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Abstract 13 

 14 

Survey sampling with model-assisted estimation has gained popularity in forest inventory 15 

recently. Another option for utilizing the auxiliary information is to use post-stratification, which 16 

is a special case of model-assisted estimation with class variables as explanatory variables. In 17 

this study, we compared the efficiency of post-stratification with increasing number of strata  to 18 

model-assisted estimation. We carried out a study based on a simulated population. We 19 

considered four different types of post-stratifications, namely (i) stratification based on 20 

predictions of a linear model, (ii) stratification based on a regression tree model, (iii) 21 

stratification based on the first principal component of the explanatory variables, and (iv) 22 

stratification based on the regression tree model with the first principal component as the only 23 

explanatory variable. Furthermore, we examined both the traditional post-stratification mean and 24 

variance estimators and the difference estimator and its variance estimator for post-stratification. 25 

Within the recommended range of number of strata, the model-assisted approach was more 26 

efficient than post-stratification. With a large number of strata, post-stratification produced 27 

smaller standard error of estimates, but problems such as empty strata were encountered with 28 

small sample sizes. Using the first principal component directly for stratification or as an 29 

explanatory variable was the most efficient approach. 30 

 31 

Keywords: copula, difference estimator, linear model, regression tree, principal component 32 

33 
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1. Introduction 34 

 35 

Utilizing remotely sensed data as auxiliary information in forest inventory can markedly improve 36 

the accuracy and precision of the estimates. Although the model-assisted (MA) framework for 37 

estimation (Särndal et al. 1992) has gained popularity also in forest inventory in recent years 38 

(e.g. Gregoire et al. 2011), in practice post-stratification (PS), stratification carried out after 39 

sampling, may seem more attractive. One reason for this is that the number of variables of 40 

interest in forest inventory is usually very high. In both MA estimation and PS, it is possible 41 

either to model each variable of interest separately or to utilize one generic model for many 42 

variables of interest. The latter approach may seem more attractive, as modelling all the variables 43 

may be impractical (Opsomer et al. 2007). In PS, using different stratum borders for different 44 

variables may cause practical problems if results need to be calculated for different domains 45 

(McRoberts et al. 2014). 46 

 47 

PS cannot be used for allocating the sample optimally, but in the case of known stratum sizes and 48 

approximately proportional allocation, PS is almost as efficient as pre-stratification (Särndal et 49 

al. 1992, p. 265). If the true stratum sizes are unknown, an additional (unknown) error 50 

component related to the error in the stratum size will be introduced to the estimates (Cochran 51 

1977, p. 118).  52 

 53 

For a single variable y the best characteristics for PS would be the distribution of y itself, or 54 

another variable x highly correlated with it (Cochran 1977 p. 127). When remotely sensed data 55 

are used as auxiliary information, the number of potential explanatory variables is usually very 56 

Page 3 of 41
C

an
. J

. F
or

. R
es

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

U
ni

ve
rs

ite
t f

or
 M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

1/
24

/1
7

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



4 
 

 

high. There are two options available: 1) the auxiliary information is condensed to one variable 57 

that is used to define the strata; or 2) the explanatory variables are directly used to classify the 58 

data to strata using some classification algorithm such as a regression tree (RT). If the first 59 

option is used, PS can be based, for instance, on the predictions ŷ from a (linear or non-linear) 60 

model using some explanatory variables x (e.g. Magnussen et al. 2015) or the first principal 61 

component (PC1) of those variables. It should be noted that in the former approach a model is 62 

constructed, but it is only used as a basis for stratification. An attractive feature in using PC1 63 

instead is that no models are needed. 64 

 65 

PS is in fact a special case of MA estimation, where the stratum identifier is used as a sole 66 

explanatory variable (Breidt and Opsomer 2000). If the strata are obtained using predictions from 67 

a model, it means that the original model is simplified to a step model. Instead of using the 68 

original predictions ˆ
iy  for MA estimation, the within-stratum mean ˆ

hiy  is used as a prediction 69 

for all units i within stratum h. Therefore, such PS estimation can be expected to have a higher 70 

variance than MA estimation using the predictions from the original model. It also means that it 71 

is possible to use the estimators designed for MA or regression estimation in connection with PS 72 

(see e.g. Magnussen et al. 2015).  73 

 74 

Several ways for dividing the range of predictions, 1
ˆ ˆ... Ny y , into fixed intervals have been 75 

proposed (Magnussen et al. 2015). The division may, for example, be based on (1) the quantiles 76 

of the predicted values ˆ
iy  producing equal strata weights (e.g. Breidt and Opsomer 2008), (2) the 77 

quantiles of the square roots of ˆ
iy  (Baillargeon and Rivest 2011), (3) the square roots of the 78 
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relative frequency of ˆ
iy  (Dalenius and Hodges 1959), (4) the range of  ˆ

iy  (McRoberts et al. 79 

2012) or many other criteria (Magnussen et al. 2015). Each of these approaches can obviously be 80 

used to divide also the range of PC1 to strata. In our study, we employ the first, “equal strata 81 

weights” option only.  82 

 83 

The prediction error in ˆ
iy is usually considered problematic, as PS requires that the sampling units 84 

