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Abstract

Neural field models assume the form of integral and integro-differential equations, and
describe non-linear interactions between neuron populations. Such models reduce the di-
mensionality and complexity of the microscopic neural-network dynamics and allow for
mathematical treatment, efficient simulation and intuitive understanding. Since the sem-
inal studies by Wilson and Cowan (1973) and Amari (1977) neural field models have been
used to describe phenomena like persistent neuronal activity, waves and pattern formation
in the cortex. In the present thesis we focus on mathematical aspects of localized activity
which is described by stationary solutions of a neural field model, so called bumps.

While neural field models represent a considerable simplification of the neural dynamics
in a large network, they are often studied under further simplifying assumptions, e.g.,
approximating the firing-rate function with a unit step function.

In some cases these assumptions may not change essential features of the model, but in
other cases they may cause some properties of the model to vary significantly or even
break down. The work presented in the thesis aims at studying properties of bump solu-
tions in one- and two-population models relaxing on the common simplifications.

Numerical approaches used in mathematical neuroscience sometimes lack mathematical
justification. This may lead to numerical instabilities, ill-conditioning or even divergence.
Moreover, there are some methods which have not been used in neuroscience community
but might be beneficial. We have initiated a work in this direction by studying advantages
and disadvantages of a wavelet-Galerkin algorithm applied to a simplified framework of
a one-population neural field model. We also focus on rigorous justification of iteration
methods for constructing bumps.

We use the theory of monotone operators in ordered Banach spaces, the theory of Sobolev
spaces in unbounded domains, degree theory, and other functional analytical methods,
which are still not very well developed in neuroscience, for analysis of the models.
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Sammendrag

Nevrofeltmodeller formuleres som integral og integro-differensiallikninger. De beskriver
ikke-lineære vekselvirkninger mellom populasjoner av nevroner. Slike modeller reduserer
dimensjonalitet og kompleksitet til den mikroskopiske nevrale nettverksdynamikken og
tillater matematisk behandling, effektiv simulering og intuitiv forståelse. Siden pioner-
arbeidene til Wilson og Cowan (1973) og Amari (1977), har nevrofeltmodeller blitt brukt
til å beskrive fenomener som vedvarende nevroaktivitet, bølger og mønsterdannelse i
hjernebarken. I denne avhandlingen vil vi fokusere på matematiske aspekter ved lokalisert
aktivitet som beskrives ved stasjonære løsninger til nevrofeltmodeller, såkalte bumps.

Mens nevrofeltmodeller innebærer en betydelig forenkling av den nevrale dynamikken i
et større nettverk, så blir de ofte studert ved å gjøre forenklende tilleggsantakelser, som
for eksempel å approksimere fyringratefunksjonen med en Heaviside-funksjon.

I noen tilfeller vil disse forenklingene ikke endre vesentlige trekk ved modellen, mens i an-
dre tilfeller kan de forårsake at modellegenskapene endres betydelig eller at de bryter sam-
men. Arbeidene presentert i denne avhandlingen har som mål å studere egenskapene til
bump-løsninger i en- og to-populasjonsmodeller når en lemper på de vanlige antakelsene.

Numeriske teknikker som brukes i matematisk nevrovitenskap mangler i noen tilfeller
matematisk begrunnelse. Dette kan lede til numeriske instabiliteter, dårlig kondisjon-
ering, og til og med divergens. I tillegg finnes det metoder som ikke er blitt brukt i
nevrovitenskap, men som kunne være fordelaktige å bruke. Vi har startet et arbeid i denne
retningen ved å studere fordeler og ulemper ved en wavelet-Galerkin algoritme anvendt
på et forenklet rammeverk for en en-populasjons nevrofelt modell. Vi fokuserer også på
rigorøs begrunnelse for iterasjonsmetoder for konstruksjon av bumps.

Vi bruker teorien for monotone operatorer i ordnede Banachrom, teorien for Sobolevrom
for ubegrensede domener, gradteori, og andre funksjonalanalytiske metoder, som for tiden
ikke er vel utviklet i nevrovitenskap, for analyse av modellene.
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1 Introduction

1.1 Background

The human neocortex is a convoluted thin layer (2-4 mm) located just below the brain
surface. It is a large complex biological system which consists of about 10 billion (10 ×
109) neurons and 60 trillion (60×1012) connections, [1]. The interaction between neurons
of this large network enable us to think, behave, and understand.

The fundamental processing unit of the brain is the neuron. It consists of dendrites, cell

body (or soma), and axon. These parts carry out input, processing, and output func-
tions, respectively: The dendrites receive electrical signals from surrounding neurons and
propagate them to the soma. If the summed electrical potential accumulated in the soma
exceeds a certain threshold value, the neuron fires, i.e., produces a short electrical spike,
or action potential, which then propagates along the axon to thousands of target neurons.

The macroscopic dynamics of neuronal tissue is often studied by means of population or
firing-rate models. Rather than describing the activity of each individual neuron, they
focus on the average activity, the firing rate, of populations of cells. The main purpose
of such models is to reduce the dimensionality and complexity of the microscopic neural-
network dynamics to obtain tools which allow mathematical treatment, efficient simula-
tion and intuitive understanding. Neural field models constitute a special class of popula-
tion models where the neuronal tissue is treated as a continuous structure. This approach
is based on the assumption that the spatial length scale of a macroscopic state variable is
much larger than the typical size of and distance between single neurons.

The continuum approximation of neural activity in its modern formulation can be attrib-
uted to Wilson and Cowan [2, 3] and Amari [4, 5]. Since these seminal studies the neural
field models have been the subject of constant mathematical attention.

1.2 Firing-rate neural field models

Firing-rate models describe the temporal evolution of the firing rate rm of a neuron pop-
ulation m. Each point x ∈ Rs, s = 1, 2, represents a subpopulation m(x) of neurons.
The spatial coupling between subpopulations m(x), n(y) is described by a connectivity

kernel ωmn(x, y) which is typically assumed to be distance dependent and homogeneous,
i.e., ωmn(x, y) = ωmn(|x− y|), see for example [2, 3, 4, 5].

1



1 INTRODUCTION Anna Oleynik

The time dependence of the interaction is frequently modeled by a temporal kernelαmn(t).
Given these ingredients, the dynamics of firing rates rn(x, t) of N interconnected popu-
lations is often described in terms of a Volterra equation system

un(x, t) =
∑

m∈N
(αmn ∗ ωmn ⊗ rm) (x, t)

rn(x, t) = P (un(x, t), θn) ∀n ∈ N
(1)

where N is a set of subindexes with the cardinality N. Here, un(x, t) denotes an (auxili-
ary) variable representing the activity of population n, Pn(·, θn) the (typically sigmoidal)
firing-rate function, and θn the firing threshold. The index m represents the presynaptic
(sender) and n the postsynaptic (target) population. The operators ∗ and ⊗ denote the
temporal and spatial convolution integrals, respectively, i.e.,

(α ∗ β)(t) =
t∫
−∞

α(t− s)β(s)ds

(f ⊗ g)(x) =
∫
Rs

f(y − x)g(y)dy
(2)

It is commonly assumed that the neurons of each population are homogeneous with re-
spect to some properties, e.g., spatial coupling, temporal kernel, and/or probability of
firing (firing-rate function). In general, all neurons can be divided into two main categor-
ies: excitatory and inhibitory neurons. The input from excitatory neurons increases the
probability of the receiving neurons to fire, while inputs from the inhibitory neurons have
the opposite effect. Thus, the connectivity function ω corresponding to the excitatory
population as a sender-population is modeled by a positive function, and ω corresponding
to the inhibitory population, as a sender-population, is modeled by a negative function.

The dynamical behavior observed in neural field models includes spatially and temporally
periodic patterns, traveling waves, and localized regions of activity (bumps), [6]. The spa-
tially and temporally periodic patterns are obtained beyond a Turing instability and have
been related to visual hallucinations, [7, 8, 9]. Neurological disorders in humans such
as epileptic seizure [10] and migraines [11] are characterized by traveling waves. Travel-
ing waves also have been observed at the onset of sleep [12] and been related to sensory
processing within cortex [13]. Bumps have been linked to the mechanism of working
memory in the prefrontal cortex [14], representation in the head-direction system [15],
and feature selectivity in the visual cortex [16].

Most studies are related to one- and two-population neural field models, and only a few

2



PhD thesis 1.3 One-population neural field model

models to a larger number of neural populations, e.g., [17]. In the present thesis we will
focus on the stationary localized solutions (bumps) of (1) in the case of one and two
populations. We study existence, stability, and continuous dependence of bumps on the
steepness of the firing-rate function. We also develop numerical algorithms to construct
bump solutions and work on development of a wavelet-Galerkin algorithm to analyze a
one-population model.

1.3 One-population neural field model

A one-population neural field model in one spatial dimension, x ∈ R, in accordance with
(1) assumes the form of a Volterra equation

u(x, t) =

t∫

−∞

α(s− t)
+∞∫

−∞

ω(x− y)P (u(y, s), θ)dyds. (3)

Under the assumption that the temporal kernel α is modeled by the exponentially decaying
function

α(t) = e−t, t > 0, (4)

i.e., the present time carries more weight than the past, the equation (3) can be transformed
to the integro-differential equation, [6]

∂tu(x, t) = −u(x, t) +
+∞∫

−∞

ω(x, y)P (u(y, s), θ)dy. (5)

The one-population model usually combines properties of both excitatory and inhibitory
neurons. Commonly, these models assume a lateral-inhibition type of connection (a local
excitation and distal inhibition) which corresponds to a function of a "Mexican hat" type,
e.g.,

ω(x) = Ke−A|x| − ke−a|x|, K > k > 0, A > a > 0. (6)

However, some brain regions, and in particular the prefrontal cortex, possess a periodic
modulation of anatomical connection strength [18]. One example of this type of connec-
tion is, [19]

ω(x) = e−b|x|(b sin |x|+ cos(x)), b > 0. (7)

See graphics of the functions (6) and (7) in Fig. 1.

Furthermore, the brain is not a homogeneous media and it is natural to assume that the
neuronal microstructure has an impact on processes at the mesoscale level. Thus, one

3
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Figure 1: Examples of the connectivity function ω: (left) The "Mexican-hat" function (6) with
K=A=2, k=a=1, and (right) the function (7) with b=0.2.

should not exclude inhomogeneous types of connectivity from mathematical considera-
tion. Bressloff [20] was the first to study traveling fronts in a neural model with a period-
ically modulated micro-structure. Coupling between the periodic micro-level structure of
the cortex and nonlocal mean-field description has been addressed in some other papers
as well, see for example [21, 22, 23, 24, 25, 26]. It turns out that the detailed microstruc-
ture has an impact on pattern forming mechanisms as well as existence and stability of
traveling fronts and pulses.

In [5] a one-population model of the lateral-inhibition type in one spatial dimension is
considered. There the firing-rate function was modeled by the unit step function, i.e.,

P (u, θ) = l(u− θ), l(u) =
{

0, u < θ

1, u ≥ θ
. (8)

We will make use of the following definitions which were introduced in [5]:

Definition 1.1. Let θ be fixed, and U(x) a stationary solution of (5). Then a set R[U ] =

{x : U(x) ≥ θ} is called an excited region of U(x).

Definition 1.2. Let θ be fixed, and U(x) be a stationary solution of (5) with the unit step

firing-rate function (8). If the excited region of U is such that R[U ] = [a1, a2] then U(x)

is called a local excitation solution, or simply, a bump.

Amari [5] made an observation that one can find analytical expressions for bump solu-
tions. Moreover, it was shown that there exist stable and unstable bumps in the framework
of the model, [5].

Later, Kishimoto and Amari [27] proved the existence of stable bumps for the same type

4
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of model but with a firing-rate function given as

P (u, θ) = f(u− θ), f(u) =





0, u ≤ 0

φ(u), 0 < u < ε

1, u ≥ ε
, (9)

where ε > 0, and φ is an arbitrary differentiable, monotonically increasing, and normal-
ized function such that φ(0) = 0, φ(ε) = 1.

Coombes and Schmidt [28] observed that this type of function possesses the representa-
tion

f(u) =

∫

R

ρ(ξ)l(u− ξ)dξ, ρ(ξ) = f ′(ξ).

They call this function a smoothed Heaviside function, [28].

Remark 1.3. We notice here that the definition of a bump (Definition 1.2) is given for the

case when the firing-rate function is as in (8). Therefore it is necessary to specify what is

meant by a bump when P differs from (8). Kishimoto and Amari [27] gave a definition of

bumps in the framework of the model (5) with (9) which however is not introduced here.

Bump solutions of the model (5) with the firing-rate function (9) have no closed form ana-
lytical representation, [27]. Coombes and Schmidt in [28] suggested an iterative scheme
for construction of these bumps. They, however, did not give a mathematical verification
of their approach. In Paper I two iterative schemes for construction of such bumps are
introduced and the convergence of the schemes is proved.

In a modern terminology, bumps (Definition 1.2) are often referred to as 1-bumps. This is
due to the following extended definition of the localized activities:

Definition 1.4. Let θ be fixed, and U(x) be a stationary solution of (5). If the excited

region of U is such that R[U ] =
N⋃
k=1

[a2k−1, a2k] then U(x) is called a bump solution or

an N -bump.

In [29] existence and stability of 2-bumps was studied in the framework of a lateral-
inhibition type of connectivity. For studies on multibumps we refer to [30].

In principle, bumps can be constructed provided the Fourier transform of ω is a real ra-
tional function [19, 31]. In this case the model can be converted to a higher order nonlinear
differential equations which can be represented as a Hamiltonian system. The bumps then
are given by homoclinic orbits within the framework of these systems, see [19, 30, 31].

5
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In Paper IV we show existence of 1-bumps for quite general ω when the firing-rate func-
tion is in a steep firing-rate regime andP (u, θ) = 0, ∀u < θ.We also prove the continuous
dependence of bumps on the steepness of the firing rate.

There are studies on existence and stability of bumps in two spatial dimension, x ∈ R2,
for one-population models, see for example [29, 30, 32]. Evolution of bumps in two di-
mensions demonstrates emergence of multibumps and labyrinthine patterns beyond the
instabilities, [32]. However, the mathematical treatment of the model in two spatial di-
mensions gets more complicated. Hence most studies of these problems are carried out
by numerical simulations.

Amari [5] studied existence of spatially periodic patterns in a one-population neural field
model (5) with a unit step firing-rate function. In Paper II we study existence of stationary
periodic solutions in the simplified one-population model, so called weakly nonlocal limit,
where the firing-rate function is modeled by a sigmoid function, and the functions of a
smoothed Heaviside type. For other studies on traveling waves and spatial patterns in one-
population models (3) we refer to [33] and [5], respectively. For a more general overview
see [6].

1.4 Two-population neural field model

A two-population model for the excitatory activity level ue and the inhibitory activity
level ui reads

ue = αee ∗ ωee ⊗ Pe(ue, θe)− αie ∗ ωie ⊗ Pi(ui, θi),

ui = αei ∗ ωei ⊗ Pe(ue, θe)− αii ∗ ωii ⊗ Pi(ui, θi).
(10)

Here the convolutions are defined as in (2). The dynamics of the excitatory and inhibitory
interactions is modeled in a symmetric way: Each neural population receives impulses
from, in principle, all neurons from another neural population as well as neurons from the
same population, see Fig. 2.

Notice that we have modified the original definition of ωmn given in Section 1.2. For
simplicity we assume ωmn, m, n ∈ {e, i} to be positive functions. This explains the
minus sign that appears in the model (10) as compared to (1).

When the temporal kernels are given as

αee(t) = αie(t) = e−t, αei(t) = αii(t) =
1

τ
e−t/τ (11)

6
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Figure 2: A schematic illustration of the connections within a generic neural field model consisting
of an excitatory (E) and an inhibitory (I) population. The model possesses connections between two
different populations (ei and ie), as well as recurrent connections within each population (ee and ii).

the model (10) can be converted to a system of rate equations, [34]

∂tue = −ue + ωee ⊗ Pe(ue, θe)− ωie ⊗ Pi(ui, θi)

τ∂tue = −ui + ωei ⊗ Pe(ue, θe)− ωii ⊗ Pi(ui, θi).
(12)

Here the parameter τ represents a ratio between the inhibitory and excitatory time constant
and is called the relative inhibition time.

Next, we make a short review of works on two-population models in one spatial dimen-
sion. To the best of our knowledge there are no studies of these models in two spatial
dimensions.

In [35] a simplified version of (12) has been considered: The recurrent inhibition is neg-
lected (i.e., ωii ≡ 0) and, in addition, the inhibitory term in the excitatory equation was
linearized, i.e., Pi(ui, θi) ≡ ui. It is shown that this model can be reduced to a one-
population model (5) of a lateral-inhibition type as τ → 0.

The existence and stability of stationary localized solutions (a pair of 1-bumps Ue and
Ui) in a two-population model (12) with the firing-rate functions Pe, Pi modeled by the
unit step function (8) have been studied in [36]. In this case bumps possess an analytical
representation and it has been shown that there is always a set of threshold values (θe, θi)
for which bumps exist. In Paper III the existence and stability of bumps have been studied
in the framework of the model (10) with more general choices of temporal kernels. The
paper [9] is devoted to the study of a pattern formation within the framework of the model
(12).

7
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2 Paper summaries

2.1 Paper I

In Paper I we study a one-population neural field model given by (5) often referred to
as the Wilson-Cowan model. In the framework of this model we study time-independent
spatially localized solutions (bumps). We develop two iteration schemes for construct-
ing such bumps when the firing-rate function is a continuous function of a special type
(smoothed Heaviside function). The first scheme is based on the fixed point problem in-
troduced in [27] while the second one is an iteration scheme for the excitation width (the
length of the excited region) of the bumps. Using the theory of monotone operators in
ordered Banach spaces we prove convergence of both iteration schemes. We demonstrate
the applicability of the schemes with a numerical example.

2.2 Paper II

Wavelets are an effective tool in signal and image processing, [37]. While the utility of
wavelets in solving differential and integro-differential equations is still quite question-
able, there are some examples of successful usage of wavelet bases. In Paper II we im-
plement a numerical algorithm based on the wavelet-Galerkin approach to study solutions
of the weakly nonlocal limit of a one population neural field model. Roughly speaking,
a weakly nonlocal limit is a one-population Wilson-Cowan model with almost local con-
nectivity: It is assumed that the characteristic spatial scale length of the activity level
is much greater than the synaptic footprint. First, we study the stability of homogeneous
solutions and existence of periodical solutions of the model, using a pseudo-potential ana-
lysis. Next, we show that the numerical solutions agree with the theoretical prediction.

2.3 Paper III

In Paper III we consider a two-population model (12) when the firing-rate functions Pe,
Pi are unit step functions. Just as for the one-population model, the Wilson-Cowan type
of model (12) can be obtained from (10) when the temporal kernels are exponentially de-
caying functions (11). We study stability of symmetric bumps when the temporal kernels
belong to a more general class of functions than exponentially decaying, namely the set
of quasi-power functions. We compare two stability approaches known in literature as
the Amari approach and the Evans function technique. We show that in the framework
of the quasi-power temporal kernels these two approaches give the same predictions. We
illuminate our results by numerical simulations.

8
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2.4 Paper IV

In Paper IV we study properties of the one-parameter family of Hammerstein operators

(Hβu)(x) =
∫

R

k(x, y)S(β, u(y))dµ(x), 0 < β ≤ ∞

in Sobolev spaces. The motivation for this study stems from the fact that bump solutions
of a one-population neural field model appear as fixed points of these operators. We study
continuity, compactness, and convergence Hβu → H∞u when β → ∞, in the vicinity
of a bump. We prove continuous dependence of bumps on the parameter β as well as
existence of 1-bumps for large β > 0 under some restrictions on ω and S(β, u).

3 Conclusions and Outlook

3.1 Contribution

In this thesis one- and two-population neural field models have been studied. While neural
field models represent a considerable simplification of the neural dynamics in a large
network, they are often studied under further simplifying assumptions on the connectivity
functions, firing-rate functions, and/or temporal kernels. In some cases these assumptions
may not change essential features of the model, but in other cases they may cause some
properties of the model to break down.

We have considered generalizations of existing models by relaxing the common assump-
tion on temporal kernels to be exponentially decaying functions (Paper III), the assump-
tion on the connectivity function to describe a lateral-inhibition type of connection (Paper
I, Paper IV), the assumption on the firing-rate function to be a unit step function (Paper I,
Paper II, Paper IV). We also have focused on finding numerical schemes for solving such
models (Paper I and Paper II to some extent), and worked on specific limit of an existing
model (Paper II). We used the theory of monotone operators in ordered Banach spaces,
the theory of Sobolev spaces in unbounded domains, degree theory, and other functional
analytical methods for analysis of the models.

We also believe it is necessary to justify rigorously numerical approaches used in math-
ematical neuroscience. A lack of such justification may lead to numerical instabilities,
ill-conditioning or even divergence. On the other hand, some of the previously used tech-
niques might turn out to be very efficient, simple in realization, and allow further general-
ization. They just need to be properly analyzed. Moreover, there are some methods which

9



3 CONCLUSIONS AND OUTLOOK Anna Oleynik

have not been used in neuroscience community but might be beneficial. In this thesis we
have initiated a work in that direction: In Paper I we have developed and proved conver-
gence of two iteration schemes for constructing 1-bump solutions of (5) in the framework
of a smoothed Heaviside firing-rate function. In Paper II we develop a wavelet-Galerkin
method to solve the weekly nonlocal limit of a one-population model. We use this simpli-
fied framework as a test example and to investigate advantages and disadvantages of the
method for future use.

3.2 Future perspectives

While there is a growing number of publications devoted to the study of existence and sta-
bility of bumps, traveling waves, and emergence of spatial and spatio-temporal patterns
in neural field models under simplifying assumptions, there are not so many publica-
tions that mathematically justify these simplifications. The relation between simplified
and "full" models is often investigated in a way developed within the continuum mechan-
ics tradition. However, in order to justify common simplifications and find true relations
between simplified and "full" models one has to use methods which are not so well estab-
lished in the mathematical neuroscience community, such as tools offered by functional
analysis.

The future development of the neural field should also focus on developing new and more
realistic models which account for micro- and stochastic effects, [21].

10
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ITERATIVE SCHEMES FOR BUMP SOLUTIONS IN A NEURAL FIELD MODEL

ANNA OLEYNIK, ARCADY PONOSOV, AND JOHN WYLLER

ABSTRACT. We develop two iteration schemes for construction of localized stationary solutions
(bumps) of a one-population Wilson-Cowan model with a smoothed Heaviside firing rate func-
tion. The first scheme is based on the fixed point formulation of the stationary Wilson-Cowan
model. The second one is formulated in terms of the excitation width of a bump. Using the
theory of monotone operators in ordered Banach spaces we justify convergence of both iteration
schemes.

1. INTRODUCTION

Neural field models have been the subject of mathematical attention since the publications
[1, 2, 3, 4]. These models typically take the form of integro-differential equations. We consider
a one-population neural field model of the Wilson-Cowan type [1, 2, 3, 4, 5]

(1.1) ut = −u+ ψ, ψ(x, t) =

+∞∫

−∞

ω(y − x)f(u(y, t)− h)dy.

Here u(x, t) denotes an variable representing the activity of population, f the firing-rate func-
tion, ω the connectivity function, and h the firing threshold. For review on the model (1.1) see
[5]. Existence and stability of spatially localized solutions and traveling waves are commonly
studied for the case when the firing rate function is given by the unit step function [4, 5, 6].
However, the results for the case when the firing rate function is smooth are few and far between
[7, 8, 9].

In the mathematical neuroscience community time-independent spatially localized solutions of
(1.1) are referred to as bumps. The motivation for studying bumps stems from the fact that they
are believed to be linked to the mechanisms of a short memory [10]. In the case when f is
given as a unit step function, one can find analytical expressions for the bump solutions [4].
In principle, bumps solutions can also be constructed when the firing rate function is smooth
provided the Fourier-transform of the connectivity function is a real, rational function. In that
case the model can be converted to a higher order nonlinear differential equation which can
be represented as a Hamiltonian system. The bumps are represented then by homoclinic orbits
within the framework of these systems. See [11, 12].

Kishimoto and Amari [7] have proved the existence of bump solutions of (1.1) when f is a
smooth function of a special type (smoothed Heaviside function), using the Schauder fixed point
theorem. The Schauder fixed point theorem, however, does not give a method for construction of
the bumps. Coombes and Schmidt in [8] developed an iteration scheme for constructing bumps
of the model (1.1) with a smoothed Heaviside function. They, however, did not give a mathe-
matical verification of their approach. Apart from the work of Coombes and Schmidt [8], the
authors of the present paper do not know about other attempts to develop iterative algorithms
for the construction of bumps. Thus there is a need for a more rigorous analysis of iteration

Key words and phrases. Neural field models, iteration schemes for bumps, monotone operators in ordered Banach
spaces.
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schemes for bumps. This serves as a motivation for the present work.

