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Abstract 

The on-line monitoring of Chemical oxygen demand (COD) and total phosphorus (TP) restrains wastewater 

treatment plants to achieve better control of aeration and chemical dosing. In this study, we applied principal 

components analysis (PCA) to find out significant variables for COD and TP prediction. Multiple regression 

method applied the variables suggested by PCA to predict influent COD and TP. Moreover, a model of 

full-scale wastewater treatment plant with moving bed bioreactor (MBBR) and ballasted separation process 

was developed to simulate the performance of wastewater treatment. The predicted COD and TP data by 

multiple regression served as model input for dynamic simulation. Besides, the wastewater characteristic 

of the wastewater treatment plant and MBBR model parameters were given for model calibration. As a 

result, R2 of predicted COD and TP versus measured data are 81.6% and 77.2%, respectively. The model 

output in terms of sludge production and effluent COD based on predicted input data fitted measured data 

well, which provides possibility to enabled model predictive control of aeration and coagulant dosing in 

practice. This study provide a feasible and economical approach to overcome monitoring and modelling 

restrictions that limits model predictive control of wastewater treatment plant. 
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1. Introduction 

Model predictive control (MPC) is considered as an advanced control scheme to optimize wastewater 

treatment plants (WWTPs) (Kim et al., 2014; Vega et al., 2014). The application of MPC has been reported 

that 25 % aeration cost can be saved in a activated sludge plant (O’Brien et al., 2011). For the successfully 

use of MPC, real time monitoring of the treatment process and appropriate models which can describe 
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process behaviors are required. However, the application of model predictive control in full-scale WWTPs 

is limited due to unavailability of capable process model and reliable online analyzers for process 

monitoring, especially for chemical oxygen demand (COD) and total phosphorus (TP) online measurement. 

Present literature reports are mainly focus on the selection of control structure (Gutierrez et al., 2014; Stare 

et al., 2007) and cost function and set point optimization (Vega et al., 2014). Consequently, most control 

scheme developed in the past is tested using simulation, but much fewer controllers have been implemented 

in full scale WWTPs (Olsson et al., 2014; Åmand et al., 2013).   

Moving Bed Biofilm Reactor (MBBR) is a fluidized biofilm wastewater treatment system, which was 

widely used during last decades due to its higher treatment efficiency and lower footprint (Di Trapani et al., 

2011; Ødegaard, 2006). The separation of biomass produced by MBBR system usually requires coagulant 

dosing to enhance biomass separation. Therefore, aeration and coagulant dosing control is essential to the 

performance of wastewater treatment plant with MBBR. For the purpose of improving MBBR plant 

performance and reduce operation cost, a MBBR model and influent wastewater characteristics are 

necessary to achieve model predictive control. 

Although there is no standard MBBR model available as activated sludge model 1- ASM1 (Henze et al., 

1987), modelling and dynamic simulation of MBBR has been carried out based on ASM1 (Mannina et al., 

2011; Plattes et al., 2006), which proved that the bio-kinetic model in ASM1 are able to serve as reference 

for the modelling of MBBR system. Nowadays, fluidized biofilm model are available in simulation tools 

for wastewater treatment, e.g. STOAT® (WRc, Wiltshire, England), BioWin® (EnviroSim Associates Ltd., 

Canada). Consequently, modelling and dynamic simulation of a MBBR plant are possible to carry out for 

model predictive control purpose.  

Principal components analysis (PCA) is a multivariable statistical method for detecting data collinearity 

and reduce dataset dimensions, which plays an essential role in software sensor development (Cecil and 

Kozlowska, 2010; Haimi et al., 2015). Recently, researchers employed PCA to determine correlation 

between process variables (Avella et al., 2011) and characterize water quality (Huang et al., 2012). 

Moreover, multiple regression coupled with PCA was used to monitor WWTP operation and predict process 

performance (Avella et al., 2011; Liu et al., 2014; Martín de la Vega et al., 2012). Data collected from 

WWTPs contain useful information and are not always explicit. Therefore, with the application of modern 

statistical methods, process engineers are able to obtain real-time information without the corresponding 

online sensors. 

