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Abstract

The Hill function is a sigmoid commonly used in modelling of genetic net-
works. This thesis presents genetic networks described by systems of differ-
ential equations. By principal component analysis - a procedure that reduces
the dimensionality of a system - a metamodel of the Hill function is estab-
lished. The metamodel is evaluated through studies of genetic networks of
different order. Further, extreme value problems, regarding determination of
the production terms of these networks, are considered.

In a generic situation it was proved that extrema are obtained in the cor-
ner points. The metamodel turned out to be a good fit, especially consider-
ing that known benchmark problems were implemented. However, deviations
close to the limits of the metamodel were discovered; in this region the model
should not be applied uncritically.
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Sammendrag

Hill-funksjonen er et sigmoid som er mye brukt i modellering av genetiske
nettverk. I denne oppgaven presenteres genetiske nettverk beskrevet av dif-
ferensialligninger. En metamodell for Hill-funksjonen er laget ved å bruke
prinsipalkomponentanalyse - en teknikk som reduserer systemets dimensjon-
alitet. Metamodellen evalueres ved å studere genetiske nettverk av forskjel-
lig orden. I forbindelse med bestemmelsen av produksjonsledd for disse
nettverkene, blir ekstremalverdiproblemer tatt i betraktning.

I det generiske tilfellet ble det bevist at ekstremalverdiene oppnås i hjørne-
punktene. Det er rimelig å anse metamodellen som en god approksimasjon,
spesielt med tanke på at det var mulig å implementere kjente benchmarkprob-
lemer. Videre ble avvik nær modellens grenser oppdaget; den bør ikke an-
vendes ukritisk i dette området.
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Chapter 1

Introduction

"A theory has only the alternative of being right or wrong. A model has a
third possibility: it may be right, but irrelevant 1," Manfred Eigen [11].

Physics, economics or biology - mathematical models have an endless amount
of applications. We want to describe systems. We strive to understand, ex-
plain and predict. And in order to do so, mathematical models are developed.
However, these models can be complex and complicated. It may be conve-
nient to work with something less extensive. We want to simplify without
reducing the reliability; this is the purpose of the metamodel.

In 1965, B. C. Goodwin proposed a mathematical model describing a
gene regulatory network with differential equations. Strong threshold and
switching effects are common in such systems, and this was represented by
the Hill function.

In the PhD thesis of Julia Isaeva, metamodels of 38 line curvature, among
them sigmoids, were established by principal component analysis. The Hill
function was among the best fits. Further, a system of differential equations
including these metamodels was suggested [4].

The aim of this thesis is to implement and analyse metamodels of typical
gene regulatory networks. A discrete approximation of the Hill function is
yielded using principal component analysis. This is the basis of the meta-
models later presented. Metamodels of genetic networks of one, two and
three genes are constructed; the accuracy is studied in order to determine
whether they are satisfactory. In addition, extreme value problems regarding
determination of the production terms are considered.

Benchmark problems help validate and verify new implementations. Thus,
1These are the words of the biophysical chemist Manfred Eigen. He was, together with

Ronald George Wreyford Norrish and George Porter, awarded with the Nobel Prize in
Chemistry in 1967 for their studies of extremely fast chemical reactions [1].
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CHAPTER 1. INTRODUCTION

for further evaluation two benchmark problems are solved. Thereby it is pos-
sible to compare the metamodel to a reference solution.

The main advantage of these metamodels is that principal component
analysis reduces the dimensionality of the system. With a big network, this
has great impact on the efficiency.
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Chapter 2

Gene Regulatory Networks

2.1 Biological Context

Figure 2.1: The relation between threshold and gene activity. Genes are
switched "on" or "off" depending on whether the concentration of a certain
regulatory factor is below or above the threshold [12].

The purpose of gene regulatory models is to describe and illustrate the inter-

3



CHAPTER 2. GENE REGULATORY NETWORKS

actions of genes; how the concentration of some genes affect the production
or degradation of others.

In a wide range of biological phenomena, interactions with strong thresh-
old and switching effects appear. In gene regulatory networks they are fre-
quent. This behaviour is commonly described by sigmoid functions or step
functions. There are few general guidelines for choosing of sigmoids. Of-
ten sigmoid curves are preferable to step functions in biological models; the
region around the threshold is in many circumstances important, and step
functions are discontinuous at this point [17].

However, the threshold domains in gene regulatory networks are often
narrow. Therefore it is not unreasonable to think of such a phenomena as a
binary on-off device. See figure 2.1.

Among the more used sigmoid functions, is the Hill function. It was first
introduced in 1910. The biochemist A. V. Hill formulated the equation in
order to explain the binding of oxygen to hemoglobin [19].

The same function played, 55 years later, a central role when Brian C.
Goodwin proposed a new mathematical model describing a gene regulatory
network with differential equations. The Hill function represented a biological
threshold effect in the nucleus. [12].

2.2 Mathematical Framework

Before describing the genetic network, we first establish the most elementary
model. The scalar case: a one gene network - an isolated gene in a population.
The rate of change in a gene concentration is defined as the difference between
the production rate and the degradation rate

ẋ = P −Dx

where P ≥ 0 is the production rate, D ≥ 0 is the degradation rate and x(t)
is the gene concentration. This can easily be expanded to a genetic network
of N genes

ẋi = Pi −Dixi, i = 1, 2, ..., N

Consider a biological system with strong threshold mechanisms, as illus-
trated in figure 2.2. Protein x1 and x2 affects each other, while protein x3
rely on both x1, x2 and itself. Their production or degradation rate only
changes when certain thresholds are crossed. The rates depend on sigmoid
functions zi of different steepness [13, 18]. An interaction structure such as

4



2.3. SLIDING MODE

Figure 2.2: Interaction diagram of a population of three genes [18].

this can be described

ẋ1 = P1(z2)−D1(z2)x1

ẋ2 = P2(z1)−D2(z1)x2

ẋ3 = P3(z1, z2, z3)−D1(z1, z2, z3)x3

2.3 Sliding Mode

A not unknown phenomena in gene regulatory networks is sliding mode.
When a system tends to «slide»along a boundary (e.g., surface, line) after a
certain time tr and stay there thereafter, the system is said to be in sliding
mode when t > tr [21]. See figure 2.3. This is further illustrated by studying
the behaviour of the solutions in the phase plane. See figure 2.4.

5



CHAPTER 2. GENE REGULATORY NETWORKS

Figure 2.3: Illustration of a system where both x1 and x2 are in sliding
mode [16].

Figure 2.4: Trajectories in the phase plane corresponding to the solutions
illustrated in figure 2.3 [16].
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2.3. SLIDING MODE

In a genetic network of the type previously outlined, such behaviour would
indicate that the concentration of one or more genes stabilizes. The reason
for this, is usually a feedback process; a positive feedback amplifies an effect,
while a negative feedback reduces it. Autoregulation is a feedback process
where e.g a gene regulates its own production[16]. It may cause mathematical
problems because the derivative dx

dt
quickly approaches zero.

7
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Chapter 3

Mathematical Theory

3.1 The Singular Value Decomposition

Singular value decomposition (SVD) is a factorization of matrices. The tech-
nique is commonly used, and among it’s many applications we find image
analysis, statistics and data processing.

Let A be a n×m matrix. Then the singular value decomposition of A is
defined as A = USV τ . S is a n×m matrix with nonnegative diagonal entries,
U is a n× n orthonormal matrix and V is a m×m orthonormal matrix.

The singular values, σ1, σ2, ..., σn, of the matrix A, are the positive square
roots of the eigenvalues of the associated Gram matrix G = AτA. Thus,
σ2
1, σ

2
2, ..., σ

2
n are the eigenvalues of G. The singular values are arranged in

descending order: σ1 ≥ σ2 ≥ ... ≥ σn > 0. If the matrix A is square, then so
is S. For n = m then

Sn×n =


σ1

σ2 0
σ3

0 . . .
σn
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CHAPTER 3. MATHEMATICAL THEORY

If n > m then

Sn×m =



σ1

σ2 0
σ3

0 . . .
σm

0 · · · · · · · · · 0
0 · · · · · · · · · 0

 }
n−m

If m > n then

Sn×m =



σ1 0 0

σ2 0 ...
...