We present two different iteration schemes for constructing bumps. The first one is based on
the fixed point problem introduced in [7]. The second scheme, which is modification of the
procedure introduced in [8], is an iteration scheme for the excitation width of the bumps. We
prove that both schemes converge using the theory of monotone operators in Banach spaces.

The present paper is organized in the following way: In Section 2 the properties of the one-
population Wilson-Cowan model are reviewed with emphasis on the results of Kishimoto and
Amari [7]. In Section 3 some necessary mathematical preliminaries are introduced. Section 4
is devoted to the study of a direct iteration scheme based on the fixed point problem proposed
by of Kishimoto and Amari [7]. We illustrate the results with a numerical example. In Section
5 we introduce a fixed problem based on the specific representation of the firing rate function
studied in [8]. The fixed problem is formulated for the crossing between bumps and a shifted
parameterized threshold value h+t, t ≥ 0. The bump solution can be restored from these cross-
ings. We prove that there is a fixed point which can be obtained by iterations. We illustrate the
results with a numerical example. In Section 6 we summarize our findings and describe open
problems.

2. MODEL

We consider the connectivity function ω with the following properties:

(i) ω is symmetric , i.e. ω(−x) = ω(x),
(ii) ω ∈ L1(R),

(iii) ω is continuous and bounded, i.e., ω ∈ BC(R),
(iv) ω is differentiable a.e. with bounded derivatives, i.e., ω ∈W 1,∞(R).

A well known example of the connectivity function is the ’Mexican-hat’ function modeling
’lateral inhibition’ coupling, [4, 12]

(2.1) ω(x) = Ke−k|x| −Me−m|x|, 0 < M < K, 0 < m < k.

In this paper we, however, use the following example of ω, [13]

(2.2) ω(x) = e−b|x|(b sin |x|+ cosx), b > 0.

We have plotted the ’Mexican-hat’ function (2.1) with parameters K = k = 2, M = m = 1, in
Fig.1(a). In Fig.1(b) we have plotted the connectivity function (2.2) when b = 0.3.

If the model (1.1) possesses steady states they have to satisfy the integral equation

(2.3) u(x) =

+∞∫

−∞

w(y − x)f(u(y)− h)dy.

Notice that, when u(x) is an equilibrium solution, so is u(x − c) for arbitrary constant c. If an
equilibrium solution (2.3) is symmetric, it can be expressed as

(2.4) u(x) =

+∞∫

0

r(x, y)f(u(y)− h)dy

where

r(x, y) = w(y − x) + w(y + x).
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The firing rate function, f, is a non-decreasing function mapping R to the unit interval [0, 1].
In [4] the firing-rate function f has been assumed to be a step function, i.e.,

(2.5) f = θ, θ(u) =

{
0, u < 0
1, u ≥ 0.

In this case the spatially localized solutions can be explicitly constructed. Following [4] we
introduce the following definitions:

Definition 2.1. The set R[u] = {x| u(x) > h} is called the excited region of u(x), [4].

Definition 2.2. An equilibrium solution u(x) of (1.1) with f = θ is called an a−solution or a
1-bump with the width a if the excited region R[u] = (a1, a2), a = a2 − a1 is the length of the
excited region.

Then a 1−bump solution is given as

u(x) =

a2∫

a1

ω(y − x)dy.

In this paper we do not consider multiple bump solutions (n−bumps) or any other steady states
of (1.1). We restrict ourselves to 1−bumps. Therefore, we refer to 1-bumps as bumps in the rest
of the paper. Without loss of generality we from now on consider only symmetric bumps, which
can be represented as

u(x) =

∫ a/2

0
r(x, y)dy.

Here a2 = −a1 = a/2.

Let

Φ(x, y) =

∫ y

0
r(x, z)dz, x, y ∈ R, y > 0,

with

(2.6)
∂Φ

∂x
(x, y) = w(y + x)− w(y − x).

We conveniently express the bumps by means of the function Φ:

Theorem 2.3. The model (1.1) with the firing-rate function f = θ possesses a bump solution if
and only if there exist a width, a, such that

Φ(a/2, a/2) ≡
∫ a

0
w(y)dy = h

and

(i) Φ(x, a/2) ≤ h, ∀x > a/2,
(ii) Φ(x, a/2) ≥ h, ∀x ∈ [0, a/2).

The bump solution is given by u(x) = Φ(x, a/2).

The stability of bumps can be studied by the Amari approach [4], or using the Evans function
technique, [5]. We get the following stability result:

Theorem 2.4. Let f = θ, and there exist a bump with the width a. The bump is stable if
ω(a) < 0 and unstable if ω(a) > 0.
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The firing-rate function treated here is of the following type, [7]

(2.7) f(u) =





0, u ≤ 0
φ(u), 0 < u < τ
1, u ≥ τ

,

where τ > 0, φ is an arbitrary continuous, monotonically increasing, and normalized function
such that

φ(0) = 0, φ(τ) = 1.

When τ → 0, the firing rate function approaches a unit step function. As an example of such a
function we have

(2.8) f(u) = Σ (u/τ, p) , Σ(u, p) =





0, u ≤ 0
up

up + (1− u)p
, 0 < u < 1

1, u ≥ 1

, p > 0,

where Σ(·, p) ∈ C [p](R) and [p] denotes the integer part of p. We need the following definition:

Definition 2.5. R∗[u] = {x|u(x) > h+ τ} is called a maximally excited region, and R−[u] =
{x|h < u(x) < h+ τ} is an incompletely excited region, [7].

Following [7], we next define the bump solutions corresponding to the firing rate function
(2.7) as follows:

Definition 2.6. An equilibrium solution u(x) of (1.1) with f given by (2.7) is called a bump if
R∗[u] is the interval surrounded by an incompletely excited region R−[u], i.e., R[u] = R∗[u] ∪
R−[u] being another interval, [7].

Thus, by Definition 2.6 the function u(x) displayed graphically in Fig.2 can be a bump when
τ = τ1, whereas for τ = τ2 it can not be a bump.
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FIGURE 1. The examples of the connectivity function ω: (a) The ’Mexican-
hat’ function (2.1), and (b) the function (2.2), with the parameters given in the
text.

Let f0(u) = θ(u) and fτ (u) = θ(u− τ). Then the following inequality holds true

fτ (u) ≤ f(u) ≤ f0(u).
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FIGURE 2. The graphic of a function u(x) which satisfy Definition 2.6 when
τ = τ1 and does not satisfy it when τ = τ2.

We use similar terminology as introduced in [7]: The neural field with the output functions
f0, fτ , and f is called a f0-field, fτ -field, and f -field, respectively. Notice here that the fτ - field
is equivalent to the f0-field with the new threshold value h+ τ.

The original idea of Kishimoto and Amari [7] was to use bump solutions of the f0− and
fτ−fields to prove the existence (and stability) of bumps in the f−field. If ω has a ’Mexican-
hat’ shape (see Fig. 1(a)) then the f0−field (fτ−field) possesses two symmetric bumps for
small and moderate values of h, one stable and one unstable bump. In [7] it was shown, using
the Schauder fixed point theorem, that there exists a bump solution of f−field if both f0− and
fτ− fields possess stable bumps and ω has a ’Mexican-hat’ shape (i.e., the connectivity function
can have the shape like in Fig.1(a) but not like in Fig.1(b)). Moreover, if φ is a differentiable
function it was shown that the f− field bump is stable. Notice that the differentiability of
φ can be replaced by a weaker assumption, namely differentiability almost everywhere, i.e.,
φ ∈W 1,1[0, τ ]. Then, the firing rate function (2.7) can be represented as in [8] i.e.

(2.9) f(u) =

+∞∫

−∞

ρ(ξ)θ(u− ξ)dξ,

with θ given by (2.5), supp{ρ} = [0, τ ], and ρ is positive and normalized
∞∫
−∞

ρ(x)dx = 1.

In this paper we introduce two iteration methods to construct a bump of the f−field. We do
not require the connectivity function to have a ’Mexican hat’ shape as it is assumed in many
studies, e.g., [4, 7]. Moreover, we do not require ω to be given by means of the expression (2.2)
as for example in [11, 12], but we keep our assumptions on ω to be as general as possible. We
also do not demand the bumps of the f0− and fτ−field bumps be stable in order to prove the
existence of an f−field bump and construct it numerically. We use the following assumptions:

Assumption 1. There exist 2∆0-solutions of the f0−field model, and 2∆τ -solutions of the fτ -
field model such that ∆τ < ∆0.

Let us assume that there is a bump solution of the f0−field model, i.e., Φ(∆0,∆0) = h,
see Theorem 2.3. Then, by the inverse function theorem there exists a value τ > 0 such that
Φ(∆τ ,∆τ ) = h + τ for some ∆τ < ∆0, if ω(2∆) < 0 in some vicinity of ∆0. In this case
both bumps are stable by Theorem 2.4. However, Assumption 1 can be satisfied even when the
situation described above does not take place, i.e., the condition ω(2∆) < 0 is not fulfilled for
all ∆ ∈ [∆τ ,∆0], see for example Fig.3.
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Under Assumption 1 bumps for the f0-field model and the fτ -field model are, in according
with Theorem 2.3, given as

u0(x) = Φ(x,∆0) uτ (x) = Φ(x,∆τ ).

Assumption 2. The function r(x, y) ≥ 0 for x, y ∈ [∆τ ,∆0].

We get the following relationship between uτ and u0:

Lemma 2.7. Under Assumption 2 we have uτ ≤ u0 on [∆τ ,∆0].

Proof. We get

u0(x)− uτ (x) =

∫ ∆0

0
r(x, y)dy −

∫ ∆τ

0
r(x, y)dy =

∫ ∆0

∆τ

r(x, y)dy ≥ 0.

�
In this paper we will only consider bump solutions of the f−field such that

(2.10) u(x) > h+ τ, ∀x ∈ R[uτ − τ ], u(x) < h ∀x 6∈ R[u0].

3. MATHEMATICAL PRELIMINARIES

The theoretical foundation of the iteration schemes presented in Section 4 and Section 5 is
based on the following general results:

Let E be a cone in a real Banach space B and ≤ be a partial ordering defined by E.

Theorem 3.1. Let w0, v0 ∈ B, w0 < v0 and A : [w0, v0] → B be an increasing operator such
that

w0 ≤ Aw0, Av0 ≤ v0.

Suppose that one of the following two conditions is satisfied:
(H1) E is normal and A is condensing;
(H2) E is regular andA is semicontinuous, i.e., xn → x strongly impliesAxn → Ax weakly.
Then A has a maximal fixed point x∗ and a minimal fixed point x∗ in [w0, v0]; moreover

x∗ = lim
n→∞

vn, x∗ = lim
n→∞

un,

where vn = Avn−1 and wn = Awn−1, n = 1, 2, 3..., and

w0 ≤ w1 ≤ ... ≤ wn ≤ ... ≤ vn ≤ ... ≤ v1 ≤ v0.

See [14].
From Theorem 3.1 we get the following result.

Corollary 3.2. If under the conditions of Theorem 3.1 x∗ = x∗ = x̃, then x̃ is the unique fixed
point of the operator A in [w0, v0].

Theorem 3.3. The cone E = {u ∈ B|u(x) ≥ 0} is normal but not regular in B = C(D̄), and
regular in B = Lp(D), 1 ≤ p <∞, where D is a bounded set and D̄ is a closed bounded set.

See [14].

Theorem 3.4. The Hammerstein operator

(Af)(x) =

∫ b

a
k(x, y)ψ(y, f(y))dy

is continuous and compact inC([a, b]) if k(x, y) and ψ(x, y) are continuous functions on [a, b]×
[a, b].
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Proof. The operator A can be represented as the superposition, A = LN, where L is the linear
operator

(Lg)(x) =

∫ b

a
k(x, y)g(y)dy,

and N is the Nemytskii operator

(Nf)(x) = ψ(x, f(x)).

The linear operator L : C([a, b]) → R is continuous and compact if k(x, y) is continuous
[16]. Obviously, the Nemytskii operator N : C([a, b]) → C([a, b]) is continuous and bounded
if ψ(x, y) is continuous. Thus, the Hammerstein operator A is completely continuous as the
superposition of the continuous and bounded operator N, and completely continuous operator
L. �

4. ITERATION SCHEME I: DIRECT ITERATION.

In this section we consider the direct iteration scheme for construction bumps. This scheme
is based on [7]. We start out by observing that a bumps solution of an f−field satisfying (2.10)
can be rewritten as

u(x) = uτ (x) +

∫ ∆0

∆τ

r(x, y)f(u(y)− h)dy.

We have the following theorem:

Theorem 4.1. Let ω satisfy Assumption 1 and 2. Let the operator Tf : [uτ , u0] ⊂ B → B be
defined as

(4.1) (Tfu)(x) = uτ (x) +

∫ ∆0

∆τ

r(x, y)f(u(y)− h)dy

where B is chosen to be either L2([∆τ ,∆0]) or C([∆τ ,∆0]). Then the operator Tf has a fixed
point in [uτ , u0]. Moreover, the sequences {Tnf uτ} and {Tnf u0} converge to the minimal and
maximal fixed point of the operator Tf , respectively.

Proof. We base our proof on Theorem 3.1. The set E = {u ∈ B|u(x) ≥ 0} is a normal cone in
B = C([∆τ ,∆0]) and a regular cone in B = Lp([∆τ ,∆0]), 1 ≤ p < ∞, see Theorem 3.3. By
Assumptions 1-2 there exist uτ and u0 such that 0 ≤ uτ ≤ u0 on [∆τ ,∆0].

First we describe the properties of Tf which are common for both spaces. The operator Tf is
positive and monotone due to Assumption 2 and monotonicity of f, i.e.,

u1(x) ≤ u2(x)⇒ (Tfu1)(x) ≤ (Tfu2)(x).

Moreover, Tf is continuous because f is continuous and r(x, y) is bounded.
Define a non-linear operator Tg associated with the non-negative function g(x) by

(Tgu)(x) = uτ (x) +

∫ ∆0

∆τ

r(x, y)g(u(y)− h)dy.

Then u0 and uτ are fixed points of the operators Tf0 and Tfτ , respectively:

Tf0u0 = u0, Tfτuτ = uτ .

From Assumption 2 we can easily deduce that

g(x) ≤ m(x) ⇒ (Tgu)(x) ≤ (Tmu)(x),

and, therefore,
(Tfτu)(x) ≤ (Tfu)(x) ≤ (Tf0u)(x).

Thus,
Tfuτ ≥ Tfτuτ = uτ , Tfu0 ≤ Tf0u0 = u0.
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From Theorem 3.1 we conclude that Tf : [uτ , u0] → L2([∆τ ,∆0]) has a fixed point in
[uτ , u0] which can be found by iterations. However, for the case B = C([∆τ ,∆0]) it remains
to show that Tf is condensing. Applying Theorem 3.4 to the Hammerstein operator on the right
hand side of (4.1), i.e., to the operator T̃f : [uτ , u0]→ C[∆τ ,∆0] defined as

T̃fu =

∫ ∆0

∆τ

r(x, y)f(u(y)− h)dy,

we find that Tf : [uτ , u0]→ C([∆τ ,∆0]) is compact and, thus, condensing. This completes the
proof.

�
In Fig.3 we have plotted ω(x) given by (2.2) with the marked points (2∆0, ω(2∆0)),

(2∆τ , ω(2∆τ )), and (2∆st
τ , ω(2∆st

τ )). Here ∆0 is defined as u0(∆0) = h, and ∆τ , ∆st
τ are

obtained as solutions of uτ (∆) = h+ τ, for h = 0.3, τ = 0.1. The values are given as follows:
∆0 = 1.3932, ∆τ = 0.6562, and ∆st

τ = 1.2410. According to Theorem 2.4 the function u0

is a stable bump. The bump uτ is stable when ∆ = ∆st
τ and unstable if ∆ = ∆τ . We denote

these bumps as uτ and ustτ , respectively. We have checked that Assumption 2 is satisfied on
[∆τ ,∆0] = [0.6562, 1.3932]. Thus, we can apply Theorem 4.1. In Fig.4(a) we have plotted the
solution u∗(x) on [∆τ ,∆0] obtained by iterations from uτ (x) and u0(x) when f is given as in
(2.8), p = 2. From Corollary 3.2 we conclude that u∗ is a unique solution of the fixed point
problem for (4.1). We have plotted u0, uτ , and ustτ on the same figure to illustrate the inequality

(4.2) ustτ ≤ u∗ ≤ u0.

In Fig.4(b) we have plotted the numerical errors calculated as

(4.3)
ε1(n) = max

x
|(Tnuτ )(x)− (Tn−1uτ )(x)|, T 0uτ ≡ uτ

ε2(n) = max
x
|(Tnu0)(x)− (Tn−1u0)(x)|, T 0u0 ≡ u0

, n = 1, 2, ..., N,

where N denotes the total number of iterations.

0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

ω(x)
ω(2∆τ)

ω(2 ∆st
τ )

ω(2∆
0
)

FIGURE 3. The connectivity function ω(x) given as in (2.2) with b = 0.3.
The black square indicates an unstable bump of the fτ−field , the black circle
indicates a stable bump of fτ−field, and the red circle indicates a stable bump
of the f0−field. The parameters are fixed and given as h = 0.3, τ = 0.1.

Next we show that the solution u∗ = Tfu
∗ can be extended to the solution u of (2.3) over

R such that u(x) ≥ h + τ for x ∈ [0,∆τ ] and u(x) ≤ h for x ∈ [∆0,∞). To do that we
have to introduce some additional assumptions on the connectivity function ω. We do this in the
following way:
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FIGURE 4. (a) A fixed point of the operator (4.1), u∗(x), the stable bump u0

of the f0−field, and stable, ustτ and unstable, uτ bump of fτ−field, for x ∈
[∆τ ,∆0]. The connectivity function ω is given as in (2.2), b = 0.3., f is defined
by (2.8) with p = 2, h = 0.3, τ = 0.1. (b) The errors given as in (4.3).

Assumption 3. u0 is a decreasing function on the interval [∆τ ,∆0] which is equivalent to

∂Φ

∂x
(x,∆0) < 0, ∀x ∈ [∆τ ,∆0],

and uτ is a decreasing function on [∆τ ,∆0] which is equivalent to

∂Φ

∂x
(x,∆τ ) < 0, ∀x ∈ [∆τ ,∆0].

From this assumption the transversality of the intersections u0(x) with h, and uτ (x) with
h+ τ follows. Thus, the assumption always can be satisfied if, for example, we choose a small
τ provided |∆0 −∆τ | is sufficiently small.

Assumption 4.
∫ ∆0

∆τ

| ∂r
∂x

(x, y) | dy < −∂Φ

∂x
(x,∆τ ), ∀x ∈ [∆τ ,∆0].

Instead of Assumption 4 we can introduce the following assumption:

Assumption 4 ′.
∫ ∆0

∆τ

| ∂r
∂x

(x, y) | f(u0(y)− h)dy < −∂Φ

∂x
(x,∆τ ), ∀x ∈ [∆τ ,∆0].

Although this assumption is less restrictive than Assumption 4, it implicitly contains a re-
striction on the firing rate function, f .

Assumption 4 (or 4′) is technical and used only to prove that u∗(x) is a decreasing function
on [∆τ ,∆0].

Lemma 4.3. The fixed point u∗(x) is differentiable and decreasing on the interval [∆τ ,∆0].

Proof. We get

(u∗(x))′ = u′τ (x) + I, I =

∫ ∆0

∆τ

∂r

∂x
(x, y)f(u∗(y)− h)dy.
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In order to prove that (u∗(x))′ < 0 we need to show that I < −u′τ (x) where

u′τ (x) =
∂Φ

∂x
(x,∆τ ) < 0

by Assumption 3.
We get the following chain of inequalities for |I|

|I| ≤
∫ ∆0

∆τ

| ∂r
∂x

(x, y) | f(u∗(y)− h)dy ≤

≤
∫ ∆0

∆τ

| ∂r
∂x

(x, y) | f(u0(y)− h)dy.

Thus, by Assumption 4 (or 4′) we have |I| < −u′τ (x) and therefore I < −u′τ (x). �

Finally, we introduce the following assumption which by Definition 2.6 allow us to view the
extended solution u of u∗ to be a bump:

Assumption 5. The function Φ is such that
(i) Φ(x, z) ≤ h, ∀x > ∆0, z ∈ [∆τ ,∆0],

(ii) Φ(x, z) ≥ h+ τ, ∀x ∈ [0,∆τ ], z ∈ [∆τ ,∆0].

Theorem 4.4. Under Assumptions 3, 4 (or 4′), and 5 the fixed point u∗ defined on the interval
[∆τ ,∆0] can be extended to a bump solution u(x) of (2.4) defined on R such that u(x) > h+ τ
∀x ∈ [0,∆τ ) and u(x) < h ∀x ∈ (∆0,∞).

Proof. From Theorem 4.1 and Lemma 4.3 it follows that there exist unique δτ , δ0 : ∆τ < δτ <
δ0 < ∆0 such that

u∗(δτ ) = h+ τ, u∗(δ0) = h.

Let us introduce the function F defined by

F (y) =





1, 0 ≤ y < δτ
f(u∗(y)− h), δτ ≤ y ≤ δ0

0, y > δ0.

Then, according to Lemma 4.3 F (y) is monotonically decreasing function on [δτ , δ0] with
F (δ0) = 0 and F (δτ ) = 1. From (2.3) we get

u(x) =

∫ δ0

0
r(x, y)F (y)dy = −

∫ δ0

0
r(x, y)

∫ δ0

y
F ′(z)dz.

By changing the order of integration, we have

u(x) = −
∫ δ0

δτ

∫ z

0
r(x, y)dyF ′(z)dz =

∫ δ0

δτ

∫ z

0
r(x, y)dyd(1− F (z)),

or

u(x) =

∫ 1

0

∫ z(ξ)

0
r(x, y)dydξ =

∫ 1

0
Φ(x, z(ξ))dξ, where ξ = 1− F (z).

It remains to show that Φ(x, z) < h for x > ∆0, z ∈ [δτ , δ0], and Φ(x, z) > h + τ for
0 ≤ x < ∆τ , z ∈ [δτ , δ0]. Assumption 5 guarantees that these inequalities on a larger interval
for z. Moreover, u(−x) = u(x) due to symmetry of ω. Thus, the proof is completed. �

The proof of Theorem 4.1 is a modification of the theorem used in [7]. The modification is
caused by the fact that our assumptions on the connectivity functions ω are different from ones
used in [7].
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We have checked numerically that Assumptions 3-5 are satisfied for the same parameters as
we chose in Fig.4(a). In Fig.5 we have plotted the graph of a bump in f−field. Moreover, we
can conclude that due to (4.2) the constructed solution is stable, see [7].

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

2

2.5
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h
h+τ

FIGURE 5. The bump solution of the f− field constructed from u∗, see Fig.4(a).

5. ITERATION SCHEME II: BUMPS WIDTH ITERATION

In [8] an iteration procedure for construction of bumps of the f-field has been worked out.
However, a mathematical verification of the procedure has not been given. In the present sec-
tion we introduce an iteration scheme which is based on the idea introduced in [8] and give a
mathematical verification of this approach.

Let t ∈ [0, τ ] and assume that there exist ∆(t) such that a bump solution, u∆(x), satisfies

u∆(±∆(t)) = t+ h.

Then u∆(x) can be described by

(5.1) u∆(x) =

∫ τ

0
ρ(ξ)

∫ ∆(ξ)

0
r(x, y)dydξ

using the representation (2.9).
If a bump of the f−field is given by (2.10) then ∆(t) ∈ [∆τ ,∆0]. The excitation width ∆

satisfies the fixed point problem

(5.2) ∆ = A∆, (A∆)(t) = ∆(t) + k (u∆(∆(t))− t− h) , k = const ∈ R.

Theorem 5.1. The operator A is Fréchet differentiable in L2[0, τ ] if f ∈W 1,∞(R).

Proof. Let us define the operator

(G∆)(t) = u∆(∆(t)).

We calculate the Fréchet derivative of the operator G∆. To do this we first compute its
Gáteaux derivative

g(δ) = lim
λ→0

G(∆ + λδ)−G(∆)

λ
.

