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Powerful decomposition of complex traits in a
diploid model
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Leopold Parts2,5, Jonas Warringer4,6 & Gianni Liti1

Explaining trait differences between individuals is a core and challenging aim of life sciences.

Here, we introduce a powerful framework for complete decomposition of trait variation into

its underlying genetic causes in diploid model organisms. We sequence and systematically

pair the recombinant gametes of two intercrossed natural genomes into an array of diploid

hybrids with fully assembled and phased genomes, termed Phased Outbred Lines (POLs).

We demonstrate the capacity of this approach by partitioning fitness traits of 6,642

Saccharomyces cerevisiae POLs across many environments, achieving near complete trait

heritability and precisely estimating additive (73%), dominance (10%), second (7%) and

third (1.7%) order epistasis components. We map quantitative trait loci (QTLs) and

find nonadditive QTLs to outnumber (3:1) additive loci, dominant contributions to heterosis

to outnumber overdominant, and extensive pleiotropy. The POL framework offers the

most complete decomposition of diploid traits to date and can be adapted to most model

organisms.
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D
ecomposing the trait variation within natural populations
into its genetic components is a fundamental goal
of biology that has proven to be challenging1,2.

Environmental and gene-by-environment influences are difficult
to control and alleles accounting for trait variation tend to have
frequencies that are too low for their mostly weak effects to be
reliably called3. Compounding matters, many alleles are believed
to influence each other within (dominance) and between
(epistasis) loci4. Consequently, one trait can be the result of
many different allele combinations, each combination being
exceedingly rare in the population. This makes the individual
contributions of most alleles near impossible to assess5. Model
organisms offer more complete dissection of complex traits
because they can be analysed in controlled contexts, minimizing
environmental and gene-by-environment variation, and in
populations derived from a few founders, ensuring high
frequencies of all alleles and allele combinations6,7. Because
of their ease of use in genomics8 and phenomics9, large panels
of haploid yeast segregants have allowed for fine-grained
dissection of complex traits10–12. Unfortunately, exhaustive
trait decomposition in haploid crosses requires the costly
genotyping of thousands of genomes, disregards dominance and
provides much simplified estimates of epistasis. A more complete
partitioning of trait variation that is relevant to a diploid
context has remained elusive. Inspired by previous thinking
and theoretical work on recombinant inbred intercrosses in
other model organisms13–15, we here introduce a powerful and
cost-effective framework for tracking the covariation through
genome and phenome that allows accurate estimates of
dominance and epistasis in diploid models. The framework is
based on intercrossing two natural genomes over many
sexual generations to reduce linkage16,17 followed by
sequencing and systematic pairing of the resulting haploid
recombinant segregants to generate a very large array of diploid
hybrids with fully assembled and phased genomes, termed Phased
Outbred Lines (POLs). We validate the capacity of the POLs
approach by genetic decomposition of growth trait variation
across 6,642 diploid yeast genomes in nine distinct environments,
and our results provide the most complete decomposition of
diploid traits to date.

Results
An experimental framework for diploid complex trait analysis.
To accurately decompose diploid trait variation, we first isolated
and sequenced the full genomes of 86 MATa and 86 MATa
haploid Saccharomyces cerevisiae strains. These haploids were
randomly drawn from a twelfth generation two-parent intercross
pool, constructed using highly diverged (0.53% nucleotide
difference) wild strains, here termed North American (NA) and
West African (WA). Only two alleles segregate at each
polymorphic site, with on average equal representation in the
pool16. The sequenced haploids of opposite mating types were
systematically crossed in all possible pairwise combinations to
generate 7,396 genetically distinct diploid hybrids, retaining 6,642
POLs used for all downstream analysis (Fig. 1a, Methods).

With only a modest number of 172 haploid genomes
sequenced18, we could accurately infer the genomes of our large
set of POLs. Notably, these genomes are fully phased, that is, we
know the parent-of-origin for each allele and their combination
into diplotypes. Furthermore, a very small fraction of genotype
information is missing (max: 6.5%; mean: 0.5%; median: 0.1%;
min 0%) and there are no confounding effects from segregating
auxotrophies that contribute to trait variation (Supplementary
Data 1). The hybrids showed remarkable uniformity, with
heterozygote frequencies close to 50% (Fig. 1b). The few strong

deviations (eight deviations430%) from 50% heterozygosity were
either due to selection for one parental allele during the intercross
(overrepresentation of homozygous sites) or from the crossing
design, the latter resulting in regions of fixed heterozygosity at the
MAT and LYS2 loci (Fig. 1b). Hybrid pairs sharing one haploid
parent will be genetically more similar than two POLs that do
not share a parent (expected fraction of loci with identical
genotypes¼ 0.5 and 0.375, respectively), resulting in a bimodal
distribution of the genetic relationship matrix entries19.

