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Abstract 1 

The United Nations Collaborative Program on Reduced Emissions from Deforestation and Forest 2 

Degradation in Developing Countries (UN REDD) was launched with the aim of contributing to 3 

the development of capacity for reducing emissions from loss of forest carbon in developing 4 

countries. It is understood that REDD mechanisms must be supported by forest assessment 5 

programs that can monitor the carbon stocks by carbon pools and human activities. Reporting at a 6 

national level will be required but many countries are likely to benefit from more local monitoring 7 

programs within the countries as well, gauging the effects of national policies and local financial 8 

mechanisms aimed at reaching goals for emission control for the nation as a whole. Field-based 9 

forest sample surveys are typically used as support for national reporting purposes. However, 10 

monitoring within the countries will require huge investments in field surveys to provide reliable 11 

change estimates with high spatial and temporal resolution. Airborne scanning LiDAR has 12 

emerged as a promising tool to provide auxiliary data for sample surveys aiming at estimation of 13 

above-ground tree biomass. The aim of this study was to demonstrate how “wall-to-wall” LiDAR 14 

data can be used for change estimation. Estimators for areal changes of categories representing 15 

human activities such as “deforestation”, “degradation” and “untouched” were presented. 16 

Corresponding estimators for variance were also provided. Furthermore, it was shown how net 17 

change in biomass for the defined activity categories and for the entire area of interest can be 18 

estimated from a field sample survey with and without support of LiDAR remote sensing data and 19 

how the uncertainty can be quantified by corresponding variance estimates. In a case study in a 20 

small boreal forest area in southeastern Norway (852.6 ha) a probability sample of 176 field 21 

sample plots distributed according to a stratified systematic design was measured twice over an 11 22 

year period. Corresponding multi-temporal scanning LiDAR data were also available. A 23 

multinomial logistic regression model was used to predict change category for every LiDAR grid 24 

cell in the area, and areal changes were estimated from the pure field sample and with the support 25 

of the LiDAR data applying model-assisted estimators. The standard errors of the areal change 26 

estimates were reduced by 43-75% by adding LiDAR data to the estimation. The change categories 27 

were used as post-strata in a subsequent estimation of net change in biomass. The standard errors 28 

of the biomass change estimates for the respective change categories were reduced by 18-84% 29 

compared to the pure field survey when using LiDAR data as auxiliary information in a model-30 

assisted estimation procedure, which translates to a need for 1.5-38.7 times as many field plots 31 

when relying only on the field data. For the entire area of interest, the standard error of the overall 32 

net change in biomass was reduced by 57% compared to the uncertainty reported from the pure 33 

field survey.  34 
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1. Introduction 35 

Reliable estimation of changes in different forest carbon pools has for several reasons become a 36 

prominent issue in forest inventory at a broad range of geographical scales.  37 

Countries ratifying the Kyoto Protocol to the United Nations Framework Convention on 38 

Climate Change are committed to report their direct human induced emissions and removals of 39 

carbon dioxide in the commitment period 2008–2012, including emissions and removals in the 40 

land use and forestry sectors (UNFCCC, 2008). Field-based nation-wide sample surveys, such as 41 

the national forest inventory programs in Europe or the Forest Inventory and Analysis (FIA) 42 

program of the U.S. Forest Service in the U.S.A. are typically used for such reporting purposes 43 

(Rypdal et al., 2005; Woodbury et al., 2007).  44 

The United Nations Collaborative Program on Reduced Emissions from Deforestation and 45 

Forest Degradation in Developing Countries (UN REDD) (http://www.un-redd.org) was launched 46 

with the aim of contributing to the development of capacity for reducing emissions from loss of 47 

forest carbon in developing countries. It is understood that REDD mechanisms must be supported 48 

by forest assessment programs that can monitor the carbon stocks. Reporting at national level will 49 

be required [see example from Guyana (Anon., 2009)] but many countries are likely to benefit 50 

from more local monitoring programs within the countries as well, gauging the effects of national 51 

policies and local financial mechanisms aimed at reaching goals for emission control for the nation 52 

as a whole. In Tanzania for example, it is recognized that the REDD initiative will provide 53 

incentives for local communities participating in forest management (Anon., 2010). Accessing 54 

carbon finances through REDD requires, among other things, measurement of carbon stock 55 

changes in forests (Anon., 2010). Some demonstrations of local monitoring and engagement of 56 

local villagers in so-called “participatory inventory” and “participatory forest carbon assessment” 57 

are currently taking place in countries like Tanzania (Mukama et al., 2012). 58 

Any future mechanism for commercial trading of forest carbon credits earned through 59 

active forest management to increase carbon sequestration will also require trustworthy systems 60 

for measurement, reporting, and verification of carbon offset activities. Such systems will most 61 

likely have to be adopted locally since they must be capable of capturing changes in carbon stocks 62 

at the geographical level at which contracts are established (e.g. individual forest estates).  63 

http://www.un-redd.org/
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Most forest inventories implemented as sample surveys at national level are designed to 64 

serve multiple purposes (Tomppo et al., 2010). They typically provide information on a wide array 65 

of variables characterizing the current timber stock and the environmental conditions in broad 66 

terms, as well as changes in such parameters over time through repeated measurements. Thus, such 67 

national surveys are often simple and robust in their designs. Systematic designs are commonly 68 

adopted and it is often preferred to avoid stratified sampling except for stratification into broader 69 

geographical regions allowing more intense sampling in certain areas. Although stratification can 70 

be efficient with respect to estimation of one or a few variables at a given point in time, the same 71 

stratification may be inefficient with respect to other variables or future observations as the 72 

structure of the forest changes over time. With a simple and unstratified design estimates for any 73 

sub-set of the population may easily be obtained for any variable and at any point in time, provided 74 

availability of samples in the sub-set in question.  75 

At local levels, however, there does not seem to be a commonly adopted practice in 76 

designing forest inventories. In developed countries, forest management inventories conducted for 77 

individual forest estates or for numerous estates within a municipality, district, or region are in 78 

many cases – like in the Nordic countries – the most reliable source of information on local forest 79 

resources and carbon stocks. Such inventories are often designed to provide estimates of current 80 

timber resources as cost-efficiently as possible and they are less focused on being simple and 81 

robust in their designs to allow flexibility for future monitoring of changes. Thus, a potential need 82 

for future assessment of the resources and estimates of changes over time is usually not reflected in 83 

the design. Whenever a sample survey is part of the overall inventory, a stratification deemed 84 

efficient for estimation of current timber resources is often employed (e.g. Næsset, 2002, 2004). 85 

Examples of stratification criteria of relevance to boreal forests in particular are tree species, forest 86 

stand age or stage of development, and site productivity (e.g. Næsset, 2002).  87 

The methodology employed in such local or district-wise inventories may be considered an 88 

option for measurement and verification of carbon offset activities or local monitoring of carbon 89 

stocks under REDD (Næsset et al., 2011). Identifying the specific management activities leading to 90 

enhanced carbon stocks will most likely be needed under a carbon offset mechanism. Changes in 91 

carbon stocks may be reported for various activities, such as deforestation and forest degradation 92 
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under REDD as well. If such estimates are to be inferred from a sample survey, areas of 93 

deforestation, forest degradation, or other relevant activities must be identified. In a REDD 94 

context, satellite remote sensing with multi-temporal acquisitions has been proposed for 95 

identifying areas subject to such human activities. Further, in order to provide separate estimates of 96 

changes in carbon stocks for areas subject to for example degradation and deforestation the sample 97 

may be divided into classes deemed relevant for reporting. Such classes may be considered as 98 

post-strata in the estimation. A previous (pre-) stratification of the area in question may complicate 99 

the estimation based on a post-stratification if the post-strata cut across the initial strata and the 100 

initial stratification has adopted unequal sampling intensities, and/or the resulting post-strata have 101 

few or no samples for one or more of the initial strata while these combinations of post-strata and 102 

pre-strata are present in the population. 103 

Various remote sensing techniques are commonly adopted for estimation of forest 104 

resources and are considered essential for REDD monitoring, although uncertainties are not always 105 

quantified and they may even be large if proper field data are not used as part of the applied 106 

estimation procedure. Nevertheless, classification and stratification of the forest and of different 107 

types of human activities are essential tasks in which remote sensing may assist. Remote sensing 108 

data treated as auxiliary to field data may also be useful for estimation of e.g. forest area or 109 

biomass. Techniques that use remotely sensed data may improve precision of the estimates 110 

significantly. Estimation with support of remote sensing data relies on extensive use of models. 111 

These models relate the remote sensing observables, like digital numbers in an image acquired by 112 

an imaging sensor, to a variable of interest measured on the ground, like forest/non-forest or 113 

biomass. Recent examples are (1) estimates of forest area for a part of Minnesota, U.S.A., provided 114 

by a sample of field plots from the FIA program supported by Landsat data through a logistic 115 

regression model for predicting proportion forest (McRoberts, 2010), (2) estimates of above-116 

ground biomass provided for a district in Norway by a local field sample survey supported by 117 

airborne LiDAR data through a nonlinear regression model predicting biomass (Næsset et al., 118 

2011), and (3) use of national forest inventory sample plots and LiDAR data to post-stratify by 119 

means of logistic regression model predictions to provide estimates of proportion forest area and 120 

growing stock volume for a region in Norway (McRoberts et al., 2012a). 121 
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Airborne LiDAR has emerged as one of the most promising remote sensing technologies 122 

for estimating above-ground tree biomass and thus carbon stored in trees. LiDAR depicts the 123 

horizontal and vertical distribution of biological material with high spatial resolution, and this 124 

information can be used for estimation of biomass. In several countries, airborne scanning LiDAR 125 

has during the last decade been used operationally for forest management inventories at a typical 126 

district level (~50-2000 km
2
) (Næsset, 2004). Although operational use of airborne LiDAR for 127 

forest resource assessment seems to be most common in boreal and temperate forests (McRoberts 128 

et al., 2010), promising results for estimating biomass of tropical forests have also been reported 129 

(Nelson, 1997; Nelson et al., 1997; Weishampel et al., 2000; Drake et al., 2002, 2003; Lefsky et 130 

al., 2002; Clark et al., 2004; Asner et al., 2010). Studies of change estimation with LiDAR are still 131 

few though, but there is increasing evidence of the potential of the technology even for change 132 

estimation. Recent studies have focused on estimation of height increment of single trees (St-Onge 133 

& Vepakomma, 2004; Yu et al., 2004, 2005, 2006) and mean height (Næsset & Gobakken, 2005; 134 

Hopkinson et al., 2008; Yu et al., 2008), or volume growth (Næsset & Gobakken, 2005; Yu et al., 135 

