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Abstract 
We address the problem of convergence of approximations obtained from two versions of the 
piecewise power-law representations arisen in Systems Biology. The most important cases of mean- 
square and uniform convergence are studied in detail. Advantages and drawbacks of the repre-
sentations as well as properties of both kinds of convergence are discussed. Numerical approxi-
mation algorithms related to piecewise power-law representations are described in Appendix. 
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1. Introduction 
For a given function ( )1, , 0nv x x > , defined in a domain nΩ∈ , let us calculate its partial derivatives in the 
logarithmic space:  

( ) ln ,
ln

j
j

j jP

xv vf P
x v x

 ∂ ∂
= =  ∂ ∂ 

                                 (1) 

where ( )1, , nP x x=   is an arbitrary point. If ( ) constjf P =  in the domain Ω  for all j, then v clearly is a  

power function in Ω  of the form 
1

j
n

g
j

j
xα

=
∏  where 0α > . In this paper we study piecewise constant ap-  

proximations of the quantities (1) or, in other words, nonlinear approximations of the function v by piecewise 
power functions. 
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This study is first of all motivated by applications in Systems Biology, where many networks can be de- 
scribed via compartment models  

( ) ( )1 1, , , , , 1, , ,i i n i nx V x x V x x i n+ −= − =
                            (2) 

with the influx and efflux functions 0iV + ≥  and 0iV − ≥ , respectively. 
For instance, in a typical metabolic network used in Biochemical Systems Theory the index ( )1, ,i i n=   

refers to the n internal metabolites 0ix ≥ . The influx ( )1, , 0i nV x x+ ≥ , resp. efflux ( )1, , 0i nV x x− ≥  
function accounts for the rate (velocity) of a production (synthesis), resp. degradation of the metabolite ix . 

Another important example is gene regulatory networks which in many cases can be described as a system of 
nonlinear ordinary differential equations of the form  

( ) ( )1 1
d , , , , , 1, , ,
d

i
i n i n i

x F z z G z z x i n
t
= − =                          (3) 

where ( )ix t  is the gene concentration (i = 1, ···, n) at time t, while the regulatory functions iF  and iG  
depend on the response functions ( )k k kz z x= , which control the activity of gene k and which are assumed to 
be sigmoid-type functions [1]. 

The derivatives ( )jf P  in the logarithmic space are very important local characteristics of biological net- 
works. In Biochemical Systems Theory these derivatives are known as the kinetic orders of the function v, while 
in Metabolic Control Analysis (see e.g. [2]) they are called elasticities. From the mathematical point of view, 
these quantities measure the local response of the function v to changes in the dependent variable (for instance, 
the local response of enzyme or other chemical reaction to changes in its environment). Thus, they describe 
local sensitivity of the function v, the terminology which is widespread in e.g. engineering sciences. 

If all influx and efflux functions in (2) have constant kinetic orders, one obtains the so-called “synergetic 
system”, or briefly “S-system”:  

1 1
, 1, , ,ij ij

n n
g h

i i j i j
j j

x x x i nα β
= =

= − =∏ ∏
                            (4) 

where the exponents ijg , ijh  represent all the (constant) kinetic orders associated with (4). The right-hand side 
of an S-system, thus, contains power functions, and analysis based on S-systems is, therefore, called “Power- 
Law (PL) Formalism”, see e.g. [3]-[7]). 

The Power-Law Formalism has been successfully applied to a wide number of problems, for example, to 
metabolic systems [8], gene circuits [9], signalling networks [10]. Such systems are very advantageous in bio- 
logical applications, as the systems’ format considerably simplifies mathematical and numerical analysis such as 
steady state analysis, sensitivity, stability analysis, etc. For instance, calculation of steady states for the S- 
systems is a linear problem (see [7]). By these and other biological and mathematical reasons, it was suggested 
in [11] to classify such systems as “a canonical nonlinear form” in systems biology. 

In many models, however, the kinetic orders may vary considerably. A typical example is a model coming 
from Generalized Mass Action  

( )1
1

, , , 1, , ,
p

i ir r n
r

x V x x i nµ
=

= =∑
                             (5) 

where the power functions ( )1, ,r nV x x  describe the rates of the process no. r, while irµ  is a stoichiometric 
factor that stands for the number of molecules of ix  produced, i.e. 1, 2,irµ =   or 1, 2,irµ = − −  . Collect- 
ing the processes in (5) in a net process of synthesis iV +  (positive terms) and a net process of degradation iV −  
(negative terms) results in an aggregated system (2), which is not an S-system. 

Another example of generic systems with non-constant kinetic orders stems from Saturable and Cooperativity 
Formalism [12] reflecting two essential features of biological systems, which gave the name to this formalism 
(see [13] for more details). In this case, the system (5) becomes  

( ) ( )
1 1

1 1

,

j j

j j j j

n n
n m
j j

j j
i n n

n n m m
j j j j

j j

v x w x
x

K x L x

= =

= =

= −
+ +

∏ ∏

∏ ∏
                            (6) 

where 1, ,i n=   and jn , jm , jK  and jL  are real numbers.  
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Another version of Saturable and Cooperativity Formalism, which is mentioned in [12], is defined as follows:   

1 1

1 1

1 1

1 11 1, 1 1,

,

j j

j j j j

n n
n m
j j

j j
i n n n nn n

n n m n
j i j j i j

i ij j j i j j j i

x x
x

x b x x c x

α β

α β

− −

= =

− −

= == = ≠ = = ≠

= −
+ +

∏ ∏

∑ ∑∏ ∏ ∏ ∏
                  (7) 

where 1, ,i n=   and jn , jm , ib , ic , α  and β  are real numbers. 
In the case of gene regulatory networks (3) the sensitivities (1) are non-constant as well, even if one considers 

the functions iF  and iG  to be multilinear in kz . In addition, the usage of non-multilinear functions are also 
known in this theory [14]. 

