
 

 

Master’s Thesis 2016    30 ECTS 

Department of Animal and Aquacultural Science 

 

 

 

Genomic predictions including 

known QTL for reproduction traits 

in swine 

Irene Häfliger 

Master in Animal Breeding and Genetics 



 



 

   

Master’s Thesis 

 

Genomic predictions including known QTL for reproduction traits in 

swine 

 

 

Irene Häfliger 

Ås, Norway 

December 2016 

 

Supervisor 

Prof. Theodorus H.E. Meuwissen 

 

Co-supervisor 

PhD. Eli Grindflek 

 

 

 

Department of Animal and Aquacultural Science 

Norwegian University of Life Sciences 

Ås, Norway 

 

 

 





 

  i 

Acknowledgements 

It would not have been possible to write this thesis without the support of many. Therefore, I want 

to express my appreciation to everybody who made this project possible. 

I want to thank my supervisor Theo Meuwissen, who accepted to supervise this thesis. I appreciate 

his constructive inputs regarding my work. 

I want to acknowledge the importance of Eli Grindflek supporting this project. She leaded me 

through this work as my co-supervisor. I appreciated the discussions with her and her motivating 

ideas. 

Grateful thanks go to the breeding company SUISAG, which supported my thesis financially as 

well as with data for the analysis. Especially I want to thank Andreas Hofer who acted as my 

contact and represented my thesis within SUISAG. He defended and supported this project and 

led a helping hand with good ideas and suggestions. 

I would like to send my gratitude to the worker and PhD students at IHA. Namely are those Oscar 

Iheshiulor, Rajesh Joshi, Yu Xijiang and Maren van Son, who always spontaneously helped me 

when I needed their help. Thank you very much for your support with instructions, explanations 

and refreshing discussions. 

At last, I also want to thank all my friends and family for their never-ending encouragement and 

support. 

  



ii 

  



 

  iii 

Abstract 

Breeding values are the fundament on which the selection of the next generation is based on and 

should therefore be as reliable as possible. The implementation of marker-assisted selection 

(MAS), where major genes are included in the breeding value estimation (BVE), was the first 

method to use genomic information within the BVE. However, with the introduction of genomic 

selection (GS) it is possible to acknowledge the effects of several thousand markers. In this project, 

it is explored if the combination of these two genomic methods can improve the prediction 

accuracy of genomic best linear unbiased prediction (GBLUP). 

The study was carried out on the pig breed Swiss Large White. Used were deregressed breeding 

values of the reproduction traits number of piglets born alive (NBA), the proportion of 

underweighted piglets (UWP), the survival rate (PS), and the interval weaning to oestrus (IWO). 

Regarding the inclusion of additional markers, SNP panels in different extents were built based on 

markers that are known to be of importance from literature. Many QTLs were taken from the pig 

QTL database to build genomic relationship matrices, one with all QTL-markers (QTL-matrix) 

and one including only markers that were associated with reproduction traits (rQTL-matrix). They 

were added to the GBLUP model as additional random effect. Furthermore, few markers 

associated with the Escherichia Coli F4ab/ac (E.coli) resistance and the trait number of piglets 

born alive were added as fixed effects within GBLUP. A cross validation was performed based on 

the 400 youngest animals in the data set. 

Improvements of the likelihoods were observed, when an additional QTL-matrix was included. 

Significant changes were detected for the trait NBA, by including the rQTL-matrix and for the 

trait PS, by including the E.coli-resistance marker. The prediction accuracy was not improved by 

giving QTL-markers more weight within the GBLUP model for the data set used. 

Even thought, the method did not show any improvement of the prediction ability, the goodness-

of-fit improved. In a more powerful data set, the improvements could even enhance the prediction 

accuracy. 
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1 Introduction 

In European agriculture, pigs are one of the major species in livestock production. According to 

the Food and Agriculture Organization of the United Nations (FAO) pig farming is important 

regarding the growing demands for meat around the globe (FAO 2016b). The report of FAO 

concerning global food markets shows that pork is the most produced meat in the world together 

with chicken. While the production seems to stagnate, the amount of pork traded is increasing 

(FAO 2016a). Pigs are especially interesting when it comes to the need for fast-growing and feed-

efficient livestock husbandry (FAO 2016b). A tool to achieve more sustainable livestock 

production is animal breeding. Animal breeding is based on the idea to genetically improve 

defined traits in a population. Genetically, this means a shift of the allele frequencies from the 

unpreferable ones to the preferable ones. 

In pig breeding, reproduction traits are of major interest. An animal that is not able to give birth 

is of no interest in a breeding programme that wants to lead the breed in a sustainable and healthy 

way. Furthermore, the reproduction is a prerequisite for farmers to maintain their livestock and 

their financial independence. Problems with reproduction can occur before and during pregnancy, 

as well as while and after giving birth (Velasco 2011). A sow’s ability to get pregnant and carry 

the pregnancy out is very important for an economically oriented farmer. Not only is the number 

of animals that are born alive important, but also that they are healthy and strong. Large litters 

often have the disadvantage of lower than desired birth weights, which leads to decreased chances 

of survival for the piglets. Another factor affecting the ability of piglets to survive is the amount 

of pathogenic bacteria in the environment. Escherichia Coli is one of the most common causes 

for diarrhoea in piglets and can lead to their death due to dehydration (Nagy & Fekete 2005). 

Pregnancy has a serious impact and is risky for the mother pig. It demands a lot of energy to carry 

out and nurse a whole litter of piglets. In order to improve reproduction traits in pigs, breeding 

values are published, which obtain information to identify the superior animals. 

The models used for the breeding value estimation were introduced in the late 20th century 

(Henderson 1975). However, the goal was always to separate genetic from environmental effects 

as well as possible and provide accurate criteria for the selection of the next generation. Still, the 

goal is to improve these models to receive better predictions of how an animal will perform. With 

increased knowledge about the genome and its functionality, major genes were detected affecting 
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the fitness or the performance of an animal. Examples of such genes are the halothane marker in 

pigs, that is associated with meat quality (Henckel et al. 1992) or IGF2, which is associated with 

muscle growth in pigs (Van Laere et al. 2003). Recently, markers had been found that represent 

the E.Coli resistance (Neuenschwander et al. 2013). These genes can be used for the marker-

assisted selection (MAS), where single marker or a small group of markers are added to the 

breeding value estimation, with regards to increase their accuracy. 

MAS was the initiation of a shift in animal and plant breeding from breeding based on pedigree 

and phenotypic information, to the use of genomic information. However, it was not until recent 

technological improvements in molecular genetics made it possible to obtain genetic information 

in form of several thousand single-nucleotide polymorphisms (SNPs) in a cost-efficient manner. 

Theoretically, with the knowledge about the genome, the whole genetic variance can be explained 

(Goddard et al. 2010). Therefore, the accuracy of estimated breeding values is improved 

immensely with the inclusion of genomic information of some thousand SNPs. Breeding values, 

with which the farmer compares the different animals and decides which one fits best to his 

breeding goals, had never been as accurate as now. Genomic selection (GS), as it was introduced 

in 2001 (Meuwissen et al. 2001), is becoming the standard method of selection in all important 

livestock species. Traditionally, traits are measured when the animal is adult and selection is 

performed afterwards. With GS the animals forming the next generation can be selected with a 

higher reliability at an earlier stage, even though proof of their future performance is not yet 

available (Meuwissen et al. 2001). Considering the big amount of genomic information available, 

it is vital to figure out what share of it is highly associated with the traits that we want to improve. 

Many studies have been conducted to find specific genes or loci that have an effect on a 

quantitative trait (e.g., (Bergfelder-Druing et al. 2015; Rampoldi et al. 2011). They are called 

quantitative trait loci (QTL), and are detected if there is a linkage disequilibrium (LD) between a 

marker and a quantitative trait (Falconer & Mackay 1996). LD occurs when markers are non-

randomly associated due to selection, migration, random drift or mutation (Falconer & Mackay 

1996). Therefore, the effect of these markers on traits can be estimated and markers with 

significant effect can be detected. The outcomes of QTL studies depends on the architecture of a 

trait. The result can range from a few positions that show a major importance to the phenotypic 

variation to almost no significant position, when many genes are involved in the gene expression. 
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In the QTL database (Hu et al. 2005) thousands of QTLs are publicly available for the most 

important farm animals. Currently (accessed 7.9.2016) 16,031 QTLs are registered from over 500 

publications for pigs alone (Hu et al. 2016). 

 

 

1.1 Objectives 

The most common application of GS, the genomic best linear unbiased prediction (GBLUP), is 

used in this study to calculate genomic estimated breeding values (GEBVs) for reproduction traits 

in pigs. The breed of interest is the Swiss pig breed Large White and the traits concerned are part 

of the breeding value estimation for reproduction of the breed itself. The study is conducted on a 

real-life data set obtained from the Swiss company SUISAG. It is investigated, if the combination 

of marker assisted selection and genomic selection can improve the accuracy of the GEBVs 

estimated with GBLUP. More precisely, selected QTL panels from the database (Hu et al. 2005) 

and a few major genes available in the data set will be added to the breeding value estimation for 

reproduction traits. The major genes are markers associated with the E.coli resistance 

(Neuenschwander et al. 2013) and litter size (Bergfelder-Druing et al. 2015), whose enhancements 

are of high medical and economical interest, respectively. Many studies were carried out 

concerning the improvement of the accuracy by modifying the genomic relationship matrix (G-

matrix) (e.g., (dos Santos et al. 2016; Su et al. 2014; Zhang et al. 2010). In this work, the G-matrix 

will not be modified, but the statistical model is expanded with an extra genomic factor. Therefore, 

the purpose of this study is to explore if it is beneficial to include genomic information 

additionally, alongside with the G-matrix, in the model. The goal is to establish the accuracy of 

the GEBVs and explore whether the accuracy of GEBVs can be improved by adding trait-

associated markers to GBLUP model. 
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2 Background 

2.1 Breed description Swiss Large White 

The breed Swiss Large White (SLW) originated from small breeds kept in the countryside in 

Switzerland and was enriched over time with the English Yorkshire breed (SUISAG 2015a). 

Imports from several countries such as the Netherlands, Germany, England, France and Finland 

helped to evolve the genetic potential of SLW (SUISAG 2015a). In the year 2002, SUISAG 

decided to divide the population in a maternal and a paternal line and treated the population as 

two different breeds ever since. Therefore, the SLW dam line is bred as typical maternal line with 

outstanding reproduction characteristics. In contrast, the sire line is bred for production and meat 

quality traits. 

In Switzerland, the SLW is known as a robust and highly productive breed. Regarding 

reproduction performance, the animals in production herds show an average of 12.7 piglets born 

alive per litter and an average of 2.32 litter per sow and year (Hofer 2016b). 

 

Picture 1: Swiss Large White of SUISAG 

(http://www.suisag.ch/Zucht/Rassen/Edelschwein/tabid/152/

Default.aspx). 