The objective of this work was to provide an approach to optimize full-scale WWTP performance and 

reduce operation cost in practice. This is achieved by a combined approach to enable model predictive 
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control. Furthermore, the study provides wastewater characteristics of a full scale WWTP in Norway, based 

on which a MBBR model was built. Statistical monitoring of influent wastewater and dynamic simulation 

of WWTP performance based on predicted influent data was carried out. By applying the approach 

presented in this work, full-scale WWTPs are able to achieve model predictive control easily and 

economically. 

2. Materials and methods  

2.1 Description of the wastewater treatment plant  

Solumstrand wastewater treatment plant locates in Drammen, in the south of Norway with the treatment 

capacity of serving 130 000 person equivalent. As is shown in Figure 1, the influent wastewater passes 

through the screen and grit trap to remove large solid and sand. The outlet of grit trap enters MBBR system 

for biological treatment. The biological treatment of this WWTP is consisted of four parallels, and each 

parallel has two aerobic MBBRs in series. The MBBR system is filled with bio-carriers with filling rate of 

59%, and the specific surface area of bio-carriers is greater than 500 m2/m3. The MBBR system only has 

aerobic zone with short nominal hydraulic retention time (1.6 hours), which enables organic matter removal, 

but ammonia and soluble nitrogen removal are not required in this plant. The outlet of MBBR system carries 

detached biological particles and enters ballasted flocculation tank for solid separation. The ballasted 

flocculation and separation, also known as Actiflo (Plum et al., 1998), separates solid and water within a 

short period due to high settling velocity caused by micro-sand and coagulant dosing.  Besides, coagulant 

dosing should secure phosphorus removal ratio larger than 94%.  

 

Figure 1.  Schematic diagram of the wastewater treatment plant  

2.2 Wastewater characteristics 

Influent and effluent wastewater was continuously collected by automatic samplers and the wastewater 

characteristics was analyzed following Standard Methods for chemical oxygen demand (COD), ammonia, 

total nitrogen (TN), total phosphorus (TP), soluble phosphorus, and suspended solids (SS) (APHA, AWWA, 
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2012). The total sample collection period was 120 hours. Table 1 lists the average influent wastewater 

characteristic, which are also the input values of the steady state model.  

Table 1 Average influent wastewater characteristic, which serves as the input of steady state model 

Symbol Wastewater Composition Values Units 

− Total COD 617 mg COD L-1 

− Volatile fatty acids(VFA) 10 mg COD L-1 

�� Soluble biodegradable COD  259 mg COD L-1 

�� Soluble inert COD 56 mg COD L-1 

�� Particulate biodegradable COD (slowly biodegradable) 218 mg COD L-1 

�� Particulate inert COD 73 mg COD L-1 

��� Influent volatile suspended solids 190 mg L-1 

�	� Influent non-volatile solids 10 mg L-1 

�
� Ammonia nitrogen in bulk liquid 33.5 mg N L-1 

− Soluble organic nitrogen 2.88 mg N L-1 

�
� Soluble nitrate and nitrite nitrogen 0 mg N L-1 

− Particulate organic nitrogen 8.62 mg N L-1 

�
 Soluble degradable organic nitrogen 2.88 mg N L-1 

− Soluble unbiodegradable organic nitrogen 0 mg N L-1 

�
 Particulate biodegradable organic nitrogen 6.62 mg N L-1 

− Particulate unbiodegradable organic nitrogen 2 mg N L-1 

− Soluble orthophosphate 1.8 mg P L-1 

− Soluble biodegradable phosphorus 1.8 mg P L-1 

− Soluble unbiodegradable phosphorus 0 mg P L-1 

− Particulate biodegradable phosphorus 2.25 mg P L-1 

− Particulate unbiodegradable phosphorus 0.75 mg P L-1 

 

2.3 Multivariate statistical analysis 

Two multivariate statistical methods were applied to achieve statistical monitoring of the WWTP: Principal 

components analysis (PCA) and multiple regression. The mathematical procedure of PCA for statistical 

monitoring of WWTP was well explained in literature (Liu et al., 2014). In this work, we applied PCA to 

study the collinearity and correlation between influent variables, i.e., COD, soluble COD (SCOD), Flow, 

SS, ammonia (NH4-N), PH, total nitrogen (TN), orthophosphate (OP) and total phosphorus (TP). The results 
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of PCA were visualized in form of two types of plot: explained variances plot and loading plot. The 

explained variances plot indicates the proportion of total variance explained by each component, while the 

loading plot visualizes the correlation between original variables. In addition, if a small amount of principal 

components explains most variance of the data, it indicates high collinearity of original variables. Moreover, 

the original variables located closely on the loading plot indicates positive correlation, and variables are 

negatively correlated if they locate on the opposite of the origin. To verify the PCA model, cross validation 

method was applied.  