2008) and growth of stand basal area (Næsset & Gobakken, 2005).  136 

A particular challenge is related to modeling of change observations by which the response 137 

variable can attain positive as well as negative values because it may restrict the choice of model 138 

form. Change in biomass is one such variable. Biomass in forests can typically increase over time 139 

by for example reforestation and growth in existing forests, while deforestation, forest degradation, 140 

natural mortality, and various types of management in forest remaining forest, such as final 141 

fellings, commercial thinning, and other harvest operations will result in a negative response (loss 142 

of biomass). Bollandsås et al. (2012) addressed various approaches to modeling of positive and 143 

negative changes in biomass using LiDAR-derived metrics as explanatory variables. In estimation 144 

of changes in biomass over a landscape with support of auxiliary data from LiDAR, one may either 145 

consider a joint modeling of negative and positive responses by various techniques or one may 146 

choose a strategy by which areas subject to loss of biomass are identified and separated from those 147 

subject to increase in biomass. The various processes (gain and loss of biomass) may then be 148 

modeled separately. The latter strategy is appealing in e.g. a REDD context provided that the 149 

different areas can be identified and classified prior to estimation, since it coincides well with the 150 
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need to report on changes in carbon stocks according to activities (e.g. degradation and 151 

deforestation). LiDAR data may even assist in the required classification. Estimates of areas 152 

associated with different activities may be obtained by support of a LiDAR-based classification. 153 

When LiDAR is used for estimation of timber resources and biomass and changes in these 154 

parameters over time, field plots co-registered with the remotely sensed data must be measured in 155 

order to develop predictive models for these parameters. In forest management inventories the 156 

field sample surveys are sometimes conducted according to systematic designs with a random start 157 

(Næsset, 2007) or according to random designs and frequently also stratified on the basis of prior 158 

information about the forest (Næsset, 2004). Because of the randomization in the selection of 159 

population elements for the field sample, design-based approaches to estimation and inference may 160 

be applied and one may take advantage of the rich suite of available design-unbiased or 161 

approximately design-unbiased estimators found in the literature. In a recent study, Næsset et al. 162 

(2011) demonstrated how biomass for an area of interest (AOI) could be estimated from a stratified 163 

probability sample of ground plots supported by wall-to-wall auxiliary data from LiDAR applying 164 

a model-assisted generalized regression estimator (Särndal et al., 1992). Model-assisted estimators 165 

use predictions of a fairly large sample of population elements (or even all population elements as 166 

in the current study) obtained from auxiliary data (e.g. LiDAR) to enhance the precision but rely 167 

on observations (e.g. field sample plots) for population elements selected from a probability 168 

sample for validity (McRoberts, 2010). Other studies on estimation of forest properties taking a 169 

design-based approach with LiDAR as auxiliary data include studies where the LiDAR data 170 

themselves constitute a sample in a two-phase or two-stage design (Parker & Evans, 2004; 171 

Andersen et al., 2009; Gregoire et al., 2011; Gobakken et al., 2012; Ene et al., 2012; McRoberts et 172 

al., 2012a,b; Nelson et al., 2012; Stephens et al., 2012) as well as studies where the LiDAR data 173 

cover the entire population (Andersen & Breidenbach, 2007; Corona & Fattorini, 2008; Pesonen et 174 

al., 2010). Recent studies have also demonstrated how different areal categories within an AOI can 175 

be estimated in a model-assisted way using remote sensing data as auxiliary information 176 

(McRoberts, 2010, 2011; McRoberts et al., 2012a). 177 

In the present study, the overall objective was to demonstrate how areal changes for 178 

different categories of management activities and associated changes in biomass can be estimated 179 
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for an AOI by repeated measurements of a stratified probability sample of field plots supported by 180 

coincident and repeated measurements with airborne scanning LiDAR. Specifically we compared 181 

areal estimates and associated estimates of change in biomass using a direct estimation approach 182 

(i.e., based purely on the field sample) and a model-assisted approach with LiDAR data as 183 

auxiliary information. The model-assisted strategy took advantage of three alternative approaches 184 

to predicting change in biomass over time. Corresponding variance estimates were also provided 185 

and compared in order to demonstrate what one potentially may gain in terms of reduced 186 

uncertainties by adding LiDAR data to the field survey. This study covered changes over a time 187 

span of 11 years (1999-2010).  188 

 189 

2. Material and methods 190 

2.1. Study area 191 

This study was conducted in a boreal forest area in Våler Municipality (59°30′N, 10°55′E, 70–120 192 

m a.s.l.) located in south-eastern Norway. The total area was 852.6 ha. The dominant tree species 193 

are Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). Younger stands 194 

tend to have a larger portion of deciduous species than mature stands. Birch (Betula pubescens 195 

Ehrh.) is the dominant deciduous species. Further details about the study area can be found in 196 

Næsset (2002). 197 

 The forest in the area is actively managed for timber production according to standard 198 

silvicultural practices typically seen in boreal forests. Stands are usually harvested by clear-felling 199 

on the most productive sites while selective logging, such as shelterwood cutting, is more common 200 

on poor sites. Planting is a common regeneration method after clear-felling while selective logging 201 

often is followed by natural regeneration, especially in pine-dominated stands. Commercial 202 

thinning is also a frequent treatment. 203 

The study took advantage of an existing operational stand-based forest inventory conducted 204 

in 1996. The aim of the operational inventory was to provide data for forest planning. We collected 205 

observations for a probability sample of field plots in a sample survey carried out in 1998 and 206 

1999. Airborne scanning LiDAR data were acquired in 1999. In 2010, all sample plots were re-207 

measured and a second airborne scanning LiDAR campaign was conducted. 208 
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 209 

2.2. Initial classification of the area – as per 1999 210 

Aerial stereo photography was interpreted to delineate and classify forest stands according to the 211 

criteria age class, site productivity, and tree species. The aerial photographs (Agfa Aviphot Pan 212 

200 PE1 panchromatic black-and-white film) were acquired 13 May 1996 and stand boundaries 213 

were recorded by photo-interpretation using a Wild B8 stereo-plotter equipped with linear 214 

encoders. The photo-interpretation was used as prior information in designing the inventory. At the 215 

time of designing the sample survey (March 1998), we used the stand map from 1996 as basis for 216 

the classification and allocation of sample plots to the various classes, see details below. The map 217 

was updated in 1999 by means of the 1999 LiDAR data for all clear-fellings that had taken place 218 

between 1996 and 1999. Thus, the final map was up to date as per the time of the LiDAR 219 

acquisition in 1999. The target population of the current study did not include areas that had been 220 

recently clear-felled (stands younger than 20 yrs, see below). Since recently regenerated forests 221 

stands (forest class I, see below) were the only stands where field plots were measured in 1998 222 

while all young and mature stands were measured in 1999, any clear-felling in the period between 223 

1998 and 1999 did not affect our field measurements and target population as defined per the time 224 

of the LiDAR acquisition in 1999. The population as defined in 1999 was therefore fully consistent 225 

with the sample survey as per 1999 and the sample was a pure probability sample. The following 226 

four forest classes were defined a priori:  227 

 228 

Forest class I: Recently regenerated forest (age ≥20 yrs). 229 

Forest class II: Young forest.  230 

Forest class III: Mature forest. Spruce dominated.    231 

Forest class IV: Mature forest. Pine dominated. 232 

 233 

The areas of these four classes in the 852.6 ha study region were 65.8, 120.9, 140.4, and 195.6 ha, 234 

respectively, i.e., a total of 522.7 ha. These four classes constitute our AOI (Fig. 1). The average 235 

stand size was 1.4 ha. The remaining part of the study region not included in the defined 236 

population was mainly agricultural areas and recently clear-felled forest areas. 237 
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 238 

[FIGURE 1] 239 

 240 

2.3. Sampling design 241 

The field sample plot survey covering the four aforementioned forest classes was conducted in 242 

1998 and 1999. The total budget allowed for approximately 175 plots to be measured (the final 243 

sample contained 176 plots, see Table 1). A systematic stratified design was employed. We aimed 244 

for approximately equal numbers of plots for the four classes. However, one of the classes (forest 245 

class IV) would get too many plots by pure proportional allocation, given the anticipated variation 246 

within this class based on experience from other, but similar forests. The sampling fraction in class 247 

IV was therefore reduced to 1/3 of the other classes. At the time of planning the survey digital 248 

maps were not available, and the systematic sampling plan was designed by creating squared and 249 

rectangular grids on a paper copy of the forest class map (Fig. 1). We determined to let a common 250 

grid be applied to classes I-III and a separate grid to class IV. Thus, two grids that had a random 251 

start were used and they had a plot distance of 150×150 m in forest classes I-III and 150×450 m in 252 

class IV. The final plot numbers and the geographical distribution of the plots are shown in Table 1 253 

and Fig. 1, respectively. Because forest classes I-III shared the same systematic sampling plan, 254 

they were treated as a single stratum in the estimations. Thus, all the estimations in the current 255 

study were based on two pre-defined strata denoted as “pre-strata”. Forest classes I-III constituted 256 

“pre-stratum 1” whereas forest class IV was treated as a separate stratum and denoted as “pre-257 

stratum 2”. 258 

 259 

2.4. Field sample survey 260 

2.4.1. The survey of 1998 and 1999 261 

Topographic maps of the official Economic Map Series in scale 1:5000 were used to locate each 262 

plot in the field according to the predefined positions. When the plot centers were determined, they 263 

were marked with a wooden stick. 264 

 The 31 plots in forest class I (belonging to pre-stratum 1) were measured during summer 265 

and fall 1998 (Næsset & Bjerknes, 2001). However, when the field protocol for the measurements 266 
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on these plots was designed in 1998, the main objective was collection of tree heights for studies 267 

of relationships between airborne LiDAR height measurements and tree heights. Thus, the only 268 

measurements made were tree heights on sample trees selected for estimation of dominant height 269 

on each plot [see further details in Næsset & Bjerknes (2001)]. Since biomass estimation was at 270 

that time not a concern, we did not record essential variables for quantifying biomass, such as for 271 

example stem number. For the current study, we considered that biomass estimation based only on 272 

tree heights would introduce large uncertainties due to the large likely variability in stem numbers. 273 

For example, in a dataset from a similar forest and age class Næsset (2011) reported a range in 274 

stem number between plots of 500-20500 trees ha
-1

. Thus, our best judgment suggested that 275 

biomass estimation based on the 2010 measurements (see below) with a subsequent growth 276 

adjustment would be the least error-prone method for estimation of biomass in 1999. Therefore, 277 

the above-ground biomass estimates of 2010 (AGB2010, see below) were adjusted by growth 278 

predictions. The species-specific stand volume growth models by Blingsmo (1988) were used to 279 

predict the foregone volume growth based on stand volume, stand age, and site index as 280 

independent variables. We assumed the same growth rates for biomass as for stand volume. Hence, 281 

biomass for the plots in forest class I in 1999 was predicted by adjusting AGB2010 by the ratio 282 

between the plot-wise estimates of stand volume in 2010 and 1999. In the following we will denote 283 

this predicted plot-level biomass as ”observed total above-ground biomass” (AGB1999) even though 284 

the predicted values most likely will be subject to significant errors. A summary of these field-285 

predicted data is presented in Table 1.  286 

 Differential Global Positioning System (GPS) and Global Navigation Satellite System 287 

(GLONASS) were used to determine the position of the center of each field plot. Two Javad 288 

Legacy 20-channel dual-frequency receivers observing pseudorange and carrier phase of both GPS 289 

and GLONASS were used as base- and rover receivers, respectively. The mean distance between 290 

the plots and the base station was approximately 19 km, and the rover receiver recorded data with 291 

a logging rate of 2 s for approximately 15 min on each plot. The antenna height of the rover 292 

receiver was approximately 4 m. The accuracy of the computed coordinates was expected to be 293 

better than 0.5 m (Næsset & Bjerknes, 2001). 294 

 295 
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[TABLE 1] 296 

 297 

 The 55, 58, and 32 plots in forest classes II (belonging to pre-stratum 1), III (belonging to 298 

pre-stratum 1), and IV (constituting pre-stratum 2), respectively, were measured during summer 299 

