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Predicting quantitative traits from genome and
phenome with near perfect accuracy
Kaspar Märtens1,*, Johan Hallin2,*, Jonas Warringer3,4, Gianni Liti2 & Leopold Parts1,5

In spite of decades of linkage and association studies and its potential impact on human

health, reliable prediction of an individual’s risk for heritable disease remains difficult. Large

numbers of mapped loci do not explain substantial fractions of heritable variation, leaving an

open question of whether accurate complex trait predictions can be achieved in practice.

Here, we use a genome sequenced population of B7,000 yeast strains of high but varying

relatedness, and predict growth traits from family information, effects of segregating genetic

variants and growth in other environments with an average coefficient of determination R2 of

0.91. This accuracy exceeds narrow-sense heritability, approaches limits imposed by

measurement repeatability and is higher than achieved with a single assay in the laboratory.

Our results prove that very accurate prediction of complex traits is possible, and suggest that

additional data from families rather than reference cohorts may be more useful for this

purpose.
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D
isease incidence can be predicted based on the health
record1, the family history2 or the genetic risk due
to predisposing genetic variants segregating in the

population3. Each of these sources of information carries signal
about the trait, but is not sufficient for accurate prediction2,4,5.
For example, the genetic variants mapped to a trait in genome-
wide association studies do not estimate disease risk well, with the
vast majority of the heritable variation not accounted for6,7. Even
with very large numbers of mapped alleles8, purely genomic
prediction accuracies still lag far behind narrow sense heritability
estimates9.

An important question of whether this is due to paucity of
data, or perhaps more fundamental limitations, can be attacked
by predicting phenotypes in model organisms10,11. In particular,
crosses of founders in the yeast system have circumvented many
of the technical difficulties associated with human genetic
analyses, and illuminated genetic basis of variation in molecular
traits12–14, cellular phenotypes15–17, missing heritability18 and
role of interactions19–21. Genome-based prediction has
successfully explained most of the trait variation in two
organism phenotypes using up to five mapped alleles20,22, and
approached narrow-sense heritability accuracy in a large-scale
cross18. For yeast, growth in various environments is an analogue
of the health record, family history is approximated by
phenotypes of closely related individuals, and risk variants can
be mapped as for humans. Thus, we can test whether accurate
phenotype prediction for more complex traits is possible in
practice, and what the constraints are.

Here, we use a recent resource of over 7,000 diploid hybrid
yeast strains of high relatedness23 to predict their growth
phenotypes. Combining genetic and phenotypic data in a linear
mixed model (LMM) framework, as well as using a recently
introduced mixed random forest (MRF) approach, we predict
growth traits with accuracies above their narrow-sense
heritability, and approaching limits set by measurement
repeatability. We find that both relatedness and variant-based
predictions are greatly aided by availability of very close relatives,
whereas information from a large number of more distant
relatives fail to improve predictive performance when closer
relatives are included. Our results suggest that prediction is
improved by both data from closer relatives that share much of
the genome, as well as additional phenotype measurements that
can capture aspects of unique environment and effects too small
to be detected by mapping.

Results
Study population. We made use of 7,396 diploid hybrid
Saccharomyces cerevisiae strains with phased whole-genome
sequences from the collection of diploid phased outbred lines23.
Owing to the two-stage crossing scheme (Fig. 1a), each of
these hybrids has 170 relatives that share one chromosome in
every chromosome pair (expected fraction of segregating site
genotypes identical by state f¼ 0.5), and 7,225 ones for which no
complete chromosome is shared, but a substantial part of linkage
blocks and allele combinations are (expected f¼ 0.375, Fig. 1b).
We refer to these levels of relatedness as ‘close’ and ‘distant’,
respectively, noting that both classes correspond to close
kinship. After filtering out individuals with aneuploidies and
contamination, we retained 6,642 strains for analysis. Population
growth of individual diploid hybrids was measured24 in nine
environments in technical and biological duplicate, growth
estimates were normalized against hundreds of densely spaced
internal standards and the replicate average was used for analysis.
The environments challenge different cellular functions, covering
energy sources (for example, galactose), osmotic stress