For any δ ∈ L2[0, τ ] let us consider

(5.3) G(∆ + λδ)−G(∆) =

∫ τ

0
ρ(ξ)I1(ξ)dξ,
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where

I1(ξ) =

∫ ∆(ξ)+λδ(ξ)

0
r(∆(t) + λδ(t), y)dy −

∫ ∆(ξ)

0
r(∆(t), y)dy.

Making use of the Taylor expansion of r(∆(t) + λδ(t), y) as a function of λ at λ = 0 we have

I1(ξ) =

∫ ∆(ξ)+λδ(ξ)

0

(
r(∆(t), y) + λ

∂r

∂x
(∆(t), y)δ(t) + o(λ)

)
dy −

∫ ∆(ξ)

0
r(∆(t), y)dy

=

∫ ∆(ξ)+δ(ξ)

∆(ξ)
r(∆(t), y)dy + λδ(t)

∫ ∆(ξ)+λδ(ξ)

0

∂r

∂x
(y,∆(t))dy + o(λ)

Plugging I1 into (5.3) and making use of the mean value theorem we get the following formula

(5.4) g(∆, δ(t)) =

∫ τ

0
ρ(ξ)δ(ξ)r(∆(t),∆(ξ))dξ + δ(t)

∫ τ

0
ρ(ξ)

∂Φ

∂x
(∆(t),∆(ξ))dξ.

Hence, we arrive at the conclusion that the Gáteaux derivative is a linear operator. In order to
prove Fréchet differentiability of the operator G we show in accordance with [15] that g(·, δ) :
L2[0, τ ] → L2[0, τ ] is a continuous operator for all δ ∈ L2[0, τ ]. The proof of this fact is
technical and we therefore formulate it as a separate lemma.

Lemma 5.2. The operator g(·, δ) : L2[0, τ ]→ L2[0, τ ] is continuous for all δ ∈ L2[0, τ ].

Proof. We consider the first and the second integral of (5.4) separately as the operators of ∆.
Using the Cauchy-Schwarz and Minkowski inequalities we show that these operators are con-
tinuous and, thus, g(·, δ) is continuous as well, for any δ ∈ L2[0, τ ]. We present the proof for
the first integral operator. The proof of continuity for the second term proceeds in the same way
and is omitted. Introduce

(F∆)(t) =

∫ τ

0
ρ(ξ)δ(ξ)r(∆(t),∆(ξ))dξ.

We get

(F∆1 − F∆2)(t) =

∫ τ

0
ρ(ξ)δ(ξ) (r(∆1(t),∆1(ξ))− r(∆1(t),∆2(ξ))+

+r(∆1(t),∆2(ξ))− r(∆2(t),∆2(ξ))) dξ = I1(t) + I2(t)

where by the mean value theorem I1 and I2 can be defined as

I1(t) =

∫ τ

0
ρ(ξ)δ(ξ)

∂r

∂y
(∆1(t), ∆̃1(ξ))(∆1(ξ)−∆2(ξ))dξ

I2(t) =

∫ τ

0
ρ(ξ)δ(ξ)

∂r

∂x
(∆̃2(t),∆2(ξ))(∆1(t)−∆2(t))dξ

with ∆̃k = λk∆1 + (1− λk)∆2, for some λk ∈ [0, 1], k = 1, 2.
We consider the norm of the difference. Using the Minkowski inequality we get

||F∆1 − F∆2||L2[0,τ ] =

(∫ τ

0
(I1(t) + I2(t))2dt

)1/2

≤

≤
(∫ τ

0
|I1(t)|2dt

)1/2

+

(∫ τ

0
|I2(t)|2dt

)1/2
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Applying the Cauchy - Schwarz inequality to each of the terms we have

||F∆1 − F∆2||L2[0,τ ] ≤

≤
(
τ∫
0

τ∫
0

∣∣∣∣ρ(ξ)δ(ξ)
∂r

∂y
(∆1(t), ∆̃1(ξ))

∣∣∣∣
2

dξ
τ∫
0

|∆1(ξ)−∆2(ξ)|2dξ dt
)1/2

+

+

(
τ∫
0

τ∫
0

∣∣∣∣ρ(ξ)δ(ξ)
∂r

∂y
(∆1(t), ∆̃1(ξ))

∣∣∣∣
2

dξ
τ∫
0

|∆1(t)−∆2(t)|2dξ dt
)1/2

Since r ∈W 1,∞(R× R), ρ ∈ L∞(R), and δ ∈ L2[0, τ ] the following estimate is valid
τ∫
0

∣∣∣∣ρ(ξ)δ(ξ)
∂r

∂y
(∆1(t), ∆̃1(ξ))

∣∣∣∣
2

dξ ≤ C2/2

τ∫
0

∣∣∣∣ρ(ξ)δ(ξ)
∂r

∂x
(∆̃2(t),∆1(ξ))

∣∣∣∣
2

dξ ≤ C2/2

where

C2 = 2||ρ||L∞(R) max{||∂r
∂x
||L∞(R×R), ||

∂r

∂y
||L∞(R×R)}||δ||2L2[0,τ ].

Therefore, we get

||F∆1 − F∆2||L2[0,τ ] ≤ |C|
√
τ ||∆1 −∆2||L2[0,τ ]

from which the continuity of F follows. �
For convenience we redefine g(∆, δ) = G′∆δ. Obviously, the operator A is Fréchet differen-

tiable in any ∆ ∈ L2[0, τ ] and

(5.5) A′∆ = I + kG′∆
�

We get the following lemma:

Lemma 5.3. The operator A′∆δ ≥ 0 for δ ≥ 0 and ∆ ∈ [∆τ ,∆0] under Assumption 2 and 3
and 0 < k < 1/m, where

(5.6) m = − min
t,ξ∈[0,τ ]

∂Φ

∂x
(∆(t),∆(ξ)).

Proof. First of all, we notice that ∂Φ/∂x ∈ BC(R)×BC(R). Thus, there exists a finite mini-
mum of ∂Φ/∂x on the given set. Moreover, this minimum is negative according to Assumption
3. Therefore, m given by (5.6) is finite and positive, and the operator A′∆ preserves positivity
for 0 < k < 1/m. �
Lemma 5.4. The operator A : [∆τ ,∆0]→ D ∈ L2[0, τ ] is monotonically increasing under the
conditions of Lemma 5.3.

Proof. Let ∆2 ≥ ∆1. Then A∆2 − A∆1 = A′∆(∆2 −∆1) where ∆ ∈ [∆1,∆2] ⊂ [∆τ ,∆0].
We apply Lemma 5.3 to complete the proof. �
Theorem 5.5. If the conditions of Theorem 5.1 and Lemma 5.4 are satisfied then the operator
A : [∆τ ,∆0]→ D ⊂ L2[0, τ ] has a fixed point in [∆τ ,∆0]. Moreover, the sequences {An∆τ}
and {An∆0} converge to the smallest and greatest fixed point of the operator A, respectively.

Proof. The operator A is monotonically increasing (see Lemma 5.4) and Frechet differentiable,
and hence continuous, in L2[0, τ ] (see Lemma 5.1). Moreover, we have the following inequali-
ties

(A∆0)(t) = ∆0 + k(u∆0(∆0)− t− h) = ∆0 + k(u0(∆0)− t− h) = ∆0 − kt ≤ ∆0.
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and

(A∆τ )(t) = ∆τ + k(u∆τ (∆τ )− t− h) = ∆τ + k(uτ (∆τ )− t− h) = ∆0 + k(τ − t) ≥ ∆τ .

We now apply Theorem 3.1 since all the conditions for the operator A are satisfied. This com-
pletes the proof. �
Remark 5.6. We prove Theorem 5.5 for the case when D ∈ L2[0, τ ] but do not consider the
case D ∈ C[0, τ ]. The cone of positive functions in C[0, τ ] is not regular. Therefore additional
assumptions on the operator A are required (see Theorem 3.1). We notice that A is not compact
in C[0, τ ]. Indeed, the operator A is a Fréchet differentiable with A′∆ defined as in (5.5) where
A′∆ is a sum of the identity operator and a compact operator, thus is not compact. Therefore,A is
not a compact operator, see [15]. The operatorA does not seem to be condensing either, at least
with respect to the Hausdorff measure. The case of more general measures of noncompactness
[14, 17] is not considered here.

Assumption 3′. The partial derivative of Φ with respect to x is negative for x = ∆(t), y = ∆(s)
for t, s ∈ [0, τ ] and ∆(t) is a fixed point of (5.2), i.e.,

∂Φ

∂x
(∆(t),∆(s)) < 0, ∀t, s ∈ [0, τ ].

Lemma 5.8. The fixed point ∆(t) of operator A is monotonically decreasing and differentiable
on [0, τ ] under Assumption 3′.

Proof. Since ∆(t) is a solution of the fixed point problem (5.2) then u∆(∆(t)) = t + h. We
prove the lemma by direct differentiation of the last equality with respect to t. We obtain

∫ τ

0
ρ(ξ)

∂Φ

∂x
(∆(t),∆(ξ))∆′(t)dξ = 1.

Thus,

∆′(t) =

(∫ τ

0
ρ(ξ)

∂Φ

∂x
(∆(t),∆(ξ))dξ

)−1

< 0

as
∂Φ

∂x
(∆(t),∆(ξ)) < 0 by Assumption 3′. �

Assumption 3′ requires an apriori knowledge of ∆(t) and therefore can not be checked before
∆(t) is found. Thus, we suggest to replace this assumption with the following assumption:

Assumption 3′′. The partial derivative of Φ with respect to x is negative for all x, y ∈ [∆τ ,∆0],
i.e.,

∂Φ

∂x
(x, y) < 0, ∀x, y ∈ [∆τ ,∆0].

The fulfillment of Assumption 3′′ is required so that Assumption 3 and Assumption 3′ are
satisfied.

The Assumptions 1,2, and 3′′ hold true when ω(x), and ∆τ , ∆0 are chosen as in Section 4.
In Fig.6(a) we illustrate the result of the iteration process based on Theorem 5.5. The minimal
and maximal fixed points are the same, ∆(t), and thus, the fixed point is unique. Moreover, it
belongs to [∆st

τ ,∆0]. In Fig.6(b) we have plotted the errors

(5.7)
ε1(n) = max

t
|(An∆τ )(t)− (An−1∆τ )(t)|, A0∆τ ≡ ∆τ

ε2(n) = max
t
|(An∆0)(t)− (An−1∆0)(t)|, A0∆0 ≡ ∆0

, n = 1, 2, ..., N,

where N denotes the total number of iterations.
It remains to show that u∆, where ∆ is the fixed point of (5.2), is a bump. We introduce the

following assumption:
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Assumption 5′. The function Φ is such that

(i) Φ(x, y) ≤ h, ∀x > ∆(0), y ∈ [∆(τ),∆(0)],

(ii) Φ(x, y) ≥ h+ τ, ∀x ∈ [0,∆(τ)], y ∈ [∆(τ),∆(0)].
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FIGURE 6. (a) A fixed point of (5.2), ∆(t), vertical lines ∆0, ∆τ , and∆st
τ as

defined in Fig. 3. The connectivity function ω is given as (2.2) with b = 0.3, f
is defined by (2.8) with p = 2, h = 0.3, τ = 0.1. (b) The errors given as in
(5.7).

Theorem 5.11. Let ∆ be a fixed point of the problem (5.2) then u∆ defined as (5.1) is a bump
solution of (1.1) under Assumption 5′.

Proof. We rewrite (5.1) as

u∆(x) =

∫ τ

0
ρ(ξ)Φ(x,∆(ξ))dξ.

Next, we make use of Assumption 5′. Keeping in mind the normalization property of ρ we show
that

u∆(x) ≤ h, ∀x > ∆(0), y ∈ [∆(τ),∆(0)],

u∆(x) ≥ h+ τ, ∀x ∈ [0,∆(τ)], y ∈ [∆(τ),∆(0)].

�

Knowing ∆(t) we now reconstruct the bump by means of the formula (5.1). The recon-
structed bump coincides with the bump solution we found in Section 4. See Fig. 5.

Remark 5.12. For operator Tf we use Assumptions 1-5 and Assumptions 1-2, 3′′ and 5′ for the
operator A. Assumptions 3′′ and 5′ are more restrictive than Assumptions 3 and 5. Moreover
Assumption 5 needs information about the fixed point ∆(t) which is a disadvantage. On the
other hand, the operator Tf needs one extra assumption, Assumption 4.
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6. DISCUSSION

We have introduced two iteration schemes for finding a bump solution in the f−field of
the Wilson-Cowan model: The first scheme is based on the fixed point problem formulated by
Kishimoto and Amari [7]. The second one is described by the fixed point problem formulated
for the interface dynamics of the bump. The latter formulation became possible due to the
special representation of the firing rated function introduced by Coombes and Schmidt [8].

We have proved using the theory of monotone operators in Banach spaces that both iteration
schemes converge under Assumption 1 and 2. From the iterative procedures we obtain the
solution on the finite interval [∆τ ,∆0] (see Section 4), and on [∆(0),∆(τ)] (see Section 5).
Then it has been shown that under some additional assumptions on the connectivity function ω
this solution determines a bump of the f−field on R.

The assumptions imposed for the first method (see Section 4) differ from the ones imposed
for the second method (see Section 5). The evident disadvantage of Assumption 3′ and 5′ is that
they contain information about the output of the interaction procedure, ∆(t). Assumption 3′ can
be substituted by more restrictive Assumption 3′′, but not Assumption 5′. Thus, Assumption 5′

can not be checked in advance. On the other hand, the set of assumptions for the fixed point
problem (5.2) is in general less restrictive. All assumptions (except Assumption 5′) are quite
easy to check if ω(x) is given.

We show by a numerical example that both iterative schemes converge to the same solution.
Moreover, from numerics it follows that this solution is unique and stable. Indeed, the maximal
and minimal fixed points turn out to be equal for any trials and choice of parameters. Thus, by
Corollary 3.2, the fixed point is unique. Moreover, the constructed fixed point solution is stable
since it is located between stable solutions of f0− and fτ−field, [7]. Notice that we have not
given a mathematical verification of these observations.

Notice also that we have looked for the bump solutions under the assumption ∆τ < ∆0 and
(2.10). Thus, even if the constructed solution is unique, it does not necessarily mean that there
are no other stable or unstable solution. However, the same type of reasoning as we performed
here are not longer valid if we relax on these assumptions. Therefore we leave this problem for
a future study.
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a b s t r a c t

We derive the weakly nonlocal limit of a one-population neuronal field model of theWilson–Cowan type
in one spatial dimension. By transforming this equation to an equation in the firing rate variable, it is
shown that stationary periodic solutions exist by appealing to a pseudo-potential analysis. The solutions
of the full nonlocal equation obey a uniform bound, and the stationary periodic solutions in the weakly
nonlocal limit satisfying the same uniform bound are characterized by finite ranges of pseudo energy
constants. The time dependent version of the model is reformulated as a Ginzburg–Landau–Khalatnikov
type of equation in the firing rate variable where the maximum (minimum) points correspond stable
(unstable) homogeneous solutions of the weakly nonlocal limit. Based on this formulation it is also
conjectured that the stationary periodic solutions are unstable. We implement a numerical method for
the weakly nonlocal limit of the Wilson–Cowan type of model based on the wavelet–Galerkin approach.
We perform some numerical tests to illustrate the stability of homogeneous solutions and the evolution
of the bumps.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Various types of mathematical models are used to describe
the signal processing properties of networks of neurons. These
model types are distinguished by their scope and the amount of
biophysical detail incorporated in the description. The modeling
approaches are divided into three main categories: compartmental
modeling, simplified spiking models and firing rate models. For an
overview of different modeling approaches; see [1,2]. The firing
rate modeling approach has the coarsest level of detail. Here only
the probability for action-potential firing is modeled. Then the
‘‘activity level’’ (for example, membrane potential in the cell body)
is typically converted to a firing rate via a nonlinear sigmoidal
function. The number of neurons in the brain is immensely large.
Hence, if the typical spatial and temporal scales are much larger
than the corresponding neuronal scales, mean field theoretical
versions of the rate equations are appropriate. For a review on
firing rate models; see the Refs. [2–6].
The key topics in neural field models are existence and

stability of coherent structures like bumps and traveling fronts
and pulses, pattern formation and experimental detection of
coherent structures. Different levels of biophysical realism are
incorporated in the models such as two-population models of
excitatory and inhibitory neurons [2,7–10], micro structure in the

∗ Corresponding author.
E-mail address: anna.oleynik@umb.no (A. Oleynik).

connectivity functions [11], spike frequency adaptation (SFA) [12],
finite dendritic and axonal delay effects [13–16], and 2D spatial
effects [17].
The methods used to study rate equation models include

different techniques from applied mathematics like construction
of explicit representations for coherent structures like bumps and
traveling fronts in the Heaviside limit of the firing rate function,
stability analysis of these wave phenomena using the Evans
functions techniques [6] (and the references therein), and detailing
the dynamical evolution of the neural field states by means of
different numerical methods.
The numerical methods used to solve the rate equations are

of different degree of complexity. The time evolution is in most
cases resolved bymeans of finite difference schemes. For example,
the program XPPAUT, developed by Ermentrout [18], which aims
at solving finite order rate equation models is based on 4th
order Runge–Kutta in time. This has for example been used in
[10]. In [9] a variant of the 4th order Runge–Kutta method is
formulated for the temporal development of localized solutions
where the pulse widths of the solutions are determined at each
time step. However, when attempting to resolve problems with
steep gradients or presence of a multiplicity of very different
spatial and temporal scales, numerical approaches such as spectral
methods and finite difference schemes lead to the development
of numerical instabilities or loss of the accuracy of the solutions;
see [19,20]. In order to overcome these type of problems the
wavelet–Galerkin method seems to be quite promising. Wavelet
basis functions which possess no singularities and, which are

0167-2789/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2010.05.011
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localized both in physical and Fourier spaces give possibilities with
less computational efforts to describe such processes connected
to the interaction of localized structures of different spatial
scales [19,20]. In particular, the advantages with wavelet bases
have been demonstrated for the solutions of some physical
problems, e.g., hydrodynamic problems (see [20], Chapter 4 by
Farge et al.), atomic physics and solid state physics problems
(see [20, Chapter 8], by Antoine et al.) and the famous Burgers
equation [21–23].
We aim at studying the properties of the weakly nonlocal limit

of the Wilson–Cowan type of model

τ∂tu(x, t) = −u(x, t)+
∫
∞

−∞

ω(y− x)P(u(y, t)− θ)dy (1)

both analytically and numerically. Here u denote the electrical
activity level,ω the connectivity function, P the firing rate function,
θ the threshold value, τ the time constant, x spatial coordinate
and t the temporal coordinate. The model (1) has been studied in
several papers (see for example [5]).
The weakly nonlocal limit is obtained from (1) when the

characteristic spatial scale length of the variation of the firing rate
variable v = P(u−θ) is assumed to bemuch larger than the typical
length scale for the connectivity function (synaptic footprint). The
resulting equation is a nonlinear diffusion equation. The solutions
of (1) obey the uniform bound 0 ≤ u(x, t) ≤ 1 for all x and t
for positive normalized connectivity functions.We reformulate the
weakly nonlocal limit to theGinzburg–Landau–Khalatnikov type of
equation, see [24] or [25], in the firing rate variable v = P(u− θ).
This formulation allows us to find a condition to have solutions
within the same bound as the solutions of (1). Finally, we use the
wavelet–Galerkin method for the numerical study of the weakly
nonlocal limit. We choose the Daubechies wavelets as the wavelet
basis due to the localized character of the expected solutions [5].
The present paper is organized as follows: In Section 2 we

introduce the one-population neuronal field model. It is shown
that the instability of a homogeneous background state in the
Wilson–Cowan model is of the finite bandwidth type and that the
instability structure consists of a set of well separated bands in a
wavenumber space. In Section 3 we derive the weakly nonlocal
limit from the model (1). It is shown that instability structure
of the full model (1) continuously deforms to a single unstable
band in the weakly nonlocal limit, which can be detected by direct
stability analysis of the weakly nonlocal limit. We will refer to
this instability structure as gain band structure in accordance with
the terminology used in [10]. It is shown that in the stationary
case the weakly nonlocal limit can be transformed to a pseudo-
potential problem in the firing rate variable v = P(u − θ). It
then turns out that the time dependent version of this equation
assumes the form of the Ginzburg–Landau–Khalatnikov equation
where the stability of the homogeneous background can be
inferred from the properties of extreme points of the pseudo-
potential. We review the wavelet–Galerkin numerical method
in Section 4. The organization of this section is as follows. We
start out by formulating the general framework for Galerkin
expansion of model equations. Next we discuss the advantages
of using wavelet functions as a Galerkin basis and introduce the
definition of multiresolution analysis (MRA). Then we describe
the wavelet–Galerkin expansion scheme and the way we treat
boundary conditions. Finally, we implement the wavelet–Galerkin
method for the weakly nonlocal limit of the one-population neural
field model. We demonstrate numerically the evolution of a
saw tooth initial condition and a bump initial condition for two
choices of the firing rate function. We compare the outcome of
these simulations with the analysis in Section 3. In Section 5 we
summarize the findings of this paper and point out the directions
of future research.

2. Properties of a one-population neural model

2.1. The model

We consider a one-populationmodel in a one dimensional strip
of cortical tissue. It is assumed that (i) all neurons receive synaptic
inputs from, in principle, all neurons in the network, (ii) the synap-
tic weights depend only on absolute spatial distance between pre-
and postsynaptic neurons, (iii) the net activity level in each neuron
depends on a weighted sum over the past firing activity in the
presynaptic neurons, and (iv) the neuronal firing rate at a certain
time ismodeled bymeans of an non-decreasing nonlinear function
which assumes values between zero and one [2].
Let u = u(x, t) denote the electrical activity level at the

spatial point x and at time t . The field theoretical version of the
input–output model reads

u = 〈P(u− θ)〉 (2)

where the operator 〈·〉 denotes the spatio-temporal average of
P(u− θ) defined as

〈P(u− θ)〉(x, t) = [α ∗ ω ⊗ P(u− θ)](x, t)

=

∫ t

−∞

α(t − s)
∫
∞

−∞

ω(y− x)

× P(u(y, s)− θ)dyds. (3)

Here∗ and⊗denote the temporal and spatial convolutions defined
as

(α ∗ β)(t) =
∫ t

−∞

α(t − s)β(s)ds,

and

(ω ⊗ f )(x) =
∫
∞

−∞

ω(y− x)f (y)dy,

respectively.
The parameter θ models the threshold value for firing, which by

assumption is constant and satisfies the inequality 0 < θ < 1.
The function P models the firing rate function and satisfies the

following conditions:
(i) P : R→ [0, 1].
(ii) P is continuous on R and differentiable almost everywhere.
(iii) P is an non-decreasing function.
(iv) The functions P constitute a one-parameter family of func-

tions, parameterized by a steepness parameter β

P(u) = S(βu).

Here S plays the role of a scaling function of the firing rate
function. The parameter β > 0 measures the steepness of the
firing rate function such that P(u) converges to the Heaviside-
step function H(u) as β tends to infinity.

In this paper wemodel the firing rate function with the smooth
function

P(u) = S(βu), S(u) =
1
2
(1+ tanh(u)), (4)

the piecewise linear function

P(u) = S(βu), S(u) =

{0, if u ≤ −1
(u+ 1)/2, if − 1 < u < 1
1, if u ≥ 1

(5)

and the function

P(u) = S(βu),

S(u) =


0, if u ≤ −1
−1/2+

√
u+ 5/4, if − 1 < u < 1

1, if u ≥ 1.

(6)
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The firing rate function (4) is used to illustrate essential features
of the model while the choice of the expressions (5) and
(6) is motivated by the wavelet–Galerkin method. Notice that
expressions (5) and (6) are concrete examples of the general firing
rate function used in [26] for the purpose of studying the existence
and stability of stationary solutions of the Wilson–Cowan model.
The functionω is called a connectivity function and is real valued,

symmetric, positive, bounded and normalized, i.e.,
∫
∞

−∞
ω(x)dx =

1. Moreover, it constitutes a one-parameter family of functions,
i.e., it can be expressed as

ω(x) =
1
σ
Φ(ξ), ξ =

x
σ
. (7)

HereΦ is a non-dimensional scaling function and σ is the synaptic
footprint, whichmeasures thewidth of the nonlocal connectivity of
the network. As σ → 0,ω(x)→ δ(x)where δ is the Dirac function.
This limit case represents a switch-off of the connectivity of the
network. The examples ofw are the Gaussian function

Φ(ξ) =
1
√
π
e−ξ

2
, (8)

and the exponential decay function

Φ(ξ) =
1
2
e−|ξ |. (9)

The function α in (3) is a weight function which measures the
memory of the network. This function is real valued, positive,
bounded and normalized. Moreover, α is parameterized by means
of the time constant, τ , which we set to one without any loss of
generality.
The properties imposed on the firing rate function, P , the

connectivity function,ω, and the temporal kernel,α, imply that any
solution of the model (2) obeys the uniform bound

0 ≤ u(x, t) ≤ 1 (10)

for all x and t ≥ 0.
Another important property of the model (2) is that spatially

symmetric, localized stationary solutions (bumps), ub, exist in the
Heaviside limit of the firing rate function P for 0 < θ < 1/2 and
are given as

ub(x) = W (a+ x)+W (a− x) (11)

where

W (x) =
∫ x

0
ω(y)dy

where a is the unique positive solution of the equationW (2a) = θ .
In the present study we restrict ourselves to the case when the

temporal kernel α is an exponentially decaying function

α(t) = e−t .

