, since P. salmonis have been found susceptible 
to various antimicrobials. However, reduced sensitivity and 
increased resistance to penicillin, streptomycin, oxolinic acid, 
and oxytetracycline have been reported (12). There are com-
mercial vaccines for intraperitoneal injection available, but these 
have shown variable results (34). Vaccinated fish come down with 
SRS toward the end of the production cycle which causes severe 
economic losses, i.e., death of fish close to harvest. In Chile, oral 
vaccines are used as a boost immunization the primary injection 
vaccination when the antibody titers decline (34). The different 
types of vaccines tested and those available commercially and 
their efficacy profiles are discussed below.

eXPeRiMeNTAL vACCiNeS – CLASSiCAL 
iNACTivATeD vACCiNeS

Initial vaccination attempts to vaccinate against SRS were based 
on whole cell bacterins but with variable results (Table 2). Trials 
included vaccine preparations based on unconcentrated or con-
centrated preparations of formalin-killed P. salmonis, and these 
vaccine preparations gave contradictory results (35). Different 
inactivation methods were tested by Birkbeck et  al. (36), and 
they administered a Scottish isolate of P. salmonis (SCO-95A) to 
Atlantic salmon by intraperitoneal injection, using either heat- or 
formalin-inactivated bacteria in adjuvant (oil-based adjuvant). 
They found that both vaccine types, heat- and formalin-inacti-
vated provided significant protection against lethal challenge, 
RPS (relative percent survival)1 values of around 70 and 50%, 
respectively (36). Challenge was done at approximately 600 
degree days (water temperature multiplied by number of days) 

1 Relative percent survival is calculated on the basis of the formula; RPS = [1 − (mor-
tality in controls/mortality in vaccinates) × 100]. 

post-vaccination and long-term protection was not assessed. The 
nature of the protective antigen was not identified or studied 
(19). These authors also studied the importance of the challenge 
conditions, and they found that experiments conducted at water 
temperatures of 7.5 to 8.5°C did not result in development of clas-
sical SRS, and no mortality was observed under these conditions. 
When experiments were run at 14°C, high level of mortality was 
achieved in control groups.

eXPeRiMeNTAL vACCiNeS – SUBUNiT 
vACCiNeS

The use of subunit vaccines is dependent on the protective 
antigens being identified/known. When available, subunit 
vaccination strategies will make it possible to fine tune the 
vaccines to include only antigen(s) important for protection 
(Table 2). Kuzyk and coworkers (37) constructed an expression 
library from P.  salmonis and cloned a 17-kDa outer surface 
lipoprotein (OspA) from the bacterium (Tables 2 and 3). This 
was used to immunize Coho salmon that developed strong 
antibody responses (38). Fish were subsequently challenged 
after being vaccinated with the recombinant OspA antigen and 
a high level of protection was obtained, RPS up to 83%. The 
protection improved when T cell epitopes from the tetanus toxin 
and measles virus fusion protein were included in the vaccine 
(38). This latter principle would skew the immune response 
in the direction of T-cell responses. These are the only studies 
published using this technology, and the vaccine concept has 
not been brought forward to a commercial product, the reason 
for which is not known but cost could be an issue.

In yet another study, Wilhelm et al. (39) elicited an immune 
response in Atlantic salmon following intraperitoneal injection 
of two heat shock proteins cloned from the bacterium, Hsp60 
and Hsp70. Mixtures of Hsp60, Hsp70, and the flagellar protein 
(FlG) were used to immunize fish and this achieved an RPS of 
95% (39). It was also shown that the antibody response persisted 
for 8 months or 2800 degree days post-vaccination (39), which is 
encouraging from a commercial standpoint. However, there are 
few if any follow-up studies based on these antigen combinations, 
and currently, there are no commercial vaccines available in the 
market based on the referred antigen combination(s) or other 
recombinant vaccine preparations. Cost of production is possibly 
one of the impediments.

iMMUNe ReSPONSeS iNDUCeD FROM 
iNACTivATeD/SUBUNiT vACCiNeS

Inactivated vaccination protocols will in general elicit an immune 
response that is biased toward humoral immunity with lesser 
induction of cell-mediated immune responses (40), also seen in 
salmon (41). Antibodies will exert their biological effects through 
attachment to surface antigens of the pathogen. This will result 
in opsonization of bacteria, which again facilitates phagocytosis 
and intracellular killing by professional phagocytes (42) also well 
known in fish (43, 44). For viruses, neutralization prevents infec-
tion of target cells/organs and is an important mode of action 
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TABLe 3 | Summary of published studies on vaccination studies, antigens used, and their obtained efficacy.