We precisely phenotyped the complete set of 6,642 designed
POLs (median CoV¼ 10%, mean CoV¼ 14%), their F12 haploid
parents, the diploid NA and WA founders and their hybrid in a
well replicated (nZ4) manner, using a high resolution growth
phenomics platform designed to minimize noise and bias20.
We selected nine physiologically distinct environmental
conditions (Supplementary Table 1) that challenged growth to
different extents (Supplementary Fig. 1a), and we obtained 450
million population size estimates, organized into circa 250,000
growth curves (Fig. 1a, right panel). Extracting the (maximum)
growth rate and a mean growth phenotype (Methods) from
each growth curve (Supplementary Data 2), we found
phenotype distributions across the POLs to be mostly
monomodal (Fig. 1c; Supplementary Fig. 1a,b). Given the near
absence of environmental variation, this implies complex traits
with multiallelic influences. Growth in galactose and allantoin
was bimodally distributed, in agreement with large effect sizes
for the GAL3 (WA premature stop codon) and DAL (linked
loci, WA loss-of-function SNPs in DAL1 and DAL4) genes
respectively21,22. Correlation between growth rate and mean
growth ranged from � 0.13 to 0.76 (Pearson’s r; Fig. 1d, orange
borders) but was overall low (mean r: 0.27; median r: 0.21). This
agrees with the hypothesis that distinct genetic factors control
population expansion in different growth phases21,23.
Correlations across environments were positive in all but one
case (r¼ � 0.02) and often of moderate or large magnitude
(max r¼ 0.84, median r¼ 0.29; Fig. 1d). We cannot completely
exclude a small influence of shared error on correlations, but the
extensive standardization, randomization and normalization
(Methods), and the large variation in pairwise correlations
argue compellingly in favour of extensive positive pleiotropy.

Near complete variance decomposition of diploid traits. Based
on the in silico constructed diploid genomes, we used a random
effects model to partition the variance in growth traits into
components arising from additive (no interaction), dominance
(intralocus interaction) and pairwise and third order epistatic
effects (interlocus interactions) (Supplementary Note 1). We first
evaluated whether the model could accurately estimate variance
components as well as their uncertainty via simulation
(Supplementary Note 1). The simulations showed that the model
could accurately decompose the variance into additive,
dominance, and pairwise epistatic components, and that s.e.
estimates were well calibrated (Supplementary Data 3 and 4).
When adding a component for third order interactions, the
overall variance decomposition became somewhat biased,
possibly due to introducing non-convexity into the optimization
problem. However, the variance from third order interactions was
estimated accurately (Supplementary Data 4). Due to the biasing
effect, the variance decomposition for third order interactions was
performed and reported separately.

The large sample size, known large variation in relatedness and
absence of environmental variation allowed us to estimate
nonadditive variance components with unprecedented accuracy.
Thus, additivity, dominance and pairwise epistasis accounted for
almost all trait variation (broad sense heritability, H2¼ 80–99%
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depending on the trait, median 91%, Fig. 2, upper panel). On
average, the proportion of phenotypic variance explained by
additive effects was 73% (50–87%), for dominance effects this

was 10% (2–45%), and for pairwise interactions this was 7%
(1–15%). Complete dominance of the functional NA over the
nonfunctional WA cluster of DAL genes22 ensured a considerable
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Figure 1 | An experimental framework for analysis of diploid traits. (a) Experimental design. Left panel: Advanced intercrossed lines were constructed by

multiple rounds of random mating and sporulation of North American (NA) and West African (WA) genomes. Middle panel: We sequenced 172 of the

resulting segregants and paired these to generate an array of 7,310 diploid hybrids (POLs). Right panel: The POLs and their F12 haploid parents were growth

phenotyped in nine environments, providing high resolution growth curves. (b) Frequency of homozygotes (red: WA/WA, blue: NA/NA), heterozygotes

(purple: NA/WA) and missing genotypes (white, mostly attributed to chr. IX aneuploidies) at each segregating site among the 7,310 POLs. Deviations from

50% heterozygosity are explained by selection (numbers 1, 4–8) against one allele in the F12 haploid parent construction, or by forced heterozygosity at the

LYS2 (number 2) and MAT (number 3) loci. (c) Growth rate distributions of POLs (blue), their haploid F12 parents (orange) and the diploid parent

estimates (grey, Methods). (d) Correlations (Pearson’s r) between the growth rate and mean growth for POLs within environments (lower left to upper

right diagonal; orange borders), between growth rates (above diagonal) and mean growth (below diagonal) in pairs of environments. Colour intensity

(3-colour scale: dark yellow to white to dark blue) and number indicate the degree of correlation r.
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dominance component for the variation in the two allantoin
phenotypes, growth rate and mean growth. Otherwise, the
large variance contributions of additive genetic influences were
consistent across environments (Fig. 2, upper panel).

