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Sammendrag 

På grunn av rekombinasjon er overflaten av silisiumkrystaller en stor bidragsyter til effektivitetstap i 

solceller, og overflatepassivisering har derfor en stor betydning i produksjonen av høyeffektive 

solceller. I denne studien blir overflatepassiviseringsegenskapene til silisiumnitrid- og 

silisiumoksynitrid-tynnfilmer studert ved å modulere den faste ladningstettheten i materialene. 

Hensikten er å øke forståelsen for muligheten for økning i ladningsbærertettheten i silisiumnitrid-

filmer for dermed å øke felteffektpassiviseringen. Egenskapene som studeres er tykkelse, 

sammensetning, kjemisk passivisering og felteffektpassivisering. Videre er passiveringsegenskapene 

for enkeltfilmer av silisiumnitrid (forkortet nitrider) og stablene av silisiumoksinitrid toppet med 

silisiumnitrid sammenliknet og karakteriseringsmetodenes egnethet er vurdert 

 

Prøvesettet bestod av fire nitridfilmer og to stabler. SiNx-filmene ble deponert med to ulike 

sammensetninger - 10 sccm og 5 sccm SiH4 - med to forskjellige tykkelser; 80 nm og 100 nm. Stablene 

ble deponert med lik tykkelse og sammensetning av mellomlaget SiOxNy, men med to forskjellige 

sammensetninger av SiNx-topplaget: 20 sccm og 10 sccm SiH4. 

 

Levetidsmålinger ble gjennomført uten oppladning. Den effektive levetiden, !"##, for nitridene var i 

området 100 µs, mens stablene var i området 1500 µs. Alle silisiumrike prøver ga høyere !"## 

sammenlignet med de nitridrike prøvene. Dette er et resultat av bedre kjemisk passivering for de 

silisiumrike filmene. Dette mønsteret ble også observert i målinger gjort med 

fotoluminescensavbildning med påsatt spenning (PL–V). Kapasitans–spennings-målinger ble utført 

med og uten oppladning til –30 V. Resultatene ble brukt til å beregne tettheten av de faste ladningene, 

$#. Resultatene viste at nitridene var oppladbare, den øvre grensen for $# ble imidlertid ikke nådd på 

grunn av instrumentelle begrensninger. Stablene viste seg å være ladbare i mindre grad sammenliknet 

med nitridene.  Tykkelsen viste seg å være den mest innflytelsesrike variabelen blant nitridfilmene, 

mens sammensetningen var den viktigste parameteren for stablene. Med utgangspunkt i litteraturen 

har Karakteriseringsmetodene som er blitt vist forventede resultater for nitridfilmene. De elektriske 

karakteriseringsmetodene, C-V og PL-V, gav mer komplekse resultater for stablene. Generelt har 

stablene har vist høyere grad av passivering, men de er mindre oppladbare sammenliknet med 

nitridene. 
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Abstract 

The surface of the silicon crystal is a large contributor to efficiency losses in solar cells due to 

recombination. As the wafer thickness decreases, surface passivation is of great importance to produce 

high performing solar cells. This work studies the surface passivating properties of silicon nitride 

(abbreviation: nitrides), and silicon oxynitrides capped with silicon nitride (abbreviation: stacks) thin 

films by modulating the fixed charge densities in the materials. The study is performed to increase the 

understanding of the possibility of increasing the charge carrier density in silicon nitride films for 

improved field effect passivation. The properties for investigation are thickness, composition, chemical 

passivation and field effect passivation. Moreover, the passivation properties of stacks compared to 

the single layer nitrides are studied, and the suitability of the characterization methods is discussed. 

 

The sample set consisted of four nitride films and two stacks.  The SiNx films are deposited with two 

different compositions and two different thicknesses: 10 sccm and 5 sccm silane flow, and 80 nm and 

100 nm. The stacks are deposited with equal thickness and equal composition of the buffer layer 

SiOxNy, with two different compositions of the SiNx capping layers; 20 sccm and 10 sccm silane flow. 

 

All films showed good passivation properties prior to charging. The effective lifetime, !"##,  of the 

nitrides were approximately 100 µs, while the stacks were exceeding 1500 µs. All silicon rich samples 

yield a higher !"## compared to the nitride rich samples, which is a result of better chemical 

passivation. This pattern was also observed by photoluminescence imaging under applied bias (PL–V) 

measurements. Capacitance – voltage sweeps were performed with and without pre-soaking bias up 

to –30 V. The results were used to calculate fixed charge density, $#. The results showed that the 

nitrides are chargeable. However, the upper limit for $# was not reached due to instrumental 

limitations. The stacks showed to be less chargeable compared to the nitrides. The thickness turned 

out to be the most influential parameter among the stacks with regards to charging, while the 

composition showed to be the most influential parameter for the stacks. Considering the literature, all 

characterization methods have attained as-expected results for the nitrides. For the stacks, the 

electrical characterization methods, C–V and PL–V, have provided more complex results. Overall, the 

stacks have shown a higher degree of passivation, but are less chargeable than the nitrides. 
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1 Introduction 

 

CHAPTER 1 

INTRODUCTION 
 

 

In light of the climate changes, there has been an increasing global focus on renewable energy’s role 

in abating the negative impacts. The EU has given generous subsidies to increase adoption. Combined 

with reduced production costs for solar cells, this has made solar energy the fastest growing renewable 

electricity production technology, with a global increase in installed capacity of 50 GW in 2015 (REN 

21 2016).  

Since 2008, the costs of solar cells have sunk by 80% (IEA 2016), but the technology still has room to 

become more competitive. Two main constraints needs to be lifted for making solar cells more 

competitive on the market: Improved conversion efficiency and further reduction of the costs. 

Currently, c-Si is the leading photovoltaic technology, with a market share over 90% (ITRPV 2016). 

More than 61% of the production costs is attributable to the silicon (ITRPV 2016). By producing thinner 

wafers, the need for silicon is reduced. Although this is cost mitigating in production, the reduced 

thickness increases the required surface passivation of the cells. 

The surface of the silicon crystal is a large contributor to efficiency losses due to recombination. As the 

wafer thickness decreases, surface passivation is of great importance to produce high performing solar 

cells. To achieve great passivation, a low surface recombination velocity (SRV) is needed. Figure 1-1 

shows how the efficiency drops with the increase in SRV. The illustration is based on simplifications 

regarding normal cell operations to outline the main features of the SRV (Haug 2017). 
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Figure 1-1: Cell efficiency as a function of SRV (Haug 2017). 

 

The SRV depends on the concentration of carriers at the surface and the concentration of interface 

states. The interface states are caused by unsaturated atoms at the surface of the silicon substrate. 

The main strategy for reducing the unsaturated atoms is deposition of a thin film, typically with a large 

concentration of hydrogen. The hydrogen diffuses to the interface and binds with the unsaturated 

atoms. This method is called chemical passivation. Reduction of the carrier concentration is called field 

effect passivation, where a passivation layer containing fixed charges $# is deposited on the substrate. 

The fixed charges push either the holes or the electrons further down in the substrate, depending on 

the charges. Several passivation layers are currently studied to meet the technological needs. Silicon 

nitrides have previously showed potential with regards to passivation and the possibility of charging 

to increase the field effect passivation effect (Bazilchuck 2014). 
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1.1 Research questions 

The object of this work is to increase the understanding of the possibility of using a newly developed 

method for increasing the charge carrier density in silicon nitride to improve surface passivation by 

field effect passivation. Six different passivation films will be considered and evaluated: Two silicon 

oxynitrides with capping layers of silicon nitride, and four silicon nitride films. The stacks are produced 

with an equal buffer layer of oxynitride, but with two different compositions of the nitride capping 

layer. The nitrides are divided in two different compositions deposited with two different thicknesses. 

The research questions addressed in this thesis can be summarized as follows: 

1) How are the stacks performing compared to the nitrides? 

2) To what extent does the silicon/nitride ratio affect the passivation? 

3) To what extent does the thickness of the films affect the passivation? 

4) Is the thickness or the composition most influential on the passivation? 

5) Are the characterization methods suitable? 

6) What is the relative importance of the chemical and field effect passivation? 

 

1.2 Thesis outline 

The thesis is divided in six chapters: 

Chapter 1 describes the motivation and the scope of the thesis. Chapter 2 provides the theory needed 

for the characterization and analysis. Chapter 3 presents the characterization methods. Chapter 4 

describes the sample set. Chapter 5 presents the results with discussion. Chapter 6 concludes and 

summarizes the main findings. 
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2 Theory 

 

CHAPTER 2 

THEORY 
 

 

This chapter outlines the physics of recombination in solar cells and requirements for surface 

passivation. The chapter is divided in five parts.  

Section 2.1 presents the minority carrier lifetime and the physics behind the recombination processes, 

both in the bulk of the cell and at the surface. The three recombination processes; radiative 

recombination, Auger recombination and recombination via defects are presented. The latter one also 

called the Shockley-Read-Hall (SRH) recombination is also used for calculations of surface 

recombination.  

Section 2.2 outlines the two surface passivation techniques: Chemical passivation and field effect 

passivation, where both techniques usually are combined to achieve good passivation.  

Section 2.3 explains the behavior of the energy bands in a semiconductor both with, and without 

charges affecting the energy level at the surface. Further is the charge distribution explained using the 

Girisch model.  

Section 2.4 presents the effective lifetime, which is the minority carrier life time of the bulk and the 

surface combined. The effective lifetime is usually the obtained results of lifetime measurements, such 

that distinction between them is needed.  

Section 2.5 outlines different materials used for passivation of silicon and their properties.  
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2.1 Carrier recombination in crystalline silicon solar cells 

Based on the work of Aberle (1999) and Haug (2014). 

Recombination losses in a solar cell reduce its overall efficiency. To maximize the energy output, the 

generation of electron–hole-pairs must be maximized and the carrier recombination minimized. 

Recombination decreases both the open-circuit voltage and the short-circuit current of the solar cells. 

The recombination mechanisms for silicon solar cells will be further explained in this chapter. 

Carrier recombination losses occur when generated electron–hole-pairs recombine before being 

spatially separated by the depletion layer. The probability of recombination increases the farther away 

from the depletion layer the generation happens. The minority charge carrier lifetime, !, normally 

referred to as the lifetime, is the average time it takes for the minority charge carrier to recombine. 

The lifetime depends on the quality of the silicon, the doping level and the illumination level, and is 

defined as: 

! ≡ ∆$&  (2.1) 

where & is the net recombination rate and ∆$ ≡ $ − $& is the injection level of the excess carrier. The 

injection level is the difference between the concentration of electrons in the conduction band $ and 

the concentration of electrons at thermal equilibrium $&.  

There are three fundamental recombination processes with corresponding recombination rates and 

lifetimes: Radiative recombination, band-to-band Auger recombination and recombination via defects. 