1999 (Næsset, 2002). The plots were circular with an area of 200 m
2
. On each of these 145 plots, 300 

all trees with diameter at breast height (dbh) ≥4 cm were callipered. On 81 of the plots, all tree 301 

heights were measured. On the remaining 64 plots, tree heights were measured on sample trees 302 

selected with equal probability. The number of trees with height measurements ranged from 3 to 303 

43 per plot with an average of 17.8. The heights were measured with a Vertex hypsometer.  304 

 Biomass was estimated as the sum of the individual components stump, stem, bark, dead 305 

and living branches, and foliage of individual trees predicted using previously fitted species-306 

specific allometric models with single tree dbh and tree height as independent variables (Marklund, 307 

1988) following the procedure outlined in Næsset & Gobakken (2008). The estimated biomass for 308 

each plot was scaled to obtain AGB1999 (Mg ha
-1

).  309 

 Differential GPS+GLONASS were used to determine the position of the center of each 310 

field plot following the procedure described above. However, collection of data lasted somewhat 311 

longer (15-30 min) than for forest class I. The antenna height was approximately 3.6 m for all 312 

points. The accuracy of the computed coordinates was expected to range from <0.1 m to 2.5 m 313 

with an average of approximately 0.3 m (Næsset, 2002). 314 

 315 

2.4.2. The survey of 2010 316 

Each of the 176 sample plots was revisited during summer and fall in 2010 and early spring 2011. 317 

With the coordinates registered in 1998/1999 as targets, a Topcon Legacy-E+ 40 channel dual-318 

frequency receiver was used in real-time kinematic mode to navigate to each sample plot. For 319 

many of the sample plots the wooden stick used to mark the center in 1998/1999 was recovered 320 

and the center position was thus confirmed. However, for those sample plots where the stick could 321 

not be found, new GPS+GLONASS recordings were carried out following the same procedure as 322 

in 1998/1999. The recordings were conducted for the point where the real-time kinematic positions 323 

indicated the sample plot centre to be. Back in the office, the recorded GPS+GLONASS data were 324 
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post-processed with correction data from the base station. Then angle and distance between post-325 

processed coordinates of 2010 and 1998/1999 were calculated and the sample plot center was re-326 

established by means of a compass and tape measure.    327 

 When the sample plot center had been identified, the stage of stand development was 328 

determined to correspond to the classification used for the forest classes in 1998. Twenty-four of 329 

the sample plots were classified as recently regenerated (corresponding to class I). Because it can 330 

be very laborious and expensive to measure small and recently regenerated trees (height >0.1 m), 331 

only a sample of sub-plots within the 200 m
2
 sample plot were measured for these 24 plots. The 332 

sample plots in this particular class therefore consisted of four sub-plots with centers located 5.1 m 333 

from the sample plot center in each of the cardinal directions. Each sub-plot with an area of 20 m
2
 334 

was divided into four quadrants. On each sub-plot, dbh of each tree taller than breast height (tally 335 

trees) was measured. For all remaining trees with heights between 0.1 m and breast height, dbh was 336 

set to zero. Sample trees for height measurements were selected systematically as the first tree in 337 

each quadrant going clockwise around the sub-plots. Thus, potentially four trees per sub-plot and 338 

16 trees per sample plot were selected. 339 

 Biomass models (Marklund, 1988) dependent on height and diameter were applied to 340 

predict biomass by components for each tree on the 20 m
2
 sub-plots. First, species specific 341 

diameter-height models were fitted from the sample trees ≥1.3 m in height. These models were of 342 

the form            
 

. Height predictions for tally trees with dbh >0 were then obtained. Then 343 

biomass was predicted using the models of Marklund (1988). For tally trees with dbh=0, height was 344 

set as the species-specific average height of the sample trees with height <1.3 m. Biomass was 345 

estimated by scaling the biomass of a tree with height equal to 1.3 m and dbh=0 with the ratio 346 

between average height and 1.3 m. Finally, single-tree biomass estimates were summed for each 347 

plot and scaled with the sampled area to obtain a per hectare value (AGB2010). 348 

 In 2010, there were 41, 74, and 37 sample plots in classes corresponding to the definitions 349 

of forest classes II, III, and IV, respectively. The plot area for these classes in the 2010 survey was 350 

400 m
2
, but only data for an inner circle of 200 m

2
 was used in the current study so that the plot 351 

size would correspond to that of the 1999 survey. All trees with dbh ≥4 cm were measured for dbh, 352 

species, and polar coordinates relative to the plot center. Heights were measured for sample trees 353 
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selected with a probability proportional to stem basal area. The biomass calculation was similar to 354 

that of the 1999 survey, see above. The plot level biomass estimates were denoted AGB2010 (Mg ha
-

355 

1
). 356 

  Finally, we estimated the change in total above-ground biomass (δAGB) for each individual 357 

plot as the difference between the plot-wise AGB2010 and AGB1999 values. Thus, δAGB (Mg ha
-1

) is 358 

considered our observed change in total above-ground biomass in the subsequent analysis.  359 

 360 

2.5. Airborne scanning LiDAR data 361 

2.5.1. The 1999 LiDAR campaign 362 

Airborne LiDAR data were acquired under leaf-on conditions on 8-9 June 1999 (Table 2). LiDAR 363 

data were collected with an Optech ALTM 1210 laser scanner carried by a fixed-wing aircraft 364 

flying at an altitude of approximately 700 m a.g.l. The pulse repetition frequency was 10 kHz and 365 

the scan frequency was 21 Hz, resulting in a point density on the ground of approximately 1.2 m
-2

.  366 

 A complete postprocessing of the first and last echo data was undertaken by the contractor 367 

(Fotonor, Norway) by means of proprietary software provided by Optech Inc., Canada. All ranges 368 

measured by the laser at an off nadir angle, i.e., distances to the ground as well as to the tree 369 

canopy, were converted to vertical distances. 370 

 Unlike current state-of-the-art laser scanners (as per 2012), the old ALTM 1210 sensor has 371 

two electronic circuits recording the first and last echoes separately. After postprocessing, a few 372 

long last return ranges that exceeded the distance to the ground by up to 50 m were present in the 373 

data. According to the manufacturer these erroneous ranges were caused by a faulty last return 374 

sensor. A second flight was therefore carried out on 6 June 2000 to collect last return data with the 375 

only purpose of constructing the terrain model. Flying height corresponded to that of the first flight 376 

in 1999. 377 

 The ranging device had been calibrated by Optech Inc. and the operating firm always 378 

calibrated the system after installation in the aircraft. In addition, we established 30 circular control 379 

plots on plane road segments distributed throughout the study area for range calibration. Their 380 

positions were determined by differential GPS+GLONASS based on accurate dual-frequency 381 

carrier phase observations. Based on this calibration, the computed ranges of the first echo data 382 
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acquired in 1999 were reduced by 0.13 m. The last echo ranges collected in 1999 and 2000 were 383 

extended by 0.46 m and reduced by 0.11 m, respectively. 384 

The last echo data collected in 2000 were only used to extract the ground surface. This 385 

processing was conducted by the contractor. Ground echoes were classified by means of  a 386 

filtering algorithm discarding local maxima assumed to represent vegetation hits using Optech’s 387 

proprietary software, see further details in Næsset (2002). A triangulated irregular network (TIN) 388 

was generated from the planimetric coordinates of the classified terrain points. The 1999 first and 389 

last echo data (except for those pulses with erroneous ranges) were georeferenced to the year 2000 390 

TIN surface, and heights above the TIN surface were calculated for all echoes by subtracting the 391 

respective TIN heights from the height values of the recorded echoes. The first and last echoes 392 

with corresponding relative height values were denoted as “first” and “last” echoes, respectively, 393 

and stored for subsequent analysis. 394 

 395 

2.5.2. The 2010 LiDAR campaign 396 

In the 2010 campaign, the LiDAR data were acquired under leaf-on conditions on 2 July (Table 2). 397 

The data were collected with an Optech ALTM Gemini laser scanner operated at an altitude of 398 

approximately 900 m a.g.l. The pulse repetition frequency was 100 kHz and the scan frequency 399 

was 55 Hz. The point density on the ground was approximately 7.3 m
-2

. Previous research has 400 

shown that accuracy of biophysical plot and stand properties (e.g. basal area, mean tree height, and 401 

timber volume) estimated from airborne LiDAR data is fairly stable for point densities >0.1 m
-2

 402 

(Holmgren, 2004; Maltamo et al., 2006; Gobakken & Næsset, 2008). Although the 2010 LiDAR 403 

data were collected primarily for other research purposes (studies of single-trees) and the point 404 

density thus may seem higher than needed for the current study, we believe they were relevant for 405 

change estimation with the 1999 LiDAR data as reference. 406 

 The 2010 LiDAR data were initially processed by the contractor (Blom Geomatics, 407 

Norway). Planimetric coordinates and ellipsoidal height values were computed for all echoes. 408 

Ground echoes were found and classified using the progressive TIN densification algorithm 409 

(Axelsson, 2000) of the TerraScan software (Anon., 2005). A TIN model was created from the 410 

planimetric coordinates and corresponding heights of the LiDAR echoes classified as ground 411 
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points. The heights above the ground surface were calculated for all echoes by subtracting the 412 

respective TIN heights from the height values of all echoes recorded.  413 

 The ALTM Gemini sensor is capable of recording up to four echoes per pulse. In this 414 

study, we used the three echo categories classified as “single”, “first of many”, and “last of many”.  415 

The “single” and “first of many” echoes were pooled into one dataset denoted as “first” echoes, 416 

and correspondingly, the “single” and “last of many” echoes were pooled into a dataset denoted as 417 

“last” echoes. 418 

 419 

[TABLE 2] 420 

 421 

2.5.3. LiDAR data processing 422 

The entire study area was divided into grid cells using regular grids that were laid atop the stand 423 

map in a Geographical Information System (GIS) operation. For every grid cell, canopy height 424 

distributions were derived from the LiDAR echoes within the respective cells. Order statistics from 425 

these distributions are among the LiDAR metrics we derived, see below. Because order statistics 426 

are a monotone increasing function of sample size and thus spatial scale (Harter, 1970; 427 

Magnussen, 1999), it is important that grid cell size and size of the sample survey plots are equal 428 

to avoid unequal expectations of the metrics derived from the height distributions. Thus, we used a 429 

grid cell size of 200 m
2
 and these cells represented the elements that constituted our population, 430 

see details below. In total, the population consisted of 26,135 such cells. 431 

Separate distributions were created for the first and last echoes of the 1999 and 2010 432 

LiDAR data, respectively. A threshold value of 1.3 m above the ground surface was used to 433 

separate the ground echoes from those belonging to the relevant parts of the tree layer/tree canopy. 434 

From each of these two distributions and for every grid cell we extracted order statistics such as 435 

height percentiles. Further, we derived multiple measures of canopy density. The canopy density 436 

measures were derived by dividing the height range between the 1.3 m threshold and the 95 437 

percentile into 10 equally sized height bins. The densities were then computed as the respective 438 

ratios between number of echoes above a given height bin and total number of echoes (including 439 
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the below-canopy echoes). Thus, the canopy density measures represent the relative cumulative 440 

frequencies of echoes from the top of the canopy at different heights levels in the canopy.  441 