The trait with the largest estimated variance from pairwise
epistasis was growth rate on glycine (15%); this epistasis variance
contribution equalled one third of the largest dominance
variance estimate (45% for allantoin growth rates). We estimated
that third order interactions accounted for 1.7% of the trait
variation on average (Fig. 2, lower panel). However, only growth
rates on isoleucine, glycine and galactose, and mean growth in
the presence of phleomycin were significantly (42 s.e.m. from 0)
affected by third order epistasis. Variation in genome wide levels
of homozygosity had no detectable influence on yeast fitness
traits (Supplementary Fig. 2). This is in stark contrast to its
substantial negative effect on human traits, for example, height24.
Thus, the data suggest that there is no general inbreeding
depression in yeast, consistent with natural populations being
largely homozygous25,26.

Cost-efficient QTL mapping in yeast POL diploid hybrids. Our
crossing design resulted in that one haploid genome of each POL
is kept constant across the 86 POLs that are derived from any one
of its haploid F12 parents (Fig. 1a). This sharing of half a genome
accounted for surprisingly much of the overall variation in
traits, which somewhat restricted our capacity to distinguish
contributions from individual alleles and allele pairs from the
effect of the genetic background. Nevertheless, our platform
provided a cost-efficient framework for calling both additive and
nonadditive (dominance and epistasis) QTLs in diploid models.
We mapped QTLs using 52,466 markers, the inferred parent
phenotypes (for additive effect of genetic background) and the
hybrids’ deviations from the average of the inferred parental
phenotypes (for nonadditive effects; Methods). Both QTL
mapping approaches accounted for the population structure.
We called a total of 145 unique QTLs at 10% false discovery rate
(FDR) with high resolution (median 1.8-LOD support

interval¼ 3.67 Kbp, Supplementary Data 5). These included the
GAL3 stop codon variant, as well as the DAL1 and DAL4
non-synonymous and stop codon mutations, known to
account for most of the variation in galactose and allantoin
growth respectively (Fig. 3a, Supplementary Figs 3 and 4 and
Supplementary Data 5).

Some (21%) of the QTLs contributed significantly to both
additive and nonadditive phenotype components, but the
majority were private to one of them (Fig. 3b). The nonadditive
(75%) outnumbered the additive (25%) QTLs, but explained on
average less of the variation (6 versus 28%, Student’s t-test:
P¼ 2� 10� 6, Fig. 3c, Supplementary Fig. 5). Thus, significant
nonadditive trait contributions were more common but weaker.
The QTLs were confirmed using linear mixed models that
separated additive, dominant and epistatic effects (Methods). In
almost all cases, nonadditive QTLs coincided with dominance
effects (Fig. 3a). The complete recessiveness of the WA GAL3
allele for galactose growth and of the WA DAL alleles for
allantoin growth recapitulated established knowledge21,22

(Supplementary Fig. 6a).
Only 32 of 145 (22%) additive and nonadditive QTLs called

were mapped in a single environment, reflecting that extensive
pleiotropy is the rule rather than the exception (Fig. 3d). Almost
half (50 of 113, 44%) of the pleiotropic QTLs affected at least
five environments, with universal growth QTLs on chr. XIII
penetrating regardless of the environment and one QTL on each
of chr. IX, X and XV penetrating in all but one environment
(Fig. 3d). Given the wide span of environmental effects on
growth and cellular physiology in our set of environments,
this prevalence and penetrance of universal growth QTLs is
remarkable. A surprisingly large number of QTLs (69%) were
shared between growth rate and mean growth, given that the
overall correlation between these growth variables was low (mean
r¼ 0.27, Fig. 1d). This was to a large extent explained by the near
universal chr. IX QTL affecting the two fitness components
antagonistically: NA homozygotes grew slower but reached
higher mean growth (Supplementary Fig. 6b). This profound
fitness trade-off penetrated regardless of environment and may
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therefore have had a large influence on natural selection on the
ancestral wild strains. Finally, we note that disproportionately
many (28 versus 9% expected, Fisher’s exact test, Po0.0001)
QTLs were subtelomeric; almost all (84%) of these were
pleiotropic. This agrees with previous haploid studies, and adds
credibility to the suggestion that hypervariable subtelomere
structures and ORF compositions account for much of the
remarkably large trait variation in yeast27,28.

