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Abstract  

Background 

Understanding the biological mechanisms used by microorganisms for plant biomass 

degradation is of considerable biotechnological interest. Despite of the growing 

number of sequenced (meta)genomes of plant biomass-degrading microbes, there is 

currently no technique for the systematic determination of the genomic components of 

this process from these data.  

Results 

We describe a computational method for the discovery of the protein domains and 

CAZy families involved in microbial plant biomass degradation.  Our method 

furthermore accurately predicts the capability to degrade plant biomass for microbial 

species from their genome sequences. Application to a large, manually curated data 

set of microbial degraders and non-degraders identified gene families of enzymes 

known by physiological and biochemical tests to be implicated in cellulose 

degradation, such as GH5 and GH6.  Additionally, genes of enzymes that degrade 

other plant polysaccharides, such as hemicellulose, pectins and oligosaccharides, were 

found, as well as gene families which have not previously been related to the process. 

For draft genomes reconstructed from a cow rumen metagenome our method 

predicted Bacteroidetes-affiliated species and a relative to a known plant biomass 

degrader to be plant biomass degraders. This was supported by the presence of genes 

encoding enzymatically active glycoside hydrolases in these genomes.  

Conclusions 

Our results show the potential of the method for generating novel insights into 

microbial plant biomass degradation from (meta-)genome data, where there is an 

increasing production of genome assemblages for uncultured microbes. 
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Background  
Lignocellulosic biomass is the primary component of all plants and one of the most 

abundant organic compounds on earth. It is a renewable, geographically distributed 

and a source of sugars, which can subsequently be converted into biofuels with low 

greenhouse gas emissions, such as ethanol. Chemically, it primarily consists of 

cellulose, hemicellulose and lignin. Saccharification - the process of degrading 

lignocellulose into the individual component sugars - is of considerable 

biotechnological interest. Several mechanical and chemical procedures for 

saccharification have been established; however, all are relatively expensive, slow and 

inefficient [1]. An alternative approach is realized in nature by various 

microorganisms, which use enzyme-driven lignocellulose degradation to generate 

sugars as sources of carbon and energy. The search for novel enzymes allowing an 

efficient breakdown of plant biomass has therefore attracted considerable interest [2-

5]. In particular, the discovery of novel cellulases for saccharification is considered 

crucial in this context [6]. However, the complexity of the underlying biological 

mechanisms and the lack of robust enzymes that can be economically produced in 

larger quantities currently still prevent industrial application.  

 

For some lignocellulose-degrading species, carbohydrate-active enzymes (CAZymes) 

and protein domains implicated in lignocellulose degradation are well known. Many 

of these have been recognized by physiological and biochemical tests as being 

relevant for the biochemical process of cellulose degradation itself, such as the 

enzymes of the glycoside hydrolase (GH) families GH6 and GH9 and the 

endoglucanase-containing family GH5. Two well-studied paradigms are currently 

known for microbial cellulose degradation: The ‘free-enzyme system’ is realized in 

most aerobic microbes and entails secretion of a set of cellulases to the outside of the 
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cell. In anaerobic micro-organisms large multi-enzyme complexes, known as 

cellulosomes, are assembled on the cell surface and catalyze degradation. In both 

cases, the complete hydrolysis of cellulose requires endoglucanases (GH5 and GH9), 

which are believed to target non-crystalline regions, and exo-acting 

cellobiohydrolases, which attack crystalline structures from either the reducing (GH7 

and GH48) or non-reducing (GH6) end of the beta-glucan chain. However, in the 

genomes of some plant biomass-degrading species, homologs of such enzymes have 

not been found. Recent genome analyses of the lignocellulose-degrading 

microorganisms, such as the aerobe Cytophaga hutchinsonii [7], the anaerobe 

Fibrobacter succinogenes [8, 9] and the extreme thermophile anaerobe Dictyoglomus 

turgidum [10] have revealed only GH5 and GH9 endoglucanases. Genes encoding 

exo-acting cellobiohydrolases (GH6 and GH48) and cellulosome structures (dockerins 

and cohesins) are absent.  

 

Metagenomics offers the possibility of studying the genetic material of difficult-to-

culture (i.e. uncultured) species within microbial communities with the capability to 

degrade plant biomass. Recent metagenome studies of the gut microbiomes of the 

wood-degrading higher termites (Nasutitermes), the Australian Tammar wallaby 

(Macropus eugenii) [11, 12]  and two studies of the cow rumen metagenome [13, 14] 

have revealed new insights into the mechanisms of cellulose degradation in 

uncultured organisms and microbial communities. Microbial communities of different 

herbivores have been shown to be dominated by lineages affiliated to the 

Bacteroidetes and Firmicutes, of which different Bacteroidetes lineages exhibited 

endoglucanse activity [11, 15]. Notably, exo-acting families and cellulosomal 

structures have a low representation or are entirely absent from gut metagenomes 
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sequenced to date. Thus, current knowledge about genes and pathways involved in 

plant biomass degradation in different species, particularly uncultured microbial ones, 

is still incomplete. 

