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Abstract 

The focus of the present paper is to propose and discuss different procedures for performing 
variable selection in a multi-block regression context. In particular, the focus is on two multi-
block regression methods: Multi-Block Partial Least Squares (MB-PLS) and Sequential and 
Orthogonalized Partial Least Squares (SO-PLS) regression. A small simulation study for regular PLS 
regression was conducted in order to select the most promising methods to investigate further in 
the multi-block context. The combinations of three variable selection methods with MB-PLS and 
SO-PLS are examined in detail. These methods are Variable Importance in Projection (VIP) 
Selectivity Ratio (SR) and forward selection. In this paper we focus on both prediction ability and 
interpretation. The different approaches are tested on three types of data:  one sensory data set, 
one spectroscopic (Raman) data set and a number of simulated multi-block data sets.    
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1. Introduction 

With the advancement of technology, data collected in many fields of science are getting more 
informative, but at the same time also more complex. For example, analytical measurements can 
now typically be obtained with different instruments, in different places and at different times of 
a production process [1]. In consumer and sensory science, it is common that several data sets 
represent aspects that need to be considered together in order to obtain the information wanted 
[2]. Even in medical protocols, data can be represented by blocks of independent variables [3] 
that need to be considered together. Different multi-block methods have been proposed, e.g. 
Multiblock PCA, generalized Procrustes analysis, Multi-Block-PLS (MB-PLS), Sequential and 
Orthogonalized Partial Least Squares (SO-PLS), Parallel Orthogonalized Partial Least Squares (PO-
PLS), OnPLS and others [4-9]. Multi-block analysis is still a young field and several problems and 
challenges are unsolved. One of these is variable selection for the purpose of improved 
interpretation and prediction in regression models.  
 
Variable selection in regression can lead to a number of advantages. For instance, removing noisy 
or irrelevant variables may result in improved predictions and a reduction of the model 
complexity. Feature selection can also ease interpretation. From a practical point of view, 
selecting variables can make future acquisition of data cheaper and less time-consuming [10-11].  
 
The aim of this paper is to discuss different variable selection procedures for multi-block 
regression data. In particular, the selection of variables will here be coupled with MB-PLS [4,12] 
and SO-PLS [6,13] models, which are both based on PLS regression. A simulation study will be 
conducted for regular one-block PLS regression, in order to select which variable selection 
methods to include in the multi-block study. Details on this simulation are reported in 
Appendices A and B. Three candidate variable selection methods will be used in order to obtain 
insight into the influence of the choice of the variable selection method. The different 
procedures will be illustrated with different data sets; one sensory data set with relatively few 
samples and variables, one spectroscopic data set with more samples and many correlated 
variables and a number of simulated multi-block data sets. 
 
2. Multi-block methods 

In this section, we present the multi-block methods applied in the paper and also an overview of 
the procedures used for implementing variable selection. A more detailed discussion of the 
choice of the actual PLS variable selection methods to be used within MB-PLS and SO-PLS is given 
in Appendices A and B. Only one 𝒀-variable and two input blocks are considered here, but the 
multi-block methodology can easily be extended. In this paper we will assume the linear model 
structure:  

𝒀 = 𝑿𝑓 + 𝒁𝑔 + 𝑬  (1) 

Where: 𝑿 (𝑁 × 𝐽) and 𝒁 (𝑁 × 𝐿) are the predictor blocks and 𝒀 (𝑁 × 1) is the response variable.  
𝑬 (𝑁 × 1) is the residual matrix and 𝑓 and 𝑔 are the regression coefficients of dimension (𝐿 × 1) 
and (𝐽 × 1), respectively.  All variables are assumed to be mean centered.  
 
2.1. Multi-Block-PLS regression  

The Multi-Block-PLS method (MB-PLS) [4,12] is based on concatenating the input blocks and then 
performing PLS regression on the resulting matrix 𝑿𝑐𝑜𝑛𝑐. In general, the matrices are block-scaled 
before concatenation. Block-scaling can be performed in different ways; the one pursued in this 



work is based on dividing each block by its Frobenius norm. This scaling aims to ensure that no 
block will be more dominant than others because of the number of variables and their variance. 
 
2.2. Sequential and Orthogonalized Partial Least Squares regression 

Sequential and Orthogonalized Partial Least Squares (SO-PLS) [6,13] is a multi-block method that 
in the case of two blocks can be described as follows:  
 

1. 𝒀 is fitted to 𝑿 by PLS-regression  
2. 𝒁 is orthogonalized (obtaining 𝒁𝑜𝑟𝑡ℎ) with respect to the scores of the previous PLS 

model 
3. 𝒀 residuals from the first PLS are fitted to 𝒁𝑜𝑟𝑡ℎ 
4. The full predictive model is computed by summing up the two contributions from 𝑿 and 

𝒁.  

If more than two predictor blocks are involved, it is possible to perform SO-PLS repeating the 
steps, as explained in [13]. The optimal complexity is estimated from the so-called Måge-plot as 
described in [13]. Two different approaches can be chosen: global optimization and sequential 
optimization. The strategy pursued here is the former one.  

The SO-PLS method is invariant to block scaling and explicitly permits the interpretation of the 
contributions of the blocks and their relationship with the response. It can also be used to handle 
blocks with very different underlying dimensionality, such as for instance design variables and 
multivariate spectra, in the same model. The 𝑿-block is interpreted by inspecting the PLS model 
in step 1. The interpretation of the 𝒁-block is best done by calculating loadings by projecting 𝒁 
onto the scores obtained in step 3 [14]. 

3. PLS variable selections methods   

There are many methods for variable selection in general and for PLS in particular [15-18, 20-26]. 
For the purpose of doing a sensible multi-block variable selection, we tested a number of 
established PLS variable selection methods in a preliminary simulation study (Appendices A and 
B). Based on the results, two candidate methods were selected to be used in the different PLS 
based multi-block models. These are Variable Importance in Projection (VIP) and Selectivity Ratio. 
In addition to these two, forward selection was also included for comparison. More details about 
these choices can be found in Appendix B, together with a description of all the tested methods, 
details on the ANOVA used and main results.   

3.1.  Variable selection for multi-block methods 

In the following, we will describe different procedures for combining variable selection with MB-
PLS and SO-PLS. In particular, we will focus our discussion on: 

1) MB-PLS combined with VIP 

2) MB-PLS combined with SR 

3) SO-PLS with pre-selected variables using VIP on each block 

4) SO-PLS with pre-selected variables using SR on each block 

5) SO-PLS combined with VIP  

6) SO-PLS combined with SR  

7) SO-PLS combined with forward selection 

 

 



 

All the different procedures are described below and summarized in Table 1. We will refer to 
blocks 𝑿 and 𝒁 after variable selection as 𝑿𝑹𝒆𝒅 and 𝒁𝑹𝒆𝒅. 

Table 1 Combined multiblock and variable selection methods. 

Variable Selection 
Method 

Multiblock Method 

 MB-PLS SO-PLS  

VIP   

SR   

Forward Selection   

 

3.1.1 Proposed Procedure for variable selection in MB-PLS  

The selection of variables in MB-PLS is an issue that has not yet been explored, although a 
reinterpretation of MB-PLS as a variable selection method itself [19] has been suggested. The 
procedure proposed in this paper (points 1 and 2 in the list at the beginning of Paragraph 3.1) is 
to perform variable selection (using SR or VIP) directly on the concatenated input matrix.  
Following the standard MB-PLS procedure, predictor blocks are block-scaled, concatenated, and 
then PLS is performed on the resulting matrix 𝑿𝑪𝒐𝒏𝒄. Variable selection is then based on the 
obtained PLS model. This leads to a number of variables being selected and 𝑿𝑪𝒐𝒏𝒄 is reduced 
obtaining 𝑿𝑹𝒆𝒅. Finally, a new calibration model is obtained for 𝒀 using the reduced matrix 𝑿𝑹𝒆𝒅 
in a new MB-PLS model.  

 

3.1.2 Proposed Procedures for variable selection in SO-PLS 

One possible approach in SO-PLS is to select variables from each block separately (points 3 and 4 
in the list in Paragraph 3.1). In other words, 𝒀 is fitted to 𝑿 and to 𝒁 independently, creating two 
different PLS models. Variables in each block are selected (by SR or VIP) and the two sets of 
variables are then used in SO-PLS. Note that it is possible to leave one of the blocks untouched; 
i.e. to perform variable selection on only one of the blocks. When selection is done on both, 𝑿𝑹𝒆𝒅 
and 𝒁𝑹𝒆𝒅 are obtained and used in the SO-PLS regression. Compared to the procedure in 3.1.1, 
however, there is a risk of overlooking possible synergies between the blocks with this approach. 