By using the linear chain trick [27] we find that the activity level u
of (2) evolves according to the Wilson–Cowan type of model

∂tu = −u+ ω ⊗ P(u− θ). (12)

In Potthast et al. [29] it is shown that globally bounded solutions
of (12) exist provided that the connectivity function ω is absolute
integrable, the firing rate function P has a smooth bounded
derivative, and the initial condition is bounded and continuous.
For the Cauchy problem of (12) we can deduce the bounds

u0(x) exp(−t) ≤ u(x, t) ≤ 1+ (u0(x)− 1) exp(−t)
for all t ≥ 0 (13)

for the solution u, consistent with the results of Potthast et al. [29].
Here u0 denote the initial condition for (12) and 0 ≤ u0(x) ≤ 1 for
all x in order to be consistent with (10).

2.2. Turing instability and pattern formation

The next issue to be addressed is the Turing type of instability
as a pattern forming mechanism, [13,28]. First, we investigate the
possibility of having homogeneous solutions u(x, t) = ueq, ueq is a
constant, of the problem (12). Such solutions must satisfy

ueq = P(ueq − θ) (14)

where, from (10), 0 ≤ ueq ≤ 1. In order to study the existence of
homogeneous states, we introduce

F(u) = u− P(u− θ), F : [0, 1] → R.

Since F(0) = −P(−θ) < 0, F(1) = 1 − P(1 − θ) > 0 and F
is continuous on [0, 1], the equation F(u) = 0 has at least one
solution.

Theorem 2.1. The Wilson–Cowan model (12) has at least one
homogeneous state given by (14).

We address the uniqueness issue for the homogeneous state in
detail in Section 3.
Now we consider the linear stability of ueq by assuming

u(x, t) = ueq + φ(x, t), |φ(x, t)| � 1.

Notice that the stability analysis below does not use the positivity
of the connectivity function. The linearized evolution equation for
φ reads

∂tφ = −φ + βS ′ω ⊗ φ (15)

where we assume that S is differentiable at u = β(ueq − θ) and

S ′ =
dS
du
|u=β(ueq−θ).

The Fourier transform of (15) is

∂t φ̃(k, t) = (−1+ βS ′ω̃(k))̃φ(k, t)

where φ̃ and ω̃ are the Fourier transforms of φ andω, respectively,
and k denotes the wave number of the perturbation imposed on
ueq. Since by assumption the connectivity function ω is real and
symmetric, the same holds true for the Fourier transform ω̃. The
growth (decay) rate λ(k) of the perturbation is given by

λ(k) = −1+ βS ′ω̃(k). (16)

From (16) we get the following stability result.

Theorem 2.2. The homogeneous state, ueq, of (12) is stable if
βS ′ω̃(k) < 1 for all k, while it becomes unstable if βS ′ω̃(k) > 1
for at least one k.

Let us then consider some limiting cases.
In the local limit, when σ → 0, the connectivity function ω is

modeled bymeans of the Dirac δ-function. Hence, we get ω̃(k) = 1
and Theorem 2.2 can be simplified.

Theorem 2.3. The homogeneous state ueq of (12) in the local limit is
stable if βS ′ < 1 and unstable if βS ′ > 1.

Thismeans that the slope of the firing rate function evaluated at ueq
must exceed a certain threshold to get instability. Now, since the
connectivity function ω is normalized, we have ω̃(0) = 1. Hence,
the long wavelength limit of the problem (k→ 0) coincides with
the local limit.
For connectivity functions satisfying ω̃(k) ≤ 1 for all k, such as

for example the Gaussian (8) and the exponential decay function
(9), we get the same conditions as in Theorem 2.3 for stability and
instability.
Let us return to the general case. Since ω is absolute integrable,

Riemann–Lebesque lemma implies that ω̃ is a continuous function
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Fig. 1. The function λ given by (16) with ω̃(k) = exp(−k2/4) (red curve) and ω̃(k) = 10(k2 + 5) cos(πk)/(k4 + 50) (blue curve), (a) λ(k) is plotted for the case βS ′ = 2.5
(b) λ(k) is plotted for the βS ′ = 0.9. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and that lim|k|→∞ ω̃(k) = 0. From (16), we then get that
lim|k|→∞ λ(k) = −1. Hence, if there exist λ = 0 then there is a
value k∗ > 0 such that

ω̃(±k∗) =
1
βS ′

, ω̃(k) <
1
βS ′

for |k| > k∗.

This means that a possible instability is of the finite band width
type.
The instability structure can be investigated in a similar way

as in Wyller et al. [10]. Wave number intervals satisfying ω̃(k) >
1/βS ′ correspond to unstable modes. These intervals are referred
to as gain bands.
Since λ(0) = −1+ βS ′, the condition βS ′ > 1 guarantees that

at least one gain band (containing k = 0) exists. We refer to this
gain band as the fundamental gain band. Fig. 1(a) shows that higher
order gain bands can exist for spectra ω̃which execute oscillations
in k-space.
For the case βS ′ < 1 we get λ(0) < 0. This implies that no

fundamental gain band exists but there is a possibility of having
higher order gain bands for spectra oscillating in k-space, Fig. 1(b).
We can determine the number of gain bands if all solutions of the
equation ω̃(k) = 1/βS ′ are distinct and isolated. In order to study
this problem, we proceed in the same way as in [10]. We assume
that∫
∞

−∞

xω(x)dx <∞.

The Riemann–Lebesque lemma then implies that ω̃ is a smooth
function. Assume that the transversal crossing condition ω̃(k) =
1/βS ′, ω̃′(k) 6= 0 is fulfilled. According to Wyller et al. [10] the
equation ω̃(k) = 1/βS ′ in this case has a finite number of distinct
and isolated solutions. The total number n of transversal crossings
ω̃(k) = 1/βS ′, ω̃′(k) 6= 0 is given as n = 2N,N = 0, 1, 2, 3, . . . ,
where N is the number of gain bands. The condition N = n = 0
corresponds to a stable situation and might arise only when βS ′ <
1 (the red curve in Fig. 1(b)). The condition N = 1 corresponds to
the instability consisting only of the fundamental gain band and
appears when βS ′ > 1 (the red curve in Fig. 1(a)). The multiple
gain band structure could emerge both for βS ′ > 1 (the blue curve
in Fig. 1(a)) and for βS ′ < 1 (the blue curve in Fig. 1(b)).
We summarize the main results of the discussion above in the

following theorem.

Theorem 2.4. If ω(x) ∈ L1(R) then the possible instability for ueq
is of finite band width type. Moreover, if xω(x) ∈ L1(R) and all
solutions of the equation ω̃(k) = 1/βS ′, where ω̃′(k) 6= 0 are distinct
and isolated, then the gain band structure can be two types: (i) For

the case βS ′ > 1 the gain band consists of one fundamental gain
band plus a finite set (including the empty set) of higher order well
separated gain bands. The relation between the number of solutions,
n, of ω̃(k) = 1/βS ′ to the number of gain bands, N, is expressed by
n = 2N,N = 1, 3, 5, . . . . (ii) For the case βS ′ < 1 we can only
have higher order gain bands and n = 2N,N = 2, 4, 6, . . . . For
N = n = 0 we get a stable homogeneous solution ueq.

Notice, however, that due to the bound (10) or (13) any
instability must be saturated.

3. Weakly nonlocal limit

The parameterization of the connectivity functions, (7), enables
us to study the so calledweakly nonlocal limit of theWilson–Cowan
model (12). The Fourier transform ω̃ ofω can be expressed in terms
of the Fourier transform Φ̃ ofΦ

ω̃(k) = Φ̃(σk).

Then, by imposing the long wavelength condition

|σk| � 1 (17)

and assuming ω̃ at least three times differentiable at k = 0, we
Taylor-expand ω̃ and retain the two lowest order terms, i.e.,

ω̃(k) = 1− γ (σk)2, γ = −
1
2
Φ̃ ′′(0) > 0. (18)

Let P̃(u−θ) denote the Fourier transform of the firing rate function
P(u− θ). By Fourier transforming the evolution Eq. (12) we get

∂t ũ = −̃u+ ω̃P̃(u− θ).

Then, by making use of the approximation (18) we get

∂t ũ = −̃u+ (1− γ (σk)2)̃P(u− θ).

Applying the inverse Fourier theorem we obtain the nonlinear
diffusion equation

∂tu = −u+ (1+ γ σ 2∂2x )S(β(u− θ)). (19)

The model (19) is referred to as the weakly nonlocal limit of the
Wilson–Cowan model (12).
This procedure has been extensively used in nonlocal nonlinear

optics [30,31] and in mathematical biology [32].

Theorem 3.1. (i) The model (19) possesses the same homogeneous
background ueq as the model (12). (ii) ueq is stable if βS ′ ≤ 1 and
unstable otherwise. The possible instability is of finite bandwidth type
and consists of one single gain band.
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Proof. The proof of (i) follows simply by assuming that the
solutions of (19) are space and time independent. In order to prove
(ii) we notice that the growth (decay) rate

λ(k) = βS ′ − 1− βS ′γ σ 2k2. (20)

The eigenvalues λ(k) < 0 for all k if βS ′ ≤ 1. For the
complementary regime, βS ′ > 1 we obtain the range of the wave
number k which provides positive λ(k) as 0 ≤ k2 ≤ k2

∗
where

k2
∗
= (βS ′ − 1)/(βS ′γ σ 2). This means that instability consists of

one gain band. �

Notice that the moderate steepness condition 1 < βS ′ � γ
implies that the assumption (17) is satisfied for all wave numbers
k belonging to the unstable range.

3.1. Nonlinear diffusion equation for the firing rate variable

By introducing the change of variables ξ = x/(
√
γ σ), τ = t we

can rewrite the weakly nonlocal limit Eq. (19) on the form

∂τu = −u+ (1+ ∂2ξ )S(β(u− θ)).

We transform this equation to the nonlinear diffusion equation

1
β
(S−1)′(v)∂τv = −θ −

1
β
S−1(v)+

(
1+ ∂2ξ

)
v (21)

by introducing the new firing rate variable v = S(β(u − θ)).
Here we have exploited the fact that S is a smooth monotonically
increasing function, as for example (4), from which it follows that
it has a smooth inverse denoted by S−1.
For each u ∈ [0, 1] there is unique v ∈ [v0, v1], where

v0 = S(−βθ), v1 = S(β(1− θ)).

We will be searching for solutions of (21) fulfilling the property

v0 ≤ v(ξ, τ ) ≤ v1 (22)

uniformly in ξ and τ . Notice, however, that we in general cannot
guarantee that the solutions of the initial value problem of (21)
satisfy the bounds (22) globally in time τ . This leads naturally to
the following definition.

Definition 3.1. Solutions of (21) are called proper solutions if they
satisfy (22) for all τ .
Notice that the interval for the proper solutions is contained in

the unit interval, i.e., [v0, v1] ⊂ [0, 1].
The functions (5) and (6) do not give a one-to-one correspon-

dence between the firing rate variable v ∈ [v0, v1] and the activity
level u ∈ [0, 1]. Therefore, we have to restrict S to its oblique part,
i.e., we require −1 < β(u − θ) < 1. We add this requirement in
the definition of a proper solution for these cases of S.

In the time independent case, solutions of (21) satisfy
conservation law for the Hamiltonian H

H[v; θ, β] ≡
1
2
(∂ξv)

2
+ U(v; θ, β) = E, (23)

where the pseudo-potential, U , is given by

U(v; θ, β) =
1
2
v2 − θv −

1
β

∫
S−1(v)dv, (24)

and E is an energy constant. The range of the energy constant
governs the range of v. We have to impose some constraints on
E to get proper solutions of the pseudo-potential Eqs. (23)–(24).
For example, if we assume that the pseudo-potential (24) has a
minimum in some point vmin such that v0 < vmin < v1, then the
range of E giving proper, stationary, periodic solutions is given by

U(vmin) ≤ E ≤ min{U(v0),U(v1)}. (25)

The system (23)–(24) allows us to predict the temporal evolution
of the system. We have the following important result.

Theorem 3.2. Extreme points of the pseudo-potential U given
by (24) are constant solutions of (21) which correspond to the
equilibrium u = ueq given by (14). Moreover, a local maximum
corresponds to a stable solution, a local minimum to an unstable
solution.

Proof. The time dependent Eq. (21) can be reformulated as

f (v)∂τv =
δH
δv
≡ −θ −

1
β
S−1(v)+

(
1+ ∂2ξ

)
v, (26)

where we have made the identification f (v) ≡ β−1(S−1)′(v) > 0
with H given by (23) and introduced the operator

δ

δv
≡

∂

∂v
+
∂

∂ξ

(
∂

∂vξ

)
, vξ = ∂ξv.

The Eq. (26) has the form of the Ginzburg–Landau–Khalatnikov
equation in kinetic theory [24,25] and the stability issue for
constant solutions of (26) can be rephrased in terms of the extreme
points of the pseudo-potential U .
Let v∗ denote an extreme point of U , i.e., U ′(v∗) = 0,U ′′(v∗) 6=

0. We linearize (26) and get

f (v∗)∂τw = U ′′(v∗)w + ∂2ξw.

By Fourier transforming this equation we find that

f (v∗)∂τ w̃ = U ′′(v∗)w̃ − k2w̃

where k denotes the wave number of the perturbationw imposed
on the background v∗. The growth (or decay) rate of this equation
satisfies

λf (v∗) = U ′′(v∗)− k2 (27)

from which follows that v = v∗ is stable if v∗ is a local maximum
of the pseudo-potential U whereas it is unstable when v∗ is a
local minimum of the potential U . Moreover, the instability is of
the finite band width type where the wave numbers producing
growing modes are restricted to the interval 0 ≤ k2 ≤ U ′′(v∗).
Notice that both the growth rate (27) and the corresponding
bandwidth is just the same instability result as obtained in the
previous section, i.e., (20). �

Notice that in [33,34] the Hamiltonian structure of the time
independent Wilson–Cowan model is exploited in the study of
stationary solutions. The analysis presupposes, however, that the
connectivity functions have Fourier transforms given by rational
functions.
The Ginzburg–Landau–Khalatnikov formulation (26) is ex-

pected to make it possible to study the stability of proper station-
ary, periodic solutions of the weakly nonlocal limit (21). Let us
assume that we have identified a proper stationary periodic solu-
tion through the pseudo-potential U denoted by v̂. We introduce
the perturbation

v(ξ, τ ) = v̂(ξ)+ ϕ(ξ, τ ).

By taking into account that ∂2ξ v̂ + U
′(v̂) = 0 we then end up with

f (v̂)∂τϕ = ∂2ξ ϕ + U
′′(v̂)ϕ

when linearizing about the stationary state v̂. Now, by assuming
the separation

ϕ(ξ, τ ) = g(ξ) exp(λτ)

where λ plays the role as growth (decay) rate and exploiting the
fact that

U ′′(v̂) = 1− f (v̂)
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Fig. 2. The case of the sigmoid firing rate function (4): (a) Bounding values of v as functions of β for fixed θ . (b) Bounding values of v as functions of θ for fixed β .

with f (v̂) < 1, we end up with the Sturm–Liouville problem

∂2ξ g + (1− (λ+ 1)f (v̂))g = 0. (28)

Due to the fact that the proper periodic stationary solutions
exist for energy constants restricted to the interval (25) and
that the potential minimum point vmin of the pseudo-potential U
represents a proper stationary periodic solution v̂ with an infinite
short period, we expect by continuity that proper stationary
solutions v̂ are unstable, at least for small but finite wavelength
oscillations, i.e., that the spectrum of the Sturm–Liouville problem
(28) consists of at least one strictly positive eigenvalue. The
following argument based on simple asymptotical analysis of
(28) clearly supports this conclusion. For short wave length
oscillations we have that v̂ ≈ vmin where vmin denotes the
minimum point of the pseudo-potential. Then the problem (28)
is approximated with a constant coefficient problem. The square
integrable eigenfunctions of the latter problem assume the form
g(ξ) ∼ exp(−Ω|ξ |) where Ω2 = (λ + 1)f (vmin) − 1 > 0,Ω >
0. Hence, since f (vmin) < 1, we find the estimate λ > (1 −
f (vmin))/f (vmin) > 0. It is an open question whether this result
extends to all proper stationary solutions. We do not pursue this
aspect of the model in the present paper, however.
In Sections 3.1.1–3.1.3 we investigate the homogeneous

solutions for the firing rate functions given by (4)–(6) by means
of the Ginzburg–Landau–Khalatnikov formulation.

3.1.1. Smooth firing rate function
For the case of the smooth function (4) the bounds v0 and v1 are

v0 =
1
2
(1− tanh(βθ)), v1 =

1
2
(1+ tanh(β − βθ)).

Notice that v0 and v1 asymptotically approach 0 and 1, respec-
tively, as β → ∞. We have plotted v0 and v1 as a function of β
for fixed values θ in Fig. 2(a) and as a function θ for fixed values of
β in Fig. 2(b).
The pseudo-potential U is given as

U(v; θ, β) =
1
2
v2 − θv −

1
2β
F(v),

F(v) = v ln(v)+ (1− v) ln(1− v)− 1.

We introduce the open subsets, D and Di, i = 0, 1, 2, of the
parameter set {(β, θ)} as

D0 = {(β, θ) : 0 < β < 2, 0 < θ < 1},
D = {(β, θ) : 2 < β < +∞, θ−(β) < θ < θ+(β)},

D1 = {(β, θ) : 2 < β <∞, θ+(β) < θ < 1},
D2 = {(β, θ) : 2 < β <∞, 0 < θ < θ−(β)},

where θ± are defined as

θ±(β) =
1
2

(
1±

√
1− 2/β

)
−
1
β
ln

(√
β

2

(
1±

√
1− 2β

))
.

(29)

Theorem 3.3. Let a = (β, θ) and assume S to be given by (4). (i) If
a ∈ Di, i = 0, 1, 2, there exists a proper unique homogeneous
solution of (21) that is stable. (ii) If a ∈ D, the Eq. (21) has three
homogeneous proper solutions, v(1) < v(2) < v(3), where v(1), v(3)
are stable, and v(2) is an unstable solution.

Proof. Firstly, we study the existence and stability property of the
homogeneous solutions. Secondly, we show that these solutions
are proper.
We find that the condition U ′(v) = 0 is equivalent to

θ = v −
1
2β
ln
(

v

1− v

)
. (30)

We have analyzed the convexity properties of U as a function of v
in Fig. 3.
We divide our discussion into two cases:

1. Let 0 < β < 2. Simple computation shows that θ given by (30)
is a continuous strictly decreasing function of v, 0 < v < 1,
in this parameter regime; see Fig. 4(a). Hence, there is one-to-
one correspondence between θ and v. Moreover, we find that
U ′′(v;β, θ) < 0 independently of v and θ , Fig. 3. This means
thatU has a globalmaximum for a ∈ D0; see Fig. 4(b). According
to Theorem 3.2 this maximum is a stable equilibrium.

2. Next, let us consider the case β > 2. The function (30) changes
its monotonicity twice in the points

v± =
1±
√
1− 2/β
2

.

Therefore, the function (30) gives us either three or one
intersection with the horizontal line θ = const. We get three
solutions v(1) < v(2) < v(3) when θ−(β) < θ < θ+(β) and
one solution when 0 < θ < θ− or θ+ < θ < 1, Fig. 4(a). We
obtain θ±(β) as (29) if one inserts v± in (30). Thus, U has local
maxima in v(1) and v(3) for a ∈ D, while it has a local minimum
in v(2) for a ∈ D. The solutions v(1) and v(3) correspond to the
stable equilibrium, while v(2) is gives the unstable state. Each
of the parameter regimes D1 and D2 produces a maximum of U
and indicates the existence of a unique stable solution. The sets
D,D1, and D2 are plotted in Fig. 4(b).

Now we want to show that all the homogeneous solutions v
satisfy the inequality v0 ≤ v ≤ v1 in order to be proper. For each
fixed θ the solution v satisfies the expression
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Fig. 3. The sets of constant signs of U ′′(v) in terms of (v, β), where β = 1/(2v(1−
v)) corresponds to U ′′(v) = 0.

β = βv =
1

2(v − θ)
ln
(

v

1− v

)
.

The upper bound, v1, satisfies v1 ≥ 1/2 and can be represented as

β = β1 =
1

2(1− θ)
ln
(

v

1− v

)
.

The lower bound, v0, obeys v0 ≤ 1/2 and can be rewritten as

β = β0 = −
1
2θ
ln
(

v

1− v

)
.

Simple analysis shows that βv ≥ β0 and βv ≥ β1. These properties
cause that all homogeneous solutions of (21), in the framework of
the smooth firing rate function (4), are proper. �

Theorem 3.4. The weakly nonlocal limit (21) with the firing rate
function modeled by means of (4) has proper stationary periodic
solutions for the steepness parameter β exceeding a certain threshold.

Proof. Consider the limit case, i.e., β →∞. Since limv→0+ F(v) =
−1 and limv→1− F(v) = −1, the function F can be extended to
a continuous function on the closed, bounded interval [0, 1]. The
convergence

lim
β→∞

U(v; θ, β) = U∗(v) ≡
1
2
v2 − θv (31)

is uniform and the homogeneous solution depends continuously
on β . Hence, U has aminimum for v = vmin = θ+O(1/β) asymp-
totically as β → ∞. The restrictions on the energy constants E
permitting proper stationary periodic solutions is now given by
the bound (25) for the steepness parameter β exceeding a certain
threshold, since in this case the pseudo-potential U has a global
minimum vmin with v0 < vmin < v1. �

3.1.2. Piecewise linear firing rate function
The model (21) with the function (5) becomes linear, i.e.,

∂τv =
β

2
∂2ξ v +

β − 2
2

v +
1− θβ
2

. (32)

This simplifies the analysis and serves as a good testing example
for the numerical experiments. We compute the pseudo-potential
U in this case for the oblique part of the firing rate function and get
the quadratic function

U(v) =
(
1
2
−
1
β

)
v2 −

(
θ −

1
β

)
v,

where v satisfies the bounds v0 ≤ v ≤ v1 with

v0 =


1
2
(1− βθ), βθ ≤ 1

0, βθ > 1,

v1 =


1
2
(1+ β − βθ), β(1− θ) ≤ 1

1, β(1− θ) > 1.

Wehave plotted v0 and v1 for fixed values of θ in Fig. 5(a) and fixed
values of β in Fig. 5(b).
Let us define the sets

D1 = {(β, θ) : 0 < β < 2, 1− 1/β ≤ θ < 1− 1/β},
D2 = {(β, θ) : β > 2, 1/β < θ ≤ 1− 1/β}.

These sets are displayed in Fig. 6. Moreover, we have marked that
U is concave for β < 2 and convex for β > 2 independently of
θ . We formulate the following theorem which can be proven in a
similar way as Theorem 3.4 in Section 3.1.1.

Theorem 3.5. The Eq. (21) with the piecewise firing rate func-
tion (5) has the unique homogeneous proper solution v = vconst,
vconst = (θβ − 1)/(β − 2), for all values a = (β, θ) ∈ D1 ∪ D2.
The solution is stable if a ∈ D1, and unstable if a ∈ D2.

This rather simple case allows us to derive time independent
solutions and analyze their stability. For a ∈ D1 we obtain a stable
solution in the form

v(ξ) = A exp($ x)+ B exp(−$ x)+ vconst, AB =
Ê
4$ 2

, (33)

and for a ∈ D2 an unstable solution in the form

v(ξ) = A sin($ x)+ B cos($ x)+ vconst, A2 + B2 =
Ê
$ 2

, (34)

where$ 2
= |1− 2/β| and Ê = 2E + (1− 2/β)vconst.