Reference Antigen vaccine type vaccine efficacy

Smith et al. (35) Killed bacterin Formalin inactivated Inconsistent results

Kuzyk et al. (37) OspA (outer surface protein A) Recombinant subunit vaccine + T cell 
epitopes

83% RPS

Miquel et al. (48) Whole genome DNA (gene expression library) Mortality 80% (inconsistent results)

Birkbeck et al. (36) Inactivated bacterin (Scottish 
isolate SCO-95A)

Heat- or formalin-inactivated 70.7% RPS

49.6% RPS

Wilhelm et al. (76) Hsp60 Hsp70 Recombinant subunit vaccine 8% mortality

Salonius et al. (47) – 
Commercial vaccine 
against BKD (Canada)

Arthrobacter davidanieli Live vaccine Laboratory results 2% mortality. Field results 6.7% mortality

Wilhelm et al. (39) (V1) Hsp60/70 + FlgG Recombinant vaccine including Freund’s 
adjuvant

(V1) 95–94.5% RPS

(V2) TbpB + MltB (V2) 85%

(V3) Omp27 + FlaA (V3) 10.4%

Tobar et al. (56) Inactivated bacterin, 
P. salmonis strain PS2C

Inactivated, whole bacterial antigen 
formulated in micromatrix for oral delivery or 
i.p. injection (or combined)

Onset of immunity by 300 degree days (oral group). IP 
boosted with oral (1500 degree days), good protection by 
1800 degree days post primary immunization (300 degree 
days post boost)
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(45). P. salmonis is an intracellular pathogen and a relevant ques-
tion is to what extent circulating antibodies can prevent infection 
or aid in combating/limiting the spread of infection once estab-
lished. While the exact pathological sequence is not understood 
for P.  salmonis the antibodies could be beneficial during early 
stages of infection, from port of entry (gills, skin, and gut) and 
transport to primary or secondary multiplication sites. Then, 
could circulating antibodies play a role in limiting the spread of 
bacteria from cell to cell/organ to organ? This would require the 
bacterium to use an extracellular route of dissemination. It has 
not been determined in detail if P. salmonis spread from cell to cell 
via the extracellular space or use mechanisms similar to what has 
been described for L. monocytogenes that spreads directly from 
cell to cell, including via dying cells (46). If P. salmonis spreads 
through an extracellular route during early stages of infection, 
antibodies can be important for opsonization and subsequent 
killing in professional phagocytes. The fact that protection against 
disease is seen at early stages after sea transfer/early stage post-
vaccination could favor an interpretation of spread through the 
extracellular space. Further to this, there are good indications of 
antibody consumption over time, i.e., decline in circulating levels 
of antibodies as a result of pathogen exposure/infection (34, 47). 
The approach has been to boost the primary response by oral 
antigen delivery with the purpose to raise the level of circulating 
antibodies. This will be discussed more below.

PLASMiD vACCiNeS AND RePLiCATiNG 
vACCiNeS

Given that humoral immune responses are insufficient in provid-
ing protection, a rational approach would be to explore vaccine 
modalities that elicit cell-mediated immune responses. Miquel 
and coworkers tested out a plasmid vaccine concept or a DNA 
vaccine (48). They used fragments of purified DNA from the 
bacterium based on an expression library that was cloned into 

the pCMV-Bios vector and subsequently used for immunization. 
They obtained two colony libraries corresponding to the genome 
of P. salmonis. Plasmid DNA was purified and administered by 
intramuscular injection into Coho salmon, which was followed 
by the second injection (plasmid-based boost) 40 days after pri-
mary immunization. Fish were challenged and only 20% of the 
vaccinated fish survived. The survivors had decreased bacterial 
load and the immune response was found specific to P. salmonis 
antigens with no cross-reaction to Renibacterium salmoninarum 
or Yersinia ruckeri (48). Such low level of protection would not 
be viable as a commercial product and there are currently no 
plasmid-based SRS vaccines available in the market.