 

We describe a method for the de novo discovery of protein domains and CAZy 

families associated with microbial plant biomass degradation from genome and 

metagenome sequences. It uses protein domain and gene family annotations as input 

and identifies those domains or gene families, which in concert are most distinctive 

for the lignocellulose degraders. Among the gene and protein domains identified with 

our method were known key genes of plant biomass degradation.  Additionally, it 

identified several novel protein domains and gene families as being relevant for the 

process. These might represent novel leads towards elucidating the mechanisms of 

plant biomass degradation for the currently less well understood microbial species. 

Our method furthermore can be used to identify plant biomass-degrading species from 

the genomes of cultured or uncultured microbes. Application to draft genomes 

assembled from the metagenome of a switchgrass-adherent microbial community in 

cow rumen predicted genomes from several Bacteroidales lineages which encode 

active glycoside hydrolases and a relative to a known plant biomass degrader to 

represent lignocellulose degraders.  

 

In technical terms, our method selects the most informative features from an ensemble 

of L1-regularized L2-loss linear Support Vector Machine (SVM) classifiers, trained to 

distinguish genomes of cellulose-degrading species from non-degrading species based 

on protein family content. Protein domain annotations are available in public 

databases and new protein sequences can be rapidly annotated with Hidden Markov 
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Models (HMMs) or – somewhat slower - with BLAST searches of one protein versus 

the NCBI-nr database [16]. Co-occurrence of protein families in the biomass-

degrading fraction of samples and an absence of these families within the non-

degrading fraction allows the classifier to link these proteins to biomass degradation 

without requiring sequence homology to known proteins involved in lignocellulose 

degradation.  Classification with SVMs has been previously used successfully for 

phenotype prediction from genetic variations in genomic data. In Beerenwinkel et al. 

[17], support vector regression models were used for predicting phenotypic drug 

resistance from genotypes. SVM classification was used by Yosef et al. [18] for 

predicting plasma lipid levels in baboons based on single nucleotide polymorphism 

data. In Someya et al. [19], SVMs were used to predict carbohydrate-binding proteins 

from amino acid sequences.  The SVM [20, 21] is a discriminative learning method 

that infers, in a supervised fashion, the relationship between input features (such as 

distribution of conserved gene clusters or single nucleotide polymorphisms across a 

set of sequence samples) and a target variable, such as a certain phenotype, from 

labeled training data. The inferred function is subsequently used to predict the value 

of this target variable for new data points. This type of method makes no a priori 

assumptions about the problem domain. SVMs can be applied to datasets with 

millions of input features and have good generalization abilities, in that models 

inferred from small amounts of training data show good predictive accuracy on novel 

data. The use of models that include an L1-regularization term favors solutions in 

which few features are required for accurate prediction. There are several reasons why 

sparseness is desirable: the high dimensionality of many real datasets results in great 

challenges for processing. Many features in these datasets are usually non-informative 

or noisy, and a sparse classifier can lead to a faster prediction.  In some applications, 
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like ours, a small set of relevant features is desirable because it allows direct 

interpretation of the results. 

Results  
We trained an ensemble of SVM classifiers to distinguish between plant biomass-

degrading and non-degrading microorganisms based on either Pfam domain or CAZY 

gene family annotations (see Methods section for the training and evaluation of the 

SVM classification ensemble). We used a manually curated data set of 104 microbial 

(meta-)genome sequence samples for this purpose, which included 19 genomes and 3 

metagenomes of lignocellulose degraders and 82 genomes of non-degraders (Figure 1, 

Figure 2, Supplementary Table S1).  After training, we identified the most distinctive 

protein domains and CAZy families of plant biomass degraders from the resulting 

models. We compared these protein domains and gene families with known plant 

biomass degradation genes. We furthermore applied our method to identify plant 

biomass degraders among 15 draft genomes from the metagenome of a microbial 

community adherent to switch grass in cow rumen. 

Distinctive Pfam domains of microbial plant biomass degraders 

For the training of a classifier which distinguishes between plant biomass-degrading 

and non-degrading microorganisms we used Pfam annotations of 101 microbial 

genomes and two metagenomes. This included metagenomes of microbial 

communities from the gut of a wood-degrading higher termite and from the foregut of 

the Australian Tammar Wallaby as examples for plant biomass-degrading 

communities. Furthermore, 19 genomes of microbial lignocellulose degraders were 

included – of the phyla Firmicutes (7 isolate genome sequences), Actinobacteria (5), 

Proteobacteria (3), Bacteroidetes (1), Fibrobacteres (1), Dictyoglomi (1) and 

Basidiomycota (1). Eighty-two microbial genomes annotated unambiguously to not 
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possess the capability to degrade lignocellulose were used as examples of non-

lignocellulose-degrading microbial species (Additional file 1: Table S1).  

 

We assessed the value of information about the presence or absence of protein 

domains for distinguishing lignocellulose degraders from non-degraders. With the 

respective classifier, eSVMbPFAM, each microbial (meta-)genome sequence was 

represented by a feature vector with the features indicating the presence or absence of 

Pfam domains (see methods). The nested cross-validation macro-accuracy of 

eSVMbPFAM in distinguishing plant biomass-degrading from non-degrading 

microorganisms was 0.91. This corresponds to 94% (97 of 103) of the (meta-)genome 

sequences being classified correctly. Only three of the 21 cellulose-degrading samples 

and three of the non-degraders were misclassified (Table 1). Among these were four 

Actinobacteria and one genome affiliated with the Basidiomycota and Theromotogae 

each.   