Swiss Large White is the most common breed in Switzerland. According to SUISAG’s annual 

report concerning the state and trends in the year 2015, the company had 8604 (174 male and 

8530 female) animals in the maternal line registered in their herd book. Additionally there were 

454 (249 male and 205 female) registered in the paternal line (SUISAG 2015c). 
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2.1.1 Breeding programme 

In general, the breeding programme of SUISAG incorporates two maternal lines, the Large White 

and the Landrace, and one paternal line, the Large White sire line. The two dam lines are crossed 

to produce the hybrid sows (F1-sow) for piglet production. The F1-sow is mated to the paternal 

line to produce the slaughter pigs (SUISAG 2015b) (Figure A1 in the appendix). 

According to SUISAG, reproduction, production and conformation are the main components of 

the breeding goal, with different weights depending on the breed. For the SLW dam line, the 

relative weights per genetic standard deviation are 49% for reproduction, 32% for production and 

19% for conformation traits (Figure 1) (SUISAG 2016). In comparison, the sire line breeding goal 

does not include reproduction traits, but includes production traits with 88% and conformation 

traits with 12% (Figure 1) (SUISAG 2016). Within these three main attributes for the dam lines, 

SUISAG uses traits that are measured by the farmer themselves, or by technicians in a testing 

station or on the breeding farm. These traits in the breeding goals are based on requests of farmer, 

scientific findings, genetic potential and the facilities needed for their implementation in the 

breeding scheme. 

Production includes ten traits that can be combined to four groups. The first group is weight gain 

(29% in the SLW sire line and 27% in the SLW dam line), which consists of daily weight gain on 

test in the testing station, daily weight gain on the breeding farm and daily weight gain measured 

on end products in the slaughterhouse (SUISAG 2016). The second group is meat quantity (16% 

in the sire line and 10% in the dam line), which consists of loin eye area and the amount of lean 

meat in the carcass. The third group is concerning meat quality (37% in the sire line and 42% in 

the dam line), which consist of the amount of intramuscular fat, the pH one hour after slaughtering, 

the pigment level and drip loss, all measured in the loin (SUISAG 2016). The last group is feed 

efficiency (18% in the sire line and 21% in the dam line) with only trait feed conversion (SUISAG 

2016). An overview of all production traits, comparing the dam and sire line, can be seen in Figure 

2. A full list with all relative weights within the complex of production can be found in the 

appendix Table A1. 

The complex of conformation is split into three groups. These three groups imply characteristics 

for teats, legs and type of the body. The group of traits regarding teats (8% in the SLW sire line 

and 26% in the dam line) include the number of teats on the left and right side, the number of 
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inverted nipples and the number of non-functional teats (SUISAG 2016). Type (13% in the sire 

line and 12% in the dam line) includes only two traits, which are the carcass length and the 

formation of the loins. The biggest and most important group concerns the legs (79% in the sire 

line & 62% in the dam line) (SUISAG 2016). It includes traits regarding the rear legs such as 

knock- or bow-legged, side view angle, angle pastern and size of inner claws. Further are the traits 

side view angle foreleg, the number of bursas and the gait included (SUISAG 2016). Figure 3 

gives an overview of all conformation traits, a full list of all production traits with their relative 

weights can be found in the appendix Table A2. 

 

 

Figure 1: Breeding goals for the Swiss Large White dam line and sire line (SUISAG 2016). 
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Figure 2 Production traits and their relative weights for the SLW dam line and sire line (SUISAG 2016). 

 

 

Figure 3: Conformation traits and their relative weights for the SLW dam line and sire line (SUISAG 2016).   
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2.1.2 Traits of interest: Reproduction 

Reproduction traits account for 49% of the breeding goal in the SLW dam line (SUISAG 2016). 

According to the breeding division of SUISAG, there are four reproduction traits in their breeding 

programme, which are recorded by the farmers themselves.  

 NBA: “number of animals born alive” 

The interest to increase the litter size is obvious, as farmers earn their money per pig sold. 

Breeding for total number of piglets born indirectly increases the number of piglets born 

dead. Therefore, the number of animals born alive is a better choice for breeding 

programmes. The fundament for the inclusion of the trait was the work of Frey (1999). 

 

 UWP: “proportion of piglets born alive below 1kg birth weight” 

This trait is derived from the number of piglets born below 1 kg assessed by the breeder 

without weighting every single piglet. The trait was introduced in 2012 with regards to 

improve the birth weight of litters (Hofer, personal communication). From literature it is 

know that UWP influences the amount of piglets that died (Hellbrugge et al. 2008). 

 

 PS: “the proportion of piglets nursed that are weaned” 

The number of piglets born and the survival rate show an unfavourable correlation, 

indicating that more piglets die with increased litter size (Hellbrugge et al. 2008). Thus, 

both traits should be included to make sure that the piglet mortality does not increase 

uncontrolled. PS was included in 2004 in the breeding goal and is nowadays the most 

important trait (Hofer, personal communication). 

 

 IWO: “interval weaning to oestrus” 

The interval weaning to oestrus in general is of interest, as it improves the productivity of 

a sow. The faster a sow returns in the reproduction cycle, the shorter is her unproductive 

period. Furthermore, is IWO shown to be positively associated with litter size by Wilson 

and Dewey (1993). Selecting for a shorter interval from weaning to oestrus increases the 

number of piglets born (Hanenberg et al. 2001). This trait was included in the breeding 

programme based on the work of Frey (1999).  
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The relative weights of these traits in the reproduction index are: NBA 30%, UWP 19%, PS 42% 

and IWO 8% (Figure 4) (SUISAG 2016). 

 

Figure 4: Relative weights of the reproduction trait in the reproduction index 

regarding the SLW dam line. The traits are number of piglets born alive (NBA), 

proportion underweighted piglets (UWP), survival rate (PS) and interval weaning to 

oestrus (IWO) (SUISAG 2016). 

 

 

2.2 Escherichia coli 

Escherichia coli, further called E.coli, is one of the most important pathogens causing diarrhoea 

in piglets (Fairbrother et al. 2005; Schroyen et al. 2012). It is a gram-negative bacterium, which 

colonises the gut flora naturally, but some pathogenic strains cause diseases. Regarding pigs, the 

E.coli F4 strain is commonly associated with diarrhoea during the suckling period, whereas the 

E.coli F18 strain is associated with post weaning diarrhoea and oedema diseases (Schroyen et al. 

2012). The symptoms are caused by the pathogen attaching their fimbriae to a particular receptor 

in the piglets’ small intestine (Nagy & Fekete 2005; Schroyen et al. 2012). After attaching, E.coli 

starts releasing enterotoxins, a protein secrete that prevents enterocytes from executing its 

absorbing function (Nagy & Fekete 2005). Infections with E.coli create high costs in livestock 

30 %

19 %

43 %

8 %

NBA UWP PS IWO
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production due to increased mortality, morbidity, a lower growth rate and medication (Fairbrother 

et al. 2005). E.coli shows more and more resistances to several antimicrobials (Fairbrother et al. 

2005) and there is increasing pressure from society to reduce the amount of antibiotics in livestock 

production. Therefore, there is a great interest to improve the current situation. Since not all piglets 

show symptoms due to these E.coli strains, it has been suspected that there is a genetic resistance 

in some parts of the pig populations (Meijerink et al. 2000) 

 

2.2.1 Genetics behind E.coli resistance 

Meijerink et al. (2000) were the first to describe the receptor for E.coli F18 in the FUT1 gene and 

the underlying mutation was found to be FUT1-c.307A>G. The single nucleotide polymorphism 

(SNP) can be used directly to select for E.coli F18 resistance, as it is the causative mutation. The 

F4 fimbriae can be divided into three variants F4ab, F4ac and F4ad, of which the F4ab and F4ac 

are the most frequent (Fairbrother et al. 2005). It is assumed that the European wild boar is 

naturally E.coli resistant (Jacobsen et al. 2010), but with domestication we seem to have selected 

against this very useful gene. An explanation is the negative correlation of the E.coli resistance 

with production traits (e.g., weight gain), that we have been artificially selecting for (Nielsen & 

Johannsen 2004). In 1993, the first association of the E.coli F4 resistance with the chromosome 

13 was found (Guerin et al. 1993). Ever since many studies were conducted upon the chromosome 

13 to find the underlying mutation (e.g., (Jacobsen et al. 2010; Rampoldi et al. 2011; Schroyen et 

al. 2012). Unfortunately, the fundamental causative mutation, that could be used for all 

populations has not been located yet (Schroyen et al. 2012). 

Nevertheless, several studies claim to have found causative gene (Jacobsen et al. 2010; Jorgensen 

et al. 2003; Rampoldi et al. 2011). One of them is a Danish group of researcher, that claim to have 

found the single point mutation MUC4-g.8227G>C as causative mutation for resistance against 

E.coli F4ab/ac in a group of animals, a cross between European Wild Boars and Swedish 

Yorkshire (Jorgensen et al. 2003). This marker is used in the Danish breeding programme 

(Fredholm 2008). Fredholm (2008) points out that the inheritance is recessive and animals must 

be homozygote carrier to be resistant against E.coli infections. 

In 2011, the region of the MUC4 gene on chromosome 13 was refined and six SNPs in complete 

linkage disequilibrium with the resistance to F4ab/ac located (Rampoldi et al. 2011). This study 
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had been conducted upon the Swiss Large White breed and the markers found were 

ALGA0072075, ALGA0106330, MUC13-226, MUC13-813, DIA0000584 and MARC0006918 

(Rampoldi et al. 2011). In a further study the markers ALGA0106330 and ALGA0072075 showed 

a 100% conformity with the E.coli F4 resistance (Neuenschwander et al. 2013). 

 

2.2.2 E.coli resistance in breeding programmes 

The Danish pig research centre (VSP – Videncenter for Svineproduktion) have been working on 

increasing the frequency of the E.coli F4ab/bc resistance gene in their Landrace, Duroc and 

Yorkshire population since 2003. According to their publications in DanAvl Magasinet, there is 

a tendency that resistant piglets have a higher growth rate from birth to 30 kg weight than non-

resistant piglets (Nielsen & Johannsen 2005). Litter size is revealed to be higher in resistant 

animals for the breed Yorkshire but not for Landrace (Nielsen & Johannsen 2004). On the other 

hand, it is known that the E.coli F4 resistance is negatively correlated with the portion lean meat, 

daily growth from 30 to 100 kg, feed efficiency and slaughter losses (Nielsen & Johannsen 2004). 

After several years of breeding efforts, DanAvl revealed that they completed the F4 breeding 

project, as the resistance gene is almost fixed in all populations (Nielsen & Svensmark 2010). As 

a result, the amount of piglets dying due to diarrhoea within the first 5 days after birth has 

decreased (Figure 5) and the growth between 0 kg up to 30 kg weight has increased (Nielsen & 

Svensmark 2010).  