(for example, NaCl) and cancer drugs (for example, rapamycin,
Supplementary Table 1). As reported before23, the phenotype
means have large narrow-sense heritabilities (h2) and repeatabilities
(H2, broad-sense heritability; median h2¼ 80%, H2¼ 94%,
standard error¼ 0.09, Supplementary Tables 2 and 3), and the
traits are not independent (pairwise Pearson’s r2¼ 0.01–0.49,
Supplementary Fig. 1), reflecting shared genetic, epigenetic and
environmental influences (Supplementary Fig. 2).

Accurate genome-aided phenotype prediction. We first tested
how well different genomic and phenomic data predicted growth
phenotypes in our population (Fig. 2a and Supplementary Fig. 3),
and then combined them using LMMs25. We obtained
predictions via fourfold cross-validation, with the training set
randomly sampled from both close and distant relatives
(Methods). One growth trait could be predicted from the rest
with reasonable accuracy (Fig. 2b ‘P’, median R2¼ 0.48), and the
quality of prediction depends on the strength of pairwise
correlations of the phenotypes. The genomic best linear
unbiased predictor (BLUP), an additive model based on
realized genetic relatedness alone, captures the pedigree
structure in the population, and achieves prediction accuracies
very close to the narrow-sense heritability estimates (Fig. 2b
‘BLUP’, median R2¼ 0.77, 98% of h2 explained). These
predictions are near-identical to a simple midparent approach
(Pearson’s r240.99, Supplementary Fig. 4). Thus, the genetic
similarity between individuals explains nearly all additively
heritable variation in our population.

Next, we mapped quantitative trait loci (QTLs) in each
environment, and asked how well they predict growth in that
environment. A small number of single nucleotide polymorph-
isms (SNPs) with the largest effects explain a sizeable portion of
additive variance, but for all traits the prediction accuracy
remains lower than BLUP’s (for example, median R2¼ 0.58
versus 0.81 for 10 QTLs, Supplementary Fig. 5). When up to 50
SNPs are included in the model, the accuracy reaches h2 (Fig. 2b,
‘QTLs’, median R2¼ 0.78, 98% of h2 explained), with predictions
very similar to BLUP (r240.97, Supplementary Fig. 6). Therefore,
all tested methods that consider additive genetic effects reach the
same, near-h2 performance, and there is no missing narrow-sense
heritability in our experiment. Extending to the LMM framework
to include genetic background, dominance and interaction effects
gave a modest further improvement (median increase of R2 by
0.06), mainly due to dominance effects of strongest QTLs for
allantoin and galactose (Fig. 2b, ‘LMM’, median R2¼ 0.86).

We then included other phenotypes measured for the same
individual as covariates in the model, and achieved median
prediction accuracy of 0.91 (Fig. 2b ‘LMMþP’). To our
knowledge, this is the highest for complex traits to date26,27,
exceeding narrow-sense heritability for all nine phenotypes and
approaching repeatability (Fig. 2c, 96% of H2 explained). For each
of the measured traits, our predictions of the mean phenotype
(that is, the average of four replicate measurements) have lower
error than a single growth experiment (Fig. 2c). The combined
model improves over others especially when a large proportion of
heritable non-additive variation is not captured by interaction
and dominance effects (Supplementary Fig. 2).