Differences between corresponding variables as derived from the 2010 and 1999 data, 442 

respectively, were also computed, such as for example the difference between a given height 443 

percentile in 2010 and in 1999. Similarly, we also computed the ratios between corresponding 444 

variables from 2010 and 1999.These differences and ratios in LiDAR variables as well as the 445 

primary LiDAR variables derived directly from the 1999 and 2010 acquisitions were used as 446 

auxiliary information in the estimation.  Finally, we derived the same LiDAR variables for every 447 

sample survey plot as for the grid cells.  448 

 449 

2.6. Classification according to type of change (management activity) 450 

When post-stratification is used in forest inventories one is often concerned with a description of 451 

the current state of the land, for example the current land use (e.g. forest versus non-forest) or the 452 

current state of the forest (e.g. age and tree species). In this study however, we address estimation 453 

of changes in biomass. Consequently, we would be interested in a post-stratification that 454 

eventually could improve the precision of the change estimates and where the individual post-455 

strata themselves are relevant reporting units for the management activities causing the changes. 456 

We would therefore seek a post-stratification that reflects the changes between two observations in 457 

time rather than the state at a given point in time.  458 

Several types of changes in a forest landscape may merit attention and LiDAR may prove 459 

useful for identifying such changes. First, we wanted to address areas subject to a complete loss of 460 

tree biomass. In a managed boreal forest, that could be interpreted as a recent clear-felling. In a 461 

tropical forest, i.e., in a REDD context, such changes could represent deforestation. Further, we 462 

wanted to address areas subject to a partial and temporary loss of tree biomass. In a boreal context, 463 

that could be interpreted as a thinning or a shelterwood cutting while in a tropical forest such 464 

losses would indicate forest degradation. Finally, we wanted to identify areas with a stable or 465 

increasing biomass, i.e., areas subject to natural processes such as continuous growth and natural 466 

mortality. Thus, we identified three mutually exclusive and non-overlapping change categories. 467 
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These categories were treated as post-strata in the estimation. Thus, we will use the term “post-468 

stratum” for each of these categories and they may be characterized in the following way: 469 

 470 

Post-stratum A: “Deforestation” or “recently clear-felled”. 471 

Post-stratum B: “Degradation” or “thinning or shelterwood cutting”. 472 

Post-stratum C: “Untouched”. 473 

 474 

 Our first task was to assign one of these unique post-strata to each individual sample survey 475 

plot. We did not make specific observations of change category during field work, but rather 476 

assigned post-stratum to the field sample plots according to simple classification rules based on the 477 

biophysical field data. These simple rules are shown in Table 3. They are based on observed plot 478 

biomass and stem number in 1999 and 2010. In order to be meaningful, some of the rules differed 479 

between forest classes for a given post-stratum. 480 

 481 

[TABLE 3] 482 

 483 

 Second, we needed to classify every individual element (grid cells with size 200 m
2
) of the 484 

entire population so that they could be assigned to the mutually exclusive post-strata. For this 485 

purpose we fitted a logistic regression model with the three post-strata as the categorical response 486 

variable and LiDAR metrics as independent variables. The fitted model was subsequently used to 487 

predict the post-stratum to be assigned to every population element (grid cell) using the LiDAR 488 

metrics of the individual cells as independent variables. A similar strategy has been proposed by 489 

McRoberts (2011) for classifying forest types using Landsat TM data as independent variables. 490 

 In the logistic regression analysis, a multinomial model of the probability of the three post-491 

strata assuming nominal classes, i.e., unordered classes, was fitted. The modeling was based on the 492 

176 sample survey plots. In the analysis we sought LiDAR metrics as independent variables which 493 

we anticipated could characterize the changes in canopy height and canopy density. Thus, we 494 

selected the three upper height percentiles (pf70, pf80, pf90) and the three lower canopy densities 495 

(df0, df1, df2) of the first echo LiDAR data from 1999 and 2010, and calculated the differences 496 
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between corresponding metrics from 2010 and 1999 (δpf70, δpf80, δpf90, δdf0, δdf1, δdf2). We 497 

fitted logistic regression models for different combinations of pairs with one variable selected 498 

among each of the two types of variables, i.e., height-related and density-related metrics, 499 

respectively. 500 

In multinomial logistic regression, the probabilities are jointly estimated as one system. The 501 

probability of each post-stratum is estimated relative to the probability of a chosen baseline post-502 

stratum. In the estimation, post-stratum A (deforestation) was chosen as the baseline post-stratum. 503 

Thus, for the other post-strata (i.e., post-strata B and C) the probabilities of post-stratum j (pB and pC) 504 

were estimated according to the following multinomial logistic regression model: 505 

 506 
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 508 

where δpf is a difference between height percentiles and δdf is a difference between canopy 509 

densities. Maximum-likelihood computation was applied for fitting the model in Eq. (1). The 510 

logistic regression procedure of the SAS package (Anon., 2004) was used. There is no obvious 511 

choice for a single goodness-of-fit statistic for multinomial logistic regression, although some tests 512 

have been proposed lately (e.g. Pigeon & Heyse, 1999; Goeman & Le Cessie, 2006). In this study, 513 

deviance and Pearson chi-square goodness-of-fit statistics are reported. The goodness-of-fit of the 514 

models was also assessed by leave-one-out cross validation. For subsequent prediction for each 515 

population element we selected the model with the highest overall accuracy in the cross validation 516 

and which otherwise satisfied the goodness-of-fit statistics mentioned above.  517 

A unique post-stratum for each element of the population was assigned according to a 518 

deterministic approach, i.e., by choosing the outcome with the highest predicted probability among 519 

the three post-strata. The probabilities of the three mutually exclusive outcomes were predicted 520 

according to  521 

 522 
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 524 

for the q non-baseline post-strata B and C and according to Eq. (3) for the baseline post-stratum 525 

(post-stratum A), i.e., 526 

 527 
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      (3) 528 

 529 

2.7. Estimators 530 

The current study was based on a (pre-) stratified sample survey. However, sample surveys 531 

intended for e.g. estimation of current resources will frequently follow stratification criteria other 532 

than those found relevant for change estimation. Furthermore, sample surveys designed 533 

specifically for change estimation, for example for local REDD projects, will most likely profit 534 

from a stratification allowing a more intensive sampling in areas expected to be subject to future 535 

changes in carbon stocks (e.g. along deforestation frontiers) in order to improve precision of the 536 

change estimates (Stehman, 2009). Such initial strata cannot be expected to match perfectly with 537 

post-strata resulting from a posteriori classification of actual changes.  538 

 In the following, our first objective was to estimate the areal proportion of each of the post-539 

strata reflecting different management activities (see above) assuming a stratified design, and 540 

subsequently the total area of each post-stratum. Second, we wanted to estimate the net change in 541 

biomass for each of the post-strata and subsequently the net change in biomass for the entire AOI. 542 

The current setting with an initial stratification and post-stratification is highly relevant to real 543 

world survey designs. 544 

 545 

2.7.1. Estimation of areal proportions based on the field sample survey 546 

We wanted to estimate the areal proportion of each post-stratum. Adopting the notation of Särndal 547 

et al. (1992), let U be the entire population of elements (grid cells with size 200 m
2
) in the AOI 548 

where U={1, ..., k, ..., N}. This population is divided into H non-overlapping pre-strata. The pre-549 

strata are denoted    . The sizes of the pre-strata (number of population elements) are    , where 550 

h=1, ..., H.  551 
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  Now, let   
 

  be an indicator of post-stratum g, g=1, …, G, of the kth element in the 552 

population such that  553 

 554 

   
 
                                         -         

                                                                            
    555 

 556 

First, we want to define the proportion of the area in a particular post-stratum (g) within a pre-557 

stratum (h). We define this proportion (  
 

) for which we wish to find an appropriate estimator as 558 

 559 

   
 
 

   
 
      
 

 
 

  
 

 
   ,        (4) 560 

 561 

where   
 

 is the total number of population elements in pre-stratum h classified as post-stratum g. 562 

We may estimate the areal proportion from the field sample alone, i.e., using a so-called 563 

direct estimator. Let s be our sample of field survey plots and let    denote a subsample of size    564 

drawn randomly from the elements in    , i.e., from stratum h. Thus, s constitutes a stratified 565 

random sample (STRS). Following Cochran (1977, p. 107), the proportion of the population area 566 

in a particular post-stratum g within pre-stratum h was estimated according to  567 

 568 
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 570 

where   
 

 is the number of sample plots in stratum h classified as post-stratum g. A variance 571 

estimator of        
 

 (Cochran, 1977, p. 108) is given by 572 
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 575 

Note that in this estimator and in all subsequent variance estimators we will ignore the so-called 576 

“finite population term” because the sampling fractions are always very small and their influence 577 

on the variance estimates would be negligible in our applications. 578 
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 Now, for a particular post-stratum g, the areal proportion was estimated following standard 579 

stratified sampling: 580 

 581 

       
 

         
 

            (7) 582 

 583 

with the variance estimator 584 

 585 

          
 

             
 

    .        (8) 586 

 587 

For a direct comparison with the estimators given in Cochran (1977) it should be noted that while 588 

we give the estimators for the proportion of area of each post-stratum within a given pre-stratum in 589 

Eq. (5) and the corresponding variance estimator in Eq. (6) and subsequently the estimators for the 590 

proportion of area of each post-stratum across all pre-strata in Eq. (7) and the corresponding 591 

variance estimator in Eq. (8), Cochran (1977) gave the two latter estimators directly (Eq. 5.52 and 592 

Eq. 5.56) without explicitly presenting the within pre-strata estimators. 593 

 594 

2.7.2. Estimation of areal proportions based on the field sample survey and auxiliary LiDAR 595 

data 596 

The logistic regression model was used to provide predictions of post-stratum for every population 597 

element (200 m
2
 grid cell). This information can be treated as auxiliary to the field data in the 598 

estimation and thus potentially help to improve the precision of the estimators for areal proportions 599 

and areas of the post-strata. The probability-based design of the survey allowed adoption of a 600 

model-assisted estimator. In model-assisted estimators, predictions are used for a fairly large 601 

sample of population elements (or even all population elements as in the current study) to provide 602 

a pure model-based estimate of the population parameter of interest. This estimate is adjusted for 603 

deviations between the model predictions and the observed values in the sample. Thus, model-604 

assisted estimators are design-unbiased or approximately design-unbiased (Särndal et al., 1992, p. 605 

227). When a sample for a large area is used to provide estimates for a smaller area based on 606 

predictions, as is the case in this study since we developed predictive logistic regression models for 607 
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post-strata across several pre-strata and used that global model to predict post-stratum for each 608 

individual pre-stratum, an estimator based on pure predictions for the smaller area (pre-stratum) is 609 

known as a synthetic estimator.   610 

 In the current study, we adopted a model-assisted generalized regression estimator 611 

(Särndal, 2011). In a remote sensing study by McRoberts (2010) a so-called difference estimator 612 

(Särndal et al., 1992, p. 221-225) was adopted for the same purpose. Let    
 

 be an indicator of the 613 

predicted post-stratum g of the kth element in the population defined in the same way as   
 
 above, 614 

with the only difference being that    
 

 is an indicator of the predicted post-stratum while   
 
  was an 615 

indicator of the observed post-stratum. Thus, the synthetic (SYNT) estimator for   
 

 is  616 

 617 

        
 