σ3
...

...

0 . . . ...
...

σn ︸︷︷︸
m− n

0 0



U and V are both orthonormal matrices. The columns are called, respectively,
left-singular and right-singular vectors of A.

Vm×m =
(
v1 v2 ... vm

)
and Un×n =

(
u1 u2 ... un

)
The right-singular vectors of A, vi, are the unit eigenvectors, ‖vi‖ = 1, cor-
responding to the eigenvalues σi2. By the following relation, the columns of
U can be constructed

ui =
1

σi
Avi, i = 1, 2, ..., n, ‖ui‖ = 1 (3.1)

where A is a n × m matrix, σi are the singular values of A and vi are the
corresponding eigenvectors.

The singular value decomposition of matrix A can also be written on
vector based form

A = σ1u1v
τ
1 + σ2u2v

τ
2 + ...+ σpupv

τ
p (3.2)

10
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where A is a n × m matrix, σi are the singular values, ui are the left-
singular vectors and vi are the right-singular vectors. i = 1, 2, ..., p, and
p = min{m,n} [8, 18].

3.2 The Principal Component Analysis
Principal component analysis (PCA) is a method frequently used to reduce
the complexity of a system. It is useful for suppressing redundant information
and extracting relevant data. We seek the principal components with the
largest variance, while those with lower variance are considered noise.

Singular value decomposition is closely related to PCA. With SVD the
matrix A can be represented by vectors (3.2), and the principal components
expressed as «σiuivτi ». Then, «σ1u1vτ1» is the first principal component,
«σ2u2vτ2» the second principal component, etc. In order to determine the
number of components k needed to achieve a satisfactory model, we consider
all components with index i > k as error, ei [18].

A = σ1u1v
τ
1︸ ︷︷ ︸

first component

+ e1, ‖e1‖ = σ2

A = σ1u1v
τ
1︸ ︷︷ ︸

first component

+ σ2u2v
τ
2︸ ︷︷ ︸

second component

+ e2, ‖e2‖ = σ3

...
A = σ1u1v

τ
1 + ...+ σkukv

τ
k + ek, ‖ek‖ = σk+1

This can also be expressed as

A =
k∑
i=1

tip
τ
i + ek, ‖ek‖ = σk+1

ti = σiui, ‖ti‖ = σi

pi = vi, ‖pi‖ = 1

(3.3)

where A is a n × m matrix, ti are the scores, pi are the loadings, σi are
the singular values, ui are the left-singular vectors, vi are the right-singular
vectors, ek is the error and k is the number of principal components [18].
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3.3 The Tensor Product
Let A be a n×m matrix and B be a p× q matrix. Then the tensor product
of A and B is defined as the mp× nq matrix

A⊗B =


a11B a12B · · · a1mB
a21B a22B · · · a2mB
...

... . . . ...
an1B an2B · · · anmB


Consider the matrix C = A ⊗ B with the singular value decomposition
C = USV τ . Given the decompositions

A = UASAV
τ
A and B = UBSBV

τ
B

then
C = (UASAV

τ
A )⊗ (UBSBV

τ
B )

= (UA ⊗ UB)(SA ⊗ SB)(V τ
A ⊗ V τ

B )

= USV τ

(3.4)

where C = A⊗B and U, S, V are the matrices from the SVD of the mp×nq
matrix C, the n×m matrix A and the p× q matrix B [7].

Or, written less formal: SV D(A⊗ B) = SV D(A)⊗ SV D(B). To illustrate
the concept, assume we have two functions of two independent variables

f1(x1, y1) and f2(x2, y2)

We discretize the functions over intervals containing N points

x1 = x11, x
2
1, ..., x

N
1 , y1 = y11, y

2
1, ..., y

N
1

x2 = x12, x
2
2, ..., x

N
2 , y2 = y12, y

2
2, ..., y

N
2

For simplicity, let N = 2. Then the functions can be expressed discreetly as
the 2× 2 matrices F1 and F2.

f1(x1, y1)→ F1 =

(
f1(x

1
1, y

1
1) f1(x

2
1, y

1
1)

f1(x
1
1, y

2
1) f1(x

2
1, y

2
1)

)

f2(x2, y2)→ F2 =

(
f2(x

1
2, y

1
2) f2(x

2
2, y

1
2)

f2(x
1
2, y

2
2) f2(x

2
2, y

2
2)

)
12
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The product of the functions f1 and f2 will then be the 4× 4 matrix F

f1(x1, y1)f2(x2, y2)→ F =

(
f1(x

1
1, y

1
1)F2 f1(x

2
1, y

1
1)F2

f1(x
1
1, y

2
1)F2 f1(x

2
1, y

2
1)F2

)

= F1 ⊗ F2

With singular value decomposition and principal component analysis, the
matrices can be approximated on the form (3.3)

F̂ =
k∑
i=1

tip
τ
i , F̂1 =

k∑
i=1

t1i , p
1τ
i , F̂2 =

k∑
i=1

t2i p
2τ
i

From equation (3.4) it follows that

F̂ = F̂1 ⊗ F̂2

For application issues, this means that the PCA of F1 and F2 can be used
also when working with the product of the two functions f1 and f2. Notice
that the scores ti and the loadings pi for the matrix F therefore does not need
to be calculated.

3.4 The Condition Number
The condition number describes the error propagation of a system; a problem
whose condition number is low is well-conditioned. A high condition number
indicates ill-conditioning. A system is said to be well-conditioned if small
changes in the data produce small changes in the solution. If, on the other
hand, small changes in the data may cause large changes in the solution, the
problem is considered ill-conditioned [6]. The condition number κp is defined

κp(A) = ‖A‖p‖A−1‖p (3.5)

where A is a n×m matrix and p is the p-norm.

If p = 2 then
κ2(A) = ‖A‖2‖A−1‖2 =

σmax
σmin

(3.6)

where A is a n × n matrix, σmax = max{σ1, ..., σn} is the largest singular
value and σmin = min{σ1, ..., σn} is the smallest singular value [18].
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Figure 3.1: The roots of Wilkinson’s polynomial w(x) and ŵ(x) .

Consider the problem of finding the roots of Wilkinson’s polynomial

w(x) =
20∏
i=1

(x− i) = (x− 1)(x− 2)...(x− 20)

= x20 − 210x19 + ...+ 20!

On factorized form, finding the roots is trivial. Let us decrease the coefficient
of x19 by 2−23

ŵ(x) = x20 − (210 + 2−23)x19 + ...+ 20!

This very small change, has a great impact on the roots. Some of the roots
are displaced and, in fact, half of them are now complex. See figure 3.1. The
reason for this behaviour, is the polynomial’s huge condition number [18].

3.5 Interpolation
Given the discrete points (x0, y0), (x1, y1), ..., (xn, yn), it is possible to approx-
imate a continuous function y(x) for values between the given values of x.
The technique is called interpolation and the points x0, x1, ..., xn nodes [6].

14



3.6. THE RUNGE-KUTTA METHOD

There are several kinds of interpolation (e.g., linear, polynomial, quadratic).
In Matlab’s built in function interp1, linear interpolation is the default
method [9]. Linear interpolation is interpolation by straight lines. The pre-
cision of the interpolation will very much depend on the number of nodes n.
As figure 3.2 illustrates, more data points increase the accuracy.

Figure 3.2: Interpolation of y = cos(x) with n nodes. (a) n = 5 (b) n = 10
(c) n = 20 (d) n = 40

3.6 The Runge-Kutta Method
The Runge-Kutta method is an iterative, numerical solution procedure for
solving first order differential equations. The method is a generalization
of Simpson’s rule; a rule for approximating the definite integrals by using
parabolas.