An alternative is to integrate variable selection directly into the SO-PLS algorithm (points 5 and 6 
in the list in Paragraph 3.1). Due to the sequential nature of the SO-PLS method, variables can be 
selected (by VIP or SR) from the 𝑿-block, from the 𝒁𝑶𝒓𝒕𝒉-block or from both. When the variable 
selection involves both blocks, the algorithm is the following:  

1. 𝒀 is fitted to 𝑿 by a PLS model. 
2. A variable selection method is applied to 𝑿 obtaining 𝑿𝑹𝒆𝒅. 
3. 𝒀 is refitted to 𝑿𝑹𝒆𝒅. 
4. 𝒁 is orthogonalized with respect to the scores of the PLS model in step 3. 
5. The residual matrix from step 3. is fitted to 𝒁𝑶𝒓𝒕𝒉. 
6. A variable selection method is applied to 𝒁𝑶𝒓𝒕𝒉 obtaining 𝒁𝑶𝒓𝒕𝒉,𝑹𝒆𝒅. 

7. A new PLS regression is carried out using the reduced matrix 𝒁𝑶𝒓𝒕𝒉,𝑹𝒆𝒅 to fit the 
residual matrix. 

8. The full predictive model is computed by combining the contributions in the same 
way as in the original model. 

When the variable selection involves only one block, the steps related to the reduction of 
variables in the other block (steps 2 and 3 or 6 and 7) are skipped. When for instance only the 𝑿-



block is reduced, the model will coincide with the one built from SO-PLS using 𝑿𝑹𝒆𝒅 and 𝒁 in the 
previous procedure. 

After the reduction of the blocks the model is rebuilt using the reduced blocks and the optimal 
number of latent variables is redefined on the reduced blocks by means of the Måge plot. The 
algorithm is forced to select at least one latent variable for each block. Hence, solutions that do 
not select any latent variables in one of the two blocks are skipped.  

The final proposed procedure to perform variable selection in SO-PLS is an extension of the 
forward selection method (point 7 in the list at the beginning of Paragraph 3.1). 

First, the best predictor is selected from either 𝑿 or 𝒁 based on RMSECV. Next, each of the 
successively added variables will come either from 𝑿 or 𝒁. The algorithm will test all the possible 
combinations which result from either adding one variable from the 𝑿-block keeping the 𝒁-block 
as in the previous step or vice versa. At the v+1th iteration, v1 and v2 variables (with v1+v2=v) have 
already been selected from the 𝑿- and the 𝒁-blocks, respectively. Then, the algorithm proceeds 
by building 𝐽-v1 SO-PLS models, considering all the possible combinations resulting from the 
addition of one more 𝑿-variable. Likewise, 𝐿-v2 SO-PLS models are built adding one further 𝒁-
variable to 𝒁𝑹𝒆𝒅 (retaining only the previously selected v1 predictors in the 𝑿-block). The 
combination that results in the lowest RMSECV is selected. The procedure is then repeated for 
the selection of further variables. It is stopped when the addition of another predictor does not 
significantly improve the RMSECV (the significance of the addition is checked by CVANOVA [27] 
with a confidence level of 95%). Here it must be stressed that, if in the initial iterations all the 
selected variables come from a single block, the effect of the addition of a further variable to that 
block is tested effectively using PLS instead of SO-PLS.  

Note that this method is very time consuming when the number of variables is large. However, it 
can be speeded up to handle for instance spectroscopic intervals instead of individual variables 
[28]. This will be applied to the spectroscopic data set below. Using intervals on, e.g. 
spectroscopic data not only speeds up the algorithm, but can also minimize overfitting 
tendencies which is a danger for all variable selection methods.  

 
4.  Data sets 

The different proposed procedures (described above in Paragraph 3.1) have been tested on 
simulated multi-block data sets and on two real data sets, a spectroscopic one (Raman) and a 
sensory data set. 

4.1 Simulated Multi-block Data sets 

Six different multi-block data sets were simulated. In all data sets, the 𝑿- and 𝒁-blocks have the 
same number of objects (two hundred) but different numbers of variables. Variables are divided 
into ‘selective’, ‘relevant but not selective’, systematic but ‘irrelevant’ and noise variables. Those 
called ‘selective’ are only related to the response, while the ‘irrelevant’ variables are not. The 
‘relevant but not selective’ ones contain information about both ‘selective’ and ‘irrelevant’ 
variability. Finally, some noise variables are randomly generated. The structure of this data set 
resembles the one used for the simulations used for selecting the most appropriate PLS variable 
selection method and therefore important details can be found in Appendix A. The different 
dimensions of the blocks are reported in Table 2. 

Table 2: Parameters used for the generation of the six different simulated multiblock datasets. 

 X-Block Z-Block 
Simulation  # Selective 

variables  
# Relevant 
but non-

# 
Irrelevant 
variables 

# Selective 
variables  

# Relevant 
but non-

# 
Irrelevant 
variables 



selective 
variables 

selective 
variables 

Sim1 30 30 30 40 40 40 

Sim2 50 20 20 60 20 40 

Sim3 80 20 20 60 30 0 

Sim4 120 0 0 100 0 30 

Sim5 350 100 50 300 100 50 

Sim6 350 100 100 300 100 0 

 

For all the data sets, the 𝑿-block is simulated by multiplying randomly generated scores (𝑻𝑿) and 
loadings (𝑷𝑿). Both scores (𝑻𝑿) and loadings (𝑷𝑿) are simulated from the normal distribution 
N(0,1). The 𝑻𝑿 has fixed dimensionality (200 × 4) where only the first three components are 
‘selective’. 𝑷𝑿 is a partitioned matrix constructed to reflect the fact that there are variables in 
the four different categories ‘unique-selective’, ‘unique-irrelevant’, ‘relevant but not selective’ 
and noise. (For details regarding score and loading structures, please look at the simulated 
Dataset-1 described in Appendix A. The 𝑿-block here is generated following the same procedure 
used for the generation of 𝑿 in the simulation presented in Appendix A).   
 
The 𝒁 scores are correlated with 𝑿. 𝒁-scores 𝑻𝑍 are divided into 𝑻𝒁𝒔𝒆𝒍 (200 × 2) and in 𝑻𝒁𝒊𝒓𝒓 
(200 × 1). 𝑻𝒁𝒔𝒆𝒍 is a partitioned matrix of the form:  

𝑻𝑍𝑠𝑒𝑙 = [𝑻𝑍1 𝑻𝑍2]   (2) 
 

where 𝑻𝑍1 (200 × 1) is a linear combination of the first two columns of 𝑻𝒙 and 𝑻𝑍2 (200 × 1) 
containing random values drawn from the normal distribution N(0,1). 

The 𝒁 loading matrix (𝑷𝑍) is a partitioned matrix (as 𝑷𝑋) reflecting the four different categories 

of variables. The data matrices 𝑿 and 𝒁 are generated as 𝑿 = 𝑻𝑋𝑷𝑋
𝑇  and 𝒁 = 𝑻𝑍𝑷𝑍

𝑇 and 
subsequently, 𝒀 is calculated as:  

𝒀 = [𝑻𝑿𝒔𝒆𝒍 𝑻𝒁𝒔𝒆𝒍] ∗ 𝜷   (3) 

The vector 𝜷 (5 × 1) is generated as a matrix containing random values drawn from the uniform 

distribution (mean is 0.55) in the open interval (0.05, 1.05). The 𝒁-Loadings and test sets are 

generated as in Dataset-1 (see Appendix A).  

Finally, random noise corresponding to 10% of the signal was added to all the predictors of the 

data sets. For the responses, the added noise corresponded to 5% of the signal. 

As shown in Table 2, four data sets (Sim1, Sim2, Sim3 and Sim4) have comparable amount of 

samples and variables. Instead, the last two (Sim5 and Sim6) have blocks with more variables 

than objects.  

Each data set was generated one hundred times. All the proposed variable selection procedures 

for multi-block data have been tested on all the training sets. Test sets were generated in the 

same way as the training data but with 300 samples. Reduced test sets were then obtained 

(taking only the variables that were selected on the training sets) and used for the validation. It is 

important to stress that the test sets were not involved in the selection of the variables. Test sets 

are reduced after the selection is done on the training sets, then they are used to perform the 

external validation.  

4.2. Flavored waters data set 



The data set is based on sensory analysis and consumer liking of eighteen flavored waters [6]. 
The purpose is to get insight into which sensory attributes that are most related to consumer 
liking. Samples have been recorded based on a full factorial design. Three factors are taken into 
account: flavor type (A and B), sugar dose (2%, 6% and 8%) and flavor dose (Low, Medium and 
High). This gives 18 samples in total. Eleven trained assessors evaluated samples by smelling and 
tasting. The evaluation of the smell attributes resulted in the Smell-block, while the evaluation of 
the taste attributes constitute the Taste-Block (see Table 3) 
 
Table 3 Sensory descriptors in the flavored waters data set. Numeration of variables is reported to help the 
comprehension of the discussion in Section 5.  

Var. Number Smell Var. Number Taste 

1 Ripe 1 Ripe 

2 Tropical 2 Tropical 

3 Candy 3 Candy 

4 Synthetic 4 Synthetic 

5 Lactonic 5 Lactonic 

6 Sulfuric 6 Sulfuric 

7 Skin 7 Skin 

8 Green 8 Green 

9 floral 9 floral 

  10 Sweet 

  11 Sour 

  12 Bitter 

  13 Dry 

  14 Sticky 

 
 
The smell data are used in the following analysis as the 𝑿-block, and the taste as 𝒁-block. A major 
interest in this setup is to assess how much extra information about liking one obtains by adding 
taste to the smell variables. All sensory data used here were averaged over assessors. Finally, the 
consumers’ rating of the waters (ranked from 1-“Dislikes very much” to 9-“Likes very much”) are 
collected. The average rates over the consumers are used as response.  
 