Explaining heterosis by intralocus interactions. The degree to
which offspring phenotypes deviate from the mean of the parent
phenotypes, heterosis, and which genetic factors that account for
this difference are central questions in breeding. Capitalizing on
the scale of our screen (120,000 offspring traits), we established
the phenotype discordance of the POLs from those inferred for

their diploid parents (Methods) with previously unattainable
completeness. Hybrid offspring where the inferred parents dif-
fered significantly from each other were retained for discordance
analysis (Supplementary Fig. 7a). The majority of such offspring
(89 to 95%, depending on threshold) that could be unambigu-
ously called deviated significantly from the midparent and were
thus midparent heterotic (Methods). Depending on the threshold
23–41% of these cases corresponded to the offspring being either
superior (best parent heterosis) or inferior (worst parent het-
erosis) to
both parents, with equal prevalence of best parent and worst
parent heterosis (Fig. 4a). This is surprising given that
earlier studies on non-recombined F1 diploids have indicated
much higher prevalence of best parent heterosis than
worst parent heterosis29,30. In these earlier studies, all recessive
loss-of-function alleles are compensated for and can contribute to
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best parent heterosis because diploid hybrids are complete
heterozygotes. In our POLs, however, polymorphic sites are
often homozygotic and recessive negative effects are therefore not
always compensated for, explaining at least part of the difference.

Overdominance (heterozygotes at a locus being superior to
both homozygotes), dominance (heterozygotes at a locus
differing from the mean of the homozygotes) and epistasis can
all contribute to best parent heterosis. However, calling such
contributions is challenging because multiple effects often act in
parallel. In particular, overdominance may be modified by

epistasis such that it only manifests in a minority of genetic
backgrounds31. Thus, a QTL may not be overdominant in the
average genetic background, but could nevertheless account
for best parent heterosis in some lineages. Comparing the mean
phenotypes for heterozygous and homozygous genotypes is
therefore a blunt tool for detecting overdominant contributions
to best parent heterosis. We devised an alternative approach,
which consists of comparing the relative proportions of the
genotypes among best parent heterotic POLs and the entire
population of POLs. Overdominance contributions to best parent
heterosis should manifest as overrepresentation of heterozygotes
among best parent heterotic POLs, with no overrepresentation of
either of the homozygotes. Similarly, dominance contributions
should manifest as overrepresentation of the best homozygote,
coupled with an unchanged or overrepresented heterozygote.
Using the 115 QTLs unique to either the additive or nonadditive
scan, we called overdominance contributions as more
heterozygotes than expected among best parent heterotic POLs
coupled with expected or less homozygotes (w2 test, Po0.01;
Fig. 4b, light orange, left panel), and dominance contributions as
more of the better homozygote than expected coupled with
expected or more heterozygotes (Fig. 4b, dark orange, left panel).
We found 44 QTLs (38%) enriched for the best homozygote
genotype, and in 24 of these the heterozygote genotype was
either enriched or unchanged, suggesting dominance at these 24
loci. For 14 QTLs (12%) we found overdominance contributions.
These proportions were consistent across a wide range of
significance cut-offs (Fig. 4c). For the remaining 50% of
QTLs, no significant contributions to the best parent heterosis
were detected.

The dominance/overdominance contributions of QTLs to best
parent heterotic POLs were often notably different from their
contributions to the population as a whole (Fig. 4b). Only two
of the 14 QTLs for which we detected overdominance in the
best parent heterotic POLs had, on average, a significantly
superior heterozygote state when the entire POL population was
considered (Student’s t-test, Po0.01). This suggests that
dominance-by-dominance or dominance-by-additive interactions
potentiate the best parent heterosis by shifting dominant or
additive loci to overdominant, creating best parent heterosis, in a
minority of backgrounds. For the chr. IX QTL with a
near universal fitness trade-off, NA/WA heterozygotes were
consistently enriched among offspring with superior growth rate,
implying overdominance (Supplementary Fig. 7b). This was not
the case for offspring with superior mean growth, where we
instead found strong enrichment of the NA/NA homozygote,
but near depletion of the NA/WA heterozygote. Finally, we
called underdominant contributions to worst parent heterosis as
more heterozygotes than expected among worst parent heterotic
POLs. Overall, we found 7% of QTLs to contribute under-
dominantly to worst parent heterosis (Supplementary Fig. 7c).
We also called 39% of QTLs with dominant contributions to
worst parent heterosis as more of the worst homozygote state
than expected coupled with an enriched or unchanged fraction of
the heterozygote state. To our knowledge, this is the most
exhaustive dissection of heterosis to date.