Consider the scalar initial value problem

ẏ = f(t, y(t)), f(t0) = y0

15
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The solution y(t) is approximated at N discrete points

tk = t0 + kh, h = tk+1 − tk

y(tk) = yk, k = 0, 1, .., N

Let us first introduce the integral∫ tk+1

tk

f(s, y(s))ds = yk+1 − yk

Using Simpson’s rule for numerical integration yields∫ tk+1

tk

f(s, y(s))ds =
h

6

(
f(tk, yk) + 4f(t 1

2
, y 1

2
),+f(tk+1, yk+1)

)
where t 1

2
is the midpoint at tk+0.5h. At this stage yk+1 and y 1

2
are unknown,

and are therefore approximated by the equation for the tangent line

yk+1 ≈ yk + hyk

y 1
2
≈ yk + 0.5hyk

Then the expression for yk+1 is

yk+1 = yk +
h

6
[K1 + 2K2 + 2K3 +K2]

where

K1 = f(tk, yk)

K2 = f(tk +
1

2
h, yk +

1

2
hK1)

K3 = f(tk +
1

2
h, yk +

1

2
hK2)

K4 = f(tk + h, yk + hK3)

Notice that f(t 1
2
, y 1

2
) = K2+K3

2
. This scheme is called the fourth-order Runge-

Kutta method, and is the basis of Matlab’s built in function ode45 [5, 18, 10].
Up until now we have considered the scalar initial value problem. The

Runge-Kutta method can, however, easily be extended to first order systems
[8]. For a system of m differential equations

ẏ = f(t,y(t)), f(t0) = y0

16
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where

y(t) =


y1(t)
y2(t)
...

ym(t)

 , y0 =


y
(1)
0

y
(2)
0
...

y
(m)
0

 , f(t,y(t)) =


f1(t,y)
f2(t,y)

...
fm(t,y)


Then, for a system

yk+1 = yk +
h

6
[K1 + 2K2 + 2K3 + K2]

where

K1 = f(tk, yk)

K2 = f(tk +
1

2
h,yk +

1

2
hK1)

K3 = f(tk +
1

2
h,yk +

1

2
hK2)

K4 = f(tk + h,yk + hK3)

3.7 The Relative Squared Error
From statistics, the coefficient of determination R2 is a measure of goodness
of fit; the proportion of total variability explained by the model. R2 ∈ [0, 1],
where 1 is a perfect fit [14]. The coefficient of determination is defined

R2 = 1−

N∑
i=1

(x̂i − xi)2

N∑
i=1

(x̄− xi)2
,

x̄ =
1

N

N∑
i=1

xi

(3.7)

where x̂i are the predicted values, xi are the observed values, x̄ is the average
of the observed values and N is the number of samples.

The relative squared error ζ2 can then be expressed

ζ2 = 1−R2 (3.8)

where R2 is the coefficient of determination.

17
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3.8 Extreme Values of Functions of Two Vari-
ables

In closed bounded regions, continuous functions of two variables assume ex-
treme values. If f(x, y) is a two variable real-valued function whose domain
D is both closed and bounded, then f attains both an absolute maximum
value M and an absolute minimum value m in D. That is

m ≤ f(x, y) ≤M, ∀x, y ∈ D

f(x1, y1) = m and f(x2, y2) = M

The only points where extreme values of the function f(x, y) can be found,
are critical interior points and boundary points. At critical points ∂f

∂x
(a, b) =

∂f
∂y

(a, b) = 0 or one or both of the partial derivatives fail to exist. The second
partial derivatives test classifies the points [23].

i) If ∂
2f
∂x2

> 0 and ∂2f
∂x2

∂2f
∂y2
−( ∂2f

∂x∂y
)2 > 0 at (a,b), the point is a local minimum.

ii) If ∂
2f
∂x2

< 0 and ∂2f
∂x2

∂2f
∂y2
−( ∂2f

∂x∂y
)2 > 0 at (a,b), the point is a local maximum.

iii) If ∂2f
∂x2

∂2f
∂y2
− ( ∂2f

∂x∂y
)2 < 0 at (a,b), the point is a saddle point.

iv) If ∂2f
∂x2

∂2f
∂y2
− ( ∂2f

∂x∂y
)2 = 0, the test is inconclusive.

Figure 3.3 illustrates the function

g(x, y) = y2 − x2, x, y ∈ [−1, 1]

with the partial derivatives

∂g

∂x
= −2x and

∂g

∂y
= 2y

Hence, local extrema can only occur at the origin (0,0). This is the only

18



3.9. EXTREME VALUES OF FUNCTIONS OF N VARIABLES

Figure 3.3: The graph of the function g(x, y) = y2 − x2

critical interior point and it is a saddle point. Investigating the boundaries

g(−1, y) = g(1, y) = y2 − 1

g(x,−1) = g(x, 1) = 1− x2

∂g

∂y
(−1, y) =

∂g

∂y
(1, y) = 2y

∂g

∂x
(−1, x) =

∂g

∂x
(1, x) = −2x

yields the following extreme values candidates

g(−1, 0) = −1, g(1, 0) = −1, g(0,−1) = 1, g(0, 1) = 1

Finally, we look at the endpoints

g(−1, 1) = g(1,−1) = g(1, 1) = g(−1,−1) = 0

The function g(x, y) has a maximum value 1 and a minimum value -1.

3.9 Extreme Values of Functions of n Variables
The process of finding extreme values can be generalised for arbitrary n. As
in the two variable case, extreme values are assumed for continuous functions

19
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of n variables in closed bounded regions; extrema are to be found on either
critical interior points or at the boundary. The method for investigating the
boundary of a function of several variables is identical to the two variable
case, and will therefore not receive further attention.

In order to illustrate the pattern, we will, before generalising, consider
the three variable case: f(x, y, z). At critical points ∂f

∂x
(a, b, c) = ∂f

∂y
(a, b, c) =

∂f
∂z

(a, b, c) = 0 or one or several of the partial derivatives fail to exist.
Let H denote the Hessian matrix of second partial derivatives

H =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2


and let D1 = ∂2f

∂x2
, D2 =

∣∣∣∣∣ ∂
2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

∣∣∣∣∣ and D3 = det(H). Then

i) If D1 ≥ 0, D2 ≥ 0 and D3 ≥ 0 at (a, b, c), the point is a local minimum.

ii) If D1 ≤ 0, D2 ≥ 0 and D3 ≤ 0 at (a, b, c), the point is a local maximum.

iii) In any other case where D3 6= 0, f has a saddle point at (a,b,c).

The test includes the situation where the one or several of the determinants
(D1, D2, D3) equal zero. As a consequence, the critical points are not neces-
sarily isolated - the situation is not generic.

For the general n variable case: f(x1, x2, .., xn). As previously, the critical
points will be located where ∇f(c) = 0 or one or several of the partial
derivatives fail to exist. Let H denote the Hessian matrix

H =


∂2f
∂x21

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

. . . ∂2f
∂x2∂xn

...
... . . . ...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2n



and for each k = 1, 2, ..., n, let Dk denote the determinant of the corre-
sponding Hessian matrix. Assume that det(H) 6= 0. Then [22]

i) If Dk(c) ≥ 0 ∀k, the point is a local minimum.

ii) If (−1)kDk(c) ≥ 0 ∀k, the point is a local maximum.

iii) Otherwise f has a saddle point at c.
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3.10. MATHEMATICAL INDUCTION PRINCIPLE

3.10 Mathematical Induction Principle
Mathematical induction is a proof technique commonly used to prove that a
given proposition is true for for all positive integers n. Let P1, P2, ..., Pn, ...
be propositions, one for each positive integer, such that

1. P1 is true.

2. for each positive integer n, Pn implies Pn+1.

Then Pn is true for each positive integer n. The first step is known as the
base case, the second as the inductive step [24]
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Chapter 4

The Hill Function

4.1 The Hill Function

Figure 4.1: The Hill function (4.1) as a function of the gene concentration
x, with threshold value θ = 1 and steepness parameter q = 0.2.