 

Figure 5: Changes in the proportion of piglets that died because of diarrhoea within 

the first 5 days after birth in the Danish pig population maintained by DanAvl 

(Nielsen & Svensmark 2010). 
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In Switzerland the Large White dam line is resistant to the E.coli F18 strain, while the selection 

is still on-going in the sire line (Luther 2015). They had a rigid selection programme for the marker 

on the FUT1 gene found by Meijerink et al. (2000). E.coli F4 is now a bigger problem in 

Switzerland than E.coli F18 had been. Its resistance is going to be part of the breeding programme 

soon. Genotyping key animals for the markers associated with the E.coli F4 resistance has started 

in order to prepare for the selection (Hofer, personal communication). SUISAG plans to improve 

the level of resistance in the sire line first. The idea behind it is, to use the benefit of having non-

resistant sows nursing resistant piglets. With the colostrum, non-resistant sows transfer valuable 

antibodies, what helps the piglets to compete better with E.coli. The odds are high to improve the 

allele frequency for the resistance gene in near future. 

 

 

2.3 Marker assisted selection 

Traditional breeding values are calculated using phenotypes and animal relationships based on a 

pedigree. The commonly used method is the best linear unbiased prediction (BLUP) (Henderson 

1975). The linear model assumed in BLUP is 

𝑦 = 𝑋𝛽 + 𝑍 𝑢 + 𝑒 , 

with 𝑦 as a 𝑛 𝑥 1 vector of observations. 𝑋 and 𝑍 are known design matrices linking the 

observations to the fixed regression parameters 𝛽 and the random effect 𝑢, respectively. 𝑢 is 

random vector including all animals in the pedigree and has assumed variance  𝑁𝐼𝐷(0, 𝐴 𝜎𝑎
2), 

whereas 𝑒 is a random vector of size 𝑛 𝑥 1 with the assumed variance and 𝑁𝐼𝐷(0, 𝑅 𝜎𝑒
2), 

respectively (Henderson 1975). The matrix 𝐴 is the numerator relationship matrix, representing 

the coefficients of the additive genetic relationship among all animals in a pedigree and 𝑅 is a 

𝑛 𝑥 𝑛 matrix. Further is 𝜎𝑎
2 the additive genetic variance and 𝜎𝑒

2 the residual variance. When we 

calculate breeding values, we are looking for the variable 𝑢. 

With improvements in molecular genetics, single or group of genes can be detected that affect 

important traits in the breeding goal or diseases. It can either be direct genes or representative 

markers obtained by linkage equilibrium or linkage disequilibrium with QTLs. An example used 
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in breeding programmes is the DGAT1 gene affecting the milk-fat content in dairy (Grisart et al. 

2002). Another example is the halothane gene (HAL) (Fujii et al. 1991) in pigs, which affects the 

meat quality. The HAL gene is known to be associated with the expression of the Porcine Stress 

Syndrome (PSS). PSS is one of the major reason for increased pale, soft and exudative meat (PSE 

meat) (Jermiah et al. 1999). Carrier of the HAL gene have generally poorer meat quality than non-

carrier. In pigs, the IGF2 gen (insulin-like growth factor 2) was detected with a mutation, affecting 

the QTL for muscle growth (Van Laere et al. 2003). The Q allele was identified as the stimulating 

allele for the formation of muscle tissues. The development is especially enhanced during the 

embryonic phase. Animals inheriting it from their sires have a threefold higher IGF2 messenger 

RNA expression in postnatal muscles (Van Laere et al. 2003). 

Marker assisted selection (MAS) is the inclusion of single markers or group of markers in the 

model of the breeding value calculation. It extends the traditional BLUP model with an additional 

effect. The resulting model is 

𝑦 = 𝑋𝛽 + 𝑋𝑀𝑔 + 𝑍 𝑢 + 𝑒, 

with mostly the same model terms as above. The term defining the additional effect is 𝑋, a design 

matrix linking the observations to the marker effects, 𝑀, a 𝑛 𝑥 𝑚 matrix with the 𝑚 marker 

genotypes coded as 0, 1 or 2, depending on the number of minor alleles (0 0, 0 1 or 1 1) and 𝑔, a 

vector of the allele substitution effects for each marker 𝑚. The improvement of MA-BLUP 

compared to traditional BLUP was confirmed by different research groups (Lande & Thompson 

1990; Meuwissen & Goddard 1996). However, its success is mainly dependent on the fraction of 

additive genetic variance explained by the markers used (Lande & Thompson 1990). Lande and 

Thompson (1990) showed that MAS is more efficient for traits with a low heritability. Similar 

results were detected by Meuwissen and Goddard (1996). Furthermore, they predicted a higher 

additional increase in genetic gain for traits that are recorded after selection (Meuwissen & 

Goddard 1996).  
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2.4 Genomic Selection 

Genomic selection (GS) (Meuwissen et al. 2001) is applied, since technological improvements 

made it possible to receive genomic data in a bigger quantity to an affordable price. Especially 

the inventions of modern computer technology and high throughput sequencing are considered as 

milestones, opening new prospects for modern bioinformatics. Regarding breeding programmes, 

this development means that we have the possibility to include genomic information into the 

estimation of breeding values (Meuwissen et al. 2001). The markers used are single nucleotide 

polymorphisms (SNPs), representing genetic variation in a single base of the genome. Different 

sizes of SNP-panels are available, but commonly used are panels of 50,000 to 80,000 SNPs. For 

Pigs, the most common chips are the Illumina Porcine SNP60 BeadChip (Illumina, San Diego, 

CA, USA) and the GeneSeek custom 80K SNP chip (Lincoln, NE, USA). The difference between 

MAS und GS is the amount of genomic information used in the model and their relative weight. 

MAS only uses one or a few genes, whereas GS includes several thousand SNPs at once. Thus, 

the few marker in MAS receive more weight in the model, while the markers in GS receive all 

the same and only small weight. The model proposed for GS is 

𝑦 =  1𝑛 𝜇 + ∑ 𝑀𝑖𝑖 𝑔𝑖 + 𝑒 ,  

with 𝑦 containing the observations corrected for fixed effects in a 𝑛 𝑥 1 vector, 1𝑛 as a 𝑛 𝑥 𝑛 

identity matrix, 𝜇 being the mean over all performances, ∑ 𝑀𝑖𝑖 𝑔𝑖  as the sum of all products 

between marker 𝑀𝑖 and its effect 𝑔𝑖 at position 𝑖 and 𝑒 as an unknown random vector of length 𝑛 

with assumption 𝑁𝐼𝐷(0, 𝜎𝑒
2) (Meuwissen et al. 2001). This model is called the marker based best 

linear unbiased prediction (mBLUP). Because of this model includes all markers as regression 

parameters on the phenotype, the effect of each marker is estimated based on the fraction of 

animals with genotypic and phenotypic information. Furthermore, we can calculate the 

predictions for animals that do not have own phenotypes, but do have genomic information 

available. Meuwissen et al. (2001) showed that these predictions have a higher reliability than 

traditional breeding values. As a matter of fact, the selection of the next generation is possible at 

an earlier stage and with a higher accuracy than with the traditional methods (Meuwissen et al. 

2001). A stronger selection at an earlier stage can reduce the costs for the raising and performance 

testing of selection candidates (Meuwissen et al. 2001). Therefore, the introduction of GS can 

improve the economy of a breeding programme directly. The major benefits for cattle breeder are 
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the shortage in the generation interval and the improved genetic gain. The pig breeder on the other 

hand gain most due to the higher accuracy of GS. In fish production, the genomic information is 

amongst others used to distinguish between individuals, as they have big groups of full sibs.  

The marker effects have to be estimated on a training population (Meuwissen et al. 2013). Usually, 

it includes animals with genomic and phenotypic information that are born within a defined period 

of time (e.g., the last 5 years). The training population needs to be updated frequently, due to the 

changing marker frequencies in the new generations and their effects accordingly. 

There are two equivalent genomic BLUP models. Namely the marker based model (mBLUP) 

(Meuwissen et al. 2001) and the model based on a genomic relationship matrix (G-matrix) 

(GBLUP) (e.g., (Habier et al. 2007). The mBLUP model is computationally more demanding, as 

it calculates the effect of each marker included in the model, whereas the GBLUP estimates the 

effects of each animal (Meuwissen et al. 2013). The difference is especially obvious, when few 

animals have many marker genotypes. 

GBLUP is an animal model with a genomic relationship matrix (G) instead of the pedigree based 

numerator relationship matrix (A). The GBLUP model is 

𝑦 =  1𝑛 𝜇 + 𝑍𝑔 + 𝑒, 

with the same parameters as the mBLUP, simply that 𝑍 is a design matrix to link the observations 

to the animals and 𝑔 is a vector of random effects with assumption 𝑁𝐼𝐷(0, 𝐺 𝜎𝑎
2) and 𝐺 being the 

genomic relationship matrix (Habier et al. 2007). In GBLUP the relationship matrix is calculated 

according to the SNP markers that are identical by state (Habier et al. 2007). A major advantage 

of the G-matrix compared to the A-matrix is that the relationship between two animals is more 

accurate, as the pedigree-based relationships are merely expectations (Meuwissen et al. 2013). 

For instance, in the A-matrix the relationship of full sibs is always ½ but in reality it might range 

from 0 to 1 (Meuwissen et al. 2001). 

 

2.4.1 Non-linear models 

Both genomic BLUP models introduced assume that all markers explain equal amount of the total 

genetic variance and are therefore linear models. Non-linear models assume a prior distribution 

and consequently an unequal amount of genetic variance explained by different markers 
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(Meuwissen et al. 2001). Thus Bayesian models, such as BayesA and BayesianLasso (Legarra et 

al. 2011), which assume a different amount of variance explained by the SNPS but that all SNPs 

have an effect, whereas BayesB and BayesC assume that a few SNPs have high effect and the rest 

has no effect at all. Often the Bayesian methods perform better in simulation studies, but not in 

real-life data analyses (Meuwissen et al. 2013). However, the most common used method in 

practice is the GBLUP, which is relatively simple to implement in an already existing breeding 

programme. It is a computationally stable method, as we do not increase the complexity of the 

model, but replace the A-matrix with the G-matrix (Meuwissen et al. 2013). Furthermore, it is 

very attractive for populations with an incomplete or unknown pedigree, considering we are only 

interested in the genomic relationships (Goddard et al. 2010). 

 

2.4.2 Multi-trait genomic selection 

Multi-trait genomic selection (MT-GS) includes several traits in one model. The benefit of multi-

trait models is that they adjust for interactions between traits used in a breeding programme (Jia 

& Jannink 2012). A model with more traits is supposed to include more information and 

accordingly is more accurate (Jia & Jannink 2012). MT-GS is computationally more demanding 

than single-trait models. Nevertheless, its advantages are that traits with a low heritability can 

benefit from high-heritable traits, when they have genetic correlations (Calus & Veerkamp 2011). 