 

We identified the Pfam domains with the greatest importance for assignment to the 

lignocellulose-degrading class by eSVMbPFAM (Figure 1; see Methods for the feature 

selection algorithm). Among these are several protein domains known to be relevant 

for plant biomass degradation. One of them is the  GH5 family, which is present in all 

of the plant biomass-degrading samples. Almost all activities determined within this 

family are relevant to plant biomass degradation. Because of its functional  diversity, 

a subfamily classification of the GH5 family was recently proposed [22]. The 

carbohydrate-binding modules CBM_6 and CBM_4_9 were also selected. Both 

families are Type B carbohydrate-binding modules (CBMs), which exhibit a wide 

range of specificities, recognizing single glycan chains comprising hemicellulose 
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(xylans, mannans, galactans and glucans of mixed linkages) and/or non-crystalline 

cellulose [23]. Type A CBMs (e.g. CBM2 and CBM3), which are more commonly 

associated with binding to insoluble, highly crystalline cellulose, were not identified 

as relevant by eSVMbPFAM. Furthermore, numerous enzymes that degrade non-

cellulosic plant structural polysaccharides were identified, including those that attack 

the backbone and side chains of hemicellulosic polysaccharides. Examples include the 

GH10 xylanases and GH26 mannanases. Additionally, enzymes that generally display 

specificity for oligosaccharides were selected, including GH39 β-xylosidases and 

GH3 enzymes.  

 

We subsequently trained a classifier - eSVMfPFAM - with a weighted representation of 

Pfam domain frequencies for the same data set. The macro-accuracy of 

eSVMfPFAM.was 0.84; lower than that of the eSVMbPFAM; with nine misclassified 

samples (4 Actinobacteria, 2 Bacteroidetes, 1 Basidiomycota, 1 Thermotogae phyla 

and the Tammar Wallaby metagenome).   Again, we determined the most relevant 

protein domains for identifying a plant biomass-degrading sequence sample from the 

models by feature selection. Among the most important protein families were, as 

before, GH5, GH10 and GH88 (PF07221: N-acylglucosamine 2-epimerase) (Figure 

1). GH6, GH67 and CE4 acetyl xylan esterases (“accessory enzymes” that contribute 

towards complete hydrolysis of xylan) were only relevant for prediction with the 

eSVMfPFAM classifier. Additionally, both models specified protein domains not 

commonly associated with plant biomass degradation as being relevant for 

assignment, such as the lipoproteins DUF4352 and PF00877 (NlpC/P60 family) and 

binding domains PF10509 (galactose-binding signature domain) and PF03793 

(PASTA domain) (Figure 1). 
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Distinctive CAZy families of microbial plant biomass 

 We searched for distinctive CAZy families of microbial plant biomass degraders with 

our method. CAZy families include glycoside hydrolases (GH), carbohydrate-binding 

modules (CBM), glycosyltransferases (GT), polysaccharide lyases (PL) and 

carbohydrate esterases (CE). The annotations from the CAZy database comprised 64 

genomes of non-lignocellulose-degrading species and 16 genomes of lignocellulose-

degraders. In addition, we included the metagenomes of the gut microbiomes of the 

Tammar wallaby (TW), the wood-degrading higher termite and of the cow rumen 

microbiome (Additional file 1: Table S1). We evaluated the value of information 

about the presence or absence of CAZy domains, or of their relative frequencies for 

identification of lignocellulose-degrading microbial (meta-)genomes in the following 

experiments: 

1) By training of the classifiers eSVMCAZY_A (presence/absence) and  eSVMCAZY_a 

(counts), based on genome annotations with all CAZy families 

2) By training of the classifiers eSVMCAZY_B (presence/absence) and eSVMCAZY_b 

(counts), based on annotation of the genomes and the TW sample with all CAZy 

families, except for the GT family members, which were not annotated for the TW 

sample.  

3) By training of the classifiers eSVMCAZY_C (presence/absence) and eSVMCAZY_c 

(counts) with the entire data set based on GH family and CBM annotations, as 

these were only ones available for the three metagenomes. 

The macroaccuracy of these classifiers ranged from 0.87 to 0.96, similar to the Pfam-

domain-based models (Table 2). Notably, almost exclusively Actinobacteria were 

misclassified by the eSVMCAZY classifiers, except for the Firmicute 

Caldicellulosiruptor saccharolyticus. The best classification results were obtained 

with the presence-absence information for all CAZy families except for the GT 
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families of the microbial genomes and the TW sample. In this setting only two species 

(Thermomonospora curvata and Actinosynnema mirum) were misclassified. These 

species remained misclassified with all six classifiers.  

 

Using feature selection, we determined the CAZy families from the six eSVMCAZy 

classifiers that are most relevant for identifying microbial cellulose-degraders. Many 

of these GH families and CBMs are present in all (meta-)genomes (Figure 2). This 

analysis identified further gene families known to be relevant for plant biomass 

degradation. Among them are cellulase-containing families (GH5, GH6, GH12, 

GH44, GH74), hemicellulase-containing families (GH10, GH11, GH26, GH55, 

GH81, GH115), families with known activities against oligosaccharide/side-chain-

degrading enzymes (GH43, GH65, GH67, GH95) and several CBMs (CBM3, -4, -6, -

9, -10, -16, -22, -56). Several of these (GH6, GH11, GH44, GH67, GH74, CBM4, 

CBM6, CBM9) were consistently identified by at least half of the six classifiers as 

distinctive for plant biomass degraders. These might be considered signature genes of 

the plant biomass-degrading microorganisms we analyzed.  Additionally, several GT, 

PL and CE domains were identified as relevant (eSVMCAZY_A : PL1, PL11 and CE5,  

“eSVMCAZY_B: CE5; eSVMCAZY_a : GT39, PL1 and CE2, eSVMCAZY_b :none). These 

CAZy families, as well as GH115 and CBM56, are not included in Figure 2, as they 

are not annotated for all sequences.  