4.3 Polyunsaturated fatty acids (PUFA) data set 
 
Sixty-nine emulsions of defatted whey protein concentrate, water, and five different oils, (olive 
oil, coconut oil, soy oil, cod oil enriched with polyunsaturated omega-3 fatty acids, and salmon 
oil) were analyzed by Raman spectroscopy. Each sample represents a different amount of the 
various constituents. These amounts were defined based on an experimental design; more 
details can be found in [29]. The Raman spectra have been divided into two blocks. One block is 
the one containing the so-called Fingerprint region (wavelengths from 675 to 1197 cm -1), and is 
the one used as the 𝑿-block in the analysis. The relevance of the fingerprint region is that each 
compound produces a characteristic pattern in this part of the spectrum. Therefore, it is relevant 
to investigate this data block separately and together with the remaining spectral information. 
The second block is constituted by spectra from 1198 to 1770 cm-1 and is used as the 𝒁-block. 
This is the region of the spectrum where the main absorptions of the functional groups of each 
compound take place. Concentrations of PUFA in the emulsions are used as response. 
 
 
 
 



4.4. Data analysis 

All data analyses were performed using MATLAB (R2012b, The Mathworks, Natick, MA), using in-
house routines for PLS, MB-PLS, SO-PLS and for all the variable selection methods. The MATLAB 
routines for MB-PLS and SO-PLS are available for download at www.nofimamodeling.org 
 

5. Results 

All the proposed procedures discussed in Paragraph 3.1 have been applied to the multi-block 

simulated data sets and to the real data sets. Selectivity Ratio has been applied using two 

different cut-off values: one based on the 𝐹-test and one based on its mean (See Appendix B for 

details). Results obtained using both cut-off values are reported for the sensory data set. For the 

simulated multi-block data sets only the cut-off based on the mean was used. Instead, only the 

𝐹-test based cut-off was applied for the spectroscopic data set. The reasons for these choices are 

reported in the relevant subparagraphs. 

5.1  Simulated Multi-block Data sets  

The predictive ability of the models was assessed by the external test set using the Root Mean 

Square Error of Predictions (RMSEPs). The selected variables for two different data sets (Sim1 

and Sim5) are reported in Table 4. Results from the other data sets are in agreement with these, 

both for predictions and interpretations and are therefore not shown in detail.  

Variable selection tends to improve the predictions compared to the full models. The best 

predictions, both in Sim1 and in Sim5, are obtained using SR in combination with SO-PLS. 

From an interpretation point of view, the results are similar to what was observed in the 

simulation study of regular PLS regression reported in Appendix B. SR retains its ability in skipping 

almost all the ‘irrelevant’ variables. In fact, it does not select any ‘irrelevant’ variable when 

applied to MB-PLS. The SR behaves differently when implemented in procedure 6 and when 

applied in procedure 4 (from the list in Paragraph 3.1). In procedure 6, it selects few ‘irrelevant’ 

variables from the 𝐗-block and none from the 𝐙-block (in both Sim1 and Sim5). When applied in 

procedure 4, it also selects few ‘irrelevant’ variables (2% and 4% in Sim1 and Sim5, respectively) 

from the 𝐗-block, but many from the 𝐙-block (34% and 35% for both data sets). SR combined 

with SO-PLS selects several ‘selective’ variables, but always fewer than when using VIP. 

Moreover, SR selects fewer or a comparable number of ‘relevant but not selective’ variables than 

VIP when selecting from the 𝑿-block, but more than VIP when it comes to the 𝒁. Furthermore, SR 

is good at removing noise variables. In conclusion, SR is best in skipping unrelated information 

when it is integrated into the model (procedure 6) and not done beforehand on the individual 

blocks (procedure 4).  

VIP is good at selecting the ‘selective’ variables. Looking at Table 4, it is always selecting many 

‘selective’ variables from both blocks and in both data sets. It also selects a high number of 

‘relevant but not selective’ ones. In accordance with to the simulation in B.3, it skips completely 

the noise variables. Consequently, VIP is suggested for selecting the relevant information in 

multi-block data sets, independent of the regression method used to handle them. Additionally, 

it is recommended for noisy multi-block data sets. 

Applying the forward selection to SO-PLS, a rather small number of ‘selective’ and ‘relevant not 

selective’ variables is selected. Here this method does not show any particular ability in skipping 

the ‘irrelevant’ variables and the noise.  

http://www.nofimamodeling.org/


In conclusion, from the simulated multi-block data sets, it appears that SR, in general, is able to 

eliminate noise variables. It selects a substantial number of ‘selective’ and ‘relevant but not 

selective’ variables from 𝐗 and it selects more ‘relevant but not selective’ variables than VIP from 

𝐙. It skips completely the ‘irrelevant’ variables when combined with MB-PLS and when 

implemented in SO-PLS. Moreover, when SR is combined with SO-PLS (both procedures 4 and 6 

in Paragraph 3.1) the lowest RMSEPs are obtained. VIP selects many ‘selective’ and ‘relevant but 

not selective’ variables, and it is efficient in skipping the noise variables. It is the recommended 

method for noisy multi-block data sets when the main aim is interpretation. Forward selection 

selects some ‘relevant’ variables, but also ‘irrelevant’ and noisy ones.  

Table 4 RMSEPs for the prediction of 𝒚 (from the simulated multiblock datasets Sim1 and Sim 5) by PLS, MS-PLS, SO-
PLS and by MS-PLS and SO-PLS combined with variable selection methods. Relative percentages of the different type 
of variables selected from the procedures are also reported. 

 

Procedure Variable 
Selection 
method 

Var.Selected in X-block (%)  Var.Selected in Z-block (%) RMSEP 

Sim1 

  Sel (%) RelnSel (%) Irr (%) Noise(%) Sel (%) RelnSel 
(%) 

Irr (%) Noise(%)  

MB-PLS No Var.Sel All All All All All All All All 1.22 

VIP 85 75 16 0 68 48 31 0 1.12 

SR 20 24 0 0 41 71 0 0 1.11 

Selection on 
individual block + 
SO-PLS 

No Var.Sel All All All All All All All All  

VIP 78 64 28 0 74 50 34 0 0.79 

SR 45 59 2 0 14 70 34 0 0.64 

Selection 
integrated in SO-
PLS 

No Var.Sel All All All  All All All   

VIP 80 64 28 0 72 47 45 0 0.80 

SR 45 59 2 0 11 73 0 0 0.59 

Forw. Sel. 16 3 4 23 19 1 9 8 0.64 

Sim5 

MB-PLS No Var.Sel All All All  All All All  1.21 

VIP 49 10 4 0 59 14 27 0 1.25 

SR 17 6 0 0 37 23 0 0 1.14 

Selection on 
individual block + 
SO-PLS 

No Var.Sel All All All  All All All   

VIP 47 12 24 0 56 13 36 0 0.66 

SR 34 13 4 0 13 24 35 0 0.59 

Selection 
integrated in SO-
PLS 
 

No Var.Sel All All All  All All All   

VIP 47 12 24 0 56 14 41 0 0.69 

SR 34 13 4 0 11 25 0 0 0.59 

Forw. Sel. 8 6 12 40 6 2 14 10 0.70 

 
  

5.2 Flavored waters data set  



Since the flavored waters data set has a limited number of samples it was not possible to have an 
external validation set. Therefore, all the models are cross-validated (by leave-one-out cross-
validation). The prediction results for all the different methods described in Section 3 are 
reported in Table 5. SR was applied using both the 𝐹-test and SR’s mean as cut-off values (See 
appendix B for details). From the prediction point of view, results obtained using the two 
different cut-off values are comparable. Concerning the interpretation, the main difference is 
that a different number of variables (in particular in the second block) is selected. In the 
discussion below, when not stated differently, we are referring to SR with 𝐹-test as cut-off value. 

As can be seen from Table 5, the RMSECV obtained from PLS on the smell block alone is 

comparable to those obtained by the multi-block approaches, meaning that from a prediction 

point of view the taste block adds little information. The only substantial improvement in 

RMSECV is given by SO-PLS using forward selection as variable selection method. A possible 

reason for this could be that it selects variables according to predictive ability and is then more 

sensitive to overfitting, especially for such a small data set. But it could also be an indication of 

real improvement. However, it is still of interest to apply variable selection using a multi-block 

approach, for the sake of interpretation.  

Table 5: RMSECVs and explained variance for the prediction of 𝒚 (Sensory dataset) by PLS, MS-PLS, SO-PLS and by 
the different variable selection procedures in multiblock (X-block: Smell-block ; Z-block: Taste-block). Selected 
variables from the different methods and number of variables used in each model are also reported. 