Radiative and Auger-recombination is inherent to the material and may be seen as an upper limit for 

the recombination losses. Recombination via defects is caused by impurities or disruptions in the 

material and is a great contributor to efficiency losses at the surface and interface where the silicon is 

in contact with other materials.  
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2.1.1  Bulk recombination  

In the volume of the solar cell, the silicon is isolated from the surroundings. The recombination 

mechanisms in the bulk are thus a result from the inherent properties of the silicon or the quality of 

the material. The three bulk mechanisms are further explained in this section.  

Radiative recombination is the counter process of electron-hole-pair generation. An electron in the 

conduction band directly recombines with a hole in the valence band, releasing the excess energy as a 

photon with energy corresponding to the band gap. This process occurs more often in direct band gap 

semiconductors, such as GaAs, than in silicon which is an indirect band gap semiconductor. The 

generation rate of radiative recombination &()* is calculated as: 

&()* = ,()*($. − $-/) (2.2) 

where  ,()* is a material constant, $ is the concentration of electrons in the conduction band, . is the 

concentration of holes in the valence band and $- is the intrinsic carrier concentration at thermal 

equilibrium.  

Band-to-band Auger recombination takes place when an electron in the conduction band recombines 

with a hole and transmits the excess energy to a third carrier. An electron is either pushed further up 

in the conduction band or a hole further down in the valence band. This process increases with the 

injection level and is the dominating recombination process in silicon solar cells. This implies that the 

carrier lifetime decreases with increasing injection level. The recombination rate related to the Auger 

recombination &123 is defined as: 

&123 = 40$/. + 41$./ (2.3) 

where 40 and 41 are Auger coefficients for electrons and holes respectively.  

Recombination via defects is a process caused by impurities in the semiconductor crystal called traps, 

defect levels or recombination centers. These impurities create energy levels in the otherwise 

forbidden band gap. In this process, a defect level may attract both a hole from the valence band and 

an electron from the conduction band. 
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 The Shockley-Read-Hall (SRH) theory describes the mechanisms behind recombination via defects. 

The recombination rate &678 is a result of a defect with concentration 98 and energy level :8: 

&678 =
78998($. − $-/)
$ + $;
21 + . + .;20  

= $. − $-/
!1&($ + $;) + !0&(. + .;)

 
(2.4) 

where 21 and 20 are the capture cross section for holes and electrons, while 789 is the thermal velocity 

of the charge carriers. $; and .; are statistical properties, defined as what the equilibrium electron 

and hole concentrations would be if the Fermi level of the material was at the defect energy level:  

.; = .- <=. >
−(:8 − :-)

)*+
? ,  $; = $-<=. >

:8 − :-
)*+

? 
(2.5) 

where .-  and $- is the intrinsic concentration of holes and electrons, :-  is the intrinsic energy level, :8 
is the defect energy level, )@ is the Boltzmann constant and + is the absolute temperature.  

The electron and hole capture time constants !0& and !1&  are given as: 

!1& =
1

2198789
, !0& =

1
2098789

 (2.6) 

Note that (2.4) describes a single defect level. The total SRH recombination rate will be a sum of all the 

defect levels at different energy levels throughout the silicon crystal such that &678 = ∑ &678,-0
-C; . 

 

2.1.2 Surface recombination  

The abrupt termination of the crystal lattice leaves a layer of unsaturated atoms at the surface which 

are highly reactive. These unsaturated atoms, often referred to as dangling bonds, introduce surface 

or interface states which contribute greatly to recombination losses. The surface recombination is 

mathematically like the SRH recombination, but because the surface is of two dimensions, contrary to 

the bulk’s three dimensions, the lifetime defined in equation (1.1) cannot be applied. Hence, the 

surface recombination velocity (SRV), D, is introduced as:  

1
D =

∆$.
&.

 (2.7) 

where ∆$. is the excess carrier concentration at the surface and &. is the surface recombination rate. 

By examining equation (2.7) it is clear that a high surface recombination rate &.corresponds to a high 
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SRV, which means a high recombination activity at the surface. In comparison, a high recombination 

rate & in the bulk corresponds to a low carrier lifetime.  

The surface recombination is mathematically similar to the recombination by defects in the bulk, but 

unlike the recombination via defects in the bulk, the introduced energy levels at the surface are not 

discrete and must be treated as a density distribution E-8(:). Further, the recombination rate &. is 

found by integrating the SRH recombination over the bandgap from :F to :G: 

&. = ($... − $-/)789  × I E-8(:)
$. + $;(:)
21(:)  + .. + .;(:)20(:)  

JK

JL

M: 

 

(2.8) 

where  $. and .. are the concentrations of electrons and holes at the surface respectively. Note that 

the capture cross sections 21(:) and 20(:), as well the statistical parameters $;(:) and .;(:) are 

now energy dependent. Further, it is common to simplify equation (2.8) by replacing the interface 

distribution E-8(:) with a single, effective defect level with a concentration per area 9-8. The rate of 

surface recombination is then given as: 

&. =
D0&D1& ($... − $-/)

D0&($. − $;)  + D1&(.. − .;)
 

 

(2.9) 

D0& and D1& are the surface recombination velocity parameters for electrons and holes defined as 

D0& = 209-8789 and D1& = 219-8789 respectively. These parameters reflect the density of interface 

states and the capture cross section of these states; a well passivated surface will have a small D1& or 

D0&. 
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2.2 Surface passivation  

Based on Aberle (2000). 

The goal of surface passivation is to reduce the recombination rate and thus to limit the SRV. By 

studying equation (2.8), which describes the mechanisms in the recombination rate, it is clear the 

recombination rate is proportional to the charge carriers at the surface ($. and ..) and the density of 

interface states (E-8). Surface passivation is therefore the process of reducing either of these 

parameters. There are two main strategies for doing this: Chemical passivation and field effect 

passivation. In practice, the techniques are often required to be applied together to achieve satisfying 

passivation.  

2.2.1 Chemical passivation  

Reduction of the interface states E-8 is often referred to as chemical passivation. One of the methods, 

which are used in this study, is to dip the sample in a solution of hydrofluoric acid. This strips the 

sample of its inherent oxide layer and creates a hydrogenated surface, before a different material is 

deposited at the surface. The most common materials are amorphous, hydrogenated silicon (a-Si:H) 

and silicon nitride (a-SiNx:H), using plasma enhanced chemical vapor deposition (PECVD). The hydrogen 

in these films will diffuse to the interface and saturate the dangling bonds.  

2.2.2  Field effect passivation 

The recombination rate is limited by the least abundant charge carrier (given equal cross sections), as 

recombination is dependent on the presence of both a hole and an electron. By reducing either one of 

the charge carriers, $. or .., the surface recombination velocity, as well as the surface potential, will 

decrease. This procedure is called field-effect passivation. Field-effect passivation can be achieved by 

deposition of a dielectric containing fixed charges, $#, at the surface. This will create an electric field 

within the wafer as either the holes or electrons – depending on the polarity of the fixed charges – will 

be repelled. In addition to reducing the surface concentration, the fixed charges will create a pn-

junction in the substrate which will act as a separator for the generated electron-hole-pairs. The 

concentration of the fixed charges in the dielectric determines the quality of the of the field effect 

passivation. Much work has therefore been done to determine $# of different materials. Other 

properties needed for a material to be suitable for passivation include thermal and electronic stability, 

suitable fabrication costs and production time. A further description of commonly used materials for 

surface passivation is found in chapter 2.5. 
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2.3 Band structure and charge distribution  

Based on the work of Haug (2014). 

The charge distribution in the silicon wafer is affected when a passivating dielectric layer is deposited 

on the surfaces. The energy bands are bending towards the energy bands of surface which reduces the 

charge carriers at the interface. Figure 2-1 shows the energy bands of a p-type substrate bending 

towards the interface.  

 

 

Figure 2-1: The energy bands bending towards the energy level of dielectric layer containing fixed, positive charges. OP is 
the surface potential, which is the potential difference between the bulk and the surface. 

 

2.3.1 Flat band condition 

The flat band condition is the simplest case to describe surface recombination. In this case there are 

no electric charges present in the silicon, and thus the energy bands are flat. This also implies that the 

carrier concentration at the surface is equal to the concentration in the bulk such that 	$# + $	and 

.# + . which simplifies equation (2.8) and (2.9) greatly. For a substrate with a passivating layer 

containing charges, the flat band condition is obtained by applying an extern voltage. The applied 

voltage must be equal the work function difference between the silicon and the metal gate and the 

fixed charges. This relationship is useful for determining fixed charges in passivation layers, for instance 

by a C–V sweep. This method will be further explained in chapter 3.3.1. 
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2.3.2 Surface band bending  

When there are electrical charges present at the silicon surface, as with a dielectric passivation layer 

containing fixed charges, the energy bands will bend towards the surface, shown in Figure 2-1 because 

of the electric field present in the substrate, the carrier concentration at the surface is now highly 

different from the bulk. The recombination rate in equation (2.9), is now dependent on finding $. and 

... The starting point is finding the carrier concentration in the bulk of the semiconductor, $4 and .4:  

$4 = $& + "$,   .4 = .& + "$ (2.10) 

where $& and .& are the electron and hole concentration at thermal equilibrium.  $. and .. can then 

be found by solving: 

$. = $4<QRS ,   .. = .4<TQRS  (2.11) 

 where  . is the surface potential, seen as the amount of band bending in Figure 2-1, while  ' = U
VWX

 

where ( is the elementary charge, )* is the Boltzmann constant and + is the absolute temperature. 

Calculation of the effective SRV is thus reduced to determination of the surface potential. 

 

2.3.3 Charge distribution and Girisch model 

The Girisch model (Aberle 1999) is a good approximation solution to find the surface charge carriers 

and thus the SRV. Constant quasi-Fermi levels must be assumed throughout the space charge region, 

which is normally a good approximation for Si-passivation. The structure that is analyzed is shown in 

the upper part of Figure 2-2. The starting point of the analysis is the assumption of charge neutrality 

within the structure, such as: 

$Y + $# + $-8 + $.G = 0 (2.12) 

where $Y is the charge in the metal electrode, $# is the fixed charge in the dielectric, $-8 is the charge 

associated with the interface states and $.G is the charge in the space charge region. The charge 

distribution is illustrated in the lowermost part of Figure 2-2. 
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Figure 2-2: The uppermost figure shows the physical layout of the MIS-structure, while the lowermost figure shows the 

charge distribution in the structure containing fixed, positive charges. 

 

The gate charge $Y is given by: 

$Y =
,&,-
M-(

[\Y + ":6. −  .] −
$#M#
2M-

 
(2.13) 

where ,& is the permittivity of vacuum, ,-  is the relative permittivity of the insulator, M-  is the thickness 

of the insulator and ( is the elementary charge, note that the first term, which includes these 

parameters, _`a`bcbU
d, corresponds to the insulator capacitance per area. Further is \Y the gate voltage, 

M# the thickness of the region containing fixed charges,  . is the surface potential and Δ:6.	is the 

metal-semiconductor work function difference. For a p-type sample Δ'(#	is calculated as: 

"'(# + 	f( ' ,-. '
:Y
2 ' 2345 g$	>9h$.