Taking into account the importance of kinetic orders/elasticities/sensitivities (1) in Systems Biology, one one 
hand, and convenience of the well-developed analysis of S-systems (stability theory [7], parameter estimation 
routines [15], software packages) on the other, a new kind of generic representations of compartment systems (2) 
was suggested in [16] (see also [17] for further applications of this representation). According to this idea, the 
entire operating domain is divided to partition subsets where all kinetic orders can be viewed as constants. In 
other words, the system (2) is approximated by a set of S -systems, each being only active in its own partition 
subset. This way of representing (2) is called “Piecewise Power-Law Formalism” [18]. 

From the biological point of view, piecewise power-law representations are useful in many respects, when 
compared to other ways of approximations, as they take into account biologically relevant characteristics 
(kinetic orders) rather than the standard partial derivatives. Therefore, piecewise S-systems preserve important 
biological structures and, at the same time, do not destroy a relatively simple mathematical structure of plain 
S-systems. By this reason, approximations of a general target function by piecewise power approximations may 
be of a great importance for biological and other modelling. A rigorous mathematical justification of the idea of 
piecewise power-law approximations is the main purpose of the present paper. More precisely, we consider 
mean-square and uniform convergence of approximations by piecewise power functions to the target function 
provided that the associated partitions of the operating domain Ω  satisfy some additional assumptions. One of 
the challenges is that partitions of the operating domain Ω  may not be chosen freely in applications. For 
instance, the partitions may directly stem from biological properties of the model [17]. Other ways of con- 
structing partitions can be dictated by optimality-oriented algorithms. In Appendix (see also [18]) we describe 
such a method which goes back to the paper [19] and which is based on an automatical procedure, allowing to 
obtain simultaneously the best possible polyhedral partition and the respective best possible piecewise linear 
approximation in the logarithmic space. 

The main results of the paper are presented in Section 3 (mean-square convergence of piecewise power 
approximations) and in Section 4 (uniform convergence of piecewise power approximations). Several auxiliary 
results are proved in Appendices A.1-A.3, while Appendix A.4 presents an approximation algorithm which 
provides an automated partition and the respective best possible approximation in the logarithmic space for a 
given number of subdomains. Finally, in Appendix A.5 we explane by example why a direct piecewise power- 
law fitting is ill-posed. 

2. Preliminaries  
Throughout the paper we use the following notations (see Table 1). Let { }: \ 0 ,nv + +→   and let 

: nψ →   be given by ( ) ( )log ,y v xψ =  log .y x=  
Let Ω  be a domain in the space { }\ 0 ,n

+  which we call Cartesian. We assume Ω  to be closed and  

bounded (i.e. compact) subset of n . Let ∆  be its image in the logarithmic space n  and { }
1

NN
i i=

∆  be a  

measurable partition of ∆ . This means that N
i∆  are all Borel measurable subsets of n , N N

i j∆ ∩∆ = ∅  for  
every , 1, ,i j N=   and 

1

N N
ii=

∆ = ∆


 for any natural N. In some results and algorithms ∆  will be a poly-  

hedron domain in the logarithmic space, and N
i∆  will be a polyhedral partition. 

Below { }
1

NN
i i=

Ω  is the measurable partition of Ω  which is the image of the partition { }
1

NN
i i=

∆  under the  

inverse logarithmic transformation. 
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Table 1. Overview of the basic terminology and notation used in the paper (LS-least-squares).                                        

 Cartesian space Logarithmic space 

Space { }\ 0n
+  n  

Target function ( )v x  ( ) ( )logy v xψ =  

Domain Ω  ∆  

Measurable partition { } 1

NN
i i=

Ω  { } 1

NN
i i=

∆  

LS power approximation ( )Nv x  ⇒ ( ) ( )( )logN Ny v xψ =  

LS linear approximation ( ) ( )( )expN NV x y= Ψ ⇐  ( )N yΨ  

 
We also put ( )( )

1
max diam .N N

ii N
δ

≤ ≤
= ∆  

Let ( )
1

N
ij

n
fN N

i i j
j

v x xγ
=

= ∏  be a least-squares (LS) power-law fitting to the function v on N
iΩ , 1, , .i N=   For  

x∈Ω  we consider the piecewise power function ( ) ( ) ,N N
iv x v x=  whenever .N

ix∈Ω  We put  
( ) ( )( )log .N Ny v xψ =  

Let ( )
1

n
N N N
i ij j

j
y c g y

=

Ψ = +∑  be a LS linear approximation to the function ψ  on ,N
i∆  1, , .i N=   For  

y∈∆  we consider the piecewise linear function ( ) ( ) ,N N
iy yΨ = Ψ  whenever .N

iy∈∆  We put also 
( ) ( )( )exp .N NV x y= Ψ  

We remind that the parameters Nc  and N
ijg  of the linear functions N

iΨ  are uniquely obtained from the 
following minimization criterion in the logarithmic space:  

( ) ( )
2

1 1 1
1

, , , , d d min .
N
i

N
N

n i n n
i

y y y y y yψ
= ∆

 − Ψ → ∑ ∫                        (8) 

Alternatively, one can define approximations of the target function v by power functions minimizing the 
distance in the space Ω :  

( ) ( )
2

1 1 1
1

, , , , d d min .
N
i

N
N

n i n n
i

v x x v x x x x
= Ω

 − → ∑ ∫                         (9) 

Our last minimization criterion looks similar to (6), but is, in fact, very different  

( ) ( )
2

1 1 1
1

, , , , d d min,
N
i

N
N

n i n n
i

y y y y y yψ
= ∆

 − Ψ → ∑ ∫                       (10) 

as the minimum here is taken over all polyhedral partitions { }
1

NN
i i=

∆  of the polyhedral domain ∆ , and all  

corresponding linear functions N
iΨ  ( 1, ,i N=  ). 