Procedure Variable 
selection 
method 

Selected 
variables 

Smell 

Selected variables 
Taste 

LVs REMSECV Explained 
variance Y 

(%) 

No variable selection Only Smell (PLS) All None 1 0.25 53 

Only Taste (PLS) None All 1 0.33 18 

MB-PLS All All 1 0.26 50 

SO-PLS All All 1,1 0.26 48 
 
MB-PLS 

VIP 1;2;4;5;6 4 1 0.26 50 

SR 1;2;4;5;6;8; None 1 0.25 54 

SR(mean) 1;4;5;6;8; None 1 0.25 54 
 
Selection on individual block + 
SO-PLS 

VIP 1;4;5;6 1;4;5;9 2,1 0.24 56 

SR 1;2;4;5;6;8 4 1,1 0.23 60 

SR(mean) 1;4;8; 1;2;4;5;6 1 0.26 48 
 
 
Selection integrated in SO-PLS 
 

VIP 1;4;5;6 1;4;10 2,1 0.24 55 

SR 1;2;4;5;6;8 1;2;4;7;8;10;11;13;14 1,1 0.25 53 

SR(mean) 1;4;8; 1;7;10;11;13 1 0.28 48 

Forw. Sel. 2;3;6 8 1,1 0.21 66 

 

In most models, SR selects more variables than VIP in 𝑿, but when it comes to 𝒁 it depends on 
the procedure used. Variable selection by SR does not select 𝒁-variables when applied in MB-PLS. 
Concerning SO-PLS, the number of selected variables in each blocks depends on when the 
variables are selected. If variables are selected on the individual blocks before creating the SO-
PLS model (procedures 3-4 from the list in Paragraph 3.1), VIP selects more 𝒁-variables than SR; 
when it is implemented in the SO-PLS building (procedures 5-6 from the list in Paragraph 3.1), it 
is the other way around. When SR is applied for the individual blocks before building the SO-PLS 
model (procedure 4), it selects just one variable. In the preliminary PLS study (Appendix B.3), SR 
shows a good ability to not select ‘irrelevant’ variables. That suggests that 𝒁-variables could be 
considered ‘irrelevant’, confirming the results above that the taste block is not adding much to 
the predictive ability of models. The situation is quite different when SR is integrated into the SO-
PLS model. This is probably due to the fact that, in this case, variables are not selected directly on 
the 𝒁-block, but on 𝒁𝑜𝑟𝑡ℎ. One of the drawbacks of the orthogonalization in SO-PLS is that, after 



the first regression, some of the noise goes into the residuals. Residuals are then fitted to 𝒁𝑜𝑟𝑡ℎ; 
consequently, noisy data can affect this part of the modeling.  

In simulations, VIP has demonstrated a better ability to handle the noise than SR. This explains 
why the number of variables selected from 𝒁 by VIP when combined with SO-PLS is quite the 
same (three when the selection is done beforehand and four when it is implemented in the SO-
PLS), while SR behaves differently (one variable when the selection is done beforehand and nine 
when it is implemented in SO-PLS).  

For VIP, it is quite consistent in its selection on 𝑿, independently of the method/model. VIP 
always selects variables number 1,4,5,6 (ripe, syntetic, lactonic and sulfuric, respectively). When 
applied to MB-PLS it also selects variable number 2, tropical. On the 𝒁-block the selection is less 
consistent, but variable number 4 (syntetic) is always selected. 

This data set is useful for investigating how SO-PLS handles a multi-block set since it has the 

interesting characteristic of having the first nine attributes in common in the two blocks. Figure 1 

shows the selected variables in the two blocks when Both VIP and SR are integrated into the SO-

PLS model. Figure 1(a) shows the selected variables by VIP and Figure 1 (b) those selected by SR. 

For VIP, it seems that the relevant variables belong mainly to the “common” ones (same 

attributes for smell and taste). In fact, when VIP is used to select variables, only one “unique 

feature” (an attribute not present in both blocks) is selected in the Taste-Block (number 10, 

Sweet). SR is less parsimonious and selects four of the variables that belong only to the Taste-

Block.  

In SO-PLS we expect that the common variation between 𝑿 and 𝒁 is explained by 𝑿 and then 
removed from the 𝒁-Block. Therefore, smell variables that are selected in the 𝑿-Block are not 
expected to be selected again as taste variables in the 𝒁-block. As can be seen in Figure 1, some 
common variables are selected from both blocks in this example. The reason for this is likely that 
the same attributes are sometimes perceived differently when tasting, so even if they have the 
same name, the correlation between smell and taste might be low. This is for instance the case 
for variable 1 (ripe), 2 (tropical), 4 (synthetic), and 8 (green), which are selected from both smell 
and taste with the SR method. The correlation between smell and taste for these attributes are 
0.6, 0.6, 0.7 and 0.4 respectively. On the contrary, variable 5 (lactonic) and 6 (sulfuric) are 
selected only from the smell block. They both have correlation 0.8, indicating that the attributes 
are perceived similarly by tasting and smelling. Variable number 7 (skin), on the other hand, is 
only selected from the taste block. For this attribute, the correlation is actually zero, and hence it 
is a completely different perception in the taste block. In addition, we noticed that all the 
variables selected by both blocks have a higher SR value in 𝑿 than in 𝒁. This means that the 
variation that is “left” in 𝒁 is less important, since some of it is already accounted for by 𝑿.  



 

Figure 1: Selected variables in X- and Z-blocks by variable selection Integrated into SO-PLS models Selected variables 
are highlighted in blue; (a) variables selected by VIP (b) variables selected by SR. 

 

The forward selection approach is extremely focused on selecting only non-common variables 
between the predictors. As shown in Figure 2, there is no overlap between the selected variables 
in the two blocks. 

 

Figure 2: Selected Variables by the Forward Selection combined with SO-PLS. Selected variables are highlighted in 
blue. 

 

5.3 Results on the PUFA data set 

The PUFA data set was split into training and test sets (by the Duplex algorithm [30]) in order to 
use the latter for validation. Forty-nine samples were selected for the training set, while the test 
set is composed of twenty samples. The training set was used to select variables, build different 
calibration models and select number of components. The test set was then used for calculating 
RMSEP. Results are reported in Table 6. For SR, the cut-off value used is the one based on the 𝐹-
test. Also the other cut-off value was tested, but led to worse predictions. Therefore, it is not 
mentioned further in the following. From Table 6 one can see that 96% of the variation in the 
response is explained by 𝒁 alone, and combining 𝑿 and 𝒁 does not improve the prediction ability 
much. This means that also in this case, the main motivation for doing multi-block analysis is 
interpretation.  



Table 6: RMSECVs and explained variance for the prediction of 𝒚 (Raman dataset) by PLS, MB-PLS and SO-PLS in 
combination or not with variable selection methods. The number of selected variables from different methods and 
the total number of variables used in each model are also reported. 

Procedure Variable selection 
method 

Selected 

variables 𝐗 

Selected 

variables 𝐙 

LVs REMSEP Explained 
variance Y 

(%) 

No variable selection Only 𝐗 (PLS) All None 3 1.61 86 

Only 𝐙 (PLS) None All 4 0.88 96 

MB-PLS All All 4 1.00 95 

SO-PLS All All 3,3 0.90 96 

 
MB-PLS 

VIP 230/523 202/574 4 1.02 94 

SR 83/523 112/574 4 2.02 75 

SR(mean) 157/523 202/574 3 2.72 62 
 
Selection on individual 
block + SO-PLS 

VIP 182/523 136/574 3,4 1.07 96 

SR 52/523 65/574 1,7 0.79 97 

SR(mean) 152/523 193/574 3,2 1.16 93 
 
 
Selection integrated in SO-
PLS 
 

VIP 182/523 129/574 4,5 1.24 96 

SR 52/523 53/574 4,1 1.30 95 

SR(mean) 152/523 102/574 
 

3,2 1.09 94 

Forw. Sel. 52/523 29/574 4,1 1.19 94 

 

In order to perform the forward selection on the spectroscopic data set, the training set  (both 𝑿 
and 𝒁) is divided into 20 intervals (with approximately the same number of variables for each 
interval belonging to the same block), and then the forward selection is applied as described in 
paragraph 3.1.2, but using intervals of contiguous variables instead of individual variables. 
Consequently, the best combinations of intervals are selected. Three intervals in total gave the 
lowest RMSECV; two interval for the 𝑿-block and one interval from the 𝒁-block. This amounts to 
52 variables from the 𝑿-block and 29 from the 𝒁-block.  

As can be seen from Table 6, the number of variables is strongly reduced by all methods but, as 
opposed to the flavored waters example, the VIP method consistently selects 2-3 times more 
variables than SR in both 𝑿 and 𝒁, regardless of the variable selection method.  