are assigned to the strata without error (Tipton et al. 2013, Dahlke et al. 2013). With PC1 we do 85 

not face this problem. It should be noted that when an external model is used, the ˆ:sy  are sums of 86 

known explanatory variables weighted by known coefficients and could also be interpreted as 87 

known. 88 

 89 

Using classification algorithms to define the stratification has been seen as problematic, because 90 

the number of resulting strata may be large and their sizes small. There may, for instance, be 91 

post-strata without any sample units, or without any variation (Czaplewski 2010). While the 92 

number of strata in many classification algorithms can be restricted, restrictions may result in a 93 

less efficient classification. The RT approach differs from many other classification algorithms 94 

in the sense that it produces at the same time a model that can be directly used in MA estimation 95 

in the same way as a linear model (LM), and a classification which can be used as stratification 96 

in PS. Therefore, PS and MA estimators can be used equally well.  97 

 98 

If the model used in PS is constructed from the sample (i.e. internal), it is called endogenous 99 

post-stratification (EPS, Breidt and Opsomer 2008). Such approach has been very popular in 100 

forestry in recent years (McRoberts et. al 2012, Dahlke et al. 2013, Tipton et al. 2013). However, 101 
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Magnussen et al. (2015) showed in a simulation study that such an approach may lead to serious 102 

underestimation of variances. Later, Kangas et al. (2016) showed also in a simulation study that 103 

using an internal model in MA estimation may lead to serious underestimation of variances. In 104 

both cases, the underestimation was more pronounced the more the model was optimized to the 105 

sample. Therefore, in this study, we included only external models.  106 

 107 

The aims of the current study were to compare accuracy and precision of PS and MA estimation. 108 

We considered different types of post-stratifications, either based on linear model predictions 109 

(LM), first principal component (PC1) or a classification algorithm (RT). We examined two 110 

different sets of estimators for the PS approach, namely the traditional PS mean and variance 111 

estimators and the difference estimator and its variance estimator (Särndal et al. 1992 chapter 112 

6.3).  113 

 114 

A C Vine copula population similar to that used in Kangas et al. (2016) was utilized for the 115 

analyses. From this population, simple random samples were drawn, which were then post-116 

stratified. Estimated means and variances were compared to simulated means and variances.  117 

 118 

2. Material  119 

 120 

The study area (altogether 853 ha) is located in a boreal forest region in Våler Municipality in 121 

southeastern Norway. The forest is actively managed, with Norway spruce (Picea abies (L.) 122 

Karst.) and Scots pine (Pinus sylvestris L.) as the dominant species. The study area was 123 

delineated into forest stands belonging to four classes related to stand age and species 124 
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dominance: (1) recently regenerated forest, (2) young forest, (3) mature, spruce dominated forest, 125 

and (4) mature, pine dominated forest. A sample survey was conducted with sampling intensities 126 

approximately equal for the first three strata, but for the fourth stratum the intensity was only 127 

approximately one third of that in the other three strata (Næsset et al., 2013). 128 

 129 

Measurements were obtained for 178 systematically distributed, circular, 200-m2 (radius 7.98 m) 130 

forest inventory plots measured in 1999 and 2010. Five plots were discarded from the analysis 131 

due to missing values in 1999 and three in 2010. The 1999 data were used for fitting the external 132 

models and the 2010 data for copula construction. 133 

 134 

Tree-level aboveground biomass was predicted for all trees within the plots using allometric 135 

models (Marklund 1988) based on field observations of species and measurements of diameter at 136 

breast height (1.3 m) and height. Plot-level aboveground biomass (AGB) was then estimated as 137 

the sum of individual tree biomass predictions, scaled to per hectare values (Mg/ha) and denoted 138 

ground reference AGB. The uncertainty in the allometric model predictions was assumed 139 

negligible (McRoberts and Westfall 2016).  140 

 141 

Wall-to-wall airborne laser scanning (ALS) data were acquired for the study area in 1999 and 142 

2010. Pulse density was approximately 1.2 pulses per m2 in 1999 and 7.3 pulses per m2 in 2010. 143 

Empirical distributions of first echo heights were constructed for the 200-m2 circular plots. A 144 

threshold of 1.3 m above the ground surface was used to remove the effects of echoes from 145 

ground vegetation whose biomass is not included in tree-level biomass. For each plot, heights 146 

corresponding to the 0th, 10th, 20th, …, 90th percentiles (p0, p10, p20,…, p90) of the ALS height 147 

Page 7 of 41
C

an
. J

. F
or

. R
es

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

U
ni

ve
rs

ite
t f

or
 M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

1/
24

/1
7

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



8 
 

 

distributions were calculated. Furthermore, several measures of canopy density were derived. 148 

The range between 1.3 m above ground and the 95 percentile was divided into 10 vertical 149 

fractions of equal height. Canopy densities were then calculated as the proportions of echoes 150 

with heights above fraction 0 (>1.3 m), 1, …, 9 to total number of echoes (d0, d1,…,d9). 151 

Maximum value (hmax), mean value (hmean), and coefficient of variation (hcv) were also 152 

computed. Thus, 23 ALS metrics were available as explanatory variables. Næsset et al. (2013) 153 

provide more details for the study area and the dataset. 154 

 155 

3. Methods 156 

 157 

First, the copula population on which the simulation study is based is explained (Section 3.1). 158 