Identification of plant biomass degraders from a cow rumen metagenome 

We used our method to predict the plant biomass-degrading capabilities for 15 draft 

genomes of uncultured microbes reconstructed from the metagenome of a microbial 

community adherent to switchgrass in cow rumen (Hess et al 2011) (see Methods for 

the classification with an ensemble of SVM classifiers). The draft genomes represent 
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genomes with more than 50% of the sequence reconstructed by taxonomic binning of 

the metagenome sample. The microbial community adherent to switchgrass is likely 

to be enriched with plant biomass degraders, as it was found to differ from the rumen 

fluid community in its taxonomic composition and degradation of switch grass after 

incubation in cow rumen had occurred. For identification of plant biomass-degrading 

microbes, we classified each draft genome individually with the eSVMbPFAM and 

eSVMCAZY_B models, which had the highest macro-accuracy based on Pfam domain 

or CAZy family annotations, respectively. The eSVMbPFAM classifier assigned seven 

of the draft genomes to plant biomass degraders (Table 3). One of these, genome APb, 

was found by 16S rRNA analysis to be related to the fibrolytic species Butyrivibrio 

fibrisolvens. Four others (AC2a, AGa, AJ and AH) are of the order of Bacteroidales, 

and include all but one draft genomes affiliated to the Bacteroidales. The 6th and 7th 

predicted degrader, represented by genome AIa and AWa, belong to the Clostridiales, 

like genome APb. The eSVMCAZY_B classifier also assigned five of these genomes to 

the plant biomass degraders. Additionally it classified genome AH as plant biomass-

degrading, while being ambiguous in the assignment of AFa (Table 3). To validate 

these predictions, we searched the draft genomes for genes encoding 51 enzymatically 

active glycoside hydrolases characterized from the same rumen dataset (for the results 

of these experiments see Figure 3 in (Hess et al., 2011)). Genomes AGa, AC2a, AJ 

and AIa were all linked to different enzymes of varying specificities (Table 3). AC2a 

was linked to cellulose degradation, specifically to a carboxymethyl cellulose (CMC)-

degrading GH5 endoglucanase as well as GH9 enzyme capable of degrading insoluble 

cellulosic substrates such as Avicel®. AIa demonstrated capabilities towards xylan 

and soluble cellulosic substrates with affiliations to four GH10 xylanases. Both AGa 

and AJ demonstrated broader substrate versatility and were linked to enzymes with 
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capabilities towards cellulosic substrates CMC and Avicel® (GH5, GH9 and GH26), 

hemicellulosic substrates lichenan (β-1,3, β-1,4 β-glucan) and xylan (GH5, GH9 and 

GH10), as well as the natural feedstocks miscanthus and switchgrass (GH5 and GH9). 

Importantly, no carbohydrate-active enzymes were affiliated to draft genomes that 

were predicted to not possess plant biomass-degrading capabilities (Table 3). Overall, 

assignments were largely consistent between the two classifiers and supporting 

evidence for the capability to degrade plant biomass was found for five of the 

predicted degraders. 

Timing experiments 

Our method uses annotations with Pfam domains or CAZy families as input. 

Generating these by similarity-searches with profile HMMs rather than with BLAST 

provides a better scalability for next-generation sequencing data sets. HMM databases 

such as dbCAN contain a representation of entire protein families rather than of 

individual gene family members, which largely decreases the number of entries one 

has to compare against.  For example, searching the ORFs of the Fibrobacter 

succinogenes genome [24] for similarities to CAZy families with the dbCAN HMM 

models took 23 seconds on an Intel® Xeon® 1.6 GHz CPU. In comparison, searching 

for similarities to CAZy families by BLASTing the same set of ORFs against all 

sequences with CAZy family annotation of the NCBI non-redundant protein database 

(downloaded from ftp://ftp.ncbi.nih.gov/blast/db/FASTA on April 19th 2011) on the 

same machine required approximately 1 hour and 55 minutes, a difference of two 

orders of magnitude. Because of their better scalability and also because they are 

well-established for identifying protein domains or gene families [25-27] searches, we 

recommend the use of HMM-based similarities and annotations as input to our 

method. 

ftp://ftp.ncbi.nih.gov/blast/db/FASTA
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Discussion 
We investigated the value of information about the presence-or-absence of CAZy 

families and Pfam protein domains, as well as information about their relative 

abundances, for the identification of lignocellulose degraders. Classifiers trained with 

CAZy family or Pfam domain annotations allowed an accurate identification of plant 

biomass degraders and determined similar domains and CAZy families as being most 

distinctive.  Many of these are recognized by physiological and biochemical tests as 

being relevant for the biochemical process of cellulose degradation itself, such as 