Looking more into the selected variables, VIP and SR select different variables from the two 
blocks. In Figure 3 one can see which variables were selected by VIP, SR and forward selection 
when integrated into the SO-PLS model. Figures 3(a) and 3(b) represent spectra in 𝐗 and 𝐙, 
respectively. The upper curves are the average spectra (offset to make them more visible) where 
selected variables by SR are presented in boldface. In the middle line, the bold face variables are 
those selected by VIP. The lines at the bottom (offset downwards) show in bold face the variables 
selected by the forward selection. From the interpretation point of view, VIP is the more 
interesting. Indeed, looking at the fingerprint region, (Figure 3a, middle line), it selects areas 
related to the skeletal 𝐶 − 𝐶, 𝐶 − 𝑁 and to the 𝐶 − 𝑂 stretching (1080, 1060, 925, and 864 cm-1). 
For the 𝐙-block (Figure 3b), VIP is able to select the most relevant bands. In fact, selected 
variables are those around 1263 cm-1, where the symmetric rocking of  = 𝐶 − 𝐻 takes place. 
Moreover, it selects variables around 1445 cm-1 where the 𝐶𝐻2’s scissoring takes place, and 
variables around 1656 cm-1 where there are the 𝐶 = 𝐶 (cis) stretching and amide I absorptions. 

When variable selection is done beforehand on the individual blocks (Procedures 3 and 4 in the 
list in Paragraph 3.1), VIP selects only seven variables more that those selected following the 
procedure 5 in Paragraph 3.1.  

The differences in the behavior of SR and VIP can be explained from the results of the simulation 
studies. Here, it is evident that some wavelengths selected from VIP are not selected by SR (in 
particular on the 𝑿-block). Since the Raman spectra are measurements of mixtures of water, 



whey proteins and oils, this finding could be due to the fact that not only PUFA is contributing to 
the Raman signal. Some wavelengths are related to functional groups present both in PUFA and 
in whey proteins. These variables are ‘relevant but not selective’ (because they are not univocally 
related to the PUFA). As observed in the simulation study in B.3, SR selects less ‘relevant but not 
selective’ variables than VIP. Consequently, the behaviors observed is not surprising.  

Predictions made without variable selection are similar to those obtained by reduced models. 
This could be taken as an indication that the presence of the whey proteins has, at best, a 
moderate additional effect on the spectroscopic signal.  

The forward selection applied to SO-PLS gives less interesting results than VIP from the 
interpretation point of view. It selects many seemingly relevant peaks but some are also missed 
out. Concerning the fingerprint part of the Raman spectrum (Figure 3(a), bottom line), it selects 
variables related to the skeletal 𝐶 − 𝑂 stretching (around 925 cm-1). Looking at the rest of the 
Raman spectra (Figure 3(b), bottom line) it picks the 𝐶𝐻2’twisting and the = 𝐶𝐻 ’ symmetric 
rocking (variables between 1200 and 1356 cm-1 ). 

 

Figure 3: Selected variables when VIP, SR and Forward Selection are implemented in SOPLS (procedures 5-7). (a) 
Lines represent the average spectra in 𝑿. The upmost lines are the average spectra (offset to make them more 
visible) where the selected variables by SR are bolded. The middle lines are average spectra (offset downwards) 
where the bolded variables are those selected by VIP. The lowest lines are average spectra (offset downwards) 
where the bolded variables are those selected by the forward selection (b) Corresponding plot for 𝒁. 

6. Discussion and conclusions 

 

In the present paper, different approaches for performing variable selection in a multi-block 
context have been proposed. All the proposed procedures conceived for selecting variables 
in the framework of MB-PLS and SO-PLS were tested on different simulated data sets and on 
two real ones.  
 
Below we present some suggestions for selecting an appropriate approach for variable 
selection in multi-block regression. The results are also summarized in a flow chart in Figure 
4. 
 
Prediction 

Inspecting the simulated multi-block data sets, it appears that SO-PLS combined with any of the 
proposed variable selection methods (also the SO-PLS in itself) gives models with good 
predictions. In particular, SO-PLS (with or without variable selection) performs better than the 
MB-PLS models. Predictions are particularly good when SO-PLS is combined with SR.  
 



It has to be highlighted that, from a practical point of view, the effort required by selection 
methods based on the evaluation of parameters (filter methods [11]) is different from the effort 
required by methods that need the rebuilding of the model every time one variable is 
removed/added. Consequently, among all the variable selection method used in this study, the 
forward selection method is definitely the most computational demanding. Moreover, it has to 
be taken into account that, since it selects variables in accordance with the predictive capability, 
the forward selection can be more sensitive to overfitting when a double validation is not 
adopted. 
 
 Interpretation 
    
In general, the interpretation of MB-PLS models (when no variable selection method is involved) 
is not straightforward. For SO-PLS, the interpretation of the blocks can be done investigating the 
𝑿- and 𝒁𝒐𝒓𝒕𝒉-PLS-scores and loadings [13,14]. After 𝒀 is fitted to 𝑿𝑹𝒆𝒅, 𝒁 is orthogonalized with 
respect to the scores of this regression. Consequently, 𝒁𝒐𝒓𝒕𝒉 only contains information not 
present in 𝑿𝑹𝒆𝒅. Interpreting the 𝒁𝒐𝒓𝒕𝒉-PLS-scores means interpreting the 𝒁-block without the 
redundant information already present in 𝑿𝑹𝒆𝒅. Since the 𝒁𝒐𝒓𝒕𝒉-block is less complex than the 𝒁-
block, it is easier to interpret.  
 
Simulation study  
 
According to the simulation studies (Appendices A and B), VIP and SR always select a large 
number of ‘selective’ variables and skip the ‘irrelevant’. The main difference between VIP and SR 
is that SR is particularly efficient in not selecting systematic ‘irrelevant’ variables, while VIP does 
not select noise. This gives an indication of which method has to be used for handling different 
type of data. If the aim of the variable selection is to get rid of systematic errors, SR should be 
the first choice. On the other hand, handling data with many noisy variables, VIP should be 
preferred.   
 
Sensory data set 
 
In the sensory data set, reduced MB-PLS models and reduced SO-PLS models gave similar results, 
in particular regarding the selection on the Smell-block. SR is in general the most parsimonious 
method for selecting from the Taste-block, (except when implemented in the SO-PLS model, 
where various relevant variables are pointed out). Also VIP selects a modest amount of variables, 
both with MB-PLS and with SO-PLS.  
 
The forward selection offers the most reduced set of selected variables but, at the same time, it 
gives the most different scenario. It selects three variable in 𝑿; one of these have never been 
selected from the other methods. Concerning the 𝒁-block, forward selection selects only one 
variable; this variable has been selected just once from the other procedures. 
In conclusion, if the purpose of the variable selection is to obtain the most reduced set of 
variables possible without sacrificing the predictive ability, the forward selection combined with 
SO-PLS is the suggested approach. If the aim is to point out the most relevant variables, SO-PLS 
combined with VIP or SR is preferable. 
 
Spectroscopic data 
 
For the more collinear spectroscopy data set, it appears that the selection method used affects 
the results a lot. The performance of MB-PLS (when variable selection is performed by VIP) is 
comparable with that of SO-PLS, but with slightly poorer results from an interpretation point of 
view. VIP, especially when combined with SO-PLS, gives promising results in terms of chemical 



interpretation. When the selection is performed by this method, the most chemically-meaningful 
peaks are selected. SR performs parsimoniously in combination with both SO-PLS and MB-PLS to 
the extent that fewer chemically relevant peaks are selected.  
 
This is a major difference between VIP and SR when applied to the sensory and to the 
spectroscopic data sets. When they are applied to the sensory data set, they both give good 
results from the interpretation point of view. When applied to the spectroscopic data set, SR 
misses some variables relevant for the interpretation. This may be caused by the fact that in the 
spectroscopic data there are more ‘relevant non-selective’ variables which SR has problems with 
(Section 5.3). Hence, VIP is preferred if the important variables are of this type. The forward 
selection gives once again the most different conclusions. It is the method that gives the most 
reduced set of selected variables and it skips different meaningful peaks.  
 
In conclusion, the SO-PLS method coupled with forward selection appears to be the most 
preferable procedure if the focus is mainly to obtain the most reduced set of variables. On the 
other hand, SO-PLS in combination with VIP appear the most efficient in providing the chemical 
interpretation of the system. At the same time, it (VIP) also provides a reduction of the number 
of variables. Therefore, this is definitely the preferable approach when the focus is the 
exploration of the chemical meaning of the spectroscopic system. 
 

 

Figure 4: Suggested variable selection approaches for Sensory data and Spectroscopy data 
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Appendices 
In these appendices we present the structure and the results from the simulation conducted in 
order to select the most relevant PLS variable selection methods to be used together with SO-PLS 
and MB-PLS in a multi-block context. The multi-block simulation reported above shares several of 
the aspects with the structure in Appendix A and it is important for understanding the details of 
that simulation as well.   
 
 



Appendix A – General structure for the simulated data sets 
 
In the first part of this work, two different data sets have been simulated in order to evaluate the 
power of the different variable selection methods (for PLS regression) in situations similar to the 
real data sets considered.  The scope is to reduce the number of variable selection methods to 
bring into a multi-blocks PLS framework. The data sets represent an ordinary two-block 
regression problem, but contain several of the features of interest in a multi-block context. These 
same features or aspects are later on considered also in the multi-block simulation (see 
Paragraph 4.1).  The details on settings of the parameters are presented in Appendix B.  

 
Dataset-1 is created in order to mimic spectroscopic data. Therefore, the number of variables 
considerably exceeds the number of the samples (𝑁). Dataset-2 is built with the purpose of being 
sensory-like in the sense that the number of columns is slightly higher than the number of rows.  
Particular attention has been given to the variables’ structure from a prediction point of view. 
The procedure used to build Dataset-1 is described below in detail.  
 