However, the solution (33) is not proper for all constants A and
B except A = B = 0, so v(ξ) = vconst is the only proper solution
in this case. For the case in (34) the pseudo-potential, U , has the
global minimum v = vconst according to Theorem 3.5. Moreover,
v0 < vconst < v1 for a ∈ int(D2). Thus, we can apply a restriction
on the energy constant as in (25) to keep the solution within the
bounds. We get the following estimate

−
1
2

(
1−

2
β

)
v2const ≤ E ≤ min

{
0,
1
2
− θ

}
. (35)

We summarize all the results above as the following theorem.

Theorem 3.6. The Eq. (21) with the piecewise firing rate func-
tion (5) has the unique stable time independent proper solution v =
vconst, vconst = (θβ−1)/(2−β), for all values a = (β, θ) ∈ D1, and
unstable time independent solutions in the form (34) with the range
of the energy constant given by (35) if a ∈ int(D2).

3.1.3. The piecewise nonlinear function
Another possibility which enables us to use the wavelet–

Galerkin method is to approximate the firing rate function with a
piecewise nonlinear function containing a square root function (6).
Then, from (21) we obtain

(1+ 2v)∂τv = β∂2ξ v − v
2
+ (β − 1)v + (1− βθ). (36)

The bounds (22) are now given as

v0 =

{
−1/2+

√
−βθ + 5/4, βθ ≤ 1

0, βθ > 1,
(37)

v1 =

{
−1/2+

√
β(1− θ)+ 5/4, β(1− θ) ≤ 1

1, β(1− θ) > 1.
(38)
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Fig. 4. (a) The intervals of monotonicity for θ given by (30). (b) The sets D,Di, i = 0, 1, 2, where θ± is given by (29).

Fig. 5. The case of the piecewise linear firing rate function (5): (a) Bounding values of v as functions of β for fixed θ . (b) Bounding values of v as functions of θ for fixed β .

Fig. 6. The setsD1 andD2 in the case of the piecewise linear firing rate function (5).

The graphs of the bounds are plotted in Fig. 7(a) and (b) for fixed
θ and β , respectively.
For the pseudo-potential U with this choice of firing rate

function we get a cubic polynomial

U(v) = −
1
3β
v3 +

1
2

(
1−

1
β

)
v2 +

(
1
β
− θ

)
v. (39)

We have analyzed the convexity property of (39) and the number
of its critical points satisfying the bounds (37)–(38). The result
is represented in Fig. 8. The pseudo-potential U is convex when
v > (β − 1)/2 and concave for v < (β − 1)/2; see Fig. 8(a). We
introduce the sets
D1 = (0, 1)× (0, 1) ∪ {(β, θ) : 1 < β < 2,

1/β ≤ θ < (1− 1/β)} ,

D2 = {(β, θ) : (2 < β < 3, 1/β ≤ θ < 1/β)
∪ (3 < β <∞, 1/β ≤ θ ≤ 1/β)} ,

D3 = {(β, θ) : 1 < β < 5, f (β) ≤ θ < 1} ,
D = {(β, θ) : (1 < β ≤ 2, (1− 1/β) ≤ θ < f (β))

∪ (2 < β < 3, 1/β ≤ θ < f (β))}

where f (β) = (β2 − 2β + 5)/(4β). These sets are plotted in
Fig. 8(b).

Theorem 3.7. Let a = (β, θ) and assume S to be given by (6). (i) If
a ∈ D1 there exists a unique proper homogeneous solution of (21),
v(+), which is stable. (ii) If a ∈ D2 the Eq. (21) has an unstable unique
proper homogeneous solutions, v(−). (iii) For a ∈ D, the Eq. (21) has
two proper homogeneous solutions, v(−) < v(+), v(−) is unstable
while v(+) is stable. Here solutions v(±) are given as

v(±) =
1
2

(
(β − 1)±

√
(β − 1)2 + 4(1− βθ)

)
.

Proof. Any value a ∈ (0,∞) × (0, 1) \ D3 gives a minimum
v = v(−) and a maximum v = v(+) of U . From Theorem 3.2
it follows that v(−) is unstable and v(+) is stable. However, it is
possible to show that the solution v(−) is proper for a ∈ D1 ∪ D
and not proper everywhere else where it exists. The solution v(+)
is proper for a ∈ D2∪D and does not respect the bounds otherwise.
However, the proof of these facts is quite technical and is thus
omitted. �

Non-constant stationary solutions of (36) at any values of
parameters β and θ appear to be expressed in terms ofWeierstrass
elliptic function, which diverges at least in one location, so such
expression cannot be a proper solution.
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Fig. 7. The case of the piecewise nonlinear firing rate function (6): (a) Bounding values of v as functions of β for fixed θ . (b) Bounding values of v as functions of θ for fixed
β .

Fig. 8. The case of the piecewise nonlinear firing rate function (6): (a) The sets of constant signs of U ′′(v) in terms of (v, β), where v = (β−1)/2 corresponds to U ′′(v) = 0.
(b) The sets D,Di, i = 1, 2, 3.

4. Wavelet–Galerkin solution of the Ginzburg–Landau–
Khalatnikov problem

In this section we describe the wavelet–Galerkin method for
solving themodel Eq. (21) with the firing rate function given by (5)
and (6). We recall themain notations and definitions related to the
method and list some properties of Daubechies wavelets, which
have been chosen as basis functions for a Galerkin expansion. For
the numerical study we restrict the spatial variable ξ to [X1, X2]
where |X2− X1| is sufficiently large. We treat boundary conditions
by means of modification of the fictitious boundary approach as
worked out in [35].

4.1. The Galerkin method and choice of basis functions

Galerkin methods have been known since 1915 and are
currently widely used for solving nonlinear differential and
integro–differential equations in numerous scientific areas and
engineering applications [36]. The efficiency of these methods is
substantially connected with the choice of the system of basis
functions, which are used for the expansion of the solution.
The general form of the Galerkin expansion in an arbitrary

orthonormal basis {gk} is given as

z(x, t) =
∑
k

ak(t)gk(x),

〈gk, gl〉 = δkl, ak(t) = 〈z(·, t), gk〉, k ∈ Z,
(40)

where z(x, t) is a general notation for the unknown quantity, and
〈·, ·〉 denotes the inner product in a corresponding space.
The correct choice of {gk} provides a maximal level of the ap-

proximation of a real solution with a minimal number of ba-
sis functions. The choice of basis functions gk(x) depends to a

large extent on the expected solutions of the given differential or
integro–differential equations. The neural field equations have so-
lutions that possess a spatial localization property [5]. This obser-
vation serves as the main motivation for using wavelets as basis
functions. Moreover, a wavelet basis has some advantages com-
pared with other basis functions, e.g., localization in both phys-
ical and Fourier space, almost block-diagonal representation of
most differential operators, availability of fast algorithms of dis-
crete wavelet transform and multiresolution analysis, and others.
The known examples of successful usage of wavelets basis in

the Galerkin approach are numerous. They include application
to nonlinear differential equations of different types [23,37,38]
as well as some pedagogical examples of integro–differential
equations [39,40].
The important task in the wavelet–Galerkin method is com-

putation of connection coefficients. The connection coefficients are
integrals of products of wavelet basis functions, their derivatives,
their translates, and so on.
We have chosen Daubechies wavelets [41] as a basis for our

problem. These functions have compact support and are well
known as very useful tools in numerical solutions of ordinary
and partial differential equations [23,42], and integro–differential
equations [37]. The algorithms for and the calculated values of
connection coefficients for Daubechies wavelets are available in
numerous publications [23,43,44]. The calculation of connection
coefficients for the partial differential equation (21) and therefore
their reduction to an ordinary differential equation for the
coefficients of the Galerkin expansion (ak(t) in (40)) is possible
when (21) has the form

Pn(z(x, t))∂tz(x, t) = Lz(x, t)+ Nz(x, t), (41)
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where Pn(z) is a polynomial of degree n, L is a linear operator, N is
nonlinear operator. In order to use (41) we have chosen the firing
rate functions as (5) and (6).

4.2. Multiresolution analysis (MRA)

MRA is a technique based on an iterative procedure of
approximation of an arbitrary function f (x) ∈ L2(R) with
successively more accurate resolutions. The procedure of building
such successive approximations of a given function involves two
important special families of functions localized in both physical
and Fourier spaces, which are wavelets and scaling functions. For
the sake of completeness we review some fundamental properties
of MRA; see [45].

Definition 4.1. TheMRAof L2(R) is a sequence of closed subspaces
Vj ⊂ L2(R)

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

with the following properties:

(i) Vj ⊂ Vj+1, ∀j ∈ Z
(ii) f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1,∀j ∈ Z
(iii)

⋃
j∈Z Vj is dense in L

2(R)
(iv)

⋂
j∈Z Vj = {0}, f (x) ∈ V0 ⇔ f (x+ 1) ∈ V0

(v) There exists a scaling function ϕ ∈ V0, such that {ϕk(x)} =
{ϕ(x− k)} is an orthonormal basis for V0.

The dilated, translated, and normalized scaling functions ϕjk
defined as

ϕjk(x) = 2j/2ϕ(2jx− k), j, k ∈ Z

constitute an orthonormal basis for Vj for every fixed j.
LetWj denote an orthogonal complement of subspace Vj in Vj+1,

i.e., Vj+1 = Vj ⊕Wj.

Definition 4.2. A function ψ is called a mother wavelet if W0 is
spanned by the translations ψ(x − k). Moreover, we require the
wavelets ψ(x− k) to be an orthonormal basis forW0.
The dilated, translated, and normalized waveletsψjk defined as

ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ Z

form an orthonormal basis forWj for each fixed j.
The projection, PVj+1 f , of f onto the space Vj+1 is then given as

the unique decomposition

PVj+1 f (x) = PVj f (x)+ PWj f (x)

=

+∞∑
k=−∞

cjkϕj,k(x)+
+∞∑
k=−∞

djkψj,k(x) (42)

where

cjk = 〈f , ϕj,k〉, djk = 〈f , ψj,k〉. (43)

4.3. Wavelet–Galerkin expansion scheme

Let zJ(x, t) be a projection of z ∈ L2(R) onto VJ for any t . Then
(40) can be rewritten using (42) as the following wavelet–Galerkin
expansion scheme

zJ(x, t) =
∑
k∈Z

cJ,k(t)ϕJ,k(x)+
∑
k∈Z

∞∑
j=J

dj,k(t)ψj,k(x), (44)

where cJ,k and dJ,k is given by (43). The choice of J is determined
by the coarsest scale in the representation of z(x, t). In the

computations we have to use a finite upper limit for the sum, say
J ′. Choosing J = J ′, the second term of (44) disappears, i.e.,

zJ(x, t) =
∑
k∈ Z

cJ,k(t)ϕJ,k(x). (45)

See also [45].

4.4. General properties of Daubechies wavelets and connection
coefficients

Daubechies wavelets are compactly supported orthonormal
wavelets which are characterized by a maximal number of
vanishing moments for the given support. Let L be an even
number that denotes the length of the support, then the number
of the vanishing moments, M , is equal L/2. For our numerical
experiments we use L = 6. A Daubechies scalar function, ϕ, and
a mother wavelet, ψ , do not have explicit representation, but can
be obtained through the two-scale relation

ϕ(x) =
L−1∑
k=0

hkϕ(2x− k), supp(ϕ) = [0, L− 1],

and

ψ(x) =
1∑

k=2−L

h1−kψ(2x− k), supp(ψ) =
[
1−

L
2
,
L
2

]
,

where hk are the wavelet filter coefficients. Here we only list the
main properties of Daubechies scaling functions and expression for
connection coefficients needed for our calculations, i.e.,

(i)
∫
+∞

−∞
ϕ(x)dx = 1

(ii)
∫
+∞

−∞
ϕ(x− k)ϕ(x− l)dx = δkl

(iii)
∫
+∞

−∞
ϕ(x− k)ϕ(x− l)ϕ(x−m)dx = δklδkm

(iv)
∫
+∞

−∞
ϕ(m)(x)ϕ(n)(x − k)dx = Λ

m,n
k , where ϕ

(m)(x) =
dmϕ/dxm, ϕ(n)(x) = dmϕ/dxn. For our model we use only
m = 0, n = 1.

The algorithm for the calculation of Λm,nk can be found in [23,43],
and is not reproduced here.

4.5. Boundary conditions

Let z(x, t) be defined on [X1, X2] × (0,∞) and assume that it
belongs to L2[X1, X2] for any t . We assume that z(x, t) = 0 when x
is outside of the interval [X1, X2] such that z(·, t) ∈ L2(R). For the
partial differential equation (41), we define the wavelet expansion
for the projection zJ(x, t) as

zJ(x, t) =
∑
k

zJ,k(t) · ϕJ,k(x) = 2J/2
∑
k

zJ,k(t)ϕ
(
2Jx− k

)
(46)

where k goes from k1 = 2− L+ 2JX1 to kN = 2JX2 − 1.
Notice that the support of the expansion (46), zJ(·, t), is

[X ′1, X
′

2] =
[
(2− L)/2J + X1, (L− 2)/2J + X2

]
while the support

of z(·, t) is given by [X1, X2]. Moreover zJ(x, t) and ∂zJ(x, t)/∂x are
equal to zero on the boundaries of the extended interval, since

zJ(X ′1, t) = zJ,k1ϕ(0) = 0, zJ(X ′2, t) = zJ,kNϕ(L− 1) = 0, (47)

∂

∂x
zJ(X ′1, t) = zJ,k1

∂ϕ

∂x
(0) = 0,

∂

∂x
zJ(X ′2, t) = zJ,kN

∂ϕ

∂x
(L− 1) = 0.

(48)

In order to use the Galerkin method directly, namely when the
selected basis satisfies the boundary conditions, we reset the
analytical boundaries X1, X2 to the boundaries X ′1 = (2−L)/2

J
+X1
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and X ′2 = (L−2)/2
J
+X2 and imposeDirichlet boundary conditions

(47), Neumann boundary conditions (48), or other linear boundary
conditions such as for example a Robin boundary condition [46].
We approximate the solutions of the partial differential

equation (41), z(x, t), on the interval [X1, X2]with these boundary
conditions by zJ(x, t) on the interval [X ′1, X

′

2] noticing that as J →
+∞, |X ′n − Xn| = O(2−J) for n = 1, 2 and zJ → z.
We consider the Eq. (21) on the symmetric interval, i.e.,−X1 =

X2 = X , with homogeneous boundary conditions

vJ(−X, t) = vJ(X, t) = b, (49)

and the initial condition

vJ(ξ , 0) = v0(ξ). (50)

4.6. Piecewise linear firing rate function case

By change of the variable z(ξ , τ ) = vJ(ξ , τ )− bwe get

∂τ z =
β

2
∂2ξ z +

β − 2
2
z +

(β − 2)b+ 1− θβ
2

, (51)

with

z(±X, τ ) = 0, z(ξ , 0) = v0(ξ)− b,

from the Eq. (32). This formulation allows us to apply the result
from Section 4.5.
Substituting (46) into (51) and then applying the Galerkin

discretization scheme, we get the system of ordinary differential
equations for the coefficients∑
k

alk
dzJk
dτ
=

∑
k

(
β − 2
2
alk +

β

2
clk

)
zJk

+
(β − 2)b+ 1− θβ

2
dl, (52)

for all l = k1, k1 + 1, . . . , kN , where

alk = 〈ϕJl, ϕJk〉 = δkl, clk =
〈
ϕJl,
d2ϕJk
dξ 2

〉
= 22JΛ0,2k−l,

dl = 〈ϕJl, 1〉 = 2−J/2.

We write (52) in matrix form

dz
dτ
=

(
β

2
Λ+

β − 2
2
I
)
z+

(β − 2)b+ 1− θβ
2

d, (53)

where z(τ ) = (zJk)(τ ) is the N × 1 vector function of the Galerkin
expansion coefficients, Λ = (clk) is N × N matrix and d = (dl) is
the N × 1 vector with N = 2J(X2 − X1) + (L − 2). We solve (53)
using theMatLab© solver ode23TB, obtain zJ as (45), and finally get
the approximative solution vJ .

4.6.1. Stationary periodic solution
First, we consider stationary solution of (32) with zero

Dirichlet boundary conditions and β > 2. When applying the
wavelet–Galerkin schemewe get the systemof algebraic equations(
β

2
Λ+

β − 2
2
I
)
z+

1− θβ
2

d = 0.

The exact stationary solution of (32) on the symmetric interval
[−X, X] is

v(ξ) = −
θ − 1/β

(1− 2/β) cos
(√
1− 2/βX

)
× cos

(√
1− 2/βξ

)
+
θ − 1/β
1− 2/β

. (54)

In Fig. 9(a) we have plotted the exact solution and the
approximation obtained by the wavelet–Galerkin approach for the
approximation level J = 4, and parameters X = 10, β = 3, and
θ = 0.5. For the approximation level J = 6 and above one hardly
observes any difference between the analytical predictions and the
outcome of the numerical runs. The error of the approximation
evaluated in L2[−X, X], i.e.,

ε =

√∫ X

−X

(
vJ − v

)2 dx.
In Fig. 9(b) we show log2 ε as a function of the approximation level
J . The error points are marked with squares in this figure. These
points apparently seem to lie on a straight line. However, we do
not do any further analysis of the error estimates in this paper.

4.6.2. The time evolution of a ‘saw tooth’
We consider the solutions of Eq. (32) with boundary conditions

v(−X, t) = v(X, t) = vconst,

where vconst = (θβ−1)/(β−2) is a homogeneous solution of the
equation (see Section 3.1.2). The initial condition is given as

v(ξ, 0) = vconst + ς(ξ),

where ς is

ς(ξ) =

{
0, if |ξ | > h

−
A
h
|ξ | + A, if |ξ | ≤ h.

(55)

We refer to the profile (55) as a ‘saw tooth’ profile. We take A =
0.01 and h = X/2 for all the examples we are studying here.
We have made simulations for a set of parameters (β, θ) ∈ D1

and (β, θ) ∈ D2, see Fig. 6, with small A and h < X . We have
found that the results reflect the conclusions of Section 3.1.2, i.e., if
we interpret the initial condition as a perturbation of the constant
solution vconst we see that vconst is stable for (β, θ) ∈ D1, Fig. 10(a),
and unstable for (β, θ) ∈ D2, Fig. 10(b). Notice, however, that the
analysis in Section 3.1.2 is done for the infinite interval. Therefore,
the accuracy in the representation of the regions D1 and D2 in
the finite case depends on the length of the interval [X1, X2]. To
avoid additional complications we do not reproduce the analysis
for the correction for D1 and D2 here. However, we have taken it
into account for test examples.
In the unstable case, see Fig. 10(b), the following features are

apparent in the numerical evolution of the saw tooth profile: First,
the region of the pulse around ξ = 0 (the core) grows with time.
Secondly, a broadening of the pulse takes place.
Notice, that an unstable solution with this choice of firing rate

function exceeds boundaries of proper solutions.

4.6.3. The time evolution of the bump
The bump (11) in the firing rate variable is given as vb =

S(β(ub − θ)). Since the bump, ub, is spatially symmetric and there
is a one-to-one correspondence between u and v for the oblique
part of the firing rate function, the representation vb must also be
spatially symmetric. Moreover, we have

lim
x→±∞

vb(x) = v0. (56)

This naturally imposes the Dirichlet condition for the problem
(32) with the bump initial condition, i.e.,

v(ξ, 0) = vb(ξ), v(±X, τ ) = v0.

The limit (56) is the lower bound in the definition of proper
solutions.We assume thatω is positive. Thus,wehave 0 ≤ W (x) ≤
1/2 (by the normalization condition) so that v0 ≤ vb(ξ) ≤ v1.
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Fig. 9. (a) The exact solution (red line) and the approximation (blue line) of the stationary periodic solution of (32) with β = 3, θ = 0.5, and [−X, X] = [−10, 10]. The
approximation level is J = 4. (b) log2 ε for different J . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 10. The time evolution of the saw tooth profile (55) with (a) β = 0.5, θ = 0.8, vconst = 0.4, (b) β = 50, θ = 0.3, vconst = 0.2917.

We demand−1 ≤ β(ub(ξ)− θ) ≤ 1 for all ξ to stay in oblique
part of the firing rate function. Under the positivity assumption
for ω we get 0 ≤ ub(ξ) ≤ 2W (a). Therefore, β is required to
satisfy β < 2/W (a), and θ is required to satisfy θ ≤ 1/β and
|θ − 2W (a)| ≤ 1/β .
The Heaviside limit of the firing rate function can be considered

as an approximation of very steep firing rate functions. In
accordance with previous results we expect that the profile vb is
unstable for larger β .
In Fig. 11(a) we have plotted vb(ξ) = 0.5(β(ub(ξ) − θ) + 1)

with the Gaussian connectivity function, (8), σ = 1, θ = 0.01, and
β = 50. In Fig. 11(b) the time evolution of vb when ξ ∈ [−10, 10]
is shown. The outcome of the numerical runs for the bump clearly
demonstrates the same typical features as seen for the saw tooth
profile in the high steepness regime: The core of the amplitude
grows with time and at the same time a broadening takes place.
We notice that the growth of the core and the broadening of

the profile for both the saw tooth and the bump in the unstable
regime are to be expected since the evolution equation is given
as (32). The Eq. (32) is a diffusion equation extended with a term
(β − 2)v/2, which produces the growth of the core of the solution
when β > 2. The broadening of the pulse is caused by the
diffusion.

4.7. Piecewise nonlinear firing rate function case

The Eq. (36) with (49) and (50) transforms to

(1+ 2b+ 2z) ∂τ z = β∂2ξ z − z
2
+ (2f + β − 1) z

+
(
1− βθ + (β − 1)b− b2

)
, (57)

z(±X, τ ) = 0, z(ξ , 0) = v0(ξ)− b, (58)

by change of the variable z(ξ , τ ) = vJ(ξ , τ )− b.
Applying the wavelet–Galerkin scheme and using the proper-

ties and formalismworked out in Section 4.4, we get the system of
ordinary differential equations

(1+ 2b+ 2J+1zJl)
dzJl
dτ
= 2J/2β

∑
k

Λ
0,2
k−lzJk

− 2Jz2Jl + 2
J/2(2b+ β − 1)zJl + (1− βθ + (β − 1)b− b2),

l = k1, k1 + 1, . . . , kN .

In analogy with Section 4.6 we consider the problem (57)–(58)
with the saw tooth and the bump as the initial conditions.

4.7.1. The time evolution of the saw tooth and the bump profile
We impose a small perturbation of the ‘saw tooth’ type to the

constant solution, v(−) or v(+) i.e.,

v(−X, t) = v(X, t) = v(±)

where v(−) and v(+) are the homogeneous solutions of the Eq. (36)
(see Section 3.1.2), and

v(ξ, 0) = v(−) + ς(ξ), (59)

or

v(ξ, 0) = v(+) + ς(ξ), (60)

respectively, where ς is defined as (55).
In Fig. 12(a) we have plotted the evolution of v(ξ, 0) given

by (60), with v(+) = 0.5639 for (β, θ) = (0.5, 0.8), which
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Fig. 11. (a) The bump vb(ξ) = 0.5(β(ub(ξ)− θ)+ 1)with the Gaussian connectivity function, (8), σ = 1, θ = 0.01, β = 50. (b) The time evolution of vb(ξ).

corresponds to the region D1 in Fig. 8(b). In Fig. 12(b) the evolution
of v(ξ, 0) given by (59) with v(−) = 0.2874 for (β, θ) = (50, 0.3)
corresponding to the region D2 in Fig. 8(b) is shown. In the
former case the pulse dies out, while in the latter case the
profile apparently develops into a saturated state. The maximum
amplitude approaches the constant level v(+) in this case.
For the case (β, θ) ∈ D2, we have v(+) > v0 according

to the analysis in Section 3.1.3, therefore, the pulse exceeds the
upper bound of the proper solution after some time. However, for
(β, θ) ∈ D, v(+) is a proper solution and the pulse remains within
the bounds.
We proceed in the same way as in Section 4.6.2. In Fig. 13(a)

we have plotted vb(ξ) = −1/2 +
√
β(ub(ξ)− θ)+ 5/4 with

the Gaussian connectivity function, (8), and the same set of
parameters, σ = 1, θ = 0.01, and β = 50. In Fig. 13(b) the time
evolution of vb when ξ ∈ [−10, 10] is shown.
Again the evolution is characterized by a development into a

saturated state.
Hence, the presence of nonlinearity in the oblique part of the

firing rate function adds interesting features to the dynamics,
namely the evolution to a saturated level where the maximum
amplitude is given by v(+).