? (2.14) 

where ,-.  is the electron affinity of Si (,-. + 4.05	eV), f( is the metal work function for aluminum 

(f( + 4.1	eV).  The  work  function difference 	Δ'(#		 for a  sample  with  resistivity  of  2.8 Ωcm  is 

thus  –0.84 V.  

The fixed charge concentration in the insulator, BC, can be measured by a capacitance-voltage 

measurement. This method will be further explained in chapter 3.  
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The charge associated with the space charge region, $.G, can be found by: 

$.G = ±n
2$#$%$&

'( ><Q[opTRS] − <Qop + <Q-RSToq0 − <TQoq + ( &
9h − 9r

$#
? 

(2.15) 

where => and  =? and are the quasi-Fermi levels for electrons and holes respectively.  The minus sign 

in equation (2.15) corresponds to  & > 0 and plus for  & < 0.  

By assuming that the charge associated with the interface states C#D is negligible, the surface potential 

can be calculated using equation (2.12), (2.13) and (2.15).   

 

 

2.4 Effective lifetime  

Based on the work of Sproul (1994). 

All lifetime measurements yield the effective lifetime EFGG, which is composed of two components: 

The recombination in the volume of the sample, and the recombination that occurs at the surfaces: 

1
EFGG

=  1
EK

+ 1
E&

 (2.16) 

where EK is the bulk lifetime and E& is the surface lifetime. As equation (2.16) shows, the mechanism 

with the highest recombination rate, and thus the lowest lifetime, will be dominating.   

The bulk lifetime is a combination of the three bulk recombination mechanisms, such that 

&K = &()* +  &123 +  &678  and further EK = uv
wx

.  The surface lifetime depends on the SRV of the 

front and back surfaces, Sf and Sb, which may have different values. The general solution of E& is carried 

out by considering the boundary conditions for the second order differential equation, which describes 

the carrier decay:  

1
E&

= Z%
/E (2.17) 

where D is the diffusion coefficient and Z% is the smallest eigenvalue solution of: 
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yz$(%&{) =  
D# + D4

%&E −
D#D4
%&E

 
(2.18) 

where { is the thickness of the substrate. Equation (2.18) must be solved numerically. 

For a sample where the surfaces are equally passivated, such that the surface velocities can be 

assumed to be equal (D# = D| = D), and S is small eq. (2.17) can be simplified to: 

1
!.
= 2D

{  (2.19) 

and further the effective lifetime is found by solving: 

1
EFGG

= 1
EK

+ 2D
{  (2.20) 

However, EK is usually unknown. To obtain D from experiments where EFGG is obtained, the calculations 

often yield D_}~, as an upper limit, by assuming infinite bulk lifetime. D_}~ is thus calculated as: 

D_}~ =  {
2EFGG

 
(2.21) 

 

2.5 Materials used for surface passivation  

In this chapter a variety of different materials and their properties are presented. As described in the 

previous chapter, a combination of both good chemical passivation and field effect passivation is 

desired for the passivation material. Amorphous silicon (a-Si) is widely used for passivation of silicon 

solar cells. a-Si provides a good chemical passivation, but unlike the other materials presented, a-Si is 

not a dielectric material and does not contain any fixed charges, and thus offers poor field-effect 

passivation. The materials passivation characteristics are normally classified in term of the material’s 

interface state density (E#D), its concentration of fixed charges (CG), its thermal stability and its 

refractive index. Production costs are also normally considered.  
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2.5.1 Thermal silicon oxide 

The following discussion of thermal oxide is based on Aberle (2000) and Haug (2014). 

Thermal oxidation at high temperatures (~1000 ℃) has been the standard method for passivation of 

Si surfaces for many years. The growth of the SiO2 layers into the c-Si surface provides an efficient 

passivation layer, especially for high resistivity substrates (>100 Ωcm) with surface state densities as 

low as ~10-9 cm-2eV-1. However, for low resistivity substrates (~1 Ωcm), the passivation effect depends 

on the doping type. While the passivation quality is good for n-type wafers, it is significantly poorer for 

p-type substrates. Moreover, thermal silicon oxide provides a moderate field-effect passivation caused 

by fixed charges located at the interface, usually with a density in the range 1-5×1011 cm-3 (Mack et al. 

2011). In addition to the problems with low-resistivity, thermally grown SiO2 suffers from some severe 

drawbacks (Aberle 1999). The surface passivation is unstable when exposed to the UV-photons of 

sunlight, and does not provide the high surface passivation in these conditions. Another problem is the 

small refractive index (1.46) that makes SiO2 a poor anti reflection coating. Other complications arise 

with the high processing temperature (1100-1200 ℃) that is required to yield the lowest E-8.  The 

metal contacts cannot be deposited prior to the high temperature process as this will degrade the bulk 

carrier lifetime and the metal will penetrate the emitter and destroy the pn-junction. This makes the 

production cumbersome, costly and time consuming.   

 

2.5.2 Silicon nitride 

The theory of silicon nitride is based on the work from Aberle (2001) and (Schmidt et al. 2001) . 

Amorphous silicon nitride is a dielectric that has been used for a large variety of electronic 

components. The silicon nitride is almost always processed by plasma-enhanced chemical vapor 

deposition (PECVD). This method uses hydrogen-containing reactants, resulting in a non-

stoichiometric silicon nitride with up to 40 atomic percentage of hydrogen.  The film is therefore most 

precisely referred to as a-SiNx:H, but is usually shortened to SiNx, where x denotes the nitrogen/silicon 

atomic ratio. The ratio of Si and N affects the electronic and optical properties largely. One general 

trend from the literature is that the best passivation usually is achieved with Si-rich films. Si-rich films 

provide moderate fixed charge density, but a high degree of chemical passivation. N-rich films have a 

better chemical and thermal stability and usually a higher density of fixed charges (in the order of 

~1012 cm-2 (Haug 2014)) and thus give a higher field-effect. Effective SRV as low as 4 cm/s have been 

reported on nitride rich film deposited on low resistivity substrate (Schmidt et al. 1996).  Additionally, 

the refractive index of SiNx has proved to be suitable, with $ = 1.8 (Haug 2014), and upwards, 

depending upon the ratio of precursors gas flow.  
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There exists a very thin layer (~2 nm) of SiO2 at the Si – SiNx interface. This layer occurs due to air 

exposure in the time period between when the substrates are loaded into the deposition chamber and 

the deposition starts. This results in a possibility of O, N and H bonding with unsaturated Si-atoms at 

the Si – SiN interface. Si-atoms back bonded with three oxygen atoms, Pox defects, contributes with 

~ 1 × 1011 elementary charges per cm2. However, the dominating defects are Si-atoms back bonded to 

three nitrogen atoms, called K-centers (Aberle 1999). The K-centers can be negatively, neutrally or 

positively charged. A ~20 nm thick layer of positively charged K-centers is found at the Si – SiNx 

interface, which contributes to the good field-effect passivation provided by nitride films. However, 

the K-centers are not stable, UV-illumination may neutralize the positive K-centers. The K-centers are 

most stable in the negative (K−) or positive (K+) state. The neutral K-centers (K0) will thus return to their 

stabile positive charge upon termination of the UV-illumination.  The changing of charge state is mostly 

observed as large hysteresis effects in a C–V measurement.  

 

2.5.3 Stacks  

Based on the work of Cheng et al. (2016) and Haug (2014). 

The single layer passivation techniques described above can be used in stack systems where the 

properties of the individual layers are combined. The structure is normally organized such that the 

bottom layer, which is in direct contact with the silicon crystal, has a low defect concentration and a 

high concentration of hydrogen to passivate the dangling bonds. For the capping layer is properties 

such as low absorption, high concentration of fixed charges, good thermal stability is desirable.  

Different materials and deposition techniques has been studied, such as amorphous silicon with 

capping layers of aluminum oxide or silicon nitride.  

The surface state density of PECVD nitrides is much larger than the thermally grown oxide, while the 

field effect passivation is much better for the nitride. These properties are suitable for stack purposes, 

where an oxide layer is deposited as a buffer layer, and nitride used for capping layer. 

 

 

 

  



19 
 

 

  



20 
 

3  Introduction to characterization methods 

 

CHAPTER 3 

INTRODUCTION TO CHARACTERIZATION METHODS 
 

 

This chapter presents the experimental methods used for characterization of the passivation films. The 

chapter is divided in three parts: Optical properties, lifetime measurements and characterization under 

applied bias. 

Section 3.1 presents the ellipsometry method. The ellipsometry is used to measure the refractive index 

and thickness of the dielectric films, which is further used to estimate the reflection of the samples.  

Section 3.2 discusses methods for lifetime measurements and is divided in two parts. 3.2.1 presents 

the quasi-steady state photoconductance (QSSPC), which measures the effective lifetime based on the 

change of photoconductance. Section 3.2.2 presents photoluminescence imaging (PL–I), which is used 

to evaluate the spatial quality of the samples.  

Section 3.3 presents two experimental methods used for charging the dielectric films. In section 3.3.1 

is the capacitance–voltage (C–V) method explained. This method is used to establish the flatband 

voltage, to quantify the charges present in the film. Section 3.3.2 describes the 

photoluminescence-voltage (PL-V). This technique uses photoluminescence imaging in combination 

with an applied bias to monitor the effective lifetime as a function of altering voltage. Simulations of 

the experimental data are conducted using the Girisch model. This quantifies parameters such as the 

fixed charge density and the effective surface recombination parameters for holes and electrons.  
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3.1 Optical properties 

3.1.1 Variable angle spectroscopic ellipsometry  

Variable angle spectroscopic ellipsometry (VASE), or just ellipsometry, is a technique used to measure 

several different properties of dielectrics. In this work, ellipsometry is used to measure the thickness 

and the refractive index of the dielectric film deposited on the silicon surface. The setup, consisting of 

a light source, a monochromator and a polarizer on the left-hand side of the stage, and an analyzer 

and a detector on the right-hand side, can be seen in Figure 3-1. The monochromator determines the 

desired wavelength, and the waveplate alters the polarization. The polarized light that hits the sample 

is reflected differently according to the incident plane, which is either in the s-plane (parallel to the 

sample surface) or in the p-plane (normal to the surface). The reflection ratio between the s-plane, Ç., 
and the p-plane, Ç1, is expressed in terms of the ellipsometric parameters as:  

Ç1
Ç.
= tan	-Ψ0<.∆ (3.1) 

where ! and ∆ are the spectroscopic parameters, which reflects the amplitude ratio of the reflected 

beam and the phase shift respectively.  

To describe the sample after it is measured, an optical model is constructed. The best match between 

the experimental data and the model is usually obtained by regression. The validity of the analysis is 

thus dependent on the accuracy of the model, as well as the physical properties of the instrument.  