Dataset-1 is constituted of a training set (𝑿 and 𝒀) and a test set (𝑿𝒕 and 𝒀𝒕). The number of 
samples (𝑁) in the training set is defined according to an experimental design. The 𝑿 and 𝒀 
matrices have dimensions 𝑁 × 400  and  𝑁 × 1, respectively. The 𝑿 matrix is generated as 𝑻𝒙𝑷𝒙

𝑇. 
The 𝑿-scores 𝑻𝒙 are simulated from the normal distribution N(0,1). The construction of 𝑷𝒙 is 
explained in detail below. The 𝑿–block is designed as a five-components (𝐾) system, hence the 
dimensionality of 𝑻𝒙 will be 𝑁 × 5. For the scope of this work, it is natural that only some of the 
components will later contribute to 𝒀; those are the components that will be called ‘selective 
components’. The components that are not involved in the construction of 𝐘 are called 
‘irrelevant’. Here, we have chosen three (out of five) components to be ‘selective’ and the other 
two as ‘irrelevant’. The first ones will here be indicated as ‘selective components’ (𝐾𝑠𝑒𝑙) and the 
others will be called ‘irrelevant components’ (𝐾𝑖𝑟𝑟). Therefore, the 𝑻𝒙 is built as the 
concatenation of  𝑻𝑿𝒔𝒆𝒍 and 𝑻𝑿𝒊𝒓𝒓 scores, where  𝑻𝑿𝒔𝒆𝒍 represents the ‘selective scores’ based on 
the ‘selective components’, and 𝑻𝑿𝒊𝒓𝒓 represents the ‘irrelevant’ ones. These two matrices will 
have dimensions (𝑁 × 𝐾𝑠𝑒𝑙) and (𝑁 × 𝐾𝑖𝑟𝑟), respectively. Consequently, the 𝑻𝒙-matrix is built 
as: 
 

𝑻𝒙 = [𝑻𝑿𝒔𝒆𝒍 𝑻𝑿𝒊𝒓𝒓]    (A.1) 
 
Then, the coefficient vector 𝒃 (𝐾𝑠𝑒𝑙 × 1) is generated as a matrix containing random values 
drawn from the uniform distribution in the open interval (0.05, 1.05).  
The response 𝒀 is built as:  
 
   𝒀 = 𝑻𝑿𝒔𝒆𝒍 ∗ 𝒃      (A.2) 
 
Therefore, only the ‘selective’ scores are involved in the creation of 𝐘.  
 
As for the scores, the distinction between a ‘selective’ and an ‘irrelevant’ part will apply also to 
the 𝑿-loadings (𝑷𝒙). In particular, in order to produce simulated data closer to real data, loadings 
will not only have a ‘selective’ and an ‘irrelevant’ part, but they will also have a part that is 
‘relevant but not selective’ and some noise variables. The ‘relevant but not selective’ part is built 
by overlapping selective and irrelevant information, as shown above and in Figure A.1. All the 
different types of variables that constitute the loadings are variables generated using the normal 
distribution N(0,1). 
 
This means that each block will be constituted of a certain amount of ‘selective ’-variables, 
‘irrelevant’-variables, ‘relevant but not selective’-variables and some noise variables. More 



details about the structure of the loadings are reported below. The total number of variables is 
fixed for each block, but the relative amount of the different “type” of variables vary according to 
the design (the number of noisy variables is changing in order to sum up to the total). Here, we 
denote the number of ‘selective ’ variables, ‘irrelevant’ variables, ‘relevant but not selective’ 
variables and the noise variables by call 𝑀𝑠𝑒𝑙, 𝑀𝑖𝑟𝑟, 𝑀𝑟𝑛𝑠 and 𝑀𝑒. The ‘relevant but not 
selective’-loadings matrix of dimension (𝐾 × 𝑀𝑟𝑛𝑠) is denoted by 𝑷𝒓𝒏𝒔, the ‘selective’-loadings 
matrix of dimension (𝐾𝑠𝑒𝑙 × 𝑀𝑠𝑒𝑙) is denoted by 𝑷𝒔𝒆𝒍, the ‘irrelevant’-loadings matrix of 
dimension (𝐾𝑖𝑟𝑟 × 𝑀𝑖𝑟𝑟) is denoted by 𝑷𝒊𝒓𝒓 and the part representing the noise variables by 
𝑷𝑵𝒐𝒊𝒔𝒆.  
 
The 𝑷𝒓𝒏𝒔 is a block matrix of the form:  
 

  𝑷𝒓𝒏𝒔 = [
𝑷𝒓𝒏𝒔

𝒔𝒆𝒍

𝑷𝒓𝒏𝒔
𝒊𝒓𝒓

]     (A.3) 

 

where 𝑷𝒓𝒏𝒔
𝒔𝒆𝒍  (𝐾𝑠𝑒𝑙 × 𝑀𝑟𝑛𝑠) and 𝑷𝒓𝒏𝒔

𝒊𝒓𝒓  (𝐾𝑖𝑟𝑟 × 𝑀𝑟𝑛𝑠) are matrices of random numbers normally 

generated. Performing the TP-product to create the 𝑿-block, the sub-matrix 𝑷𝒓𝒏𝒔
𝒔𝒆𝒍  will be 

multiplied by 𝑻𝑿𝒔𝒆𝒍, while 𝑷𝒓𝒏𝒔
𝒊𝒓𝒓  is the part multiplied by 𝑻𝑿𝒊𝒓𝒓. This creates an overlapping 

between the ‘selective’ and the ‘irrelevant’ information. The 𝑷𝒊𝒓𝒓 and 𝑷𝒔𝒆𝒍 are in the form: 
 

 𝑷𝒊𝒓𝒓 = [
𝟎

𝑷𝒊𝒓𝒓
𝒖𝒏𝒊𝒒]  and  𝑷𝒔𝒆𝒍 = [𝑷𝒔𝒆𝒍

𝒖𝒏𝒊𝒒

𝟎
]       (A.5) 

 

where 𝑷𝒊𝒓𝒓
𝒖𝒏𝒊𝒒

 has dimensions (𝐾𝑖𝑟𝑟 × 𝑀𝑖𝑟𝑟) and 𝑷𝒊𝒓𝒓 will be of dimensions: (𝐾 × 𝑀𝑖𝑟𝑟). 

𝑷𝒔𝒆𝒍
𝒖𝒏𝒊𝒒

 has dimension (𝐾𝑠𝑒𝑙 × 𝑀𝑠𝑒𝑙) and 𝑷𝒔𝒆𝒍 will be of dimensions (𝐾 × 𝑀𝑠𝑒𝑙). The 𝑷𝑵𝒐𝒊𝒔𝒆 

consist of zeros only. 
 
This means that 𝑷𝒙 can then be represented as a partitioned matrix of the form:  
 

 𝑷𝑿
𝑻 = [

𝑷𝒓𝒏𝒔

(𝐾 × 𝑀𝑟𝑛𝑠)
𝑷𝒊𝒓𝒓

(𝐾 × 𝑀𝑖𝑟𝑟)
𝑷𝒔𝒆𝒍  

(𝐾 × 𝑀𝑠𝑒𝑙)
𝑷𝑵𝒐𝒊𝒔𝒆

(𝐾 × 𝑀𝑒)
]   (A.4) 

 
 
Figure A.1 gives a graphical illustration of how the loadings 𝑷𝑿 are partitioned. 
 
Then, the 𝑿-block can be calculated:   
 

   𝑿 = 𝑻𝑋𝑷𝑋
𝑇          (A.6) 

 

Noise is added to the 𝑿- and 𝒀-blocks. For 𝒀, the noise corresponds to a certain percentage of 
the standard deviation of 𝒀 as reported below in Appendix B. For 𝑿, the standard deviation for 
each column of 𝑿 is first calculated. Then, the pooled standard deviation is calculated, but only 
taking into account the columns that are not related to the noisy variables. In conclusion, the 
noise that is added to the 𝑿-block is a certain percentage (according to the design), of this pooled 
standard deviation.  

The test set for the external validation is built in the same way, but the number of samples (𝑁𝑡) is 
higher. The dimensionality of 𝑿𝒕 and 𝒀𝒕 is fixed; these are 1000 × 400 and 1000 × 1, 
respectively. The 𝑿-scores for the test set 𝑻𝑿𝒕𝒆𝒔𝒕, are generated as before and have dimensions 
(𝑁𝑡 × 𝐾).  



The distinction among the variables that has been defined for the training set also applies to the 
test sets. 𝒀𝒕 is calculated by the selective scores for the test set, 𝑻𝑿𝒔𝒆𝒍𝒕 : 

𝒀𝒕 = 𝑻𝑿𝒔𝒆𝒍𝒕 ∗ 𝒃      (A.7) 
 

Since the loadings are the same as in the training set, 𝑿𝒕 is calculated as:  

𝑿𝒕 = 𝑻𝑋𝑡𝑒𝑠𝑡𝑷𝑋
𝑇       (A.8) 

 
and noise is added in the same way as above. 