The Hill function is given by

H(x, θ, q) =
x

1
q

x
1
q + θ

1
q

, x > 0, θ > 0, q > 0 (4.1)
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where x is the concentration, θ is the threshold value and q is the steepness
parameter. See figure 4.1.

Observe that

H(x, θ, q) ≈
{

0, if x < θ
1, if x > θ

Thus, H(x, q, θ) ∈ [0, 1].

4.2 The Metamodel
With a threshold value θ equal to 1, the Hill function (4.1) can be rewritten
as

H(x, q) =
x

1
q

x
1
q + 1

, x > 0, q > 0 (4.2)

where x is the concentration and q is the steepness parameter.

A metamodel of the Hill function can be developed based on function
(4.2). The approximation will be a linear combination on the same form as
(3.3)

Ĥ =
k∑
i=1

ti(q)pi(x)τ (4.3)

where ti are the scores, pi are the loadings, q is the steepness parameter, x
is the concentration and k is the number of principal components.

Let H be a I × J matrix. With the discrete intervals xj = x0, x1, ..., xJ
and qi = q0, q1, ..., qI , each element of H represents a function value of the
function (4.2)

hij =
x
1/qi
j

x
1/qi
j + 1

We then obtain the matrix

HI×J =


h11 h12 · · · h1J
h21 h22 · · · h2J
...

... . . . ...
hI1 hI2 · · · hIJ
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We create the matrix H by working with the following fixed intervals for the
concentration and the steepness parameter: xj ∈ [0.5, 1.5] and qi ∈ [0.1, 0.5].
To determine the number of principal components, the error limit ek is set
to be 0.01. Or equivalently, σk+1 < 0.01.

We ensure that the system is well-conditioned by studying the condition
number κ2. Notice that the condition number is forced to be high because
σmin ≤ 0.01. However, the relative condition numbers between the compo-
nents

σ1
σ2
,

σ2
σ3
, ...,

σk
σk+1

will be small if the inverse condition number κ−1
2 is sufficiently low. The

number of principal components also depends on the upper and lower limits
of the concentration x and the steepness parameter q, and the corresponding
step lengths.

Figure 4.2: (a) The number of principal components k as a function of the
number of steps I = J . (b) The inverse condition number κ−1

2 as a function
of the number of steps I = J .

Figure 4.2 illustrates how the number of required principal components
stabilizes at 5 when the number of steps reaches 100. This also applies to the
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Figure 4.3: The Hill function (4.2) and the approximation of the Hill func-
tion (4.3) with 5 principal components and steepness parameter q = 0.2.

inverse condition number. When I = J > 100 the associated step lengths
are ∆x < 0.01 and ∆q < 0.004. With this number of principal components,
the original and approximated Hill function are illustrated in figure 4.3. The
relative squared error, calculated by equation (3.8), is ζ2 = 0.0086%.

Similarly, it is possible to study how the model behaves as the upper
limits, xJ and qI , increase and the lower limits, x0 and q0, decrease. When
investigating the upper limits, it is convenient to keep the lower limits un-
changed and vice versa. The upper limits pose no problems, see figure 4.4.
Neither does the lower limit of x. A decreasing q0 on the other hand, leads to
a growing number of principal components. This is not unexpected. When
q → 0, the Hill function approaches the Heaviside step function; a function
that is discontinuous at the threshold.

The inverse condition number remains in general small. We observe in
figure 4.4 that the required number of principal components is unaffected by
the lower limit of x. From now on we will therefore work with xj ∈ [0.01, 1.5].
In order to preserve the step length ∆x < 0.01, the number of division points
is increased to J = 150. H is then a 100× 150 matrix.
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Figure 4.4: The number of principal components k as a function of the
limits (a) x0(b) xJ (c) q0 and (d) qJ .
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Chapter 5

The Scalar Case

5.1 A Genetic Network of One Gene
A genetic network of one gene can be modelled by an ordinary differential
equation

ẋ = (az(x) + b)︸ ︷︷ ︸
production term

− (cz(x) + d)x︸ ︷︷ ︸
degradation term

a+ b ≥ 0, b ≥ 0

(5.1)

where x is the concentration, a, b, c, d are coefficients, z(x) = z(x, q) is the
Hill function (4.2) and q is the steepness parameter.

The production term is assumed non negative. The term is linear, thus,
the extrema are located at the endpoints. As the Hill function z(x) ∈ [0, 1],
it follows that also b is bound to be positive. The coefficient a determines the
autoregulation. It is a positive feedback process when a > 0 and a negative
when a < 0.

5.2 The Metamodel
For simplicity, we assume the coefficient c = 0. By combining the metamodel
of the Hill function (4.3) with equation (5.1), the approximated differential
equation for the concentration is

ẋ = a

k∑
i=1

ti(q)pi(x)τ + b− dx (5.2)
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where a, b, d are coefficients, ti are the scores, pi are the loadings, q is the
steepness parameter and k is the number of principal components.

To compare the model (5.1) with the metamodel (5.2), we solve the dif-
ferential equations. For this, Matlab has a function: ode45. This function
can be directly applied for equation (5.1). However, ode45 does not accept
discrete functions. We therefore need to fit the metamodel of the Hill func-
tion by interpolation. This is done by the Matlab built in interp1. When
interpolated, ode45 can be applied also on equation (5.2), and the models
analysed. This procedure is equivalent for systems of higher order.

Figure 5.1 illustrates how the values of a affect the solutions of the dif-
ferential equations (5.1) and (5.2).

Figure 5.1: Solutions of the ordinary differential equations (5.1) (solid line)
and (5.2) (asterisk) with the coefficients b = 1.5, d = 1, initial value x0 = 0.2,
steepness parameter q = 0.2 and different values for the coefficient a.

30



5.2. THE METAMODEL

Figure 5.2: Solutions of the ordinary differential equations (5.1) and (5.2)
with the coefficients b = 1.5, d = 1, steepness parameter q = 0.2 and initial
conditions ranging from x0 = 0.01 to x0 = 1.5 with (a) a = 1 (b) a = −1

Figure 5.3: A plot of the relative squared errors ζ2, equation (3.8), corre-
sponding to the solutions illustrated in figure 5.2

31



CHAPTER 5. THE SCALAR CASE

The solutions for different initial values of x0 are illustrated in figure 5.2.
Notice that there is no solution for x when x > 1.5. This is due to the validity
of the Hill function: the concentration x has an upper limit of 1.5 (described
in section 4.2).

Attention should be directed towards the figures 5.1 and 5.2b; the solution
x tends to have an asymptotic convergence to the threshold value θ = 1 when
the coefficient a is negative. The system appears to be in sliding mode. In
this case though, it poses no problem.

Further, a more methodical investigation is of interest. The parameters
are initially set to be a = 1, b = 3, d = 1, q = 0.5 and x0 = 0.2, then they are
changed one by one. See figure 5.4. Notice that the error does not exceed
0.25% under any of these circumstances. It seems reasonable to conclude
that the model is a good approximation for the scalar case.

Figure 5.4: A plot of the relative squared error ζ2, equation (3.8), for
different (a) x0 (b) q (c) a (d) b (e) d
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2×2 System of Genes

6.1 A Genetic Network of Two Genes
A genetic network of two genes can be described with the ordinary differential
equations

ẋ1 = (a1z1z2 + b1z1 + c1z2 + d1)− γ1x1

ẋ2 = (a2z1z2 + b2z1 + c2z2 + d2)− γ2x2

a1z1z2 + b1z1 + c1z2 + d1 ≥ 0, γ1 ≥ 0

a2z1z2 + b2z1 + c2z2 + d2 ≥ 0, γ2 ≥ 0

(6.1)

where x is the concentration, a, b, c, d, γ are coefficients and z = z(x) = z(x, q)
is the Hill function (4.2).

As in the scalar case (5.1), the first term is the production term and the
second the degradation term. The production term is positive, and the coef-
ficients a, b, c, d have to be chosen thereafter.