There are no published studies documenting effect of live-
attenuated vaccines, i.e., using attenuated strains of P. salmonis. 
There is one study based on immunization of salmon with live 
(replicating) Arthrobacter davidanieli that showed promising 
results in terms of increased survival in immunized and challenged 
Coho salmon compared to controls (47). This was also tested 
under field conditions with improved survival. The assumption 
is that the Arthrobacter species share antigens with P. salmonis 
and thus elicit cross reactive antibodies and/or immune effector 
T cells, but there are no published studies to support this notion. 
Attenuated vaccine strategies might be interesting alternatives to 
the inactivated vaccines given the nature of the infection (intra-
cellular) and thus the need for cell-mediated immune responses 
(49). Recently, it was announced that a live-attenuated vaccine 
against SRS will be available in the Chilean market this year (50), 
but so far, there are no scientific reports to support the potential 
effect of the vaccine.

iMMUNe ReSPONSeS iNDUCeD BY DNA 
AND RePLiCATiNG vACCiNeS

The immune responses elicited by DNA vaccines and replicat-
ing vaccines are biased toward cell-mediated immunity (49) 

http://www.frontiersin.org/Immunology/
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FiGURe 4 | There are two branches of adaptive immunity that constitute the protective mechanism against infectious diseases: humoral- and 
cell-mediated immunity. Humoral immunity is mediated by antibodies that are produced by B cells. It is the main defense mechanism against extracellular 
pathogens, with secreted antibodies binding to pathogens and assist in their elimination. Cell-mediated immunity is mediated by T cells, with dendritic cells playing 
key roles in antigen presentation. T cells function by direct killing of cells infected with intracellular pathogens; activating macrophages to kill phagocytized 
pathogens; or by releasing cytokines to regulate the immune responses (65).
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(Figure 4). DNA vaccines elicit bias toward Th1 immunity, i.e., 
CD4 T cell activation. An attenuated vaccine would give a bias 
toward CD8 and T cytotoxic responses (49). It remains to be 
proven what immune responses actually play the most important 
role for preventing and/or controlling P. salmonis infection 
in salmonids. While there is no doubt that P. salmonis is an 
intracellular pathogen (27), it has not been fully documented 
whether the bacterium resides in endosomes/phagosomes [such 
as Mycobacterium sp. (51)] or is released from the initial endo-
some/phagosome to the cytosol, as seen for L. monocytogenes (52, 
53). As was mentioned earlier, there are studies indicating that 
P. salmonis induces formation of vesicular structures from actin 
disorganization and de novo synthesis (18), but it is not known 
if this is also the site of bacterial growth/division and a source 
of spread to neighboring cells. The subcellular localization of the 
bacterium will impact on what type of immune responses would 
be required for induction of protective immunity. Translating 
the knowledge from L. monocytogenes vaccination studies, it is 
reasonable to assume that cell-mediated immunity, particularly 

cytotoxic immune responses, is needed (53) in addition to strong 
antibody responses.

COMMeRCiAL vACCiNeS

Currently, there are more than 25 different vaccines available 
in the Chilean market against SRS, extrapolating from a not 
so recent summary (54), when all combinations are counted 
or included. The market is dominated by whole cell vaccines 
(inactivated) and, currently, several vaccine combinations 
are available from Virbac-Centrovet (n  =  12) and Pharmaq 
AS (n  =  5) where both manufacturers provide vaccines for 
injection (multivalent vaccine for intraperitoneal delivery or 
monovalent vaccines). These vaccines are oil adjuvanted (water-
in-oil emulsions) or live attenuated, and P. salmonis is combined 
with various/different bacterial antigens (for the inactivated 
vaccines). Other suppliers also sell commercial SRS vaccines in 
Chile. The experience is that the current vaccine concept confers 
good short-term protection against disease and mortality, but 

http://www.frontiersin.org/Immunology/
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FiGURe 5 | Repeated oral immunizations to maintain a long-term 
protection against SRS. Salmonids were primary immunized with an 
injectable mono or polyvalent vaccine against SRS. The arrows at 1700 and 
2900 degree days indicate the time-point where first and second oral 
vaccines were administrated, respectively. Serum samples were obtained at 
different degree days to determine specific IgM anti-P. salmonis. Samples 
were statistically analyzed by one-way ANOVA – Dunnet post-test (150 fish/
point) *p < 0.05; **p < 0.01; ***p < 0.001 (34).
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it has proven inefficient in conferring long-term protection, 
i.e., the duration of protection is not sufficient to protect the 
fish throughout their economic life. Virbac-Centrovet has also 
developed an oral vaccine against SRS designed for boosting 
after sea transfer (see below) and recently a live-attenuated vac-
cine became available for the Chilean market (Pharmaq).