Discussion
Traits have been exhaustively mapped and decomposed in
haploid models10–12,32,33 but extrapolation from haploid
screens to the biology of diploids is precarious. Haploid designs
cannot be used to measure intralocus interactions in the form
of dominance, further, they only capture additive-by-additive
epistasis. Moreover, ploidy has a fundamental impact on traits34,
both due to its influence on cell size and the masking of recessive

b
0

–2

–4

–6

N
or

m
al

iz
ed

m
ea

n 
gr

ow
th

N
or

m
al

iz
ed

gr
ow

th
 r

at
e

–1.5
–1.0
–0.5
0.0
0.5

5 5 1 304 1114

a
F

re
qu

en
cy

FDR

c

Homozygous NA Heterozygous Homozygous WA

0.00

0.25

0.50

0.75

1.00

F
re

qu
en

cy

BPH
W

PH

All P
OLs

chrIX 408,461
allantoin

BPH
W

PH

All P
OLs

chrIV 463,889
galactose

chrIX 408,461

chrIV 463,889

Phenotype distribution

0.00

F
re

qu
en

cy

0.
10

00

0.
05

00

0.
02

50

0.
01

00

0.
00

60

0.
00

30

0.
00

16

0.
00

08

0.
00

04

0.
00

02

WPH Neg MPH Pos MPH BPH

FDR

0.00

0.20

0.40

Dominance OverdominanceEnrichment of best homozygote

0.
10

00

0.
05

00

0.
02

50

0.
01

00

0.
00

60

0.
00

30

0.
00

16

0.
00

08

0.
00

04

0.
00

02

0.25

0.50

1.00

0.75

262

271

2

2,352

3,199

1,088

313 108

2

2,242

4,093

482

0.
07

50

Figure 4 | Explaining heterosis by intralocus interactions. (a) Frequencies

of the heterotic POLs (y-axis) as a function of a range of FDR significance

cut-off (q) values (x-axis). Line colour¼ type of heterosis. Red text¼ FDR

q-value chosen for downstream analysis (a,c). (b) Left panel: example of

QTLs called as contributing to best parent heterosis by dominance (dark

orange) and by overdominance (light orange) respectively. Dominance was

called as enrichment of strongest homozygote and overdominance as

enrichment of heterozygous state among BPH POLs as compared with all

POLs (left panel). Right panel: phenotype (top: allantoin, bottom: galactose)

distribution depending on genotype composition at the same QTLs. (c) The

frequency of QTLs called as contributing by enrichment of the best

homozygote, dominance and overdominance respectively (y-axis) as a

function of FDR significance cutoff (q) values (x-axis). The dominance

contribution is a subfraction of the contributions from enrichment of the

best homozygote. Note: we show the outcomes of a range of FDR cut-off

values to illustrate the robustness of conclusions; the cut-offs used for

downstream analysis was set beforehand and not influenced by the results.

Best parent heterosis (BPH); mid parent heterosis (MPH); worst parent

heterosis (WPH).
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alleles in diploids35,36. The Phased Outbred Lines (POLs)
presented here circumvent the shortcomings of haploid screens
by offering decomposition of diploid traits with previously
unattainable exhaustiveness. The capacity of the approach
follows from generating a very large array of fully phased
diploid genomes based on short read sequencing of only a
moderate number of haploids. The alternative, acquiring phased
genomes from direct sequencing of diploids, would require
long-read sequencing of thousands of isolates and will remain
economically unfeasible even in model organisms for years to
come37. As a direct consequence of our experimental design, each
POL shares one haploid genome with siblings spawned from the
same haploid parent. This sharing of half a genome had
surprisingly large effects on trait similarity, greatly aiding both
trait prediction from relatives19 and the partitioning of trait
variation into its additive, dominant and epistatic components. In
contrast, it somewhat restricted our ability to distinguish the
weaker effects of individual loci and the calling of those QTLs.
The large impact that sharing one haploid genome has on trait
similarity among diploids, and the associated benefits and
drawbacks, may or may not manifest in other model organisms.
Beyond the removal of the sex-switch (HO gene) and
introduction of sex-specific auxotrophic markers, POLs impose
no requirements on the yeast genotypes used; the design is lineage
agnostic. However, removal of the yeast sex-switch renders the
cross directional and prevents the construction of a full diallel
cross, something that is otherwise possible in for example
monoecious plants where individuals express both sexes. The
diploid hybrids have identical marker composition, avoiding
growth effects derived from artificial auxotrophies that confound
many haploid crossing designs38,39.