Because it is expensive and slow to measure COD and total phosphorus by online analyzers, we applied 

multiple regression to predict influent COD and total phosphorus based on easily measured variables, e.g. 

flow rate and PH. Leverage correction method are used to validate the multiple regression model. The 

Unscrambler® software (Camo software company) was used for all the statistical analysis. 

2.4 Model development  

As stated above, a steady state model of the MBBR system was developed based on Activated Sludge 

Model 1 (Henze et al., 1987). The function of the steady state model was to determine model parameters. 

Average influent wastewater characteristic of 120 samples was applied as the model input. Table 2 lists the 

biological behavior of the MBBR system, based on activated sludge model 1 (ASM1). The full 

demonstration of process kinetics and stoichiometry can be found in ASM1 (Henze et al., 1987). In this 

study, we excluded anoxic growth of heterotrophs, because there is no anoxic zone in the MBBR system 

and only aerobic reaction was modelled. The notation of the state variables and process parameters are 

given in Table 3. 

Table 2 List of basic process model used to describe the biological behavior of MBBR system 

j Process Process rate, ��  

1 Aerobic growth of 

heterotrophs 
    �� = �� � ��

�����
� � ��

��,����
� ��,�  

2 Aerobic growth of 

autotrophs 
    �� = � � �!�

�!���!�
� � ��

��,"���
� ��,   

3 Decay of heterotrophs     �# = $���,�  

4 Decay of autotrophs     �% = $ ��,   

5 Ammonification of soluble 

organic nitrogen 

    �& = '(�
��,   

6 Hydrolysis of entrapped      �) = '*
+, +-,�⁄

�/�0+� +-,�⁄ 1 2� ��
��,"���

� + 4* � ��,�
��,����

� � �!�
�!���!�

�5 ��,�  
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7 Hydrolysis of entrapped 

organic nitrogen 
    �6 = '*

+, +-,�⁄
�/�0+� +-,�⁄ 1 2� ��

��,"���
� + 4* � ��,�

��,����
� � �!�

�!���!�
�5 ��,�7�
 ��⁄ 8  

 

Table 3 Part of state variables and model parameters of biological model   

Notation Definition Units 

State variables (other used state variables can be find from Table 1) 

��,� Active heterotrophic biomass mg COD L-1 

��,  Active autotrophic biomass mg COD L-1 

�� Oxygen mg COD L-1 

Kinetic parameters  

�� Maximum specific growth rate for heterotrophic biomass  day -1 

9� COD half-saturation coefficient for heterotrophic biomass mg COD L-1 

9�,� Oxygen half-saturation coefficient for heterotrophic biomass mg COD L-1 

9
� Nitrate half-saturation coefficient for heterotrophic biomass mg N L-1 

$� Decay coefficient for heterotrophic biomass day -1 

4� Correction factor for hydrolysis under anoxic conditions - 

'* Maximum specific hydrolysis rate  g COD (g COD ∙ day)-1 

9+ Half-saturation coefficient for hydrolysis of �� g COD (g COD)-1 

�  Maximum specific growth rate of autotrophic biomass day -1 

9
� Ammonia half-saturation coefficient for autotrophic biomass mg N L-1 

$  Decay coefficient for autotrophic day -1 

9�,  Oxygen half-saturation coefficient for autotrophic biomass mg COD L-1 

'( Ammonification rate L (mg COD ∙ day)-1 

;<
 Nitrogen content of biomass g N (g COD)-1 

2.5 Model calibration  

The model calibration has been carried out to minimize the difference between the measured and simulated 

values. As a simplified model for control purpose, the target model output are effluent COD, total 

phosphorus and ammonia concentration. The SS of MBBR outlet was also interested because it represents 

sludge production of MBBR system and determines the control of coagulant dosage for biomass separation. 