 

 

Figure 3-1: Schematic setup of the variable angle spectroscopic ellipsometry. Figure from Haug (2014). 
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3.2 Lifetime measurements 

3.2.1 Quasi-steady state photo conductance  

The following section is based on the work of Sinton et al. (1996), Nagel et al. (1999) and Cuevas and 

Macdonald (2003). 

Quasi-steady state photoconductance (QSSPC) is a technique where the excess carrier concentration 

is calculated from measuring the conductivity of the sample under illumination. The setup consists of 

a light source located vertically over the stage with an inductively coupled coil connected to an RF-

bridge. A schematic view of the setup is shown in Figure 3-1. the inductively coupled coil is used to 

measure the increase in photoconductance when the sample is illuminated. The change of 

photoconductance is then used to calculate the excess carrier concentration, which again is used to 

estimate the effective lifetime. In this manner, the lifetime is measured as a function of injection level, 

where the user determines the time constant for the flash lamp.  

 

 

Figure 3-2: A schematic view of the QSSPC setup. Figure from Haug (2014). 

 

 The first design of the setup required a long illumination time, such that the generation and the 

recombination rate was in balance at all time.  This mode is especially useful for samples with short 

lifetime. However, samples with longer lifetimes are best measured using shorter time constants for 

the flash lamp. A generalized analysis was developed, which allows for measurements using both long 

and short time constants on the same setup. A short light pulse leads to a quasi-transient 

measurement, while a longer light pulse results in a quasi-steady-state measurement. 
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The starting point for the generalized analysis procedure is the continuity equation for the excess 
charge density: 
 

á∆$(y)
áy = à(y) − &(y) + 1( ∇ä 

(3.2) 

where à is the generation rate, & is the recombination rate, ( is the elementary charge and ä is the 

electron current density. The sample is uniformly illuminated such that a homogeneous generation 

throughout the wafer can be assumed. The gradient current in equation (3.2) can thus be omitted with 

a small error. By substituting the generation rate given in equation (2.1), equation (3.2) may be 

rearranged as: 

!"##(∆$) =
∆$(y)

à(y) − d∆$(y)dy
 

(3.3) 

Finding the effective lifetime !"## is then a matter of finding the time dependent generation rate, à(y), 
and the time dependent excess carrier concentration, ∆$(y). 

The setup measures the change in photoconductance, ∆2(y), which is given as: 

∆2(y) = (∆$(y)[/0 + /1]{ (3.4) 

where { is the wafer thickness, and /0 and /1 are the mobility of electrons and holes respectively. 

The mobilities are a function of carrier density and temperature and can be found in the literature. 

Equation (3.4) can be used to calculate ∆$(y) when the photoconductance is known.  

The generation rate, à(y), is measured using a reference cell, given as (Haug 2014): 

à(y) = å4 × ç(éè(y)({(éè
 

(3.5) 

where ç(éè is the measured photocurrent,  {(éè is the thickness of the reference cell, and å4 is the 

optical constant which is determined by the optical properties of the reference cell compared to the 

reference diode.  
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The quasi-steady state and the quasi-transient mode are two limiting cases for equation (3.3). While 

the generation rate is approximately constant for the steady state mode (à(y) ≫ á∆$/áy), the 

opposite is true for the transient mode (à(y) ≪ á∆$/áy). This results in the following simplifications 

of equation (3.3) for the effective lifetime:  

!"##,.ìé)*îTïì)ìé(∆$) =
∆$(y)
à(y)  

(3.6) 

and  

!"##,ì()vïñévì(∆$) = −
∆$(y)
á∆$
áy

 
(3.7) 

The measurement can then be repeated with different time constant until the output data is satisfying. 

Figure 3-3 shows a lifetime versus excess carrier density obtained from a QSSPC measurement. 

The QSSPC measurement does not provide spatial information about the sample; the measurements 

are limited to the coil area, which is usually ~2 cm2.  A photoluminescence-imaging (PL-I) setup is used 

to determine the spatial quality of the sample, and thus the validity of the QSSPC measurements. PL-I 

is further explained in the following section.  

 

 

Figure 3-3: A lifetime versus carrier density curve of sample 2 obtained from QSSPC. 
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3.2.2 Photoluminescence Imaging (PL-I) 

The following description of PL-I is based on theory from Trupke et al. (2012), Haug (2014)  and 

Herlufsen et al. (2008). 

Photoluminescence imaging is a fast and contactless technique, which yields a spatial resolution of 

the sample quality. The surface of the samples is exited to emit luminescence, and a camera detects 

the luminescence emission. The setup consists of a laser with a wavelength of 808 nm, placed 

diagonally over the stage where the sample is mounted, and a charge-coupled device (CCD) sensor 

vertically over the sample. Figure 3-4 shows the setup. The PL-I technique is based on radiative 

recombination, described in chapter 2.1.1, where the excess energy in the recombination is released 

as a single photon. The sensor detects the photons, such that the resulting image yields a spatial 

resolution of the sample where each pixel corresponds to the number of photons detected from one 

particular area. An integrated QSSPC setup can be used to calibrate the measurement such that the 

pixels are given as the effective lifetime.   

Figure 3-5 shows a photoluminescence image of one of the samples used in this study.  This is an 

uncalibrated picture where the scale is of arbitrary units. It is clear from the image that the sample has 

some defects in the upper part and around the edge of the sample.  

 

 

 

 

Figure 3-4: A schematic setup of the camera based 

photolumeniscence technique. Figure from Haug (2014). 

 

 

Figure 3-5: A PL-I of sample 3 used in this study. The image 

is uncalibrated such that the scale is of arbitrary units. 

Studying this image shows defects in the upper part of the 

sample, as well as along the edges. 
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As each photon from the incident light creates one electron–hole pair, the detected photointensity  

:;=, is similar to &()* from equation (2.2): 

 

:;= = ,()*($. − $-/) (3.8) 

By assuming a moderately doped sample, such that . = 9h + ∆$ and ≅ ∆$, the photocurrent 

intensity, ç;=, is given as: 

ç;= = 4ò)ô,()*(9h + ∆$)∆$ (3.9) 

where 4ò)ô is a calibration constant based on the amount of light detected by the camera. This constant 

can be found using an integrated QSSPC measurement. However, because of a high uncertainty of the 

correctness of the integrated QSSPC setup is an external QSSPC setup used for calibration in this study. 

Data from the injection dependent lifetime graph, shown in Figure 3-3 is extracted and further is 4ò)ô 
is determined using equation (3.9).  ç;= is obtained from the PL-I measurement and ∆$ from the QSSPC 

measurement, such that  ∆$ = ∆$ö??;õ.  

The excess carrier concentration at each point, ∆$(=, ú), is found by rearranging equation (3.9): 

∆$(=, ú) = n>9h2 ?
/

+ çcd-=, ú0
4ò)ô,()*

− 9h
2  

(3.10) 

The PL-I is measured under steady state conditions such that the recombination rate equals the 

generation rate. The expression for EFGG given in equation (2.1) can then be rearranged for a specific 

point in the image, EFGG-=, ú0: 

EFGG-=, ú0 = ∆$-=, ú0
à  

(3.11) 

where à is the generation rate given as: 

à = [1 − ÇG]=co
{  

(3.12) 

where ÇG is the refractive index at 808 nm, =co is the photon flux from the light source and { is the 

thickness of the sample.  
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3.3 Measurements under applied bias 

3.3.1 Capacitance–voltage (C–V) measurements 

The following section is based on theory from Schroder (2006) and Aberle (1999). 

The main motivation for the capacitance-voltage (C–V) measurement is to obtain a precise 

measurement of the fixed charge $#. The samples are turned into metal-insulator-semiconductor 

(MIS) structures by depositing aluminum contacts on the front and the rear side where the gate voltage 

is applied. Figure 3-6 shows the setup. The measurement is carried out by slowly varying an applied 

DC-voltage to the MIS-structure so that it is driven from accumulation to inversion. A small AC-signal 

is superimposed to the probe where the charge variation gives rise to the capacitance. The flat band 

voltage is observed as a shift along the voltage axis and is further used to estimate the fixed charge.   

The definition of capacitance, 4, is the change in stored charge due to a change in voltage. Seen from 

the gate of a MIS-structure the capacitance is: 

4 = ( M$YM\Y
 

(3.13) 

where $Y is the gate charge and \Y is the gate voltage.  

The structure consists of a metal contact where the voltage \Y is applied, the insulator and the 

semiconductor. Figure 3-7 shows an equivalent circuit of the structure. The capacitance of the 

semiconductor is a parallel connection between the capacitance associated with the interface states 

and the space charge region. The total capacitance, 4ìùì, of the structure is given as: 

1
4ìùì

= 1
4-
+ 1
4.G + 4-8

 (3.14) 

where 4- is the capacitance of the insulator, while the last term is the capacitance in the 

semiconductor,  4.G for the space charge region and  4-8 is the capacitance for the interface states. 

The total charge in the device must be zero and the applied voltage is therefore dropped partially over 

the insulator and the semiconductor: 

\Y = \#4 + \- +  . (3.15) 

where \#4 is the flat band voltage, \- is the insulator voltage and  . is the surface potential.  
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The charges in the insulator layer are fixed such as the insulator may be seen as a perfect plate-

capacitor where no electric current is conducted. The capacitance is thus independent of the applied 

voltage and may be calculated as: 

4 = 	 û.ûKüM  (3.16) 

where û. is the relative permittivity of the insulator, ûK is the permittivity in vacuum, and M and ü are 

the thickness and area of the insulating layer respectively. 

 

 

 

 

Figure 3-6: Schematic illustration of the C–V setup.  

Figure from Haug (2014) 

 

Figure 3-7: Equivalent circuit of the MIS-

structure. 

 

Unlike the insulator, applying a gate voltage alters the concentration of charge carriers in the 

semiconductor. This causes the energy bands to bend. However, the fermi level must remain flat as 

long as the insulator is assumed to be perfect. This will thus affect the charge concentration and 

consequently the capacitance. During a C–V measurement, the gate voltage is driven from positive to 

negative values where the capacitance is measured for each step.   shows an ideal curve for a C–V 

measurement. The further descriptions of the stages during a C–V measurement are based on a p-type 

semiconductor.  

  

4. 

4.O 4#G 
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Accumulation takes place when a large negative voltage is applied on the gate. The positive majority 

carriers in the semiconductor attract the negative applied voltage; the surface potential is of negative 

value and the positive carriers are accumulated at the surface. The spacing between the carriers in the 

semiconductor and insulator is minimized, leading to a very large semiconductor capacitance. The total 

capacitance approaches the insulator capacitance such that 4 = 	 4.. 

Depletion happens when the applied gate voltage is increased towards positive values. The p-type 

silicon near the surface becomes ionized, leading to a negative space charge region. The width of the 

space charge region is increasing with increasing positive gate voltage, which leads to a decreasing 

semiconductor capacitance, and thus a reduction of the total capacitance.  