 
    

 
    

 

 
  

  

 

    
 

    
 

  
  ,       (9) 618 

 619 

whereas the model-assisted generalized regression (MAR) estimator for the proportion of the 620 

population area in a particular post-stratum g within pre-stratum h is 621 
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   ,       (10) 623 

 624 

where    
 
   

 
    

 
 . A variance estimator of       

 
 is 625 
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   ,      (11) 627 

 628 

where     
 

 is the arithmetic mean of the residuals (   
 

) of the    elements in the sub-sample   . As 629 

noted by Mandallaz (2008, p. 120), the synthetic component of the estimator, i.e., the first term in 630 

the brackets on the right-hand side of the estimator in Eq. (10), does not contribute to the design-631 

based variance, and thus the variance only depends on the sample size and the goodness of the 632 

model for use in a particular pre-stratum (Särndal, 1984).  633 

 For a particular post-stratum g, the areal proportion was estimated according to the model-634 

assisted approach following standard stratified sampling: 635 
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 636 

      
 

        
 

            (12) 637 

 638 

with the variance estimator 639 

 640 

         
 

            
 

    .        (13) 641 

 642 

Finally, the total area     in hectares of each post-stratum g in the AOI and the associated 643 

variance         were estimated for the direct (STRS;       
 

) as well as the model-assisted (MAR; 644 

     
 

) approaches according to 645 

 646 

     
   

     
               (14) 647 

 648 

where 200/10000 is used to scale from 200 m
2
 estimates (the size of the population elements and 649 

sample plots) to per hectare estimates, and 650 

 651 

         
   

     
  

 

        ,        (15)  652 

 653 

respectively. Here     is used as a common symbol for       
 

 as well as for      
 

 . 654 

 655 

2.7.3. Estimation of change in biomass based on the field sample survey  656 

In the following, we wanted to estimate the net change in biomass for each post-stratum and for 657 

the entire AOI and subsequently the variance of these change estimates. In the following we will 658 

condition the estimation on the actual post-stratification obtained with the logistic regression 659 

model. Although misclassification of post-strata will introduce errors, the only effect of erroneous 660 

classification on the biomass change estimates is an eventual decreased precision (reduced 661 

efficiency of the post-stratification). 662 

 We need to extend the notation to account for post-stratification in addition to the initial 663 

stratification. Thus, let the H non-overlapping pre-strata now be denoted     with sizes     , where 664 
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h=1, ..., H. By post-stratification we also divide the population into non-overlapping post-strata     665 

with sizes     , where g=1, ..., G. Thus, with G post-strata intersecting the H pre-strata the AOI is 666 

partitioned into a maximum of G×H unique groups defined by post-stratum and pre-stratum. These 667 

groups are labelled Ugh with sizes Ngh . 668 

Let δbk be the change in biomass of the kth unit in the population. First, we want to define 669 

the parameter net change in biomass (ΔB) within a particular post-stratum (g) and pre-stratum (h) 670 

for which we later wish to find an appropriate estimator: 671 

 672 

                 .         (16) 673 

 674 

We will first estimate net change in biomass from the field sample alone assuming 675 

stratified random sampling (STRS) followed by post-stratification. An Horvitz-Thompson (HT) 676 

estimator of     is (Särndal et al., 1992, p. 268) 677 

 678 

        -      
   

  
         

    

   
             (17) 679 

 680 

for            (Särndal et al., 1992, p. 31) where         is the arithmetic mean of the change in 681 

biomass of the     elements in the sub-sample     (Särndal et al., 1992, p. 269). Furthermore, an 682 

HT estimator of      is (the numerator in Eq. 7.6.7 in Särndal et al., 1992, p.268) 683 

 684 

        -             -       ,       (18) 685 

 686 

while HT estimators of the sizes of post-stratum and pre-stratum gh and post-stratum g, 687 

respectively, are  688 

 689 

       -      
 

  
         

    

   
       (19) 690 

 691 

and 692 
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 693 

       -            -      .       (20) 694 

 695 

 Thus, for post-stratum g we have the following estimator of net change in biomass (Särndal 696 

et al., 1992, p. 268)  697 

 698 

           
   

      -    
       -     .       (21)  699 

 700 

The adjustment of         -     by the ratio of known to estimated post-stratum size serves to 701 

improve the precision of           compared to that of        -    . An estimator of net change in 702 

biomass for the entire AOI is 703 

 704 

                     .        (22)  705 

 706 

 Now, let us proceed with the variance estimation, which we condition on the realized 707 

sample size in a post-stratum (   ). Conditionally on    ,        -     and       -     are 708 

constants. We therefore have (Särndal et al., 1992, p. 288) 709 

 710 

           -             
 

               
 

     

          
  .     (23)  711 

 712 

As in the previous sections, we have ignored corrections for finite population.  713 

For a particular post-stratum g we have the variance estimator 714 

 715 

                          
   

      -    
 

 

           -           ,  (24)  716 

 717 

whereas for the entire AOI the variance was estimated according to 718 

 719 

                                                 .    (25)  720 
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 721 

 Because a systematic design was adopted for the field survey rather than a random design, an 722 

overestimation of the variance is a likely consequence of ignoring the systematic design (e.g. 723 

Särndal et al., 1992). 724 

 725 

2.7.4. Estimation of change in biomass based on the field sample survey and auxiliary LiDAR 726 

data 727 

In the same manner as we took advantage of the LiDAR data for all population elements as 728 

auxiliary information in the estimation of areal proportions, we will now utilize the LiDAR data 729 

for every element of the population to assist the estimation of net change in biomass for each post-730 

stratum and for the entire AOI. We started by obtaining synthetic estimates of change in biomass 731 

for every population element using a synthetic regression estimator (Särndal et al., 1992).  For a 732 

particular post-stratum and pre-stratum this estimator can be formulated as  733 

 734 

                             (26) 735 

 736 

where      is change in biomass predicted according to a regression model for the kth element (200 737 

m
2
 grid cell) in the population as opposed to the observed change in biomass (δbk) as defined 738 

above. In the current study, three different approaches to post-stratum specific modeling and 739 

prediction of change in biomass based on a few selected variables derived from the LiDAR 740 

measurements were employed, see further details below. We accounted for any potential bias 741 

inherent in the synthetic estimator by employing a model-assisted approach. Drawing upon the 742 

probability-based principles on which the field sample was selected, we used a model-assisted 743 

generalized regression (MAR) estimator (Särndal et al., 1992, p. 231; Särndal, 2011). For net 744 

change in biomass for a particular post-stratum (g) and pre-stratum (h), a model-assisted regression 745 

estimator is  746 

 747 

                    + 
   

  
      ,      (27) 748 
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where we have             as before and              . Thus,  750 

 751 

                    +    
    

   
       ,        (28) 752 

 753 

where       is the arithmetic mean of the residuals of the     elements in the sub-sample     .This 754 

estimator is approximately design-unbiased irrespective of the model choice when the sample size 755 

is not too small. It allows for use of different types of models for the synthetic component, such as 756 

e.g. non-linear regression models (Särndal, 2011). 757 

 Correspondingly, a model-assisted regression estimator for post-stratum g is 758 

 759 

                    + 
   

      -    
    

    

   
            (29) 760 

 761 

and for the entire AOI 762 

 763 

                   .        (30)  764 

 765 

A variance of          conditioned on the realized sample size in a given post-stratum 766 

(ngh) is (Särndal et al., 1992, p. 246, 288)  767 

 768 

                     
 

           
 

     

          
  .      (31)  769 

 770 

When working with small units such as the G×H groups, there is a risk of fairly small samples 771 

(ngh). The variance estimator is unbiased only asymptotically and may not be unbiased for very 772 

small samples. It has been indicated that samples smaller than five (Thompson, 2002) or 10 773 

(Särndal et al., 1992) should be avoided. 774 

For a particular post-stratum g we have the variance estimator 775 

 776 
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 778 

whereas for the entire AOI the variance was estimated according to 779 

 780 

                                               .    (33)  781 

 782 

 Finally, mean change in biomass per hectare for each post-stratum g (    ) and in the entire 783 

AOI (    and the associated variances were estimated for the direct (STRS) as well as the model-784 

assisted (MAR) approaches according to 785 

 786 

      
 

   

     
   

      ,         (34) 787 

 788 

   
 

   

     
 
     ,         (35) 789 

 790 

          
 

 
   

     
    

                     ,        (36) 791 

 792 

and 793 

 794 

       
 

 
   

     
  

                    ,      (37) 795 

 796 

respectively. Here       and      are used as common symbols for the STRS and MAR estimators 797 

(the STRS and MAR subscripts are ignored). 798 

As noted above, the estimation was conditioned on the actual post-stratification obtained 799 

with the logistic regression model. Although misclassification of post-strata will introduce errors in 800 

the areal estimates, the only effect of erroneous classification on the biomass change estimates per 801 

hectare is an eventual decreased precision. 802 

 803 

2.8. Modeling of change in biomass 804 
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Regression models that relate the LiDAR variables to change in above-ground biomass are 805 

required for the model-assisted estimation. In this study, biomass was determined on each field 806 

sample plot for two points in time. We could therefore estimate change in biomass directly on each 807 

field plot and consequently also model change in biomass directly. Several approaches to modeling 808 

of change in biomass may merit attention. Bollandsås et al. (2012) tested different approaches 809 

when modeling change in biomass with airborne LiDAR data. In the current study, three particular 810 

approaches were followed, namely (A) direct modeling of net change in biomass, i.e., using δAGB 811 

as a response variable (denoted approach A) and (B) separate modeling of (i) biomass in 1999 812 

(AGB1999) and (ii) the ratio of biomass in 2010 (AGB2010) to biomass in 1999 (AGB1999) (denoted 813 

approach B). The change in biomass could then be predicted as the product of predicted biomass in 814 

1999 and predicted ratio minus the predicted biomass in 1999. Finally, (C) separate modeling of (i) 815 

biomass in 1999 (AGB1999) and (ii) biomass in (AGB2010) was carried out (denoted approach C). In 816 

this latter approach the change in biomass could be predicted as the difference between predicted 817 

biomass in 2010 and predicted biomass in 1999. 818 

 819 

2.8.1. Direct modeling of change in biomass (approach A) 820 

For direct modeling of net change in biomass a simple multiple linear regression model form was 821 

used because this model form allows positive as well as negative values of the response. Thus, we 822 

estimated the mean (expected value) function according to  823 

 824 

               ,        (38) 825 

 826 

where    is a constant term,   is a vector of regression coefficients, and   is a matrix of 827 

explanatory LiDAR variables such as the differences in (1) corresponding height percentiles, (2)  828 

corresponding canopy densities, (3) corresponding mean values, and (4) corresponding standard 829 

deviations and coefficients of variation between the two points in time for first and last echo data. 830 

Six different models were fitted. First, we fitted a separate model for those field plots that 831 

according to predictions obtained with the logistic regression model were classified to belong to 832 

post-stratum A (deforestation). Second, we fitted a model to the plots classified as post-stratum B 833 
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(degradation). Finally, we fitted four different models for plots in post-stratum C (untouched), i.e., 834 

one model for each of the four predefined forest classes within post-stratum C. The six models 835 

were fitted with the ordinary least-squares method (OLS) and stepwise variable selection using the 836 

