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Abstract 

The main aim of the thesis was to characterize mechanical properties of the vertebral 

column and ribs of Atlantic salmon and to recommend a method for measurements of  

mechanical properties of vertebrae and ribs. Every fourth vertebrae and every second 

rib was analyzed within the same weight class (4 kg) of salmon. Additionally, 

variation in mechanical properties among 4 kg, 5 kg and 6 kg salmon vertebrae and 

ribs, between salmon, rainbow trout and common carp, and the effect of frozen 

storage were analyzed. The instrument used was TA-XT2 Texture Analyzer. Samples 

collected from three different section in vertebral column of salmon and trout were 

chemically analysed for fat content, dry matter and ash. The results showed 

significant variation in mechanical properties along the vertebral column, between 

weight classes, between the fish species, and between fresh and frozen vertebrae. 

There was not a consistent relationship between thickness and the mechanical 

properties. The mechanical strength of the ribs decreased in the posterior direction, 

with the highest strength closest to the vertebral column. The fat content of the 

salmon vertebrae (17-22%) was higher compared with trout (11-15%), while the ash 

content was higher of trout (21-23%) compared with salmon 

(17-18%). Vertebrae which had been frozen also proved useful for mechanical 

measurements.  

Based on results from this study, the recommended method for analyzing mechanical 

properties of salmon is to analyse vertebrae 12 to 28 (counting from tail) because of 

the stable mechanical properties within this range, and hence low risk to conclude 

wrongly due to mistaken counting. The total work (N*sec) required to compress the 

vertebrae to 70% of total thickness was the most representative parameter for data 

analyses. The method was also applicable on Rainbow trout. The rib located nearest 

the head, measured at a position close to the vertebral column, proved the best option 

for detecting representative variation of mechanical properties of salmon ribs. 

Key words: Atlantic Salmon, mechanical properties, fish skeletons 
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1. Introduction 

Skeletons as a connective tissue are buried in muscle of vertebrates, such as fish, and 

are typically not affected by external environmental factors (Håstein, 2004). Because 

the shape and number of bones in fish are stable, they can therefore have the potential 

to become the standard by which the development and welfare of fish can be 

measured and understood. 

Long-term natural evolution contributes to the development of bone structure, and 

enables the skeleton to support maximum external force with minimal material costs 

and to allow for good function (Bell, 1834, Ramakrishna et al., 2001). In histologic 

terms, the microstructure of fish bones is similar to that of many other vertebrates. 

These consist of compact and cancellous bones, which are significantly different in 

density and strength (Currey, 2002, Totland et al., 2011). Morphologically, bones 

have superior mechanical properties which are equal to the maximum strength 

optimization at the point of the least weight (Ross and Metzger, 2004). 

In order to provide a more convincing theoretical basis for the process of bone 

optimization, the study of the mechanical properties of bone has practical 

significance. 

Previous research related to skeletons has taken for the most part a macroscopic view, 

such as the observation of morphology and development state in the entire fish 

skeletal system, the nutritional value and utilization of fish bone, and so on. Research 

on micro-bone is limited. In most cases, high-tech means are used to explore the 

microstructure of fish bones, such as ultrasonic imaging, computerized tomography, 

magnetic resonance imaging, and even nanoindentation (Laugier et al., 1997, Genant 

et al., 2008, Zhang et al., 2002, Cohen et al., 2012). The cost of examining skeletons 

in this manners is prohibitive, and such research is time consuming. Biomechanics is 

a new area with rapid development in recent years, which is closely 

http://cn.bing.com/dict/search?q=histology&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=theoretical&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=basis&FORM=BDVSP6&mkt=zh-cn
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refer to analyze organisms with mechanical principles and methods. However, 

according to statistics, only very limited studies have focused on the mechanical 

properties of fish bone (Cohen et al., 2012). Hence, it is necessary to utilize a simple 

and intuitive mechanical analysis method in order to better understand the material 

characteristics of fish skeletons. 

Under normal conditions, the mechanical properties of bones cannot be revealed 

completely due to its anisotropy (Currey, 2014). The special characteristics of bones 

differ from other homogenetic materials; therefore, suitable mechanical methods and 

representative parameters should be selected to better estimate the mechanical 

properties of fish bones. Skeletal deformities usually caused by compression force 

overload occur in fish in both natural and artificial environments. Problems relating to 

skeletal deformity occur in salmonids with high frequency at the position of the 

vertebral column (Branson and Turnbull, 2008). A mechanical model of fish bones 

can help to predict mechanical damage, improving product quality and providing new 

control methods. Because the chemical composition of bone also contributes to the 

variation in bone mechanical properties, it is also important to determine the 

composition of bone as a basis to provide reasonable parameters (Carter and Spengler, 

1978). 

The aim of this study was: 1) to describe mechanical properties of Atlantic Salmon 

vertebrae and ribs in detail; 2) to determine variation in mechanical properties of 

Atlantic Salmon vertebrae and ribs among weight classes; 3) to compare mechanical 

properties of vertebrae and ribs among Atlantic Salmon, Rainbow Trout and common 

Carp; 4) to determine variation in mechanical properties of fresh and frozen vertebrae. 

5) to determine variation in chemical composition of salmon and trout vertebrae. 

Based on the results from points 1-5, recommend a method for measurements of 

mechanical properties of Atlantic Salmon vertebrae and ribs. 
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2. Background 

2.1. Bone structure 

Bone is a kind of connective tissues in vertebrates which is composed of bone cells, 

fiber and matrix (Hall, 2015). The most obvious property of bone is the cell matrix, 

which has a large amount of calcium salt deposition which in turn results in an 

adamant texture. The bone structure contains periosteum, bone matrix and bone 

marrow. The periosteum is a layer full of dense collagen fibers which are tightly 

attached to the surface of the bones (Markings, 2004). Abundant nerves and blood 

vessels are distributed in the periosteum and supply nutrients to bones and sensors to 

nerves (Steele and Bramblett, 1988). In addition, the periosteum includes osteoblasts 

and osteoclasts, relevant to bone growth and development, proliferation, healing, and 

rebuilding (Mackie, 2003). Bone matrix is the basis of the bone tissue. Its structure is 

lamellar-like bone plates. The fibers in the same bone plates are parallel to each other 

while those of the adjacent bone plates are vertical to each other, which effectively 

increases the strength of the bones (Currey, 2002). Bone tissue is the main component 

of the various bones of the skeletal system; its function is to support the body, protect 

the soft organs, and provide the mechanical infrastructure for movement. Bone 

marrow fills the medullar cavity and the voids of cancellous bone (Hench and Wilson, 

1993, Ratner et al., 2004). 

The study of bone is divided into "quantity" (the number and volume of bones) and 

"quality" (the microstructure, bone collagen, mineralized bone matrix, micro fracture 

occurance and regeneration ability, etc) (Rubin et al., 2002). 

Bone quantity is the sum of bone organic matter and bone minerals. Since there is as 

of yet no method to measure the bone organic matter in a living body, bone mineral 

content, also called bone mineral density (BMD), has been determined only in clinical 

or scientific research, not accurate bone quantity measurement. BMD is a good 

reference index to indicate bone strength and bone stiffness. In recent years however 

http://cn.bing.com/dict/search?q=medullar&FORM=BDVSP6&mkt=zh-cn
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researchers have begun to recognize that BMD can only partially show bone strength 

(Gluer et al., 1994). Bone strength also depends on the quality and the metabolism of 

the bone. Bone quality will be dictated by bone tissue structure, or in others words, 

bone microstructure. On this level, bone can also be classified into compact bone and 

cancellous bone. The texture of the former is formed by tightly entwined 

bone collagen fibers and is able to withstand great pressure while the latter is a 

sponge-like structure with many pieces of trabecular bone intertwined (Gibson, 1985, 

Seeman and Delmas, 2006, Parfitt, 1984) 

Seeman has pointed out that BMD can only explain 60 % to 70 % of bone strength 

(Seeman, 2003). In addition to bone quantity, bone microstructure plays an important 

role in determining bone strength as well as its biomechanical properties, including 

the thickness and pore density of the compact bone, and the shape, thickness, 

connectivity, and anisotropy of cancellous bone. Some studies indicated that bone 

microstructure is the most significant factor in bone strength, and can be regarded as 

the key to bone fragility and even function independently from BMD (Dalle 

Carbonare and Giannini, 2004, Kleerekoper, 2006). Regarding composition, compact 

bone accounts for 60 % of bone quantity, whereas the effect of cancellous bone is 

very limited. Therefore, a single measurement of bone quantity is not an accurate 

measurement of bone gain or loss. Another relevant study has shown that in addition 

to bone quantity, changes in the architecture of trabecular bone significantly affects 

the bone strength (Hernandez and Keaveny, 2006). 

2.2. Bone research methodology 

Bone histomorphometry, a gradually developing area, is a stereology aimed at 

quantitatively observing and studying bone morphology and structure. This technique 

has been widely utilized in the diagnosis of metabolical bone diseases and animal 

experiments. The application of bone histomorphometry not only leads to an 

understanding of bone characteristics regarding morphology, but provide a 

quantitative method by which to observe change (Malluche et al., 1982). 

http://cn.bing.com/dict/search?q=bone&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=collagen&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=fiber&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=stereology&FORM=BDVSP6&mkt=zh-cn
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The quantitative parameters of cancellous bones mainly include bone mineral density 

(BMD), bone volume / total volume (BV / TV), connection density (Conn-Dens), 

structural model index (SMI), trabecular bone number (Tb. N), trabecular bone 

thickness (Tb. Th), and trabecular bone separation (Tb. Sp). The quantitative 

parameters of cortical bone include BMD, cortical thickness (Ct.Th), cortical area / 

total tissue area (Ct. Ar / T. Ar), and bone marrow area / total tissue area (Ma. Ar / T. 

Ar) (Parfitt et al., 1987). 

A large number of studies have shown that quantitative determination of skeletal 

structure contributes an improved method by which to estimate bone strength. 

Currently there are numerous methods for detecting the microstructure of trabecular 

bone, each with its advantages and limitations. These can be generally divided into 

invasive and noninvasive testing methods. Methods for detecting bone microstructure 

have developed gradually, from simple to complex, from two-dimensional (2D) to 

three-dimensional (3D), and from invasive to relatively noninvasive (Cortet et al., 

1995). 

2.2.1. Invasive testing methods 

In traditional bone histomorphometry, the parameters of bone microstructures are 

gained from the 2D image of mono-layer histological slices. Bone characteristics are 

then shown to a certain extent via a series of calculations done by software. 

Due to the rapid development of science and technology, destructive testing methods 

are constantly being improved. Beck et al. utilized computer-controlled grinding 

technology combined with continuous photography through a three-dimensional 

reconstruction computer program to access the spatial structure image of trabecular 

bone (Beck et al., 1997). Similarly, Jiang Peng et al. also used conventional trabecular 

bone staining and cancellous bone embedding technology to see the spatial structure 

image of trabecular bone (Jiang Peng et al., 2005). However, these type of 

measurements destroy the integrity of the test object and involve great difficulty in 

evaluating bone characteristics, especially mechanical properties. It is also necessary 

http://cn.bing.com/dict/search?q=image&FORM=BDVSP6&mkt=zh-cn


  7 

to have experienced experts analyze the two-dimensional and three-dimensional 

microstructure of trabecular bone. All of these problems limit its use in clinical and 

scientific research. 

2.2.2. Noninvasive testing methods 

Ⅰ. Ultrasonic imaging 

Quantitative ultrasonometry (QUS) is a new technique that indicates BMD and shows 

bone structure, elasticity, and brittleness (Hans et al., 1999). This technique has been 

used to diagnose osteoporosis and predict the risk of fracture (Lin et al., 2001). It uses 

sound wave reflection and penetration attenuation to evaluate the mechanical 

properties of bone. The main parameters are ultrasonic sound of speed (SOS) and 

broadband ultrasound attenuation (BUA). The former is mainly affected by BMD and 

bone elasticity while the latter depends on BMD and bone microstructure. In addition, 

it provides information about bone stiffness (Halaba et al., 2005).  

Some studies have shown a positive result in the use of QUS to identify osteoporotic 

fracture (Schott et al., 2005). Osteoporosis is a bone metabolic disease that causes 

fracture due to a decrease in bone strength and an increase in bone brittleness. 

Changes in osteoporosis first appear in areas rich in cancellous bone. However, the 

cortical bone is also involved, and the possibility of fracture is ultimately determined 

by the cortical bone (Chavassieux et al., 2007). The QUS technique can accurately 

estimate the porocity and volumetric void of cortical bone, but has the disadvantage 

that it has a relatively lower accuracy rate when used to measure the changes of bone 

strength in deep structures. 

Ⅱ. Computerized tomography (CT) 

CT is a 3D image obtained by a series of X-lines that penetrate the test object. These 

form an attenuated image, which is then reconstructed by mathematical programming. 

The resolution of traditional CT cannot distinguish the level of trabecular bones. Thus 



  8 

far, high resolution computerized tomography (HRCT) and micro-CT (µCT) have 

been introduced into the study of bone microstructure (Cortet et al., 1998, Link et al., 

1998, Cortet et al., 1999) 

ⅰ) High resolution computerized tomography (HRCT) 

HRCT technique measures the geometric characteristics of bone more accurately than 

do conventional methods, and can be used to analyze the structure of trabecular bones 

in a living body (Ito, 2006). Its spatial resolution is however still low. Some 

parameters can be obtained, but accuracy is sacrificed. Compared to the “gold 

standard”, bone histomorphometry, HRCT overestimates the bone volume fraction 

(BVF) and underestimates the spatial distance of trabecular bone. 