Second, the post-stratified and difference estimators to be compared are presented (Section 3.2) 159 

and different stratifications to be considered are introduced (Section 3.3). Finally, Section 3.4 160 

explains the setup for the simulation study. 161 

 162 

3.1. The copula population 163 

 164 

We used the same approach as Kangas et al. (2016) for the copula construction. That is, we 165 

calculated the empirical marginal distributions for the variables AGB, p0, p20, p40, p60, p80, 166 

hmax, d2, d4, d6 and d8 from the 2010 data using the logspline package in R (Kooperberg 2015) 167 

and estimated the C vine copula using the VineCopula package in R (Schepsmeier et al. 2015). In 168 

the current study, we restricted the variables p0, p20, p40, p60, p80, hmax to be larger than 1.3 m 169 

and the variables d2, d4, d6 and d8 to obtain values in the interval from 0 to 1, mimicking the 170 
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range of these variables in the data. In the copula construction, we ignored the strata of the Våler 171 

data (see also Kangas et al. 2016). 172 

 173 

The copula model was used to simulate 22000 (reflecting the population size in the original 174 

Våler data) uniformly distributed observations with the modelled (pairwise) dependencies. These 175 

22000 observations can be interpreted as 200 m2 grid cells mimicking the original laser scanning 176 

(Næsset et al. 2013). The copula population was then obtained by calculating the quantiles of the 177 

empirical distributions at those simulated uniformly distributed values. The properties of the 178 

resulting population are presented in Table 1 and the correlation structure in Table 2.  179 

 180 

We assumed that simple random sampling (SRS) was used in the sample selection. Thus, there 181 

was no need to simulate geographical locations for the population units.  182 

 183 

3.2. The estimators 184 

3.2.1 Post-stratified estimators 185 

Let us assume that we have H strata, Nh is the size of stratum h (h = 1,…, H) and 
1

H

hh
N N

=
=∑ is 186 

the size of the population. Then the PS estimator for population mean is  187 

 188 

ˆˆ
H

h hPS
h=1

 = W yy ∑          (1) 189 

 190 

where Wh= Nh/N is the proportion of  stratum h and ˆ
hy  is the estimated stratum mean. In PS, the 191 

sample size in each stratum h, nh, is a random variable, as opposed to pre-stratification in which 192 
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the sample size is fixed a priori (see, however, discussion in Gregoire & Valentine  2008 p. 155). 193 

Due to the variation of nh, the approximate PS variance estimator has an additional element when 194 

compared to the pre-stratified estimator (Cochran 1977 p. 135, Särndal et al. 1992 p. 267):  195 

 196 

2 2

2
1

1 1ˆvar( ) (1 )
HH

PS h h h h

h h=1

f f
y  = W s W s

n n=

− −
+ −∑ ∑     (2) 197 

 198 

where 2
hs is the within-stratum variance. The first term in the estimator is the variance of the 199 

stratified estimate under proportional allocation, f=n/N, and the second term represents the 200 

increase in variance due to the deviation from proportional allocation.  201 

 202 

3.2.2 Difference estimators 203 

The difference estimator for the mean AGB is  204 

1 1

1ˆ ˆ
N n

i
d i

i i i

e
y y

A π= =

 
= + 

 
∑ ∑ ,       (3) 205 

where ˆ
iy is the model prediction of AGB in cell i, A is the total area (A = N · a, where a is cell 206 

area), ˆ
i i ie y y= − and iπ  is the inclusion probability for cell i. Its variance estimator (the 207 

simplified estimator assuming g-weights to be 1 for all i, Särndal et al 1992 p. 362) is 208 

 209 

 
2

1 1

1ˆvar( )
n n

ij i j ji
d

i j ij i j

ee
y

A

π π π

π π π= =

−
= ∑∑       (4) 210 

 211 
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where ij
π is the joint inclusion probability of cells i and j. Under SRS without replacement, when 212 

i=j, this joint probability is iπ , otherwise it is ( 1) / ( 1)n n N N− − (Särndal et al. 1992 p. 31-32). If 213 

the model is linear, it is possible to account for the estimation errors of the model coefficients by 214 

using the g-weighted variance estimator (Särndal et al. 1992 p. 232, Mandallaz 2008 p. 45). 215 

Moreover, the g-weighted sample mean of each explanatory variable is equal to the respective 216 

population mean, which is expected to improve the efficiency of the estimator (Särndal et al. p. 217 

234 remark 6.5.1). However, the g-weights have not been defined for other types of models 218 

(Massey and Mandallaz 2015), so we ignored them in the current study. 219 

 220 

3.2.3 Estimators for simulations 221 

For the simulated copula population, the true mean ( )Y is known and biases as well as empirical 222 

standard errors of the mean estimators (Eqs. 1 and 3) can be estimated for samples drawn from 223 

the population. The bias of a mean estimator was estimated as the difference between the mean 224 

of the sample means and the true mean. The mean of the sample means was 225 

1

1 ˆ
s

j

j

y
s

µ
=

= ∑ ,                                                                                                    (5) 226 

where ˆ
jy is either the PS (Eq. 1) or the difference estimator (Eq. 3) calculated for the jth sample 227 

and s is the number of simulated samples.  228 

  229 

The estimates obtained by the analytical variance estimators (Eqs. 2 and 4 ), were compared to 230 

the empirical standard errors of the mean estimators, called simulated standard errors in what 231 

follows, which were calculated as the standard deviation between the s sample means as  232 
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2