 

2.4.3 Genomic selection in pig breeding 

In pig breeding, the most important selection decision is taken when the selection candidates reach 

the usual slaughter weight. Many of the traits selected for, such as product quality and quantity, 

are not measured on the living animal itself (e.g., slaughter losses, meat tenderness). They are 

mostly measured on full sibs. Furthermore, it is difficult to select for maternal traits that can only 

be observed on female relatives after their first litter (Lillehammer et al. 2011). To use the effect 

of heterosis, most breeding programmes keep several purebred lines to produce crossbred 

offspring (Jonas & de Koning 2015). Hence, there is a potential for a large amount of information 

originating from crossbred animals to be used in the selection of the purebred lines (Jonas & de 

Koning 2015). 
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The analysis with genomic data enable the possibility to compare the markers of the selection 

candidate with the markers of the performing full sibs. It has been proven on real-life data that 

GS can improve the selection accuracy for traits that are recorded on relatives (Nordbø et al. 

2014). According to Lillehammer et al. (2011), GS can improve genetic gain for maternal traits 

even though these traits have low heritability, are not measured on the selection candidate and 

cannot be recorded before the first litter. In a further study, Lillehammer et al. (2013) concluded 

that including female genotypes is beneficial for maternal traits in a breeding programme, when 

maternal traits are prioritised. Thus, not only the male selection candidates should be genotyped, 

also the sows from the nucleus farms. For the genomic predictions of crossbred animals, more 

extensive use of crossbred genotypes in GS is beneficial (Hidalgo et al. 2015). 

 

 

2.5 Methods used for the data preparation 

2.5.1 Imputation 

What we call imputation is the procedure of estimating genomic information for missing 

genotypes, based on the genomic information obtained by a set of genotypes. Usually this is 

genomic information from the population of interest. Missing genotypes can occur due to 

technical problems in the laboratory or bad sample quality. Imputation can also be used to 

implement genomic information for animals that are not genotyped. This has a high accuracy, as 

long as the individuals that are included in the training data have a close relationship (Pimentel et 

al. 2013). The accuracy of genomic predictions increases, the more genotypic information 

included, even if the animals are imputed (Pimentel et al. 2013). Many imputation programmes 

available (e.g. FImpute, findhap) use pedigree information in addition to the genotypes. These 

programmes impute first based on the most probable genotype inherited by the parents and then 

take the most probable allele according to the population into account. Imputation is based on 

haplotypes, rather than single markers, and is therefore highly accurate (Browning & Browning 

2009). The more animals the reference panel includes, the higher is the imputation accuracy. 

However, imputation can lead to over and underestimated breeding values for extremely bad and 

good animals, respectively (Pimentel et al. 2015). The reason for this is that the imputed marker 
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represent the population mean. Hence, inferior animals receive over-estimated marker effects and 

superior performing animals receive under-estimated marker effects. 

 

2.5.2 Deregression of breeding values 

Usually, the estimation of breeding values is based on animals with different amount of 

information from different origin. For instance, some animals have repeated measurements (e.g., 

sows with several litters) or information of ancestors (e.g., litters of the mother). By using 

estimated breeding values (EBVs) in a genomic model directly, we bias the estimation of the 

genetic effects, as we include information of different sources and amounts. As a matter of fact, 

EBVs lead to double-counting, when both the offspring and ancestors are genotyped (Ostersen et 

al. 2011). Due to the negative correlations of prediction errors with breeding values, the inclusion 

of direct EBVs result in a shrinking of the total genetic variance (Garrick et al. 2009). 

Furthermore, the different amounts of information used in BLUP shrinks the EBVs according to 

their reliability. Therefore, deregressed breeding values (drEBV) are calculated and used for the 

genomic prediction. The method from Garrick et al. (2009) suggests to correct for parent average 

and the shrinking. What is called shrinking is the circumstance that BLUP narrows the estimates 

towards the population mean (Garrick et al. 2009). The deregressed observations merely account 

for the own performance and the offspring performances. However, the drEBVs have 

heterogeneous variances if the reliabilities of the underlying breeding values are varying between 

animals (Garrick et al. 2009). Hence, the weights account for the repeated measurements on an 

individual. The drEBVs with their weights can be used in GBLUP in a weighted analysis directly. 

Guo et al. (2010) analysed the use of deregressed breeding values on a simulated cattle population. 

Their results indicate slightly better performance of the EBVs over the drEBVs. Nevertheless, 

Ostersen et al. (2011) increased the reliability of GEBVs with 15-39% by replacing the EBVs 

with drEBVs in a pure-bred pig population. They explain the differences, with the lower double-

counting in the cattle data, whereas the pig population showed inferior heritabilities and a high 

amount of double-counting (Ostersen et al. 2011).  
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3 Material and Methods 

3.1 Data 

The Swiss company SUISAG provided the data analysed in this project. The data set includes 

information of both the maternal and the paternal line of the pig breed Swiss Large White (SLW), 

with a total of 2,486 animals. Both lines are part of the analysis. 1,911 females and 575 males are 

available, from which 2,305 animals belong to the maternal line and 171 animals to the paternal 

line (Table 1). All animals have phenotypic as well as genomic data available. No additional 

animals will be included in the analysis. 

Table 1: Data distribution according to breed and sex for the pig breed SLW. 

   breed  

   dam line sire line sum 

sex 
male  428 147 575 

female  1,877 34 1,911 

 sum  2,305 171 2,486 

 

The pedigree encompasses 8,211 individuals, of which 2,486 have records and the remaining 

5,725 individuals are their ancestors. It reaches back for a maximum of ten generations. The oldest 

ancestor included was born in 1983. Even though, the paternal and maternal line of SLW are kept 

as two independent breeds, they share common ancestors within the pedigree. 

 

3.1.1 Phenotypic data 

The phenotypic data includes the four reproduction traits: number of piglets born alive (NBA), 

proportion of piglets born under 1kg birth weight (UWP), proportion of piglets nursed that are 

weaned (PS), and the interval from weaning to oestrus (IWO). More information about the traits 

can be found under paragraph 2.1.2 Traits of interest: Reproduction. The phenotypic information 

was received as deregressed breeding values and their corresponding weights, which are 

calculated according to the method described by Garrick et al. (2009). A whole table with 
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statistical reference numbers of the EBVs, drEBVs and their weights is in the appendix (Table 

A3). 

 

3.1.2 Genomic data 

Originally, the data included information of the 2,486 animals from four different types of marker 

arrays. They were distributed as 29 genotypes with the Illumina Porcine SNP60 Beadchip version 

1 (Illumina, San Diego, CA, USA), 1,779 genotypes with the same chip but version 2, 555 

genotypes with the GeenSeek 80K (Gene Seek Inc, Lincoln, NE, USA) and 60 genotypes with a 

custom chip based on Illumina Porcine SNP60 Beadchip version 2. The data was delivered as 

imputed genotypes. All genotypes had been imputed for all markers with the programme FImpute. 

(Sargolzaei et al. 2014). It was decided to restrict the markers used in the analysis, to the SNPs 

that occur on both the Illumina Beadchip version 2 and the GeenSeek 80K chip. Furthermore, to 

secure an acceptable level of accuracy for the imputed genotypes, the markers were filtered for a 

minor allele frequency of 0.01 and a call rate of minimal 0.05. Therefore, 34,879 SNPs build the 

basis of the whole analysis.  

 

3.1.3 Genomic data regarding the additional effect 

To model the supplementary effect, all 16,031 QTLs known and publicly registered on the QTL 

database for pigs (Hu et al. 2005; PigQTLdb 2016) were taken into account. According to the 

information available about their flanking markers, two SNP-panels were built. All flanking 

markers that occurred in the genotypic data described above build the first QTL panel. It consists 

of 4,205 SNPs. The second panel, with markers specifically associated with reproduction, consists 

of 1,103 SNPs (Table 2) Table A4 in the appendix shows the distribution concerning the markers 

across the chromosome for both panels. 

Additionally, the markers found by Neuenschwander et al. (2013) were taken into account (Table 

2). These SNPs showed complete linkage disequilibrium and 100% conformity with the resistance 

gene responsible for Escherichia coli F4ab/F4ac resistance in SLW (Rampoldi et al. 2011). From 

the two SNPs found, one was available in the genomic data. This marker was ALGA0106330, 

which is located on chromosome 13. With one marker, the effect modelled has two different effect 
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levels. Information regarding the marker position and frequency can be seen in Table A5 in the 

appendix. 

Another group of SNPs important regarding reproduction traits were found to be significant to the 

number of piglets born alive by Bergfelder-Druing et al. (2015) (Table 2). This study was 

conducted on the breeds Large White and Landrace from Austria, Germany and Switzerland. A 

genome wide association study was conducted and revealed thirteen significant SNPs affecting 

litter size in Large White. The intersection of the associated markers found in the work from 

Bergfelder-Druing et al. (2015) and the available data, resulted in the two markers MARC0043480 

and MARC0006510. The first marker is located on chromosome 10 and the second on 

chromosome 11 (Table A5). As a result, a panel of two markers arose for the last analysis. Two 

markers can build four different haplotypes, of which all occur in the population. Information 

regarding the marker positions and frequencies are stated in Table A5 in the appendix. 

Table 2: Overview of the marker panels used regarding the additional effects, the number of SNPs included and their use 

in the single-trait GBLUP. 

description short name Number of SNPs  effect sort of factor 

all QTLs QTL 4,205  Random QTL-matrix 

reproduction QTLs rQTL 1,103  Random QTL-matrix 

NBA marker1 LS1 2  Fixed Haplotype 

E.coli marker E.coli 1  Fixed Single marker 

1 to avoid confusion between the trait NBA and NBA associated markers the markers will further be called litter size 

markers (LS) 

 

3.1.4 Reference and validation group 

In order to receive comparable output, the 400 youngest animals in the data set were masked. It 

resembles 16% of the animals with genomic and phenotypic information available and includes 

animals going back to be born in the middle of 2012. In this validation group were 317 females 

and 83 males, with 361 belonging to the dam line and 39 to the sire line. All animals have 

phenotypic information, either due to own performance or performance of progenies. Some 

statistical reference numbers are indicated in Table 3 regarding the reliabilities of the breeding 

values, deregressed breeding values and their weights for the reference and the validation group. 
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Table 3: Statistical reference numbers (minimum – Min, maximum – Max, average – Mean and standard deviation – SD) 

of the reliabilities of the breeding values (r2), the reliabilities of the deregressed breeding values (r2 drEBV) and the weights 

of the deregressed breeding values (weight) of SLW. The data is divided into the reference group (reference) and the 

validation group (validation) and further for each trait. 

  
reference  validation 

 
  r2 r2 drEBV weight  r2 r2 drEBV weight 

Trait¥ N 2,086 2,086 2,086  400 400 400 

NBA 

min 0.38 0.20 1.82  0.42 0.28 2.76 

max 0.99 0.99 67.39  0.97 0.97 54.40 

mean 0.67 0.58 12.31  0.65 0.54 9.77 

SD 0.11 0.16 12.48  0.10 0.14 8.54 

UWP 

min 0.30 0.20 2.31  0.38 0.24 3.00 

max 0.98 0.98 82.85  0.96 0.96 68.32 

mean 0.64 0.54 13.78  0.63 0.51 11.57 

SD 0.11 0.16 13.84  0.10 0.14 10.32 

PS 

min 0.32 0.18 3.27  0.34 0.22 4.04 

max 0.99 0.99 132.06  0.95 0.95 95.52 

mean 0.62 0.50 19.72  0.59 0.46 14.39 

SD 0.13 0.18 22.73  0.10 0.15 13.84 

IWO 

 

min 0.27 0.13 1.01  0.32 0.18 1.55 

max 0.98 0.98 58.92  0.95 0.94 44.11 

mean 0.54 0.40 6.74  0.54 0.38 5.57 

SD 0.14 0.20 9.24   0.12 0.17 6.50 

¥ The traits are litter size (NBA), proportion of underweighted piglets (UWP), survival rate (PS) and interval weaning 

to oestrus (IWO) 

 

3.1.5 Descriptive statistic of the relationships 

The relationship according to the G-matrix and the A-matrix, are specified for all animals with 

records (Table 4). The calculation of the G-matrix is explained as part of the paragraph 3.2.2.1 
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Genomic breeding values. The first part of Table 4 shows the relationship between the different 

animals (off-diagonal elements) and the second one shows the within animal relationship 

(diagonal elements). The within animal relationship is related to the inbreeding in the population. 