SAS statistical software package (Anon., 2004). 837 

 838 

2.8.2. Modeling of change in biomass by a system of models (approach B) 839 

A multiplicative model form was adopted for modeling of biomass in 1999 (AGB1999) as well as 840 

for modeling of the ratio between biomass in 2010 and 1999 (AGB2010/AGB1999). We used 841 

nonlinear regression (the Gauss-Newton method; Anon., 2004) to estimate nonlinear models of the 842 

mean (expected value) function. These models were of the form 843 

 844 

           
    

     
    ,        (39) 845 

 846 

where Y= AGB1999 or AGB2010/AGB1999 field values, x1, x2, …, xm are the LiDAR-derived variables 847 

and β0, β1, β2,  …, βm are parameters to be estimated. When AGB1999 was the response variable, the 848 

LiDAR-derived variables were the height percentiles and canopy densities derived from the 1999 849 

LiDAR data. When the ratio AGB2010/AGB1999 was the response variable, the LiDAR-derived 850 

variables were the corresponding ratios of the height percentiles and canopy densities derived from 851 

the 1999 and 2010 LiDAR data. Six separate sets of models were fitted, i.e., for the six subsets of 852 

plots indicated above. In order to select among the large number of potential LiDAR variables to 853 

be included as explanatory variables in the final models, we carried out a preliminary estimation of 854 

log-transformed models using OLS regression and took advantage of the stepwise (forward) 855 

selection procedure, see further details in Næsset et al. (2011). It should be noted that for each set 856 

of models the specific models for biomass in 1999 and the ratio between the biomass in 2010 and 857 

1999 were estimated independently because we wanted to keep the analysis simple and focus on 858 

the application rather than on specifics of the estimation techniques. Methods like for example 859 

seemingly unrelated regression or partial least squares regression which have previously been 860 

applied to LiDAR data (Næsset et al., 2005) could have been considered though.  861 

    862 



   

 

31 

2.8.3. Modeling of change in biomass by separate models for each point in time (approach C) 863 

In addition to the models fitted for AGB1999 (see above) we also fitted models for AGB2010 864 

following the same model form (Eq. 39). Six separate models with AGB2010 as response variable 865 

were fitted for exactly the same subsets of plots as used for the AGB1999 models. 866 

 867 

2.9. Estimation  868 

2.9.1. Estimation of changes in areas and corresponding variances 869 

First, we estimated the total area of each post-stratum  (Eqs. 7 and 14) from the field sample only. 870 

The classification of change (i.e. post-stratum) on the field plots followed the simple classification 871 

rules (Table 3). We also estimated the corresponding standard errors (SE), i.e., the square roots of 872 

the variances (Eqs. 8 and 15). 873 

 Second, model-assisted estimates of total area of each post-stratum (Eqs. 12 and 14) with 874 

the LiDAR data used as auxiliary information were obtained. The auxiliary information was used 875 

with the fitted logistic regression model to predict post-stratum for each element in the population. 876 

Separate estimates of the synthetic component (i.e., pure model-based predictions) of the model-877 

assisted estimates were also provided. Finally, we estimated standard errors for the model-assisted 878 

estimates (Eqs. 13 and 15). 879 

 880 

2.9.2. Estimation of change in biomass and corresponding variances 881 

Change in biomass per hectare for each individual post-stratum (Eqs. 21 and 34) and 882 

corresponding standard errors (Eqs. 24 and 36) were estimated from the field sample only. The 883 

post-strata for all population elements, including the plots, were determined by the logistic 884 

regression model predictions. The assignment of the plots to post-strata was based on the plots’ 885 

predicted post-strata. Estimates of change in biomass per hectare for the entire AOI (Eqs. 22 and 886 

35, respectively) and corresponding standard error estimates were provided as well (Eqs. 25 and 887 

37).  888 

 We also estimated change in biomass per hectare for each individual post-stratum 889 

according to the model-assisted approach (Eqs. 29 and 34) using the LiDAR model predictions of 890 

change in biomass for every population element to support the estimation. The adjustment for bias 891 
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in the model-assisted estimators was undertaken by estimating the residuals (   ) for the plots in 892 

accordance with previously established practice (Gregoire et al., 2011, p. 93). Alternative estimates 893 

were provided using the simple linear regression models for change (Eq. 38 and Table 6), the ratio 894 

approach (Eq. 39 and Table 6), and separate models for AGB in 1999 and 2010 (Eq. 39 and Table 895 

6). Corresponding standard error estimates were provided (Eqs. 32 and 36). The synthetic 896 

components of the change estimates were given separately. During estimation, we inspected the 897 

pure model predictions at a population element level. For the ratio approach (approach B) we 898 

noticed predicted values of the ratio between AGB in 2010 and 1999 for category A (deforestation) 899 

corresponding to an increase in biomass over the 11-year period of 19,500 Mg ha
-1

. The maximum 900 

observed biomass in the field sample was 462.3 Mg ha
-1

 (Table 1). To avoid such completely 901 

unrealistic predictions we introduced an upper limit on allowable predictions of the ratio for this 902 

particular category. This limit was set to 1 and thus allowing a stable biomass over the observation 903 

period. 904 

Finally, model-assisted estimates of change in biomass for the entire population (Eqs. 30 905 

and 35) and their standard error estimates (Eqs. 33 and 37) were obtained following all three 906 

modeling approaches.  907 

 908 

3. Results and discussion 909 

3.1. Model fitting 910 

3.1.1. Models for prediction of post-stratum (type of change) 911 

The multinomial logistic regression model for prediction of post-stratum that resulted in the best 912 

overall classification accuracy in a leave-one-out cross validation consisted of the difference 913 

between the 70th height percentiles of the 2010 and 1999 LiDAR data (δpf70) and the 914 

corresponding difference for the cumulative canopy density at 1.3 m above ground (δdf0) as 915 

explanatory variables. The regression coefficient estimates indicated that relative to the 916 

deforestation post-stratum, the probabilities of degradation and untouched increased with 917 

increasing positive changes in height as well as canopy density over the 1999 to 2010 time span 918 

(Table 4). This pattern was more pronounced for untouched than for degradation, which is 919 

reasonable. Four of the six estimated regression coefficients were statistically significant at the 5 920 
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percent level. Thus, the fitted model demonstrated that time series of LiDAR data are able to 921 

describe a logical relationship between types of changes in a forest landscape and changes in 922 

heights and canopy density. Also the goodness-of-fit statistics (Table 4) revealed a good model fit 923 

as did the overall classification accuracy of the cross validation. The overall accuracy was 93.8% 924 

(Table 5). 925 

 926 

[TABLE 4] 927 

 928 

 The cross validation revealed high classification accuracies for the post-strata deforestation 929 

and untouched (95.7-97.8%). The lower user’s and producer’s accuracies for the degradation post-930 

stratum (56.3-69.2%) were mainly caused by confusion with the untouched post-stratum. 931 

However, an inspection of the six omissions predicted to be untouched (Table 5) revealed that the 932 

field data in fact showed an increase in biomass from 1999 to 2010 but also a reduction in stem 933 

number. Thus, the sensitivity of the LiDAR data to capture changes in biomass actually seemed to 934 

work quite well but at the same time the LiDAR data failed to capture a reduction in stem number. 935 

The somewhat weaker correlation between LiDAR metrics and stem number is well known 936 

(Næsset, 2007). 937 

 The confusion between the deforestation and degradation post-strata (omission as well as 938 

commission) was somewhat surprising, given the clear expectation of airborne LiDAR being 939 

highly sensitive to a severe loss of biomass, which was used as a field-based criterion for defining 940 

the post-stratum deforestation (Table 3). To learn why some of the sample plots were misclassified 941 

as shown in the error matrix (Table 5), we revisited a few selected plots in field on 25 January 942 

2012. As an example, the single plot observed to be deforested and erroneously predicted to be 943 

degraded will be mentioned (plot #33). During field work in 2010 we recorded heights of 13 944 

sample trees on plot #33. The heights ranged between 0.5 and 4.0 m. Observed biomass in 2010 945 

was 7.1 Mg ha
-1

 whereas it was188.9 Mg ha
-1

 in 1999. However, the LiDAR data for this plot 946 

showed laser heights with values up to 22.4 m even in 2010, indicating fairly large amounts of 947 

biomass. The field inspection revealed that there was a tall tree standing on the plot circumference 948 

with the center of the stem right outside the plot. Thus, this tree was correctly ignored during field 949 
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work in 2010. However, about half the tree crown was hanging over the plot and the laser 950 

measurements for this part of the crown were included as auxiliary data for the plot (Fig. 2). As 951 

can be seen in Fig. 2, even the stem position is indicated in the LiDAR data as three laser echoes 952 

have been reflected from the stem itself inside the plot circumference. This illustrates the extreme 953 

sensitivity of LiDAR to record minor details of the distributional patterns of biological material 954 

with high geographical precision. Such border effects can hardly be avoided, but their relative 955 

influence will decline with increasing plot sizes. Thus, it is likely that severe misclassification 956 

errors will be less pronounced for larger plots.  957 

Finally, it should be emphasized that the simple classification rules applied to classify into 958 

post-strata (Table 3) may not fully capture the changes we intended to characterize. With other 959 

definitions of the three post-strata a LiDAR-based classifier may perform differently. The 960 

predicted post-strata for each individual element of the population that formed the basis for the 961 

model-assisted estimation of the areal changes and the subsequent post-stratification is displayed 962 

in Fig. 1. Overall, the simple LiDAR-based classification performed quite well. Most remote 963 

sensing techniques have difficulties with distinguishing between the activity-based change 964 

categories and identifying partial loss of biomass (degradation) seems to be a particular challenge 965 

where LiDAR may offer superior performance. 966 

 967 

[TABLE 5] 968 

[FIGURE 2] 969 

 970 

3.1.2. Models for prediction of change in biomass 971 

The selected linear models following approach A (direct modeling of change) consisted of one to 972 

four explanatory LiDAR variables and 40 to 98% of the variability in observed biomass was 973 

explained by the models (Table 6). All types of LiDAR metrics were present as explanatory 974 

variables and we could not observe any particular pattern regarding types of variables (e.g. 975 

difference in height percentiles or difference in canopy density metrics) that were included in the 976 

selected models. This is not very surprising given that the different models for change in biomass 977 

covered very different transitions – including thinning, clear-felling, clear-felling with subsequent 978 
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planting or natural regeneration as well as forest stands left untouched for the entire 11 year period.979 

 The multiplicative models for above-ground biomass in 1999 (approach B and C) and 2010 980 