GH6, members of the GH5 family and to a lesser extent GH44 and GH74. In contrast 

to widely accepted paradigms for microbial cellulose degradation, recent genome 

analysis of cellulolytic bacteria has identified examples (i.e. Fibrobacter) where there 

is an absence of genes encoding exo-acting cellobiohydrolases (GH6 and GH48) and 

cellulosome structures [28]. In addition, these exo-acting families and cellulosomal 

structures have had a low representation or are entirely absent from sequenced gut 

metagenomes. Our method also finds the exo-acting cellobiohydrolases GH7 and 

GH48 to be less important. GH7 represents fungal enzymes, so its absence makes 

sense; however, the lower importance assigned to GH48 is interesting. The role of 

GH48 is believed to be of high importance, although recent research has raised 

questions. Olson et al. [29] have found that a complete solubilization of crystalline 

cellulose can occur in Clostridium thermocellum without the expression of GH48, 

albeit at significantly lower rates. Furthermore, genome analysis of cellulose-

degrading microbes Cellvibrio japonicas [30] and Saccharophagus degradans [31] 

have determined the presence of only non-reducing end enzymes (GH6) and an 

absence of a reducing end cellobiohydrolase (GH48), suggesting that the latter are not 

essential for all cellulolytic enzyme systems. 
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While we have focused on cellulose degradation, our method has also identified 

enzymes that degrade other plant polysaccharides as being relevant, such as 

hemicellulose (GH10, GH11, GH12, GH26, GH55, GH81, CE4), pectins (PL1, GH88 

and GH43), oligosaccharides (GH3, GH30, GH39, GH43, GH65, GH95) and the side-

chains attached to noncellulosic polysaccharides (GH67, GH88, GH106). This was 

expected, since many cellulose-degrading microbes produce a repertoire of different 

glycoside hydrolases, lyases and esterases (see, for example, [30, 31]) that target the 

numerous linkages that are present within different plant polysaccharides, which often 

exist in tight cross-linked forms within the plant cell wall.  The results from our 

method add further weight to this. The observation of numerous CBMs being relevant 

in the CAZy analysis also agrees with previous findings that many different CBM–

GH combinations are possible in bacteria. Moreover, recent reports have 

demonstrated that the targeting actions of CBMs have strong proximity effects within 

cell wall structures, i.e. CBMs directed to a cell wall polysaccharide (e.g. cellulose) 

other than the target substrate of their appended glycoside hydrolase (e.g. xylanase) 

can promote enzyme action against the target substrate (e.g. xylan) within the cell 

wall [32]. This provides explanations as to why cellulose-directed CBMs are 

appended to many non-cellulase cell wall hydrolases. 

 

Several Pfam domains of unknown function (DUFs) or protein domains which have 

not previously been associated with cellulose degradation are predicted as being 

relevant. These include transferases (PF01704) and several putative lipoproteins 

(DUF4352), some of which have predicted binding properties (NlpC/P60 family: 

PF00877, PASTA domain: PF03793). The functions of these domains in relation to 

cellulose degradation are not known, but possibilities include binding to cellulose, 



 - 17 - 

binding to other components of the cellulolytic machinery or interaction with the cell 

surface.  

Another result of our study are the classifiers for identifying microbial lignocellulose-

degraders from genomes of cultured and uncultured microbial species reconstructed 

from metagenomes. Classification of draft genomes reconstructed from switchgrass-

adherent microbes from cow rumen with the most accurate classifiers predicted six or 

seven of these to represent plant biomass-degrading microbes, including a close 

relative to the fibrolytic species Butyrivibrio fibrisolvens. Cross-referencing of all 

draft genomes against a catalogue of enzymatically active glycoside hydrolases 

provided a degree of method validation and was in majority agreement with our 

predictions. Four genomes (AGa, AC2a, AJ and AIa) predicted positive were linked to 

cellulolytic and/or hemicellulolytic enzymes, and importantly no genomes that were 

predicted negative were linked to carbohydrate-active enzymes from that catalogue of 

enzymatically active enzymes. Also, no connections to carbohydrate-active enzymes 

from that catalogue were observed for the three genomes (AFa,AH and AWa) where 

ambiguous predictions were made. As both draft genomes as well as the catalogue of 

carbohydrate active enzymes in cow rumen are incomplete, in addition to our training 

data not covering all plant-biomass-degrading taxa, such ambiguous assignments 

might be better resolvable with more information in the future.  

 

We trained a previous version of our classifier with the genome of Methanosarcina 

barkeri fusaro incorrectly labeled as a plant biomass degrader, according to 

information provided by IMG. In cross-validation experiments, our method correctly 

assigned M. barkeri to be a non-plant biomass-degrading species. We labeled 

Thermonospora curvata as a plant biomass degrader and Actinosynnema mirum as 
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non-degrader according to information from the literature (see Supplementary Table 

S1). Both were misassigned by all classifiers in the cross-validation experiments. 

However, in a recent work  by Anderson et al. [33] it was shown that in cellulose 

activity assays A. mirum could degrade various cellulose substrates. In the same 

study, T. curvata did not show cellulolytic activity against any of these substrates. The 

authors found out that the cellulolytic T. curvata strain was in fact a T. fusca strain. 