Generally, the genomic relationship has a distribution with mean zero and a higher variance as 

the pedigree based relationships, as more information is included. According to the pedigree-

based relationship, the validation group has a slightly higher average of both between animal and 

within animal relationship. The same can be observed for the genomic relationship between 

animals, but not within animals (Table 4).  

Table 4: Statistical reference numbers (minimum – Min, maximum – Max, average – Mean and standard deviation – SD) of 

genomic and pedigree based relationship of SLW within the reference group (ref), within the validation group (Val) and between 

the reference and validation group (between ref and val) – divided in between and within animal relationship. 

  
  genomic relationship   pedigree based relationship 

  ref val 
between 

ref and val 

 ref val 
between 

ref and val 

  N 2086 400 2486   2086 400 2486 

relationship 

between 

animals 

Min -0.180 -0.146 -0.165  0.000 0.030 0.005 

Max 0.793 0.677 0.717 
 

0.686 0.633 0.641 

Mean 0.0002 0.016 -0.003 
 

0.093 0.120 0.096 

SD 0.055 0.071 0.049   0.052 0.068 0.044 

relationship 

within 

animals 

Min 0.824 0.878     1.000 1.027   

Max 1.209 1.222 
  

1.169 1.109 
 

Mean 0.991 0.989 
  

1.043 1.053 
 

SD 0.054 0.056     0.018 0.012   
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3.2 Methods 

3.2.1 Variance components 

The variance components were estimated based on a multi-trait animal model in ASReml 

(Gilmour et al. 2009). The model response variables included the deregressed breeding values of 

the traits NBA, UWP, PS and IWO with their corresponding weights. The weights are an analogue 

to the reliability of breeding values. The random effect animal accounts for the pedigree based 

relationship. Additive genetic (co)variances and residual (co)variances were estimated by 

ASReml and used to compute heritability, genetic and phenotypic correlations. 

 

3.2.2 Statistical analysis 

3.2.2.1 Genomic breeding values 

The method GBLUP was used to calculate the genomic breeding values in ASReml (Gilmour et 

al. 2009). More background information regarding the statistical models used in GS can be found 

in section 2.3 Genomic Selection. The results of this analysis was used as a reference to compare 

the other models. Therefore, it will be further referred to as the traditional GBLUP or default 

GBLUP.  

The single-trait GBLUP model is: 

 𝑦 =  1𝑛 𝜇 + 𝑍𝑔1 + 𝑒   (1.0) 

𝑦  = vector of drEBVs 

1𝑛  = vector of 1s 

𝜇 = overall mean 

𝑍 = design matrix to link records to 𝑔1 

𝑔1  = vector of random effect based on the genomic relationship matrix (G) with assumed 

𝑁(0, 𝐼𝜎𝑔1
2 ) 

𝑒 = vector of residual errors with assumed 𝑁(0, 𝐼𝜎𝑒
2)  

 

The genomic relationship matrix (G) is calculated, according to the method 1 of VanRaden 

(2008). The genotypes 0, 1 and 2 were standardised within 𝑍𝑖𝑗 as  0 − 2𝑝𝑗 , 1 − 2 𝑝𝑗 and 2 − 2𝑝𝑗, 
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respectively for all animal 𝑖 and markers 𝑗 (Meuwissen et al. 2013). Accordingly, the 

standardization results in genotypes with mean zero. The method used to calculate G was: 

𝐺 =  𝑍 ∗ 𝑍′ ∑ 2 ∗  𝑝𝑗 ∗ (1 − 𝑝𝑗)

𝑗

⁄  

𝑍 = matrix of standardized SNP genotypes 𝑍𝑖𝑗 for animal 𝑖 at marker𝑗; with 𝑛 rows (number 

of individuals) and 𝑚 columns (number of SNPs) 

𝑍′ = transpose of Z 

𝑝𝑗 = allele frequency of the minor allele at marker 𝑗 

The division by ∑ 2𝑝𝑗 ∗ (1 − 𝑝𝑗)𝑗  gives more weight to alleles with higher minor allele frequency 

(MAF) (VanRaden 2008). The G-matrix is a 𝑛 𝑥 𝑛 matrix with between animals relationships on 

the off-diagonal elements and the within animal relationship on the diagonal. Furthermore, the 

division scales G to be analogous to the numerator relationship matrix A. For instance, can the 

inbreeding coefficient be obtained from the G-matrix by subtracting 1 of an individual’s genomic 

relationship to itself (𝐺𝑖𝑖 − 1). 

The software used to calculate the G-matrix in this work was gghat version 3 from Meuwissen 

(2015). 

 

3.2.2.2 Genomic breeding values with additional marker effect 

Two different models were used to include the additional genomic information in the calculation 

of GEBVs in ASReml (Gilmour et al. 2009). 

On one hand, the markers based on the QTLs from the database were used to build a genomic 

relationship matrix (QTL-matrix). The G-matrix based on all QTLs will further be called QTL-

matrix and the G-matrix based on the reproduction QTLs will be called rQTL-matrix (Table 2). 

The matrix was built analogous to the G-Matrix discussed above. The model considered was: 

 𝑦 = 1𝑛𝜇 + 𝑍2𝑔2 + 𝑍1𝑔1 + 𝑒  (2.1) 

𝑦  = vector of drEBVs 

1𝑛  = vector of 1s for all 𝑛 animals 

𝜇  = overall mean 

𝑍2 = design matrix to link records to 𝑔2 
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𝑔2  = vector of random effect related to the genomic relationship matrix established from the 

marker of the QTL database (QTL-matrix or rQTL-matrix) with assumed 𝑁(0, 𝐼𝜎𝑔2
2 ) 

𝑍1 = design matrix to link records to 𝑔1 

𝑔1  = vector of random effect related to the genomic relationship matrix (G) with assumed 

𝑁(0, 𝐼𝜎𝑔1
2 ) 

𝑒 = vector of residual errors with assumed 𝑁(0, 𝐼𝜎𝑒
2) 

 

On the other hand, with the fewer markers, it was possible to add them as single marker or 

haplotype, based on their phased information. For the smaller panel with one SNP, two different 

effect levels resulted, whereas the panel with two SNPs occurred in four different combinations. 

Further, it will be relate to the panels and models as E.coli panel/model and LS panel/model (Table 

2). The new effect was added as diallelic fixed effects to the model: 

 𝑦 = 1𝑛𝜇 + (𝑋𝑝𝑎𝑡 + 𝑋𝑚𝑎𝑡)ℎ + 𝑍𝑔1 + 𝑒  (2.2) 

𝑦 = vector of drEBVs 

1𝑛 = vector of 1s 

𝜇  = overall mean 

𝑍 = design matrix connecting records to the breeding value 

𝑋𝑝𝑎𝑡  = design matrix connection the animal record with the allelic effect inherited from the sire 

𝑋𝑚𝑎𝑡  = design matrix connection the animal record with the allelic effect inherited form the dam 

ℎ  = vector of additive genetic effect for each marker or haplotype 

𝑔1  = vector of additive genetic effect using the genomic relationship matrix (G) with assumed 

𝑁(0, 𝐼𝜎𝑔1
2 ) 

𝑒 = vector of random residual errors with assumed 𝑁(0, 𝐼𝜎𝑒
2) 

 

3.2.2.3 Evaluation 

In order to calculate the present the correctness of the GEBVs the response variables of the 400 

youngest animals were masked in the analysis. Further, the correlations between the estimated 

breeding values and the original deregressed breeding values of the 400 validation animals were 

calculated to assess the predictive ability of the models as: 

𝜌𝑑𝑟𝐸𝐵𝑉,𝐸𝐵𝑉̂ = 𝑐𝑜𝑟𝑟(𝑑𝑟𝐸𝐵𝑉, 𝐸𝐵𝑉̂)  
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Regarding the default GBLUP 𝐸𝐵𝑉̂ is simply the estimated effect for each animal 𝑖 (𝑔̂1𝑖). 

Concerning the QTL and rQTL model 𝐸𝐵𝑉̂ has to be calculated as the sum of the effects of the 

QTL-matrix (𝑔̂2𝑖) and the G-matrix (𝑔̂1𝑖) for each animal 𝑖. The 𝐸𝐵𝑉̂ of the marker models were 

calculated as the sum of the two effects of the haplotype or marker (ℎ̂𝑚), depending on the effect 

level 𝑚, and the animal effect based on the G-matrix (𝑔̂1𝑖). 

The prediction accuracies were obtained by the formula  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝜌𝑑𝑟𝐸𝐵𝑉,𝐸𝐵𝑉̂

𝑟𝑑𝑟𝐸𝐵𝑉
2  , 

with 𝜌𝑑𝑟𝐸𝐵𝑉,𝐸𝐵𝑉̂, the correlation between the deregressed breeding value and the genomic 

estimated breeding value and divided by 𝑟𝑑𝑟𝐸𝐵𝑉
2 , the average reliability of the deregressed 

breeding values for the validation group (Table 3). 

The significance of the QTL model and rQTL model was analysed based on their logarithmic 

likelihood. It was tested, if twice the absolute difference between the logarithmic likelihood of the 

QTL model and the logarithmic likelihood of the default GBLUP, was chi-square distributed. 

To evaluate the effect of the new models on selection, the rank correlation was calculated. It is 

the correlation of the ranking based on the default GBLUP and the rank with each of the GBLUP 

models with additional marker effect. 

 

3.2.3 Single marker analysis 

To receive the significance and amount of genetic variance explained by the single markers used 

in the LS and E.coli model a SNP by SNP analysis was executed by Maren van Son. The same 

data and model 2.2 were used as introduced above. E.coli was examined regarding its importance 

on the trait PS and the LS markers regarding the trait NBA. 