Predictions based on closer relatives are more accurate. So far,
our predictions for each test individual were obtained from
models that were trained with data from its close relatives that
share half of the complete chromosomes. We observed that errors
were larger when close relatives were not available (for example,
Fig. 3b and Supplementary Fig. 7). Thus, we next compared two
training scenarios—‘close relatives’, where each member of the
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test set has several close relatives in the training set (expected
fraction of identical site genotypes f¼ 0.5), and ‘distant relatives’,
where test set individuals are not as closely related to anyone
in the training set (expected f¼ 0.375, Fig. 3a). When training
on close relatives, predictions based on other traits of
the same individual are slightly more accurate (median
improvement¼ 0.04, Fig. 3c, ‘P’), whereas BLUP performs sub-
stantially better. On average, BLUP achieves R2 of 0.14 when
trained on distant relatives and 0.76 on close ones (Fig. 3c,
‘BLUP’). This difference is explained by the larger uncertainty of
the predictive distribution based on distant relatives: the observed
errors are near-perfectly calibrated to their model-derived stan-
dard errors (Fig. 4a, r2¼ 0.96). Accuracy increases markedly even
with a small number of close relatives included in the training
data, whereas adding more distant relatives to close ones does not
improve predictions (Fig. 4b, Supplementary Fig. 8). For example,
adding on average just five close relatives per test individual rises
the median R2 from 0.15 to 0.65, but complementing the training
set of close relatives by all distant relatives has a negligible effect
(median R2¼ 0.79 versus 0.81).

Perhaps surprisingly, training on close relatives also improved
QTL-based predictions. For near-monogenic traits (for example,
growth in allantoin and galactose), the accuracies were similar for
both training scenarios (Fig. 3c ‘QTLs’). However, for more
complex traits, the QTL model trained on distant relatives reaches
high accuracy in the training data, but does not perform well out
of sample, with 61% median decrease in accuracy (respective
decrease for close relatives is 3%, Fig. 4e). In this case, the
prediction uncertainties are similar (Fig. 4c), and most of this
difference is explained by model selection. When we mapped
QTLs in close relatives, but estimated their weights on distant
relatives, the prediction accuracy decreased from 0.73 to 0.65
compared with carrying out both procedures on close relatives
(Fig. 4d and Supplementary Fig. 9). Conversely, mapping QTLs in
distant relatives and fitting their weights in close relatives resulted
in a much lower R2 of 0.31. Including close relatives in training
gives a more faithful approximation of the phenotypic covariance
structure (Supplementary Fig. 10), which explains the large gap
between out-of-sample and in-sample performance for distant
relatives (Fig. 4e). Notably, prediction accuracy drops substan-
tially, even when just 1% of the training data changes (Fig. 4e,
filled versus empty markers).

Combining genomic and phenotypic information (LMMþ P)
to predict from distant relatives gives accuracies similar to
combining QTLs and phenotypic information. For traits where
genomic prediction on distant relatives does not work well (for
example, caffeine, glycine, phleomycin), this model performs
similarly to using other phenotypes only or even slightly worse
(median improvement 0.02, Fig. 3c ‘LMMþ P’). However, for
traits with large effect QTLs (allantoin, galactose, isoleucine),
genetic information helps prediction even if BLUP is not accurate.

Prediction performance is consistent for alternative models.
Other methods for genome-aided trait prediction have either
included other phenotypes directly in the model or are compa-
tible with doing so25,28,29. We confirmed that these prediction
implementations give results that are concordant with ours. First,
we tested the multi-trait LMM (MT-LMM) that jointly infers the
effects of genotype and other phenotypes25. This method gave
results nearly identical to the LMMþP approach on both close
and distant relatives, in which we first regressed the effect of
phenotypes, and then fit a genomic model on the residuals
(Fig. 5a). Second, we applied the recently published MRF, which
accounts for population structure and captures nonlinear genetic
effects28, and can use the other measured phenotypes as
predictors. This method also performed similar to the
combined LMM (median R2 0.91 versus 0.91) for close
relatives, with no consistent difference across the traits (Fig. 5b,
top row). For distant relatives, the MRF had more accurate pure
genomic predictions than a LMM for 8 of 9 traits, and when
including phenotype information for both models, 4 of 9 traits
(Fig. 5b, bottom row).