The main advantage of the criteria (8) and (10) is their linearity that provides the uniqueness of the solution 
and also makes the process of finding the solution computationally cheap, as it is based on explicit matrix 
formulas. On the other hand the use of the logarithmic transformation requires caution. The influences of the 
data values will change, as will the error structure of the model. Yet, the criterion (8) only requires a standard 
linear regression, while the criterion (10) requires a special regression algorithm, still linear, but much more 
involved (see Appendix A.4 for details). 

The criterion (9) gives best possible approximation in terms of the LS error in the Cartesian space. However, 
a nonlinear regression algorithm should be used in this case, which is less advantageous, especially when the 
number of the estimated parameters is big. In addition, the nonlinear regression may have other drawbacks, one 
of which is ill-posedness (see Appendix A.5). 
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3. Mean-Square Convergence of Piecewise Power Approximations  
The results of this section provide the mean-square convergence (L2-convergence) of piecewise approximations 
by power functions. The involved parameters may be e.g. obtained according to one of the minimization criteria 
(8) or (9). 

The main technical challenges stemming from the nature of these minimization algorithms can be sum- 
marized as follows: 1) the L2-convergence of the approximations in the logarithmic space may not imply the 
L2-convergence of their images in the Cartesian space (and vice versa); 2) it is not evident that automatic 
dissections of the operating domain, as e.g. in the algorithms based on the minimization criterion (10), make the 
diameters of the partition subsets go to zero even if the number of partition subsets tends to ∞. 

Three propositions below deal with L2-convergence in the logarithmic domain. 
Proposition 1. Let the target function 0v >  be measurable and bounded on Ω  and log vψ = . Suppose  

that the measurable partitions { }
1

NN
i i=

∆  satisfy the property 0Nδ →  ( N →∞ ). Then for the corresponding  

LS approximations NΨ  in ∆  and Nv  in Ω  we have N ψΨ → , Nv v→  in the respective L2-norms, if 
N →∞ .  

To prove this proposition we need the following lemma, the proof of which can be found in Appendix A.1: 
Lemma 1. Let v be measurable and ( )0 m v y M< ≤ ≤  on Ω  for some constants ,m M . Let log vψ =   

and the measurable partitions { }
1

NN
i i=

∆  satisfy the property 0Nδ →  ( N →∞ ). Then there exists a sequence  

{ }Nθ  of continuous on ∆  functions satisfying the properties ( ) constN yθ =  on any N
i∆ , ( ) ( )N y yθ ψ≤   

for all y∈∆  and { }Nθ  (resp. { } ( ){ }expN NθΘ = ) L2-converges to ψ  (resp. v) on ∆  (resp. Ω ).  

Proof of Proposition 1. We use the sequences  

{ } { } ( ){ }and expN N Nθ θΘ =  

from the lemma 1, which both converge in the L2-sense in the respective domains. 
Since ( )N yΨ  is the LS piecewise linear approximation in ∆ , we have  

( ) ( )2 2 0N N
L L

ψ θ ψ
∆ ∆

Ψ − ≤ − →  

as N →∞ .                                                                               
In the next proposition we do not assume that 0Nδ → . 
Proposition 2. Let ∆  be a polyhedral domain in n , the function ψ  be square integrable in ∆  and  

{ }
1

NN
i i=

∆  be the optimal polyhedral partition of ∆  obtained by the algorithm described in Appendix A.4. Then  

for the corresponding LS approximations NΨ  in ∆  we have N ψΨ →  in the L2-norm, if N →∞ .  
Proof. Evidently, for the L2-function ψ  there exists a sequence of polyhedral partitions { } 1

N
i i=

∆  of ∆  such  

that ( )( )max diam 0ii
δ = ∆ →  as N →∞  and a sequence of piecewise constant functions ( ){ }N yΨ  given  

by ( ) ,N N
iy Cψ =  whenever N

iy∈∆  for which N ψΨ →  in the L2-norm if N →∞ . 
For the optimal polyhedral approximation ( )N yΨ  we obtain  

( ) ( )2 2 0N N
L L

ψ ψ
∆ ∆

Ψ − ≤ Ψ − →  

as N →∞ .                                                                               
In particular, the assumption on ψ  is fulfilled if the target function v is measurable and bounded on Ω . 
The case of the L2-convergence of the approximations NV , given as ( )expN NV = Ψ , is more involved. The 

reason for that is that the L2-convergence of the sequence { }NΨ  does not necessarily imply the L2-  
convergence of the sequence ( ){ }exp NΨ . 

We introduce the following notation. Given a partition subset N
i∆  of ∆  we put  

( ) ( ) ( ) ( )0, 1, , 1, , ,N N N
i i k ie y e k y y y k k n= = − =                      (11) 



A. Ponosov et al. 
 

 
1445 

where the point ( )( )
1

nN N
i ik

y k
=
∈∆  is the center of mass of the convex set N

i∆  given by  

( ) 1 d , 1, , .
mes N

i

N
i kN

i

y k y y k n
∆

= =
∆ ∫                             (12) 

Let ( )( ),N N
i iA a k l=  be the symmetric n n× -matrix with the entries defined as  

( ) ( ) ( )1, , , d , , 1, , ,
mes N

i

N N N
i i iN

i

a k l e k y e l y y k l n
∆

= =
∆ ∫                      (13) 

Below we fix a matrix norm . . All matrix norms are equivalent. One of the norms is Euclidean, which is  

defined via the maximal eigenvalues: ( )T
maxA A Aλ= . In the case of symmetric, positive definite matrices  

(like N
iA  above) we can write that ( )maxA Aλ= . 