6.2 Analytic Determination of the Production
Term

The production term of equation (6.1) is by definition positive. To ensure
that this requirement is met, the coefficient d has to be set depending on the
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other coefficients a, b and c. Thus, the problems is reduced to locating the
minimum value of

f(z1, z2) = az1z2 + bz1 + cz2, z1, z2 ∈ [0, 1]

There is only one critical interior point (− c
a
,− b

a
). This is a saddle point, as

the second order derivatives are

∂2f

∂z21
=
∂2f

∂z22
= 0,

∂2f

∂z1∂z2
= a

No possible minimum values are found on the boundaries, whereas investi-
gating the endpoints yields the following possible extreme values

f(1, 0) = b, f(0, 1) = c, f(0, 0) = 0, f(1, 1) = a+ b+ c

Observe that all the minimum value candidates are found in the corners.
Then d should be chosen so that d ≥| min{b, c, 0, a+ b+ c} |. A simple test
to verify that this demand is fulfilled, is performed before the construction
of the model.

6.3 The Metamodel
We combine the metamodel of the Hill function (4.3) with equation (6.1),
and obtain the approximated differential equations

ẋ1 = (a1ẑ1ẑ2 + b1ẑ1 + c1ẑ2 + d1)− γ1x1

ẋ2 = (a2ẑ1ẑ2 + b2ẑ1 + c2ẑ2 + d2)− γ2x2

ẑ1 =
k∑
i=1

ti(q1)pi(x1)
τ , ẑ2 =

k∑
i=1

ti(q2)pi(x2)
τ

(6.2)

where a, b, c, d, γ are coefficients, ẑ is the approximated Hill function, ti are
the scores, pi are the loadings, q is the steepness parameter and k is the
number of principal components.

The approach is the same as for the scalar case - we compare the result from
ode45 with the interpolated solution of the approximation. From the tensor
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Figure 6.1: Solution of the ordinary differential equations (6.1) and (6.2)
with the coefficients a1 = 1, a2 = 2, b1 = b2 = 2, c1 = 0, c2 = 1, d1 = 1,
d2 = 3, γ1 = 3, γ2 = 1 initial value x0 = 0.5 and steepness parameters
q1 = 0.2, q2 = 0.4. (a) x1 (b) x2.

product we know that the product ẑ1ẑ2 requires no additional consideration.
Figure 6.1 illustrates one solution of the ordinary differential equations (6.1)
and (6.2). The relative squared errors are calculated using equation(3.8):

ζ2x1 = 0.0060% and ζ2x2 = 2.0× 10−4%

For various initial values x0, the solutions of the systems (6.1) and (6.2)
are illustrated in figure 6.2. In the scalar case we experienced a system in
sliding mode. In figure 6.2b the same pattern can be observed; the system
slides along the threshold value. This is further illustrated in the phase plane
in figure 6.3.
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Figure 6.2: Solutions of the ordinary differential equations (6.1) and (6.2)
with the coefficients a1 = −1, a2 = 2, b1 = 2 , b2 = 1, c1 = 0, c2 = −1,
d1 = 0, d2 = 2, γ1 = 2, γ2 = 1, steepness parameters q1 = 0.2, q2 = 0.4 and
initial conditions ranging from x0 = 0.20 to x0 = 1.20. (a) x1 (b) x2.

Figure 6.3: A plot of the solutions from figure 6.2 in the phase plane.
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When studying the error more closely, it is convenient to focus on the
terms of the highest order - these are the most dominant. Therefore, in
equation (6.1), the coefficients b and c are now assumed zero. The other
coefficients are chosen to be a1 = 1, a2 = −1, d1 = 3, d2 = 5 and γ1 = γ2 = 5.
The parameters are examined individually. See figure 6.4. In all cases the
relative squared error is within acceptable levels; the metamodel appears
accurate.

Figure 6.4: A plot of the relative squared error ζ2, equation (3.8), for
different (a) a (b) d (c) γ

6.4 A Benchmark Problem

The system from section 2.3 is actually a benchmark problem from the article
"Analysis and generic properties of gene regulatory networks with graded
response functions" by Plahte and Kjøglum [16].

This benchmark problem allows further evaluation and testing of the
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metamodel. The benchmark model is
ẋ1 = Z1 + Z2 − 2Z1Z2 − γ1x1

ẋ2 = 1− Z1Z2 − γ2x2
(6.3)

where x is the concentration, γ1 and γ2 are positive parameters and Z1 and
Z2 are the Hill function (4.2) with steepness parameter q = 0.08. Notice that

Figure 6.5: Trajectories in the phase plane corresponding to the solutions
of the system (6.3). The solid line represents the original trajectories [16].
The asterisk represents the metamodel.

the steepness parameter in the benchmark problem is q = 0.08, while the
metamodel has a lower limit of q = 0.1. For this reason, the the steepness
parameter is set to be q = 0.1 for both for the benchmark problem and the
approximated metamodel. The result is illustrated in figure 6.5.

The analysis of the benchmark problem supports previous results; the
metamodel behaves well also for the 2x2 system.
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Chapter 7

Modelling Circadian Oscillations

Figure 7.1: Simplified schematic model of the process from DNA to protein
[3].

One of the most fundamental concepts of molecular biology, is the process
from DNA to protein. A simple overview is illustrated in figure 7.1. In the
nucleus of eukaryotic cells, mRNA is synthesized from one strand of a DNA
helix. After the transcription of DNA to mRNA, the translation begins. The
ribosome decodes the mRNA and, with help of the tRNA molecules trans-
porting amino acids, produce an amino acid chain - a polypeptide. Finally
the polypeptide folds into a protein [3, 15].

This process is essential in the article "A Model of Circadian Oscilla-
tions in the Drosophila Period Protein (PER)" by Albert Goldbeter [2]. A
benchmark problem for a 5x5 system is presented and, as the title implies, a
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theoretical model describing the mechanisms of circadian oscillations in the
period protein (PER) in Drosophila (a genus of small flies) is discussed.

In order to keep the model simple, only three states of the period protein
are considered: un- (P0), mono- (P1) and bisphosphorylated (P2) [2]. The
system also depends on the concentration of PER mRNA, M , and PER,
PN , in the nucleus. Figure 7.2 illustrates the benchmark model for circadian
oscillations in PER and PER mRNA. The system is described by the ordinary
differential equations

Ṁ = vs
Kn
I

Kn
I + P n

N

− vm
M

Km +M

Ṗ0 = ksM − V1
P0

K1 + P0

+ V2
P1

K2 + P1

Ṗ1 = V1
P0

K1 + P0

− V2
P1

K2 + P1

− V3
P1

K3 + P1

+ V4
P2

K4 + P2

Ṗ2 = V3
P1

K3 + P1

− V4
P2

K4 + P2

− k1P2 + k2PN − vd
P2

Kd + P2

ṖN = k1P2 − k2PN

(7.1)

where M is the concentration of PER mRNA, P0, P1 and P2 are the con-
centrations of phosphorylated PER and PN is the concentration of PER in
the nucleus. The parameter values are: n = 4, vs = 0.76µMh−1, vm =
0.65µMh−1, vd = 0.95µMh−1, ks = 0.38h−1, k1 = 1.9h−1, k2 = 1.3h−1,
K1 = K2 = K3 = K4 = 2µMh−1, KI = 1µMh−1, Kd = 0.2µMh−1,
V1 = 3.2µMh−1, V2 = 1.58µMh−1, V3 = 5µMh−1 and V4 = 2.5µMh−1.

The negative feedback exerted by the PER in the nucleus, PN , on the
concentration of PER mRNA,M , is fundamental to the mechanism of oscilla-
tions. In equation (7.1) this is represented by the first term in the differential
equation Ṁ .