1

ˆ( )ˆ( )
1

s
i

j

y
y

s

µ
σ

=

−
=

−∑ .        (6) 233 

 234 

We further calculated the relative bias (bias%) for the mean estimators with respect to the true 235 

mean (i.e. 100( ) /Y Yµ − ) and assessed its significance by its Monte Carlo error (MCE),  236 

ˆ100 ( )
%

y
MCE bias

Y s

σ
=

 .                 (7) 237 

 238 

3.3. Studied stratifications and estimators 239 

We considered four different types of post-stratifications (Table 4), (i) stratification based on 240 

predictions of a LM, (ii) stratification based on a RT model with the original explanatory 241 

variables, (iii) stratification based on the PC1 of the explanatory variables and (iv) stratification 242 

based on the RT model with the PC1 as the sole explanatory variable. For both LM and RT, we 243 

applied both the PS and difference estimators to the stratified data.  244 

 245 

To employ the difference estimator (Eq. 3) in connection with post-strata, stratum identifier 246 

models (SMs) were used for the predictions and errors of this fitted model. In a SM, the only 247 

explanatory variables were the stratum identifiers specified by discretized predictions of the 248 

original LM. The PS and difference estimators based on stratified data were compared to the 249 

difference estimator based on the LM directly (the MA approach, Eqs. 3-4) and to the simulated 250 

estimators (Eqs. 5-6). The models considered were external models that were estimated based on 251 

the 1999 data.   252 

 253 
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3.3.1 The linear model and strata identifier models  254 

Based on the results of our previous study (Kangas et al. 2016), we chose a LM for the MA 255 

estimation and as a basis for stratification (case (i, Table 4)). The external model chosen based 256 

on the 1999 data included the explanatory variables p40, p60, p80 and d6. The other variables 257 

were discarded as they did not statistically improve the model. The residual standard error of the 258 

model was 29.91 Mg/ha, R2 was 0.8022, and adjusted R2 was 0.7975. The predicted AGB and 259 

the residuals of the predictions in the 1999 data are presented in Figure 1.  260 

 261 

We predicted ŷ by the LM for the whole copula population and used the predictions to define 262 

strata boundaries for 2, 4, 6, …, 14 and 16 equally sized classes by selecting the respective 263 

quantiles from the empirical distribution of ŷ (the PS method “Equal Strata Weights” of 264 

Magnussen et al. 2015).  265 

 266 

The respective quantiles were also used to define the strata for the external Våler 1999 data. 267 

Then, a SM where the stratum identifier was the sole explanatory class variable was fitted and 268 

used for prediction (Figure 2 for a case with 16 strata with R2 0.83 and standard error 28.59 269 

Mg/ha). As the quantiles of the distribution of ŷ in the external data and copula population did 270 

not necessarily coincide, the stratum borders (means) underlying in SM possibly also differed 271 

slightly from the stratum borders (means) used in the PS estimator. Another option would have 272 

been to fix the stratum borders also in the copula population to those defined by the ˆ:sy for the 273 

external data. That approach would have produced strata with unequal weights in the copula 274 

population, however.  275 

 276 
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3.3.2 The regression tree model 277 

An RT model classifies data to leaves of the tree, which can be interpreted as strata (case ii, 278 

Table 4). The number of leaves, and thus strata, can be controlled by restricting the depth of the 279 

tree: the maximum number of strata is the depth to the power of two. Thus, the leaves are used as 280 

stratum identifiers. In the RT approach, the stratum borders used for the external 1999 data and 281 

copula population coincide exactly, as they are defined using fixed values of the explanatory 282 

variables (Figure 3).  283 

 284 

The mean of each leaf is a model prediction in the difference estimator. When using an external 285 

model in the difference estimator, the stratum means in the 1999 data were thus used to predict 286 

AGB in the respective strata in the copula population. In the PS estimators (Eqs. 1 and 2), the 287 

observed sample mean and variance within the stratum (or leaf) were used. If an internal RT 288 

model were used, the mean (variance) within each leaf would also coincide with the observed 289 

sample mean (variance).  290 

 291 

We used the rpart package in R (Breiman et al. 1984) for estimating RT models. We fitted five 292 

different regression trees to the 1999 data, with depth varying from 1 to 5, i.e. the maximum 293 

number of strata varying from 2 to 25. With 1, the number of splits was 1 (corresponding to 2 294 

strata) and relative error 0.522. With increasing maximum depth the number of splits increased 295 

to 8 (9 strata) and the relative error was reduced to 0.172 (Figure 3).  296 

 297 

3.3.3 Principal component 298 

We constructed PC1 for the copula population and defined the strata boundaries for 2, 4, 6, …,16 299 

equally sized classes by selecting the respective quantiles from the empirical distribution of PC1 300 
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(case iii, Table 4). The PC1 explained about 66% of the variation. Note that PCs can be 301 

calculated using the population values. Thus, for the PS estimator (Eqs. 1-2), no model is needed. 302 