ⅱ) Micro-CT (µCT) 

Micro-CT is a relatively noninvasive detection method. It creates a 3D image, which 

is convenient for observing bone microstructure. The resolution of micro-CT image is 

high, which make it possible to distinguish cancellous and compact bone. Micro-CT 

measures the volumetric bone mineral density (vBMD) and tissue mineral density 

(TMD) that reflects the mineralization of bone tissue. Its morphometric software can 

provide a large number of trabecular bone space parameters (Mulder et al., 2005). 

These parameters can be more accurate than the morphometric method, and provide 

experimental data which cannot be acquired from a 2D method such as the structural 

model index. 

Although micro-CT technique is very advanced and accurate, the cost is high and the 

technique has its own shortcomings, such as radioactive damage and limitation in 

observing vision (Ritman, 2002). Moreover, sometimes there is a need to remove the 

specimen from a living body before analyses. 

Ⅲ. Magnetic resonance imaging (MRI) 

Magnetic resonance imaging shows the magnetic specificity of material internal 

nucleus in order to reflect material characteristics. Its imaging capabilities and 

http://cn.bing.com/dict/search?q=Volumetric&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=bone&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=mineral&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=density&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=Mineralization&FORM=BDVSP6&mkt=zh-cn
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methods do not produce ionization of MRI, making it the most attractive imaging tool 

for the examination of trabecular bones (Majumdar et al., 1996). 

High-resolution magnetic resonance (HRMR) and micro magnetic resonance are 

collectively referred to as MR microscope. MR microscope is a technique for 

quantitatively measuring the structure of internal bone or isolated trabecular bone 

specimen. Studies show that the parameters measured by MRI are valuable. When 

Wehrli used micro-MRI to evaluate the structure of trabecular bone and cortical bone, 

he pointed out that the obtained results could effectively evaluate the 

interventional treatment of bone metabolism and prevent of osteoporosis (Wehrli, 

2007). 

The positive effect of osteoporosis testing via MRI has been recognized, but there are 

many techniques such as sensitivity, specificity, accuracy, and standardized data 

processing, and 3D imaging which are still being developed. In addition, the MRI 

inspection is lengthy, costly, complex, and is currently in the research stage of clinical 

application (Lester et al., 1995). 

2.2.3.  Mechanical analysis of bone 

 Ⅰ. The challenge of bone mechanical analysis 

The mechanical properties of bones are defined by their reaction under an applied 

load or pressure (Fa-Hwa Cheng, 1997). Normally, materials are measured by 

strength, ductility, hardness, and impact and fracture resistance. The fact that the 

skeletal structure of an organism is an integrated part of that organism creates a 

challenge when attempting to measure bone properties. The main factors affecting 

bone mechanical properties are as follows: ⅰ) Types of organisms vary. Even among 

the same type of organism there is variation in for example age, sex, lifestyle, growth 

and developmental conditions. ⅱ) Bone status is to some extent a result of the 

organism’s interaction with its environment. ⅲ) Variation in bone size and shape. 

Although the lamellar structure of bone makes it possible for it to adapt its function to 

http://cn.bing.com/dict/search?q=isolated&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=Interventional&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=treatment&FORM=BDVSP6&mkt=zh-cn
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its the enviroment, this adds yet another challenge when measuring the mechanical 

properties of bone. 

 Ⅱ. Previous studies of bone mechanical properties   

The earliest study of the mechanical properties of bone dates back to Galileo’s 

observations in the seventeenth century (Ascenzi, 1993). Galileo proposed that larger 

vertebrates have disproportionately more robust bones that adapt to mechanical 

loading, and that this was not only because of the sizes of the vertebrates (Martin, 

1999). He also claimed that larger bones are weaker than smaller bones when 

subjected to the same stress, because the increased weight caused the larger bone to 

be hollow. These views were however not shared by by most people during the 

following two hundred years. In the 1830s, Wyman described the architecture of 

trabecula bones. Bourgery and Ward put forth hypotheses as well, but all of these 

explanations were proven to be defective (von Meyer, 2011, Wolff, 2012). After 

studying the human femur, Culmann pointed out that the distribution of trabecular 

bones followed the direction of major stress. His findings later became the the basis of 

bone stress trajectories theory (Huiskes, 2000). Wolff ’s law was for example also 

based on these findings, which described bone structure change as a result of 

mechanical stimulation. This was also regarded as the basis of trabecular architecture  

(Roesler, 1987, Wolff, 2012). Moreover, Wolff ’s hypothesis was able to be expressed 

as a mathematical model that showed the relationship between bone function and both  

internal and external structure of bone. However, the code of this "mathematical law" 

has not yet been cracked (Carter, 1984). 

Ⅲ.Bone biomechanics  

Bone biomechanics is one of the major branches of biomechanics, and has had 

contributed significantly to the bio-sciences, medicine, industry, and even our daily 

lives. For example, achievements in biomechanics have paved the way for 

advancements in the repair of cartilage injury and in tissue engineering. This alone 

affirms the importance of this new scientific field (Guilak et al., 2004). Due to these 
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advancements as well as the the application of engineering technology and the rapid 

development of high-tech equipment, it is now possible to evaluate the mechanical 

properties of bone more comprehensively. 

Nanoindentation is a new technique in the study of bone biomechanics. It is used to 

explorer bone composition and the mechanical properties of bone microstructure (Rho 

and Pharr, 1999, Zysset et al., 1999). The working principle of nanoindentation is to 

add force to the material being tested by means of a diamond indenter (or other 

material). It follows the gained stress-strain curve and calculates the mechanical 

properties of material, such as hardness, elastic modulus, yield strength, etc. (Rho et 

al., 1999, Ebenstein and Pruitt, 2006). Nanoindentation has many advantages, such as 

minimal trace of pressing, high spatial resolution, small size of the probe, and no risk 

of damage to the material being tested, which make it possible to measure small, thin, 

or anisotropic materials, such as compact bones and trabecular bones (Rho et al., 1999, 

Zonglai, 2010). 

2.3. Fish skeleton structure and function  

Fish are vertebrates, which means that they have a vertebral column or “spine”. There 

are two fish categories based on type of skeleton: bony (teleosts) and cartilaginous 

(elasmobranchs). The skeletons of teleosts consist of bone while the elasmobranchs 

have cartilaginous skeletons (Mackean, 1969). 

According to the growth position, fish skeletons can be divided into axial skeleton and 

appendicular skeleton. The former refers to the skull, vertebral column, and ribs, 

while the latter includes the pectoral girdle, pelvic girdle, and actinosts. For all of 

these, the internal skeleton is buried in muscle. Fish also have an exoskeleton, the 

external skeleton that supports the body, which includes scales, fin rays and fin spines, 

etc (Boulenger, 1931). In this study, the focus is on the axiale skeleton, especially the 

vertebral column and ribs. 

http://cn.bing.com/dict/search?q=anisotropic&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=fin&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=spine&FORM=BDVSP6&mkt=zh-cn
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As mentioned above, elasmobranchs have a cartilaginous skeletal system and the 

skeletons of teleosts consist of hard bone matter. This bone can be formed by two 

differing development paths: ⅰ) Cartilage bones to hard bones: develops throughout 

the membranous phase, cartilage phase and hardening phase as common bones; ⅱ) 

Membrane bones to hard bones: membranous phase develops directly into hardness 

phrase by the ossification of osteoprogenitor cells, but without the cartilage period. 

Fish need skeletons for the following reasons: to protect vital organs to support soft 

tissues - fascia, tendons, ligaments; as anchors for muscles; to manufacture red blood 

cells; as storage for minerals - calcium, phosphate; and to supply the muscles with an 

infrastructure for movement (Alexander, 1974). 

Morphologically, the vertebral column of fish can be divided into abdominal 

vertebrae and caudal vertebrae. The two are easily distinguished, because abdominal 

vertebrae are attached to the ribs while caudal vertebrae are not. The vertebral 

column’s front and back sides are sunken in, known as the amphicoelous vertebra, a 

characteristic unique to fish. In vertebrates, the basic structure of the vertebral colums 

originates from fish. The function of the vertebral column is to support the body, 

protect the spinal cord, haslets, main blood vessels and so on. Each vertebra in both 

elasmobranchs and teleosts is composed of centrum, neural arch, neural spine, haemal 

arch, and haemal spine (De Carli and Richardson, 1978, Froese and Pauly, 2012). 

 

Fig 2.1 Salmon vertebra structure diagram 

Transverse process 

Neural spine 

Neural  

arch 

Centrum 

Haemal arch  

Haemal spine 

http://cn.bing.com/dict/search?q=cartilaginous&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=ossification&FORM=BDVSP6&mkt=zh-cn
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Fig 2.1 and Fig 2.2 showed the vertebra structure of salmon and carps. Detailed 

description can be stated as follows: 

Centrum: the main part of vertebra load bearing whose interior is full of cancellous 

bone while the surface of compact bone is thin. The concavity of amphicoelous 

centrum exists remnant notochord. 

Neural arch: a triangular foramen composed of two pedicles that extend from the 

sides of the vertebral body and pairs of laminae, the broad flat plates that project from 

the pedicles. The neural arch encloses the spinal cord in order to protect it. 

Neural spine: composed of pairs of triangular small bone pieces and connected to 

each other by ligament. 

Transverse process: a small zygopophysis on both sides of the ventral centrum. 

Haemal arch and haemal spine: unique to the caudal vertebrae. The hollow archway 

located below the centrum is contains the tail artery and tail vein. The haemal spine 

starts from the joint combined with the haemal arch at ventral. 

Caudal vertebrae are without transverse processes. 



  14 

 

 

Fig 2.2 Carp vertebra and rib structure diagram (By Ivy Livingstone) 

 

Ribs are components of the axiale skeleton that attach to the transverse process of 

vertebrae for the purpose of supporting the body and protecting the internal organs. 

The ribs of teleosts are well developed (Nelson, 1969). They are divided into dorsal 

ribs and ventral ribs. Regarding material used in the present study, three fish species 

were analysed: Atlantic Salmon and Rainbow Trout, and common Carp. Atlantic 

Salmon and Rainbow Trout, that belong to Salmonids, have both dorsal ribs and 

ventral ribs, while Carp only has ventral ribs. 

It should also be noted that carp have intermuscular bone, which is not found in 

salmonids. Intermuscular bones, or sesame bones in anatomy, are distributed in the 

myosepta of many fish species, and are partially ossificated by the connective tissue 

of the myosepta. This type of bone is gradually reduced with the evolution of fish, and 

has completely disappeared in perciformes (Kyle, 1926, Nelson, 1969). 

Centrum 

Transverse process 

Neural spine 

Neural arch 

Rib 

http://cn.bing.com/dict/search?q=component&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=intermuscular&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=bone&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=intermuscular&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=bone&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=ossification&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=connective&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=tissue&FORM=BDVSP6&mkt=zh-cn
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2.4. Fish vertebrae microstructure   

The skeletal system is a hard structure with a series of complex metabolic activities 

such as constant remodeling and alteration. The entire process involves three types of 

cells: osteoblasts, osteocytes, and osteoclasts. Histologically, there are two types of 

bone formation: cellular bone and acellular bone. The latter, without osteocytes and 

osteoclasts, is easy to distinguish from the former (Moss, 1961, Moss, 1963). Large 

populations of osteocytes are present in cellular bone, but osteons are absent (Moss, 

1965). It is said that osteocytes existed in acellular bone during osteogenesis while 

dead afterwards. The majority of fish have acellular bone created by osteoblasts, and 

with the exception of a few phylogenetic primitive teleost species such as salmonids, 

clopeoids, cydrinidae all are have cellular bone (Horton and Summers, 2009, Krossøy 

et al., 2009).  

The microstructure of fish bone is similar to that of other vertebrates. Acellular bone 

is regarded as special examples in vertebrates, which consists of unstructured solid 

matrix. It has been shown that calcium cannot be absorbed into cellular bone, making 

it impossible for cellular bone to function as a calcium repository (Cohen et al., 2012). 

In this study, all fish species examined (Atlantic Salmon, Rainbow Trout and Carp) 

were composed of cellular bone. The report written by Jaquan and Ada (Horton and 

Summers, 2009) has revealed that although the mechanical properties of acellular 

bone demonstrated similarities to cellular bone, the mean stiffness of this type of bone 

is lower than that of fish species that have cellular bone. Despite the mechanical 

properties of these two type of bones, the mineralization of cellular bone is 

significantly lower than acellular bone (Cohen et al., 2012).  

Since the vertebrae of fish must be stiff enough to provide the necessary support for 

life activities, an important mechanical characteristic of bone is stiffness (Currey, 

2002). This property is affected by both bone composition and its microstructure 

(Fratzl and Weinkamer, 2007). One of the determining factors is the porosity at the 

microscale (1-100µm). Normally, bone stiffness will decline if bone porosity 

http://cn.bing.com/dict/search?q=Salmonidae&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=Clopeoids&FORM=BDVSP6&mkt=zh-cn
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increases. When observed by means of a scanning electron microscope, it is clear that 

bone is a sandwich-like structure, a combination of compact bone on the surface and 

cancellous bone with multi-cell at its core. If the volume of solid bone is more than or 

equal to 70 %, it is known as compact bone. Conversely, if the volume is less than 

70 %, it is cancellous bone or trabecular bone (Gibson, 1985). 