Discussion
We predicted nine heritable traits in a population of 6,642 yeast
strains of varying high relatedness, and achieved accuracies over
90%, very near the repeatability limit. To our knowledge, these
are the most precise out-of-sample predictions of complex traits
to date. There is almost no missing narrow- or broad-sense
heritability, proving that very accurate genome-aided predictions
can be obtained in practice, in contrast to relatively poor
genomic prediction performance for human cohorts, for
example, R2o0.16 using unrelated individuals, and o0.37 for
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Figure 1 | Experiment population. The 7,396 studied individuals are diploid hybrids that were constructed by systematic mating of 86 F12 MATa haploid

yeast segregants to 86 MATa individuals, in all pairwise combinations. (a) Two-stage crossing scheme, starting from the West African (WA) and North

American (NA) parents gives a large, diverse, diploid population. (b) Distribution of fraction of sites with identical genotype for pairs of hybrids is bimodal.

The frequency of individual pairs that are identical by genotype state (IBS) at fraction f of the sites (y-axis) is different for pairs that share one parent

(‘close’, right), and ones that do not (‘distant’, left).
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close relatives9. Our predictions outperformed the traditional
mid-parent approach that is limited to narrow-sense heritability,
but has been predicted to remain unsurpassed in accuracy for
humans30.

The improvement in predictive ability using phenotype data is
due to capturing additional signal from the non-additive genetic
and environmental components, reflecting the extent to which
these are shared between the traits. Their relative contribution
can somewhat be gauged from the additional accuracy of the
LMMþP model over the standard LMM that accounts for
mapped additive, dominance and interaction effects. The
improvement is largest for traits that have a large gap between

narrow and broad-sense heritabilities (phleomycin, hydroxyurea,
glycine, isoleucine), which is not caused by a single dominant
allele (galactose, allantoin). Any remaining difference is poten-
tially due to both weak interaction and dominance effects not
included in the LMM during model selection. Standardization,
distribution of replicates across multiple pre-culture and experi-
mental batches, and normalization of phenotypes to very densely
spaced internal controls are expected to minimize the influence of
shared environmental variation across plates24. A small
contribution of shared environment is consistent with the
phenotypic covariance decomposition (Supplementary Fig. 2),
and sizes of variance components due to the 2nd and 3rd order

0

0
Observed (NaCl)

R 2 = 0.36

P

P

QTLs

BLUP

LMM

LMM + P

P

QTLs

BLUP

LMM

LMM + P

0 0.25 0.50 0.75 1 0 0.25 0.50

NaCl Phleomycin Rapamycin

IsoleucineHydroxyureaGlycine

Allantoin Caffeine Galactose 1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

0 0.25

R
2

R 2

R
2

R
2

0.50

h2

H 2

H 2
1

0.75 1

0 0.25 0.50 0.75 1

0 0.25 0.50 0.75 1
0.75 1 0 0.25 0.50 0.75 1

P

QTLs

BLUP

LMM

LMM + P

QTLs BLUP LMM LMM + P
P

re
di

ct
ed –1

–1

–2

–2

–3

–3

–4

–4

0

0
Observed (NaCl)

R 2 = 0.84

P
re

di
ct

ed –1

–1

–2

–2

–3

–3

–4

–4

0

0
Observed (NaCl)

R 2 = 0.86

P
re

di
ct

ed –1

–1

–2

–2

–3

–3

–4

–4

0

0
Observed (NaCl)

R 2 = 0.89

P
re

di
ct

ed –1

–1

–2

–2

–3

–3

–4

–4

0

0
Observed (NaCl)

R 2 = 0.92

P
re

di
ct

ed –1

–1

–2

–2

–3

–3

–4

–4

a

b c

Figure 2 | Prediction accuracy. All panels contain five model classes: linear regression on other phenotypes (‘P’, yellow), linear regression with additive

effects determined by forward selection (‘QTLs’, purple), prediction based on the realized genetic relatedness (‘BLUP’, green), the best LMM with additive

and interaction effects (‘LMM’, blue) and the best LMM with additive and interaction effects together with other phenotypes (‘LMMþ P’, red). All

prediction accuracies denote coefficient of determination R2, and are determined by fourfold cross-validation. (a) Models using a single source of

information predict less accurately than a combined one. Predicted (y axis) and observed (x axis) growth in NaCl for every measured hybrid strain (dots)