5. Concluding remarks and directions of further study

In the present paper we have derived a nonlinear diffusion
equation from a one-population nonlocal neural field model of the
Wilson–Cowan type by assuming that the typical spatial scale of
variation of v = P(u−θ) ismuch larger than the synaptic footprint.
The diffusion equation is termed the weakly nonlocal limit. We
have tested the wavelet–Galerkin method on the weakly nonlocal
limit. Our findings can be summarized as follows:

A homogeneous background is linearly unstable provided the
slope of the firing rate function evaluated at the homogeneous
state exceeds a certain threshold value. The instability structure
consists of a finite gain band where the fastest growingmode is
in the long wavelength limit.
The weakly nonlocal limit can be transformed to the Ginzburg–
Landau–Khalatnikov type of equation in the firing rate variable
where stationary states can be analyzed by means of a
pseudo-potential formulation. Moreover we have shown that
stationary, periodic solutions of this model satisfying the
uniform bound 0 ≤ u(x, t) ≤ 1 correspond to a finite range of
pseudo energy constants E. Finally, we show that the stability
of constant solutions of this model can be inferred from the
properties of the extreme points of the pseudo-potential.

It is possible to construct wavelet–Galerkin expansion and
discretization scheme for the model equation with Daubechies
scaling functions as the basis functions. This choice of the basis
seems to be quite good due to the localized character of the
expected solutions.
The usage of wavelet–Galerkin expansion allows us to confirm
results on stationary solutions of the actual neural field model
and their linear stability properties, and to detail the evolution
of disturbances numerically. In particular, we notice that when
the firing rate function is modeled by a piece wise linear
function a localized initial profile such as the bump and the saw
tooth develops into a state characterized by a growth of the core
and a broadening of the pulse in the unstable regime. In the
case of a nonlinear firing rate function the bump and saw tooth
develops into a saturated state in the unstable regime.

The weakly nonlocal limit can indeed be studied by using other
numerical methods. However, we believe that it is important to
test the wavelet–Galerkin method on simple neural model such
as the weakly nonlocal model before studying more complicated
neural field models bymeans of the same numerical approach. We
expect that the wavelet-based spatial analysis of large scale 1D
and 2D structures in neural field models will be an efficient tool
in extracting information which is unavailable by other methods
such as distribution of scales, localization of defects of the patterns
and more smooth spectrum of scales than spectral methods can
give. This is one of the main motivation for the present work.
Future work consists of applying the developed method to

the numerical study of one- and two-population models of the
Wilson–Cowan type. In addition, one should compare the outcome
of the wavelet–Galerkin method with the outcome of other
numerical schemes.
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a b s t r a c t

Neural-fieldmodels describing the spatio-temporal dynamics of the average neural activity
are frequently formulated in terms of partial differential equations, Volterra equations
or integro-differential equations. We develop a stability analysis for spatially symmetric
bumps in a two-population neural-fieldmodel of Volterra form for a large class of temporal
kernels. We find that the corresponding Evans matrix can be block-diagonalized, where
one block corresponds to the symmetric part of the perturbations while the other block
takes care of the antisymmetric part of these perturbations including the translational
invariance of the bumps. For the class of quasi-power temporal kernels ∼ tk exp(−t)
we show that the system of governing equations can be converted to a system of rate
equations. We prove that for this class of temporal kernels the stability analysis based on
the Evans function approach is equivalent to the phase-space reduction technique termed
the generalized Amari approach. We illuminate these results by carrying out numerical
simulations based on a fourth-order Runge–Kutta numerical scheme in time for the special
mixed case modeled by α-functions in the excitatory equation and exponentially decaying
functions in the inhibitory equation. Excellent agreement between analytical predictions
from the stability analysis and numerical simulations is obtained. The generic picture
consists of an unstable narrow bump pair and a broad bump pair. The broad bump pair
is stable for small and moderate values of the relative inhibition time τ , is converted to a
stable breather at a critical time constant, τ = τcr (which is identified as a Hopf-bifurcation
point), and becomes unstable as τ exceeds τcr .

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The macroscopic dynamics of neuronal tissue is often studied by means of population or firing-rate models. Rather than
describing the activity of each individual neuron, they focus on the average activity, the firing rate, of populations of cells. The
main purpose of such models is to reduce the dimensionality and complexity of the microscopic neural-network dynamics
to obtain tools which allow mathematical treatment, efficient simulation and intuitive understanding. Since the seminal
studies of [1,2], a number of population models have emerged in the literature. In the main, they have to be considered
purely phenomenological descriptions. However, under simplifying assumptions, they can be derived or extracted from the
single-neuron dynamics (see e.g. [3] and the references therein).

Neural population-ratemodels describe the temporal evolution of the firing rate rm of a neuron populationm.Neural-field
models constitute a special class of population-rate models: here, the neuronal tissue is treated as a continuous structure.

∗ Corresponding author.
E-mail addresses: anna.oleynik@umb.no (A. Oleynik), john.wyller@umb.no (J. Wyller), tom.tetzlaff@umb.no (T. Tetzlaff), gaute.einevoll@umb.no

(G.T. Einevoll).
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Each point x in space represents a subpopulationm(x) of neurons. The spatial coupling between subpopulationsm(x), n(x′)
is described by a connectivity kernel ωmn(x, x′) which is typically assumed to be distance dependent and homogeneous, i.e.
ωmn(x, x′) = ωmn(|x − x′

|). Notice that neural-field models where the connectivity kernels are not spatially translational
invariant have been studied in a series of papers (see for example [4–9]). The timedependence of the interaction is frequently
modeled by a temporal kernel αmn(t). Given these ingredients, the dynamics of firing rates rn(x, t) of a system N of N = |N |

populations is often described in terms of a Volterra equation system of type

un(x, t) =

−
m∈N

(αmn ∗ ωmn ⊗ rm)(x, t)

rn(x, t) = Pn(un(x, t) − θn) (∀n ∈ N ).
(1)

Here, un(x, t) denotes an (auxiliary) variable representing the activity of population n, Pn(·) the (typically sigmoidal) firing-
rate function and θn the firing threshold. The index m represents the presynaptic (sender) and n the postsynaptic (target)
population. The operators ‘‘∗’’ and ‘‘⊗’’ denote the temporal and spatial convolution integrals, respectively (see Section 2 for
details).

The temporal kernel αmn(t) denotes the impulse response (Green’s function) of the target population n given a delta-
shaped input from population m.1Several experimental [10–14] and theoretical studies [2,3,15–24] have shown that
populations of (unconnected) neurons typically exhibit low-pass characteristics (at least if one takes into account that
incoming spikes are low-pass filtered by the synapses): while the neuron ensembles can reliably track low-frequency
fluctuations in the input, high-frequency components are damped. Most previous studies on neural-fieldmodels have taken
this into account by considering exponential temporal kernels αmn(t) = exp(−t/τn)/τn with time constants τn, i.e. first-
order low-pass filters. In this case, the Volterra system (1) can be transformed to a system of integro-differential equations
(rate equations)

τn
∂

∂t
un(x, t) = −un(x, t) +

−
m∈N

(ωmn ⊗ rm)(x, t)

rn(x, t) = Pn(un(x, t) − θn) (∀n ∈ N ).

(2)

Compared to the Volterra form (1), neural-field models in rate-equation form (2) are more amenable to mathematical and
numerical analysis due to the fact that the latter category of equations is local in time, while the former is global in time.
This is one reason that neural-field models in rate-equation form (2) have been more popular in theoretical neuroscience
(e.g. [1,25,26]). The exact shape of the temporal kernel αmn(t) is determined by a variety of factors, for example, by the
dynamical properties of the postsynaptic neurons (see e.g. [20,21]), by the activity of the presynaptic neurons (e.g. excitation
vs. inhibition; additive vs. multiplicative noise; see [11,14,17,22,24]), and by the properties of the synapses. Experiments
have shown that the transfer of somatic input currents (currents which are directly injected into the cell body; the effect of
synaptic filtering is thus neglected) to the response firing rate of a neuron population exhibits signs of higher-order low-pass
or band-pass characteristics [12]. Furthermore, postsynaptic currents (the response of somatic input currents to presynaptic
firing) are oftenmuch better described by second-order (alpha function kernels) or higher-order low-pass filters rather than
by simple exponentials [27]. Therefore, the restriction to exponential temporal kernels in neural-field models can hardly be
justified.

In this article, we exploit that neural-field models in Volterra form (1) can be transformed to a system of integro-
differential equations similar to (2) not only for simple exponentials, but for the whole class of quasi-polynomial temporal
kernels [28]

αmn(t) =

K−
k=0

cmnk tk exp(−t/τmnk)

with constants cmnk, τmnk ∈ R and K ∈ N [29]. Neural-field models with general temporal kernels have been studied before
(see Coombes [30] and the references therein). All these studies are, however, restricted to one-populationmodels. Here, we
extend this work by studying the dynamics of a two-population neural-field model (N = 2; m, n ∈ {e, i}) for the sub-class
of ‘quasi-power’ temporal kernels (higher-order low-pass filters):

αmn(t) =


tkn

(kn)!
exp(−t) n = e

tkn

τ kn+1(kn)!
exp(−t/τ) n = i

(kn ∈ N). (3)

For convenience, time is measured here in units of the excitatory time constant (which is therefore set to 1).
Key topics in the study of neural-field models are the generation and/or stability of coherent activity structures,

such as stationary bumps (pulses) [25,26,30–41] and stationary periodic patterns [42–47], spatio-temporal oscillatory

1 Note that αmn(t) corresponds to the impulse response of an isolated population n rather than to the impulse response of the entire network. In other
words, it is the response of population n to a firing-rate fluctuation of populationm in the absence of any feedback connections, i.e. forωpq(x, y) = 0 ∀x, y ∈

R and ∀p, q ≠ n.
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patterns [37,43,48–51], or traveling waves, pulses and fronts [30,35,37,44,49,50,52–56]. Commonly, one (excitatory) [26]
or two (excitatory, inhibitory) [25,57] neuronal populations in a single spatial dimension have been described by a single or
two coupled integro-differential equations of type (2).

In [25], the rate-equation system (2) with N = 2,m, n ∈ {e, i}, i.e., all temporal kernels are modeled by exponentially
decaying functions,was considered. The closed-formexpressions for the stationary localized solutions (bumps)were derived
under the assumption that the firing-rate functions Pe and Pi are Heaviside functions. It was shown that there is always a set
of threshold values θe, θi for which bumps exist. This set of threshold values is referred to as the admissible set of threshold
values. The generic picture consists of two bump pairs for each pair of admissible threshold values. The stability problem
in [25] was addressed by using two different approaches:

The first one, which is referred to as the Amari approach, describes the bumps by their pulse width coordinates, the
coordinates of the crossing between the pulses and the threshold values. An autonomous system of ordinary differential
equations, termed the Amari system, for the pulse width coordinates was derived from (2) under the assumption that
imposed perturbation is symmetric. The second approach considered in [25] consists of a direct linearization of the rate-
equation system (2) around the bump state. The growth/decay rate of the perturbation is determined by requiring the
stability matrix to be singular. It was shown that the stability matrix can be block-diagonalized. The growth/decay rates
obtained from the upper block are identical to the eigenvalues of the Jacobian matrix of the Amari system. The lower block
predicts translational invariance. The Amari approach is based on the conjecture that the stability of bumps can be inferred
from the stability of the equilibrium of the Amari system. However, in [25] it was shown that two stability approaches do
not coincide.

The work presented in this article constitutes a generalization of [25] to a new general class of temporal kernels (3). In
Section 2, we introduce the model and the necessary notation, and prove that the solutions of the initial value problem are
uniformly bounded provided the firing-rate functions Pn are bounded. Thus, any instability will eventually be saturated.
In the remainder of the paper, we restrict ourselves to firing-rate functions described by Heaviside functions. In Section 3,
we review the existence theory for bumps [25]. Section 4 is devoted to the stability of spatially symmetric bumps within
the framework of (1). The linearization procedure is applied directly to (1) for arbitrary temporal kernels αmn(t). We refer
to this approach as the Evans function technique. The growth/decay rate of the perturbation is determined by requiring the
stability matrix to be singular. We refer to the stability matrix as Evans matrix [30], its determinant as the Evans function. We
demonstrate that the Evans matrix of the system can be block-diagonalized. The resulting blocks correspond to symmetric
and antisymmetric perturbations. We emphasize that this result is independent from the choice of the temporal kernels
and does not require the rate-equation representation of (1) as in [25]. For quasi-power kernels (3), the Evans function is
a rational function. Its roots can therefore be localized by means of the Routh–Hurwitz criterion. We derive a sufficient
condition for bumps to be unstable, independently of the orders of the quasi-power kernels. In Section 5, we generalize
the Amari approach to quasi-power temporal kernels, and show that it is, for this case, equivalent to the Evans function
technique described in Section 4. In Section 6, we illustrate our results by means of an example. We consider the specific
case of temporal kernels (3) with ke = 1, ki = 0, i.e., the temporal kernels of the excitatory and inhibitory population are
modeled by anα-function and an exponentially decaying function, respectively.We study the stability of bumps for this case
both analytically (Section 6.1) and numerically (Section 6.2). For the numerical simulations, we make use of the fact that
the system can be described in terms of rate equations. The example of this type of temporal interaction (ke = 1, ki = 0)
was studied in [58] (Model B). However, since spatial effects are not taken into account in the model considered in [58] is a
compartment model and not a neural-field model.

The fact that the stability result from the generalized Amari approach is equivalent with the results of the Evans function
technique for the quasi-power temporal kernels, apparently contradicts the conclusion in [25]. We discuss the cause of
this result in Section 7. We also point out the advantage of the rate-equation representation of (1), and discuss advantages
and disadvantages of the two stability approaches. Section 7 contains also the conclusions and an outlook. The appendices
include details about the boundedness property for the solutions of the two-population formof (1)with temporal kernels (3)
(Appendix A) and the detailed proof of the equivalence of the Evans function technique and the generalized Amari approach
(Appendix B).

2. The model

For the construction of the two-population neural-field model we assume that (i) all neurons receive synaptic inputs
from, in principle, all excitatory and inhibitory neurons in the network, (ii) the synaptic weights depend only on the type of
pre- and postsynaptic neurons and their absolute spatial distance, (iii) the net activity level of each population depends on
a weighted sum over the past firing activity in the presynaptic subpopulations, and (iv) the neuronal firing rates at a certain
time are given by applying particular nonlinear functions to the neuronal activity levels at the same time [59].

The nonlocal model for the excitatory activity level ue and the inhibitory activity level ui in one spatial dimension
reads [30,59]

ue = αee ∗ ωee ⊗ Pe(ue − θe) − αie ∗ ωie ⊗ Pi(ui − θi) (4a)
ui = αei ∗ ωei ⊗ Pe(ue − θe) − αii ∗ ωii ⊗ Pi(ui − θi) (4b)
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with ωmn ⊗ Pm(um − θm) defined as the spatial convolution integral

(ωmn ⊗ Pm(um − θm))(x, t) =

∫
∞

−∞

ωmn(y − x)Pm(um(y, t) − θm)dy,

and αmn ∗ f as the temporal convolution integral

(αmn ∗ f )(x, t) =

∫ t

−∞

αmn(t − s)f (x, s)ds.

Here and in what follows we havem, n = e, i.
The spatial distribution of synaptic connection strength in the network is described bymeans of the connectivity functions

ωmn, which are assumed to be real-valued, bounded, symmetric, normalized and parameterized by means of synaptic
footprints σmn, i.e.,

ωmn(x) = σ−1
mn Φmn(ξmn), ξmn = x/σmn. (5)

Here Φmn are scaling functions.
The impact of past neural firing on the present activity levels in the network is described by the temporal kernels αmn(t)

typically parameterized by a single time constant, say τ , which is the ratio between the inhibitory and excitatory time
constants. We assume that αmn are normalized i.e.,∫

∞

0
αmn(t)dt = 1. (6)

The conversion of activity levels to action-potential firing activities of the neurons is modeled by means of the firing-
rate functions denoted by Pe and Pi, respectively, for the excitatory and the inhibitory neurons. These functions are smooth,
increasing and parameterized by an inclination parameter βm > 0. Here, they are chosen to map the set of real numbers
onto the unit interval (so that the true firing rates are obtained bymultiplying the output of these functionswith appropriate
constants). The firing-rate functions approach the Heaviside function H as βm → ∞.

Finally, the parameters θm represent threshold values for firing, which by assumption satisfy 0 < θm ≤ 1.
In [25,43,59], system (4) with

αee(t) = αie(t) = e−t , αei(t) = αii(t) =
1
τ
e−

t
τ

has been investigated with respect to existence and stability of stationary, spatially localized solutions, the so-called bumps
or standing pulses [25], and pattern formation through Turing type of instability [43]. The starting point of the analysis
performed in [25,43,59] is the Wilson–Cowan type of equations

∂tue = −ue + ωee ⊗ Pe(ue − θe) − ωie ⊗ Pi(ui − θi)

τ∂tui = −ui + ωei ⊗ Pe(ue − θe) − ωii ⊗ Pi(ui − θi),

which are derived by means of the Linear Chain Trick (LCT)[29].
It is also possible to obtain a system of rate equations from (4) by the LCT when the temporal kernels are given by quasi-

power functions (3). In this case, we get a system of (ke + ki + 2) coupled equations with (ke + ki) auxiliary variables. Then
the initial value problem can be written in a compact vector form as

∂t Ū = LŪ + FŪ, Ūt=0 = Ū0. (7)

Here Ū is the vector solution containing the activity levels um and the auxiliary variables v
(k)
m , k = 1, . . . , km,m = e, i, as

components, i.e.,

Ū = (ue, v
(1)
e , . . . , v(ke)

e , ui, v
(1)
i , . . . , v

(ki)
i )T .

Moreover, L is a linear operator represented by means of the matrix L which has a Jordan block form,

L =


Je Oe

Oi
1
τ
Ji


, Jm =


−1 1

−1 1
. . .

. . .

−1 1
−1

 , m = e, i. (8)

Here the block Jm is a (km+1)×(km+1)matrix form = e, i;Oe is a (ke+1)×(ki+1) zeromatrix, andOi is a (ki+1)×(ke+1)
zero matrix.
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Finally, F is a nonlocal nonlinear operator such that

FŪ =



0
...
0

ωee ⊗ Pe(ue − θe) − ωie ⊗ Pi(ui − θi)
0
...
0

ωei ⊗ Pe(ue − θe) − ωii ⊗ Pi(ui − θi)


,

where non-zero elements of (2) are located in (ke +1)th and (ki +1)th rows. The initial condition vector, Ū0, is a continuous
and bounded vector function.

One can prove that the initial value problem (7) is locally well posed in the space of bounded continuous functions in a
way analogous to Potthast et al. [60] for one-population models and Faye et al. [61] for multipopulation models with axonal
and dendritic delay effects incorporated.

Next, let us consider the boundedness of the solutions. The initial value problem (7) is equivalent to the fixed point
problem, [62]

Ū(x, t) = R(t)Ū0(x) +

∫ t

0
R(t − s)(FŪ)(x, s)ds, R(t) = etL. (9)

Notice that the spectrum of the operator L consists of two negative eigenvalues, −1 and −1/τ , with the multiplicity ke + 1
and ki +1, respectively. Moreover, |F(Ū)| ≤ 1, since the range of Pm is [0, 1] andwmn is normalized. Therefore, the solutions
of (9) are uniformly bounded and the following estimate is valid for all components of Ū (for details, see Appendix A)

|Uj(x, t)| ≤ ‖Ū0
‖∞ + max{ke, kiτ }, j = 1, . . . ,N, N = ke + ki + 2. (10)

The norm here is defined for a vector function V̄ (x) = (V1(x), . . . , VN(x))T ∈ (Cb(R))N , where Cb(R) is the space of bounded
continuous functions on R, as

‖V̄‖∞ = max
i

(sup
x

|Vi(x)|). (11)

Thus, if any instability occurs it has to be saturated. The boundedness result for the Wilson–Cowan models studied in this
paper is analogous to the one obtained in [25,60].

From now we assume that the firing-rate functions Pm are approximated with the Heaviside function H.

3. Existence and uniqueness of bumps

For the sake of completeness, we summarize the results in [25] regarding the existence and uniqueness of pairs of
excitatory and inhibitory bumps.

When approximating the firing-rate functions Pm with Heaviside functions H , one obtains closed-form expressions for
excitatory, Ue, and inhibitory, Ui, bumps, that is

Ue(x) = Wee(a − x) + Wee(a + x) − Wie(b − x) − Wie(b + x), (12a)
Ui(x) = Wei(a − x) + Wei(a + x) − Wii(b − x) − Wii(b + x), (12b)

where

Wmn(x) =

∫ x

0
ωmn(y)dy =

∫ x/σmn

0
Φmn(y)dy. (13)

The coordinates a, b satisfy the equations

fe(a, b) = θe, fi(a, b) = θi (14)

with fe and fi given as

fe(a, b) = Wee(2a) − Wie(b − a) − Wie(a + b)
fi(a, b) = Wei(a + b) + Wei(a − b) − Wii(2b).

(15)

In the process of deriving (12), (14), it is assumed that we have a single bump structure of the stationary solutions. The
parameters a, b, which are unique solutions of Ue(±a) = θe and Ui(±b) = θi, measure the pulse widths of Ue(x) and Ui(x).
It turns out that a typical situation consists of two pairs of pulses (Ue(x),Ui(x)) for each set of threshold values (θe, θi), one
broad and one narrow pulse pair. This result has also been found for one-populationmodels [26] and simpler two-population
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a

b

Fig. 1. A numerical example of (a) a broad excitatory (left) and inhibitory (right) pulse pair; and (b) a narrow excitatory (left) and inhibitory (right) pulse
pair. The connectivity functions are Gaussian (5), (16) with synaptic footprints given by (17). The horizontal lines notify the corresponding threshold values
given by (18).

models [32]. In addition, one finds that an excitatory pulsemay existwithout an accompanying inhibitory pulsebut the inhibitory
cannot exist alone [25]. From now on we refer to any solution of (14) as (a0, b0).

In Fig. 1, we display graphically the bumps when the connectivity functions are modeled by means of Gaussian
functions, [25]

Φmn(ξmn) =
1

√
π

exp(−ξ 2
mn) (16)

with synaptic footprints

σee = 0.35, σei = 0.48, σie = 0.60, σii = 0.69, (17)

and threshold values are

θe = 0.12, θi = 0.08. (18)

The widths (a0, b0) for narrow pulse pair are (0.066, 0.045) and for the broad pulse pair are (0.179, 0.183). Wewill use this
example in Section 6.2.

4. Stability of bumps for the two-population model: Evans function technique

In order to investigate the stability of the bumps, the Evans function technique is applicable (see for example [30]). We
proceed in the standard way by assuming solutions of (4) on the form

ue(x, t) = Ue(x) + ũe(x)eλt ,

ui(x, t) = Ui(x) + ũi(x)eλt ,

where λ denotes the growth/decay rate and linearize the resulting equations about the bump state. We end up with the
system of equations for the spatial part of the perturbations, ũe, ũi,

ũe(x) = α̃ee(λ)Ωee(x) − α̃ie(λ)Ωie(x),
ũi(x) = α̃ei(λ)Ωei(x) − α̃ii(λ)Ωii(x).

(19)
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Here α̃mn denotes the Laplace transform of αmn

αmn(λ) =

∫
∞

0
αmn(t)e−λtdt

provided the integral exists. Here the functions Ωmn are defined as Ωmn = ωmn ⊗ H ′((Um − θm)ũm) where H ′
= δ and δ is

the Dirac function.
The convolution integral Ωmn is according to [25] given as

Ωen(x) =
1

|U ′
e(a0)|

(ωen(x + a0)ũe(−a0) + ωen(x − a0)ũe(a0)), (20a)

Ωin(x) =
1

|U ′

i (b0)|
(ωin(x + b0)ũi(−b0) + ωin(x − b0)ũi(b0)). (20b)

Let

X̄ = (ũe(a0), ũe(−a0), ũi(−b0), ũi(b0))T .

The relations (19)–(20) imply

ũe(x) ≡ ũi(x) ≡ 0 ⇔ X̄ = 0̄.