We say that the sequence of partitions { }
1

NN
i i=

∆  ( 1, 2,N =  ) of ∆  satisfies the condition ( ∆ ) if there exists  

a constant 0 0c >  such that  

( ) 1

0diam .N N
i iA c

−
∆ ≤  

If the chosen norm is Euclidean, then the latter estimate can be rewritten as  

0
diam ,

N
i

N
i

c
λ

∆
≤  

where N
iλ  is the least (positive) eigenvalue of the matrix N

iA  ( 1, ,i N=  ; 1, 2,N =  ). 
Informally speaking, this property means that the partition subsets cannot be too different from each other in 

the shape. Assume, for instance, that the partition sets are enclosed in rectangular boxes. The result below says 
that if the ratio of the longest and the shortest edges of the boxes is bounded above, i.e. boxes are not “too thin”, 
then the sequence of such boxes satisfies the property ( ∆ ). 

Proposition 3. A sequence of rectangular boxes { }NP  satisfies the property ( ∆ ) if and only if  

1,2,
sup

N

N
N

a
b=

< ∞


, where Na  (resp. Nb ) is the length of the smallest (resp. biggest) edge of the box NP .  

Proof. We calculate the matrix (13). 
We fix N and the Nth rectangular box NP P=  given by  

1 1 1 2 2 2, , , .l r l r l r
n n ny y y y y y y y y≤ ≤ ≤ ≤ ≤ ≤  

Let ,
2

l r
i i

i
y yy +

=  1, , ,i n=   be the center of mass and ( ), i ie i y y y= − . 

The substitution  

[ ] ( ), where , 0,1 , 1 2 ,l r l
i i i i i i i i i i i iy y z y y z y y zδ δ δ= + = − ∈ − = −  

yields  

( ) ( ) ( ) ( ) ( )1, , d 1 2 1 2 d 1 ,n k l k l
P

e k y e l y y z z z k l nδ δ δ δ
Σ

= − − ≤ ≤∫ ∫ 
 

where [ ] [ ] [ ]0,1 0,1 0,1 .nΣ = × × × ∈   Since  

( ) ( ) ( ) ( )2 11 2 1 2 d 0 , 1 2 d ,
12k l kz z z k l z z

Σ Σ

− − = ≠ − =∫ ∫  

and 1mes N
i nδ δ∆ =  , the matrix (13) becomes 

22
1diag , ,

12 12
nδδ 

 
 

 . The least eigenvalue of the matrix is equal  
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to { }( )2 2
11 12 min , , nδ δ

, i.e. to ( )2
1 12 Na . The diameter of the box can be estimated above by the constant  

Nnb , which also dominates the asymptotics of the diameter. Therefore the condition ( ∆ ) is fulfilled for the 
given sequence of rectangular boxes if and only if the sequence { }N Nb a  is bounded above.              

The next lemma is proved in Appendix A.2. 
Lemma 2. Assume that the target function 0v >  is measurable and bounded on Ω  and log vψ = .  

Assume further that the sequence of partitions { }
1

NN
i i=

∆  ( 1, 2,N =  ) of ∆  satisfies the condition (∆ ). Then  

the corresponding LS approximations ( )NV x  and ( )N yΨ  are uniformly bounded on Ω  and ∆ , re- 
spectively, i.e. there exist constant 1 0C >  and 2 0C >  such that  

( ) ( )1supN

x
V x C v x

∈∆
≤  

for all 1, 2,N =   and all ,x∈∆   

( ) ( )2 supN

y
y C yψ

∈∆
Ψ ≤  

for all 1, 2,N =   and all .y∈∆   
The main result of this section is the following theorem: 
Theorem 4. Let the target function v be measurable and bounded on Ω . 

1) If the measurable partitions { }
1

NN
i i=

∆  have the property 0Nδ →  ( N →∞ ), then Nv v→  and NV v→   

in the ( )2L Ω -norm as N →∞ . 

2) Assume that ∆  is a polyhedral domain in n , while a sequence of polyhedral partitions { }
1

NN
i i=

∆  of ∆   

and associated LS piecewise linear approximations NΨ  satisfy the criterion (10) for each 1, 2,N =  . Assume  

further that the partitions { }
1

NN
i i=

∆  ( 1, 2,N =  ) satisfy the condition ( ∆ ). Then NV v→  in the ( )2L Ω -  

norm as N →∞ .  
Proof. To prove the first part of the theorem, we apply Lemma 1 and obtain  

( ) ( )2 2 0N N
L L

v v ψ
Ω Ω

− ≤ Θ − →  

as N →∞ , since ( )Nv x  is the LS piecewise power approximation in Ω . 
In the second part of the theorem, we use either Proposition 1 or Proposition 2, which yields the L2- 

convergence of the LS approximations NΨ  to the function log vψ = . Applying Lemma 2 we obtain the 
uniform boundedness of the approximations: ( ) ( ), Ny y Mψ Ψ ≤  for some M and any 1, 2,N =  . Then we 
have  

( )
( ) ( )

( )( ) ( )( ) ( )

( )

2

2

2

2

1

d

exp exp exp d

,

N N
L

N
n

N
L

V v V x v x x

y y y y y

C

ψ

ψ

Ω
Ω

∆

∆

− = −

= Ψ − + +

≤ Ψ −

∫

∫   

where ( ) ( )1exp max exp .ny
C M y y

∈∆
= + +

 The latter estimate is due to the uniform Lipschitz continuity of the 
function ( )exp u  on the interval [ ]0, M : ( ) ( ) ( )exp exp exp .u v M u v− ≤ −  

This estimate proves the L2-convergence of the LS approximations NV  to the target function v.          

4. Uniform Convergence of Approximations 
In the previous section we studied convergence of LS approximations in the L2-norm. In many applications, 
however, it is desirable to consider their uniform convergence. This may be, for instance, of interest if we 
include the obtained approximations into the models based on differential equations, as it is well-known that 
convergence of (approximations of) solutions is only guaranteed by the uniform convergence of (approximations 
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of) the right-hand sides. 
The main result of this section is formulated in terms of kinetic orders ( )jf x  and ( )N

jf x  of the target 
function ( )1, , nv x x  and its piecewise power approximations Nw . 