To apply the difference estimator (Eqs. 3-4) to the stratified data, a SM with the stratum 303 

identifier as the explanatory variable was fitted to the external 1999 data. This model was based 304 

on PC1 constructed for the 1999 data. 305 

 306 

We further employed the RT approach using PC1 as the sole explanatory variable (case iv, Table 307 

4). With a maximum depth of 5, this model fitted to the 1999 data used 7 splits and the relative 308 

error was 0.174, i.e. this model was nearly as accurate as the RT with the original explanatory 309 

variables.  310 

 311 

We further fitted the external LM where PC1 was the only explanatory variable (Figure 4) and 312 

considered the difference estimator for this LM (the MA approach).  313 

 314 

3.4 The simulation study setup 315 

We generated s = 5000 samples of size n = 100, 200, 500, 1000 from the copula population 316 

(N=22000). For each of these samples we employed the mean and variance estimators specified 317 

above, and calculated the average of the obtained estimates over all the samples.  318 

 319 

We calculated the proportion of samples with at least one empty post-stratum (i.e. cases where 320 

stratum mean cannot be estimated with the PS estimator (Eq. 1) without collapsing two strata) 321 

and the proportion of samples with only one observation (i.e. cases where the variance cannot be 322 

estimated with the PS estimator (Eq. 2)). In the simulation study, we did not collapse the strata, 323 
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however, but used zero variance and mean estimates for such strata. This was done to illustrate 324 

the difference between the PS estimator (collapsing is needed) and difference estimator 325 

(collapsing is not needed). Reducing the resulting bias using e.g. sample mean is possible, but 326 

beyond the scope of this paper.  327 

  328 

4. Results 329 

4.1. Comparison of post-stratification and model-assisted estimation 330 

Figure 5 shows the estimated standard errors of the PS and difference estimators for the LM and 331 

RT models (cases i and ii, Table 4). Both estimators with strata based on the LM predictions led 332 

to smaller estimated standard errors than the MA approach when the number of strata H ≥ 8 and 333 

n ≥ 200. Thus, the LM was less accurate than the SMs with a large number of strata. This is 334 

likely due to slight nonlinearity between AGB and explanatory variables. In this situation SM 335 

models were more flexible than LM, thus providing better predictions for the dependent variable.  336 

 337 

The estimated standard errors of the estimators based on the RT model were 338 

comprehensivelylarger than those based on the LM predictions. A probable reason for this is that 339 

with each split, RT used only one independent variable. Therefore, with two strata the 340 

stratification was based on one variable and with 4 strata at most three variables. In the LM 341 

predictions, all the four explanatory variables were included also with two strata.  342 

 343 

In all cases, the estimated standard errors were very close to the simulated ones, except for the 344 

PS estimator for n = 100 (Figure 5).  This was at least partly due to strata with less than two 345 

observations in the simulation experiment, which caused underestimation of variance with large 346 
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number of strata. There were 0, …,0,12,96,387,987 simulations (out of 5000) for the 2-16 strata 347 

and 0,0,69,583,584 simulations for the five RT models, respectively, that led to strata with less 348 

than two observations. There were also a few samples that led to such strata for n = 200, but the 349 

effect of these was negligible.  In the difference estimator, simulated and estimated values of 350 

standard errors were fairly similar.  351 

 352 

4.2. Results for the estimators based on the PC1 353 

Figure 6 shows the estimated standard errors of the PS and difference estimators for the PC1 and 354 

RT with PC1 as the only explanatory variable (cases iii and iv, Table 4). Figure 7 further shows 355 

the difference between the stratifications based on the original variables (cases i and ii) and the 356 

stratifications based on the PC1 (cases iii, iv). The use of PC1 led to smaller standard errors 357 

compared to the stratification based on the LM predictions and the difference increased with 358 

increasing number of strata in the case of PS estimators. PC1 was able to stratify the data more 359 

efficiently than the predicted ŷ from the external LM. Dividing the population into equally sized 360 

strata obviously did not minimize the variation of y  within the strata as well as did the division 361 

based on PC1. For instance, with 16 strata the mean within-stratum variance for the strata based 362 

on predictions was 2381, while for PC1-based strata it was 1771.  363 

 364 

 365 

Again, the empty strata affected the results for 100n = such that the mean simulated and 366 

estimated standard errors differed from each other. There were 0, …, 0,13,101,350,977 367 

simulations for the 2-16 strata and  0,876,921,962,962 simulations for the five RT models, 368 

respectively, producing a sample with zero or only one observation at least in one stratum.   369 
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 370 

4.3. Relative biases of post-stratified and difference estimators  371 

All the external models (LM, SM, RT) and both estimators (Eqs. 1 and 3) gave empirically 372 

unbiased mean estimates for the sample sizes n =200, 500, 1000 (Figure 8). For n =100, the PS 373 

estimator produced statistically significantly biased results with 16 strata, while the difference 374 

estimator did not. This was due to the strata with less than two observations. If the simulations 375 

that led to such strata were left out, the results showed no bias. 376 

 377 

Likewise, when PC1 was used for stratification, in all other cases, except for the case n =100, the 378 

estimators were unbiased (Figure 9). For n =100, the PS estimator for the 16 strata using the LM 379 

model predictions and RT stratification with H > 2 was statistically significantly biased. Also 380 

here, this was due to the empty strata.  381 

 382 

4.4. Comparison of post-stratified and difference estimators 383 

The difference estimator yielded up to 3 % larger standard errors than the PS estimator for n ≥ 384 