TRANSLATiNG KNOwLeDGe OF  
HOST–PATHOGeN iNTeRACTiONS iNTO 
OPTiMiZeD vACCiNATiON STRATeGieS

It is challenging to translate knowledge of host–pathogen interac-
tions and detailed understanding of pathogenesis into improved 
vaccination strategies. This is particularly true when the 
pathogenic mechanisms are poorly or insufficiently understood, 
which to a large extent applies to P. salmonis infection in salmon. 
However, some of the recently gained knowledge of pathogenic 
events can potentially suggest alternative methods of vaccination/
vaccination modalities.

From the above, it is fair to state that P. salmonis infects the 
fish not only through external surfaces mainly, i.e., skin and 
gills, but also through the gut mucosa although to a lesser extent 
(55). Current vaccination strategies based on non-replicating 
vaccines will elicit a humoral immune response and to a lesser 
extent cell-mediated immunity. The kinetics of the antibody 
response is sparsely studied, but recently, Tobar et  al. (34, 56) 
showed that immunized fish had increased antibody levels up 
to 800 degree days post-vaccination after which they started to 
decline (Figure 5). There is a successive decline in antibody levels 
after they have peaked and they reach pre-vaccination levels by 
1800–1900 degree days post-vaccination. The underlying mecha-
nisms were not studied and are not known in detail but could 
be due to pathogen exposure and antibody consumption, as has 
been seen in IPN-vaccinated salmon (57). In line with such a 
thinking, the authors showed that declining levels of anti-P. sal-
monis antibodies coincide with increase in SRS-related mortality 
(34) indicating that pathogen exposure at least partly explained 
antibody consumption. Further, oral revaccination increased the 
circulating antibodies to levels equivalent to or higher than what 
was achieved from the primary injection vaccine (34), and even 
more pronounced when a second oral boost was administered 
(Figure 5). This study is one, among few, showing the circulating 
antibody levels in salmon show a boost pattern when primary 
immunization is by the parenteral route (intraperitoneal) and 
boost by oral delivery. Previously, this has also been shown for 
IPN vaccines in salmon (58), and it should be added that for both 
these studies, IgM was the immunoglobulin isotype measured 
in serum. Underpinning these observations is a recent study on 
prime-boost vaccination against infectious salmon anemia virus 
where the same response pattern was observed (34). Further, the 
effect of repeated oral boost has recently been shown for feed-based 
vaccination of red tilapia (Oreochromis niloticus x Oreochromis 
mossambicus) against streptococcosis (59). In the referred stud-
ies, no attempts were made to measure IgT on mucosal surfaces, 
but in the study by Chen et al. (60) transcript levels of IgT in the 
gut mucosa was measured and increased mRNA expression levels 

were found. The functional importance is, however, not known. 
From these studies, the proposed rationale to boost primary 
immunization by repeated oral boost (34) seems like a relevant 
and good proposition, but it remains to be documented from 
additional field studies. The mechanisms of protection against 
mortality are not fully understood, although the authors observed 
that protection against disease coincided with level of antibodies. 
As has been discussed above, it is not obvious that circulating anti-
bodies will protect against infection or disease development, for 
the mere reason that P. salmonis has an intracellular infection and 
multiplication strategy. That said, impeding infection efficiency at 
site(s) of entry, such as gills and skin, and also gut, could play a role 
in limiting infection success, and it is conceivable that oral boost-
ing will also result in production of IgT in the mucosal lining. It 
is well known that infection can result in formation of pathogen 
specific IgT at mucosal surfaces (61–63). However, to what extent 
antibodies (IgT) are formed at mucosal surfaces following vacci-
nation and to what extent they actually protect against infection or 
merely contribute to regulating the commensal flora as has been 
shown in higher vertebrates (64) or both, is not fully understood. 
Nevertheless, the reasoning that injection vaccines (one injection) 
confer too short protection against mortality (or infection), and 
applying a concept where fish are monitored for their antibody 
levels post-vaccination (34) and then boosted is a good rationale. 
This concept needs to be further explored, not only for P. salmonis 
infection but also for other diseases/pathogens.
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