Inversion occurs when the applied voltage is approaching positive values. The capacitance in inversion 

depends on the frequency of the probe signal. If the frequency is low enough, the minority carriers in 

the inversion layer is able to follow the AC-signal. The capacitance is thus reduced to 4.. For high 

frequencies, the inversion layer charge is unable to follow the applied signal and the total capacitance 

is a serial connection of 4. and 4#G. C–V measurements are most easily interpreted at high frequencies.  

 

 

 

 

Figure 3-8: C–V plot of an MIS-structure with fixed charges.  



30 
 

3.3.1.1 FIXED CHARGE CALCULATIONS 

In a C–V curve, the point where the surface potential is zero and thus the energy bands in the 

semiconductor flat is seen as a shift along the capacitance axis. The voltage applied at this point, the 

flatband voltage \#4, and the corresponding capacitance, is essential for calculating the fixed charge 

density $#. The flatband capacitance in the semiconductor can be extracted either from the 

measurement, or be calculated using a simplified version of equation (3.14) where 4-8 is assumed to 

be small compared to 4.G and thus can be omitted. The space charge capacitance at flatband, 4.G,#4, 

can be calculated as: 

4.G,#4 =
û?-û&
†r

 (3.17) 

where û?- is the relative permittivity of silicon and †r is the Debye-length, which describes the 

screening depth in the silicon, calculated as: 

†r = n
)*+û?-û&
(/9h

 
(3.18) 

 

The flatband capacitance can then be calculated using equation (3.14), where 4X°X = 4#4.  

The fixed charge density, $#, is then be calculated by solving the charge neutrality from equation (2.12) 

for $#. The gate charge, given in equation (2.13), is calculated by setting the surface potential,  ., and 

the space charge density, $.G, to zero, which apply under flatband. Further simplification can be 

achieved by assuming that the fixed charges is located at the surface, such that M# = 0 and assuming 

that the interface charge $-8 is small compared to $# and therefore negligible.  The expression for the 

fixed charge is then given as: 

$# =
4-
( (∆:6. − \#4) 

(3.19) 
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3.3.2 Photoluminescence under applied bias (PL-V) 

This section is based on the work of Haug et al. (2012) and Haug et al. (2014), where a new 

characterization technique is presented.  

 In this work, the PL-I setup described in chapter 3.2.2 is combined with an external bias applied on the 

rear dielectric film to control the density of charge carriers at the surface. Figure 3-9 shows a schematic 

illustration of the setup. Figure 3-10 shows a region of a sample under applied bias. The counts 

detected in the region depend on the voltage. Voltages close to \#4 results in a darker region, which is 

consistent with the principle of no band bending, and thus a high SRV at flatband. Analysis of the PL-V 

results allows for precise estimations of important parameters such as the fixed charge density and 

the effective surface recombination parameters, and consequently the capture cross sections, for 

electrons and holes. 

 

 

Figure 3-9: Schematic illustration of the PL-V setup.  Figure from Haug (2014) 

 

 

Figure 3-10: A region of a sample under applied bias measured with PL-V. 

 

 2.8 V      0 V     -8 V   -2.8 V 
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The modulation of the band bending in the semiconductor is of high importance for characterization 

purposes. Modulation of band bending can either be achieved by applying voltage on the dielectric 

film or by placing charged ions at the sample surface in a corona discharge chamber.  The latter 

technique has been the main strategy for surface modulation for a long time, mainly because this 

measurement is contactless, and therefore non-invasive. However, this technique is time consuming 

and normally results in few measuring points. The PL-V technique requires metal contacts, but is in 

return highly effective. The method allows for fast measurements, simultaneously with data collection. 

The PL-V technique also facilitates repetitive sweeps, which enlighten the repetitiveness and voltage 

influence of the sample. The use of metal contacts will influence the measurement, as they will reflect 

more of the incident light. However, including a correction factor in the analysis can account for this.  

 

The measurement is conducted by alternating the applied bias from positive to negative values, 

starting from zero, to minimize the influence from previous charges. The results obtained from such a 

measurement is the amount of counts detected at the region of interest, which can be calibrated to 

!"##, using the same method as explained in section 3.2.2.  The squares in Figure 3-11 shows the results 

of a voltage sweep of sample 2 from -10 V to 10 V, where the effective lifetime is plotted as a function 

of applied voltage. The SRV as a function of gate voltage can be calculated from the obtained !"## data. 

The squares in Figure 3-12 are the SRV corresponding to !"## in Figure 3-11. The blue line in Figure 

3-11 and Figure 3-12 is a simulation of the data, obtained by using of the Girisch model. 

 

Figure 3-11: Effective lifetime obtained from the PL-V 

measurement is plotted as a function of applied voltage.  
Figure 3-12: Surface recombination velocity as a function of 
applied voltage, measured by PL-V. 
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The simulation uses input parameters to optimize the free fitting parameters to approach a model that 

is in accordance with the experimental data. Table 3-1 shows the parameters used for fitting. A well-

fitted model returns reliable data on the fixed charge density and the effective surface recombination 

parameters.  

 

Fixed charge density  $# 

Effective surface recombination parameter for electrons D0& 

Effective surface recombination parameter for holes D1& 

Minimum SRV for electrons for  . < 0 D¢ñv,0 

Minium SRV for holes for  . > 0 D¢ñv,1 

Table 3-1: Free fitting parameters used for the PL–V analysis. 

 

The fixed charge $# is calculated from the minimum  !"##, where the applied voltage equalizes the 

fixed charges and the metal–semiconductor work difference such that   . = 0. 

The minimum SRV parameters for electrons and holes, D¢ñv,0  and  D¢ñv,1 , are included to account for 

flattening of !"## at the highest and lowest voltages. A small D¢ñv,0 would mean flattening at a lower 

point towards accumulation. 

The effective recombination parameters decide the slope on each side of the minimum !"##. A steep 

slope is expected for a material with high chemical passivation. A nitride rich SiNx film provides poor 

chemical passivation, and is thus expected to have high effective recombination parameters and a less 

steep slope.  

The capture cross ratio of electrons and holes, 20 21⁄  is equal to  D0& D1&⁄ . This ratio describes the 

symmetry of the curve. A ratio of 1 gives a symmetrical curve around  !"##,¢ñv , while a ratio different 

from 1 will cause differences in SRV towards accumulation and inversion.  

Figure 3-13 shows the properties of each variable in the simulation. The simulation in Figure 3-13 is 

based on a sample where  D1& =  D0&  and D¢ñv,0 =  D¢ñv,1 , while $# is set to zero. The curve is thus 

symmetrical around the minimum!"##.  !"##,¢ñv  is found at –0.87 V, which corresponds to the metal–

semiconductor work difference.  
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Figure 3-13: Properties of the free fitting variables used for the PL-V simulation. 

 

A MATLAB-script developed by Halvard Haug has been used for optimizing the free input parameters 

to the experimental results.  
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4  Experimental methods 

 

CHAPTER 4 

EXPERIMENTAL METHODS 
 

This chapter presents the experimental execution, and is divided in two main parts. 

Section 4.1 presents the substrate used and the design of the sample set. Further is preparation and 

fabrication of the samples explained, which includes deposition parameters, electrode metallization 

and annealing of the samples.  

Section 4.2 presents the characterization execution. This includes the methods explained in chapter 3 

and the equipment used in the experiments.   

4.1 Sample processing  

4.1.1 Sample preparation  

Monocrystalline polished float zone p-type silicon wafers were used as substrates for the film 

deposition. Table 4-1 summarizes the wafer specifications used for film deposition. 

 

Manufacturer Topsil 

Fabrication method Float zone 

Diameter 4 inches 

Average thickness 280 ± 25 µm 

Average resistivity 1–5 Ωcm 

Crystal orientation [100] 

Doping Boron 

Average doping level 2.5×1015 – 1.5×1016 cm-3 

Table 4-1: Specifications sample substrates. 
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Any wafer exposed to air will form an oxide layer on the surface. To remove this layer, the samples 

were immersed in a 5% hydrofluoric acid solution for 30 seconds and rinsed in deionized water prior 

to film deposition.  

 

4.1.2 Sample set  

Six wafers were prepared for deposition. Each of the samples was split into two halves, where one half 

was used for lifetime measurements, and the other half processed further into a suitable sample for 

C–V measurements. The lifetime samples received equal deposited films on both sides, while the C–V 

sample was deposited on the front side only.  

Table 4-2 summarizes the design of the sample set. The set consist of four silicon nitride samples (SiNx) 

and two stacks consisting of a silicon oxynitride (SiOxNy) capped by SiNx. The buffer layer of the stacks 

are equal, while the capping layer is divided in two different compositions; one silicon rich and one 

nitride rich, with equal thicknesses. Two different SiNx compositions were used for the nitride samples, 

one nitride rich film and one silicon rich film. The compositions were deposited with two thicknesses, 

80 nm and 100 nm.  

 

Sample 1 2 3 4 5 6 
Layer     Capping Buffer Capping Buffer 

Film type SiNx SiNx SiNx SiNx SiNx SiOxNy SiNx SiOxNy 

SiH4 flow 
(sccm) 10 5 10 5 20 45 10 45 

Deposition 
time 

7 min 
 

7 min 
 

5 min 
15 s 

5 min 
15 s 

5 min 
15 s 

9 s 
 

5 min 
15 s 

9s 
 

Nominal 
thickness 
(nm) 

100 100 80 80 80 9 80 9 

Table 4-2: Design of the sample set. 

 

As mentioned in section 2.5.2, the nitride content will alter the electronic and optical properties of the 

film. A decreasing silane (SiH4) flow will decrease the silicon content in the film, e.g. increase the x in 

SiNx. This sample set was designed to allow testing of the passivation properties  and their dependence 

of both composition and thickness.   
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4.1.3 Plasma-Enhanced Chemical Vapor Deposition (PECVD) 

The samples were deposited using plasma-enhanced chemical vapor deposition, a process used for 

depositing thin films. An electric field is created in the chamber which ionizes the precursor gases to 

react over the substrate. The plasma allows the reaction rate of the precursors to be high, while 

keeping the processing temperature low. Figure 4-1 shows the PECVD reactor. 

 

Figure 4-1: The PECVD reactor. Figure from (Oxford Instruments 2017). 

 

The PECVD reactor used for this study was a PlasmaLab 133 system from Oxford Instruments. Table 

4-3 shows the deposition parameters for the films. In total, there were three different nitride films and 

one oxynitride. The same oxynitride film was used as buffer layer for both the stacks.   

 

Parameters  Unit  a-SiNx:H a-SiNx:H a-SiNx:H SiOxNy 

Temperature  ℃  400 400 400 130 

RF power  W 40 40 40 50 

Chamber pressure mTorr 800 800 800 500 

Silane flow sccm 5 10 20 45 

Ammonia flow sccm 20 20 20  

Nitrogen flow sccm 980 980 980  

Nitrous oxide sccm    20 

Table 4-3: Deposition parameters for the passivation films. 
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4.1.4 Metallization  

The metallization was performed using a Kurt J. Lesker Company NANO 36 evaporation system. The 

samples are mounted on a stage vertically over a crucible containing an aluminum pellet. The chamber 

is pumped down to attain vacuum prior to metallization. A large current is used to heat the crucible so 

that the aluminum evaporates and a thin aluminum layer is deposited on the surfaces in the vacuum 

chamber, including the sample. The thickness of the aluminum layer is determined by the size of the 

aluminum pellet.  