for each model class, with coefficient of determination (R2) of the predictions labelled. Perfect predictions would lie on the grey dashed line y¼ x. (b) Linear

mixed models with information from other phenotypes give very accurate predictions. Predictive performance (R2, x axis) for different models (y axis) for

each of the measured phenotypes (nine boxes). Bars indicate the range of R2 over the four cross-validation folds. The dashed lines show narrow-sense

heritability h2 (black, left) and repeatability H2 (black, right) estimates for the mean phenotype, and the dotted line (red) shows repeatability of a single

measurement H1
2. (c) Prediction can be more accurate than one measurement. Prediction accuracy of mean phenotype (R2, y axis) compared with different

types of heritability estimates (x axis) for the four model classes: narrow-sense heritability of average phenotype (h2, top panel), repeatability of average

phenotype (H2, middle panel) and repeatability of a single measurement (H1
2, bottom panel). Grey dashed lines denote the identity y¼ x.
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interactions that are difficult to map23,31. Although we cannot
completely exclude that a small fraction of the phenotype
covariance reflects shared environmental variation, for example,
in the form of nutrient access, initial population size or exposure
to stress, the residual covariance has been empirically
demonstrated to be smaller than our prediction improvements
for most traits24. Regardless, additional measured phenotypes
from the individual can clearly inform on all these sources of
variation, circumventing the need to explicitly ascertain their
effects.

Genomic prediction methods have recently been extended to
include more fine-grained decomposition of trait variances, both
for phenotypes (for example, multi-trait models25) and genotypes
(partitioning sites by chromosome32, allele frequency33 or
functional class34). In latter group, the genetic covariance
matrix is partitioned by allele category, and a BLUP model is fit
for each. BLUP is a linear combination of training data, with
uncertainties stemming from genetic relatedness only for
prediction. Accordingly, we found that genomic BLUP
estimates became uncertain when closer relatives were
unavailable (Fig. 4a), and prediction error increased. This
source of error is not circumvented by the partitioning
methods, as the relatedness-derived uncertainty remains, and
therefore these approaches are unlikely to improve our
suboptimal predictions for more distant relatives.

It is important to note that our study population does not share
many of the features of human cohorts. We used data from a
diallel cross, in which only two alleles are present at any locus,
and their frequencies are close to 50%; there is no spectrum of
low frequency and rare alleles. Further, due to the controlled
phenotyping design, there is little environmental variation and
the heritability estimates in our populations are therefore very
high. Although this is atypical for most human traits, our results
concern prediction accuracies relative to the heritabilities,
regardless of their numerical value. Finally, human complex
traits can be influenced by hundreds if not thousands of loci.
Nevertheless, their combined predictive ability has remained far
below the narrow-sense heritability estimates. We capture nearly
all of the broad-sense heritability with the most precise models,
demonstrating that knowledge of additional phenotypes helps
estimate the combined influence of small effect alleles and
interactions that are difficult to map. Therefore, making use of the
accumulated personal phenotype data is also expected to improve
human trait prediction.

When no very close relatives were available, and no single QTL
explained a large fraction of variance, the pure genomic methods
were inaccurate, even in our population of 6,642 individuals with
high relatedness. At the same time, when the number of very
close relatives in the training sample was sufficiently large, the
predictions were not improved by adding all remaining more
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and ‘distant’ (bottom)) and two types of prediction: purely genomic prediction (panel ‘genomic’, left), and combined genomic and phenomic prediction

(panel ‘genomicþ P’, right). Both x and y axes represent the coefficient of determination R2, and the horizontal and vertical error bars denote the range of

R2 over four cross-validation folds. (a) Multi-trait linear mixed models (MT-LMMs) perform similar to single-trait LMMs. Predictive performance

(R2) for each environment (dots with various colours) for single-trait models (x axis) and multi-trait models (y axis). (b) Mixed random forests (MRFs)

perform similar to single-trait LMMs. Predictive performance (R2) for single-trait LMMs (x axis) and MRFs (y axis).
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distant relatives. Thus, observing phenotypes for parental
haplotypes in at least a few cases causes BLUP to upweight their
contributions, and for QTL mapping to prioritize alleles that
capture their signal. In concert, these observations suggest that
efforts directed towards creating genotype-based scores using
common variants to predict disease risk could benefit dramati-
cally from being complemented by systematic collection of family
history and relatedness data30,35,36. As information from as few as
five close relatives gave large gains, we expect such an approach to
be a cost-effective solution for achieving better prediction in a
clinical setting with finite resources.