Thus, a steady state model with average influent data as input and default ASM1 values were assigned to 

the model. Latterly, model parameters related to interested variables were calibrated by comparing the 

steady state output and measured values.  
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2.6 Dynamic simulation of WWTP performance 

We use STOAT to simulate the performance of WWTP. In detail, we employed the “Upflow biological 

aerated filter” to represent MBBR by setting medium surface area to 500 m2/m3. STOAT has no specific 

model for ballasted flocculation. We selected “chemical P removal” together with “Lamella separator” to 

represent ballasted flocculation section. Because micro-sand increases the settling velocity to more than 

100 m/h, the sludge settling velocity coefficients were calibrated accordingly.  

3. Results and discussion  

3.1 Principal components analysis (PCA)  

We applied PCA to summarize the collinearity and correlation of influent variables. Figure 2a shows the 

cumulative explained variance of PCA results, where the blue curve is the results of the fitted PCA model, 

and the red one shows the results of cross validation. As is shown in Figure 2a, the first principal component 

(PC-1) explains 50.1% of total variance of the data (calibrated), while the validated PC-1 explains 41.8% 

total variance. The first three principal components (PC-1, PC-2 and PC-3) of calibrated and validated 

results represent 88.9% and 81.9% of total variance, respectively. The results indicate high collinearity of 

WWTP influent data. Consequently, we can cluster the original variables into three groups and pick one 

variable from each group to represent the propagation trend of the corresponding group. 

Figure 2b shows the loading of influent variables on the plane formed by PC-1 and PC-2. COD, SCOD, 

OP, Flow, TP and SS composite the first group with higher PC-1 loading. While PH has negative loading 

on both PC-1 and PC-2 coordinate, and locates on the opposite of the first group. It indicates that PH is 

negative correlated with the first group. Moreover, ammonia and total nitrogen forms the third group, which 

has high negative weight on PC-2. The third group and the first group are almost orthogonal with respect 

to the origin, which tells that ammonia and total nitrogen contain information that cannot be linearly 

expressed by variables in the first group. Overall, PCA proved the high collinearity of influent variables 

and suggested that three oringal varibles were sufficient to represent the variation of influent quality and 

quantity. 
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Figure 2.  Principal components analysis of influent flow and wastewater quality. a) Cumulative proportion of total variance of all 

PCs. The blue and red curve represent the results of PCA model and validated results based on cross-validation, respectively. b) 

Loading plot of influent variables on the plane of PC-1 and PC-2.The subscript in represent influent.    

3.2 Multiple regression 

Online measurement of influent COD (CODin) and influent TP (TPin) is very important, because CODin and 

TP are two of the main input factors of the process model and determines whether model predictive control 

can be achieved or not. However, perspective from process online monitoring and control, COD and TP is 

slower and more expensive to measure by online analyzers. Therefore, we applied multiple regression 

method to use easy and fast responding variables (e.g. Flow, PH, ammonia) to predict slower and more 

expensive variables (CODin, TPin). Recent years multivariate prediction methods partial least squares 

(Amaral et al., 2013) and artificial neural network (Jing et al., 2015; Lou and Zhao, 2012; Nasr et al., 2012) 

are reported as useful prediction tools in the field of wastewater treatment. However, from the view of 

monitoring and control in practice, both partial least squares and artificial neural networks require 

continuously measurement of all the variables, which would increase the investment on online equipment 

and maintenance cost. Alternatively, a robust multivariate regression model with pre-selected variables 

based on PCA is preferred to predict real-time CODin and TPin values.  