Notice that the negative feedback term is not discretized in the meta-
model, but represented by the given continuous function. The other terms
are replaced by the approximated Hill function. However, some modifications
must be applied.
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Figure 7.2: Scheme of the model for circadian oscillations in PER and PER
mRNA [2] corresponding to equation (7.1). The dashed line represents the
nucleus.

In equation (7.1) sigmoids are on the form

S(P,K) =
P

K + P
(7.2)

where P ∈ {M,P0, P1, P2} and K ∈ {Km, K1, K2, K3, K4, Kd}.

The metamodel of the Hill function is based on equation (4.2); a special
case of equation (7.2) with K = 1. Therefore, in order to represent equation
(7.2) by the approximation of the Hill function, we substitute x by P

K
and

set the steepness parameter q equal to one. We obtain

H(x, 1) =
x

x+ 1
= S(P,K), x =

P

K
(7.3)

where H is the Hill function, x is the steepness parameter, S is the sigmoid
(7.2) and P and K are parameters.

From section 4.2 the given intervals for x and q are: xj ∈ [0.01, 1.5] and
qi ∈ [0.1, 0.5]. Extending these intervals is necessary in order to model the
benchmark problem properly. Firstly, the model have to include q = 1, and
secondly, the upper limit of x should be increased to at least xJ = 3.0. From
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figure 4.4 we know that changing the upper limit qI has no consequences,
while increasing the upper limit xJ will require one more principal compo-
nent.

By increasing the number of division points to J = 299 and I = 225, the
step lengths ∆x < 0.01 and ∆q < 0.004 are preserved. The new intervals
are: xj ∈ [0.01, 3.0] and qi ∈ [0.1, 1]. H is then a 225 × 299 matrix and the
metamodel has 6 principal components.

With the substitution (7.3) and the new intervals for x and q, the meta-
model for the benchmark problem (7.1) can be constructed. The result is
illustrated in figure (7.3). We observe oscillations, which is pleasing, but the
metamodel clearly deviates from the original model. What we observe resem-
ble the Gibbs phenomenon: deviation (typically irregular fluctuations) close
to the limits of the model - let us call it a generalised Gibbs phenomenon.

Figure 7.3: Solutions of the system (7.1). The solid lines represent the
original oscillations [2]. The asterisk represent the metamodel where xj ∈
[0.01, 3.0]. The concentration scale is given in µM .

Particularly the concentration of PER mRNA is near the upper limit
xJ = 3.0. It therefore seems reasonable to increase the upper limit xJ further.
WithH as a 225×399 matrix, the interval for x is extended to xj ∈ [0.01, 4.0].
It is easy to see that the approximation illustrated in figure 7.4 is more
accurate than figure 7.3. This may be regarded satisfactory.
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Figure 7.4: Solutions of the system (7.1). The solid lines represent the
original oscillations [2]. The asterisk represent the metamodel where xj ∈
[0.01, 4.0]. The concentration scale is given in µM .
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Chapter 8

3×3 System of Genes

8.1 A Genetic Network of Three Genes

Let us revisit a genetic network of the general type we studied earlier. The
following differential equations model a genetic network of three genes

ẋ1 = (a1z1z2z3 + b1z1z2 + c1z1z3 + d1z2z3+

e1z1 + f1z2 + g1z3 + h1)− γ1x1

ẋ2 = (a2z1z2z3 + b2z1z2 + c2z1z3 + d2z2z3+

e2z1 + f2z2 + g2z3 + h2)− γ2x2

ẋ3 = (a3z1z2z3 + b3z1z2 + c3z1z3 + d3z2z3+

e3z1 + f3z2 + g3z3 + h3)− γ3x3

ajz1z2z3 + bjz1z2 + cjz1z3 + djz2z3 + ejz1 + fjz2 + gjz3 + hj ≥ 0,

γj ≥ 0, j = 1, 2, 3

(8.1)

where x is the concentration, a, b, c, d, e, f, g, h, γ are coefficients and z =
z(x) = z(x, q) is the Hill function (4.2).

The first term is the positive production term and the second is the degra-
dation term.
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8.2 The Metamodel

The metamodel of the 3x3 system is constructed the same way as previously
with the 2x2 system; from the metamodel of the Hill function (4.3) and
equation (8.1), the following approximated differential equations are yielded

ẋ1 = (a1ẑ1ẑ2ẑ3 + b1ẑ1ẑ2 + c1ẑ1ẑ3 + d1ẑ2ẑ3+

e1ẑ1 + f1ẑ2 + g1ẑ3 + h1)− γ1x1

ẋ2 = (a2ẑ1ẑ2ẑ3 + b2ẑ1ẑ2 + c2ẑ1ẑ3 + d2ẑ2ẑ3+

e2ẑ1 + f2ẑ2 + g2ẑ3 + h2)− γ2x2

ẋ3 = (a3ẑ1ẑ2ẑ3 + b3ẑ1ẑ2 + c3ẑ1ẑ3 + d3ẑ2ẑ3+

e3ẑ1 + f3ẑ2 + g3ẑ3 + h3)− γ3x3

ẑ1 =
k∑
i=1

ti(q1)pi(x1)
τ , ẑ2 =

k∑
i=1

ti(q2)pi(x2)
τ ,

ẑ3 =
k∑
i=1

ti(q3)pi(x3)
τ

(8.2)

where a, b, c, d, e, f, g, h, γ are coefficients, ẑ is the approximated Hill func-
tion, ti are the scores, pi are the loadings, q is the steepness parameter and
k is the number of principal components.

Figure 8.1 illustrates a solution of the ordinary differential equations (8.1)
and (8.2). The coefficients are chosen as listed in table 8.1. The relative
squared errors are calculated using equation(3.8):

ζ2x1 = 0.80× 10−4%, ζ2x2 = 0.028% and ζ2x3 = 0.0024%
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Figure 8.1: Solution of the ordinary differential equations (8.1) (solid line)
and (8.2) (asterisk) with initial value x0 = 0.2 and coefficients from table 8.1

Table 8.1: Table of coefficients corresponding to figure 8.1

aj bj cj dj ej fj gj hj γj qj
j = 1 -2 1 0 2 -1 1 1 4 2 0.2
j = 2 2 1 -1 -2 -1 -1 1 1 1 0.4
j = 3 0 1 0 2 -1 1 1 2 1 0.1

For the purpose of studying the 3x3 model more closely, we consider a
system where only the coefficients representing the terms of highest order
are non zero. Thus, in equation (8.1), the coefficients b, c, d, e, f and g equals
zero. The other coefficients are initially set to be a1 = 2, a2 = −1, a3 =
−3, h1 = 3, h2 = 5, h3 = 7 and γ1 = γ2 = γ3 = 3. The result is illustrated
in figure 8.2. Attention must be directed to figure 8.2b. When h ≈ 5, the
solution x3 of the metamodel has a relative squared error of almost 16%.
Such behaviour requires further analysis.
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Figure 8.2: A plot of the relative squared error ζ2, equation (3.8), for
different (a) a (b) h (c) γ

8.3 Sources of Error in the Metamodel

Figure 8.3 illustrates a solution of the ordinary differential equations (8.1)
and (8.2) where the relative squared error for the solution x3 is above 20%.
Apparently, there is a flaw in the metamodel for the 3x3 system.

Table 8.2: Table of coefficients corresponding to figure 8.3

aj bj cj dj ej fj gj hj γj qj
j = 1 1 0 0 0 0 0 0 5 1 0.2
j = 2 -1 0 0 0 0 0 0 5 1 0.4
j = 3 -4 0 0 0 0 0 0 5 1 0.1

The discretization of the function and the interpolation are both possi-
ble sources of error. With the coefficients from table 8.2, the differential
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Figure 8.3: Solution of the ordinary differential equations (8.1) (solid line)
and (8.2) (asterisk) with initial value x0 = 0.2 and coefficients from table 8.2

equations for x3 are

ẋ3 = (−4z1z2z3 + 5)− x3

ẋ3 = (−4ẑ1ẑ2ẑ3 + 5)− x3
(8.3)

where x is the concentration, z = z(x) = z(x, q) is the Hill function (4.2) and
ẑ is the approximated Hill function.