As this is not part of the project itself, the results are only indicated in the appendix (Table A5). 
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4 Results 

4.1 Variance component 

The genetic analysis of the traits indicated heritabilities of 0.21 for NBA, 0.16 for UWP, 0.17 for 

PS and 0.08 for IWO (Table 5). NBA and UWP show a strong positive genetic correlation (0.53), 

where an increase in litter size causes an increase in the number of underweighted piglets in a 

litter. All other traits show negative genetic correlations between each other, ranging from -0.003 

to -0.53 (Table 5). The strongest negative correlation between PS and UWP implies that the more 

piglets are born underweighted the smaller is their chance to survive. Similar observations can be 

made for the phenotypic correlations (Table 5). The underlying additive genetic variances and 

residual variances are presented in Table 6. The additive genetic variance represents the part of 

phenotypic variation, which can be explained by the inheritance of genes. 

Table 5: Genetic parameters: heritabilities (SE) on the diagonal, genetic correlations (SE) under the diagonal and phenotypic 

correlations (SE) above the diagonal. For the traits litter size (NBA), proportion of underweighted piglets (UWP), survival 

rate (PS) and interval weaning to oestrus (IWO), based on all SLW animals available in the data set. 

 NBA UWP PS IWO 

NBA 0.21 (0.025) 0.63 (0.026) -0.14 (0.041) -0.024 (0.038) 

UWP 0.53 (0.039) 0.16 (0.021) -0.47 (0.031) -0.044 (0.037) 

PS -0.08 (0.054) -0.53 (0.041) 0.17 (0.021) -0.26 (0.035) 

IWO -0.003 (0.062) -0.078 (0.065) -0.10 (0.064) 0.08 (0.011) 

 

Table 6: Additive genetic variance components 𝜎𝑎
2 (SE) and residual 

variances 𝜎𝑒
2 (SE). 

 
 𝜎𝑎

2  𝜎𝑒
2 

Trait1 
      

NBA  0.98 (0.07)  3.79 (0.34) 

UWP  5.34 (0.43)  27.37 (2.19) 

PS  5.95 (0.48)  29.65 (2.38) 

IWO  3.29 (0.34)  37.93 (2.17) 

1 the traits are litter size (NBA), proportion of underweighted piglets 

(UWP), survival rate (PS) and interval weaning to oestrus (IWO) based 

on all SLW animals available 
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4.2 Using markers with large effects for the genomic predictions 

The effect of including important markers additionally in GBLUP is evaluated. The marker panels 

were added in different extends. They ranged from including only one SNP to including 4,205 

SNPs. Furthermore, they were added in different ways. The smaller panels were added as fixed 

effect and the big panels built G-matrices that were added as random effect. 

 

4.2.1 Model comparison 

The models are compared according to their likelihood values, which are stated in Table A6 in 

the appendix. The values named 2 ∗ 𝐿𝑜𝑔𝐿 are calculated as two times the absolute difference 

between the logarithmic likelihood of each QTL model and the logarithmic likelihood of the basic 

GBLUP model, presented in Table 7. The thresholds of 3.84 and 6.63 indicate significant 

improvement of models with a significance level of 0.05 and 0.01, respectively. Table 7 displays 

that the most models improve their likelihood, thus their goodness-of-fit with including a QTL-

matrix, but only the model for NBA improves significantly with an additional rQTL-matrix. 

Table 7: Model comparison between the QTL models and the default GBLUP model, regarding the chi-square distribution and 

the corresponding p-values for the traits litter size (NBA), proportion of underweighted piglets (UWP), survival rate (PS) and 

interval weaning to oestrus (IWO), including all SLW animals. 

  NBA  UWP  PS  IWO 

  2*Logl p-value  2*Logl p-value  2*Logl p-value  2*Logl p-value 

Model1 Compared to GBLUP 
         

QTL 2.75 0.061  0 1  1.1 0.219  0 1 

rQTL 7.28 0.004  0.32 0.601  0 1  0.54 0.414 

1 the QTL models are the GBLUP model with additional QTL-matrix (QTL) and the GBLUP model with additional QTL-matrix 

associated with reproduction (rQTL) 

 

The effective amount of additive genetic variance that is explained in the models by the different 

genomic relationship matrices are shown in Table 8. The total genetic variance increased slightly 

for the trait NBA and IWO by including the rQTL-matrix. The QTL-matrix explains some of the 

additive genetic variance for the traits NBA and PS, whereas the rQTL-matrix also explains some 

of the variance for the trait UWP in addition to NBA and PS.  
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Table 8: The additive genetic variances explained by the different G-matrices, the total additive genetic variance and the residual 

variance for all models and traits used in the analysis of the breed SLW. 

    Trait2 

Model1 Source of variance NBA UWP PS IWO 

GBLUP 
additive genetic variance 1.360 7.361 8.514 7.285 

Residual variance 1.345 11.407 17.980 6.299 

QTL 

G-matrix 1.253 7.361 8.121 7.285 

QTL-matrix 0.109 3.65E-06 0.395 1.80E-08 

total additive genetic variance 1.362 7.361 8.516 7.285 

Residual variance 1.344 11.410 17.990 6.299 

rQTL 

G-matrix 1.265 7.248 8.514 7.114 

rQTL-matrix 0.097 0.120 1.18E-06 0.179 

total additive genetic variance 1.362 7.368 8.514 7.293 

Residual variance 1.352 11.410 17.980 6.306 

LS 

additive genetic variance 1.360 7.370 8.518 7.297 

Residual variance 1.349 11.420 18.008 6.299 

E.coli 
additive genetic variance 1.361 7.366 8.412 7.288 

Residual variance 1.343 11.404 18.170 6.301 

1 the models used are the traditional GBLUP (GBLUP), GBLUP with additional QTL-matrix (QTL), GBLUP with additional 

reproduction QTL-matrix (rQTL), GBLUP with additional markers associated with litter size (LS) and GBLUP with the 

marker for E.coli resistance (E.coli) 
2 the traits are litter size (NBA), proportion of underweighted piglets (UWP), survival rate (PS) and interval weaning to oestrus 

(IWO) 

 

Table 9 presents the test statistics of the additional fixed effects, consisting of the E.coli marker 

and the LS markers. For the most traits, the additional marker effect does not have a significant 

influence. However, the E.coli marker has a significant impact on the proportion of nursed 

individuals that are weaned. The appendix includes a table showing the estimated effects of each 

effect level for the E.coli marker and the LS haplotype (Table A7). According to trait definitions, 

the number of piglets born alive (NBA) and the survival rate (PS) should be as high as possible, 
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whereas the number of piglets underweighted (UWP) and the interval weaning to oestrus (IWO) 

should be as short as possible. Regarding the E.coli marker, the frequency of the allele favouring 

PS has a frequency of 0.39. The same allele indicates improvements for NBA and UWP, but 

disadvantages for IWO (Table A7). 

Table 9: ASReml output regarding the additional fixed effect in the single-trait GBLUP for all animals, based on 

markers associated with the number of piglets born alive (LS) and the E.coli marker (E.coli) for all SLW animals in 

the data set 

 
LS  E.coli 

DF F-value P-value  DF F-value P-value 

Trait1        

NBA 3 0.13 0.939  1 1.18 0.279 

UWP 3 0.03 0.992  1 0.12 0.727 

PS 3 0.22 0.881  1 8.03 0.005 

IWO 3 0.35 0.786  1 0.05 0.812 

1 the traits are litter size (NBA), proportion of underweighted piglets (UWP), survival rate (PS) and interval weaning 

to oestrus (IWO) 

 

4.2.2 Comparison of the breeding values 

The distributions of the breeding values predicted for the validation group in single-trait models 

are visualised in Figure 6. The distributions do not change much by including additional effects. 

The mean for the trait NBA is slightly lower by including the E.coli marker.  
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Figure 6: The boxplots show the distribution of the GEBVs, where the dots in the box indicate the mean. The models underlying the breeding value estimation are the default 

GBLUP (GBLUP), GBLUP with additional reproduction QTL-matrix (rQTL), GBLUP with additional QTL-matrix (QTL), the GBLUP with additional fixed effect for the E.coli 

marker (E.coli) and the GBLUP with additional fixed effect for the LS haplotype (LS). The subdivision is ordered as a) GEBVs for the number of animals born alive (NBA), b) 

GEBVs for the trait proportion of underweighted piglets (UWP), c) GEBVs for the trait survival rate (PS), and d) GEBVs for the trait interval weaning to oestrus (IWO). 
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4.2.3 Prediction ability 

The models ability to predict breeding values accurate is shown in Table 10 and Table A8 in the 

appendix. The correlations between the GEBVs of the 400 masked animals and their 

corresponding deregressed breeding values are used to compare the prediction ability for the new 

models. The models with additional QTL-matrix improve the correlation slightly for NBA 

compared to the default GBLUP model (Table 10). Adding the reproduction associated 

relationship matrix improves the predictive ability to maximal 0.0013 (for NBA) in the current 

data. However, the models including the LS and the E.coli markers show similar correlations 

between the GEBVs and the deregressed EBVs as the traditional GBLUP. The prediction abilities 

for the GBLUP models indicate accuracies over 100% (Table A8). 

 

Table 10: Correlations between the genomic estimated breeding values (GEBVs) and the obtained deregressed 

breeding values for the 400 masked animals for each statistical model (the default GBLUP, the GBLUP with 

additional QTL-matrix (QTL), the GBLUP with additional rQTL-matrix (rQTL), the GBLUP with additional litter 

size associated haplotypes (LS) and the model with additional fixed effect of the E.coli marker (E.coli)). 

 GBLUP QTL rQTL LS E.coli 

Trait1 
     

NBA 0.8429 0.8434 0.8442 0.8426 0.8432 

UWP 0.7856 0.7856 0.7857 0.7855 0.7857 

PS 0.7859 0.7853 0.7859 0.7847 0.7849 

IWO 0.6841 0.6837 0.6846 0.6836 0.6841 

mean2 0.7746 0.7745 0.7751 0.7741 0.7745 

1 the traits are litter size (NBA), proportion of underweighted piglets (UWP), survival rate (PS) and interval weaning 

to oestrus (IWO) 
2 average performance of the model 
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4.2.4 Impact on the ranking 

To assess the reranking according to the GEBVs, the correlations between the ranking in the 

default GBLUP model and the models with additional genetic information were computed for the 

400 masked animals (Table 11). The correlations are all above 0.99, where there is almost no 

difference. 

Table 11: Rank correlations calculated as the correlation between the ranks according to the default 

GBLUP and the new introduced models regarding the reproduction traits for the 400 validation animals. 