As is suggested by PCA results in Figure 2b, we picked one easier measured variable from each of the three 

groups to predict influent CODin and TPin to avoid overfitting. Therefore, influent flow, ammonia and PH 

were selected as predictor. Equation (1) and (2) are the multiple regression model for influent CODin and 

TPin respectively: 

=>?�	 = 2708.2170 + 0.6806GHIJ + 11.4423MNNIOPQ�	 − 443.7516ST�	               718 

US�	 = 0.5548 + 0.0067GHIJ + 0.0443MNNIOPQ�	 − 0.3926ST�	                                  728            
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The scatter plots of predicted CODin and TPin versus measured CODin and TPin are shown in Figure 3a and 

3b respectively. The validated prediction based on leverage correction were evaluated in term of R2.  As is 

shown in Figure 3a, the linear expression of predicted CODin (Equation (1)) explains more than 81% of 

CODin variance. Meanwhile, the predicted TPin as linear expressed in Equation (2), descripts 77% total 

variance of measured TPin. Considering the complexity of the full-scale WWTP, prediction accuracy of 

multiple regression with R2 greater than 0.7 is acceptable. Thus, the multiple regression model is capable 

to predict influent COD and TP, which can serve as statistical monitoring tool to provide input values to 

the process model for model predictive control.  

 

Figure 3. a) Predicted CODin versus measured CODin; b) Predicted TPin versus measured TPin. The blue values are results of 

model output, while red values are validated model output based on Leverage Correction. 

3.3 Process model calibration 

As mentioned previously, the model calibration has been carried out to minimize the error of steady state 

model output and measured data. More specifically, effluent COD, ammonia and the suspended solids (SS) 

of MBBR outlet were considered as state variables for the seeking of biological kinetic parameters. In 

addition, the effluent SS was used as state variable to determine setting velocity parameters of the separation 

tanks. The parameters obtained from calibration step are listed in Table 4. Typical values of model kinetic 

parameters in ASM1 are given in 10W and 20W (Henze et al., 1987), but the kinetic parameters in STOAT 

simulation environment are based on 15W. To provide compared modelling result, the equivalent parameter 

values at 20 W are calculated. Calibration of temperature dependency of bio-kinetic parameters was based 

on activated sludge model No. 2 - ASM2 (Henze et al., 1994). However, ASM2 applied Equation (3) for 

the calculation of bio-kinetic parameters under different temperature, while Equation (4) is used in STOAT. 

To find the equivalent model parameters at 20W, the temperature coefficient "Y" in STOAT was calculated 

from temperature coefficient "Q" in ASM2, Y = HOQ (Table 5). 

M�Z2:                         � = �\(] ∙ Q0^_^`ab1                                               738  
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STOAT:                       � = �\(] ∙ gh7^_�&8                                                748   
The adopted parameters have been compared with reference values in ASM1. The heterotrophs growth rate 

( �� ) and decay rate ( $� ) are almost consistent with reference values. However, parameters related to 

ammonia removal are significantly different with reference values. As the MBBR system is not used to 

remove ammonia, much lower autotrophic bacteria growth rate ( �  ) was adopted in this model. Besides, 

a relative higher ammonification rate (ka) was used to achieve nitrogen balance. However, the reason of 

higher ammonification in this system is unknown, and further study is necessary to figure out the 

ammonification mechanism. Overall, the coefficients related to ammonia removal have a higher influence 

on the model output than those related to COD removal. 

Table 4 Calibrated process model parameters and reference values from ASM1. 

Parameters 
Values in STOAT 

at 15W 

Parameter unit in 

STOAT  

Equivalent 

values at 20W  

Reference 

values 

at 20W 

Parameter unit at 20W 

�� 0.19          h-1 6.40 6    day-1 

�  0.008        h-1 0.34 0.8 day-1 

$� 0.0147      h-1 0.50 0.62 day-1 

$  0.0036    h-1 0.15 - day-1 

'* 0.07        h-1 2.04 3 day-1 

'( 0.004     h-1 0.12 0.05 day-1 

i� 0.67            mg COD (mg COD)-1 
0.67            

 

0.67            

 
mg COD (mg COD)-1 

i  0.24 mg COD(mg N)-1 0.24 0.24 mg COD(mg N)-1 

;<
 0.005  g N(g COD)-1 0.005 - g N(g COD)-1 

K 4000 Settling coefficients K and h for the settling velocity equation: = =* , where C 

represents suspended solids concentration.  h 1 

 

Table 5 Temperature coefficients used for the calculation of equivalent MBBR model parameters at 20W. 