500 when the strata were based on the LM predictions. For the strata based on RT models and 385 

for n ≤ 200 the difference between the two estimators was smaller. The difference was due to the 386 

use of SM models where the strata borders underlying the stratum identifiers were not exactly 387 

the same as those used by the PS estimator, relying on the stratification of the copula population. 388 

Moreover, in the difference estimator, the external model was used to estimate the mean in each 389 

stratum while in the PS estimator the observed sample mean was used. The difference was 390 

smaller with RT models, as for RT, the PS and difference estimators utilized the same stratum 391 

borders ( ˆ :y s ) defined by stratification of the external data. However, the difference estimator 392 
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still used the mean estimated from the 1999 data as a prediction for each stratum, while the PS 393 

estimator relied on the observations from the current sample.    394 

 395 

5. Discussion 396 

 397 

In our simulation study, the MA approach, i.e. the difference estimator based on the original LM 398 

with continuous explanatory variables, was clearly more efficient than the PS or difference 399 

estimators based on data stratified by the LM predictions or RT models when the number of 400 

strata was within the recommended range (H < 6). However, in this study, the estimators based 401 

on the stratified data with H ≥ 8 produced more accurate results than the MA approach. In the 402 

case where the stratifications were based on PC1, the estimators based on the stratified data 403 

produced more accurate results than the MA approach in some cases even with smaller  H. A 404 

possible explanation for this is that the relationships between the AGB and the explanatory 405 

variables were not exactly linear, leading to a nonlinear relationship between the observed and 406 

predicted AGB (see Figure 1 left). Thus, the stratum means could describe the relationship more 407 

accurately, provided the number of strata was large enough to make the model more flexible than 408 

the LM (see Figure 2). We note that the number of observations in the external data used in this 409 

study was only 173 and the relationship between the AGB and explanatory variables estimated 410 

from that data may not describe the true relationship.   411 

 412 

McRoberts et al. (2014) compared the MA approach to PS for two variables of interest, 413 

proportion of forests and mean volume, with 4 strata. McRoberts et al. (2014) stratified the data 414 

directly according to the range of the sole explanatory variable to equal size strata. The models 415 

used in their study were nonlinear. In their results, PS was more accurate for the proportion of 416 
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forests, while the MA approach was slightly more accurate for mean volume. Apparently the 417 

nonlinear model was not sufficiently flexible to adequately describe the proportion of forests. On 418 

the other hand, in the study of Magnussen et al. (2015), the regression estimator was always 419 

more accurate than the PS estimator, but they only tested 4-6 strata and stem volume was the sole 420 

variable of interest.  421 

 422 

In the simulation study by Breidt & Opsomer (2008), the regression estimator was better than the 423 

PS estimator when the true model was linear or close to linear, but the PS estimator was better 424 

when the model was seriously misspecified. Indeed, if the original model is correctly specified, 425 

the MA approach should always be more efficient than PS. Misspecifications can be expected, 426 

e.g. when one generic regression model is used for several variables of interest (Breidt and 427 

Opsomer  2008, Dahlke et al. 2013). In our case, the LM was slightly misspecified (the residuals 428 

show a quadratic pattern), while the stratum means captured this trend.  429 

 430 

It should be noted, that within the design-based framework it is not possible to select the best 431 

estimator (Godambe 1955, Mandallaz 2008 chapter 3.2), but the best estimator is case specific. 432 

Therefore, while our study gives evidence that model misspecification will introduce uncertainty 433 

in MA estimates, it does not give evidence that PS with a large number of strata would be more 434 

efficient than MA also in other cases. Using the difference estimator for post-stratified data 435 

emphasises the fact that PS is a special case of MA estimation with class variables as predictors. 436 

Using PS based on LM predictions means that a SM is used in MA rather than the original LM, 437 

i.e. while MA estimation is in fact used, the best available model (i.e. the LM) is not. Therefore, 438 

we find it more recommendable to always use MA rather than using the estimated LM just for 439 
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defining the strata. It remains to be studied, however, if the PS approach is more practical than 440 

MA with a large number of variables of interest, i.e. if the same stratification can be used for all 441 

of them. 442 

 443 

In the current study, the stratification based on PC1 was more efficient than the stratification 444 

based on predictions of a LM with the four most important explanatory variables. PC1 is a linear 445 

combination of all explanatory variables and can also be interpreted as a LM, even though it has 446 

not been optimized for predicting y. Instead, it is optimized to capture as much of the variation 447 

among the explanatory variables as possible. In our study, the stratification based on PC1 448 

contained more information on the variation of AGB within the strata than that based on the LM.  449 

 450 

The good results obtained when using PC1 as the basis for stratification are important for several 451 

reasons. PC1 is based on a linear combination of measured values, and therefore there are no 452 

residual errors that would affect the results as when the stratification is based on a model. The 453 

observations can correctly be assigned to the strata and correct strata sizes can be calculated. It 454 

also removes the need to explicitly model the dependency between auxiliary remotely sensed 455 

variables and variables of interest. Consequently, no external data are required in PS based on 456 