The framework allowed partitioning diploid trait variation into
its major components with little room for confounding effects,
due to nearly all trait variation being accounted for. Additive
effects explained the vast majority of phenotypic variation, with
approximately equal variance contributions from dominance and
pairwise interactions at around 10% and 7%, respectively. The
large explanatory power of additive genetics is well in line with
findings in haploid screens10,33. Third order epistasis explained
o2% of the trait variation, comparable to, or somewhat less than,
estimated for third11, or third and higher12 order interactions in
haploid yeast. Thus, although examples where three-way
interactions affect trait variation can be found12,40,41, and can
explain extreme phenotypic outliers42 they generally account for
little trait variation. Despite the lower overall contribution of
nonadditive compared with additive genetics to trait variation, we
found nonadditive QTLs to outnumber additive QTLs. The
weaker mean effect of nonadditive QTLs partially explains this
discrepancy. In addition, differences in how QTLs were called
means that we cannot completely exclude that we detected
nonadditive effects with somewhat better power.

A stable haploid phase, indefinite storage as frozen stocks and
easy mating will remain distinct advantages of yeast. Nevertheless,
POLs can be employed in most higher model organisms, with
only slight modifications to the approach. Panels of extensively
recombined offspring can be generated using two or more
founder parents in mouse, plants, flies and worms43,44. Successive
inbreeding or selfing is common practice to produce recombinant
inbred lines (RILs). The gametes of these sequenced RILs can be
paired by designed mating to generate the final array of POLs to
be phenotyped. Somewhat analogous approaches exploiting near
isogenic lines, or immortalized F2 populations, have been used in
plants45–47, although few individuals, genetic markers and
recombination events and remaining segregating heterozygosity
prevented both powerful decomposition of trait variation and
highly resolved mapping of QTLs. Furthermore, genome phasing

information in POLs derived from higher organisms is ideal
for investigating parent-of-origin contributions to complex trait
variation48. To attain exhaustiveness while avoiding confounding
effects from uncontrolled environmental variation, the cost-
effectiveness of the genotyping needs to be matched by a
phenotyping approach that achieves both scale and accuracy. The
here reached broad sense heritability, with a lower bound mean
estimate of 91%, may remain challenging to match in most
species. Nevertheless, phenomics is advancing on broad fronts
and simultaneous high throughput and accuracy is on the
horizon in most model organisms9.

Methods
Generation of phased outbred lines. F12 outbred lines were derived from a
multigeneration two way intercross between ancestors of the North American
(YPS128) and West African (DBVPG6044) populations, as described16. Ancestral
strains differed at 0.53% of nucleotide sites49. Following random sporulation of F12
diploids, 86 stable haploids of each mating type were randomly isolated and their
mating type and auxotrophies determined. Haploid genotypes were selected to
allow systematic crossing: MATa, ura3::KanMX, ho::HygMX and MATa;
ura3::KanMX; ho::HygMX; lys2::URA3. Haploids of different mating types were
robotically mated on rich medium (1% yeast extract, 2% peptone, 2% glucose, 2%
agar) in all pairwise combinations combining their complementary LYS and URA
auxotrophies using a RoToR HDA robot (Singer Ltd, UK). Haploid cells of the
same mating type do not mate and this feature prevents the construction of a full
diallel cross (e.g., MATa/MATa and MATa/MATa diploid hybrids cannot be
constructed). Diploid hybrids were selected twice on Synthetic Minimal (SM)
medium (0.14% Yeast Nitrogen Base, 0.5% ammonium sulphate, 2% (w/v) glucose
and pH buffered to 5.8 with 1% (w/v) succinic acid, 2% agar). The theoretical
maximum amount of POLs from our experimental design was 7,396 (86� 86);
however, one F12 haploid strain (MATa, number 45) was contaminated prior to
mating and all 86 hybrids spawning from this cross were therefore discarded
(86 MATa� 85 MATa¼ 7,310 were retained). Furthermore, 8 F12 haploids were
identified as having chr. IX aneuploidy (see ‘Genotype construction’ below), the
hybrids spawning from these haploids were included in the phenotyping in order
to investigate the aneuploidy’s effect on the phenotype. They were, however,
excluded in all downstream analysis since they could interfere with the QTL
mapping and they have a large fraction of missing genotypes on chr. IX. We do
find a possible effect of the chr. IX aneuploidy mainly on the mean growth
phenotype (see Supplementary Fig. 1a, bottom panel).