(approach C) contained one to two explanatory variables and explained 67 to 93% of the 981 

variability. All models with two variables (with one exception) contained one variable related to 982 

height (mean height or height percentile) and one related to canopy density. This is a logical result 983 

and well in line with previous findings (e.g. Næsset et al., 2011). The proportion of explained 984 

variability is also consistent with previous findings from boreal forests [cf. a brief summary 985 

presented in Næsset & Gobakken (2008)]. 986 

 An interesting pattern was observed in the fitted multiplicative models for the ratio between 987 

biomass in 2010 and 1999. For the two models fitted in post-strata A and B (deforestation and 988 

degradation; R
2
=0.92-0.95) only variables related to the ratio between canopy densities were 989 

included in the selected models whereas for all the four models (with one exception) in the 990 

untouched post-stratum (post-stratum C; R
2
=0.44-0.87) ratios related to height percentiles as well 991 

as canopy densities were included. Thus, it appears that for dramatic changes such as complete or 992 

almost complete (deforestation) or partial (degradation) loss of biomass, relative canopy density is 993 

a powerful explanatory variable, which is reasonable. Removal of some or most of the trees 994 

consistently influences the density of the forest while the tree height (of the remaining trees) may 995 

be less influenced. For minor changes like continuous growth and natural mortality which 996 

influence on height as well as density the relative biomass between the two points in time is 997 

modeled in an appropriate way by the ratios of the same primary LiDAR variables as found 998 

suitable for modeling of the biomass itself.  999 

 1000 

 [TABLE 6] 1001 

 1002 

3.2. Estimation of changes in areas 1003 

The estimated area of deforestation based on the field survey (direct estimate) was 70.4 ha with a 1004 

standard error of 14.5 ha (Table 7). Thus, a 95% confidence interval (n=23) for the deforested area 1005 

would be approximately 40.4 to 100.4 ha. When the LiDAR data were used as auxiliary 1006 

information to assist in the estimation the area of deforestation was 51.8 ha (SE=3.4). Because the 1007 
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total number of deforested field plots (based on the classification from the field data) was identical 1008 

to the total number of plots predicted to be deforested following the logistic model predictions the 1009 

estimated area based on pure model predictions (synthetic estimate) was identical to the model-1010 

assisted estimate. 1011 

 For the degradation post-stratum the field-based areal estimate was 44.6 ha (SE=11.8 ha) 1012 

whereas the model-assisted estimate was 53.4 ha (SE=6.7 ha). Aggregation of observations for 1013 

population elements predicted to be degraded gave a synthetic estimate of 46.4 ha. The difference 1014 

between the model-assisted and synthetic estimates was mainly caused by the confusion between 1015 

the degradation and untouched post-strata in the logistic model predictions (Table 5). The 1016 

estimated area of the untouched post-stratum was 407.7 (SE=17.4), 417.5 (SE=5.8), and 424.5 ha 1017 

using the direct, model-assisted, and synthetic estimators, respectively (Table 7).  1018 

The results indicated fairly consistent estimates using the different estimators. However, 1019 

the model-assisted estimates were much more precise than the field-based ones. The ratio between 1020 

the estimated variances, also known as relative efficiency, ranged between 3.1 and 18.2, indicating 1021 

that 3.1-18.2 as many field plots would be needed to achieve the same precision for a pure field-1022 

based estimate as obtained when assisting the estimation with LiDAR data. This assumes a simple 1023 

random and unstratified design. Although the design in this study was somewhat more complex, it 1024 

illustrates the huge potential of LiDAR data to improve precision of area change estimates for 1025 

activity categories that would be of great interest and relevance to REDD. 1026 

 1027 

 [TABLE 7] 1028 

 1029 

3.3. Estimation of changes in above-ground biomass 1030 

The field-based estimate of loss in biomass for areas predicted to be deforested was 131.8 Mg ha
-1

 1031 

(SE=8.9 Mg ha
-1

). The model-assisted estimate of the loss was 162.7 Mg ha
-1

 (SE=5.8 Mg ha
-1

) 1032 

when linear models for change in biomass were applied and 158.0 Mg ha
-1

 (SE=4.9 Mg ha
-1

) when 1033 

a system of nonlinear models with the ratio approach was used to assist in the estimation. When 1034 

two separate models for biomass in 1999 and 2010 were used the loss was 162.3 Mg ha
-1

 (SE=4.9 1035 
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Mg ha
-1

). The three alternative approaches to change modeling resulted in estimates of similar 1036 

magnitude.  1037 

For the degradation post-stratum the direct estimate of loss in biomass was 45.9 Mg ha
-1

 1038 

(SE=31.1 Mg ha
-1

) with model-assisted estimates of loss of 62.8 (SE=5.0 Mg ha
-1

), 49.0 Mg ha
-1

 1039 

(SE=8.2 Mg ha
-1

), and 52.2 Mg ha
-1

 (SE=8.4 Mg ha
-1

), respectively. For the untouched post-1040 

stratum the differences in the estimates were even less pronounced, with a field-based estimate of 1041 

gain in biomass of 43.1 Mg ha
-1

 (SE=2.8 Mg ha
-1

) and corresponding model-assisted estimates 1042 

following the three modeling approaches of 41.4 (SE=1.8 Mg ha
-1

), 39.7 Mg ha
-1

 (SE=2.0 Mg ha
-

1043 

1
), and 42.4 Mg ha

-1
 (SE=2.3 Mg ha

-1
), respectively. The overall net change in biomass for the 1044 

entire AOI was estimated to 17.8 Mg ha
-1

 (SE=3.7 Mg ha
-1

) based on the field survey and 11.9 Mg 1045 

ha
-1

 (SE=1.6 Mg ha
-1

), 12.2 Mg ha
-1

 (SE=1.9 Mg ha
-1

), and13.7 Mg ha
-1

 (SE=2.1 Mg ha
-1

) for the 1046 

model-assisted approaches. 1047 

 1048 

[TABLE 8] 1049 

 1050 

 Apart from the deforestation post-stratum, the field-based and model-assisted estimates 1051 

were fairly consistent. The uncertainties were clearly smaller for the model-assisted approach. The 1052 

relative efficiency was 2.4-3.3 for deforestation, 13.7-38.7 for degradation, 1.5-2.4 for untouched, 1053 

and 3.1-5.3 for the overall net change estimate. In a study where model-assisted estimates of 1054 

standing biomass were obtained with support of LiDAR data, the relative efficiency of the model-1055 

assisted estimates compared to a pure field-based estimate was 5.3 (Næsset et al., 2011). Thus, it 1056 

seems like a similar gain in efficiency can be obtained for change as well, provided that proper 1057 

models are available. Some differences were observed between the three modeling approaches. 1058 

Apart from the deforestation post-stratum, the simple linear models providing direct predictions of 1059 

change (approach A) resulted in better precision than the two other modeling approaches. This is 1060 

consistent with recent findings by Bollandsås et al. (2012). 1061 

The relative performance of the model-assisted estimation of change for the entire 1062 

population seems to be highly dependent on the magnitude of the different types of changes in the 1063 

landscape. Especially for degradation the support of LiDAR as auxiliary information was of great 1064 
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value. The models for change in biomass for this particular category also showed very strong 1065 

relationships, regardless of modeling approach (R
2
= 0.88-0.98, Table 6).  1066 

It should be mentioned that in the post-stratification the post-strata were not determined 1067 

independently of the sample since the logistic regression model used to predict post-stratum for the 1068 

individual population elements was fitted on the sample data. Such post-stratification is known as 1069 

endogenous post-stratification. This dependency will tend to add variability to the estimators. 1070 

However, Breidt & Opsomer (2008) concluded that the practical effects were minimal even for 1071 

relatively small sample sizes. 1072 

Nevertheless, some caution should be exercised. The degradation post-stratum contained 1073 

only 13 sample plots. Because the survey was pre-stratified the sample sizes for some of the pre-1074 

stratum×post-stratum groups which were the basic units of the estimation (see e.g. Eqs. 18 and 29), 1075 

were very small. In fact, for pre-stratum 2 the fraction that was predicted to be degraded had n=2 1076 

and similarly n=4 for the deforestation post-stratum. It is recommended to avoid sample sizes 1077 

smaller than five (Thompson, 2002) or 10 (Särndal et al., 1992). This particular study covered a 1078 

time span of 11 years. For shorter time periods, say, 1-5 years, which probably would be more 1079 

relevant for official reporting of changes in biomass and carbon stocks, the challenges of having 1080 

few samples in change categories representing human activities for which estimates are required 1081 

would be substantial. A pre-stratification also makes the design less robust than a simple and 1082 

unstratified design in the sense that a pre-stratification followed by a subsequent post-stratification 1083 

may result in a large number of distinct groups that have to be handled as unique entities through 1084 

the estimation procedure.  1085 

One way to mitigate the risk of few samples in rare change categories (post-strata) is to 1086 

increase the sampling intensity in areas where changes are expected to occur, for example along 1087 

deforestation frontiers, i.e., buffer zones surrounding recently deforested areas where continued 1088 

land conversion might be expected in the future. However, the geographical location of future loss 1089 

of biomass can be difficult to predict and much of the loss is also related to daily use of tree 1090 

biomass in the local communities leading to degradation rather than deforestation or even just 1091 

temporary loss of trees. Thus, when resources for field sampling are scarce application of design-1092 
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based estimators for change is challenging since they rely on probability samples of sufficient sizes 1093 

for each part of a forest for which separate estimates are requested.  1094 

This study was focused on how LiDAR data may assist in providing areal estimates of 1095 

changes typically required for international reporting and how associated change estimates for 1096 

biomass can be obtained. The study did not address how one most efficiently (“minimizing” the 1097 

uncertainty) could estimate net change in biomass for the entire AOI, given the available 1098 

resources, i.e., the field sample and the LiDAR data at hand. For example, it is likely that more 1099 

efficient post-stratification schemes than the applied one (deforestation/degradation/untouched) 1100 

may exist. Thus, had the aim of this work been to provide “the most precise” estimate of net 1101 

change in biomass for the entire AOI regardless of activity, we would have considered other post-1102 

stratification schemes as well. This could also incorporate a separate class representing those parts 1103 

of the population where prediction of post-stratum according to a model would be uncertain (cf. 1104 

Frayer, 1978; Gregoire & Valentine, 2008, p. 153) and a fine-tuning of the probability thresholds 1105 

applied when assigning specific categories to each individual population element according to the 1106 

model.  1107 

In general, the focus in international reporting on human activity categories in many cases 1108 

is sub-optimal in the sense that the uncertainty of the estimated overall net change in carbon is 1109 

likely to be larger than it needs to be, given the resources spent on data collection. Estimates with 1110 

higher precision can most likely be achieved within given budgets with more conscious selection 1111 

of pre-/post-stratification schemes and a careful choice of estimation procedures. 1112 

Finally, it should be mentioned that little attention was vested on finding the “best” models 1113 

for prediction of change category (post-stratum) as well as change in biomass. Other model forms, 1114 

transformations of the LiDAR variables, and more sophisticated variable selection procedures 1115 

(McRoberts et al., 2012b) may provide more suitable models and thus provide even more precise 1116 

model-assisted estimates.  1117 

 1118 

4. Conclusions 1119 

To conclude, this study has demonstrated how multi-temporal LiDAR data may be used as 1120 

auxiliary to data from a probability sample of field plots to estimate areal changes in a forest and 1121 
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associated changes in biomass deemed relevant for international reporting. The change categories 1122 

were treated as post-strata in the estimation. The empirical results indicate a significant gain in 1123 

precision of areal estimates of deforestation, forest degradation, and untouched areas by adding 1124 

LiDAR data to the estimation. Compared to pure field-based estimates, the standard errors of the 1125 

model-assisted estimates were reduced by 43-75%, with the largest relative improvement for 1126 

deforestation. The LiDAR data also contributed to improved precision of the biomass change 1127 

estimates. The standard errors for individual change categories (post-strata) were reduced by 18-1128 