We consider non-trivial disturbances and, thus, X̄ ≠ 0̄. Plugging x = ±a0 into the first equation of (19) and x = ±b0 into
the second we can write the result in the matrix form JE X̄ = 0̄ where

JE =



α̃ee(λ)ωee(0)
|U ′

e(a0)|
− 1

α̃ee(λ)ωee(2a0)
|U ′

e(a0)|
−

α̃ie(λ)ωie(a0 − b0)
|U ′

i (b0)|
−

α̃ie(λ)ωie(a0 + b0)
|U ′

i (b0)|
α̃ee(λ)ωee(2a0)

|U ′
e(a0)|

α̃ee(λ)ωee(0)
|U ′

e(a0)|
− 1 −

α̃ie(λ)ωie(a0 + b0)
|U ′

i (b0)|
−

α̃ie(λ)ωie(a0 − b0)
|U ′

i (b0)|
α̃ei(λ)ωei(a0 − b0)

|U ′
e(a0)|

α̃ei(λ)ωei(a0 + b0)
|U ′

e(a0)|
−

α̃ii(λ)ωii(0)
|U ′

i (b0)|
− 1 −

α̃ii(λ)ωii(2b0)
|U ′

i (b0)|
α̃ei(λ)ωei(a0 + b0)

|U ′
e(a0)|

α̃ei(λ)ωei(a0 − b0)
|U ′

e(a0)|
−

α̃ii(λ)ωii(2b0)
|U ′

i (b0)|
−

α̃ii(λ)ωii(0)
|U ′

i (b0)|
− 1


.

We call the matrix JE the Evans matrix in accordance with the terminology used in [30].
The structure of the Evans matrix JE allows us to introduce the block-diagonalization

J̃E = PJEP−1, P =



1
2

1
2

0 0

0 0
1
2

1
2

1
2

−
1
2

0 0

0 0
1
2

−
1
2


, J̃E =


J11 O
O J22



where J11 and J22 are given as

J11 =

α̃ee(λ)
A + B
p1

− 1 −α̃ie(λ)
C + D
p2

α̃ei(λ)
E + F
p1

−α̃ii(λ)
G + H
p2

− 1

 ,

J22 =

α̃ee(λ)
A − B
p1

− 1 −α̃ie(λ)
C − D
p2

α̃ei(λ)
E − F
p1

−α̃ii(λ)
G − H
p2

− 1

 .

Here we have conveniently introduced the following parameters which we will use throughout the paper.

A = wee(0), B = wee(2a0), C = wie(a0 − b0), D = wie(a0 + b0),
E = wei(a0 − b0), F = wei(a0 + b0), G = wii(0), H = wii(2b0),

(21)

p1 = |U ′

e(a0)| = (A + D) − (B + C),
p2 = |U ′

i (b0)| = (E + H) − (F + G).
(22)

Notice that α̃mn(0) = 1 since αmn by assumption (6) are normalized functions. Thus, λ = 0 is the zero of det(J22) = 0. This
result indeed reflects the translation invariance property of the bump solutions.
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The block-diagonalization of the Evans matrix JE yields the factorization

E(λ) = ES(λ)EAs(λ)

of the Evans function E(λ) ≡ det(JE). Here ES(λ) = det(J11) and EAs(λ) = det(J22).
Since X̄ ≠ 0̄, the eigenvalues λ must be the zeros of the Evans function i.e. E(λ) = det(JE) = 0. Due to the factorization

of the Evans function (4) the set of eigenvalues consists of the zeros of ES(λ) and EAs(λ). Notice that by construction, the
matrix J11 corresponds to the symmetrical part of the perturbations while the matrix J22 reflects the antisymmetry in the
perturbations imposed on the bumps.

Now, introduce the parameters

d1 =
∂ fe
∂a

(a0, b0)/|U ′

e(a0)| = (2B + C − D)/p1,

d2 =
∂ fe
∂b

(a0, b0)/|U ′

i (beq)| = −(C + D)/p2,

d3 =
∂ fi
∂a

(a0, b0)/|U ′

e(a0)| = (E + F)/p1,

d4 =
∂ fi
∂b

(a0, b0)/|U ′

i (beq)| = −(2H + E − F)/p2,

(23)

where fe and fi are given as (15).
By letting λ = 0 we also get det(J11) = γS where

γS = d1d4 − d2d3, (24)

which we require to be not equal to zero to avoid a multiple zero eigenvalue. The role of γS is not clear for the general
choice of temporal kernels. However, we notice that γS is proportional (with the positive constant of proportionality) to the
Jacobian obtained for the Amari system in [25] where the model (4) with exponentially decaying kernels has been studied.
In that paper, it is shown that γS < 0 implies instability of bumps.

Let us consider the case when the temporal kernels are given as (3). The Laplace transforms are computed as

α̃ee(λ) = α̃ie(λ) =
1

(1 + λ)ke+1
, α̃ei(λ) = α̃ii(λ) =

1
(1 + τλ)ki+1

.

In this case, the factors ES(λ) and EAs(λ) in the Evans function can be expressed as a rational function in λ:

ES(λ) = (1 + λ)−(ke+1)(1 + τλ)−(ki+1)PS(λ),

EAs(λ) = (1 + λ)−(ke+1)(1 + τλ)−(ki+1)λPAs(λ),

where PS(λ) is the polynomial of the degree (ke + ki + 2)

PS(λ) = λ2τPke(λ)Qki(λ) − d4λPke(λ) − d1τλQki(λ) + γS, (25)

and PAs is the polynomial of the degree (ke + ki + 1)

PAs(λ) = τλPke(λ)Qki(λ) +
E − F
p2

Pke(λ) −
C − D
p1

τQki(λ). (26)

Here Pke and Qki are defined by

λPke(λ) = (1 + λ)ke+1
− 1, τλQki(λ) = (1 + τλ)ki+1

− 1. (27)

From (25) and (27) it follows that the leading coefficient of the polynomial PS is positive. It implies according to the
Routh–Hurwitz criterion (see Appendix in [58]) that γS < 0 is sufficient for having at least one positive zero of P (λ).
Thus, for the model (4) in the framework of the kernels (3) we conclude that γS < 0 is a sufficient condition for bumps to
be unstable. We notice that γS does not depend on the powers ke, ki. Therefore, if γS < 0 is detected for some bumps in the
framework of the model with some choice of quasi-power functions (3) then these bumps remain unstable for any other
choices of (3).

The polynomial representation of det(J22) allows us to calculate the constant coefficient of PAs, that is,

γAs =
E − F
p2

(ke + 1) −
C − D
p1

(ki + 1)τ .

The leading coefficient of PAs is positive. Therefore, we arrive at the following conclusion: the bumps are unstable if at least
one of the values γS or γAs is negative.
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5. Stability of bumps for the two-population model with quasi-power temporal kernels: generalized Amari approach

The Amari approach is based on the assumption that the solutions (ue(x, t), ui(x, t)) in a vicinity of the bump solution
(Ue(x),Ui(x)) have a shape which is close to the shape of the bump solutions i.e. we assume that the perturbed solutions
have exactly two intersections with the corresponding thresholds. Thus, there are time-dependent crossing coordinates
a1, a2(a1 < a2) of the pulse ue with the threshold θe and b1, b2(b1 < b2) with the pulse ui with the threshold θi, [25]

ue(aj(t), t) = θe, ui(bj(t), t) = θi, j = 1, 2. (28)
In the original work of Amari [26], the dynamical system for the crossing coordinates is obtained in the case of a one-

population neural-field model. The equilibrium of this dynamical system is identified with the stationary bumps. It is
conjectured that the stability of the bumps can be inferred from the stability of this equilibrium.

We exploit this idea and present a phase-space reduction technique termed the generalized Amari approach for the two-
population neural-field model (4) under the assumption that the temporal kernels are modeled as (3). We prove that the
stability problem can be resolved completely by means of the generalized Amari approach.

We differentiate (28) with respect to t in a way analogous to [26] and obtain
∂ue

∂x
(aj(t), t)

daj
dt

+
∂ue

∂t
(aj(t), t) = 0,

j = 1, 2,
∂ui

∂x
(bj(t), t)

dbj
dt

+
∂ui

∂t
(bj(t), t) = 0 .

We then apply the static slope approximation [25]
∂ue

∂x
(aj(t), t) ≈ (−1)j+1p1,

∂ui

∂x
(bj(t), t) ≈ (−1)j+1p2.

By making use of (4) we aim at deriving expressions for ∂ue/∂t(aj(t), t) and ∂ui/∂t(bj(t), t) and thus, obtain the dynamical
system for aj, bj. This can be easily done when the temporal kernels are given as (3), since the Volterra system (4) in that
case can be converted to a system of rate equations by means of the LCT [29].

The case ke = ki = 0 which corresponds to exponentially decaying functions, has been analyzed in [25]. In that paper,
however, only symmetric perturbations were considered within the framework of the Amari approach, i.e. a2 = −a1, b2 =

−b1. Itwas shown that eigenvalues obtainedby theAmari approach formaproper subset of an eigenvalue set obtainedby the
Evans function technique. In [63], the comparison of the Amari approach and the Evans function technique has been carried
out for the one-population model with spike frequency adaptation [32,64] when the memory functions are assumed to be
exponentially decaying. We show here that the generalized Amari approach coincides with the Evans function technique
for the two-population model when there are no symmetry restrictions imposed on the perturbations and for the set of
temporal kernels given by (3).

We make use of (28) and (7) and derive the dynamical system for the state vector

Z̄ = (a1, z
(1)
1 , . . . , z(ke)

1 , b1,w
(1)
1 , . . . ,w(ki)

1 , a2, z
(1)
2 , . . . , z(ke)

2 , b2,w
(1)
2 , . . . ,w(ki)

2 )T

where

z(p)
j (t) = v(p)

e (aj(t), t), p = 1, . . . , ke,
w(q)

j (t) = v
(q)
i (bj(t), t), q = 1, . . . , ki,

(29)

for j = 1, 2, are auxiliary variables. For the auxiliary variables in (7) we also apply the static slope approximation, i.e.,

∂v
(p)
e

∂x
(aj(t), t) = (−1)j+1p1,

∂v
(q)
i

∂x
(bj(t), t) = (−1)j+1p2,

where p and q are given as in (29).
Then we get a 2(ke + ki + 1)-dimensional autonomous dynamical system which reads

(−1)j+1p1
daj
dt

= z(1)
j − θe

dz(p)
j

dt
= θe − z(1)

j − z(p)
j + z(p+1)

j , p = 1, . . . , ke − 1

dz(ke)
j

dt
= θe − z(1)

j − z(ke)
j + f (j)

e (a1, a2, b1, b2)

(−1)j+1p2τ
dbj
dt

= w(1)
j − θe

τ
dw(q)

j

dt
= θe − w(1)

j − w(q)
j + w(q+1)

j , q = 1, . . . , ki − 1

τ
dw(ki)

j

dt
= θe − w(1)

j − w(ki)
j + f (j)

i (a1, a2, b1, b2),

(30)
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where j = 1, 2, and the components f (j)
e and f (j)

i are defined as

f (j)
e = (Wee(a2 − aj) − Wee(a1 − aj)) − (Wie(b2 − aj) − Wie(b1 − aj)),

f (j)
i = (Wei(a2 − bj) − Wei(a1 − bj)) − (Wii(b2 − bj) − Wii(b1 − bj)).

The equilibrium of this system corresponding to the symmetric bump is given by

Z̄0 = (−a0, θe, . . . , θe, −b0, θi, . . . , a0, θe, . . . , θe, b0, θi, . . . , θi)T . (31)

Nowwe analyze the linear stability of this equilibrium.We construct the Jacobianmatrix JA of the RHS of the system (30)
evaluated at the equilibrium (31) and consider the matrix JA −λE. We get the following fundamental theoremwhich shows
that the Evans function approach is equivalent to the generalized Amari approach.

Theorem 1. Let the temporal kernels αmn be given by the quasi-power function (3). Then

det(JA − λE) = τ−2(ki+1)PS(λ)λPAs(λ)

= (1 + λ)−2(ke+1)(1/τ + λ)−2(ki+1)ES(λ)EAs(λ).

Therefore, eigenvalues obtained using the generalized Amari approach and the eigenvalues obtained bymeans of the Evans function
technique are the same.

The proof of this equivalence theorem is given in Appendix B. Notice that although we have considered the general form of
the dynamical system (30) for ke ≥ 1 and ki ≥ 1, it is easy to check that the same argument can be extended to the case
when ke = 0 and/or ki = 0. We do not give a separate proof for this case.

6. Example: α-function for the excitatory target population and exponential decaying function for the inhibitory
target population (ke = 1 and ki = 0)

In this section, we consider one particular example when ke = 1 and ki = 0, i.e.,

αee(t) = αie(t) = te−t , αei(t) = αii(t) =
1
τ
e−

t
τ .

In mathematical neuroscience, the temporal kernel obtained by letting ke = 1 is referred to as an α-function. This means
that the temporal kernel in the excitatory equation is modeled by means of an α-function, while the temporal kernel of the
inhibitory equation assumes the form of an exponentially decaying function.

In this case, the rate-equation system in (7) is given as

∂tue = −ue + v(1)
e

∂tv
(1)
e = −v(1)

e + ωee ⊗ Pe(ue − θe) − ωie ⊗ Pi(ui − θi)
τ∂tui = −ui + ωei ⊗ Pe(ue − θe) − ωii ⊗ Pi(ui − θi).

(32)

We study the stability of bumps (12) within the framework of this model. The bumps are represented by the stationary state
X̄ = (Ue,Ue,Ui). From (30) we find that the generalized Amari system for this case reads

−p1
da1
dt

= z(1)
1 − θe

dz(1)
1

dt
= θe − 2ze + f (1)

e (a1, a2, b1, b2)

−τp2
db
dt

= f (1)
i (a1, a2, b1, b2) − θi

p1
da2
dt

= z(1)
2 − θe

dz(1)
2

dt
= θe − 2z(1)

2 + f (1)
e (a1, a2, b1, b2)

τp2
db
dt

= f (2)
i (a1, a2, b1, b2) − θi.

(33)

Within this formalism the bumps correspond to Z̄0 = (−a0, θe, −b0, a0, θe, b0)T .

6.1. Stability of bumps in the framework of (32)

In this section, we assume that the connectivity functionsωmn(x) are decreasing for positive arguments. This assumption
allows us to find the sign of parameters appearing in the Evans function.
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We analyze separately the ‘symmetric’ and the ‘antisymmetric’ part, i.e., PS(λ) and PAs(λ) given by (25) and (26).
For the ‘symmetric’ part, we have

PS(λ) = τ(λ3
+ c1λ2

+ c2λ + c3)

with the coefficients

c1 = 2 + |d4|/τ ,

c2 = 2|d4|/τ − |d1|,
c3 = γS/τ

where γS is given by (24). According to the Routh–Hurwitz criterion, all the eigenvalues are located in the left half plane if
and only if the determinants of the matrix

D =

c1

, D2 =


c1 c3
1 c2


, D3 =

c1 c3 c5
1 c2 0
0 c1 c3


,

are positive. See [58]. We calculate the determinants and get

det(D1) = c1,
det(D2) = c1c2 − c3,
det(D3) = c3 det(D2).

If c3 < 0(γS < 0)wehave either det(D2) or det(D3) negative. Thus, in this case the bumps are unstable, as expected. Assume
now c3 > 0(γS > 0). According to the general theory it is possible to have a bifurcation when

det(D2) = (−2|d1|τ 2
+ (4|d4| − |d2||d3|)τ + 2|d4|2)/τ 2

= 0. (34)

See Appendix in [58] for details. The roots of (34) are given as

τ± =
4|d4| − |d2d3|

4|d1|
±


4|d4| − |d2d3|

4|d1|

2

+
|d4|2

|d1|
.

One of the roots, τ−, is always negative while the other one, τ+, is positive. Moreover, det(D2) changes sign at τ = τ+ from
positive to negative which indicates the presence of a Hopf bifurcation. We fix the notation and define τS = τ+.

Thus, from the ‘symmetric’ part we get two regimes: In the first regime, when γS > 0, the bumps are stable for τ < τS ,
unstable for τ > τS , and convert to breathers through the Hopf bifurcation when τ = τS . In the complementary regime,
γS < 0, the bumps are unstable.

For the ‘antisymmetric’ part, we have

PAs(λ) = τλ2
+ λ


E − F
p2

+ 2τ


+ γAs

where

γAs = 2
E − F
p2

−
C − D
p1

τ .

Notice that E > F (as well as C > D) in accordance with the monotonicity requirement imposed on ωmn for positive
arguments. Therefore, if γAs > 0 the bumps are stable, while for γAs < 0 unstable. The case γAs = 0 gives a value for the
critical time τAs, i.e.,

τAs = 2
p1
p2

E − F
C − D

.

We can rephrase the conclusion in terms of τ , i.e., for all τ < τAs the bumps are stable, while for τ > τAs we have instability.
To determine the sign of γS and the relationship between τS and τAs we need to have more information about the con-

nectivity functions and some parameters. However, the case γS < 0 and τ < τAs corresponds to a saddle point. For the case
with Gaussian connectivity functions (16)–(18) we have that γS ≈ −58.867 < 0 for the narrow bump and γS ≈ 1.969 > 0
for the broad bump. In the latter case we find that τS < τAs, where τS ≈ 5.705 and τAs ≈ 8.728. Therefore, it follows that
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the broad bump pair is stable for τ < τS , unstable for τ > τS , and is converted to a breather through a Hopf bifurcation at
τ = τS .

6.2. Numerics

We have run simulations of the system (32) based on the fourth-order Runge–Kutta algorithm developed in [25]. The
initial condition is given as a perturbed bump pair. In this subsection, we assume that the unperturbed bumps are given by
(12), (16)–(18); see Fig. 1. We perturb the bump solution by making the assumption

Ũe(x) = Wee(a2 − x) − Wee(a1 − x) − Wie(b2 − x) + Wie(b1 − x),
Ũi(x) = Wei(a2 − x) − Wei(a1 − x) − Wii(b2 − x) + Wii(b1 − x),

(35)

where ā = (a1, a2, b1, b2)T is time dependent and chosen to be close to initial pulses crossing coordinates ā0 =

(−a0, a0, −b0, b0)T such that

‖ā − ā0‖ ≤ ϵ, (36)

for some positive tolerance ϵ, where ‖ · ‖ denotes the maximum norm in R4. Under the assumption (36) we get the error
estimate

‖Ũm − Um‖Cb(R) ≤ Cmε, Cm = max
x∈R

{|ωem(x)|, |ωim(x)|}, m = e, i.

First, we impose the symmetric perturbation

ā = ā0 + (−ε, ε,−ε, ε)T (37)

in the initial pulse width coordinates of (35).
In Fig. 2, we have plotted the evolution of the perturbed broad bump state (Ũe, Ũi)when ā is given by (37) with ε = 0.01.

From the simulations we observe that (Ũe(x), Ũi(x)) is converted to breathers for a small range of the value τ , τ ∈ [5.6, 5.8],
(whereas the stability analysis predicts that this conversion shall take place at τ = 5.705). In Fig. 2(b), we have plotted the
solution (ue(x, t), ui(x, t)) for the value τ = 5.6, when the breather the first time appears. Below this critical value, τ < 5.6
the state (Ũe(x), Ũi(x)) approaches the bumps and remain unchanged. We show this in Fig. 2(a) for τ = 3. For τ > 5.8
the pulse collapses. We illustrate this behavior of the solution in Fig. 2(c) for τ = 6. Thus, we get excellent agreement
between the predictions obtained from the stability analysis and the numerical simulations. It turns out that the sign of
ε does not change the picture qualitatively for the broad bump case. Therefore, we do not present results for negative
values of ε. Next, we consider the symmetric perturbation (35) with (37) on the narrow bumps. In this case, the sign of
ε plays an important role in the evolution of (Ũe, Ũi) as is evident from Figs. 3 and 4: for ε > 0 the narrow bumps initially
approach the broad ones, and thereafter evolve into a broad stable bumps for the given τ , while for ε < 0, the narrow pulses
collapse. We conjecture that this behavior is consistent with the fact that narrow bumps are identified as saddle points;
cf. Section 6.1.

We have also solved the ODE system (33) numerically in order to predict the evolution of bumps and compared it
with simulations for rate-equation system (32). The conclusion is, however, that the two approaches give qualitatively the
same results, but exhibit significant quantitative differences. We conjecture that this discrepancy is due to the static slope
assumption imposed in order to derive the finite dimensional generalized Amari system (33). In Fig. 5, we show the limit
cycle in the pulsewidth coordinate plane obtained from simulations of (32) (Fig. 5(a)) and from simulations of (33) (Fig. 5(b)).
Notice that there is a small discrepancy between the value for τS obtained by these twomethods. This discrepancy is caused
by numerical error which is larger for the simulation of the rate-equation system due to the incorporation of the spatial
dynamics. The observation of the limit circle supports the idea that we get stable breathers at the critical inhibition time
τ = τS , which corresponds to a supercritical Hopf bifurcation in the generalized Amari system (33). In order to study this
problem one has to make a normal form expansion of the system (33) in the vicinity of the critical inhibition time τ = τS .
We do not pursue any analysis of this problem here, however.

We then investigate the evolution of (35) when imposing an antisymmetric perturbation represented by

ā = ā0 + (−ε, 0, 0, ε)T . (38)

Tracing the mean values

ξa(t) = (a2(t) + a1(t))/2, ξb(t) = (b2(t) + b1(t))/2,

we observe that for τ < τS, (Ũe, Ũi) approaches a broad bump pair which is simply a rigid translation of the unperturbed
symmetric broad bumps. In another words, after some finite time T we get ue(x, t) = Ue(x − x0), ui(x, t) = Ui(x − x0), for
all t > T , i.e., the solution (ue(x, t), ui(x, t)) becomes symmetric with respect to the symmetric axis Ox : x = x0. This axis
can be found as the asymptotical mean values, i.e.,

Ox : x = x0, x0 = ξa(t → ∞) = ξb(t → ∞). (39)
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a

b

c

Fig. 2. The evolution of the symmetric perturbation of the broad bump pair (Ue,Ui) (Fig. 1(a)). The perturbed pulses are given by (35) with (37), ε = 0.01.
(a) Broad excitatory (left) and inhibitory (right) pulses reach the stable symmetric bumps (Ue,Ui) when τ = 3. (b) Broad excitatory (left) and inhibitory
(right) pulses convert to breathers when τ = 5.6. (c) Broad excitatory (left) and inhibitory (right) pulses collapse when τ = 6.

We display this result in Fig. 6(a). We get the similar result for the case when the initial condition of (32) is given as the
perturbation of the narrowbumpswhen ε > 0; see Fig. 7(a). The solution approaches a broad bumpspairwhich is symmetric
with respect to some symmetry axes Ox. For τ ≈ τS we also see that (ue(x, t), ui(x, t)) (for the broad bump perturbation
and for the narrow bump perturbation with ε > 0 as an initial condition of (32)) become symmetric with respect to the axis
Ox given as in (39). We illustrate these results in Figs. 6(b), 7(b). For the case ε < 0 the narrow pulses collapse in a similar
way as displayed in Fig. 4 independently of the chosen parameter τ > 0.

This behavior in the case of antisymmetric perturbations is expected since for τ < τAs the only impact from the
‘antisymmetric’ part is the translation invariance of the bumps. For the cases τ > τS, (Ũe, Ũi), and in the case of the narrow
bump perturbationwith negative ε the pulses collapse before ξa and ξb approach the same value. The evolution is verymuch
similar to the symmetric case and we do not display it here. Thus, after a transient phase the evolution in the antisymmetric
case is qualitatively the same as in the symmetric case, with the only exception that the symmetry axis is different.
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a

b

c

d

Fig. 3. The evolution of the symmetric perturbation of the narrow bump pair (Ue,Ui) (Fig. 1(b)). The perturbed pulses are given by (35)with (37), ε = 0.01.
(a) Narrow excitatory (left) and inhibitory (right) unstable pulses convert to broad bump (Fig. 1(a)) when τ = 3. (b) Narrow excitatory (left) and inhibitory
(right) pulses convert to breathers when τ = 5.6. (c) Narrow excitatory (left) and inhibitory (right) pulses collapse when τ = 6. (d) The trajectory in the
pulse width plane (a2, b2) for τ = 3, τ = 6 (left) and τ = 5.6 (right).
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Fig. 4. The evolution of the symmetric perturbation of the narrow bump pair (Ue,Ui) (Fig. 1(b)). The perturbed pulses are given by (35) with (37),
ε = −0.01. Narrow excitatory (left) and inhibitory (right) unstable pulses collapse for τ = 3.

Fig. 5. The orbit in the pulse width plane (a2, b2) obtained (a) from the simulation of the rate-equation system (32) for τ = 5.6, T = 50, and (b) from
the Amari system (33) with τ = 5.69, for T = 300. The initial conditions correspond to the symmetric perturbation of the broad bump, i.e., for (a) the
condition is given as for Fig. 2, (35) with (37), ā0 corresponds to the broad bump widths, ε = 0.01, and for (b) by (37) where ā0 corresponds to the broad
bump widths.