Cancellous bone is a porous structure connected by a large number of acicular or 

flaky trabecular bone. These trabecular bones configurate according to the rules of 

tensile curve, with uneven anisotropy, which will increase the ability of bone to 

withstand mechanical stress (Yingjian,1996). Studying the anisotropy of cancellous 

bone is the key to the accurate biomechanical analysis. 

Nordvik (Nordvik et al., 2005) divided vertebra into four layers from the scanning 

images performed in a microcomputed tomography system (SkyScan 1072, SkyScan 

NV, Aartselaar, Belgium). The first layer, called chordacentrum, formed as a 

mineralized circular zone. It is said that the first chordacentrum appears in the area 

below the dorsal fin, then grows gradually toward the head and tail. The second layer 

is formed by thin collagen fibres surrounding the entire spinal cord. The direction of 

these continuous fibres are generally longitudinal. From the longitudinal-sectional 

profile of the second layer, it was observed to be tapered, thinnest closet to the 

chordacentra and thickest outside the intervertebral ligament. The third layer consists 

of a bone with collagen fibres circularly distributed externally around the 

amphicoelous centrum. Osteoblasts deposited osteoid in this layer leaded to the 

mineralization of layer 2. Layers 2 and 3 developed into the compact bone of the 

vertebra. Layer 3, which consists of a large number of osteoblasts, makes up the 

majority of this compact lamellar bone. The fourth layer has a less dense structure 

compared with the second and the third layers, and is composed of cancellous bone. 

Cancellous bone are mainly vertical and horizontal beams as stress oriented that form 

layer 4 into prismatic structure (Fig 2.3). 
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2.5. Composition and application 

During processing of fish products, fish bone is considered a by-product and is always 

discarded. Relevant statistics show that marine fish waste, such as fish skull and spine, 

make up 15 % of the raw material, but has a low utilization rate (Richardsen et al., 

2015, Slizyte et al., 2016). Other than being processed into fertilizer or feed, efficient 

utilization of fish bone is still an unsolved problem that needs to be addressed as soon 

as possible.  

Regarding composition, fish bone have high potential for utilization. First, the 

proportion of protein content is approximately 15 %, which indicates a high biological 

value (BV) (Martı́nez-Valverde et al., 2000, Toppe et al., 2007). Second, fish bone is 

rich in calcium, phosphorus, and other trace elements essential to the human body. 

Nutritionists have documented that regular intake of fish bone products help 

preventing osteoporosis. Third, fish bone is not only rich in calcium, but the calcium 

and phosphorus ratio is also favorable (Chiling et al., 2007). It is generally considered 

that the body can easily absorb calcium via a supplement that includes fish bone. 

Moreover, collagen and chondroitin that is beneficial for human skin, can also be 

 

Fig 2.3 Cancellous bone of the salmon vertebrae viewed from the front and side 

http://cn.bing.com/dict/search?q=the&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=human&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=body&FORM=BDVSP6&mkt=zh-cn
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extracted from fish bone. It appears that extracting bone oil might be another way to 

utilize fish bone.      

Compared with mammals, fish bone seems to lack of concern in its physical and 

chemical properties, which may be a big loss. Szpak reports that fish bone is more 

prone to experience biotic and abiotic degradation than is mammalian bone (Szpak, 

2011). As has been mentioned, the mechanical properties of fish bone exhibit 

considerable variability, Unfortunately, less attention has been paid to the composition of 

fish bone than to the bones of mammals. The amino acid composition of fish bone differs 

considerably from that of mammals, especially in regard to hydroxyproline content. 

Furthermore, the proportion of ash content and BMD values show that the bone of 

fish is less mineralized than that of other vertebrates. 

Bioapatite, largely distributed in the mineral phase of bone, contributes primarily to 

two functions in mineralized tissues. One is to improve mechanical performance, such 

as adding bone stiffness and strength to the structure. The other is physiological 

support, such as a simple mental reservoir (Lee et al., 1986). The size and the 

ordering of bioapatite crystals are very similar in fish and mammalian bone, which 

enables fish bone to be used as an ideal replacement material in some fields. 

In order to understand the resources of fish bone and improve the economical value of 

fish, it is necessary to compare regular composition in fish bones. The main chemical 

components of fish bone are ash, protein, water, and lipid (Toppe et al., 2007). 

Calcium and phosphors constitute the major part of the ash. In this study, the 

concentration was on fat content, dry matter, and ash. 

 

 

 

http://cn.bing.com/dict/search?q=improve&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=mechanical&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=performance&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=reservoir&FORM=BDVSP6&mkt=zh-cn
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3. Meterial and Method 

3.1. Fish samples 

On 1 April, 2016, a total of 30 farmed Atlantic salmon (Salmo salar, L.) from Sotra 

Fiskeindustri (SF), Sotra, Bergan, Norway, including three weight classes (4 kg, 5 kg, 

6 kg, 10 fish per weight), were collected and stored on ice for 7 days before being 

filleted. After the samples were filleted, the remaining skeletons were on ice for an 

additional day before mechanical analyses. Detailed information of whole fish  

sample group was showed in Table 3.1. 

Table 3.1 Fish sample information for 4kg, 5kg, 6kg Atlantic salmon 

Fish 
Weight 

class 

Number 

of fish 

Average body 

weight (g) 

Maximum 

weight (g) 

Minimum 

weight (g) 

Average 

length (cm) 

Atlantic 

salmon 
4 10 4098.2 ± 63.0 4354 3805 69.5 ± 0.5 

Atlantic 

salmon 
5 10 5140.1 ± 55.2 5474 4935 74.5 ± 0.4 

Atlantic 

salmon 
6 10 6175.4 ± 70.4 6470 5864 77.0 ± 0.4 

 

Carps (Cyprinus carpio, n=9) farmed at the facilities of Czech Republic University 

were slaughtered on 16th April, 2016 and immediately at -20 °C and transported in 

frozen state to Norway. The fish were thawed at 4°C after 7 days of frozen storage. 

Detailed information of carp was showed in Table 3.2. 

Table 3.2 Fish sample information for carp 

Fish Number of fish 
Average body 

weight (g) 

Maximum 

weight (g) 

Minimum weight 

(g) 

common Carp 9 1209.6 ± 49.3 1358.3 910.6 

 

20 skeletons of Rainbow trout (Oncorhynchus mykiss) and 17 skeletons of Atlantic 

Salmon were collected on 28th and 29th April respectively from Sotra Fiskeindustri 

(SF). 10 skeletons for each salmon and trout were analysed fresh. The remaining 
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skeletons were frozen at -20 °C for 7 months before analysing after thawing at 4°C 

overnight. Detailed information of skeleton sample group was showed in Table 3.3. 

Table 3.3 Fish sample information for skeletons of Atlantic salmon and Rainbow trout 

Fish Skeleton Number of fish Origin 
Average vertebrae 

length (cm) 

Atlantic salmon 17 Random fish from SF*  62.4 ± 1.3 

Rainbow trout 20 Random fish from SF* 53.2 ± 0.5 

*Sotra Fiskeindustri, Sotra, Bergan, Norway  

3.2. Vertebral column dissection and measurement 

Before dessection, all of the skeletons were labeled. Vertebrae were cut along the 

vertebral column with shears, as close as possible to the centrum from the tail to the 

head. Excess connective tissue covering the vertebrae was removed with the blunt 

side of shears. Vertebrae analyses were performed instrumentally (TA-XT2 Texture 

Analyser, Stable Micro Systems, Surrey, UK) by compressing a guillotine knife (70 

mm width, 3 mm thickness) into the middle position of the vertebra with trigger force 

1 Newton at 2 mm/sec until it reached 70 % of the vertebra thickness (Fig 3.1). Each 

vertebrae column was measured every fourth started from the tail. 
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Fig 3.1 Vertebral column dissection and measurement 

 

3.3. Rib dissection and measurement 

Ribs were dissected from the right side of fresh samples but left side of frozen 

samples because of the long-term freezer storage. Every second rib was cut from the 

skeleton from anterior to posterior with a scalpel. For the 5 kg and the 6 kg Salmon 

samples, only the twelfth and fourteenth ribs were cut, which is in line with the 

considerable amount of research that has demonstrated a sizable chance of bone 

deformity between these two ribs (Mørkøre et al., 2015, Wang, 2016). Excess 

connective tissue was removed by scalpel. Rib analyses were performed 

instrumentally (TA-XT2 Texture Analyser, Stable Micro Systems, Surrey, UK) by 

pressing a guillotine knife (70 mm width, 3 mm thickness) into three position (A, B, C) 

of each rib with a trigger force of 1 Newton at 2 mm/sec until it broke the rib (Fig 3.2, 

Fig 3.3). For the 5 kg and 6 kg Salmon samples, only position B was tested. Four 

Carp samples were measured with three positions and the others were measured at 

http://cn.bing.com/dict/search?q=scalpel&FORM=BDVSP6&mkt=zh-cn
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position B position instead. The force (N) required to puncture the rib surface (termed 

stiffness) was registered by the resulting time-force graph.  

 

  

Fig 3.2 Rib dissection and measurement 

 

   

Fig 3.3 Position A, B, C for rib measurement 

 

 



  23 

3.4. Overview of the fish material used in the study 

All the fish materials from whole fish group (4 kg, 5 kg and 6 kg Atlantic Salmon and 

common carp), fish skeleton group (Atlantic Salmon and Rainbow Trout) were 

measured at various skeleton parts in accordance to Table 3.4.  

Table 3.4 Overview of the fish material used in the study 

Sample Vertebrae Rib  Rib position 

Salmon    

4 kg (n=10) V4-V48 R2-R22 A,B,C 

5 kg (n=10) V8, V12,V32,V36 R12, R14 A,B,C 

6 kg (n=10) V8, V12,V32,V36 R12, R14 A,B,C 

Note: Sampled as whole fish from fish processing company 

    

Fresh sample    

Salmon (n=10) V4-V52 R2-R22 R12, R14 for A, B, C  

Trout (n=10) V4-V52 R2-R22 R2-R22 for A, B, C  

Carp (n=9) V4-V28 R2-R14 5 fish for B;  

4 fish for A, B, C  

Note: Salmon and trout sampled as skeletons from fish processing company; 

     Carp sampled from research farming facilities 

    

Frozen sample    

Salmon (n=7) V4-V52   

Trout (n=10) V4-V52   

Note: Sampled as skeletons from fish processing company 

 

3.5. Composition analysis 

Samples of vertebral column were collected by cutting three representative sections 

(V8-V12 stands for posterior vertebral column, V20-V24 stands for mid vertebral 

column, V32-V36 stands for anterior vertebral column) from the vertebral column of 

each frozen Salmon and Trout, and labeled S1, S2, S3 and T1, T2, T3, and V8-V12, 

V20-V24, V32-V36, respectively. The flesh was removed from the vertebrae 

manually, and the bone tissue was thoroughly cleaned with a soft and cleaning brush, 

with 0.9 % NaCl solution. The samples were then dried with paper towel and broken 
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up with a hammer. The pooled samples for each section (S1-S3 and T1-T3) were 

mashed in a blender (Waring Commercial blender, Waring Commercial, CT, USA) by 

adding solid carbon dioxide. They were then immediately frozen and stored at -20° C 

before analysing.   

3.5.1. Fat content 

The fat content extraction procedure was done according to Folch extraction 

principles (Folch et al., 1957). The Folch extraction solution is a mixture of polar 

(water and methanol) and non-polar solvents (organic chloroform). Due to fat has low 

solubility in water while can be dissolved in organic solvents, in Folch method, fat 

was extracted by organic solvent and kept in organic phase referred to this principle of 

the similar polarity between organic solvent and fat. The fat content was the mass 

difference after evaporation of this organic phase. 

First, a 2 g homogenized sample was placed into a 100 ml Erlenmeyer flask and 6 ml 

0.9 % NaCl was added. The content was mixed. A control group was set up in the 

same way. Then Fifty ml chloroform:methanol (2:1) was added, which contains 0.7 

mg/l antioxsidant BHT (2,6-Di-t-butyl-p-cresol). It was homogenized with a 

homogenizator (T25 digital Ultra Turrax, IKA Werke GmbH & Co. KG, Breisgau, 

Germany) at the speed of 17×1000 rap for 60 seconds. The procedure (adding 6 ml 

0.9% NaCl and homogenize for 5 seconds) was repeated. After being set aside for 2 

hours, the homogenate was filltered through a cotton filter inside a funnel into a 

graded cylinder. The cylinders were covered with lids and kept in laminar flow until 

the next day. The upper phase was removed with a water-vacuum pump and the lower 

phase (20ml) was moved with a pipette to a 25 ml empty beaker which had already 

been weighed. The beakers were all placed on a heating plate (Metoer L5 heating 

plate, Engmark Meteor AS, Oslo, Norway) in order to allow the chloroform to 

evaporate, and were left there until dry.  