Thus, our method could correctly assign both strains despite of the incorrect 

phenotypic labeling. The genome of Postia placenta, the only fungal plant biomass 

degrader of our data set was misassigned in the Pfam-based SVM analyses. Fungi 

possess cellulases not found in prokaryotic species [34] and might employ different 

mechanism for plant biomass degradation [35, 36]. Indeed, in our data set, Postia 

placenta is annotated with the cellulase-containing GH5 family and xylanase GH10, 

but the hemicellulase family GH26 does not occur. Furthermore, the (hemi-)cellulose 

binding CBM domains CBM6 and CBM_4_9, which were identified as being relevant 

for assignment to lignocellulose degraders with the eSVMbPFAM classifier, are absent. 

All of the latter ones, GH26, CBM6 and especially CBM4 and CBM9, occur very 

rarely in eukaryotic genome annotations, according to the CAZy database.   

 

Conclusions  
We have developed a computational technique for the identification of Pfam protein 

domains and CAZy families that are distinctive for microbial plant biomass 

degradation from (meta-)genome sequences and for predicting whether a (draft) 

genome of cultured or uncultured microorganisms encodes a plant biomass-degrading 

organism. Our method is based on feature selection from an ensemble of linear L1-

regularized SVMs. It is sufficiently accurate to detect errors in phenotype assignments 
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of microbial genomes. However, some microbial species remained misclassified in 

our analysis, which indicates that further distinctive genes and pathways for plant 

biomass degradation are currently poorly represented in the data and could therefore 

not be identified.  

 

To identify a lignocellulose degrader from the currently available data, the presence 

of a few domains, many of which are already known, is sufficient. The identification 

of several protein domains which have so far not been associated with microbial plant 

biomass degradation in the Pfam-based SVM analyses as being relevant may warrant 

further scrutiny. A difficulty in our study was to generate a sufficiently large and 

correctly annotated dataset to reach reliable conclusions. This means that the results 

could probably be further improved in the future, as more sequences and information 

on plant biomass degraders become available. The method will probably also be 

suitable for identifying relevant gene and protein families of other phenotypes. 

The prediction and subsequent validation of three Bacteroidales genomes to represent 

cellulose-degrading species demonstrates the value of our technique for the 

identification of plant biomass degraders from draft genomes from complex microbial 

communities, where there is an increasing production of genome assemblages for 

uncultured microbes. These to our knowledge represent the first cellulolytic 

Bacteroidetes-affiliated lineages described from herbivore gut environments. This 

finding has the potential to influence future cellulolytic activity investigations within 

rumen microbiomes, which has for the greater part been attributed to the metabolic 

capabilities of species affiliated to the bacterial phyla Firmicutes and Fibrobacteres. 
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Methods 

Annotation 

We annotated all protein coding sequences of microbial genomes and metagenomes 

with Pfam protein domains and Carbohydrate-Active Enzymes (CAZymes) [26, 37]. 

The CAZy database contains information on families of structurally related catalytic 

modules and carbohydrate binding modules (CBMs) or (functional) domains of 

enzymes that degrade, modify or create glycosidic bonds. HMMs for the Pfam 

domains were downloaded from the Pfam database. Microbial and metagenomic 

protein sequences were retrieved from IMG 3.4 and IMG/M 3.3 [38, 39].  HMMER 3 

[40] with gathering thresholds was used to annotate the samples with Pfam 

domains. Each Pfam family has a manually defined gathering threshold for the bit 

score that was set in such a way that there were no false-positives detected. For 

annotation of protein sequences with CAZy families, the available annotations from 

the database were used. For annotations not available in the database, HMMs for 

the CAZy families were downloaded from dbCAN (http://csbl.bmb.uga.edu/dbcan) 

[41]. To be considered a valid annotation, matches to Pfam and dbCAN protein 

domain HMMs in the protein sequences were required to be supported by an e-

value of at least 1e-02 and a bit score of more than 25. Additionally, we excluded 

matches to dbCAN HMMs with an alignment longer than 100 bp that did not exceed 

an e-value of 1e-04. Multiple matches of one and the same protein sequence against 

a single Pfam or dbCAN HMM exceeding the thresholds were counted as one 

annotation.    

 

http://csbl.bmb.uga.edu/dbcan
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Phenotype annotation of lignocellulose-degrading and non-degrading 
microbes 

We defined genomes and metagenomes as originating from either lignocellulose-

degrading or non-lignocellulose-degrading microbial species based on information 

provided by IMG/M and in the literature. For every microbial genome and 

metagenome, we downloaded the genome publication and further available articles 

(Supplementary Table S1). We did not consider genomes for which no publications 

were available. For cellulose-degrading species annotated in IMG, we verified these 

assignments based on these publications. We used text search to identify the 

keywords “cellulose”, “cellulase”, “carbon source”, “plant cell wall” or 

“polysaccharide” in the publications for non-cellulose-degrading species. We 

subsequently read all articles that contained these keywords in detail to classify the 

respective organism as either cellulose-degrading or non-degrading. Genomes that 

could not be unambiguously classified in this manner were excluded from our study.  