PC1.  457 

 458 

In this study, the PS variance estimator (Eq. 2) typically gave smaller estimates than the 459 

difference estimator (Eq. 4) based on the SM. This can be explained by the fact that the PS 460 

estimator used observed sample values, whereas the difference estimator based on external LM 461 

or SM models relied on predictions from the external model. The difference was especially 462 
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evident with the PC1 approach. Obviously, values at arbitrarily selected quantiles of the external 463 

data may be poor predictors of the same quantiles in a differently distributed population. In 464 

addition, while the stratification used in the SM model and the stratification of the copula 465 

population were based on predictions of the same model, the quantiles that defined the strata 466 

borders were not exactly the same in the external 1999 data and the copula population. Thus, for 467 

SM and PS to give equal results, internal models or fixed stratum borders (in terms of ˆ:sy ) are 468 

needed. Using the borders from the external data obviously reduced the efficiency of the 469 

difference estimator. 470 

 471 

One argument for using the difference estimator instead of the classical PS estimator in the PS 472 

approach is that the difference estimator can be used also if there are empty strata (provided an 473 

external model is used for which there is information for those strata). It means that the 474 

prediction is used for that stratum, but no corrections from observations are available (second 475 

part in Eq. 3). Thus, this approach is not as prone to problems caused by empty strata, and the 476 

external mean may be a better estimator for the empty strata than e.g. the sample mean. From the 477 

point of view of traditional PS, this approach would mean using model-based or synthetic 478 

estimator for the empty strata. On the other hand, from the MA point of view, predictions for the 479 

empty strata are just ordinary model predictions. Especially the RT approach can equally well be 480 

seen from both perspectives, it is both a model and a stratification at the same time. In the future, 481 

however, it may be wise to test also other versions of the difference estimator (e.g. Baffetta et al. 482 

2009, Wu & Sitter 2001). 483 

 484 
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The usefulness of the external prediction can be seen also from Figures 8 and 9, which show 485 

larger biases for the PS estimator than for the difference estimator. In real life cases, empty strata 486 

would be merged with neighbouring strata. This may cause problems in calculating results over 487 

more than one region, if the merging process differs in neighbouring regions (McRoberts et al. 488 

2014). However, combinations of small sample sizes (100 200n< < ) and large number of strata 489 

( 6H > ) would most likely not be used for stratification in real life applications. We tested the 490 

methods also for N = 200000, with n = 1000, 2000, and 5000, and in these simulations no empty 491 

or one-observation strata were observed. Otherwise, the results were similar.  492 

 493 

With a small number of strata, the PS based on the predictions of the LM was more efficient than 494 

the PS based on the RT, as in the latter case the classification was based only on a small number 495 

of the potential explanatory variables. On the other hand, when the stratification was based on 496 

PC1 rather than the original explanatory variables, the RT appeared to be an attractive 497 

alternative. Already with six strata, the RT based on PC1 produced as accurate results as the 498 

stratification based on PC1 with ten strata. However, external data are needed for the RT 499 

stratification, but not for the PS approach based on PC1. 500 

 501 

6. Conclusion 502 

 503 

Basing stratification on PC1 calculated from the actual population seems an attractive approach 504 

as then no external data or models are needed. Using PC1 as an explanatory variable in a RT also 505 

led to efficient stratifications, but estimating a RT still requires external data.  506 

 507 
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Using the difference estimator in calculating the variance instead of the traditional formulas in 508 

PS was not useful in our study. This was because the stratum indicators had different information 509 

content in the external data and the population. In the case of more natural class variables (like 510 

site types etc.), the difference estimator should work better, and reduce the problems with empty 511 

strata. However, the traditional PS estimator has the advantage that it demands no external data, 512 

whilst the difference estimator relies on a SM estimated from external data. All in all, it can be 513 

recommended to use MA estimation rather than PS based on model predictions, as the MA 514 

approach is both efficient and practical, even though the PS produced more accurate results with 515 

a large number of strata in our experiments. 516 

  517 
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Table 1. The properties of variables in the copula population 587 

 

AGB p0 p20 p40 p60 p80 hmax d2 d4 d6 d8 

Min 0.0002 1.3 1.3 1.3 1.3 1.3 1.31 0.000 0.000 0.000 0.000 

1st Q 74.9 1.332 6.444 8.772 10.56 11.97 16.58 0.607 0.507 0.352 0.170 

Median 119.3151.508 8.29 11.467 12.94 14.99 19.57 0.765 0.671 0.534 0.253 

Mean 128.6071.863 8.699 11.126 12.84 14.68 18.95 0.670 0.604 0.484 0.250 

3rd Q 172.1 2.122 10.575 13.792 15.38 17.45 22.46 0.855 0.796 0.671 0.328 

Max 710.8598.885 36.854 28.844 37.45 38.99 42.74 0.999 1.000 0.999 0.963 

 588 

    589 

  590 
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Table 2. The lower triangular of the correlation matrix of the variables in the copula population 591 