The fat content was calculated according to the formula below: 
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37.5

 U I
100/ fat gfat  %

 

    g fat  = evaporated sample in beaker 

    100   = % 

 I      = weight of the sample in g 

 U     = Pipetted chloroform extract (20ml) in ml beaker                     

 37.5   = Total volume of solvent (33.3 ml × 100/89) = 37.5 ml 

      (Chloroform in extract solution = 50 × 2/3 = 33.3 ml) 

3.5.2. Dry matter and ash 

An approximately 2 g homogenized sample was placed into a 25 ml beaker and dried 

in the heating chambers (Binder FD 23 Drying and heating chambers Classic.Line 

with forced convection, Binder, Tuttlingen, Germany) at 102° C with a fan speed of 3 

for 19 hours. The samples were left in the cabinet for cooling for 20 min before the 

dry matter was weighed. 

Before the ash was measured, the dry matter samples were placed into the cabinet at 

102° C with fan speed 3 for 3 hours. They were then cooled in a desiccator and 

transported to the Muffle ashing furnace (Nabertherm Program Controller S17 Muffle 

ashing furnace, Nabertherm, Lilienthal, Germany). Furnace program P1 was used as 

below:  

Step 1: 30 min heating until 105° C, held for 3 hours. 

Step 2: 30 min heating until 200° C, held for 2 hours. 

Step 1: 60 min heating until 550° C, held for 16 hours. 

When the procedure was over, the furnace was turned off and and we waited for the 

temperature to decrease to under 350° C. The ash samples were removed, place into 

the desiccator and transported to be weighed. 
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3.6. Statistical analysis 

The data for individual vertebrae and ribs were statistically evaluated using the GLM 

procedure in SAS ( version 9.4 TS Level 1M2, SAS Windows Version; SAS Institute, 

Cary, NC, USA). 

For the effect (mainly focus on thickness, maximum compression force and 

compression force at a specific thickness of vertebra) of fish vertebrae profiles, results 

were presented as LSmean (Least Squares Means) ± SE (Standard Error Mean). 

Variation influenced by different vertebra locations, different weight classes, different 

fish species and frozen storage were analysed and ranked by Least Squares Means. 

The significance level between treatments was set to P < 0.05. 

For the effect (mainly focus on thickness, breaking force) of fish ribs profiles, results 

were presented as LSmean ± SE. Variation influenced by different rib locations, 

different rib positions, different weight classes and different fish species were 

analysed and ranked by Least Squares Means. The significance level between 

treatments was set to P < 0.05. 

For the chemical compositions of fish vertebrae profiles, results were presented as 

LSmean ± SE. Variation influenced by different vertebrae sections and different fish 

species were analysed and ranked by Least Squares Means. The significance level 

between treatments was set to P < 0.05. 
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4. Results 

4.1. Mechanical properties of salmon vertebrae 

Vertebrae along the vertebral column were characterized by mechanical analyses of 

every forth vertebrae of 4 kg Atlantic Salmon (Salmo salar L.).  

The average vertebrae thickness ranged from 8.9 mm to 10.4 mm (Fig 4.1). 

Numerically, the vertebrae thickness increased gradually from the tail (V4) to the 

mid-section of the column (V20-V24). Thereafter the numerical thickness decreased 

towards the head, reaching a minimum at V40-44. The numerical thickness of the 

vertebrae closest to head (V48) was similar to that closest to tail (V32). Statistical 

analyses revealed that the vertebrae thickness of V8-V32 was not significantly 

different, while V40-V44 was significantly thinnest.  

de

bcd
abc

ab
a ab ab

ad

ef
f

f

cde

8

8.5

9

9.5

10

10.5

11

V4 V8 V12 V16 V20 V24 V28 V32 V36 V40 V44 V48

T
h

ic
k

n
es

s,
 m

m

←Tail                        Vertebrae number                  Head→
 

Fig 4.1 Thickness (mm) of every fourth vertebrae (V4-V48) along the vertebral column of 4kg 

Atlantic Salmon. Results are shown as LSmean ± SE (n = 10). Vertebrae not sharing the same 

superscripts above the error bars are significantly different (P < 0.05). 
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Vertebra 4 Vertebra 8 Vertebra 12 

   

Vertebra 16 Vertebra 20 Vertebra 24 

   

Vertebra 28 Vertebra 32 Vertebra 36 

   

Vertebra 40 Vertebra 44 Vertebra 48 

Fig 4.2 Force-time graphs for every fourth vertebra (V4-V48) of 4 kg Atlantic Salmon. 
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The resulting force-time graphs for each vertebra of 4kg salmon are illustrated in Fig 

4.2 (all fish, n = 10) and Fig 4.3 (average for the 10 fish). From Fig 4.2 it appears that 

there was a notable variation between individuals regarding the graph profile (i.e. 

mechanical properties). 

 

The average value of maximum compression force ranged from 216.3 N to 275.3 N 

(Fig 4.4). Numerically, the maximum force increased gradually from V4 to V16, and 

achieved the highest value at V16. Then, the numerical force tended to decrease at the 

mid-section of the column (V20-V24), which was the numerically thickest part of the 

column (Fig 4.1). Towards the head, the vertebrae thickness decreased, reaching the 

lowest thickness at V40-44. Statistical analyses showed that the vertebrae maximum 

compression force between V8 and V40 was not significantly different. With the 

exception of the V24, the vertebrae close to head (V44-V48) and tail (V4) had lower 

max compression force.   

 

 

Fig 4.3 Total average force-time graphs for every fourth vertebra (V4-V48) of 4 kg Atlantic 

Salmon. 
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Fig 4.4 Maximum compression force (Newton) of every fourth vertebrae (V4-V48) along the 

vertebral column of 4 kg Atlantic Salmon. Results are shown as LSmean ± SE (n=10). Vertebrae 

not sharing the same superscripts above the error bars are significantly different (P < 0.05). 

 

  

  

Fig 4.5 The force (N) and the total work (Area, N*s) required to reach at different compression depth: 0.5 mm, 1 mm, 1.5 

mm, 2 mm and strain: 0.5 percent, 1 percent, 1.5 percent, 2 percent of every fourth vertebrae (V4-V48) along the vertebral 

column of 4 kg Atlantic Salmon. (A) Force at 0.5-2 mm compression depth. (B) Force at compression depth of 5-20 percent 
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Table 4.1 Results from statistical analyses of results presented in Fig. 4.5 

 V4 V8 V12 V16 V20 V24 V28 V32 V36 V40 V44 V48 

Force (N)             

0.5 mm c c ab a ab ab ab bc bc abc d e 

1 mm c bc a a a a a ab a a d e 

1.5 mm c bc ab a a a a a a a cd e 

2 mm de cd abc abc abc abc a abc ab abc e f 

5 percent d d ab a a a abc bcd cd d e f 

10 percent d d ab a ab ab ab b c d e f 

15 percent e de abc ab ab ab a abc bcd cd f g 

20 percent c bc ab ab ab ab a a ab ab d e 

             

Area(N*s)             

0-0.5 mm d cd ab a ab ab abc bcd bcd bcd e f 

0-1 mm c c ab a ab ab ab bc abc bc d e 

0-1.5 mm c bc a a a a a ab a a d e 

0-2 mm cd bc a a a a a ab a a d e 

0-5 percent c c a a a a ab bc c c d d 

0-10 percent d cd ab a a a a bc cd d e e 

0-15 percent e de ab a a a a bc cd de f g 

0-20 percent e d ab ab ab ab a bc cd de f g 

Note: Vertebrae not sharing the same letter within the same row are significantly different (P < 0.05). 

 

Compare with Fig. 4.5 A and Fig. 4.5 B, whether at 2 mm or 20 percent of the 

vertebrae, the compression force ranged no more than 200 Newton. As shown in Fig. 

4.5 C and Fig. 4.5 D, the total work (represented by the “area” under the graph) 

required to reach 2 mm and 20% compression depth was both less than 200 N*s. The 

variation in force at various compression depth showed a similar pattern when 

measured as force (N) at 0-2 mm compression depth (Fig. 4.5 A) or 5-20 percent 

compression depth (Fig. 4.5 B). The force was increasing from V4-V12 (Table. 4.1), 

being stable from V12-V28. From V28-V40 the force was either stable or decreasing, 

but from V40-V48 the force was consistently decreasing. The total area (Fig. 4.5 C 

and Fig. 4.5 D) showed similar, but more significant variation in pattern. The most 

significant variation was observed at 0-20 percent compression depth. In addition, 

of the vertebra thickness. (C) The total work (Area, N*s) required to reach the different points at 0.5-2 mm compression 

depth. (D) The total work (Area, N*s) required to reach at 5-20 percent compression related to the thickness of the vertebra. 

Results are shown as LSmean ± SE (n=10). 
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V12-V28 was the common section of vertebral column that did not show significantly 

difference. 

4.2. Vertebrae comparison of different salmon weight classes 

Vertebrae along the vertebral column were characterized by mechanical analyses of 

the eighth, twelfth, thirty-second and thirty-sixth vertebra (V8, V12, V32, V36) of 

different sizes (4 kg, 5 kg, 6 kg) of Atlantic Salmon.  

The average vertebrae thickness of the three weight classes of salmon ranged from 9.3 

mm to 12.0 mm (Fig 4.6). A significant increased vertebrae thickness was observed 

with increasing body weight, from 4 kg to 6 kg. Statistical analyses revealed that the 

thirty-sixth vertebra was significantly thinner than the eighth, twelfth, and 

thirty-second vertebrae in all weight classes of salmon, whereas no significant 

difference was found in the thickness of the eighth, twelfth, or thirty-second vertebra 

within the same size of salmon, with the exception of 6 kg salmon at V32.  
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Fig 4.6 Thickness (mm) comparison of the eighth, twelfth, thirty-second and thirty-sixth vertebra 

(V8, V12, V32, V36) along the vertebral column of different weight classes (4 kg, 5 kg, 6 kg) 

Atlantic Salmon. Results are shown as LSmean ± SE (n=10, with the exception of V8 of 6 kg 

where n=9, V12 of 6 kg salmon where n=8). Vertebrae not sharing the same superscripts above 

the error bars are significantly different (P < 0.05). 
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Average maximum compression force of three sizes of salmon ranged from 246.8 N 

to 325.7 N (Fig 4.7). The patterns of 4 kg and 5 kg salmon showed a clear similarity, 

while that of the 6 kg salmon showed a dissimilarity. Numerically, the maximum 

force increased from V12 to V32 of 4 kg and 5 kg salmon, but decreased in the same 

section of 6 kg salmon. Table 4.2 showed that significant difference of maximum 

force appeared among measured vertebrae in 4 kg salmon as well as 6 kg salmon, 

whereas for the 5 kg salmon, the maximum compression force of all measured 

vertebrae did not demonstrate a significant difference. Vertebra 8 and Vertebra 12 of 

4 kg salmon showed a significant difference in maximum compression force compare 

with other two weight classes. 5 kg salmon also presented a significant variation in  

maximum compression force at V32. 
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Fig 4.7 Maximum compression force (N) of the eighth, twelfth, thirty-second and thirty-sixth 

vertebra (V8, V12, V32, V36) along the vertebral column of different weight classes (4 kg, 5 kg, 6 

kg) of Atlantic Salmon. Results are shown as LSmean ± SE (n=10, with the exception of V8 of 6 

kg where n=9, V12 of 6 kg where n=8). Vertebrae with “*” in the figure not sharing the same 

letter with other weight classes are significantly different (P < 0.05). 

 

Table 4.2 Results from statistical analyses of results presented in Fig 4.7 

 V8 V12 V32 V36 

4kg e e cd e 

5kg abc ad abc ae 

6kg ab a de be 

Note: Vertebrae not sharing the same letter within the same row are significantly different (P < 

0.05). 
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Fig 4.8 The compression force (N) at different depth (A at 10%, B at 20%, C at 70% compression 

depth) of the eighth, twelfth, thirty-second and thirty-sixth vertebra (V8, V12, V32, V36) along 

the vertebral column of different weight classes (4 kg, 5 kg, 6 kg) Atlantic Salmon. Results are 

shown as LSmean ± SE (n=10, with the exception of V8 of 6 kg where n=9, V12 of 6 kg where 

n=8). Vertebrae with “*” in the figure not sharing the same letter with other weight classes are 

significantly different (P < 0.05). 

 

Table 4.3 Results from statistical analyses of results presented in Fig 4.8 

 V8 V12 V32 V36 

Force at 10 % (N)     

4kg cde ab abc bcd 

5kg e a a bcd 

6kg de abc cde ab 

     

Force at 20 % (N)     

4kg ef cf be bf 

5kg f bc a ab 

6kg def ab bf bcd 

     

Force at 70 % (N)     

4kg ab ab b b 

5kg a a ab ab 

6kg ab b b b 

Note: Vertebrae not sharing the same letter within the same row are significantly different (P < 

0.05). 

 

The force at 10 percent of the vertebra thickness, ranged from 55.7 N to 95.2 N. At 20 

percent and 70 percent thickness, the compression force ranged from 142.1 N to 208.8 
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N and from 171.7 N to 256.5 N, respectively. Numerically, the compression force 

increased from V8 to V12 for all sizes of fish. For V32 to V36 the compression force 

showed a slight decrease in 4 kg and 5 kg fish at 10 percent and 20 percent 

compression depth, while for the 6 kg salmon the compression force increased in that 

section. According to the statistical analyses (Table 4.3), no variation in force was 

observed within the same weight of salmon at the 70 percent of vertebra thickness. 

The compression force between different weight classes of salmon did not vary 

significantly, with the exception of 5 kg salmon (both thirty-second vertebrae at 10 % 

and 20 % compression depth and twelfth vertebrae at 70 % compression depth).  