Theorem 5. Let the target function 0v >  be a C1-function (i.e. differentiable with the continuous partial  

derivatives). Let the sequence of partitions { }
1

NN
i i=

Ω  ( 1, 2,N =  ) of Ω  have the following two properties: 

1) The closure of each N
iΩ  coincides with the closure of its interior .N

iintΩ  
2) 0Nδ →  ( N →∞ ). 
Assume, in addition, that for any 1, ,i N=  , 1, 2,N =   there exist points N N

i iP ∈Ω , N N
i iQ int∈ Ω  such 

that piecewise power approximations Nw  (= N
iw  on N

iΩ ) satisfy  

( ) ( ) ( ) ( ), .N N N N N N
i i j i j iv P w P f Q f Q= =                           (14) 

Then Nw v→  uniformly on Ω  as .N →∞  
Proof. We fix N and consider the corresponding partition N

i∆  of the domain ∆ . Let log vψ = ,  
logN NwΦ = , logN N

i iy P= , logN N
i ic Q= . Clearly, ( ) ( ) ( )( )1 , , .N N N

i i n ic f P f Pψ∇ = 
 By assumption, for  

N
iy∈∆  we have ( ) ( ) ( ) ( )0 ,N N N

i i iy c y y yψ ψΦ = ∇ ⋅ − +  where , .N N N N
i i i iy c int∈∆ ∈ ∆  On the other hand, the 

mean value theorem yields ( ) ( ) ( ) ( )N N
i iy y c y yψ ψ ψ− = ∇ −  where N

ic∈∆  depends on y. Therefore  

( ) ( ) ( ) ( ) .N N N
i i iy y c c y yψ ψ ψΦ − ≤ ∇ −∇ −  

The uniform continuity of the continuous vector function ( )yψ∇  on ∆  and the property that  

( )
1
maxdiam 0N N

ii N
Nδ

≤ ≤
= ∆ → →∞  

imply that, given an 0ε > , the estimate  

( ) ( ) .N
i y yψ εΦ − <                                   (15) 

is fulfilled for sufficiently large N. 
Since (15) holds for any { }1, 2, , ,i N∈   we also obtain that for sufficiently large N ( ) ( ) ,N y yψ εΦ − <  

i.e. N ψΦ →  uniformly on ∆  as N →∞ . 
As the uniform convergence of the sequence { }NΦ  implies its uniform boundedness, there is M such that 
( ) ( ),N y y MψΦ ≤  for all y∈∆ . Therefore,  

( ) ( ) ( ) ( ) ( ) ( )exp exp ,N N Nw x v x y y C y yψ ψ− = Φ − ≤ Φ −  

where expC M= . This gives the uniform convergence of Nw  to v as .N →∞                         
Our last result shows that the LS approximations converge uniformly in the scalar case. This is due to the fact 

that in the scalar case the equalities (14) are always fulfilled.  
Corollary 1. Let the target function v be continuous on [ ],A BΩ =  ( 0A B> > ) and log vψ = . Assume  

that the sequence of partitions { }
1

NN
i i=

Ω  ( 1, 2,N =  ) of Ω  has the property 0Nδ →  ( N →∞ ). 

Then for the corresponding LS power approximations NV  and Nv  we have NV v→ , Nv v→  ( N →∞ ) 
uniformly on Ω .  

The proof of the theorem follows directly from the previous theorem and the following lemma, the proof of 
which is given in Appendix A.3.  

Lemma 3. Let a linear function [ ]: ,l a b →   be the LS approximation of a 1C  function [ ]: ,a bψ →   on 
the entire interval [ ],a b . Then there exist [ ]0 ,y a b∈  and ( ),c a b∈  such that ( ) ( )0 0 ,l y yψ=   
( ) ( ).l c cψ′ ′=   

5. Discussion and Conclusions 
Piecewise power-law representations may be very useful as practical approximations to target functions which 
are defined analytically or numerically. However, a strict mathematical justification of these approximations is 
not always paid attention to. Unfortunately, such an analysis is not always straightforward, especially if one puts 
additional a priori assumptions on the approximations, which is quite common in many applications. 
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We showed in the present paper that under additional assumptions power approximations do converge to the 
target function. We studied least-squares and uniform convergence, both of which are widely used (explicitly or 
implicitly) in applications. 

Our analysis dealt with two types of regression: linear regression in the logarithmic space and power-law 
regression in the Cartesian space. The first procedure has all the advantages of the linear regression, but the 
transformation back to the Cartesian space distorts the error structure of the problem; the least squares error for 
the resulting piecewise power-law fitting is in general less accurate than the corresponding error for a power-law 
regression of the original data. As a partial remedy, it may be advantageous to apply power-law regression to the 
original data over each of the partition subsets back in the Cartesian space. Yet, being nonlinear regression this 
procedure is essentially ill-posed. Thus, both kinds of regression have their strong and weak sides, so that the 
choice between them must be undertaken by modeling consideration. 

In many cases, it may also be advantageous to use the classical linear regression in combination with optimal 
partitions of the operating domain. In the logarithmic space this procedure is again linear and can be auto- 
matized, but this may also cause several technical problems when proving the convergence of the corresponding 
approximations. 

In the present paper, we offered a partial mathematical justification of the analysis based on piecewise power 
approximations, stemming from both kinds of regression, by verifying their convergence in the mean-square (L2) 
and uniform sense. Uniform convergence is e.g. important if target functions are included in differential eq- 
uations, as it is the uniform, and not L2-convergence, which is inherited by the solutions of the equations. How- 
ever, a comprehensive analysis of convergence of solutions of differential equations, approximated by piecewise 
S-systems, is beyond the scope of this paper and will be discussed in a separate publication. 
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Appendix  
A.1. Proof of Lemma 1, Section 1  
Let us prove the lemma for the domain ∆ . Notice that the function log vψ =  is measurable on the compact 
set ∆  and satisfies the estimate ( )log logm y Mψ≤ ≤  on ∆ . By Lusin’s theorem, for any N, there is a 
uniformly continuous function Nϕ  on ∆  such that log logNm Mϕ≤ ≤  for all N and the Lebesgue measure 
of the set ( ) ( ): Ny y yϕ ψ∈∆ ≠  is less than 1 N . Now, there exists a 0δ >  for which y y δ′− < , ,y y′∈∆   
implies ( ) ( ) 1N Ny y Nϕ ϕ ′− < . We define ( ) ( )N N

N iy yθ ϕ=  for some N N
i iy ∈∆ . 