The C–V samples were turned into MIS-structures by covering the backside of the sample with 

aluminum. Further, a shadow mask was used to create electrodes on the front side of the samples. 

Figure 4-3 shows the front side of a metallized C–V sample. The shadow mask was created of a Si-

wafer, using a laser to create a pattern of circular holes with diameters of 2 mm, 1.5 mm and 1 mm. 

The shadow mask covered the sample such that aluminum was deposited through the masks and onto 

the substrate. The backside of the MIS-structure was covered with 135 nm aluminum, while the 

thickness of the front electrodes was approximately 50 nm.  

The lifetime samples needed metal contacts on both the front and backside for the PL-V 

measurements. A shadow mask formed the front side aluminum pads, with a thickness varying from 

55 nm to 80 nm. Figure 4-2 shows the front side of a metallized PL-V sample. The backside contacts 

were created with silver paste.  A small amount of silver paste was added to the corners of the backside 

and further scratched by a crystal pen to penetrate the dielectric film to obtain contact between the 

silver and the silicon substrate. 

 
Figure 4-2: A metallized lifetime sample.  

 
Figure 4-3:A C–V sample with electrodes 
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4.1.5 Annealing  

The annealing process is conducted to improve the quality of the dielectric films and the contacts 

between the aluminum electrode and the silicon for the C–V samples. This high temperature process 

usually improves the minority carrier lifetime drastically; see e.g. Cheng et al. (2016). 

A high temperature furnace with a heating zone of 80 cm and a belt speed of 8 cm/min was used to 

obtain a heating temperature of 400 ℃ for 10 minutes. The annealing process was supposed to be 

performed at 450℃, but the furnace was only able to reach 400 ℃ due to instrumental problems. The 

heat treatment may cause the metal electrodes to melt through the deposited film and damage the 

sample. The annealing was thus performed prior to metallization for all samples, except for the 

backside of the C–V samples. The aluminum–silicon transition is improved during annealing as a 

eutectic phase is formed at the interface.  

 
4.2 Characterization  

4.2.1 Ellipsometry  

The ellipsometry, which was used to determine the refractive index and the thickness of the dielectric 

films, was performed on a setup from J. A. Woolam Co., Inc. Figure 4-4 shows an image of the setup.  

 

 

Figure 4-4: The ellipsometry setup. 
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4.2.2 Quasi Steady-State Photoconductance  

The QSSPC measurements were performed on Sinton WCT-120TS setup. The experiments were carried 

out by using a generalized mode and changing the time constant from the longest setting (1/1) for the 

steady state measurements to the shortest setting (1/64) for transient measurements. Each of the 

measurement modes includes uncertainties regarding the simplifications in equation (3.6) and (3.7). 

To reduce the uncertainties, each sample was measured in both steady state and transient mode. The 

results of each measurement were shown in a Sinton-spreadsheet which was used to evaluate the data 

and to ensure satisfying results.  

 

4.2.3 Photoluminescence Imaging  

 The PL-images were collected using a BT imaging LIS-R1 setup with and integrated QSSPC stage. As 

the QSSPC setup in the PL-I setup is known to produce fallacious data gained from the Sinton QSSPC 

measurements used to calibrate the images. The images were attained as counts per second and 

further calibrated with the data from the QSSPC measurement using MATLAB. 
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4.2.4 Capacitance-Voltage setup  

The C–V characterization was performed using a Keithley 4200-SCS semiconductor system with a 

Signatone S-1060 QuieTemp Hot Chuck sample stage. Figure 4-5 shows the setup. 

All work was performed using the CVU voltage sweep mode. The start voltage was set to 0 V with steps 

of –0.1 V and a sweep delay of 0.1 s.  The AC-signal was 30 mV RMS and the frequency set to 100 kHz, 

which provided good results for all the samples. The hold time for the soaking voltage was set to 70 s, 

to ensure saturation of the electrode. The setup provides DC voltages of ±30 V. 

 

 

 

Figure 4-5: The C–V setup with a sample mounted on the stage. 
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4.2.5 Photoluminescence Under Applied Bias Setup 

The PL-V measurements were performed on the same setup as the PL-I, but now using an integrated 

voltage setup. The bias was applied over the front side of the sample, while an ammeter was connected 

in series with the backside of the sample to monitor possible leakage currents. Figure 4-6 shows the 

PL-V setup.  

To minimize errors from charging, the measurements were conducted by altering the applied voltage 

from positive to negative. The measurements were performed within setup’s voltage limit of ±10 V, 

with steps of 0.2 V. At integer measurement was a 0 V measurement performed, which was used to 

analyze the influence of charging. Several measurements were performed on each electrode to analyze 

the repeatability of the measurements.  

 

 

 

Figure 4-6: The PL-V setup with a sample mounted on the stage. 
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5 Results and discussion 

 

CHAPTER 5 

RESULTS AND DISCUSSION 
 

5.1 Optical properties  

Knowledge of the optical properties is required for the lifetime measurement, which are based on 

optical excitation of the excess charge carriers. The thickness and the refractive index of the deposited 

thin films were measured using variable angle spectroscopic ellipsometry. Table 1 summarizes the 

results. In accordance with the theory, the thin films deposited using a higher SiH4 concentration yield 

a higher refractive index. The reflection is found using a reflection calculator available online and is 

based on the refractive index and thickness of the film (PVeducation 2017). The results show that, 

among the samples with equal nominal thickness, the silicon rich samples yield higher reflection 

compared to the nitride rich samples at the excitation wavelength 630 nm.  

The deposition parameters affect the thickness of the films, which is also shown in the results. The 

samples with the lowest silane flow are 5 nm thinner for the nitrides and 3 nm thinner for the 

oxynitirides. However, the thicknesses correspond well with the nominal thicknesses given in Table 

4-2. 

 

Sample Film thickness 

(nm) 

Refractive index 

(§=630nm) 

Reflection 

(§=630nm) 

1 110 1.88 14% 

2 105 1.85 8% 

3 85 1.88 1% 

4 80 1.84 0 

5 93 2.02 8% 

6 90 1.87 2% 

Table 5-1: Thickness and refractive index measured by ellipsometry. 
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The model used for fitting the experimental results is based on a single-layer model, which is valid for 

the nitride films. Due to the thin layer of oxide relative to the capping layer of nitride, the model was 

assumed acceptable for the stacks. Measurements done by a co-worker at IFE on a batch containing 

stacks showed that the difference between the results from a double layer model compared to a single 

layer model was small. 

 

5.2 Lifetime measurements  

5.2.1 Quasi-Steady State Photoconductance (QSSPC) 

QSSPC measurements were performed to obtain a minority carrier lifetime versus injection level curve, 

where the lifetime was extracted at injection level 1×1015 cm-3. Table 5-2 summarizes the results. All 

the measurements were carried out in the transient mode. Steady state measurements were carried 

out using the longest time constant (1/1), and transient measurements were carried out using the 

shortest time constant (1/64).  

The measured !"## shows that the passivation is good, but hard to evaluate further without a lifetime 

reference. The measured effective lifetime of the nitrides is in the range of 72 – 134 µs, while the 

measured !"## for the stacks are in the range of 1419 – 1773 µs. The nitrides are performing as 

expected, but not extraordinarily, while the stacks yield a promising high  !"##. A sample with better 

passivating properties, such as an a-Si:H film for passivation, could have been used as a lifetime 

reference and to estimate a lower limit for the bulk lifetime.  

 

Sample Steady state 

(•¶) 

Transient 

(•¶) 

1 112 - 

2 79 80 

3 129 138 

4 68 75 

5 - 1773 

6 1433 1405 

Table 5-2: Effective carrier lifetimes at ∆n = 1×1015 cm-3, measured by QSSPC. 
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The measurements were evaluated using the Sinton spreadsheet.  The nitrides had the lowest 

measured lifetime in the batch, but, with the exception of sample one, had sufficiently high !"## to 

provide adequate results in both transient and steady state mode. The stacks have a noticeable higher 

effective lifetime, such that the steady state measurement was inadequate for sample 5.  

Figure 5-1 shows the results of both steady state and transient measurements of sample 6. The left-

hand plot in the figure shows the steady state measurement, while the transient measurement is 

shown to the right. At the injection level where the lifetime data is extracted, ∆$ +	1.0×1015 cm-3, 

Sample 6 is just within the region of the steady state measurement. For a sample of longer lifetime, 

such as sample 5, this injection level will be out of range and the measurement unsuccessful.  

 

 

Figure 5-1: Effective lifetime versus injection level curves for sample 5. The left figure shows the results of the 

steady state measurement, while the figure to the right shows the transient QSSPC measurement.  
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5.2.1.1 SRV CALCULATIONS  

Calculation of the surface velocity in equation (2.20) requires knowledge of the bulk lifetime, which is 

unknown for the samples used in this study. The highest lifetime measured in the QSSPC is 1773 µs, 

which is the lower limit of the bulk lifetime. In this case, the SRV would be zero for sample 5, and 

recombination would only occur in the bulk of the sample. By using equation (2.21), D6}~  is estimated 

by assuming an infinite bulk lifetime. 

A calculation assuming different values of !4	was performed in order to determine the range of 

possible SRV values yielded by each surface passivating material system. Figure 5-2 shows the results. 

The starting point of the calculations was QR + 1773 µs and proceeded towards QR + 40 000 µs. At 

QR + 40 000 the difference between D(}~ and the calculated SRV was less than 0.4 cm/s. The average 

SRV increase from QR +	1773 µs to QR + 40 000 µs is 8.2 cm/s. 

The SRV for the silicon rich nitrides are in the range of 104 cm/s to 129 cm/s, while the nitride rich 

samples are in the range of 175 cm/s to 213 cm/s. The SRV of the stacks are in the range of 0.9 cm/s 

to 10 cm/s. These ranges are based on the assumption that an SRV of 	0 cm/s is unlikely, such that the 

lowest limit is based on QR + 2000 µs. 

 

Figure 5-2: SRV of the six samples as a function of bulk lifetime. 
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5.2.2 Photoluminescence Imaging (PL-I) 

The images shown in Figure 5-3 are obtained from the PL-I, and show the spatial quality of the samples. 

The images are not calibrated, and the colors are therefore not directly comparable. The bright yellow 

corresponds to a high lifetime, while blue is the lowest lifetime. All the samples suffer from poor 

quality towards the edges. The lines visible on sample 1 and 3 and on the left edge of sample 4 may 

be a result of scratches or tension weaknesses in the sample processing where the samples were 

divided in two. Small spots are detected on all the samples, which may be a result of impurities and 

dust. Visual inspections of the maps show that the edges should be avoided if possible during 

measurements. The upper part of sample 3 suffers from a lot defects, and measurement areas for this 

sample should therefore be chosen carefully.   