4.3. Vertebrae comparison of different fish species 

The variation in vertebrae thickness varied significantly among the fish species. The 

vertebrae thickness of salmon ranged from 9.5 mm to 12.2 mm, trout from 8.4 mm to 

9.6 mm, and Carp from 6.0 mm to 10.8 mm (Fig 4.9). Numerically, for both salmon 

and trout, the vertebrae thickness increased gradually from the tail (V4) up to the 

maximum value at the mid-section of the column (salmon at V20, trout at V28). 

Thereafter, the numerical thickness decreased towards the head, reaching a minimum 

at V40-44. Statistical analyses showed that for Salmon, vertebrae thickness at 

V12-V28 was not significantly different; the same was true of the thinnest section 

(V44-V52) closest to the head. Trout did not differ significantly at V16-V40. With 

Carp, the vertebrae thickness increased from the tail (V4) to the head (V28) with a 

comparatively significant difference, with the exception of a short section between V4 

and V8, V12 and V16. 
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Fig 4.9 Thickness (mm) of every fourth vertebrae along the vertebral column of different fish 

species (A for V4-V52 of Atlantic Salmon, B for V4-V52 of Rainbow Trout, C for V4-V28 of 

common Carp). Results are shown as LSmean ± SE (For Salmon and Trout: n=10, with the 

exception of V12, V20 of Salmon where n=8, V28 of Salmon where n=9,V12 and V52 of Trout 

where n=9; For Carp: n=9). Vertebrae not sharing the same superscripts above the error bars are 

significantly different (P < 0.05). 

 

Total average resulting force-time graphs for each vertebra of salmon, trout and carp 

are illustrated in Fig 4.10. From this figure, it is clear that that there is a notable 

variation within and among the different species of fish regarding the graph profile 

(i.e. mechanical properties).   

 
A (Salmon) 
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Fig 4.10 Total average force-time graphs for every fourth vertebra of different fish species (A for 

V4-V52 of Atlantic Salmon, B for V4-V52 of Rainbow Trout, C for V4-V28 of common Carp). 

 

While the body length of salmon and trout is similar, carp is somewhat shorter. 

Because of this, it is necessary to unify the positions used for measurement in the 

three species. Vertebrae 8, 12, 32, and 36 in salmon and trout were aligned with 

vertebrae 4, 8, 16, and 20 in carp. In general, the treatment for comparison among 

species were set at A (15 %), B (25 %), C (60 %), D (70 %) at the vertebral column 

from tail to head of the various fish species (Fig 4.11). 

C (Carp) 

B (Trout) 



  40 

The average maximum compression force for Salmon ranged from 250.9 N to 305.1 

N, for trout from 251.0 N to 291.3 N, and for carp from 247.5 N to 306.3 N. The 

numerical maximum compression force at B (25 %) and C (60 %) was higher than 

that of A (15 %) and D (70 %) for salmon and trout. For carp, the maximum 

compression force increased from tail to head. Statistical analyses showed that the 

maximum compression force at A (15 %) and C (60 %) of the vertebral column was 

not significantly different between different fish species. At B (25 %), there was no 

significant difference between salmon and trout. Moreover, at D (70 %), the 

maximum compression force of trout and carp was significantly different. 
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Fig 4.11 Maximum compression force (N) of A, B, C, D vertebra position (15 %, 25 %, 60 %, 

70 % of the vertebral column) between different fish species (Atlantic Salmon, Rainbow Trout 

and Carp). Results are shown as LSmean ± SE (For Salmon and Trout: n=10, with the exception 

of V12 of Salmon where n=8, V12 of Trout where n=9; For carp: n=9). Vertebra not sharing the 

same superscripts above the error bars are significantly different (P < 0.05). 

 

As Fig 4.12 illustrated, the compression force of salmon at 15% of the vertebra 

thickness ranged from 124.5 N to 148.4 N, trout varied from 80.7 N to 104.9 N, carp 

ranged from 31.8 N to 104.8 N. At 70 % vertebra thickness, the compression force of 

salmon ranged from 184.8 N to 212.4 N. For trout, the variation was 167.2 N to 250.3 

N and for carp from 185.7 N to 293.7 N. In Fig 4.12 A, the numerical compression 

force at all positions (A, B, C, D) of salmon was significantly higher than the other 
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two species. With the exception of D (70 %), statistical analyses demonstrated that 

there was no significant difference in the compression force between trout and carp. 

Comparison of the compression force at 70 % of the vertebra (Fig 4.12 B) showed 

that salmon and trout were not significantly different at any position (A, B, C, D). For 

carp, with the exception of B (25 %), statistical analyses revealed that the 

compression force between carp and the other two species were varied significantly, 

and its compression force value was distinctly higher than the other species at C 

(60 %). At D (70 %), although the numerical compression force of carp was the 

highest, it was not significantly different from trout.  

 

 

Fig 4.12 Compression force (N) at different depth (A at 15%, B at 70% compression depth) of A, 

B, C, D vertebra position (15 %, 25 %, 60 %, 70 % of the vertebral column) between fish species 
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(Atlantic Salmon, Rainbow Trout and Carp). Results are shown as LSmean ± SE (For Salmon and 

Trout: n=10, with the exception of V12 of salmon where n=8, V12 of trout where n=9; For carp: 

n=9). Vertebra not sharing the same superscripts above the error bars are significantly different (P 

< 0.05). 

 

4.4. Effect of frozen storage on vertebrae texture 

Total average resulting force-time graphs of the eighth, twelfth, thirty-second and 

thirty-sixth vertebra (V8, V12, V32, V36) for fresh and frozen Salmon are illustrated 

in Fig 4.13. Fig 4.14 shows the same type of graph, but compares fresh and frozen 

trout. These two figures revealed that there appears to be a variation after fresh 

samples are frozen (i.e. mechanical properties).  

 

A  

(Fresh Salmon) 
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Fig 4.13 Total average force-time graphs for the eighth, twelfth, thirty-second and thirty-sixth 

vertebra (V8, V12, V32, V36) of fresh and frozen salmon (A for fresh salmon, B for frozen 

salmon).  

 

 

A  

(Fresh Trout) 

B  

(Frozen Salmon) 
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Fig 4.14 Total average force-time graphs for the eighth, twelfth, thirty-second and thirty-sixth 

vertebrae (V8, V12, V32, V36) of fresh and frozen trout (A for fresh trout, B for frozen trout).  

 

The average maximum compression force of fresh salmon ranged from 250.9 N to 

305.1 N and varied from 213.7 N to 283.7 N for frozen salmon (Fig 4.15 A). 

Numerically, the maximum compression force of the eighth, twelfth, thirty-second 

and thirty-sixth vertebrae of fresh salmon were all higher than those of frozen salmon. 

However, statistical analyses showed no significant difference between fresh and 

frozen salmon for V8, V32 and V36, and a significant difference at V12. 

The average maximum compression force of fresh trout ranged from 251.0 N to 291.3 

N and varied from 255.0 N to 279.7 N for frozen trout (Fig 4.15 B). Numerically, the 

maximum compression force of the eighth and twelfth vertebrae of fresh trout were 

higher than those of frozen trout, and the thirty-second and thirty-sixth vertebrae of 

frozen trout were higher than those of fresh trout. Statistical analyses showed there 

was no significant difference between fresh and frozen trout for the selected 

vertebrae. 

B  

(Frozen Trout) 
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Fig 4.15. Maximum compression force (N) of the eighth, twelfth, thirty-second and thirty-sixth 

vertebrae (V8, V12, V32, V36) along the vertebral column of fresh and frozen fish comparison (A 

for Atlantic Salmon, B for Rainbow Trout). Results are shown as LSmean ± SE (For fresh salmon 

and trout: n=10, with the exception of V12 of salmon where n=8, V12 of trout where n=9; For 

frozen salmon: n=7; For frozen trout: n=10). Vertebrae not sharing the same superscripts above 

the error bars are significantly different (P < 0.05). 

 

4.5. Mechanical properties of salmon ribs 

Ribs were examined by mechanical analyses of every second rib of 4 kg Atlantic 

Salmon.  

The average rib thickness at position A ranged from 0.3 mm to 0.6 mm. At position B 
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the variation was 0.4 mm to 0.5 mm, and at position C the variation was 0.4 mm to 

0.7 mm (Fig 4.16). Statistical analyses revealed that rib thickness was not 

significantly affected by measuring position A (P ≥ 0.15), B (P ≥ 0.48) or C (P ≥ 0.17), 

or by rib location, with the exception of the second rib nearest the head (Table 4.21). 
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Fig 4.16 Thickness (mm) at three positions (A, B, C) of every second rib in 4 kg Atlantic Salmon. 

Results are shown as LSmean ± SE (n=10). 

 

Table 4.4 Results from statistical analyses of results presented in Fig 4.16 

 R2 R4 R6 R8 R10 R12 R14 R16 R18 R20 R22 

P 0.002 0.82 0.67 0.56 0.10 0.22 0.31 0.14 0.57 0.40 0.86 

4.5.2 Breaking force variation of salmon ribs 

The average breaking force at position A ranged from 9.13 N to 21.53 N. At position 

B the variation was 8.58 N to 15.06 N, and at position C position the variation was 

6.84 N to 12.79 N. Numerically, the breaking force of ribs at various measuring 

positions (A, B, C) decreased gradually from the anterior (R2) to the posterior (R22) 

of Salmon (Fig 4.17). Statistical analyses demonstrated that the breaking force was 

significantly affected by rib location. Moreover, the significant difference level was 

position A > position B > position C (Table 4.5). The statistical analyses in Table 4.6 

demonstrated that when comparing positions A, B, and C for every second rib, the 

breaking force measured at positions A and B were significantly different, with the 

exception of the twenty-second rib (posterior area of Salmon), which was not affected 



  47 

by the measuring position at all. The fourteenth, eighteenth, and twentieth ribs were 

also significantly different when compared with positions B and C, while the others 

were not (Table 4.6). 

 

Table 4.5 Results from statistical analyses of results presented in Fig 4.17 

Position R2 R4 R6 R8 R10 R12 R14 R16 R18 R20 R22 

A a a b bc cd ef cde def f f g 

B a a ab bcd bc cde cf dg efg fg g 

C a a ab a a bc c c d d d 

Note: Ribs not sharing the same letter within the same row are significantly different (P < 0.05). 

 

Table 4.6 Results from statistical analyses of results presented in Fig. 4.17 

Rib number A B C 

R2 a b b 

R4 a b b 

R6 a b b 

R8 a b b 

R10 a b b 

R12 a b b 

R14 a b c 

R16 a b b 

R18 a b c 

R20 a b c 

R22 a a a 
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Fig 4.17 Breaking force (N) at three positions (A, B, C) of every second rib in 4 kg Atlantic 

Salmon. Results are shown as LSmean ± SE (n=10). 
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Note: Rib positions not sharing the same letter within the same row are significantly different (P < 

0.05). 

4.6. Ribs comparison of different salmon weight classes 

The average thickness of rib no. 12 in 4 kg salmon ranged from 0.4 mm to 0.6 mm. In 

5 kg Salmon the variation was 0.4 mm to 0.5 mm, and in 6 kg from 0.5 mm to 0.9 mm 

(Fig 4.18 A). Numerically, at position A the average thickness in 6 kg Salmon was 

much higher than in 4 kg and 5 kg Salmon. From statistical analyses, it was clear that 

the average thickness of rib no.12 was not significantly different among sizes when 

measured at positions B and C. For position A, only 6 kg Salmon showed a significant 

difference. 

The average thickness of rib no.14 in 4 kg Salmon ranged from 0.4 mm to 0.5 mm, in 

5 kg Salmon from 0.3 mm to 0.5 mm, and in 6 kg Salmon from 0.4 mm to 0.6 mm 

(Fig 4.18 B). Statistical analyses showed that there was no significant difference in rib 

no. 14 among fish sizes at positions A and C. At position B, however, the average 

thickness in 5 kg and 6 kg Salmon was significantly different. 

A comparison of (A) and (B) in Fig 4.18 shows that the average rib thickness was not 

significantly affected by size class, with the few exceptions mentioned above.  
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Fig 4.18 Thickness (mm) of three positions (A, B, C) of the twelfth and the fourteen ribs (A for 

No.12 rib, B for No.14 rib) in various weight classes (4 kg, 5 kg, 6 kg) Atlantic Salmon. Results 

are shown as LSmean ± SE (n=10). Ribs not sharing the same superscripts above the error bars are 

significantly different (P < 0.05). 
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Fig 4.19 Breaking force (Newton) at three positions (A, B, C) of the twelfth and fourteenth ribs (A 

for No.12 rib, B for No.14 rib) of various weight classes (4 kg, 5 kg, 6 kg) of Atlantic Salmon. 

Results are shown as LSmean ± SE (n=10). 

 

The average breaking force of rib no. 12 in 4 kg salmon ranged from 10.5 N to 14.2 N, 

in 5 kg salmon from 10.6 N to 18.7 N, and in 6 kg salmon from 11.8 N to 22.6 N (Fig 

4.19 A). Similarly, the average breaking force of rib no. 14 in 4 kg salmon ranged 

from 9.0 N to 15.1 N, in 5 kg salmon from 9.7 N to 18.8 N, and in 6 kg salmon from 

10.0 N to 24.7 N (Fig 4.19 B).  

A comparison of (A) and (B) in Fig 4.19 shows that the numerical average breaking 

force decreased from positions A to C along the rib for all size classes of salmon. At 

all measuring positions, the breaking force value increased with increased body 

weight. 