Dataset-2 is simulated in the same way as Dataset-1. The difference between the data sets is 
only in the dimensions. The number of rows of 𝑿 in Dataset-2 varies following the design 
described in Appendix B, while the number of columns is fixed to 40. 
 

 

Figure A.1 : Graphical representation of the simulation of the matrices X, T_X and P_X. The figure shows the 
partition of PX  in ‘relevant but not selective’-variables Prns, ‘irrelevant’-variables Pirr, ‘selective’-variables Psel, and 
noise-variables P_noise; and their specific dimensions. Prns, Pirr and Psel are partitioned matrices. Prns is constituted by 
the concatenation of Asel  (Ksc×Mrns) and Airr (Kirr×Mrns). Pirr is partitioned in a submatrix of zeros and Birr  
(Kirr×Mirr).  Psel is partitioned in Bsel  (Ksel×Msel) and a submatrix of zeros. TX-scores matrix is made by the 
concatenation of TXSel (N×Ksel) and  TXirr  (N×Mirr). More details on the submatrices can be found in the text. 

 

Appendix B – Design of the experiment, methods and model parameters 
 
B.1 Experimental design for simulations 
 
The experimental design for the study in Appendix A (for selecting the best variable selection 
methods) consists of seven factors with different numbers of levels. The seven factors are:  

 
1. Variable selection method 
2. Number of samples (N) 
3. Number of ‘relevant but not selective variables’ (Mrns) 
4. Number of ‘selective variables’ (Msel) 
5. Number of ‘irrelevant variables’ (Mirr) 
6. Noise added to the 𝒀 vector 
7. Noise added to 𝑿 



The factor ‘Variable selection method’ has eight levels. These are the PLS regression for the full 
model plus the following seven selection methods:  

1. VIP 
2. Selectivity Ratio 
3. Jackknifing 
4. sMC 
5. UVE 
6. Trunc-PLS 
7. Forward Selection 

These variable selection methods can be mainly divided into methods based on the observation 
of model parameters and statistical/chemometric approaches. Below follows a brief description 
of each of them.  

Variable selection methods based on the observation of the estimated model parameters  

If a model is reliable, its parameters are good indicators of the sources of variation. Therefore, 
the regression coefficients and the loadings can be used to get indications of which variables are 
influencing the model strongly. When these estimated values are close to zero, the associated 
variables are presumably not relevant, at least together with all the other variables in the model. 
Estimated model parameters can also be used to calculate indicators that show which predictors 
are the more relevant (or less relevant).  
 
Selectivity Ratio (SR) 

The so-called selectivity ratio (SR) [18] is the ratio between the variance explained by each 
predictor and the residual variance. The approach pursued in the present work, is the one 
proposed by Kvalheim in [20]. In the literature, there are different ways of defining cut-off 
values. In this work, two cut-off values will be used. One of them is the one proposed in [20] and 
it is based on a threshold calculated on the basis of an 𝐹-test (with fixed false-rejection 

probability at 0.05). For each variable, the corresponding selectivity ratio 𝑆𝑅𝑗  is defined as the 

ratio of two variances and, therefore, under the null hypothesis should be distributed as an 𝐹-

distribution with 𝑁-2 and 𝑁-3 degrees of freedom, respectively [20]. Accordingly, if a 𝑆𝑅𝑗  is 

greater than the critical value of the 𝐹-distribution, the corresponding variable is considered 
significant and it is selected. Nevertheless, the application of a cut-off value based on the 𝐹-test 
is not always the most appropriate choice. For some data, this is a too parsimonious criterion. 
This is an issue recognized and discussed in [31].  

Consequently, SR’s mean is here proposed as an alternative cut-off value, to be used when this 
problem arises. In the present paper, this alternative cut-off value is used for the simulated 
multi-block data sets (Paragraph 5.1). Both cut-off values have been used and compared for the 
flavored waters data set (Paragraph 5.2). For the spectroscopy data set, the cut-off based on the 
𝐹-test has been preferred. Also in this case both were used, but appeared that the cut-off based 
on the mean was influencing negatively the predictions. 

Variable Importance in Projection (VIP) 

The variable importance in projection (VIP) [15,17] is another model-based method widely used 
to select features. VIP is a measure of how much of the variance of 𝑿 is explained by each 
variable and, at the same time, of the 𝑿’s correlation with 𝒀. The mean of the squared VIP 
scores, by construction, is equal to one. Variables with a VIP bigger than one are considered the 
most relevant (and therefore those are selected). 

 



Significance Multivariate Correlation (sMC) 

Significance multivariate correlation (sMC) is a method that has been developed in order to 
estimate, for each variable, the sources of variability coming from a PLS-regression [21]. In order 
to assess which variables are important for the regression purpose, the ratios between the 
variable-wise Mean Squared Errors (MSE) of the PLS model and the mean squared of its residuals 
are compared to an 𝐹-test with 1 and 𝑁-2 degrees of freedom [21]. The variables that exceed 
the 𝐹-test threshold are selected.  

Elimination of Uninformative Variables for multivariate calibration (UVE)  

The method is based on the analysis of the regression coefficients obtained from a PLS-
regression of 𝒀 on 𝑿 [22]. Those are then compared to the regression coefficients of a second 
regression, in which 𝒀 is fitted to an 𝑿𝑹 matrix of dimensions 𝑁 × 2𝐽 (where the last 𝐽 variables 
are generated randomly). Then, an entity called reliability 𝑐𝑗 (based on regression coefficients) is 

defined [22]. The variables that will result in a reliability  bigger (in absolute value) than random 
variables’ reliability are selected.   

  
Truncation PLS 

Truncation-PLS can be based on different regression parameters. In this work it is based on 
loading weights, as suggested in [23]. The method is based on the idea that if a variable is 
uncorrelated to the response, loading weights will be equally distributed random variables, not 
different from random normal noise. Otherwise, they are normally distributed but with non-zero 
mean. Feature selection is conducted by observing which variables deviate from the median of 
the loading weights.  
 

       Forward selection 

The forward selection approach starts with no variables in the model and then tests the inclusion 
of each variable by the means of a specific criterion [24]. The process is repeated until no 
variable improves the model. When the number of the variables is high, e.g. in spectroscopy, it is 
more reasonable, to perform the forward selection on intervals instead of on each variable.  

                 Jackknifing 

Jackknifing is a resampling procedure that can also be used for significance testing. The basic idea 
behind the method is that the uncertainty of a specific parameter is estimated by leaving out one 
observation at a time [25]. In this work, the estimated parameters are the regression coefficients. 
The uncertainty has been calculated following the modification to the original method by 
Martens et al. in [26]. 
 
Levels related to the other factors are reported in Table B.1 for both data sets.  

Table B.1 Levels of six factors of the experimental design used (Factors: Number of samples, Number of relevant but 
non-selective variables, Number of selective variables, Number of irrelevant variables, Noise added to the Y vector, 
Noise added to X) for both datasets. The missing factor in the table, the variable selection method, is illustrated in 
the text. 

Dataset # samples # Relevant but non-
selective variables 

# Selective 
variables 

# Irrelevant 
variables 

Noise of 𝒀 
(%) 

Noise of 𝑿 
(%) 

 
Dataset-1 

10 10 10 10 15 10 

50 50 50 50 25 20 

100 100 100 100 35 30 

Dataset-2 15 5 5 5 20 10 

30 10 10 10 30 20 

 



 
 
At the end, following a full factorial design, 5832 (36*8) experiments are simulated for Dataset-1 
and 512 (26*8) for Dataset-2.  
 
 
B.2 Evaluation criteria for assessing the PLS variable selection methods 
 
Dataset-1 and Dataset-2 have been simulated following the above design repeated one hundred 
times. The ANOVA analysis that follows is based on the averages over these replicates. Following 
the full factorial design described above, PLS-regression models using all the variables were built 
and then the different selection methods have been applied. After the application of each 
variable selection method, a new PLS-regression using the selected variables has been 
performed. Different properties of the models were investigated. Many of these properties are 
expressed as relative percentages of a specific type of variables. This means that this value 
corresponds to the ratio between the number of a specific type of selected variables and the 
total number of that type of variables in the data set multiplied by 100. E.g., the relative 
percentage of ‘selective’ variables selected is calculated as the ratio between the number of the 
selected ‘selective’ variables and the total number of the ‘selective’ variables in the data set 
multiplied by 100. The same is done for the other types of variables. 

  The different properties investigated are:  
 

 The explained test set variance of 𝒀  

 Relative percentage of ‘selective’ variables selected (Rsel) 

 Relative percentage of ‘irrelevant’ variables selected (Rirr) 

 Relative percentage of the ‘relevant but not selective’ variables selected (Rrns) 

 Relative percentage of noise-variables selected (Rnoise) 

 Relative percentage of total variables selected (Rtot) 
 

ANOVA analysis 

The ANOVA analysis performed included all the factors plus all the possible two-way interactions. 
Concerning Dataset-1, all the factors in the ANOVA are significant (independent of which 
property it was based on). This assumption is based on p-values, using a significance level of 5%. 
Concerning the interactions, all are significant, except interactions between ‘selective’ and 
‘relevant but not selective’, ‘irrelevant’ and ‘selective’, and ‘selective’ and Noise 𝑿. 