Process Y   

 

a Degree of 

dependency 

Hydrolysis 0.0392 1.04 Low  

Heterotrophs, fermentation 0.0677 1.07 Medium 

Nitrification 0.1133 1.12 High 
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3.4 Dynamic simulation 

To test the possibility of achieving model predictive control, both predicted influent (multiple regression 

output) and measured influent data were used as input of wastewater treatment process model to simulate 

the WWTP. Figure 4 shows the dynamic simulation results of plant effluent COD, ammonia, TP and 

suspended solids of MBBR outlet (before separation). SS of MBBR outlet represents sludge production of 

MBBR. The goodness of fitting in terms of R2 are given in Table 6. Generally, the model output of SS 

(Figure 4a), COD (Figure 4b) and ammonia (Figure 4c) are well fitted to the measured data. In particular, 

the model output based on measured input have higher R2 values than those based on predicted values. This 

is reasonable because the predicted influent COD and TP had some errors to real values. The output values 

of ammonia based on measured influent ammonia overlapped with those based on predicted values (Figure 

4c), because influent ammonia are regarded as easier measured data which is not predicted by multiple 

regression. However, the simulated phosphorus results were quite higher than measured data (Figure 4d). 

Microorganism in MBBR system assimilated more than 1.7 mg/L, but the biological model based on ASM 

does not contain any anabolism functions related to phosphorus removal. For that reason, the MBBR model 

passed all the phosphorus content to the separation tank without removal and resulted in higher model 

output of total phosphorus. On the other hand, the results indicate that phosphorus removal by chemical 

precipitation requires negligible coagulant in this WWTP, because soluble phosphorus was already 

transformed to particulate phosphorus in biomass. In other words, only the SS of MBBR outlet determines 

coagulant dosage into separation tanks. 

As is given in Table 6, the R2 of model output of MBBR suspended solids, effluent COD and ammonia 

based on predicted influent are 0.507, 0.504 and 0.659, respectively. According to literature report (Avella 

et al., 2011), correlation coefficients R2 greater than 0.5 were acceptable to say that model output match 

measured data well. Furthermore, the SS of MBBR outlet can be used to determine coagulant dosage into 

the ballasted separation tank, while the model output of effluent COD and ammonia can be used to control 

real-time airflow to the MBBR system. Therefore, the combined approach of statistical monitoring of 

influent constituent and process modelling is capable to provide input data for model predictive control of 

airflow and coagulant dosage. 
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Figure 4 Dynamic simulation results of a) SS of MBBR outlet; b) effluent COD; c) effluent ammonia; d) effluent total phosphorus. 

The red, black and blue values represent measured data, simulated data based on measured influent and simulated data based on 

predicted influent data, respectively.   

Table 6 Goodness of fitting in terms of R2 of dynamic simulation 

Variables 
R2 

Measured VS. Simulated Measured VS. Pred.+Sim. Simulated VS. Pred.+Sim. 

SSMBBR 0.711 0.507 0.713 

CODoutlet 0.798 0.504 0.527 

Ammoniaoutlet 0.666 0.659 0.999 

TPoutlet 0.003 0.038 0.490 
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4. Conclusion 

Model predictive control in full-scale wastewater treatment plant has been limited due to on-line monitoring 

and capable process models. This study provide a combined approach of statistical monitoring and process 

modelling to achieve model predictive control of the WWTP. 

The statistical monitoring of influent COD and total phosphorus (TP) were achevied by combining principle 

components analysis (PCA) and multiple regression. PCA suggested influent flow, ammonia and PH as 

predictor variables for COD and TP. Multiple regression shows that the predicted COD and TP allowed 

description of 81.6% and 77.2% variance of influent COD and TP. A WWTP process model contains 

MBBR and ballasted separation was built to simulate the performance of a full-scale WWTP. The predicted 

influent wastewater was used as the input of the process model to simulate the dymamic performance of 

the treatment process. The results shown that the model was capable to predict sludge production and outlet 

COD concentration, which determines coagulant dosage and air flow of MBBR system. Therefore, it is 

possible to apply MPC to control aeration and chemical dosage by applying statistical monitoring of  the 

WWTP. This study provide an convienent and economic approach to achieve better control of wastewater 

treatment plant. 
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