 AGB p0 p20 p40 p60 p80 hmax d2 d4 d6 d8 

AGB 1.00           

p0 0.38 1.00          

p20 0.78 0.44 1.00         

p40 0.77 0.34 0.91 1.00        

p60 0.77 0.31 0.86 0.97 1.00       

p80 0.69 0.26 0.76 0.86 0.90 1.00      

hmax 0.59 0.16 0.62 0.79 0.85 0.83 1.00     

d2 0.65 0.18 0.53 0.58 0.50 0.34 0.42 1.00    

d4 0.67 0.22 0.61 0.64 0.55 0.38 0.43 0.96 1.00   

d6 0.71 0.27 0.71 0.71 0.61 0.44 0.42 0.88 0.95 1.00 
 

d8 0.73 0.29 0.75 0.72 0.63 0.48 0.39 0.74 0.82 0.91 1.00 

 592 

  593 
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Table 3. The coefficients of the linear model and their standard errors and t-values for the 594 

external model estimated from Våler 1999 data. 595 

Variable     Estimate    Std.Error     t-value      Pr(>|t|)

Intercept-76.826 8.660 -8.871 1.04e-15 

p40 6.913 3.190 2.167 0.0316 

p60 -11.941 4.751 -2.513 0.0129 

p80 13.733 2.852 4.815 3.27e-06 

d6 172.045 19.515 8.816 1.45e-15 

 596 

  597 
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Table 4. Cases (i)-(iv): the different combinations of models, explanatory variables and 598 

estimators tested for stratification.  599 

Case i  ii  iii iv  

Model LM  RT  no 

model 

RT  

Explanatory 

variables 

p40, p60, 

p80 and  

d6 

Stratum 

identifier 

p40, d2,  

p20,  

hmax  

Stratum 

identifier 

PC1 PC1 PC1 

Estimators PS  MA PS MA PS PS MA 

Mean  Eq. 1 Eq. 3 Eq. 1 Eq. 3 Eq. 1 Eq. 1 Eq. 3 
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  602 

 603 

Figure 1. Scatterplot of predicted versus ground reference aboveground biomass and residual 604 

plot.  605 

  606 
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 607 

Figure 2. Step function of predicted aboveground biomass using stratum identifier (16 strata) as 608 

the sole predictor.  609 

  610 
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 611 

Figure 3. Regression tree with maximum depth set at five.  612 

  613 
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 614 

Figure 4. Scatterplot of predicted versus ground reference aboveground biomass and residual 615 

plot based on PC1 as sole explanatory variable. 616 

 617 

  618 
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 619 

Figure 5. Simulated and estimated standard errors estimated by the post-stratified (eq 2.) and 620 

difference estimators (eq. 4). The results for the strata based on the linear model (LM) 621 

predictions are presented in the left column, those based on RT models in the middle, and the 622 

estimated standard error of the MA approach based on the LM model in the right column. The 623 

horizontal dashed lines give the simulated standard errors of the MA approach. The results were 624 

calculated from s = 5000 samples of size n = 100, 200, 500, 1000. 625 

 626 
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 627 

Figure 6.  Simulated and estimated standard errors estimated by the post-stratified (eq 2.) and 628 

difference estimators (eq. 4). The results for the strata based on the PC1 directly are presented in 629 

the left column, those based on RT models (based on the PC1) in the middle, and the estimated 630 

standard error of the MA approach based on the LM model (with PC1 as explanatory variable) in 631 

the right column. The horizontal lines give the simulated standard errors of the MA approach.  632 

The results were calculated from 5000s = samples of size 100,200,500,1000n = . 633 

  634 

Page 38 of 41
C

an
. J

. F
or

. R
es

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

U
ni

ve
rs

ite
t f

or
 M

ilj
oe

 &
 B

io
vi

te
ns

ka
p 

on
 0

1/
24

/1
7

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



39 
 

 

 635 

Figure 7. Estimated standard errors estimated by the post-stratified (eq 2.) and difference 636 

estimators (eq. 4) for models/strata based on the original explanatory variables (“orig”) and for 637 

those based on PC1 (“PC1”). The results for the strata based on the model predictions or PC1 are 638 

presented in the left column, those based on RT models in the middle, and the estimated standard 639 

error of the MA approach based on the LM model in the right column. The results were 640 

calculated from s = 5000 samples of size n = 200, 500, 1000.  641 

  642 
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  643 

Figure 8. Relative biases +/- two times their MCE for the post-stratified (Eq. 1) and difference 644 

(Eq. 3) estimators for the population mean. The strata based on the linear model (LM) 645 

predictions are presented in the left column, those based on RT models in the middle, and the 646 

result of the MA approach based on the LM model in the right column. The results were 647 

calculated from 5000s = samples of size 100,200,500,1000n = . The true mean in the copula 648 

population was 128.41.  649 
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  650 

Figure 9. Relative biases +/- two times their MCE for the post-stratified (Eq. 1) and difference 651 

(Eq. 3) estimators for the population mean. The strata defined based on the PC1 is presented in 652 

the left column, strata defined by the RT models in the middle, and the difference estimator 653 

based on the linear model (LM) with the PC1 in the right column. The results were calculated 654 

from s = 5000 samples of size n = 100, 200, 500, 1000. 655 
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