Averaged RMSEPs, Rsel, Rirr, Rrns and Rtot for each variable selection method are reported in 
Table B.2. These values are grand means obtained by averaging across the (one hundred) 
replicates and the (729) models. 

PLS-models (both with or without variable selection) result in an averaged (grand mean across 
replicates and models) RMSEP of 0.14. Also the explained 𝒀-variance of PLS on the full models 
(all the variables are used) is comparable to the explained variance from models after the 
variable selection.  

Investigating deeply data, it comes out that, when the noise in 𝒀 is at the lower level (15% of the 
standard deviation of 𝒀), the averaged (over the replicates) explained variances are 85% both for 
the full and the reduced models. This means that all the variance that could be modelled is 
actually captured by the models. Similarly, when the noise in 𝒀 is at the highest level (35%), the 
averaged explained variance is 65%. 



For the number and type of selected variables, the various variable selection methods show 
different behavior. All the methods select high percentages of ‘relevant but not selective’ 
variables which is an attractive property. The one that selects less variables is Trunc-PLS (59%), 
but the one that selects the most (Jackknifing) selects 76%, so the differences are not dramatic. 
Some methods, such as jackknifing, SMC and UVE select high percentages of total variables. 
Nevertheless, they present high percentages of selected variables of all types. Consequently, 
they are those that select more ‘selective’ variables but, at the same time, they select many 
‘irrelevant’ ones (both systematic and noise). SR (and to a lesser extent), VIP and Trunc-PLS skip 
the systematic but ‘irrelevant’ variables which is an interesting property. These three methods 
are also the best in avoiding the selection of noise (VIP in particular). Hence, SR is in general the 
best at avoiding inclusion of unrelated information and maintaining the relevant ones.  

In order to investigate whether the different variable selection methods behave differently at the 
different points of the design, also results averaged only over the one hundred replicates have 
been inspected (So, in this case they are averaged only over replicates and not over the 729 
models). Consequently, specific trends for each variable selection method were pointed out. For 
instance, VIP is skipping less ‘irrelevant’ variables when the different types of variables 
(‘selective’, ‘irrelevant’ and ‘relevant but not selective’) are at the lowest levels. In these cases, it 
selects around 20% of the ‘irrelevant’ variables. This ability does not seem to be affected by the 
level of the noise in 𝐘. Concerning the jackknifing, it seems to be more influenced by the level of 
the noise. It selects less ‘irrelevant’ variables (both systematic and noise) when the noise in 𝐗 and 
in 𝐘 are at the lowest levels. The sMC method is not good at skipping the ‘irrelevant’ variables 
when there are few of them (lowest level) regardless of noise level in 𝐘. The averaged amount of 
‘irrelevant’ variables selected in these cases is 88%. UVE has good performance; it is particularly 
efficient in skipping a high percentage of ‘irrelevant’ variables when the number of the ‘selective’ 
and ‘relevant but not selective’ is high. In the same points, it selects also a high percentage of 
‘selective’ and ‘relevant but not selective’ variables. Finally, t-PLS is not very stable in its 
selection, so it is not showing a clear trend. 

Table B.2: Dataset-1: Means (over all the experiments) of RMSEP, Rrns, Rirr, Rsel, and Rtot for each variable 
selection method.  

 RMSEP Rrns Rirr Rsel Rtot 

VIP 0.141 66 8 58 16 

SR 0.141 60 0 82 18 

Jk 0.143 76 69 90 30 

SMC 0.144 67 70 92 28 

UVE 0.145 65 57 85 26 

Trunc-PLS 0.144 59 8 57 14 

 

Also in Dataset-2, all the factors are significant in the ANOVA analysis. Regarding the interactions, 
those between method and the other factors are all significant. Interactions between number of 
samples and the other factors are significant except for the interaction between number of 
samples and Noise 𝑿 and the interaction between number of samples and relevant variables. All 
the other interactions are non-significant. Consequently, it appears that, reducing the 
dimensions of the data sets, the interactions between the different types of variables have no 
significant effect on the models (because all the possible interaction between Rrns, Rirr and Rrel 
are non-significant). This is an indication that, at these conditions, models are mainly dominated 
by factors method and number of samples.  

Concerning the percentages of selected variables, the different methods follow trends similar to 
those presented for Dataset-1.  



In conclusion, the methods show in general high ability in selecting relevant variables in the 
simulated data sets. Nevertheless, each of them has specific characteristic that would make it 
more suitable than other ones in different situations. For example, to avoid including information 
from non-related interferents, the best choice would be to use a method that is able to remove 
the systematic-‘irrelevant’ variables. Therefore, the choice would fall on SR, VIP and Trunc-PLS. 
On the other hand, if data are highly affected by non-systematic noise, the best option would be 
VIP, while the most unsuitable would be jackknifing.  

As can be seen, there are many aspects that characterize a good method for variable selection, 
therefore, a compromise is required.  

Ideally, from the interpretation point of view, the “best” method is the one that gives high values 
of Rs𝑒𝑙, 𝑅𝑟𝑛𝑠 and low values of 𝑅𝑖𝑟𝑟 and 𝑅𝑛𝑜𝑖𝑠𝑒. For prediction purposes, the “best” method is 
the one giving a small RMSEP or a high explained variance. 

Below, we will develop an approach based on a desirability index for a combined look at all the 
aspects. 

Selection of the most appropriate variable selection method 

Desirability index 

The desirability index (di) proposed here is based on the relative percentage of ‘selective’ 
variables (Rs𝑒𝑙), relative percentage of ‘irrelevant’ variables (𝑅𝑖𝑟𝑟), relative percentage of the 
‘relevant but not selective’ variables selected (𝑅𝑟𝑛𝑠) and relative percentage of Noise-variables 
selected (𝑅𝑛𝑜𝑖𝑠𝑒). In this case, all of them are used as fractions between zero and one. This index 
is conceived to point out the “best” method from the interpretation point of view, therefore, 
explained variances or RMSEPs are not involved. 

𝑅𝑠𝑒𝑙 and 𝑅𝑟𝑛𝑠 were used as they are (since a high value of these is considered to have a good 
influence on the final model). For the ‘Irrelevant’ variables and the noise, 1-𝑅𝑖𝑟𝑟 and 1- 𝑅𝑛𝑜𝑖𝑠𝑒 
were used to calculate the index. 

The desirability index is calculated by taking the geometric average of those quantities in the 729 
(for Dataset-1) and 64 (for Dataset-2) different points of the designs. The closer to 1 the index is, 
the better the method is performing.  

 Another desirability index is also calculated, focusing more on predictions and on removal of 
‘irrelevant’ variables. This is done to check if developing the index from a more prediction-
oriented prospective could give different results. Consequently, the additional index is based on 
averaged explained variance, 𝑅𝑖𝑟𝑟 and 𝑅𝑛𝑜𝑖𝑠𝑒. The two indices are in agreement, therefore, 
only results for di are shown and discussed.  

di’s values for Dataset-1 are reported in Table B.3. The highest values were obtained for SR and 
VIP (in decreasing order) which fits well with the observations from the ANOVA above. 
Consequently, these are the two chosen methods to be applied to the multi-block data sets. 
Concerning the other methods, Trunc-PLS gives a slightly lower value than VIP. Jackknifing’s and 
UVE’s values are comparable and a bit lower than Trunc-PLS’. This is due to the high amount of 
‘irrelevant’ variables selected by these methods. Finally, sMC is the one giving the lowest di. 

The desirability index was also calculated for Dataset-2; the same method appeared to be the 
most recommended. Therefore, VIP and SR are used in the multi-block part of this study. 

Table B.3 Desirability indices for each variable selection method: Desirability indices are calculated as the geometric 
means of four properties (Relative percentage of selective variables (𝑹𝒔𝒆𝒍), relative percentage of irrelevant 



variables (𝑹𝒊𝒓𝒓), relative percentage of the relevant but non selective variables selected (𝑹𝒓𝒏𝒔) and relative 
percentage of noise-variables selected (𝑹𝒏𝒐𝒊𝒔𝒆) for each variable selection method present in the design. 

Method VIP SR Jackknifing sMC tPLS UVE 

di 0.77 0.84 0.60 0.55 0.72 0.65 

 

B.3 Conclusions on the simulation study and prospective for inclusion in a Multi-block 
regression context. 

Apparently, VIP and SR are the most suitable methods under the considerations presented in the 
previous paragraphs. From the prediction point of view, they give comparable results. 
Considering the interpretation, the two methods reduce the amount of variables, but retain 
relevant ones. Both are powerful in skipping ‘irrelevant’ variables. In particular, SR is able to get 
rid of the systematic ‘irrelevant’ variables; which indicates this method would be suitable to 
remove systematic errors in real data. The VIP is more efficient in removing random noise.  

In addition to VIP and SR, also the forward selection method will be used for multi-block data 
sets. This is included in the work for the sake of completeness and to achieve a more general 
discussion. The forward selection method will be used in  two different versions: one selecting 
individual variables and one selecting windows of variables. The latter is suitable for highly 
collinear spectral data with very many variables. 
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