84%. The largest improvement in precision was experienced for degradation (73-84%), which is a 1129 

category that is difficult to assess with most other remote sensing techniques. Small sample sizes 1130 

can be a challenge in change estimation. Future research should focus on stratification schemes 1131 

that may contribute to improved precision of change estimates in sample surveys using LiDAR 1132 

data as auxiliary information with due attention to sample sizes. Other approaches to estimation 1133 

and inference for which a probability sample of sufficient size is not a prerequisite, such as model-1134 

based methods, also deserve attention since resources for field sampling often are scarce in many 1135 

countries likely to take part in a future REDD mechanism.  1136 
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Table 1. Areal distribution on forest classes, corresponding sample survey plot numbers, sampling 1333 

fractions, and estimated total above-ground biomass on the plots in 1999 and 2010. 1334 

        AGB1999  (Mg ha-1)  AGB2010 (Mg ha-1) 1335 

    Pre- Area No. of  Sampling _________________  _________________ 1336 

Forest class        stratum  (ha) plots fraction Mean Range  Mean Range 1337 

I: Recently regenerated           1 65.8 31 0.0094 49.2 2.2-171.6  116.6 25.7-220.0 1338 

II: Young forest            1 120.9 55 0.0091 114.9 25.6-272.4  172.2 52.2-441.1 1339 

III: Mature forest, spruce dominated      1 140.4 58 0.0083 153.8 34.5-349.1  118.7 0-462.3 1340 

IV: Mature forest, pine dominated         2 195.6 32 0.0033 94.6 40.8-191.6  95.1 0-195.8  1341 
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Table 2. Sensor and flight parameters for the airborne scanning LiDAR campaigns 1342 

Parameter   1999    2010 1343 

Instrument   Optech ALTM 1210  Optech ALTM Gemini 1344 

Aircraft   Piper PA-31-310 Navajo Piper PA-31-310 Navajo 1345 

Date of acquisition   8-9 June 1999
a
  2 July 2010 1346 

Average flying altitude 700 m a.g.l.   900 m a.g.l. 1347 

Flight speed    71 ms
-1

    80 ms
-1

 1348 

Pulse repetition frequency  10 kHz    100 kHz 1349 

Scan frequency  21 Hz    55 Hz 1350 

Scan angle (after processing) 14.0°    13.8°    1351 

Pulse density on ground 1.2 m
-2

    7.3 m
-2

  1352 

a
LiDAR data for terrain modeling acquired on 6 June 2000.  1353 
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Table 3. Classification rules used to determine the post-stratum for the sample survey plots 1354 

Post-stratum  Forest class Rule 1355 

A. Deforestation  I-IV  if AGB2010 < 0.1AGB1999 then category=’A’ 1356 

B. Degradation  I  elseif AGB2010 ≥ 0.1AGB1999 and AGB2010 < AGB1999 then category=’B’  1357 

   II  elseif AGB2010 ≥ 0.1AGB1999 and N2010 < 0.5N1999 then category=’B’ 1358 

   III-IV  elseif AGB2010 ≥ 0.1AGB1999 and N2010 < 0.7N1999 then category=’B’ 1359 

C. Untouched  I-IV  elseif category=’C’ 1360 

N1999=observed stem number in 1999, N2010=observed stem number in 2010, AGB1999=observed total above-ground 1361 
biomass in 1999, AGB2010=observed total above-ground biomass in 2010. 

 
 1362 
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Table 4. Estimation results for multinomial logistic regression model shown in Eq. (1) 1363 

Coefficient
a
   Estimate Wald chi-square p-value 1364 

InterceptB   4.89  2.82   0.093 1365 

InterceptC   7.60  6.79   0.009 1366 

δpf70B    0.48  5.56   0.018 1367 

δpf70C    0.83  8.90   0.003 1368 

δdf0B    7.00  2.17   0.141 1369 

δdf0C    36.46  18.52   <0.001 1370 

 1371 

Model fit: 1372 

   Deviance        1.000 1373 

   Pearson chi-square goodness-of-fit     1.000 1374 

a
Subscripts B and C symbolize coefficients in models for post-strata B and C, respectively;   1375 

δpf70=difference between 70th height percentiles of the first echo LiDAR data from 2010 and 1376 

1999; δdf0=difference between the cumulative canopy densities at 1.3 m above ground of the first 1377 

echo LiDAR data from 2010 and 1999.  1378 
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Table 5. Results of leave-one-out cross validation of the multinomial logistic regression model in 1379 

Table 4. The table shows an error matrix of observed versus predicted number of field plots that 1380 

were classified into post-strata 1381 

      Observed 1382 

    __________________________________ 1383 

Predicted   A  B  C Totals User’s accuracy (%) 1384 

A. Deforestation  22  1  0 23  95.7 1385 

B. Degradation  1  9  3 13  69.2 1386 

C. Untouched   0  6  134 140  95.7 1387 

 1388 

Totals    23  16  137 176 1389 

Producer’s accuracy (%) 95.7  56.3  97.8  1390 

Overall accuracy (%)      93.8 1391 

  1392 
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Table 6. Regression models for change in above-ground biomass (δAGB), for above-ground 1393 

biomass in 1999 (AGB1999) and 2010 (AGB2010), and for the ratio between biomass in 2010 and 1394 

1999 (AGB2010/AGB1999) 1395 

Post-  Forest Response          1396 
stratum  class  variable  Model form

a
 Explanatory variables

b
  n R

2
 1397 

A  All δAGB  Linear  δdl5    23 0.60 1398 
B  All δAGB  Linear  δpf0, δpf20, δcvf, δpl0  13 0.98 1399 
C  I δAGB  Linear  δpf20    31 0.40 1400 
C  II δAGB  Linear  δmeanf    49 0.44 1401 
C  III δAGB  Linear  δdf3, δpl10, δpl90   34 0.60 1402 
C  IV δAGB  Linear  δpf50, δdf8, δpl60, δpl80  26 0.77 1403 
 1404 
A  All AGB1999  Multiplicative pf70, dl3    23 0.72 1405 
B  All AGB1999  Multiplicative pf30    13 0.88 1406 
C  I AGB1999  Multiplicative pf10, df5    31 0.88 1407 
C  II AGB1999  Multiplicative pf20, dl1    49 0.92 1408 
C  III AGB1999  Multiplicative pf80, dl7    34 0.81 1409 
C  IV AGB1999  Multiplicative pf90, df9    26 0.72 1410 
 1411 
A  All AGB2010  Multiplicative pf90, dl5    23 0.67 1412 
B  All AGB2010  Multiplicative meanl    13 0.93 1413 
C  I AGB2010  Multiplicative meanl, dl0   31 0.88 1414 
C  II AGB2010  Multiplicative pl40, meanl   49 0.82 1415 
C  III AGB2010  Multiplicative meanl, df9   34 0.80 1416 
C  IV AGB2010  Multiplicative pl80, dl0    26 0.76 1417 
 1418 
A  All AGB2010/AGB1999 Multiplicative Rdf7, Rdf9, Rdl4, Rdl8  23 0.95 1419 
B  All AGB2010/AGB1999 Multiplicative Rdf5, Rdf9   13 0.92 1420 
C  I AGB2010/AGB1999 Multiplicative Rdf0, Rdf9, Rpl0, Rdl1  31 0.87 1421 
C  II AGB2010/AGB1999 Multiplicative Rpl90, Rdl8   49 0.55 1422 
C  III AGB2010/AGB1999 Multiplicative Rpl90, Rdl6   34 0.44 1423 
C  IV AGB2010/AGB1999 Multiplicative Rpf50, Rpl50, Rpl90  26 0.75 1424 
a
Linear models were estimated according to Eq. (38). Multiplicative models were estimated 1425 

according to Eq. (39). 1426 
b
Symbols: δ=difference between 2010 and 1999 for given variable; R=ratio between 2010 and 1427 

1999 for given variable; p=height percentile of vegetation echoes (0, 10, …, 90); d=cumulative 1428 

canopy density above vegetation threshold (0, 1, …, 9); cv=coefficient of variation of height of 1429 

vegetation echoes; mean=arithmetic mean of height of vegetation echoes; f=first echo; l=last echo.         1430 
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Table 7. Estimated area       and associated standard error estimates (SE) (ha)  1431 

    Synthetic estimate Direct estimate  Model-assisted estimate 1432 

Post-   No. of  ______________  ______________  _______________________ 1433 

stratum    plots           SE       SE 1434 

A. Deforestation  23  51.8   70.4 14.5  51.8  3.4 1435 

B. Degradation  13  46.4  44.6 11.8  53.4  6.7 1436 

C. Untouched   140  424.5  407.7 17.4  417.5  5.8 1437 

  1438 
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Table 8. Estimated change in above-ground biomass (AGB)        and associated standard error 1439 

estimates (SE) (Mg ha
-1

)  1440 

    Synthetic estimate Direct estimate  Model-assisted estimate 1441 

Post-   No. of  _______________ ______________  _______________________ 1442 

stratum    plots              SE         SE 1443 

Approach A: Linear models for change in AGB: 1444 

A. Deforestation  23  -161.1  -131.8 8.9  -162.7  5.8 1445 

B. Degradation  13  -63.3  -45.9 31.1  -62.8  5.0 1446 

C. Untouched   140   41.4  43.1 2.8  41.4  1.8 1447 

All categories      176  12.0  17.8 3.7  11.9  1.6 1448 

 1449 

Approach B: A system of nonlinear models for change in AGB: 1450 

A. Deforestation  23  -157.1  -131.8  8.9  -158.0  4.9 1451 

B. Degradation  13  -47.7  -45.9 31.1  -49.0  8.2 1452 

C. Untouched  140  42.4  43.1 2.8  39.7  2.0 1453 

All categories      176  14.6  17.8 3.7  12.2  1.9 1454 

 1455 

Approach C: Change in AGB by difference between predictions for 2010 and 1999: 1456 

A. Deforestation  23  -161.4  -131.8  8.9  -162.3  4.9 1457 

B. Degradation  13  -52.4  -45.9 31.1  -52.2  8.4 1458 

C. Untouched  140  42.8  43.1 2.8  42.4  2.3 1459 

All categories      176  14.1  17.8 3.7  13.7  2.1  1460 
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Figure Captions 1461 

 1462 

Fig.  1. Map of the Våler study area (852.6 ha) showing the geographical distribution of the four 1463 

forest classes (left) constituting the target population (gray shaded areas), other areas within the 1464 

study region (white), and the distribution of the systematic sample plots (black dots). Forest classes 1465 

I-III constitute pre-stratum 1 while forest class IV is identical to pre-stratum 2. The post-1466 

stratification produced by logistic regression model predictions is displayed to the right.  1467 

 1468 

Fig. 2. LiDAR echoes (>0.5 m) for plot #33 acquired in 2010. Tree heights recorded on 13 trees in 1469 

2010 ranged from 0.5 to 4.0 m. Observed above-ground biomass in 2010 was 7.1 Mg ha
-1

. Gray 1470 

dots indicate echoes from trees with their stem inside the plot. Black dots indicate laser echoes 1471 

from a large tree with the stem located on the plot circumference but correctly recorded to have its 1472 

stem center outside the circumference. Three echoes are located on the stem itself and indicate the 1473 

actual position of the stem. Maximum recorded LiDAR height for the taller tree was 22.4 m.  1474 
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FIGURE 1 1475 

 1476 

  1477 
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FIGURE 2 1478 