Statistical analyses showed that there was a significant difference at position A for 

different fish size in ribs no.12 and 14. Conversely, there was no significant difference 

at position C in fish size. At position B, the significant difference level fell between 

the other two positions mentioned above. 
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Table 4.7 Results from statistical analyses of results presented in Fig. 4.19 

 A B C 

No.12 Rib    

4kg c cd d 

5kg b c d 

6kg a b cd 

    

No.14 Rib    

4kg c d d 

5kg b c d 

6kg a bc d 

Note: Ribs not sharing the same letter within the same row or column are significantly different (P 

< 0.05). 

 

4.7. Ribs comparison of different fish species 

Statistical analyses revealed that the average rib thickness or breaking force measured 

at position B of fish species (Atlantic Salmon, Rainbow Trout and Carp) was 

significantly different (Fig 4.20 and Fig 4.21). Numerically, although the rib thickness 

value of salmon was greater than that of trout, the breaking force of salmon was less 

than that of trout.  
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Fig 4.20 Average rib thickness (mm) measured at position B comparing fish species (Atlantic 

Salmon, Rainbow Trout and Carp). Results are shown as LSmean ± SE (For Salmon and Trout: 
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n=10; For Carp: n=9). Superscripts not sharing the same letters above the error bars are 

significantly different (P < 0.05). 
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Fig 4.21 Average rib breaking force (N) measured at position B comparing fish species (Atlantic 

Salmon, Rainbow Trout and Carp). Results are shown as LSmean ± SE (For Salmon and Trout: 

n=10; For Carp: n=9). Superscripts not sharing the same letters above the error bars are 

significantly different (P < 0.05). 

 

4.8. Chemical composition of salmon and trout 

Three representative sections were used: V8-V12, V20-V24, V32-V36. These stand 

for the posterior, mid, and anterior sections of the vertebral column, respectively. 

Fig 4.22 illustrated the fat content of the salmon vertebrae was higher (17-22%) 

compared with trout (11-15%). According to statistical analyses, fat content was not 

significantly different at different locations on the fish vertebral column (V8-V12, 

V20-V24, V32-V36) (P = 0.0084). There was however a significant difference 

between fish spices (salmon and trout) (P < 0.0001).  

Fig 4.23 and Fig 4.24 showed that both the dry matter value and ash value of trout 

(dry matter as 51-57%, ash as 21-23%) was higher than those of salmon (dry matter as 

51-55%, ash as 17-18%) at all three sections along the vertebral column. Statistical 

analyses of dry matter indicated a significant difference compared with different 
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locations along the vertebral column (V8-V12, V20-V24, V32-V36) (P < 0.0001). 

There was however no significant difference between fish species (salmon and trout) 

(P = 0.0093). On the contrary, ash was not significantly different at different locations 

along the vertebral column (V8-V12, V20-V24, V32-V36) (P = 0.0694), but showed a 

significant difference between fish spices (Salmon and Trout) (P < 0.0001). 

 

Fig 4.22 Fat content (%) comparison of three representative sections (V8-V12, V20-V24, 

V32-V36) along the vertebral column for Salmon and Trout. Results are shown as LSmean ± SE 

(For Salmon: n=7; For Trout: n=10). 

 

 

Fig 4.23 Dry matter (%) comparison of three representative sections (V8-V12, V20-V24, 

V32-V36) along the vertebral column for Salmon and Trout. Results are shown as LSmean ± SE 
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(For Salmon: n=7; For Trout: n=10). 

 

 

Fig 4.24 Ash (%) comparison of three representative sections (V8-V12, V20-V24, V32-V36) 

along the vertebral column for Salmon and Trout. Results are shown as LSmean ± SE (For 

Salmon: n=7; For Trout: n=10). 
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5. Discussion 

Currently, techniques such as 3-D imaging, X-ray, nanoindentation, are utilized to 

explore the mechanical properties of bones. The greatest challenge when studying the 

mechanical properties of bone is the fact that bones are different from common 

engineering materials due to its characteristics, such as anisotropy and heterogeneity 

(Parnell and Grimal, 2009). In this chapter, I will summarize available methods and 

selected efficient parameters for mechanical analysis of fish bones, with focus on 

Salmonis. From the present study, the parameters will be selected based on comparing 

the influence of various weight classes, fish species, and frozen preservation. 

5.1 Mechanical properties of Atlantic Salmon vertebrae and ribs 

Detailed measurement of 4 kg salmon showed variation in thickness along the 

vertebral column as shown in Fig 5.1. The vertebrae thickness increased gradually 

from the salmon tail to the mid-section of the column, thereafter the thickness 

decreased to a minimum at the anterior position. Vertebrae closet to the head, 

however were thicker and similar with those closest to the tail. 

A comparison of the maximum compression force of every fourth salmon vertebra 

and its corresponding thickness showed that the vertebra with maximum thickness 

value did not show maximum compression force. In other words, the thickness of the 

vertebra did not correspond to its strength. 

The maximum compression force can occur at different compression depth within the 

same vertebra as compression force continued until 70 percent thickness of the 

vertebra. Hence, this parameters is not considered as an ideal selection of parameter 

for describing the mechanical properties of salmon vertebrae. The stable parts 

illustrated in patterns of the compression force whether at 0.5-2 mm depth or 5-20 

percent of vertebra thickness along the entire salmon vertebral column is similar (Fig 
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4.5). This helps to describe the strength distribution of the entire vertebral column 

from the head of a salmon to its tail.  

The similar patterns was also shown in Fjelldal ’s reports, which presented the 

relatively thicker vertebrae length, greater stiffness and higher Yield-load in the tail 

region at V31-V49 along the vertebral column from head to tail (Fjelldal et al., 2004, 

2005, 2006). Although the method of division of the the vertebrae region outlined by 

Kacem et al. (1998) was not used in this study, the section selected to describe the 

mechanical properties of the Salmon vertebrae was the same (from tail to mid-section, 

V12-V28). 

Through the comparison illustrated in Fig 4.5, although compression force was able to 

reflect the mechanical properties of salmon vertebrae, the total work (represented by 

the area under the graph, N*s) required to reach 2 mm and 20 % showed a more 

detailed variation of mechanical properties, from the observation that the most 

significant variation was observed at a 0-15 as well as 0-20 percent compression 

depth. Thus, the total work (area, N*s) required to compress depth was a more accurate 

parameter by which to describe the mechanical properties of fish vertebrae.  

 

 
Fig 5.1 Thickness distribution along the vertebral column of 4 kg salmon. 

 

 

 

max value min value 

similar thickness value 
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Fig. 5.2 Maximum compression force distribution along the vertebral column of 4 kg salmon (The 

thickness of the vertebra is described as the maximum compression force). 

 

According to the results in section 4.5, with the exception of the anterior, the 

thickness of Salmon ribs was not significantly different.This applies both at different 

sections of the fish body and at different locations in the same rib. 

The breaking force of Salmon ribs was significantly reduced from the anterior to 

posterior sections. In other words, the rib strength of Salmon was much stronger at the 

position nearest the head than it was toward the tail. Moreover, the measuring position 

A closer to the vertebral column within the same rib had a greater value of breaking 

force. From what has been described above, the breaking force of the rib located 

nearest the head measured at position A reflects the mechanical properties of Atlantic 

Salmon ribs for the most part, whereas the breaking force of the rib closet to the tail 

measuring at position C will be the last choice for mechanical analyses. 

5.2 Mechanical properties of vertebrae and ribs compared with various 

weight classes in salmon  

A comparison of 4 kg, 5 kg, and 6 kg Salmon shows that the magnitude relationship 

of average vertebra thickness is significantly expressed as 6 kg > 5 kg > 4 kg.  

According to the results in section 4.2, it cannot be proven that the maximum 

compression force and the compression force of each point measured at various 

vertebra thicknesses increased as the weight class of Salmon increased. The similar 

patterns of the maximum compression force of 4 kg and 5 kg Salmon also indicated a 

max force 

similar compression force value 

min force 
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stable difference in the maximum compression force between these two weight 

classes, whereas 6 kg Salmon showed a different pattern. In other words, the 

maximum compression force of the measured vertebrae for 4 kg and 5 kg Salmon was 

more stable than for 6 kg salmon. Since the maximum compression force for V8 and 

V12 of 4 kg Salmon was significantly lower than that of the other two weight classes, 

4 kg Salmon are not the best choice to determine the mechanical properties of Salmon 

vertebrae.    

As shown in Fig 4.8, when compared with 4 kg and 6 kg Salmon, the compression 

force of measured vertebrae for 5 kg salmon was significantly higher at V32 when the 

compression depth was at 10 % and 20 %, as well as at V12 when the compression 

depth was at 70 %. Moreover, the compression force value of measured vertebrae for 

5 kg Salmon was greater than that of the other two weight classes at most times. A 

few studies in addition to Wolff ’s law have reported that size was not significantly 

related to bone strength (van der Meulen et al.). In other words, a limiting value of 

compression force in vertebrae may occur and was irrelevant to salmon weight class 

when reached the mechanical loading. Hence, the measured compression force value 

of 5 kg salmon is much closer to that limiting value in salmon vertebrae strength. 

From what has been described above, the vertebrae strength of 5 kg Salmon was more 

likely to reflect variation in the mechanical properties of Salmon vertebrae than were 

the other two sizes of Salmon. 

Rib thickness was not affected by the weight of Salmon. The breaking force of ribs 

was however significantly affected by the weight. The position closer to the vertebral 

column, the more the breaking force was influenced by the weight of the salmon at 

this position within the same rib. Since the breaking force of both measured ribs 

demonstrated similar patterns, it makes no difference which rib is chosen to reflect the 

variation in mechanical properties among different weight classes of Salmon. A 

measurement made at position A will however be the most accurate to describd the 

mechanical properties within each weight classe of Salmon. 
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5.3 Mechanical properties of vertebrae and ribs compared with different 

fish species  

The thickness of the vertebra along the entire vertebral column in salmon and trout fit 

the model described in Fig. 5.1 to a certain extent, since both are Salmonids. However, 

carp, – another fish species – showed significant differences compared to Salmonids. 

The thickness value of the vertebral column in carp gradually decreased from the head 

to the tail. A comparison of salmon, trout, and carp shows the the magnitude 

relationship of average vertebrae thickness is significantly expressed as carp > 

salmon > trout. 

In accordance to Fig 4.10, the patterns displayed during compression force during the 

entire cutting procedure in salmon and trout were relatively concentrated, and were 

decentralized in carp. The maximum compression force, a mean value obtained from 

individuals of the same fish species at various compression depths, was observed to 

be significantly different between Salmonids and carp as well. The maximum 

compression force at the measured vertebrae from tail to head appeared to increase 

significantly in carp, whereas compared within Salmonids (salmon and trout), the 

trend of the maximum compression force at the measuring points along the vertebral 

column showed similarity, which to some extent fits the model described in Fig 5.2. 

Consequently, the method used for mechanical analyses of Atlantic Salmon vertebrae 

can also be utilized in measurements of another a similar Salmonid species, such as 

Rainbow Trout. Carps however are not suggested for using the same method. 

The compression force at 15 % of vertebra thickness in salmon was significantly 

greater than that in trout (carp as well, although this information can be regarded as 

irrelevant here). There was however only a slight difference in compression force at 

70 % of the vertebra thickness between salmon and trout. Thus, force at 70 % 

compression depth would be a better choice than force at 15 % compression depth 

through measuring another fish species of Salmonids, such as Rainbow Trout.  



  60 

The thickness and breaking force of ribs varied significantly among salmon, trout, and 

carp. So it was not possible to utilize the same mechanical analyses method of ribs to 

different fish species. 

5.4 Mechanical properties compared in fresh and frozen vertebrae 

The compression force of vertebrae in salmon and trout did not change significantly 

after frozen preservation. For salmon, the maximum compression force was slightly 

reduced after frozen storage. Frozen storage appeared to both enhance and reduce 

effects in trout. Consequently, frozen treatments will not greatly affect the mechanical 

properties of fish vertebrae. Frozen vertebrae can therefore also be used for 

mechanical measurements. 

5.5 Chemical composition of salmon and trout 

The dry matter of salmon and trout vertebrae showed no significant difference, 

whereas vertebrae fat content and ash appeared significantly different between the 

two species. Therefore, vertebrae fat content and ash measurements can be used to 

determine fish species. Since dry matter consists of ash and organic matter, it is easy 

to calculate that the organic matter of salmon and trout vertebrae would show a 

significant difference as well.  

The dry matter at different section in the vertebral column showed a significant 

difference. This can be hypothesised as being related to the variance of thickness and 

compression force along the vertebral column. There was no great difference in the fat 

content and ash of vertebrae at different sections along the vertebral column. Thus, 

dry matter can be a parameter for determining variation of the various vertebra 

sections along fish vertebral columns.  
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6. Conclusion 

Mechanical properties of fish vertebrae and ribs observed in this study can be 

summarized as follows: 

1) Mechanical properties of Atlantic Salmon vertebrae and ribs in detail: vertebrae 

strength in Atlantic Salmon increased from V4-V12 and was stable from V12-V28. 

From V28-V40 the bone strength was either stable or decreased, whereas from 

V40-V48 it decreased consistently. Rib strength in salmon showed a significant 

decrease from the anterior to posterior sections.The measuring point within the same 

rib closest to the vertebral column showed greater strength.  