 

Classification with an ensemble of Support Vector Machine classifiers 

The SVM is a supervised learning method that can be used for data classification [20, 

21]. Here, we use an L1-regularized L2-loss SVM, which solves the following 

optimization problem for a set of instance-label pairs ),( ii yx
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where 0C is a penalty parameter. This choice of the classifier and regularization 

term results in sparse models, where non-zero components of the weight vector w


 are 

important for discrimination between the classes [42]. SVM classification was 

li ,,1
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performed using the LIBLINEAR package [43]. The components of 
ix


are either 

binary valued and represent the presence or absence of protein domains, or 

continuous-valued and represent the frequency of a particular protein domain or gene 

family relative to the total number of annotations. All features were normalized by 

dividing by the sum of all vector entries and subsequently scaled, such that the value 

of each feature was within the range [0,1].  The label +1 was assigned to genomes and 

metagenomes of plant biomass-degrading microorganisms, the label -1 to all 

sequences from non-degrading ones. Classification of the draft genomes assembled 

from the fiber-adherent microbial community from cow rumen was performed with a 

voting committee of multiple models with different settings for the penalty parameter 

C that performed comparably well. A majority vote of the 5 most accurate models 

was used here obtained in a single cross-validation run with different settings of the 

penalty parameter C.   

 

Performance evaluation 

The assignment accuracy of a classifier was determined with a standard nested cross-

validation (nCV) setup [44]. In nCV, an outer cross-validation loop is organized 

according to the leave-one-out principle:  In each step, one data point is left out. In an 

inner loop, the optimal parameters for the model (here, the penalty parameter C) are 

sought, in a second cross-validation experiment with the remaining data points. For 

determination of the best setting for the penalty parameter C, values for 
xC 10 , 

0,,25.2,5.2,0.3 x  were tried. Values of the parameter C larger than 1 were 

not tested extensively, as we found that they resulted in models with similar 

accuracies. This is in agreement with the Liblinear tutorial in the appendix of [43]  

which states that once the parameter C exceeds a certain value, the obtained models 
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have a similar accuracy.  The SVM with the penalty parameter setting yielding the 

best assignment accuracy was used to predict the class membership of the left out data 

point.  The class membership predictions for all data points were used to determine 

the assignment accuracy of the classifier, based on their agreement with the correct 

assignments. For this purpose, the result of each leave-one-out experiment was 

classified as either a true positive (TP – correctly predicted lignocellulose degraders), 

true negative (TN – correctly predicted non-degraders), false positive (FP – non-

degraders predicted to be degraders) or a false negative assignment (FN – degraders 

predicted to be non-degraders). The recall of the positive class and the true negative 

rate of the classifier were calculated according to the following equations: 

FNTP

TP
call


Re     (2)   

FPTN

TN
ratenegativeTrue


      (3) 

The average of the recall and the true negative rate, the macro-accuracy, was used as 

the assignment accuracy to assess the overall performance: 

2

Re ratenegativeTruecall
MACC


       (4)  

Subsequently, we identified the settings for the penalty parameter C with the best 

macro-accuracy by leave-one-out cross-validation. The parameter settings resulting in 

the most accurate models were used to each train a separate model on the entire data 

set. Prediction of the five best models were combined to form a voting committee and 

used for the classification of novel sequence samples such as the partial genome 

reconstructions from the cow rumen metagenome of switch-grass adherent microbes 

(see Additional file 2: Table S2 for an evaluation and meta-parameter settings of these 

ensembles of classifiers). 



 - 24 - 

 

Feature selection 

An SVM model can be represented by a sparse weight vector w


. The positive and 

negative components of w


, the ‘feature weights’, specify the relative importance of 

the protein domains or CAZy families for discrimination between plant biomass-

degrading and non-plant biomass-degrading microorganisms. To determine the most 

distinctive features for the positive class (that is, the lignocellulose degraders), we 

selected all features that received a positive weight in weight vectors of the majority 

of the five most accurate models.  This ensemble of models was also used for 

classification of the cow rumen draft genomes of uncultured microbes (see 

Classification with a SVM). 
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Figures 

Figure 1  - Frequencies of the selected Pfam families in the individual genomes 
and metagenomes 

The data for each entry are rescaled by the total number of Pfam domains annotated to 

the microbial genome or metagenome. The color scale from grey to black indicates 

domain families that are present in low to high amounts, respectively. White indicates 

absent protein domains. The signs “+” and “-” indicate whether a protein domain was 

chosen in the respective experiment.  

Figure 2  - Frequencies of selected glycoside hydrolase (GH) families and 
carbohydrate binding modules (CBMs) in the (meta-)genome sequences 

The data for each entry are rescaled by the total number of GH and CBM domains 

annotated to the microbial genome or metagenome. The coloring from black to grey 

indicates domains that are present in high to low amounts, respectively. White 

indicates absent domain families (“A”, “a”, “B”, “b”, “C”, “c” as described in Table 

1).  

 

 

 

 

 

 



 - 30 - 

Tables 

Table 1 -  Misclassified species in the SVM analyses 

Shown are species which were misclassified with the eSVMCAZY_B and the 

eSVMbPFAM classifiers (see text for details).  