A comparison of the right side of equation (8.3), the discretization and the
interpolation of the discretization is illustrated in figure 8.4. If this was the
source of error, deviation should be observed.

This requires further exploration; we perform a comparison between the
step vise derivative of the solution and the derivative yielded by insertion.
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Figure 8.4: Plot of the right side of equation (8.3): the original model, the
discretization and the interpolation of the discretization.

.

The step vise derivative ˆ̇xk is approximated by the formula

ˆ̇xk ≈
x̂k − x̂k−1

h
, x̂ =


x̂1
x̂2
...
x̂N

 , k = 2, 3, ..., N (8.4)

where x̂ is the solution vector, N is the length, x̂k is the k-th element and h
is the step length.

The solutions x̂1, x̂2 and x̂3 of the equations (8.2), with coefficients from
table 8.2, are inserted into the equations to estimate the derivative ẋinserted

ẋ1inserted = (ẑ1ẑ2ẑ3 + 5)− x̂1

ẋ2inserted = (−ẑ1ẑ2ẑ3 + 5)− x̂2

ẋ3inserted = (−4ẑ1ẑ2ẑ3 + 5)− x̂3

(8.5)

50



8.3. SOURCES OF ERROR IN THE METAMODEL

where x̂ is the solution of equation (8.2) and ẑ is the approximated Hill func-
tion.

Figure 8.5: A plot of the solutions of equation (8.2), the derivative by
insertion, equation (8.5), and the step vise derivative, equation (8.4), for (a)
x1 (b) x2 (c) x3. The initial value is x0 = 0.2 and the coefficients are from
table 8.2

The equations (8.5) can then be compared with the step vise derivative
ẋstepvise of x̂, approximated by equation (8.4). This is illustrated in figure
8.5.

Figure 8.5c shows that there is an error in the derivative. While in figure
8.5a and 8.5b the derivatives ẋinserted and ẋstepvise are rather similar, they
clearly deviate for x3. With figure 8.3 in mind, this should not be surprising.
The interpolation of the function appears to be correct. The derivatives,
however, are not.
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Previously, in chapter 7, we looked at a system of higher order. In that
case, extending the metamodel was inevitable. Most importantly, the upper
limit xJ was increased from xJ = 1.5 to xJ = 4.0. Notice that in figure
8.3, the solution x3 of system (8.1) is very close to the upper limit of the
metamodel. It is not unlikely that the deviation is, as in the modelling of
circadian oscillations, a case of the generalised Gibbs phenomenon.

Let us in the equations (8.2) replace the approximation of the Hill function
with the extended metamodel from the benchmark problem. With a relative
squared error ζ2x3 = 0.029%, the result is pleasing. See figure 8.6. The source
of error can be considered identified. Moreover, a weakness is revealed; the
metamodel should not be used uncritically when close to the limits of x.

Figure 8.6: Solution of the ordinary differential equations (8.1) (solid line)
and (8.2) (asterisk) with the extended metamodel. The initial value is x0 =
0.2 and the coefficients are from table 8.2
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Chapter 9

Determination of the Production
Term for a n×n System of Genes

The production terms of the general genetic systems are positive. The con-
stants in these terms are therefore determined by locating the minima of the
non-constant part. In both the genetic network of one and two genes, the
extreme values are obtained at the corner points. It is possible to prove that
this also applies to a network of n genes. The production term for a n × n
genetic network can be expressed

fn(z1, z2, ..., zn) = az1z2 · · · zn + b1z2z3 · · · zn
+ b2z1z3z4 · · · zn + ...+ b( n

n−1)
z1z2 · · · zn−1

+ c1z3z4 · · · zn + ...+ c( n
n−2)

z1z2 · · · zn−2

+ ...+ p1z1z2 + ...+ p(n
2)
zn−1zn

+ q1z1 + q2z2 + ...+ qnzn

zi ∈ [0, 1], i = 1, 2, .., n

(9.1)

where a, b, c, .., q are coefficients and zi is the Hill function. Notice that some
of the subscripts are denoted by the binomial coefficient 1

The proposition is that the maximum and minimum values of fn are ob-
tained in the corner points. That is where all zi ∈ {0, 1}. By mathematical
induction, these two steps follows

1There are
(
N
K

)
= N !

K!(N−K)! ways to pick an unordered set of K elements from a set of
N elements [20].
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1. Extrema are obtained in the corner points when n = 1.

2. Assume that extrema are obtained in the corner points for the n vari-
able case. Show that the same holds for n+ 1.

Firstly the base case. From equation (9.1) with n = 1 we get

f1(z1) = az1, z1 ∈ [0, 1]

The function is linear and locating the extreme values is trivial; the extrema
are obtained in the endpoints when n = 1.

Secondly the inductive step. For n+ 1 equation (9.1) can be rewritten as

fn+1(z1, z2, ..., zn+1) = zn+1f
1
n(z1, ..., zn) + f 2

n(z1, ..., zn)

with the corresponding (n+ 1)× (n+ 1) Hessian matrix

H =



0 zn+1
∂f1n

∂z1∂z2
+ ∂f2n

∂z1∂z2
. . . . . . ∂f1n

∂z1

zn+1
∂f1n

∂z2∂z1
+ ∂f2n

∂z2∂z1
0 . . . . . . ∂f1n

∂z2...
... . . . . . .

...
...

... . . . 0 ∂f1n
∂zn

∂2f1n
∂z1

∂f1n
∂z1

. . . ∂f1n
∂zn

0



From the theory about extreme values of functions of n variables, we know
how to classify critical interior points by use of determinants of the Hessian
matrix. Also, a stable, genetic model is generic. For isolated extreme values,
a local minimum has only positive determinants, while a local maximum has
determinants alternating between positive and negative values:

Local minimum: D1 > 0, D2 > 0, D3 > 0, D4 > 0, ...

Local maximum: D1 < 0, D2 > 0, D3 < 0, D4 < 0, ...

If neither of these requirements are met, the point is a saddle point. For the
(n+1)× (n+1) Hessian matrix the two first corresponding determinants are

D1 = 0

D2 = −
(
zn+1

∂f 1
n

∂z1∂z2
+

∂f 2
n

∂z1∂z2

)2
< 0
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D2 is negative. Thus, all inner critical points are saddle points. The extrema
must therefore be found in a lower dimension. In the n variable case, however,
the minimum and maximum values are by assumption located in the corners.

It is true by induction that extrema are obtained in the corner points for
all n in the generic situation.

With the extreme values identified, the constant of the production term
for the n × n case can be determined. The process is analogous to the
approach used in chapter 6. If m denotes the minimum value of fn, the
constant has to be grater than the absolute value of m in order to ensure a
positive production term.
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Chapter 10

Discussion

The aim of this thesis was to implement and analyse metamodels of typical
gene regulatory networks.

A discrete approximation of the Hill function was established by principal
component analysis. 5 principal components were needed to describe the
function properly. Similar analysis has been performed previously in the
PhD thesis of Julia Isaeva; the article "Nonlinear modelling of curvature
by bi-linear metamodelling" suggests using 11 principal components when
approximating the Hill function [4]. While the threshold value is considered
constant in this thesis, the article also takes variable threshold value into
account. In addition, the range of the steepness parameter is wider and the
error is smaller. Thus, it is as expected that less components are needed in
this metamodel - the result is consistent with previous observations.

When modelling circadian oscillations and the 3 × 3 system of genes,
we observed deviations close to the limits of the model. The problem was
solved by expanding the metamodel, included increasing the number of prin-
cipal components. This is somewhat undesirable. For the efficiency, as few
components as possible is advantageous.

On the other hand, two benchmark problems where implemented with
acceptable results - indicating that the model is a good fit.
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Chapter 11

Conclusion and Outlook

In this thesis metamodels of typical gene regulatory networks were imple-
mented and analysed. Based on the study of the relative squared error, the
approximation of the scalar case and the second order system was consid-
ered acceptable. For higher order systems it became necessary to expand the
metamodel in order to model the systems properly.