2) Variation in mechanical properties of Atlantic Salmon vertebrae and ribs among 

weight classes: the patterns presented vertebrae strength for 4 kg and 5 kg salmon was 

more stable than that of 6 kg salmon, and 5 kg salmon has significantly greater 

vertebrae strength than the other two weight classes which presented that 5 kg salmon is 

much closer to a limiting value of vertebrae strength in salmon. The ribs strength was 

significantly affected by the weight, and the mechanical loading of the position which 

closest to the vertebral column within the same rib was more likely to be determined by 

the weight of salmon. 

3) Variation in mechanical properties of vertebrae and ribs among Atlantic Salmon, 

Rainbow Trout and common Carp: the mechanical loading of carp vertebrae was 

significantly different from that of Salmonids and a slight difference of vertebrae 

strength can be measured with a specific method in Salmonid species such as Atlantic 

Salmon and Rainbow Trout..  

4) Variation in mechanical properties of fresh and frozen vertebrae: vertebrae strength 

of salmon and trout is not significantly affected after frozen preservation. 
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5) Variation in chemical composition of salmon and trout vertebrae: fat content and ash 

of vertebrae appear to be significantly different between the two fish species, while dry 

matter only showed significant difference only at different section in vertebral column. 

This study provides a methods for the measurement of mechanical properties of 

Atlantic Salmon vertebrae and ribs, based on the conclusions stated above and 

replicate comparison of various methods and parameters used in this study. The 

method can be generalized as follows:  

When conducting mechanical analyses of Atlantic Salmon vertebrae, the section from 

tail to mid-section along the vertebral column should be used (V12-V28), and the total 

work (area, N*s) required to compress depth was a more accurate parameter to 

describe the mechanical properties of fish vertebrae. Five kg Atlantic Salmon was the 

best choice for standard mechanical analyses compared to 4 kg and 6 kg Atlantic 

Salmon. A similar Salmonids fish species, such as Rainbow Trout, was also 

applicable to use this method for mechanical measurements. In order to avoid 

significantly difference in mechanical analyses within Salmonids, measuring at 70 % 

of the vertebra thickness would be a better choice to obtain more accurate results than 

measuring at 15 % compression depth. Frozen vertebrae can also be used for 

mechanical measurements, since frozen preservation did not affect the mechanical 

properties of fish vertebrae. 

When conducting mechanical analyses of Atlantic Salmon ribs, the rib located nearest 

the head at position A (closest position to the vertebral column) is a better choice and 

results in more accurate results, whereas the rib closest to the tail at position C 

(farthest position to the vertebral column) is the least advantageous point. 

 

 

 

 

 

 

 

 



  63 

 

 

 

 

 

Reference 

Alexander, R. M. (1974). Functional design of fishes, GB. 

  

Ascenzi, A. (1993). "Biomechanics and Galileo Galilei." Journal of Biomechanics 

26(2), 95-100. 

  

Beck, J., B. Canfield, S. Haddock, T. Chen, M. Kothari and T. Keaveny (1997). 

"Three-dimensional imaging of trabecular bone using the computer 

numerically controlled milling technique." Bone 21(3), 281-287. 

  

Bell, J. (1834). The anatomy and physiology of the human body, Collins. 

  

Boulenger, E. G. (1931). Fishes, Chapman & Hall Limited. 

  

Carter, D., D. P. Fyhrie and R. Whalen (1987). "Trabecular bone density and loading 

history: regulation of connective tissue biology by mechanical energy." 

Journal of Biomechanics 20(8), 785789-787794. 

  

Carter, D. R. (1984). "Mechanical loading histories and cortical bone remodeling." 

Calcified tissue international 36(1), S19-S24. 

  

Carter, D. R. and D. M. Spengler (1978). "Mechanical properties and composition of 

cortical bone." Clinical orthopaedics and related research 135, 192-217. 

  

Chavassieux, P., E. Seeman and P. Delmas (2007). "Insights into material and 

structural basis of bone fragility from diseases associated with fractures: how 

determinants of the biomechanical properties of bone are compromised by 

disease." Endocrine reviews 28(2), 151-164. 

 

Chiling, L., Zhonghua, L., Jian Y. (2007). "Development of bone powder expanded 

food." Food Research and Development 28(4), 108-110. 

  

Cohen, L., M. Dean, A. Shipov, A. Atkins, E. Monsonego-Ornan and R. Shahar 

(2012). "Comparison of structural, architectural and mechanical aspects of 

cellular and acellular bone in two teleost fish." Journal of Experimental 

Biology 215(11), 1983-1993. 



  64 

  

Cortet, B., D. Colin, P. Dubois, B. Delcambre and X. Marchandise (1995). "Methods 

for quantitative analysis of trabecular bone structure." Revue du rhumatisme 

(English ed.) 62(11), 781-793. 

  

Cortet, B., P. Dubois, N. Boutry, P. Bourel, A. Cotten and X. Marchandise (1999). 

"Image analysis of the distal radius trabecular network using computed 

tomography." Osteoporosis international 9(5), 410-419. 

  

Currey, J. D. (2002). Bones: structure and mechanics, Princeton university press. 

  

Currey, J. D. (2014). The mechanical adaptations of bones, Princeton University 

Press. 

  

Dalle Carbonare, L. and S. Giannini (2004). "Bone microarchitecture as an important 

determinant of bone strength." J Endocrinol Invest 27(1), 99-105. 

  

De Carli, F. and J. Richardson (1978). The world of fish, Gallery books. 

  

Ebenstein, D. M. and L. A. Pruitt (2006). "Nanoindentation of biological materials." 

Nano Today 1(3), 26-33. 

  

Fa-Hwa Cheng, I. (1997). "Strength of material." Ohio: McGraw-Hill. 

  

Fjelldal, P. G., S. Grotmol, H. Kryvi, N. R. Gjerdet, G. L. Taranger, T. Hansen, . . . G. 

K. Totland (2004). "Pinealectomy induces malformation of the spine and 

reduces the mechanical strength of the vertebrae in Atlantic salmon, Salmo 

salar." Journal of pineal research 36(2), 132-139. 

  

Fjelldal, P. G., E.-J. Lock, S. Grotmol, G. K. Totland, U. Nordgarden, G. Flik and T. 

Hansen (2006). "Impact of smolt production strategy on vertebral growth and 

mineralisation during smoltification and the early seawater phase in Atlantic 

salmon (Salmo salar, L.)." Aquaculture 261(2), 715-728. 

  

Fjelldal, P. G., U. Nordgarden, A. Berg, S. Grotmol, G. K. Totland, A. Wargelius and 

T. Hansen (2005). "Vertebrae of the trunk and tail display different growth 

rates in response to photoperiod in Atlantic salmon, Salmo salar L., 

post-smolts." Aquaculture 250(1), 516-524. 

  

Folch, J., M. Lees and G. Sloane-Stanley (1957). "Extraction of fatty acid." J Biol 

Chem 226, 497-509. 

  

Fratzl, P. and R. Weinkamer (2007). "Nature’s hierarchical materials." Progress in 

Materials Science 52(8), 1263-1334. 



  65 

  

Froese, R. and D. Pauly (2012). FishBase. 

  

Genant, H., K. Engelke and S. Prevrhal (2008). "Advanced CT bone imaging in 

osteoporosis." Rheumatology 47(suppl 4), iv9-iv16. 

  

Gibson, L. J. (1985). "The mechanical behaviour of cancellous bone." Journal of 

Biomechanics 18(5), 317-328. 

  

Gluer, C., C. Wu, M. Jergas, S. Goldstein and H. Genant (1994). "Three quantitative 

ultrasound parameters reflect bone structure." Calcified tissue international 

55(1), 46-52. 

  

Guilak, F., B. Fermor, F. J. Keefe, V. B. Kraus, S. A. Olson, D. S. Pisetsky, . . . J. B. 

Weinberg (2004). "The role of biomechanics and inflammation in cartilage 

injury and repair." Clinical orthopaedics and related research 423, 17-26. 

  

Håstein, T. (2004). Animal welfare issues relating to aquaculture. Global conference 

on animal welfare: an OIE initiative. European Communities, Paris, France, 

Citeseer. 

  

Halaba, Z. P., J. Konstantynowicz, W. Pluskiewicz, M. Kaczmarski and J. 

Piotrowska-Jastrzebska (2005). "Comparison of phalangeal ultrasound and 

dual energy X-ray absorptiometry in healthy male and female adolescents." 

Ultrasound in medicine & biology 31(12), 1617-1622. 

  

Hall, J. E. (2015). Guyton and Hall textbook of medical physiology, Elsevier Health 

Sciences. 

  

Hans, D., C. Wu, C. Njeh, S. Zhao, P. Augat, D. Newitt, . . . H. Genant (1999). 

"Ultrasound velocity of trabecular cubes reflects mainly bone density and 

elasticity." Calcified tissue international 64(1), 18-23. 

  

Hench, L. L. and J. Wilson (1993). An introduction to bioceramics, World scientific. 

  

Hernandez, C. and T. Keaveny (2006). "A biomechanical perspective on bone 

quality." Bone 39(6), 1173-1181. 

  

Horton, J. M. and A. P. Summers (2009). "The material properties of acellular bone in 

a teleost fish." Journal of Experimental Biology 212(9), 1413-1420. 

  

Huiskes, R. (2000). "If bone is the answer, then what is the question?" J Anat 197(2), 

145-156. 

  



  66 

Ito, M. (2006). "Assessment of effect of anti-osteoporotic agents using high-resolution 

CT." Clinical calcium 16(12), 2034-2042. 

  

Kacem, A., F. Meunier and J. Bagliniere (1998). "A quantitative study of 

morphological and histological changes in the skeleton of Salmo salar during 

its anadromous migration." Journal of Fish Biology 53(5), 1096-1109. 

  

Kleerekoper, M. (2006). "Osteoporosis prevention and therapy: preserving and 

building strength through bone quality." Osteoporosis international 17(12), 

1707-1715. 

  

Krossøy, C., R. Ørnsrud and A. Wargelius (2009). "Differential gene expression of 

bgp and mgp in trabecular and compact bone of Atlantic salmon (Salmo salar 

L.) vertebrae." J Anat 215(6), 663-672. 

  

Kyle, H. M. (1926). The biology of fishes, London. 

  

Laugier, P., P. Droin, A. Laval-Jeantet and G. Berger (1997). "In vitro assessment of 

the relationship between acoustic properties and bone mass density of the 

calcaneus by comparison of ultrasound parametric imaging and quantitative 

computed tomography." Bone 20(2), 157-165. 

  

Lee, D. D., W. J. Landis and M. J. Glimcher (1986). "The solid, calcium‐ phosphate 

mineral phases in embryonic chick bone characterized by high‐ voltage 

electron diffraction." Journal of bone and mineral research 1(5), 425-432. 

  

Lester, B., J. Halbrecht, I. M. Levy and R. Gaudinez (1995). "" Press test" for office 

diagnosis of triangular fibrocartilage complex tears of the wrist." Annals of 

plastic surgery 35(1), 41-45. 

  

Lin, J.-D., J.-F. Chen, H.-Y. Chang and C. Ho (2001). "Evaluation of bone mineral 

density by quantitative ultrasound of bone in 16 862 subjects during routine 

health examination." The British journal of radiology 74(883), 602-606. 

  

Mørkøre, T., T. Larsson, A. S. Kvellestad, E. O. Koppang, M. Åsli, A. Krasnov, . . . 

K. H. Gannestad (2015). "Mørke flekker i laksefilet. Kunnskapsstatus og tiltak 

for å begrense omfanget." 

  

Mackean, D. G. (1969). "Introduction to biology." 

  

Mackie, E. (2003). "Osteoblasts: novel roles in orchestration of skeletal architecture." 

The international journal of biochemistry & cell biology 35(9), 1301-1305. 

  



  67 

Majumdar, S., D. Newitt, A. Mathur, D. Osman, A. Gies, E. Chiu, . . . H. Genant 

(1996). "Magnetic resonance imaging of trabecular bone structure in the distal 

radius: relationship with X-ray tomographic microscopy and biomechanics." 

Osteoporosis international 6(5), 376-385. 

  

Malluche, H. H., D. Sherman, W. Meyer and S. G. Massry (1982). "A new 

semiautomatic method for quantitative static and dynamic bone histology." 

Calcified tissue international 34(1), 439-448. 

  

Markings, B. (2004). "The skeletal system." 

  

Martin, R. B. (1999). A genealogy of biomechanics. 23rd Annual Conference of the 

American Society of Biomechanics. 

  

Martı́nez-Valverde, I., M. J. Periago, M. Santaella and G. Ros (2000). "The content 

and nutritional significance of minerals on fish flesh in the presence and 

absence of bone." Food Chemistry 71(4), 503-509. 

  

Moss, M. L. (1961). "Osteogenesis of acellular teleost fish bone." American Journal 

of Anatomy 108(1), 99-109. 

  

Moss, M. L. (1963). "The biology of acellular teleost bone." Annals of the New York 

Academy of Sciences 109(1), 337-350. 

  

Moss, M. L. (1965). "Studies of the acellular bone of teleost fish. V." Cells Tissues 

Organs 60(2), 262-276. 