 

 eSVMbPFAM eSVMCAZY_B  

Postia placenta Mad-698-R Thermomonospora curvata 

DSM 43183 

Xylanimonas cellulosilytica DSM 15894  

Thermomonospora curvata DSM 43183  

False 

positives 

 Actinosynnema mirum 101 

Arthrobacter aurescens TC1 

Thermotoga lettingae TMO 

Actinosynnema mirum 101  
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Table 2  -  Accuracy of classifying microbes as lignocellulose-degraders or 
non-degraders 

L1-regularized SVMs were trained with Pfam domain or CAZY family (meta-

)genome annotations.  Capital letters denote classifiers trained based on the presence 

or absence of CAZy families and small letters indicate classifiers trained based on the 

relative abundances of CAZy families in annotations. Abbreviations “A”, “a”,” B”, 

“b”, “C”, “c” denote the following: Classifiers “A“,“a“ were trained with annotations 

of all CAZy families for 16 microbial genomes; Classifiers “B“,“b“ were trained with 

annotations for all CAZy families, except for the GT family members (which were not 

annotated for the Tammar Wallaby metagenome), for 16 genomes and the TW 

metagenome of plant biomass degraders; Classifiers “C“,“c“ were trained with 

annotations for the GH family and CBMs for the 16 microbial genomes and three 

metagenomes of plant biomass degraders, as only these were annotated for the 

metagenomes. All CAZy-based classifiers were trained with available annotations for 

64 genomes of non-biomass degraders. The Pfam-based classifiers were trained with 

21 (meta-)genomes of biomass-degraders and 82 microbial genomes of non-

degraders.  For more details on the experimental set-up and the evaluation measures 

shown see the Methods section on performance evaluation. 

 

 Presence/ 

absence of 

Pfam  

domains 

Weighted 

Pfam  

domain 

representation 

Presence/absence 

CAZy family 

representation 

Weighted CAZy 

family 

representation 

 A B C a b c 

nCV 

macro-

accuracy 

0.91 0.84 0.90 0.96 0.94 0.91 0.93 0.87 

nCV recall 0.86 0.73 0.81 0.94 0.90 0.88 0.88 0.79 

nCV true 0.96 0.96 0.98 0.98 0.98 0.95 0.98 0.95 
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negative rate 
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Table 3  -  Prediction of the plant biomass degradation capabilities for 15 draft 
genomes 

Genome reconstructions from the metagenome of a microbial community adherent to 

switchgrass in the cow rumen were obtained by taxonomic binning of assembled 

sequences in the original study. Symbols depict the prediction outcome of a voting 

committee of the 5 eSVMCAZY_B and the eSVMbPFAM classifiers with the best macro-

accuracy (see text for the description of the classifiers). ++:  genome classified as 

plant biomass degrader by all classifiers; +: genome classified as plant biomass 

degrader by 4 out of 5 classifiers; 0: ambiguous prediction; -: genome classified as not 

plant biomass degrader by 4 out of 5 classifiers; --: genome classified as not plant 

biomass degrader by all classifiers. For every draft genome, the presence of genes 

encoding glycoside hydrolases with verified enzymatic activity for different substrates 

in this study (Hess et al., 2011) is indicated. The genome and substrate names 

correspond to those of Figure 3 and Table S6 of the study.
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AC2a AGa AIa-2 AJ APb AFa AH AWa ADa AMa AN AQ AS1 ATa BOa 

eSVMCAZY_B ++ ++ ++ + ++ ++ 0 -- -- -- -- -- -- -- -- 

eSVMbPFAM ++ ++ ++ ++ ++ - ++ + -- - -- -- -- - -- 

CMC GH5 (TW-33) 

GH5 (TW-40) 

GH5 (MH-2) GH10 (TW-34) 

GH5 (TW-39) 

GH26 (TW-10) 

GH10 (TW-8) 

   

 

 

      

XYL 

 

GH10 (TW-

25) 

GH10 (TW-30) 

GH10 (TW-31) 

GH10 (TW-37) GH10 (TW-8) 

   

 

 

      

SWG 

 

GH5 (TW-40) 

GH5 (MH-2) 

  

   

 

 

      

MIS GH9 (TW-64) 

GH5 (TW-40) 

GH5 (MH-2) 

GH9 (TW-50) 

 

GH5 (TW-39) 

   

 

 

      

AVI GH9 (TW-64) 

GH5 (TW-40) 

GH5 (MH-2) 

GH9 (TW-50) 

 

GH5 (TW-39) 

   

 

 

      

LIC 

 

GH5 (TW-40) 

GH5 (MH-2) 

GH9 (TW-50) 

 

GH5 (TW-39) 

   

 

 

      Hydrolytic activity detected on:  

(CMC) 1% (w/v) carboxymethyl cellulose agar  

(XYL) 1% (w/v) Xylan 

(SWG) 1% (w/v) IL-Switchgrass  

(MIS) 1% (w/v) IL-Miscanthus  

(AVI) 1% (w/v) IL-Avicel 
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Additional files 
Additional file 1: Table S1 – Isolate strains and metagenome samples used in this 

study 

The signs “+” and “-” indicate availability of CAZy or Pfam annotation data.  The 

symbol * marks strains for which we provide another reference than the genome 

publication characterizing the metabolic capacities of the respective strain. 

 

Additional file 2: Table S2 – Evaluation and meta-parameter settings of the 

ensembles of classifiers 

The ensembles were used for feature selection and phenotype classification of the 

(draft) genomes and metagenomes. The macro-accuracy for each model for a discrete 

set of values for the parameter C was calculated in cross-validation experiments. The 

five best models were selected based on macro-accuracy. The mean of the 

exponentially transformed parameter C and the mean macro-accuracy for these five 

models are shown for all trained classifiers. For details on the different ensemble 

classifiers, see the result section in the manuscript. 

 

 