Genotype construction. The haploid F12 parents were previously sequenced by
short read sequencing, and mapped to the S288C reference genome in order to call
segregating sites, infer genotypes and characterize the recombination landscape18.
All segregants were homoplasmic, carrying the same non-recombined WA mtDNA
genome. This excludes confounding mtDNA inheritance effects since this is
inherited randomly in a yeast hybrid from only one of the two parents. Chr. IX
aneuploidy was identified based on higher sequencing coverage and higher fraction
of heterozygous polymorphic sites compared with the genome as described in
Cubillos et al.17. The following eight haploid F12 parents carried the aneuploidy:
MATa 41, 53, 67 and MATa 206, 222, 223, 253, 258. Contaminated diploid hybrids
and hybrids with chr. IX aneuploidies were excluded. Phased genomes of the 6,642
diploid hybrid offspring (81 MATa x 82 MATa) retained for the genetic analysis
was constructed in silico using custom R code.

High resolution growth phenotyping. High resolution growth phenotyping on
solid agar medium was performed using a 1536-colony plate layout. Each plate
(Plus plate, Singer Ltd, UK) was cast with exactly 50 ml of Syntetic Complete
medium at 50C (as SM above with added 0.077% Complete Supplement Mixture
(CSM, Formedium)). Casting was performed on an absolutely leveled surface with
drying for B1 day. The base medium was supplemented with additional stressors
or alternative carbon or nitrogen sources as indicated (Supplementary Table 1).
The 7,310 POLs were distributed over 1,152 positions across eight plates. We used
n¼ 4 replicates for each experimental plate, with replicates initiated from two
different pre-cultures and run in different instruments and plate positions to
minimize bias. Their 172 haploid F12 parents (n¼ 6 replicates on each plate, two
plates) and their diploid NA and WA ancestral lineages (n¼ 72 replicates on each
plate, two plates) were phenotyped separately. Every 4th position was reserved
for internal controls (diploid NA ancestral strains). These 384 controls were
interleaved with experiments on pre-culture plates, ensuring equal treatment of
controls and experiments. High resolution population size growth curves were
obtained using Epson Perfection V700 PHOTO scanners (Epson corporation, UK)
and the Scan-o-matic framework20. Scanners were maintained in a 30 �C, high
humidity environment that minimized light influx and evaporation. Experiments
were run for 72 h, with automated transmissive scanning and signal calibration in
20 min intervals. Calibrated pixel intensities were transformed into population size
measures by reference to cell counts obtained by optical density measurements on
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diluted samples. Raw population growth curves were slightly smoothed using a
median (size¼ 5) and a Gaussian (width s¼ 1.5) filter to remove noise. Poor
quality curves (1%, descending from, for example, positions lacking colonies) were
rejected following manual inspection20. Retained population growth curves were
broken down into two growth phenotypes: (i) growth rate, extracted using linear
regression from the steepest slope of the population’s exponential phase, and (ii)
mean growth, extracted as the area under the curve relative to its starting point but
excluding the three first time points. To counter spatial bias on each 1,536 plate, the
two growth phenotypes were normalized to the internal controls using the
Scan-o-matic principle20. The final phenotypes used were the average phenotype
across all replicates. Detailed protocols are available for the entire phenotype
acquisition20. To circumvent the problem of calculating Coefficients of
Variation (CoV) for normalized growth phenotypes spanning over both negative
and positive values, these were reverted back into actual doubling times and yields,
before CoV calculations. This reversion was performed by multiplying each
normalized value with the median control trait value and reversion of the log
transformation.

Phenotype variance partitioning. We estimated additive relatedness from
genotypes. We derived formulae for efficient computation of the covariance due to
dominance, pairwise and third order interaction effects (Supplementary Note 1).
We fitted the model using restricted maximum likelihood, as in Yang et al.50. The
variance decomposition and its associated standard errors were found to be
accurate and close to unbiased in simulations when fitting additive, dominance,
and pairwise interaction components (Supplementary Note 1). However, when
adding a component for third order interactions, the overall variance
decomposition became biased, even though the estimates of the third order
component did not. We believe this may be the result of non-convexity in the
optimization problem, as evidenced by bimodality in the distribution of estimates
of pairwise interaction variance in simulations including the third order
component. We therefore report estimates of the variance from third order
interactions separately from the decomposition into additive, dominance and
pairwise interaction components.