  

Mulder, L., J. H. Koolstra, W. A. Weijs and T. M. van Eijden (2005). "Architecture 

and mineralization of developing trabecular bone in the pig mandibular 

condyle." The Anatomical Record Part A: Discoveries in Molecular, Cellular, 

and Evolutionary Biology 285(1), 659-666. 

  

Nelson, G. J. (1969). "Origin and diversification of teleostean fishes." Annals of the 

New York Academy of Sciences 167(1), 18-30. 

  

Nordvik, K., H. Kryvi, G. K. Totland and S. Grotmol (2005). "The salmon vertebral 

body develops through mineralization of two preformed tissues that are 

encompassed by two layers of bone." J Anat 206(2), 103-114. 

  

Parfitt, A. (1984). "Age-related structural changes in trabecular and cortical bone: 

cellular mechanisms and biomechanical consequences." Calcified tissue 

international 36, S123-S128. 

  



  68 

Parfitt, A. M., M. K. Drezner, F. H. Glorieux, J. A. Kanis, H. Malluche, P. J. Meunier, 

. . . R. R. Recker (1987). "Bone histomorphometry: standardization of 

nomenclature, symbols, and units: report of the ASBMR Histomorphometry 

Nomenclature Committee." Journal of bone and mineral research 2(6), 

595-610. 

  

Parnell, W. J. and Q. Grimal (2009). "The influence of mesoscale porosity on cortical 

bone anisotropy. Investigations via asymptotic homogenization." Journal of 

the Royal Society Interface 6(30), 97-109. 

Peng, J., Aiyuan, W., Mingxue, S. (2005). "Three-dimensional analysis of spatial 

structure in  femur cancellous bone samples." Chinese journal of orthopedic 

surgery 20(6), 924-926. 

  

Ramakrishna, S., J. Mayer, E. Wintermantel and K. W. Leong (2001). "Biomedical 

applications of polymer-composite materials: a review." Composites science 

and technology 61(9), 1189-1224. 

  

Ratner, B. D., A. S. Hoffman, F. J. Schoen and J. E. Lemons (2004). Biomaterials 

science: an introduction to materials in medicine, Academic press. 

  

Rho, J.-Y. and G. M. Pharr (1999). "Effects of drying on the mechanical properties of 

bovine femur measured by nanoindentation." Journal of Materials Science: 

Materials in Medicine 10(8), 485-488. 

  

Rho, J. Y., M. E. Roy, T. Y. Tsui and G. M. Pharr (1999). "Elastic properties of 

microstructural components of human bone tissue as measured by 

nanoindentation." Journal of biomedical materials research 45(1), 48-54. 

  

Richardsen, R., R. Nystøyl, G. Strandheim and A. Viken (2015). "Analyse marint 

restråstoff, 2014: Analyse af tilgang og anvendelse for marint restråstoff i 

Norge." 

  

Ritman, E. L. (2002). "Molecular imaging in small animals—roles for micro‐ CT." 

Journal of Cellular Biochemistry 87(S39), 116-124. 

  

Roesler, H. (1987). "The history of some fundamental concepts in bone 

biomechanics." Journal of Biomechanics 20(11-12), 1025-1034. 

  

Ross, C. F. and K. A. Metzger (2004). "Bone strain gradients and optimization in 

vertebrate skulls." Annals of Anatomy-Anatomischer Anzeiger 186(5-6), 

387-396. 

  

Rubin, C., A. S. Turner, R. Müller, E. Mittra, K. McLeod, W. Lin and Y. X. Qin 

(2002). "Quantity and quality of trabecular bone in the femur are enhanced by 



  69 

a strongly anabolic, noninvasive mechanical intervention." Journal of bone 

and mineral research 17(2), 349-357. 

  

Schott, A., D. Hans, F. Duboeuf, P. Dargent-Molina, T. Hajri, G. Breart and P. 

Meunier (2005). "Quantitative ultrasound parameters as well as bone mineral 

density are better predictors of trochanteric than cervical hip fractures in 

elderly women. Results from the EPIDOS study." Bone 37(6), 858-863. 

  

Seeman, E. (2003). "The structural and biomechanical basis of the gain and loss of 

bone strength in women and men." Endocrinology and metabolism clinics of 

North America 32(1), 25-38. 

  

Seeman, E. and P. D. Delmas (2006). "Bone quality—the material and structural basis 

of bone strength and fragility." New England Journal of Medicine 354(21), 

2250-2261. 

  

Slizyte, R., K. Rommi, R. Mozuraityte, P. Eck, K. Five and T. Rustad (2016). 

"Bioactivities of fish protein hydrolysates from defatted salmon backbones." 

Biotechnology Reports 11, 99-109. 

  

Steele, D. G. and C. A. Bramblett (1988). The anatomy and biology of the human 

skeleton, Texas A&M University Press. 

  

Szpak, P. (2011). "Fish bone chemistry and ultrastructure: implications for taphonomy 

and stable isotope analysis." Journal of Archaeological Science 38(12), 

3358-3372. 

  

Toppe, J., S. Albrektsen, B. Hope and A. Aksnes (2007). "Chemical composition, 

mineral content and amino acid and lipid profiles in bones from various fish 

species." Comparative Biochemistry and Physiology Part B: Biochemistry and 

Molecular Biology 146(3), 395-401. 

  

Totland, G. K., P. G. Fjelldal, H. Kryvi, G. Løkka, A. Wargelius, A. Sagstad, . . . S. 

Grotmol (2011). "Sustained swimming increases the mineral content and 

osteocyte density of salmon vertebral bone." J Anat 219(4), 490-501. 

  

van der Meulen, M. C. H., K. J. Jepsen and B. Mikić "Understanding bone strength: 

size isn&#x2019;t everything." Bone 29(2), 101-104. 

  

von Meyer, G. H. (2011). "The classic: the architecture of the trabecular bone (Tenth 

Contribution on the Mechanics of the Human Skeletal Framework)." Clinical 

Orthopaedics and Related Research® 469(11), 3079. 

  



  70 

Wang, W. (2016). The effect of dietary antioxidants on hyperpigmented fillet spots of 

Atlantic salmon (Salmo salar L.), Norwegian University of Life Sciences, Ås. 

  

Wehrli, F. W. (2007). "Structural and functional assessment of trabecular and cortical 

bone by micro magnetic resonance imaging." Journal of Magnetic Resonance 

Imaging 25(2), 390-409. 

  

Whalen, R., D. Carter and C. Steele (1988). "Influence of physical activity on the 

regulation of bone density." Journal of Biomechanics 21(10), 825-837. 

  

Wolff, J. (2012). The law of bone remodelling, Springer Science & Business Media. 

 

Yingjian, W. (1996). "A review on the micromechanical study of cancellous bone." 

Advances in Mechanics 26(3), 924-926. 

  

Zhang, Y., F. Cui, X. Wang, Q. Feng and X. Zhu (2002). "Mechanical properties of 

skeletal bone in gene-mutated stöpsel dtl28d and wild-type zebrafish (Danio 

rerio) measured by atomic force microscopy-based nanoindentation." Bone 

30(4), 541-546. 

 

Zonglai, J., Yubo, F. (2010). Biomechanics-from basic to frontiers, Beijing: Science 

press. 

  

Zysset, P. K., X. E. Guo, C. E. Hoffler, K. E. Moore and S. A. Goldstein (1999). 

"Elastic modulus and hardness of cortical and trabecular bone lamellae 

measured by nanoindentation in the human femur." Journal of Biomechanics 

32(10), 1005-1012. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  71 

 

 

 

 

 

 

Appendix 

Appendix 1: Product list 

Table 1. Product list 

Product Name Company Country 

Chloroform VWR international, LLC MA, USA 

Methanol VWR international, LLC MA, USA 

Sodium chloride VWR international PA, USA 

BHT 

(2,6-Di-t-butyl-p-cresol) 

Sigma Chemical Co. St. 

Louis 

MO, USA 

The TA-XT2 Texture 

Analyser 

Stable Micro Systems Surrey, UK 

Ika® T25 digital Ultra 

Turrax 

IKA Werke GmbH & Co. 

KG 

Breisgau, Germany 

Waring Commercial® 

blender 

Waring Commercial CT, USA 

DeltaRange® XS603S 

Precision Balance 

Mettler-Toledo OH, USA 

Metoer® L5 heating plate Engmark Meteor AS Oslo, Norway 

Binder® FD 23 drying and 

heating chambers 

Classic.Line with forced 

convection 

Binder Tuttlingen, Germany 

Nabertherm® Program 

Controller S17 Muffle ashing 

furnace 

Nabertherm Lilienthal, Germany 
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Appendix 2: Force-time graphs for the eighth, twelfth, thirty-second and thirty-sixth 

vertebrae (V8, V12, V32, V36) of different Salmon weight classes 

   

4kg Salmon Vertebrate 8 (n=10) 5kg Salmon Vertebrate 8 (n=10) 6kg Salmon Vertebrate 8 (n=9) 

   

4kg Salmon Vertebrate 12 (n=10) 5kg Salmon Vertebrate 12 (n=10) 6kg Salmon Vertebrate 8 (n=8) 

   

4kg Salmon Vertebrate 32 (n=10) 5kg Salmon Vertebrate 32 (n=10) 6kg Salmon Vertebrate 32 (n=10) 

   

4kg Salmon Vertebrate 36 (n=10) 5kg Salmon Vertebrate 36 (n=10) 6kg Salmon Vertebrate 36 (n=10) 

Fig 2. Force-time graphs for the eighth, twelfth, thirty-second and thirty-sixth vertebrae (V8, V12, V32, V36) of 

different Salmon weight classes 
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Appendix 3: Total average force-time graphs for the eighth, twelfth, 

thirty-second and thirty-sixth vertebra (V8, V12, V32, V36) of 

different Salmon weight classes 

 

 

B  

5 KG Salmon 

A   

4 KG Salmon 
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Fig 3. Total average force-time graphs for the eighth, twelfth, thirty-second and thirty-sixth 

vertebra (V8, V12, V32, V36) of different Salmon weight classes 

 

C   

6 KG Salmon 
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Appendix 4: Force-time graphs for the eighth, twelfth, thirty-second and thirty-sixth 

vertebrae (V8, V12, V32, V36) of different fish species 

   

Salmon Vertebrate 4 (n=10) Trout Vertebrate 4 (n=10) Carp Vertebrate 4 (n=9) 

   

Salmon Vertebrate 8 (n=10) Trout Vertebrate 8 (n=10) Carp Vertebrate 8 (n=9) 

   

Salmon Vertebrate 12 (n=8) Trout Vertebrate 12 (n=8) Carp Vertebrate 12 (n=9) 

   

Salmon Vertebrate 16 (n=8) Trout Vertebrate 16 (n=10) Carp Vertebrate 16 (n=9) 
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Salmon Vertebrate 20 (n=8) Trout Vertebrate 20 (n=10) Carp Vertebrate 20 (n=9) 

   

Salmon Vertebrate 24 (n=6) Trout Vertebrate 24 (n=10) Carp Vertebrate 24 (n=9) 

   

Salmon Vertebrate 28 (n=9) Trout Vertebrate 28 (n=10) Carp Vertebrate 28 (n=9) 

  

 

Salmon Vertebrate 32 (n=10) Trout Vertebrate 32 (n=10)  
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Salmon Vertebrate 36 (n=10) Trout Vertebrate 36 (n=10)  

  

 

Salmon Vertebrate 40 (n=10) Trout Vertebrate 40 (n=10)  

  

 

Salmon Vertebrate 44 (n=10) Trout Vertebrate 44 (n=10)  

  

 

Salmon Vertebrate 48 (n=10) Trout Vertebrate 48 (n=10)  
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Salmon Vertebrate 52 (n=7) Trout Vertebrate 52 (n=8)  

Fig 4. Force-time graphs for the eighth, twelfth, thirty-second and thirty-sixth vertebrae (V8, V12, V32, V36) of 

different fish species 
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Appendix 5: Force-time graph for the eighth, twelfth, thirty-second 

and thirty-sixth vertebra (V8, V12, V32, V36) of fresh and frozen 

Salmon 

  

Fresh Salmon Vertebrate 8 (n=10) Frozen Salmon Vertebrate 8 (n=7) 

  

Fresh Salmon Vertebrate 12 (n=8) Frozen Salmon Vertebrate 12 (n=7) 

  

Fresh Salmon Vertebrate 32 (n=10) Frozen Salmon Vertebrate 32 (n=7) 
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Fresh Salmon Vertebrate 36 (n=10) Frozen Salmon Vertebrate 36 (n=7) 

Fig 5. Force-time graph for the eighth, twelfth, thirty-second and thirty-sixth vertebra (V8, 

V12, V32, V36) of fresh and frozen Salmon. 
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Appendix 6: Force-time graph for the eighth, twelfth, thirty-second 

and thirty-sixth vertebra (V8, V12, V32, V36) of fresh and frozen 

Trout 

  

Fresh Trout Vertebrate 8 (n=10) Frozen Trout Vertebrate 8 (n=10) 

  

Fresh Trout Vertebrate 12 (n=8) Frozen Trout Vertebrate 12 (n=10) 

  

Fresh Trout Vertebrate 32 (n=10) Frozen Trout Vertebrate 32 (n=10) 
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Fresh Trout Vertebrate 36 (n=10) Frozen Trout Vertebrate 36 (n=10) 

Fig 6. Force-time graph for the eighth, twelfth, thirty-second and thirty-sixth vertebra (V8, 

V12, V32, V36) of fresh and frozen Trout 

 

 