The models are the GBLUP with additional QTL-matrix (QTL), GBLUP with additional reproduction 

QTL-matrix (rQTL), GBLUP with fixed effect for markers associated with litter size (LS) and GBLUP 

with additional fixed effect for the E.coli marker (E.coli) 

 QTL rQTL LS E.coli 

Trait1 
    

NBA 1 0.9988 0.9999 1 

UWP 1 0.9999 0.9999 1 

PS 0.9996 1 0.9998 0.9991 

IWO 0.9999 0.9994 0.9996 1 

1 the traits are litter size (NBA), proportion of underweighted piglets (UWP), survival rate (PS) and 

interval weaning to oestrus (IWO) 
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5 Discussion 

Genetic parameter 

Genetic parameters are used to describe genetic qualities of traits and are needed to predict 

breeding values. The genetic parameters from Table 5 and 6 indicate that there is sufficient 

additive genetic variance to improve the traits NBA, UWP, PS and IWO. The heritabilities 

computed are generally higher than the values obtained by SUISAG (Hofer 2016a), where NBA 

has a heritability of 0.12, UWP 0.09, PS 0.06 and IWO 0.12. Furthermore, the additive genetic 

variances and the residual variances are both lower than usual (Hofer 2016a). An explanation for 

these differences is the restricted sample size, as in this analysis only animals with phenotypic 

observations as well as genomic information are included. This is a weighted analysis, using 

deregressed proofs corrected for the parent average and the shrinking within BLUP, thus it is 

possible that measurements of the descendants have an impact on the outcome. Even though 

Garrick et al. (2009) claims the impact to be negligible for genomic predictions, it cannot be 

assumed that it does not affect the estimation of the variance components and heritabilities in this 

study. 

In general, the heritabilities are either slightly above or within the area of the heritabilities found 

in literature (Chen et al. 2003; Hanenberg et al. 2001; Lee et al. 2015; Nguyen et al. 2003; Putz et 

al. 2015; Serenius et al. 2008). The genetic correlations obtained in the study showed similarities 

and contradictions to the ones in literature. Negative genetic correlations between NBA and 

average birth weight had been published by Nguyen et al. (2003) and Putz et al. (2015), what 

supports the positive correlation found between NBA and UWP. Because UWP represents a 

proportion, the correlation becomes positive, when the birth weights go down. The results indicate 

that an increase in the number of piglets born alive leads to a decrease in the average birth weight 

and accordingly to an increase in the proportion of piglets born underweighted. Nguyen et al. 

(2003) supports the correlation between UWP and PS, as they show positive correlations (0.27) 

between birth weight and the number of piglets weaned. The conclusion drawn is that piglets with 

higher birth weight and a lower number of piglets born underweighted have a greater chance to 

survive. 

Some genetic correlations calculated in this research project revealed opposing results compared 

to the literature. Contradictory to the small and negative correlation between NBA and PS in this 
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data, Putz et al. (2015) showed a high positive correlation (0.74) in their Large White population. 

Another contradictory element is the correlation between PS and IWO, that Serenius et al. (2008) 

found to be slightly positive instead. Furthermore, the positive correlation between NBA and 

IWO, described by Serenius et al. (2008) and by Wilson and Dewey (1993) could not be confirmed 

in this study. All these contradictions between the genetic parameters found in this research and 

the values from the literature occur because they are analysed on different breeds, different sizes 

of data sets, different traits and methods to measure the phenotypes. Nevertheless, the genetic 

correlations indicate, that by selecting for one trait the other traits will be affected. For example, 

by selecting only for a higher number of animals born alive the proportion of piglets 

underweighted will raise and consequently, the survival rate will decrease. By including all traits 

in the breading goal and selecting them simultaneously, the outcome can be balanced and lead to 

a satisfying improvement for all traits. 

 

Additional genomic relationship matrix 

Generally, the additional genomic relationship matrices do improve the likelihood of the normal 

GBLUP model. However, for the data used it is not significant in the most cases. Solely for the 

trait NBA, the model showed significant improvement by adding a reproduction associated QTL-

matrix additionally to the G-matrix, as was shown in Table 7. Even though significant 

improvements for the QTL models were shown, the prediction accuracies do not respond in 

noteworthy changes. 

In order to discuss the results it is vital to understand, how the two genomic matrices in the model 

relate to each other. Table 8 shows that the variance explained by the G-matrix is higher than the 

variance explained by a QTL-matrix. It proves to be more beneficial to include all genes rather 

than including few important genes. Even though, they are overlapping, the additional weight put 

on the QTL-markers does not result in outstanding enhancements. An explanation is, that the G-

matrix accounts for enough of the QTL-markers’ variance and covariance, that the effect of the 

QTL-matrix decreases. Furthermore, the number of effects that have to be estimated doubles by 

including a second relationship matrix. With more effects estimated more errors are included and 

the accuracy of a model decreases. In this study, a noteworthy improvement could only be 
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detected for the likelihood of the model with the rQTL-matrix and trait NBA, but not for the 

prediction accuracy. 

In a similar study, Brøndum et al. (2015) compared the inclusion of QTLs as an additional 

variance component in a GBLUP and Bayesian model. They showed an increase up to 2.2 

percentage points of the prediction accuracy for breeding values with the additional QTL-matrix 

included in the GBLUP model (Brøndum et al. 2015). More precisely, they built a G-matrix based 

on a 54k SNP-panel and a QTL-matrix based on 1,623 SNPs that were not included in the G-

matrix. It was compared to a GBLUP model, including a G-matrix with all markers. Therefore, 

they can observe an increase, whereas in the current study, the QTLs are included twice in the 

model and the effect of the QTL-matrix is reduced.  

In general, the rQTL-matrix works better than the QTL-matrix. The only difference occurs for the 

trait PS, where amongst other possible reasons the QTL-matrix includes the E.coli marker, but it 

is not included in the rQTL-matrix. Brøndum et al. (2015) made similar observations by 

comparing nonspecific QTL-panels and specific QTL-panels regarding breed and traits. The 

limitation for breed and trait specific markers resulted in an improvement of the prediction 

accuracy for some breeds. Adding non-specific QTL-markers includes noise and dilutes the QTL-

relationship regarding the specific trait (Brøndum et al. 2015). 

Concerning the differences in outcomes between traits, the trait association of the QTLs is very 

uneven distributed across the panels. The QTL database includes many QTLs for the number of 

piglets born alive, fewer for birth weight, hardly any for the number of piglets weaned and no 

QTLs for the interval weaning to oestrus. Therefore, marker selection in this part of the study is 

not very trait specific. One could have been more restrictive regarding the trustworthiness of the 

QTLs. For instance, including only regions with several known QTLs affirmed by independent 

studies or checking if the QTLs from the database are relevant for the traits of interest and the 

population used. 

Moreover, the selection of the traits themselves affects the outcome. Brøndum et al. (2015) 

showed that predictions improved more for production than for reproduction traits. They explain 

it with the complexity of reproduction. Reproduction traits are influenced by the expression of 

more genes than production traits and have lower heritabilities. As in the current study only 
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reproduction traits are concerned, it would be interesting to see if the results improve for 

production traits with high heritabilities. 

 

Additional markers as fixed effect 

The first of the two models with additional fixed effect in GBLUP included two markers that are 

associated with the number of piglets born alive. The effect of the two-SNP haplotype showed no 

significance and did not improve the default GBLUP model, shown in Table 9. Its significant 

impact on the trait NBA found in the paper Bergfelder-Druing et al. (2015) could not be confirmed 

with the data used. Boichard et al. (2012) analysed, how the additional random effect of 

haplotypes improves a BLUP estimation. They achieved a slightly better accuracy with haplotypes 

associated to QTLs in BLUP, than with the normal GBLUP. Based on this results it should be 

discussed if the haplotypes and marker should have been added as random effects. 

For this study, it was decided to treat them as fixed effects, considering the specific interest in the 

effects of each haplotype combination and each allele for the E.coli resistance. Furthermore, the 

SNPs are not chosen randomly. It is known that these specific markers are of importance and 

should therefore be fixed effects. When more markers should be implemented, the inclusion of 

haplotypes as random effects might be more interesting. In that way, it is possible to account for 

their variance and covariance.  

The second model built, included an additional fixed effect in form of a single marker and 

haplotypes in GBLUP. The E.coli marker shows a significant effect in the single-trait model for 

the proportion of piglets born that are weaned (Table 9). Further, the prediction accuracy did not 

increase and the rank correlation shows no considerable changes. Additionally, the association 

analysis of E.coli with PS showed 2.8% of the genetic variance explained by the selected marker 

(Table A5). Contradictory to the ASReml output is, that the allele found to be the resistant version, 

does not correspond to the allele found by Neuenschwander et al. (2013). Anyhow, this should 

not affect the statistical outcome of the study. E.coli does not have a direct phenotype, as it is too 

expensive to test each herd for their E.coli occurrence. Nonetheless, E.coli resistance can be 

associated with PS, and thus PS could be used as indirect phenotype. As PS is included in the 

breeding programme, selection for E.coli resistant pigs already occurs unintended and the marker 

frequency is supposed to increase for this particular SNP.  
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Lopes et al. (In Press) added single SNPs that were highly associated with the trait number of 

teats in a single-trait GBLUP. The genetic variance explained by the main marker was 3.30% – 

6.13%, depending on the breed. They achieved an increase in the prediction accuracy ranging 

from 0.003 to 0.043 in absolute values varying between breeds (Lopes et al. In Press). In the 

present study, the accuracy could not be increased with including the E.coli marker in the breeding 

value estimation of PS. The most possible explanation for the inconsistent results is that the E.coli 

marker does not have a strong enough effect to improve the prediction accuracy. Lopes et al. (In 

Press) defined the threshold to divide between important and unimportant markers for MA-GS as 

a minimal variance explained by the single marker of >1%. If a SNP explains less than 1% of the 

additive genetic variance, its inclusion in MA-GBLUP will not improve the model. This has 

happened with the LS markers in the data set, as it was not significant in the association study 

with NBA (results shown in appendix Table A5), hence did not affect the outcome of the models 

analysed. 

 

Generally, the correlations between the predicted and the deregressed breeding values are 

relatively high (Table 10). It has been proven that the pedigree structure can affect the prediction 

accuracy of breeding values. A high relationship between the reference and the validation group 

favours the reliability of genomic predictions (Habier et al. 2007; Wu et al. 2015). The pedigree 

of SLW shows an average estimated relationship between the reference and the validation group 

of 0.096 (Table 4). That lays between cousins (0.125) and second cousins (0.031). Therefore, the 

predictive ability is quite high for SLW. Analysing other populations will result in different 

extents of the prediction abilities. Furthermore, the values in Table A8 show more than 100% 

accuracy of the predictions of the genomic models. This occurs, if the reliabilities are 

underestimated. Another explanation could be that the residuals are not independent and thus 

predictable. 

 

The selected SNP-panels added to the models were not excluded from the panel used to build the 

G-matrix and are therefore twice included in the estimation. Consequently, the models could show 

problems with double counting or overfitting. In a trial, Lopes et al. (In Press) excluded the 

markers they included additionally to the model from the panel to build the G-matrix. The results 
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did not show noteworthy changes. However, a few double included single SNPs do not affect the 

model, but a whole panel of SNPs might complicate the calculations in a larger data set. Another 

open question is how the models will behave in a multi-trait GBLUP. Multi-trait models are 

interesting regarding correlated traits. The inclusion of major QTLs could have beneficial effects 

for all traits. Considering, that the multivariate model is computationally demanding, an additional 

QTL-matrix will double the resources needed for the computation. 