Methods
Panel design and phenotyping. 172 haploid F12 segregants (86 MatA and 86
MatAlpha) from a cross between YPS128 and DVPBG6044 (ref. 37) were crossed
in an all against all fashion to obtain 86� 86¼ 7,396 diploid hybrids using
standard yeast protocols (Fig. 1). After removing strains spawning from one
contaminated and eight aneuploid haploid founders, we were left with
81� 82¼ 6,642 crosses for analysis. The strains were grown in biological and
technical duplicates (four measurements total) in 1536-position solid agar plate
cultures, with all replicates on different plates and taken from two different
pre-cultures to reduce systematic bias. Medium preparation, plate pouring, robotic
pinning and pre-culture and experimental conditions were all extensively stan-
dardized to reduce systematic bias. Every fourth position was occupied by
genetically identical internal controls in the form of the reference YPS128 strain,
and the 384 controls on each plate were used to remove any remaining bias by
normalization. Although complete randomization with respect to all known
confounders (for example, plate position, fixture position, machine, pre-culture,
temperature, humidity, neighbouring colony size, amount of light) and unknown
sources of bias is not feasible, the dense grid of reference strains provides an
excellent standard. We extracted the area under the growth curve relative to the
starting point in each of the nine environments, converted the values to log-scale,
and normalized them to a surface constructed from the surrounding internal
YPS128 controls, as described earlier24. The four replicate values were then
averaged to obtain the final phenotype (that is, mean growth) for each individual
and environment. Panel design, genotyping, phenotyping and normalization are
described in detail in refs 23,24.

Modelling and predictions. We used a range of models to predict a trait of interest
either on genomic information only, individual phenotypic information only or both.

Phenotype (‘P’). Let y be the vector containing the phenotype of interest for all N
individuals, and let P1, y, P8 be the remaining phenotypes. We modelled y as
y�Nðb0 þ b1P1 þ � � � þ b8P8;s2IÞ to fit the phenotype weights b used for
prediction.

Best linear unbiased predictor. Let xj be the genotype vector for SNP j¼ 1, y,
M, and let X be the genotype matrix X¼ (x1, y, xM). In the genomic BLUP model,
y ¼ m1þ

P
j bjxjþ e with random coefficients bj � Nð0; s2

gÞ and measurement
noise e�Nð0; s2

e IÞ. This model implies the multivariate Gaussian distribution
y�Nðm1; s2

gK þ s2
e IÞ, where K ¼ 1

c XXT is the realized genetic relatedness matrix,
with the scaling constant c being the average diagonal value of XXT. Prediction for
the test individual can be obtained by conditioning on the observed data in a
standard way for multivariate normal distributions. When calculating the standard
deviation of the predictive distribution (Fig. 4a), we averaged the variances on the
predictive distributions (that is, averaged the diagonal elements of the covariance
matrix of the predictive multivariate normal distribution) and reported the square
root of this number.

Quantitative trait loci. To identify the strongest QTLs, we first carried out
forward selection for up to 50 iterations in the linear regression model
y�Nðb0 þ

P
j2Qt

bjxj;s2IÞ, where Qt denotes the selected collection of QTL
indexes at iteration t. The number of QTLs in the final model was determined by
out-of-sample prediction accuracy, with fourfold cross-validation on the training
portion of data (hence, altogether a double cross-validation scheme).

Midparent. Let yij be the phenotype for individual who has parents i and j. Let
Pi

1 and Pj
2 be the parental phenotype values. We model yij as the mid-parent value

yij ¼ 0:5ðP1
i þP2

j Þþ eij , where eij is uncorrelated noise. We first fit the parental
values from the yij observed in training data, and used them to predict phenotypes
of test individuals.