QTL mapping. QTL calling was performed using the ‘scanone’ function with the
‘marker regression’ method in R/qtl (ref. 51) with estimated diploid parent
phenotypes (additive genetic background contribution to traits) and POL
deviations from the estimated diploid parents values (variation not explained by
additive effects of parental background) respectively using the full set of 52,466
markers (including redundant markers). Diploid parental phenotypes were
estimated as the median of all hybrids that descended from that parent. Using the
deviations from expected midparent phenotype for the POLs has the additional
critical benefit of effectively accounting for population structure by removing the
additive effect of the more similar genetic composition due to shared parents.
Significance thresholds were given by permutations (� 1,000), 1.8-LOD support
intervals were calculated for each QTL using the ‘lodint’ function in R/qtl, this
corresponds to the LOD support interval stated as the preferred one for
intercrosses in A guide to QTL Mapping by Broman et al.51. QTL calling by linear
mixed models, also accounting for population structure, was performed and used
as verification. For these, in order to test each QTL, we constructed the realized
genetic relationship matrix by discarding the SNPs within the 50 kb neighbourhood
of the SNP under consideration; these models were fitted with LIMIX (ref. 52).
Consecutive markers having the same genotype across all individuals were removed
for increased computation speed, leaving 10,726 segregating sites19. We accounted
for population structure in the LIMIX analysis by using the genetic relationship
matrix defined by K¼ 1

c XXT where X is a centred and standardized genotype
matrix, and the normalizing constant c is the average diagonal value of XXT. This is
in contrast to the mapping in R/qtl where we instead modified the phenotype used,
as stated at the beginning of this section. QQ-plots (Supplementary Fig. 8) confirm
that the linear mixed models appropriately account for population structure: apart
from the locus with the strongest effect (DAL and GAL loci, in allantoin and
galactose respectively), the distribution of the rest of P values follows the expected
uniform distribution under the null.

Heterosis. We used a Student’s t-test to detect POLs significantly deviating
(ao0.01) from the mean parent phenotype, either overperforming (positive mid
parent heterosis) or underperforming (negative mid parent heterosis). The parent
phenotypes used were estimated from all POLs descending from the given parent
as described under ‘QTL mapping’ in Methods, the variance of the mean parent
phenotype was set to equal that of the most variable parent. POLs deviating from
the mean parent were then tested using a Student’s t-test (ao0.01) for positive
deviations from the strongest parent (best parent heterosis, BPH) and for negative
deviations from the weakest parent (worst parent heterosis, WPH). Hybrids
deviating significantly from the two parents, but not from the estimated
mid-parent, was called as not deviating from the mid parent expectation. Hybrids
not falling into any of the stated categories were set as ambiguous and not con-
sidered, this might manifest as for example a hybrid not being significantly dif-
ferent from either parent.

Genetic contributions to heterosis. To test for overdominance contributions to
best parent heterosis we compared the expected and observed number of
heterozygous genotypes among best parent heterotic POLs (defined as above).
Calling overdominance as overrepresentation of the heterozygous state with no
overrepresentation of either homozygous state. This was performed for each QTL
separately using a w2 test, 115 QTLs were used, corresponding to all unique QTLs
between the additive and nonadditive QTL scan. Entries to the w2 test were:
observed number of heterozygotes and observed number of homozygotes (sum-
med) among BPH POLs and the corresponding expected numbers, given dis-
tributions among all POLs. A range of cut-offs for significance was tested and the
stability of results across cut-offs ascertained. We cannot completely exclude that
pseudo-overdominance, that is, tightly linked loci with dominance of opposite
parental alleles, confuse some assignments of overdominance. However, given the
small linkage regions, we expect pseudo-overdominance to be rare and the
associated overestimation of overdominance to be small. We tested for dominance
similarly, but pooling the weaker homozygote state with the heterozygote state and
calling significant enrichment of the better homozygote among BPH POLs. If the
better homozygote was enriched, and the weaker was not, cases where the
fraction of heterozygous was unchanged or enriched were called as dominance.
Underdominance contributions to worst parent heterosis were called as for
overdominance, but as enrichments of the heterozygous genotype among worst
parent heterotic POLs. Finally, dominance contributions to worst parent heterosis
were called as for dominance in best parent heterosis, but as enrichment of the
weaker homozygote.

Data availability. All data associated with this study is available in Supplementary
Information of this publication. We used R, complemented with various
packages53–58, for the analyses. The associated code can be found at
https://github.com/j-hallin/y10k, and is available upon request.
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