Let Nk  be chosen in such a way that Nkδ δ< . If N
iy∈∆ , then we have  

( ) ( ) ( ) ( ) 1 ,N N
N N N iy y y y Nϕ θ ϕ ϕ− = − <  

as , N N
i iy y ∈∆  and diam .NkN

i δ δ∆ < <  Therefore, the Lebesgue measure of the set  
( ) ( ): 1Ny y y Nθ ψ∈∆ − >  is less than 1 N , so that the sequence { }Nθ  converges to ψ  in measure, and 

due to its uniform bondedness, also in the L2-sense on ∆ . 
A similar argument applies to the sequence { }NΘ  on Ω , where we use the sequence ( ){ }exp Nθ  instead 

of { }Nθ . 

A.2. Proof of Lemma 2, Section 1  
Clearly, ( )yψ  is measurable and bounded on ∆ . Let ( )sup

y
c yψ

∈∆
= . 

Let us fix a partition subset N
i∆ . Our aim now is to find estimates for the norms of orthonormal basis 

functions { }ke , 0, ,k n=   in the linear subspace of the space ( )2 N
iL ∆  consisting of all linear functions and 

equipped with the scalar product  

( ) ( )1 d .
mes N

i

N
i

y y yξ η ξ η
∆

⋅ =
∆ ∫  

One basis is given by the set (11). However, this set is not necessarily orthogonal. 
First of all, we choose 0 1e =  and observe that its norm is equal to 1. Using the description (11) of the basis 

functions ( ),N
ie k y  defined via the center of mass we directly deduce from (12) that 0 1e =  is orthogonal to 

any linear combination of the other basis functions. The challenge is therefore to estimate the norms of linear  
combinations ( )1 ,n N

k l ile e l yα
=

= ∑ , where lα  are real numbers. 
In the proof below we often omit one of the variables in ( ),N

ie l y , that is either l, or y, depending on a 
particular interpretation of this basis. Writing ( )N

ie y  means that we regard it as a vector for each particular y, 
i.e. ( ) ( ) ( )( )1, , , ,N N N

i i ie y e y e n y=   (the component ( )0,N
ie y  is excluded in further considerations). 

Omitting y ( ( )N
ie l ) means that we treat ( ),N

ie l y  as a function of y for a given l, i.e. as an element of the space 
( )2 N

iL ∆ . 
As 1ke = , we require the following constraints on the coefficients:  

( ) ( ) ( )2

, =1

1 11 d , , d ,
mes mesN N

i i

n
N N T N

k i i l k iN N
k li i

e y y e k y e l y y Aα α α α
∆ ∆

= = =
∆ ∆∑∫ ∫  

where n
ll 1=)(= αα . Therefore,  

( ) ( )max max
N N
i i

N
k i

y y
e y e yα

∈∆ ∈∆
= ⋅                               (16) 

(where .  is the Euclidean norm in n  and a b⋅  is the scalar product of two vectors) with the constraint 
T 1N

iAα α = . 
Diagonalization of the symmetric, positive definite matrix N

iA  with the help of an orthogonal matrix Q gives 
the matrix containing the eigenvalues 0kλ >  of N

iA  on the diagonal. Putting Qβ α=  and using Qy y= , 
we obtain from (16) that  

( ) ( ) ( )
1
22

1
max max max diam

N N N
i i i

n
N N N

k i i i k
y y y k

e y Qe y e yβ β β
∈∆ ∈∆ ∈∆ =

 = ⋅ ≤ ≤ ∆  
 
∑  



A. Ponosov et al. 
 

 
1451 

with the constraint 2
1 1n

k kk λ β
=

=∑ , where the constant diam N
i∆  is evidently an upper estimate for the func-  

tions (11) on the partition subset N
i∆ . The maximum value of the expression ( )

1
2 2

1
n

kk β
=∑  under the above 

constraint is 1
N

iλ
, where N

iλ  is the minimal eigenvalue of the matrix N
iA . Due to the condition ( ∆ ) we get  

that ( ) 0max ,
N
i

N
i

y
e k y c

∈∆
≤ , where the constant 0c  does not depend on i and N. 

The final step in the proof of the lemma uses the explicit representation of the LS approximation NΨ :  

( ) ( ) ( )
0

,
n

N N
k k i

k
y e y yµ

=

Ψ = ∈∆∑   

where  

( ) ( )1 d .
mes N

i

k kN
i

y e y yµ ψ
∆

=
∆ ∫   

Therefore 0 cµ ≤ , 0k ccµ ≤  ( 1, ,k n=  ) and  

( ) ( ) ( )2
0 21 sup .N

y
y n c c C yψ

∈∆
Ψ ≤ + =  

This implies also the uniform boundedness of the approximations ( )N
iV x  on Ω . The proof of the lemma is 

complete. 

A.3. Proof of Lemma 3, Section 4  
Let us first prove the existence of 0y . Assume the converse, i.e. that ( ) ( )y l yθ ≠  for all [ ], .y a b∈  Let for 
instance ( ) ( ) 0y l yθ − >  for all [ ], .y a b∈  Put 

[ ]
( ) ( )

,
min 0.
y a b

y l yε θ
∈

= − >  Then the linear function 
( ) ( )1 2l y l y ε= +  satisfies the estimates ( ) ( ) ( )1 .l y l y yθ< <  Therefore  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )

2
2 2

1 1

2
1

d d 2 d d
2 4

d .

b b b b

a a a a
b

a

y l y y y l y y y l y y y

y l y y

ε εθ θ θ

θ

− = − + − +

> −

∫ ∫ ∫ ∫

∫
 

This, however, contradicts the definition of the least squares approximations. The case ( ) ( ) 0y l yθ − <  is 
treated in a similar manner. 