 

Other approaches 

Many different methods are being and have been tested to improve the prediction ability of 

GBLUP. One method analysed by Su et al. (2014) is to weight single markers or group of markers 

within the G-matrix used in GBLUP. They weighted selected markers with different variances 

obtained from a Bayesian model and GWAS. The results were up to 2 percent point improved 

reliabilities compared to the unweighted GBLUP (Su et al. 2014). Similar increases were achieved 

by weighting the markers with − log10(𝑝𝑗), with 𝑝𝑗 representing the p-value obtained by an 

association study for SNP 𝑗 (de Los Campos et al. 2013). Another approach proposed by Zhang 

et al. (2010) was to include a trait-specific relationship matrix in GBLUP. Therefore, the usual G-

matrix is replace by a matrix that is weighted depending on their contribution explaining the 

variance of a trait. The authors showed improved prediction accuracies compared to the common 

mGBLUP and GBLUP models, but not compared to BayesB (Zhang et al. 2010). 

 

Practical aspects of MA-GBLUP 

Adding a major gene effect to the genomic breeding value estimation should be well planned. 

Firstly, the important SNPs for the population of interest have to be known. The possible 

improvement depend mainly on the trait itself. Concerning a trait that is easy to measure at an 

early stage, the improvement would not be immense, but for traits that are hard to measure or can 

only be measured on relatives, the improvements could be significant. Investing resources to 

discover markers that explain sufficient genetic variance is fundamental. Furthermore, the 

markers need to be available. If this is settled, the SNPs can simply be added to the marker file 

for the imputation. Regarding the implementation of single SNPs, the animals with missing 
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genomic information will need estimates for their genomic performance. Thus, the breeding 

values will be the sum of the marker effect and the animal effect based on the G-matrix. 

When many SNPs, are to implement, as done with the QTL-markers from the database, two 

genomic relationship matrices are built and added to the breeding value estimation. Consequently, 

the computational demands will increase, since the number of calculations will double. The final 

breeding values are the sum of the effects for each animal in the respective G-matrix. 

Association studies should be updated from time to time, considering the changes in allele 

frequencies with the alternation of generations. As soon as a marker is fixed in the population, it 

will not show any influence on the trait anymore, but other positions in the genome will become 

more important. Therefore, the markers of interest change over time. 
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6 Conclusion 

Including major genes in GBLUP for reproduction traits in swine does improve the likelihood and 

thus the goodness-of-fit of the prediction models. 

Adding non-specific QLTs did not improve prediction accuracy in the current data. 

Giving QTL-markers more weight, by adding them to the GBLUP model, did not improve the 

prediction accuracy of GEBVs. 

Even though, this work could not expose any significant improvement of the prediction accuracy, 

the goodness-of-fit was improved and a larger, more powerful data set might convert the improved 

goodness-of-fit to a better accuracy of prediction. 
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8 Appendix 

 

Figure A1: Breeding programme of SUISAG (http://www.suisag.ch/Zucht/Zuchtprogramm/tabid/80/Default.aspx). Displayed is 

the structure based on the three levels of breeding farms a) the nucleus herds, b) the multiplier herds and c) the production herds. 

 

http://www.suisag.ch/Zucht/Zuchtprogramm/tabid/80/Default.aspx
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Table A1: Production traits, including each group with its single-traits and their relative weights for the SLW dam 

line and sire line. 

  
relative weight 

group trait dam line sire line 

weight gain daily weight gain measured in mast 9 9 

 
daily weight gain measured in the field 11 6 

 

daily weight gain measured in the 

slaughterhouse 7 14 

  
27 29 

meat quantity loin eye area 3 8 

 
proportion lean meat 7 8 

  
10 16 

meat quality proportion intramuscular fat 19 13 

 
pH 1 hour post mortem 9 7 

 
pigment 4 3 

 
proportion drip loss 9 14 

  
41 37 

feed efficiency feed conversion 21 18 

    21 18 
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Table A2: Conformation traits, including each group with its single-traits and their relative weights for the SLW dam 

line and sire line. 

    relative weight 

group trait dam line sire line 

type regularity of loin  7 10 

 
carcass length 5 2 

 
 12 12 

fundament X-O rear leg 21 23 

 
side view angle rear leg 6 6 

 
angle pastern rear leg 2 0 

 
size of inner claws rear leg 18 24 

 
side view angle foreleg 3 3 

 
number of spots with liquid at joints 5 6 

 
gait 7 8 

 
 62 70 

teats number of teats left 4 0 

 
number of teats right 4 0 

 
number of inverted teats 15 8 

 
number of intermediate teats 2 0 

    25 8 
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Table A3: Statistical reference numbers (minimum – Min, maximum – Max, average – Mean and standard deviation – SD) 

of the phenotypic data set for all animals of the SLW. The columns are the estimated breeding values (EBV), the reliabilities 

of the estimated breeding values (r2), the deregressed breeding values (drEBV), the reliabilities of the deregressed breeding 

values (r2 drEBV) and the weight of the deregressed breeding values (weight) 

Trait1 
 

EBV   r2   drEBV   r2 drEBV   weight  

NBA 

Min -1.42  0.38  -2.83  0.20  1.82 

Max 4.59  0.99  6.72  0.99  67.39 

Mean 1.99  0.67  2.06  0.57  11.90 

SD 0.96  0.11  1.36  0.16  11.97 

UWP 

Min -4.36  0.30  -12.81  0.20  2.31 

Max 7.36  0.98  30.05  0.98  82.85 

Mean 1.25  0.64  1.28  0.54  13.43 

SD 1.64  0.11  2.97  0.15  13.35 

PS 

Min -6.06  0.32  -11.38  0.18  3.27 

Max 8.07  0.99  12.22  0.99  132.06 

Mean 1.99  0.61  2.23  0.49  18.86 

SD 1.87  0.12  3.24  0.17  21.64 

IWO 

Min -5.76  0.27  -14.87  0.13  1.01 

Max 5.54  0.98  16.54  0.98  58.92 

Mean -2.68  0.54  -2.93  0.39  6.55 

SD 1.13   0.14   2.85   0.20   8.87 

1 the traits are litter size (NBA), proportion of underweighted piglets (UWP), survival rate (PS) and interval weaning to 

oestrus (IWO) 
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Table A4: Number of markers selected for the QTL-matrix (QTL) and the reproduction 

associated QTL-matrix (rQTL) for each chromosome based on the pig QTL database. 

 Number of SNPs 

chromosome QTL rQTL 

1 344 112 

2 350 84 

3 164 55 

4 343 68 

5 170 41 

6 346 56 

7 362 97 

8 328 89 

9 247 63 

10 123 38 

11 90 22 

12 211 49 

13 219 60 

14 277 61 

15 216 85 

16 192 40 

17 123 55 

18 100 28 
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Table A5: Description of the selected markers for the GBLUP models with additional fixed effect, including the chromosome 

and its allocated position, the minor allele frequency (MAF), the significance (p-value) in association with the trait, the allele 

substitution effect (a) and the genetic variance explained (var) 

SNP chromosome position MAF p-value¥ a var 

LS markers 
   

   

MARC0043480 10 63867699 0.146 Not significant 0.0220 NA* 

MARC0006510 11 74240078 0.173 Not significant -0.0154 NA* 

E.coli marker 
   

   

ALGA0106330 13 145009805 0.388 1e-09 0.5928 2.8% 

¥  the LS marker were evaluated with the trait number of piglets born alive (NBA) and the E.coli marker with the proportion of 

animal born that are weaned (PS) 
* The variance explained by the LS markers was not calculated as they did not show any significance regarding the trait NBA 

 

 

Table A6: Logarithmic likelihoods of the single-trait GBLUP depending on the statistical model and regarding 

the traits litter size (NBA), proportion of underweighted piglets (UWP), survival rate (PS) and interval weaning 

to oestrus (IWO). 

 NBA UWP PS IWO 

Model1     

GBLUP -770.50 -3001.80 -3222.61 -3193.02 

QTL -769.13 -3001.80 -3222.06 -3192.02 

rQTL -766.86 -3001.64 -3222.61 -3191.75 

LS -722.33 -3389.96 -3222.89 -3198.17 

E.coli -772.92 -3003.87 -3220.87 -3195.09 

1 the models are the default GBLUP, the GBLUP with additional QTL-matrix (QTL), the GBLUP with additional 

rQTL-matrix (rQTL), the GBLUP with additional litter size associated haplotypes (LS) and the model with 

additional fixed effect of the E.coli marker (E.coli) 
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Table A7: Frequency (freq) and effects with standard errors (SE) of the E.coli alleles and of the LS haplotypes regarding the traits 

litter size (NBA), proportion of underweighted piglets (UWP), survival rate (PS) and interval weaning to oestrus (IWO). 

Allele / 

haplotype 

 
NBA 

 
UWP 

 
PS 

 
IWO 

freq effect (SE) 
 

effect (SE) 
 

effect (SE) 
 

effect (SE) 

E.coli marker            
B 0.39 0 (0.000) 

 
0 (0.000) 

 
0 (0.000) 

 
0 (0.000) 

A 0.61 0.054 (0.049) 
 

-0.04 (0.119) 
 

-0.364 (0.128) 
 

0.028 (0.147) 

LS haplotypes            
BB 0.7 0 (0.000) 

 
0 (0.000) 

 
0 (0.000) 

 
0 (0.000) 

BA 0.12 -0.002 (0.049) 
 

0.002 (0.107) 
 

-0.065 (0.121) 
 

0.074 (0.119) 

AB 0.15 0.007 (0.061) 
 

0.276 (0.106) 
 

0.065 (0.148) 
 

-0.077 (0.143) 

AA 0.02 -0.054 (0.096) 
 

0.014 (0.219) 
 

-0.071 (0.239) 
 

0.102 (0.235) 

 

 

Table A8: The prediction accuracies for all models, such as the default GBLUP (GBLUP), the GBLUP with 

additional QTL-matrix (QTL), the GBLUP with additional reproduction QTL-matrix (rQTL), the GBLUP with 

additional litter size associated markers (LS) and the GBLUP with additional fixed effect of the E.coli marker 

(E.coli) for the 400 masked animals. 

  GBLUP QTL rQTL LS E.coli 

Trait1 
     

NBA 1.147 1.148 1.149 1.147 1.147 

UWP 1.158 1.158 1.159 1.158 1.158 

PS 1.100 1.100 1.100 1.099 1.099 

IWO 1.110 1.109 1.111 1.109 1.110 

1 the traits concerned are litter size (NBA), proportion of underweighted piglets (UWP), survival rate (PS) and 

interval weaning to oestrus (IWO) 

 

 



 

 

 