The extreme values were investigated when determining the product terms
of the genetic networks; in a generic situation it was proved that extrema are
obtained in the corner points.

In both the PhD thesis of Thomas Mestl [12] and the article by Plathe
and Kjøglum [16], stationary (steady) points and their stability are discussed.
This could be a natural next step for further work.

Another possible development is to implement a general Matlab code for
a n× n genetic network.
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Appendix A

Matlab Codes

A selection of Matlab codes is presented in this appendix. Other codes can
be obtained upon request.

A.1 Approximating the Hill Function

function [ z1app , z2app ] = approximateZ ( )
% Approximates the matrix H with 5 p r i n c i p a l components

f o r a f i x e d va lue o f q
% re turns : the approximation o f H fo r q=0.2 and q=0.4

x0 = 0 . 0 1 ;
xJ = 1 . 5 ;
q0 = 0 . 1 ;
qI = 0 . 5 ;
I = 100 ;
J = 150 ;

h i l lMat = makeHil lMatrix ( x0 , xJ , q0 , qI , J , I ) ;

[U, S ,V] = svd ( h i l lMat ) ;
nComponents = 5 ;

L = zeros (100 , nComponents ) ;

for i = 1 : nComponents
L ( : , i ) = S( i , i )∗U( : , i ) ;

end
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z1app = L(25 ,1 ) ∗V( : , 1 ) + L(25 ,2 ) ∗V( : , 2 ) + L(25 ,3 ) ∗V
( : , 3 ) + L(25 ,4 ) ∗V( : , 4 )+L(25 ,5 ) ∗V( : , 5 ) ;

% q = 0.2 i s the 25 ’ th va lue
z2app= L(75 ,1 ) ∗V( : , 1 ) + L(75 ,2 ) ∗V( : , 2 ) + L(75 ,3 ) ∗V

( : , 3 ) + L(75 ,4 ) ∗V( : , 4 )+L(75 ,5 ) ∗V( : , 5 ) ;
% q = 0.4 i s the 75 ’ th va lue

end

function [ h i l lMa t r i x ] = makeHil lMatrix ( x0 , xJ , q0 ,
qI , J , I )

%Di s c r e t i z i n g the H i l l f unc t i on
% x0 : l owe s t x va lue
% xJ : h i g h e s t x va lue
% q0 : l owe s t q va lue
% qI : h i g h e s t q va lue
% J : number o f x s t e p s
% I : number o f q s t e p s
% re turns : the matrix H conta in ing the reduced H i l l

f unc t i on va l u e s

i f x0 <= 0
disp ( ’ x−value has to be p o s i t i v e ’ )
return

end

i f q0 <= 0
disp ( ’ q−value has to be p o s i t i v e ’ )
return

end

xValues = linspace ( x0 , xJ , J ) ;
qValues = linspace ( q0 , qI , I ) ;

h i l lMa t r i x = ones ( I , J ) ;

for row = 1 : I ;
for c o l = 1 : J ;

h i l lMa t r i x ( row , c o l ) = hi l lReduced ( xValues
( c o l ) , qValues ( row ) ) ;
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end
end

end

function [ va lue ] = hi l lReduced ( x , q )
%H i l l f unc t i on wi th t r e s h o l d va lue equa l to 1
% x : gene consen t ra t i on
% q : s t e epne s s parameter
% re turns : H i l l f unc t i on va lue

value = h i l l (x , q , 1 ) ;

end

function [ va lue ] = h i l l ( x , q , theta )
%H i l l f unc t i on
% x : gene consen t ra t i on
% q : s t e epne s s parameter
% the t a : t r e s h o l d va lue
% re turns : H i l l f unc t i on va lue

value = (x .^(1/ q ) ) /(x .^(1/ q ) + theta .^(1/ q ) ) ;

end

A.2 Solving Systems of Differential Equations

Of practical considerations, only the code solving the 2x2 system of genes
(chapter 6) is included. The method is equivalent for systems of higher and
lower order.

function [ t , y ] = odeSystemMetamodel ( a1 , a2 , b1 , b2 , c1 , c2 ,
gamma1 , gamma2 , x01 , x02 )

%So l ve s system of 2 ODEs with i n t e r p o l a t i o n o f the H i l l
f unc t i on
%a1 , a2 , b1 , b2 , c1 , c2 , gamma1 , gamma2 , x01 , x02 :

c o e f f i c i e n t s
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%re turns : time i n t e r v a l and corresponding s o l u t i o n
o f x

[ z1app , z2app ] = approximateZ ( ) ;

x j = linspace ( 0 . 0 1 , 1 . 5 , 1 5 0 ) ;
F1 = @(xq ) interp1 ( xj , z1app , xq , ’ l i n e a r ’ , ’ extrap ’ ) ;
F2 = @(xq ) interp1 ( xj , z2app , xq , ’ l i n e a r ’ , ’ extrap ’ ) ;

tspan = [0 1 . 5 ] ;
i n i t i a l V a l u e s = [ x01 x02 ] ;
f = @( t , x ) [ a1∗F1(x (1 ) ) .∗F2(x (2 ) )+b1∗F1(x (1 ) )+c1∗x

(2 )+d1−gamma1∗x (1 ) ; a2∗F1(x (1 ) )∗F2(x (2 ) )+b2∗F1(x
(1 ) )+c2∗x (2 )+d2−gamma2∗x (2 ) ] ;

[ t , y ] = ode45 ( f , tspan , i n i t i a l V a l u e s ) ;

end

function [ t , y ] = odeSystemOde45 ( a1 , a2 , b1 , b2 , c1 , c2 ,
gamma1 , gamma2 , x01 , x02 )

%So l ve s system of 2 ODEs
%a1 , a2 , b1 , b2 , c1 , c2 , gamma1 , gamma2 , x01 , x02 :

c o e f f i c i e n t s
%re turns : time i n t e r v a l and corresponding s o l u t i o n

o f x

i f ( d1< ana lyt i cProduct ionTest ( a1 , b1 , c1 ) | d2<
ana lyt i cProduct ionTes t ( a2 , b2 , c2 ) )
’ p roduc t i o in term i s negat ive , choose new

va lue s f o r d ’
return

end

tspan = [0 1 . 5 ] ;
i n i t i a l V a l u e s = [ x01 x02 ] ;
f = @( t , x ) [ a1∗z1 (x (1 ) )∗z2 (x (2 ) )+b1∗z1 (x (1 ) )+c1∗x

(2 )+d1−gamma1∗x (1 ) ; a2∗z1 (x (1 ) )∗z2 (x (2 ) )+b2∗z1 (x
(1 ) )+c2∗x (2 )+d2−gamma2∗x (2 ) ] ;

[ t , y ] = ode45 ( f , tspan , i n i t i a l V a l u e s ) ;
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end

function [ z1va lue ] = z1 (x )
%H i l l f unc t i on wi th q=0.2
% re turns : h i l l f unc t i on va lue

z1va lue = power (x , ( 1 / 0 . 2 ) ) /( power (x , ( 1 / 0 . 2 ) )+1) ;

end

function [ z2va lue ] = z2 (x )
%H i l l f unc t i on wi th q=0.4
% re turns : h i l l f unc t i on va lue

z2va lue = power (x , ( 1 / 0 . 4 ) ) /( power (x , ( 1 / 0 . 4 ) )+1) ;

end

function [ setD ] = ana lyt i cProduct ionTes t ( a , b , c )
%f i nd s the minimum va lue o f the c o e f f i c i e n t d
%to ensure a p o s i t i v e product ion term

%a : c o e f f i c i e n t
%b : c o e f f i c i e n t
%c : c o e f f i c i e n t
%re turns : the mimimum va lue o f the c o e f f i c e n t d

boundaryValues = [ c b 0 a+b+c ] ;
setD = abs (min( boundaryValues ) ) ;

end
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