 

 

Figure 5-3: Spatial resolution of the six samples measured by PL-I. 
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5.2.3 Summary lifetime measurements  

The lifetime measurements obtained from the QSSPC measurement show a difference between the 

compositions of the films. The nitride rich films obtained the lowest effective lifetime among the SiNx 

samples, slightly below 100 µs, while !"## for the silicon rich nitrides exceeded 100 µs.  The lifetime of 

the stacks was significantly larger than !"## for the nitrides, with measured values around 1500 µs. 

Comparing the two stacks shows that !"## for the silicon rich stack was higher than for the nitride rich 

stack. Subsequently to a higher effective lifetime is a smaller SRV calculated. Without knowing the bulk 

lifetime was the SRV calculated for different values of !4 to get an idea of the range of the possible 

SRV. The calculation shows a stable SRV for !4 values larger than 10 000 µs, as a result of the 1 !4ß  term 

in equation (2.20).  

A level of measurement uncertainty must be considered both for the measurement procedure and for 

the QSSPC setup. The effective lifetime obtained from the QSSPC is limited to the area of the 

inductively coupled coil. Mapping of the samples obtained by PL-I shows some defects in the center of 

the samples which may have affected the QSSPC measurements. The maps of sample 1 and 3 displays 

scratches in the center of the samples. These areas have probably affected the QSSPC measurements, 

such that the measured lifetime might be lower than what a damage free sample would have returned. 

However, the QSSPC shows a realistic pattern; the silicon rich samples are expected to provide better 

chemical passivation, which is consistent with the results obtained. 

 

5.3 Charge injection analysis 

5.3.1 Capacitance – Voltage (C–V) 

The initial CV-sweep was conducted without a pre-soaking voltage to determine \#4, and subsequently 

the fixed charges of the dielectric films. The electrodes were then pre-soaked with a bias followed up 

by a new sweep to study the change in $# as a function of charging.  

The C–V setup provides a pre-soak voltage up to ± 30 V. The voltage sweeps were performed using 

negative biases only to avoid hysteresis effects caused by charged K-centers. The pre-soak time was 

set to 70 s to ensure saturation (Bazilchuck et al. 2015). The soaking started at –10 V up to –30 V with 

–5 V steps. The sweeps were performed immediately after the charging to avoid discharging of the 

electrode, such that the measured $# corresponded to the soaking bias.  

A typical C–V sweep for the nitride films is shown in Figure 5-4. the general results for nitride films 

were  small hysteresis’ and a steady increase in the flatband voltage with increasing soak voltage. The 
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initial \#4 for the nitrides were in the range –2.9 V to –4.1 V. At the highest soak voltage of –30 V, \#4 

was in the range –9.5 V to –15.1 V.  

A sweep of the 90 nm SiOxNy is shown in Figure 5-5, and the result is representative for the 93 nm 

SiOxNy in means of hysteresis. The general trend in the C–V results of the stacks is more hysteresis 

effects and a less consistent increase in the flatband voltage compared to the nitrides. \#4 of the 90 

nm stack increased from –6.1 V to –12.5 V at –30 V soaking bias, and from -3.7 V to –9.6 V for the 93 

nm stack.  

 

Figure 5-4: Typical C–V sweep of nitrides with soaking bias from -

10V to -30V.  

 

Figure 5-5 Typical C–V sweep of the oxynitrides with soaking bias 

from -10 V to -30 V. 

 

The C–V sweeps were performed on several electrodes on each sample. Some of the electrodes were 

defect and provided fallacious data, such as negative capacitance and messy curves. The experiments 

conducted on the stacks were especially troublesome, due to the large amount of hysteresis and 

sensitivity for bias exposure. The samples had been presented to voltages up to –10 V for 0.1 s during 

the initial sweep, which did not interfere with the following measurements for the nitrides. The stacks 

however, were affected, such that it was necessary to use a new electrode on some of the following 

sweeps. This resulted in fewer complete sets with soaking voltage up to –30 V, due to a limiting number 

of electrodes. Whereas three to four of the nitrides were used for further analysis, only two to three 

sets of the oxynitrides were used.  
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5.3.1.1 FIXED CHARGE ANALYSIS 

The $# analysis was performed on all the complete sets that provided adequate C–V data. Figure 5-6 

and Figure 5-7 show the average $# value at each soaking biased for the nitrides and the stacks 

respectively. 

 

Figure 5-6: Fixed charge as a function of soak voltage for the 

nitrides. 

 

Figure 5-7 Fixed charge as a function of soak voltage for 

the stacks. 

 

A visual inspection of the results shows that the films are chargeable. $# is increased from 

1.0×1012 cm-2 to 6.8×1012 cm-2 for the nitrides and from 9.1×1011 cm-2 to 4.5×1012 cm-2 for the 

oxynitrides. $# of the nitrides are all increasing steadily, while each of the oxynitride samples have one 

abrupt increase before flattening. Comparing the maximum fixed charge density of the nitrides and 

the stacks shows that the best performing sample of the nitrides has twice as high $# than the best 

performing oxynitride. The sample with the lowest $# in the batch is the silicon rich oxynitride. Another 

important mechanism is that the nitrides show no sign of charge saturation towards –30 V soaking 

bias, while the stacks are flattening towards the higher biases. This indicates that the nitrides in this 

batch are more chargeable than the stacks.  
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5.3.1.2 NITRIDES 

In Figure 5-6, data points with the same shape (triangular or circular) have equal nominal thicknesses, 

while the red and the blue color separate the two different nitride compositions. 

A general trend of almost no increase in $# until the soaking voltage exceeds –10 V is observed. $# is 

still increasing for all the nitrides at -30 V, which shows that it might be possible to inject more charge 

into the films.   

A slightly steeper slope can be observed for the silicon rich samples, and the 85 nm thick sample reach 

the highest fixed charge of 6.8×1012 cm-2. The nitride rich 80 nm sample yields the second highest fixed 

charge of 4.8×1012 cm-2. These results are expected due to the capacitance of the insulating layer which 

depends on the thickness of the film, as more charge is expected to be stored in a thinner film.  

The nitride rich films were expected to contain a larger concentration of fixed charges, and thus 

provide more field effect passivation. This effect is not observed in these measurements. Charging of 

the films shows that the response with regards to increase in $# is more effective for the thinner films 

among the samples with equal compositions.  

 

5.3.1.3 STACKS  

The red line in Figure 5-6 corresponds to the silicon rich sample, and the blue corresponds to the nitride 

rich sample. 

The initial $# of the nitride rich stack of 2.0×1012 cm-2 is the highest measured in batch, which is  

1.1×1012 cm-2 higher than the average of the other samples.  

The behavior of the stacks differs from the nitride behavior. Both samples have a similar abrupt rise in  

$#, but the effect occurs at different soak voltages. For the silicon rich sample, the increase in $# from 

0 V to –10 V is 1.2×1012 cm-2. The increase in the nitride rich sample from -15 V to -20 V is 1.3×1012 cm-2.  

Both samples show a tendency to flatten out after the abrupt increase. The highest $# at –30 V soaking 

voltage of the stacks is almost half of what is measured in the nitrides.  

The film thickness of these samples only differs by 3 nm, such that the capacitance will be nearly equal. 

The difference of $# in the samples is therefore assumed to be due to composition, where the nitride 

rich capping layer provide greater field effect passivation compared to the silicone rich capping layer.  
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5.3.1.4 FILM CAPACITANCE 

The capacitance used for the $# analysis is based on the measured 4- in the CV sweeps. 4- was 

calculated using equation (3.16) and is summarized together with the measured capacitance in Table 

5-3. 

 

Sample 

 Insulator capacitance 

Composition Measured (pF) Calculated (pF) Deviation (%) 

1 SiNx 943 1066 11,5 

2 SiNx 1041 1118 6,9 

3 SiNx 1281 1381 7,2 

4 SiNx 1381 1467 5,9 

5 SiOxNy 892 1262 29,3 

6 SiOxNy 1113 1304 14,7 

Table 5-3: The calculated and measured capacitance for the insulator. The deviation between the results are listed 

in the last column. 

 

The results in Table 5-3 show that the measured values are closely linked to, but consistently smaller 

than the calculated values. 

The measured value is 6% to 15% lower than the calculated capacitance. The area of the pads used for 

the calculations are based on the diameter of the shadow mask and thus give rise to an uncertainty in 

the calculations. The actual area could be measured using a microscope, but this was unfeasible due 

to the limited time available. 4-  of the stacks are estimated assuming that the oxide layer (~6 nm) is 

negligible relative to the thickness of the nitrides (~90nm), which may be the reason for the deviation. 

The calculation is further based on the assumption that the relative permittivity of the nitride layer is 

7.5, which is based on an average from available literature, which vary from 7–8. The thickness used 

for calculating the capacitance is obtained from the ellipsometry, which, as mentioned, was obtained 

using a single level model for all the samples, including the stacks.  

 

 



54 
 

5.3.2 Photoluminescence imaging under applied bias (PL-V) 

The PL-V measurements were conducted in the range of 0 V to ±10 V, which is the available range of 

the setup. The experiments were performed with steps of 0.2 V and alternating bias to minimize the 

influence of charging. A 0 V measurement was performed at each integer to monitor the charging 

effect. The experiments resulted in intensity versus voltage curves which were calibrated with PL 

images and QSSPC measurements.  !"## versus voltage curves were produced and the Girisch model 

was used for simulation.  

 

5.3.2.1 NITRIDES  

Figure 5-8 shows the PL-V results of the nitrides. The experimental data is shown as squares, while the 

simulation curve is presented as a line. Table 5-4 summarizes the fitted parameters.  

Figure 5-8 shows that the flattening of sample 1 and 3, the silicon rich samples, are outside the 

measurement range. Due to the positive charges in the films is the smallest !"## found at negative 

bias. The limited range of ±10 V for samples of positive fixed charge will thus provide more information 

in inversion.  

The minimum point of !"## is in the range –2.4 V and –3.4 V, which is smaller, but close to \#4 found 

in the C–V measurements. Samples 1 and 3 have a steeper slope around the minimum  !"##. These are 

the samples of higher silicon concentration and are thus expected to have a higher degree of chemical 

passivation.  

The right slope of the minimum  !"## is found to be steeper than the left slope in all measurements.  

Table 5-4 shows that D1& > D0& for all samples, which explains the asymmetry in the measurements.  

This implies a higher recombination activity for the electrons in inversion.   

The capture cross ratio is found to be bigger than 1 for all samples. Comparing the samples of nominal 

equal thickness show that 20 21ß  for the nitride rich samples are smaller compared to the silicon rich 

samples. However, the smallest capture cross section is found for samples 1 and 2 - the 100 nm thick 

samples - with 20 21ß  of  1.97 and 1.30 respectively.  
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Figure 5-8: Effective lifetime as a function of gate voltage, measured by PL-V. 