Assume now that ( ) ( )l y yθ′ ′≠  for all [ ],y a b∈ . We shall prove that in this case the graph of the scalar 
linear function ( )l y  intersects the graph of ( )yθ  in at least two points from the interval [ ],a b . 

From the first part of the proof we know that at least one intersection point does exist. Assume that there is 
exactly one point [ ],d a b∈  such that ( ) ( ).l d dθ=  Without loss of generality we may assume that 

( ) 0d′Θ >  where ( ) ( ) ( )y y l yθΘ = − . Since ( ) 0dΘ =  and ( ) 0yΘ ≠  for all y d≠ , we obtain that 
( ) ( ) ( ) 0y y l yθΘ = − <  for y d<  and ( ) ( ) ( ) 0y y l yθΘ = − >  for y d>  (one of these sets may be 

empty). Consider a new linear approximation given by ( ) ( ) ( )1 ,l y l y y dδ= + −  where a sufficiently small 
0δ >  is chosen in such a way that the graphs of the functions ( )yθ  and ( )1l y  have still one intersection 

point in [ ],a b  (namely, d by construction). 
It is easy to see that such a δ  does exist. Indeed, in a vicinity U of the point d we have that ( ) 0y′Θ ≠ , so 

that for small 0δ >  we have ( ) ( )1 ,y l yθ ′ ′>  y U∈  and hence d is the only intersection point of the graphs 
of the functions ( )yθ  and ( )1l y  in U. Outside U, i.e. inside the compact set [ ], \a b U  the continuous 
function Θ  is non-zero, so that ( )min 0

y U
m y

∈
= Θ > . Choosing 0δ >  in such a way that  

[ ]
( ) ( )1,

max
y a b

l y l y m
∈

− <  guarantees that the graphs of the functions θ  and 1l  meet only in d. 
We complete now our analysis of the scalar case observing that for such δ   

( ) ( )( ) ( ) ( )( )2 2
1d d ,

b b

a a
y l y y y l y yθ θ− > −∫ ∫  
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simply because the graph of 1l  is closer to the graph of θ , than the graph of l. This contradicts the assumption 
that l is the LS approximation of θ . We have therefore proved that there exists [ ],c a b∈  such that 

( ) 0.c′Θ =  

A.4. Piecewise Power-Law Regression  
In this subsection we describe a numerically stable way to find a best possible, in some sense, piecewise power 
approximation to an arbitrary target function. The method was suggested in [18] and was based on the piecewise 
linear regression from [19]. 

Let ( )v x , x∈Ω  be a target function (e.g. the in- and efflux functions in (2), possible only as a data set 
obtained from some measurements. The task is to find a set of power functions which approximate the target 
function in a “best possible” way given a number N of the partition sets. The problem is essentially non-convex 
being therefore not well-posed numerically. However, using the logarithmic space ∆  one can convert this 
problem into a linear one. Performing an automated piecewise linear regression based on Artificial Neural 
Networks (ANN) introduced in [19], this algorithm returns an optimal polyhedral partition of the domain in 
logarithmic space and the corresponding optimal set of linear functions which are the best approximations to the 
image of the target function in the logarithmic space. Returning to the Cartesian space produces piecewise 
power functions that are not necessarily the best possible approximations in the sense of the metric in Ω , but 
this approximation procedure is numerically stable. 

As before, we assume ( )yψ  to be the image of ( )v x  under the logarithmic transformation, i.e.  
( ) ( )logy v xψ = , logy x= . Let also N be a fixed number of partition subsets of a polyhedral set ∆ . The task 

is to construct numerically the function ( )N yΨ , y∈∆ , which is piecewise linear and which is the best 
possible LS approximation to ( )yψ . The inverse logarithmic transformation of ( )yψ  will then give a piece- 
wise power approximation NV  of the target function v, which is best possible with respect to the logarithmic 
distance. To simplify the notation we will below write = NΨ Ψ , thus removing the index N. 

A polyhedral partition satisfies the following assumptions: i l∆ ∩∆ = ∅  for every , 1, ,i l N=  , i l≠ ,  

1
,N

ii=
∆ = ∆



 and  

( )0
1

: 0 1, , .
n

i i
i j kj k

k
y d d y i N

=

 ∆ = ∈∆ + < = 
 

∑                         (17) 

This partition gives rise to a partition of the original domain Ω . Applying the inverse logarithmic trans-  
formation, we obtain  

( )0
1

: log 0 1, , .
n

k i i
j kj k

k
x d d x i N

=

 Ω = ∈Ω + < = 
 

∑                       (18) 

The piecewise linear function ( )yΨ  is assumed to have the following representation:  

( ) ( ) 0
1

, ,
n

i i
i j j i

j
y y y yα α

=

Ψ = Ψ = + ∈∆∑                          (19) 

where i∆  are all polyhedral sets defined by (17) and defining a partition of the logarithmic domain ∆ . 
Scalar weights 0 1, , , ,i i i

nα α α  for 1, ,i N=   and the numbers i
kjd  for 1, , ij l=  , 0,1, ,k n=  , 

1, ,i N=   uniquely characterize the function ψ  and the corresponding partition { }i∆ . Below the weights 
are collected in a vector iα  for every 1, ,i N=  . 