LMM with dominance and interaction effects. The LMM model combines
additive, dominance and interaction effects with genetic relatedness,
y�NðQTLsþ domþ int; s2

gK þ s2
e IÞ. The fixed effects (QTLsþ domþ int) are

constructed with forward selection among additive QTLs and interaction between
all such SNP pairs xi and xj, where xi has previously been selected into the model.
Although we miss interactions where neither locus has a significant additive effect,
it has been shown that such occurrences are rare38, and their contribution to
explaining variance is negligible19. By allowing self-interactions, we also
incorporated dominance effects. We selected the final model by performing cross-
validation on training data after each of the feature selection steps.

LMM including phenotypes (‘LMMþP’). The LMMþP model combines
additive, dominance and interaction effects with genetic relatedness and other
traits, y � NðQTLsþ domþ intþ P; s2

gK þ s2
e IÞ. The fixed effects contains a

genetic (QTLsþ domþ int) and non-genetic (P) part. The latter includes the linear
combination of all other traits P1, y, P8. First, we regress y on P, and then we
construct the genetic component as described for the LMM model.

Multi-trait LMM. MT-LMMs model multiple phenotypes jointly. The
correlation between two traits is modelled in two parts, via a genetic and non-
genetic component as follows25. Let Y¼ [y!,y,y9] be the matrix for phenotypes
y!,y,y9, and let F denote the fixed effects for each of these phenotypes,
F¼ [f1,y,f9]. We used the same fixed effects fi that we constructed in the LMM
model. Let C be the genetic covariance matrix between phenotypes and S the non-
genetic one. Then vecY � NðvecF;C � K þ� � IÞ according to the MT-LMM.
To obtain MT-LMM predictions which correspond to the LMMþ P model, we
condition the multivariate normal distribution.

Mixed random forest. We applied the MRF approach28, available via LIMIX25.
We ran the MRF with 25 trees and otherwise default settings. For genomic
predictions (corresponding to the LMM model), we included all SNPs as potential
features. For genomic and phenomic prediction (corresponding to the LMMþP
model), we added also other phenotypes as potential features.

Training and obtaining predictions. All models were fitted with the Python
package LIMIX25. We used four-fold cross-validation to obtain out-of-sample
predictions for all 6642 individuals. We partitioned the set of all individuals into
four folds analogously as shown in Fig 3a, i.e. by splitting the two sets of parents
(i.e. one in rows, the other in columns) into two equally sized groups. We use each
one of these four subsets of size N2 as a test set to obtain predictions and the
remaining three as a training set to fit the models. First, we did not take into
account the relatedness structure and divided individuals into subsets randomly
(results in Fig. 2). Later, we distinguished between closely and distantly related
individuals (results in Fig. 3). The latter correspond to siblings in a traditional
sense, sharing many of the haplotype blocks (expected fraction of sites identical by
state 0.375), whereas the former share one complete chromosome in each pair
(expected fraction of sites identical by state 0.5). The four test sets remained the
same as before, but instead of training on all 3N2 remaining individuals, we picked
the N�N individuals who do not share a parent with anyone in the test set
(‘distant relatives’), as well as sampled N2 from the 2N2 remaining individuals who
do share one parent with someone in the test set (‘close relatives’).

Heritability estimation. Narrow-sense heritability was estimated from the geno-
mic BLUP model as s2

g=ðs2
g þ s2

eÞ, when fitted to all of the data. To estimate
repeatability, we fitted the following fixed effects model rij¼ yiþ eij, where ri1, ri2,
ri3, ri4 are the four replicate measurements for individual i, yi is the average rij value
for this individual and eijBN(0, s2). Repeatability was estimated as 1� s2/Var(r).

Data availability. The data used in this study are available in the Supporting
Information of Hallin et al.23 Analysis code is available at https://github.com/
kasparmartens/y10k-prediction.
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