 

 

  Sample 

Parameter Unit 1 2 3 4 

©™ (cm-2) 1.1×1012 1.2×1012 6.3×1011 6.7×1011 

´¨¿ (cm/s) 5.26×104 4.27×104 6.47×104 1.53×105 

´Æ¿ (cm/s) 2.67×104 3.29×104 6.91×103 2.34×104 

´ØÂ¨,¨ (cm/s) 26.3 28.2 25.5 105.1 

´ØZ¨,Æ (cm/s) 6.7 8.3 20.4 96.9 

±¨ ±Æß   1.97 1.30 9.36 6.53 

Table 5-4: PL-V simulations of the nitrides. 
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It should be noted that the minimum !"## is lower for the simulated curve than the experimental data. 

This causes a shift in \#4 and $# from what obtained in the C–V measurements.  This is a result of the 

weakness of the Girisch model at high SRVs.  

Table 5-5 summarizes the SRVs for the nitrides at flatband. The results show that the surface 

recombination velocity at  . = 0	is highest for the nitride rich samples. This corresponds well with the 

theory, as increasing silicon content in the film improves the chemical passivation of the film.  

 

Sample SRV (Vfb) 

1 472 

2 962 

3 378 

4 1102 

Table 5-5: Experimental values of SRV obtained by PL-V. 

 

Figure 5-9 shows the SRV obtained from both QSSPC and PL-V. The plot shows that the SRV 

measured by QSSPC is larger than the PL-V measurement. The largest change is observed in the 

silicon rich samples. The major change is due to the annealing of the samples, which was performed 

after the QSSPC measurement. SVR obtained at 0 V for the silicon rich samples was 35 cm/s for the 

100 nm sample and 39 cm/s for the 80 nm sample. In comparison, the SRV for the nitride rich films 

were 123 cm/s and 145 cm/s for the 100 nm and 80 nm films respectively. A significant difference 

from what observed in the QSSPC measurements which was performed prior to annealing.  

 

Figure 5-9: SRV measured by QSSPC and PL-V. 
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5.3.2.2 STACKS 

NITRIDE RICH STACK  

Figure 5-10 shows the measured lifetime and the leakage current of the nitride rich stack as a function 

of applied voltage. The lifetime plot has an unexpected shape, as !"## at  \#4 is not the lowest lifetime 

measured. The leakage current is stable around 0 mA from –6 V to 2 V. The measured lifetime is 

dropping for voltages outside this range.  

 

 

Figure 5-10: Effective lifetime and leakage current plotted as a function of voltage for the nitride rich stack. 

 

The simulation was performed in the range from –6 V to 1 V to avoid effects of the leakage current. As  

\#4is found at –5.2 V, the measurement provided little information towards accumulation. $# was 

found to be 4.2×1013 cm-2. Compared to the $# found in the C–V measurements (2.1×1012 cm-2) this 

seems unrealistic. The C–V measured \#4 at –6.1 V, while the PL–V measurement shows \#4 at –5.2 V. 

The shift in \#4 in the PL–V measurement suggests that the fixed charge density should be smaller, 

while the simulations show the opposite.  

It is possible to measure the surface recombination parameter for holes from the minimum !"## to 

1 V. This was found to be 2.4×104 cm/s. While there is high uncertainty related to the measurement of 

this sample, D1& for this sample is in the same range the nitride, shown in Table 5-1. 
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SILICON RICH STACK 

Figure 5-11 shows the simulation and the measured !"## for the silicon rich stack and Figure 5-12 

shows the SRV calculated from the measured !"## . The lifetime curve show steep slopes at both sides 

of \CR, which indicates a high degree of chemical passivation. The highest effective lifetime, 5800 µs, 

is measured in inversion. The results yield an SRV less than 1 towards accumulation and inversion. This 

calculation is based on an infinite QR, the SRV shown in Figure 5-12 is thus the D(}~ described in 

equation (2.21).  

 

Figure 5-11: Effective lifetime as a function of applied voltage for the silicon rich stack. 

 

 

Figure 5-12:Surface recombination velocity calculated from the measured	Q_CC.   
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Table 5-6 shows the simulated parameters for silicon rich stack. The results show the smallest values 

of the surface recombination parameters and the smallest D6-0,0 and D6-0,1 in the sample set. The 

capture cross ratio is less than 1. The capture cross ratio suggests that the recombination activity is 

higher towards inversion.  

\#4 is found at –2.6 V in the PL–V, which is lower to  \#4 measured in C–V (–3.7 V). However, the 

$#measurement matches well, as the C–V measurement yields 9.1×1011 cm-2. A lower PL–V value of  

\#4 is consistent with a lower $#, and the difference between the C–V measurements and the PL–V is 

thus expected to be due to the Girisch models poor ability to provide full information at low SRVs. 

 

Parameter Unit  
©™ (cm-2) 9.0×1011  
´¨¿ (cm/s) 87 
´Æ¿ (cm/s) 261 
´ØÂ¨,¨ (cm/s) 0.68 
´ØÂ¨,Æ (cm/s) 0.38 
±¨ ±Æß   0.33 

Table 5-6: Simulated parameters for the silicon rich stack.  
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5.3.2.3 ZERO VOLT MEASUREMENTS  

Zero volt measurements were performed at each integer during the PL-V measurements. Figure 5-13 

shows a plot of the results. The plot of the nitride films and the nitride rich stack shows that the 

detected counts are stable during the measurements, which means that the altering bias is neutralizing 

the charge at each measurement. The silicon rich stack sample is stable between –3 V and 2 V. The 

charge effect is especially large for greater positive biases, while a small increase is seen for the 

increasing negative bias measurement. Still, the effect is not detectable in the simulation shown in 

Figure 5-11. However, this may have influenced the measurements shown in Figure 5-11 and Figure 

5-12. 

 

 

Figure 5-13: 0 V measurements. 
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5.3.3  Summary charge injection analysis  

The C–V analysis shows that the fixed charge density has increased for all sample as a function of 

charging. The nitrides have shown to be more chargeable than the nitrides, with a steady increase for 

higher pre-soak voltages. The thinnest samples have the highest increase of the samples and the 

composition seems to be less influential. 

The electric field created by pre-soak values of less than –10 V shows to be too small for the K-center 

transmission in the nitrides, such that no increase in $# is observed for the small pre-soak values. This 

is consistent with the findings of Bazilchuck et al. (2015).  The composition seems to be more important 

among the stacks, both with regards to charging and the pre-charge experiments. The nitride rich 

sample had the highest initial fixed charge density, but the total increase was much lower than the $# 

increase of the nitrides.  

The analysis regarding the nitrides are more complex. Higher hysteresis effects were observed and the 

increase in $# was less consistent. An increase of $# was observed for smaller pre-soak values below 

–10 V. This voltage was too small for the K-center to transmit to their positive states for the nitride 

samples, which shows an effect of the difference of the interfaces between the nitrides and the stacks. 

The PL–V results show a difference between the composition among the nitrides. The silicon rich 

samples yield the highest effective lifetime. A difference of almost 350 µs was observed between the 

100 nm silicon rich sample and the 80 nm nitride rich sample towards inversion. Both of the silicon rich 

samples yield a steep slope on both sides of the minimum !"##, which indicates a high degree of 

chemical passivation. This is also observed for the SRVs shown in Figure 5-9. When comparing the 

samples with equal thicknesses, the silicon rich sample has the lowest SRV. The PL–V measurement for 

the nitride rich stack was unsuccessful due to leakage currents. The silicon rich stack shows a good 

chemical passivation and a very high !"##. However, the zero volt measurements show that the 

measurement was effected by charging. 
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6 Conclusion 

 

CHAPTER 6 

CONCLUSION 
 

This study has examined the properties of six different passivation layers, four nitrides and two stacks. 

The object of this work was to increase the understanding of the possibility of increasing the charge 

carrier density in silicon nitride films for improved field effect passivation. The properties that have 

been investigated are thickness, composition and the importance of field effect passivation relative to 

chemical passivation. Further is the suitability of the characterization methods is discussed and the 

passivation properties of the stacks is compared to the passivation properties of the single layer 

nitrides. 

The effective lifetime measured by QSSPC showed that the stacks yields a higher effective lifetime 

relative to the nitrides and subsequently a lower SRV.  !"## was observed to be higher for all the silicon 

rich samples compared to the nitride rich samples. The same pattern was observed among the nitrides 

for the PL–V measurements. The silicon rich samples yield the highest !"##, where the difference 

between the 100 nm samples was approximately 300 µs. SRV obtained at flatband conditions showed 

lower values for the silicon rich samples, implying a better chemical passivation for these samples.  

With regards to charging in the C–V experiments, the stacks were less chargeable than the nitrides. An 

upper limit for charging of the nitrides was not reached, while the charge density for the stacks 

flattened out as the pre-soak voltages reached –20 V. The highest obtained $# for the stack is 

4.5×1012 cm-2, while the highest obtained $# for the nitrides is 6.8×1012 cm-2.  

The nitrides have proven to be chargeable. A steady increase of $# was observed, and the charge 

density was still increasing at the highest pre-soak voltage available.  Measurements performed prior 

to soaking exhibited values of $# at approximately 1.0×1012 cm-2 for all nitrides. The thickness was 

shown to be the most influential parameter among the stacks with regards to charging. The thinnest 

samples reached the highest $#, with the silicon rich sample being the best performing of the 80 nm 

samples.  

The composition showed a difference of the charging of the stacks, where the nitride rich stack was 

the best performing sample with both the highest initial and –30 V $#. 
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The characterization methods have attained as-expected results with regards to the theory for all 

nitrides. For the stacks, the electrical characterization methods, C–V and PL–V, have provided more 

complex results.  The PL–V measurements was affected by leakage currents and charging affects 

observed at the 0 V measurements.  $# as a function of charging in the C–V is less consistent, with 

abrupt increases and flattening of curves being observed. 

 

However, the stacks have proven to provide better passivation. The lowest SRV has been obtained for 

the stacks. The !"## obtained at the PL–V measurement shows an effective lifetime of approximately 

5800 µs, which is significantly higher than the best performing nitride at 550 µs.  
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7 Further work 

 

CHAPTER 7 

FURTHER WORK 
 

 

Charging saturation: Due to instrument limitations was the highest pre-soak voltage –30 V. $# was 

still increasing for all nitrides at this point. Further charging could be performed using an external 

voltage source to investigate the upper limit for $#. 

Effective lifetime for increased ©™: The nitrides showed to be chargeable, and is thus expected to yield 

better field effect passivation. However, the effective lifetime as a function of increased fixed charge 

is not investigated. 

Stack configuration: The results obtained from the electrical characterization methods have shown 

non-trivial behavior. Further research could be performed to investigate whether the effects shown is 

general for all stacks because of the stack configuration or a result of the composition of the materials. 

Stack thickness: The stack samples used in this study was of equal nominal thickness. The thickness of 

the nitrides was observed to be the main property with regards to charging. Thinner stacks could be 

explored for a possibility of reaching a higher $# as a function of charging. 
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