The piecewise linear algorithm has two targets. 
Target 1: The weights vector iα  ( 1, ,i N=  ), which should be reconstructed as soon as the partition is 

known. 
Target 2: Scalars i

kjd  ( 1, , ij l=  , 0,1, ,k n=  ) which should be estimated for every 1, , .i N=   
The aim of the piecewise linear regression: given a function ( )1, , ny yψ   represented via a data set 
( )1 , ,k k

n ky yψ ψ= , a number of partition subsets N and a natural number c find a piecewise linear function Ψ   
and the polyhedral partition { } 1

N
i i=

∆  such that  
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( ) ( ) ( ) ( )2 2
1 1 1 1 1 1

1
, , , , d d , , , , d d min,

i

N

n n n i n n n
i

y y y y y y y y y y y yψ ψ
=∆ ∆

   Ψ − = Ψ − →   ∑∫ ∫       

where the minimum is taken over all polyhedral partitions i∆  and all linear functions iΨ  ( 1, ,i N=  ). The 
parameter c is the number of nearest neighboring points required by the implementation of the method. The 
neighboring points are used to aggregate approximations into clusters. 

The algorithm consists of the following steps. 
Step 1. Local regression: Define the set kC  containing the kth point ( ),k ky ψ  and the samples associated 

with 1c −  nearest neighbors y to ky  and perform linear regression to obtain the weights ku  fitting the 
samples in kC . 

Step 2. Clustering: Perform a clustering process to subdivide the set of weight vectors ku  into N groups 
with similar features. 

Step 3. Classification: Apply a classification algorithm based on a pattern-recognition method to produce the 
coefficients k

kjd  describing the partition subsets i∆ . 
Step 4. Regression: For every 1, ,i N=   perform linear regression on the samples ( ),y ψ  with iy∈∆  

to obtain the weights iα  for the ith approximation. 
The inverse logarithmic transformation of Ω  results in a piecewise power approximation of the function 
( )v x  and a partition { } 1

N
i i=

Ω  defined by (18). 
A modification of this algorithm, which is suggested in [18], assumes a power-law regression to the original 

data over each of the N partition subsets of the optimal partition { }kΩ , so that the increase in difficulty is 
modest even though the regression is now nonlinear. The partitioning is found from the first three steps of the 
above algorithm and the new algorithm proceeds as follows: 

Step 4A. Power-law regression: For every 1, ,i N=   perform power-law regression on the samples ( ),x v  
with kx∈Ω  to obtain the power functions for each partition subset given by (18). 

The algorithm is implemented in a free MatLab toolbox Hybrid Identification Toolbox (HIT). 

A.5. Ill-Posedness of LS Power-Law Fitting  
In this section we show that the nonlinear power-law regression, i.e. the one based on the minimization criterion 
(9), is ill-posed. This ill-posedness is caused by the fact that the set { }1

1
nff

nx xγ 
 from (9) is a non-convex set. 

Let us assume that ( )v x  is only known with a certain accuracy, as it is often the case. Mathematically, we 
will describe this situation by letting v depend on a (small) parameter λ , i.e. ( )v v xλ=  (and so becomes the 
function ( )yλψ ψ=  as well). But it turns out, as we will show below, that for certain values of λ  small 
perturbations may cause a “jump” in the corresponding power-law representation, i.e. while functions ( )v xλ  
remain close to each other, the least-squares minimization criterion (9) may produce the power-law repre- 
sentations that are very different. 

Below we illustrate this fact analytically using a specific example. For the sake of simplicity, let us consider a 
target function ( )v x  of one variable, so that  

( )( )2
d min .

U
f

L

v x x xγ− →∫                                 (20) 

If ( ) ,v v xλ=  then γ  and f that minimize (20) are also functions of .λ  
We first consider a simpler problem assuming that constγ = , so that after rescaling we may assume that 

1γ =  and rewrite (20) as  

( )( )2
d min

U
f

L

v x x xλ
λ − →∫  

After applying the substitution log ,y x=  log ,a U=  log ,b L=  we obtain  

( )( )2
e e e d min

b
yfy y

a

v yλ
λ − →∫  

or  
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( )( )2
e d min,

b
y

a

H y yλβ
λ − →∫                               (21) 

where ( ) ( ) 2e e ,y yH y vλ λ=  1 2.fλ λβ = +  

Now, let 1, 1a b= − =  and consider the function ( ) 23 6 1H y y yλ λ= + +  and its LS power approximation 
( )e yβ λ . 
It is easily seen that the projection function ( )e yβ λ  is discontinuous in λ  (see Figure A1), while Figure A2 

gives a graphical representation of this discontinuity in λ  for one value of y. 
 

 
(a)                                                       (b) 

Figure A1. (a) The continuous lines represent the functions ( )H yλ  for different values of λ  and the dotted lines give its 

LS approximations within the operating interval [ ]0.5,1.5 . The blue and green colors correspond to the values 0λ λ> , 

while the red and black colors describe the case of 0λ λ< . (b) This graph explains how the LS power approximations at 

1,y =  i.e. ( ) ( )e ,cβ λ λ+  depend on λ . We see that ( ) ( )cβ λ λ+  is discontinuous at 0 2.365λ ≈ − .                                    

 

 
(a)                                                       (b) 

Figure A2. (a) The continuous lines represent the functions ( )H yλ  for different values of λ  and the dotted lines give its 

LS approximations within the operating interval [ ]0.5,1.5 . The blue and green colors correspond to the values 0λ λ> , 

while the red and black colors describe the case of 0λ λ< . (b) This graph explains how the LS power approximations at 

1,y =  i.e. ( ) ( )e ,cβ λ λ+  depend on λ . We see that ( ) ( )cβ λ λ+  is discontinuous at 0 2.365λ ≈ − .                               
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Going back to the variable x, the above function becomes ( )
23 log 6 log 1x xv x

xλ
λ + +

= , 1 eA = , eB = ,  

the discontinuity in λ  being preserved. 
This example shows that the criterion (9) may produce a LS power approximation that is not stable under 

small perturbations of the parameter λ  and by this under small perturbations of the target function, which 
causes ill-posedness of the minimization problem. We stress also that this effect is generic, i.e. independent of 
the number of the involved parameters, as the comparison of Figure A1(a) (resp. Figure A1(b)) and Figure 
A2(a) (resp. Figure A2(b)) clearly demonstrates. 
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