7. Conclusions

In the present paper, we have worked out a method for stability analysis for spatially symmetric bumps in a wide class
of two-population neural-field models. The models are given by means of a Volterra system of equations. Our findings can
be summarized as follows.

We derive the so-called Evans matrix for the problem and prove that it can be block-diagonalized into two blocks, with
the upper block corresponding to spatially symmetric perturbations while the lower block takes care of the antisymmetric
perturbations. The corresponding Evans function can bewritten as a product of determinants of the upper and lower blocks.
The lower antisymmetric block contains as expected the translation invariance property of bumps. We emphasize that this
is a general result and does not rely on any particular choice of the temporal kernels.

For the class of kernels which we call quasi-power functions (which contains both the exponentially decaying temporal
kernels and the α-functions as special cases) it turns out that the Evans function approach is equivalent to the generalized
Amari approach. One can check that the stability matrix obtained in [25] by the full linear stability analysis of the rate-
equation system corresponds to the Evans matrix (see Section 4) with αmn given as in (1) for ke = ki = 0. Then, it follows
that the Jacobian of the Amari system only corresponds to the upper block of the Evans matrix, but not to the whole matrix
aswe prove here. This apparent paradox can be easily explained by the symmetry in the perturbation assumed for the Amari
approach in [25]. As we relax on this assumption we get the antisymmetric part of the perturbations corresponding to the
lower block of the Evans matrix; See Section 5.

The Evans function approach is more general and does not imply that the rate-equation formulation of (1) as the
generalized Amari approach. However, the Evans function technique exclusively addresses the linear stability of bumps,



Author's personal copy

3088 A. Oleynik et al. / Nonlinear Analysis: Real World Applications 12 (2011) 3073–3094

a

b

Fig. 6. The evolution of the antisymmetric perturbation of the broad bump pair (Ue,Ui) (Fig. 1(a)). The perturbed pulses are given by (35) with (38),
ε = 0.01. On the left, we have plotted ξa(t), ξb(t), and the asymptotical symmetry axes Ox. On the right, the crossing coordinates a1(t), a2(t), b1(t), b2(t)
are shown. (a) τ = 3,Ox : x = −0.0075, (b) τ = 5.4,Ox : x = −0.0041.

while the Amari system may be used to investigate nonlinear effects such as the stability of the breathers excited at the
Hopf-bifurcation point by means of normal form expansions [25].

For the actual class of temporal kernels we can convert the two-population Volterra system into a system of rate
equations. We prove that the solutions of the initial value problem of this system are uniformly bounded. The implication of
this result is that any instability detected in the system will be saturated. We also prove that the narrow bump pair which
is unstable within the framework of the Wilson–Cowan type of model (2) is unstable for all types of quasi-power temporal
kernels.

Finally, we have illuminated these results by carrying out numerical simulations based on a fourth-order Runge–Kutta
numerical scheme in time for the special mixed case modeled by α-functions and exponentially decaying functions; see
Section 6. Excellent agreement between analytical predictions from the stability analysis and numerical simulations is
obtained. We get an unstable narrow bump pair and a broad bump pair which is stable for small and moderate values of
the relative inhibition time τ , is converted to a stable breather at a critical time τcr (which is identified as a Hopf-bifurcation
point), and becomes unstable as this time scale exceeds τcr .

Notice that rate-equation representation of (1) allows us to develop a relatively simple numerical scheme in a vicinity
of a spatially localized solution, [25]. This representation is also possible for more general class temporal kernels than the
quasi-power kernels (1), e.g., quasi-polynomials [29].

A possible extension of the presentwork is to consider bump solutions and their stability for a systemof Volterra equation
(4) defined on two spatial dimensions. We conjecture that one can construct bump and ring solutions of this system and
analyze their stability properties by means of the Evans function technique in a way similar to what has been done in Owen
et al. [40]. Another possible extension consists of investigating more complex patterns by applying a level set description
(interface dynamics) in two spatial dimensions. In this context one can make use of the rate-equation system (7) which
is valid for any spatial dimensions. Here we suggest that one follows the ideas worked out by Goldstein et al. [65] for
reaction–diffusion equations.

We are still at early times in computational neuroscience and at present it is unclear (i) under what situations neural-
field models of the type discussed here are accurate representation of real neural dynamics and, more specifically, (ii) what
choice of temporal kernels bestmimics the dynamics of biological neural networks. The present work opens up for thorough
the analysis of the bump dynamics for a large class of a priori biologically plausible neural-network models, not restricted
to exponentially decaying temporal kernels only.
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a

b

Fig. 7. The evolution of the antisymmetric perturbation of the narrow bump pair (Ue,Ui). The perturbed pulses are given by (35) with (38), ε = 0.01. On
the left, we have plotted ξa(t), ξb(t), and the asymptotical symmetry axes Ox. On the right, the crossing coordinates a1(t), a2(t), b1(t), b2(t) are shown.
(a) τ = 3,Ox : x = −0.0063, (b) τ = 5.6,Ox : x = −0.0051.
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Appendix A. The boundedness property of the solutions of the Wilson–Cowan type of system

Here we derive the estimate for the solution of (9). This derivation is based on the Jordan block form (8) of the linear
operator matrix L. Indeed, the operator R(t) = etL is given by the block matrix

R(t) =


e(tJe) Oe

Oi e( t
τ Ji)


.

Exploiting the form of Jm we get the upper triangular matrix

exp(sJm) = e−s



1 s
s2

2!
· · ·

skm

km!

0 1 s · · ·
skm−1

(km − 1)!
...

. . .
. . .

...
0 0 1 s
0 0 · · · 0 1


, m = e, i

with s = t or s = t/τ , form = e andm = i, respectively. Let 1̄ = (1, 1, . . . , 1)T . We make two main observations:
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(i) e(sJm)1̄ < 1̄, and
(ii)

 t
0 e(sJm)1̄ds ≤


∞

0 e(sJm)1̄ds = (km, km − 1, . . . , 1)T .

Using (i) one readily obtains

|RV̄ | ≤ ‖V̄‖∞1̄

for an arbitrary V̄ ∈ (Cb(R))N , N = ke + ki + 2 with the norm ‖ · ‖∞ defined as (11).
From (ii) we find∫ t

0
|R(t − s)1̄|dt ≤ (ke, ke − 1, . . . , 1, τki, τ (ki − 1), . . . , τ )T .

From the properties of Pm and wmn we notice that |FŪ| ≤ 1̄. Then it follows

|Ū(x, t)| ≤ |RŪ0
| +

∫ t

0
|R(t − s)1̄|dt ≤ (‖Ū0

‖∞ + max{ke, kiτ })1̄.

Hence we end up with the estimate

|Ui(x, t)| ≤ ‖Ū0
‖∞ + max{ke, kiτ }.

Appendix B. The equivalence between the Evans function approach and the Amari approach

Here we give a detailed proof of the equivalence Theorem 1. The proof is carried out in several steps, which we
conveniently divide into the two Appendices B.1 and B.2.

B.1. Similarity operations on the matrix JA − λE

The first step consists of performing similarity operations on the matrix JA − λE. We proceed as follows: let E denote the
(ke + ki + 2) × (ke + ki + 2) identity matrix and JA the Jacobian matrix of the RHS of the generalized Amari system (30)
evaluated at the equilibrium (31). The matrix JA − λE can be expressed as

JA − λE =


A(1) B(1)

B(2) A(2)


where the blocks A(j), j = 1, 2, can be represented as

A(j)
=


A(j)
11 A(j)

12
A(j)
21 A(j)

22


, (B.1)

with

A(j)
11 =



−λ (−1)j/p1 0 0 · · · 0
0 −(2 + λ) 1 0 · · · 0
0 −1 −(1 + λ) 1 0
...

...
. . .

. . .

0 −1 −(1 + λ) 1
∂ f (j)

e /∂aj −1 −(1 + λ)

 ,

A(j)
22 =



−λ (−1)j/(p2τ) 0 0 · · · 0
0 −(2/τ + λ) 1/τ 0 · · · 0
0 −1/τ −(1/τ + λ) 1/τ
...

...
. . .

. . .

0 −1/τ −(1/τ + λ) 1/τ
∂ f (j)

e /∂bj/τ −1/τ −(1/τ + λ)

 .

ThematrixA(j)
12 is a (ke+1)×(ki+1) sparsematrix, while thematrixA(j)

21 is a sparse (ki+1)×(ke+1)matrixwhich have only
one non-zero element ∂ f (j)

e /∂bj and ∂ f (j)
i /∂aj evaluated at (−a0, −b0, a0, b0), respectively, located in the right-low corner

of the block. For notational convenience, we now assume that the partial derivatives of f (j)
m , j = 1, 2,m = e, i, is evaluated

at (a1, b1, a2, b2) = (−a0, −b0, a0, b0, ).
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The matrix B(j), j = 1, 2, is a sparse matrix of the form

m + 1 n + 1     
m + 1



n + 1




β
(j)
11 β

(j)
12

β
(j)
21 β

(j)
22


(B.2)

where

β
(1)
11 = ∂ f (1)

e /∂a2, β
(1)
12 = ∂ f (1)

e /∂b2 β
(1)
21 = ∂ f (1)

i /∂a2, β
(1)
22 = ∂ f (1)

i /∂b2,

β
(2)
11 = ∂ f (2)

e /∂a1, β
(2)
12 = ∂ f (2)

e /∂b1 β
(2)
21 = ∂ f (1)

i /∂a1, β
(2)
22 = ∂ f (2)

i /∂b1.

Simple calculations yield

∂ f (1)
e

∂a1
= −

∂ f (2)
e

∂a2
= −(B + C − D),

∂ f (1)
i

∂a1
= −

∂ f (2)
i

∂a2
= −E,

∂ f (1)
e

∂a2
= −

∂ f (2)
e

∂a1
= B,

∂ f (1)
i

∂a2
= −

∂ f (2)
i

∂a1
= F ,

∂ f (1)
e

∂b1
= −

∂ f (2)
e

∂b2
= C,

∂ f (1)
i

∂b1
= −

∂ f (2)
i

∂b2
= H + E − F ,

∂ f (1)
e

∂b2
= −

∂ f (2)
e

∂b1
= −D,

∂ f (1)
i

∂b2
= −

∂ f (2)
i

∂b1
= −H.

From these relations we have that B(1)
= −B(2) and the left-low corners of the blocks A(1)

pq and A(2)
pq , p, q = 1, 2, have

opposite sign. The similarity of the matrix JA − λEwith
A(2) B(1)

B(1) A(2)


now follows by multiplying the first and the (m + 2)th row; and the first and the (m + 2) th column by −1.

The similarity
A(2) B(1)

B(1) A(2)


∼


A(2)

+ B(1) B(1)

B(1)
+ A(2) A(2)


is obvious. Thus, we get

A(1) B(1)

A(2) B(2)


∼


A(2) B(1)

B(1) A(2)


∼


A(2)

+ B(1) B(1)

B(1)
+ A(2) A(2)


.

B.2. Computation of the determinant det(JA − λE)

The second step consists of computing the determinant of thematrix JA −λE. This computation is based on the similarity
property shown in Appendix B.1. We first observe that

det(JA − λE) = det((A(2)
+ B(1))A(2)

− (A(2)
+ B(1))B(1))

= det(A(2)
+ B(1)) det(A(2)

− B(1))

where we have exploited the fact that the determinant of
A(2)

+ B(1) B(1)

B(1)
+ A(2) A(2)


can be computed as the determinant of a block matrix with commuting blocks [66]. We now show how to evaluate the
determinants of A(2)

+ B(1) and A(2)
− B(1). By the Laplace expansion using the first (ke + 1) rows of the matrix A(2)

± B(1)

we get

det(A(2)
± B(1)) = M1M ′

1 + M2(−1)ke+1M ′

2, (B.3)
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where M1 is the minor of the matrix based on first (ke + 1)th rows and the first (ke + 1)th columns, M2 is the minor of the
matrix based on the first (ke +1)′ rows and on the second to (ke +2)th columns;M ′

1 andM ′

2 are the complementary minors
to the minorM1 andM2, respectively. All other possible products of minors of the matrix A(2)

± B(1), sayMkM ′

k, are equal to
zero. Therefore, they do not appear in the RHS of (B.3).

The minorsM2 andM ′

2 are easily obtained by the Laplace expansion based on the last and the first column, respectively,
of the corresponding matrices, so we have

M2 = d2p2/p1, M ′

2 = (−1)kid3p1/p2τ−(ki+1)

for the matrix A(2)
+ B(1), and

M2 = −(C − D)/p1, M ′

2 = (−1)ki(E − F)/p2τ−(ki+1),

for A(2)
− B(1), in notations (21)–(23). To calculate the determinants M1 and M ′

1 we first need to obtain the formula for the
determinant of the auxiliary matrix

M =


λ1 a
b λ2 a
...

. . .
. . .

b λn−1 a
b λn

 .

By Laplace expansion using the bottom row, we obtain the recursion formula det(M) = Dn where

Dn = λnDn−1 + (−1)n−1an−1b, D1 = λ1. (B.4)

Using (B.4) we get in the case of the matrix A(2)
+ B(1),

M1 = (−λ)D(e)
ke + (−1)ked1, M ′

1 = (−λ)D(i)
ki

+ (−1)kid4τ−(ki+1),

and in the case of matrix A(2)
− B(1),

M1 = (−λ)D(e)
ke + (−1)ke(C − D)/p1, M ′

1 = (−λ)D(i)
ki

+ (−1)ki(F − E)/p2τ−(ki+1),

where d1 and d2 is defined as (23) and

D(e)
ke = −(1 + λ)D(e)

ke−1 + (−1)ki , D(e)
1 = −(2 + λ),

D(i)
ki

= −(1/τ + λ)D(i)
ki−1 + (−1)kiτ−n, D(i)

1 = −(2/τ + λ).

Thus, we finally have

det(A(2)
+ B(1)) = (−1)ke+k


1
τ

(ki+1)

((−1)ke+kiτ ki+1λ2D(e)
ke D

(i)
ki

+ (−τ)(ki+1)λd1D
(i)
ki

+ (−1)(ke+1)λd4D
(e)
ke + γS) (B.5)

and

det(A(2)
− B(1)) = (−1)ke+kiλ


1
τ

(ki+1)


(−1)ke+kiτ ki+1λD(e)
ke D

(i)
ki

+ (−τ)(ki+1) C − D
p1

D(i)
ki

+ (−1)(ke+1) F − E
p2

D(e)
ke


. (B.6)

We now prove that

PS(λ) = (−1)ke+kiτ ki+1 det(A(2)
+ B(1)) (B.7)

and

λPAs(λ) = (−1)ke+kiτ ki+1 det(A(2)
− B(1)). (B.8)

We proceed as follows: comparing the components of the RHS and the LHS of the expressions (B.7) and (B.8), we notice that
it is sufficient to prove that

Pke = (−1)keD(e)
ke , (B.9)

Qki = (−1)kiτ kiD(i)
ki

, (B.10)

where Pke and Qki are given by (27). This can easily be done bymathematical induction.We show this proof in detail for (B.9)
and omit it for (B.10) due to similarity. We proceed as follows.
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1. Let ke = 1. By (27), P1 = λ + 2 while D(e)
1 = −(2 + λ) by (B.2).

2. Assume that for ke = m we have Pm = (−1)mD(e)
m . By using (27) and (B.2) we now find that

(−1)m+1D(e)
m+1 = (−1)m+1(−(λ + 1)D(e)

m + (−1)m) = (1 + λ)(−1)mD(e)
m − 1

= (1 + λ)Pm(λ) − 1 = Pm+1.

Notice that (B.7) and (B.8) make it possible to express the determinant of JA − λE by means of the polynomials PS(λ) and
λPAs(λ) appearing in the factors ES(λ) and EAs(λ) in the Evans function E(λ). This completes the proof of the equivalence
Theorem 1.
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ON THE PROPERTIES OF NONLINEAR NONLOCAL
OPERATORS ARISING IN NEURAL FIELD MODELS

ANNA OLEYNIK, ARCADY PONOSOV, AND JOHN WYLLER

Abstract. We study existence and continuous dependence of sta-
tionary solutions of the one-population Wilson-Cowan model on
the steepness of the firing rate functions. We investigate the prop-
erties of the nonlinear nonlocal operators which arise when for-
mulating the stationary one-population Wilson-Cowan model as a
fixed point problem. The theory is used to study existence and con-
tinuous dependence of localized stationary solutions of this model
on the steepness of the firing rate functions. The present work
generalizes and complements previously obtained results as we re-
lax on the assumptions that the firing rate functions are given by
smoothed Heaviside functions.

1. Introduction

Neural field models typically assume the form of integro-differential
equations. Here we consider a one-population neural field model of the
Wilson-Cowan type [1, 2, 3, 4, 5]

(1.1)
∂

∂t
u(x, t) = −u(x, t) +

∫

R
ω(x, y)P (u(y, t))dy, x ∈ R, t > 0.

This model describes the dynamics of the spatio-temporal electrical
activity levels in neural tissue in one spatial dimension. Here u(x, t)
is interpreted as a local activity of a neural population at the position
x ∈ R and time t > 0. The second term on the right hand side of
(1.1) represents the synaptic input with P interpreted as a firing rate
function which typically has sigmoidal shape. The function ω is called
a connectivity function and models the spatial strength of the connec-
tivity between the neurons. See [1, 2, 3, 4, 5] for more details regarding
the relevance of the equation (1.1) in neural-field theory.

The most common simplification of the model consists of replacing
the sigmoidal firing rate function by the unit step function. In the
latter case it is possible to obtain closed form expressions for solu-
tions describing coherent structures like stationary localized solutions
(bumps) and traveling fronts [5] as well as to assess the stability of these
structures using the Evans function approach [6]. It is conjectured that
the model with unit step function reproduces the essential features in

Key words and phrases. Neural-field models, bumps, nonlinear operators, con-
tinuous dependence.
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2 A. OLEYNIK, A. PONOSOV, AND J. WYLLER

the steep firing-rate regime. This conjecture is supported by numerical
simulations (see for example [7]) but there are far in between works
addressing this problem in a rigorous mathematical way [8, 9, 10, 11].

This serves as a motivation for the present paper. In the present
paper we relax on the assumptions that the firing rate function is given
as a unit step function [4] and as a smoothed Heaviside function [8, 9],
and allow for more general firing rate functions. We consider a one-
parameter family of firing rate functions where the parameter measures
the steepness of these functions. They approach the unit step function
as the steepness parameter goes to infinity. Moreover, we do not restrict
ω to be homogeneous functions, i.e., ω = ω(|x− y|) of a ’Mexican-hat’
type, [5]. We study the continuous dependence of the stationary lo-
calized solutions of (1.1) on the steepness of the firing rate functions.
Then, by imposing some extra conditions on the firing rate functions
P and the connectivity kernels ω we are able to prove the existence of
bumps solutions.

The stationary solutions of (1.1) are solutions of a fixed point prob-
lem. This fixed point problem is described in terms of a Hammerstein
operator which is the superposition of a Nemytskii operator and a linear
integral operator. We study the properties of these operators. Due to
discontinuity of the unit step function many properties of the Hammer-
stein operator will break down. Therefore one of the main challenges
here is to choose function spaces and a suitable topology of the oper-
ators convergence that allow the continuous dependence properties of
solutions to be fulfilled.

The paper is organized as follows: In Section 2 we explain our nota-
tions, prove some useful theorems, and state lemmas from functional
analysis, to which we refer in the subsequent sections. In Section 3 we
give a detailed description of the model. Next, we study continuity and
compactness of the associated operators in Sobolev spaces. We define
special regions where the Nemytskii operator associated with the unit
step firing rate function is continuous. It is shown that the property of
the Nemytskii operator to be continuous is very sensitive to the choice
of the topology. One of the main results of the section is summarized
in Theorem 3.14, which we will refer to as the continuous dependence
theorem. Moreover, we formulate an existence theorem (Theorem 3.15)
which enables us to prove the existence of solutions of the fixed point
problem in steep firing-rate regime under the assumption that there
exists an isolated solution of the limiting fixed problem (when the
steepness parameter is equal to infinity). From this theorem it also
follows that solutions will have the same number of intersections with
a constant value θ as the solution of the limiting problem. In Section
4 we apply the results of Section 3 to prove continuous dependence of
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spatially localized stationary solutions of (1.1) on the steepness of the
firing rate function for both inhomogeneous and homogeneous connec-
tivity functions. In particular, in the latter case we prove the existence
of bumps in a steep firing-rate regime where the firing rate function
takes values zero on a ray (−∞, h), h > 0. We emphasize that this
result is more general than results on existence of bumps obtained in
[8] and [11]. Section 5 contains conclusions and outlook.

2. Preliminaries

Let B be a open set of a real Banach space B, then B denotes the
closure of B in B. We use the notation deg(A,B, p) for the degree
defined for an operator A : B → B, and p ∈ B. We use ind(A,B) for
the topological index of A, [12].

Let W 1,q(R, µ), 1 ≤ q ≤ ∞, denote a Sobolev space which consists of
all functions w ∈ Lq(R, µ) such that their generalized derivatives (with
respect to the given measure µ) dw/dµ = w̃ ∈ Lq(R, µ).

The element w ∈ W 1,q(R, µ) then can be represented as

(2.1) w(x) = w(0) +

x∫

0

w̃(ξ)dµ(ξ).

We consider the following two norms in W 1,q(R, µ)

(2.2) ||w||1 = ||w||Lq + ||w̃||Lq

and

(2.3) ||w||2 = |w(0)|+ ||w̃||Lq

where || · ||Lq is the norm in Lq(R, µ), i.e.,

||w||Lq =



∫

R

|w(x)|qdµ(x)




1/q

, 1 ≤ q <∞

and

||w||L∞ = sup
x∈R
|w(x)|.

Theorem 2.1. The norms || · ||1 and || · ||2 are equivalent if µ is finite.

Proof. From the representation (2.1) we have

||w||Lq = ‖w(0) +

x∫

0

w̃(y)dµ(y)‖Lq ≤ ‖|w(0)|+
x∫

0

|w̃(y)|dµ(y)‖Lq ≤

≤ ‖|w(0)|+
∫

R

|w̃(y)|dµ(y)‖Lq = [µ(R)]1/q(|w(0)|+ ‖w̃‖L1)
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Using Hölder inequality we get ||w̃||L1 ≤ [µ(R)]1/q
′||w̃||Lq where q′ is

defined by the equality 1/q + 1/q′ = 1. Thus,

(2.4) ||w||Lq ≤ [µ(R)]1/q|w(0)|+ µ(R)||w̃||Lq .

From (2.2) and (2.4) we get

||w||1 ≤ [µ(R)]1/q|w(0)|+ µ(R)||w̃||Lq + ‖w̃‖Lq .

Therefore we get

‖w‖1 ≤ C2||w||2, C2 = max
{

[µ(R)]1/q, 1 + µ(R)
}
.

In a similar way we estimate |w(0)|, i.e.,

|w(0)| = [µ(R)]−1/q‖w(0)‖Lq = [µ(R)]−1/q‖w(x)−
x∫

0

w̃(y)dµ(y)‖Lq ≤

≤ [µ(R)]−1/q (‖w‖Lq + ‖w̃‖Lq) .

We have

‖w‖2 ≤ c1‖w‖1, c1 = [µ(R)]−1/q + 1.

Hence, we get

C1‖w‖2 ≤ ‖w‖1 ≤ C2‖w‖2,

with

C1 = c−1
1 =

[µ(R)]1/q

[µ(R)]1/q + 1
, C2 = max

{
[µ(R)]1/q, 1 + µ(R)

}
.

By definition the norms then are equivalent. �

We denote the norm in W 1,q(R, µ) as ‖ · ‖W 1,q .

Lemma 2.2. Let A be the following operator

(2.5) (Au)(x) =

∫

R

k(x, y)u(y)dµ(y), x ∈ R,

where µ is a finite complete measure on R and k(x, y) is measurable on
R2. Let the following conditions be satisfied

(i) for any x ∈ R, k(x, ·) ∈ Lp(R, µ),

(ii) for any ε > 0 there exist a finite partitioning of R into measur-
able sets, say D1, D2, . . . , Dn, such that

(2.6) sup
x1,x2∈Dj

‖k(x1, y)− k(x2, y)‖Lp′ < ε, j = 1, 2, ..., n.

Then the integral operator A maps Lp(R, µ) to L∞(R, µ) and it is com-
pact, see [14].
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Theorem 2.3. Let D be a closed bounded subset of a real Banach
space B, Λ be a closed subset of R, and an operator T (λ, u) : Λ ×
D → B be continuous with respect to both variables and collectively
compact (i.e., T (Λ × D) is a pre-compact set in B). Assume that
λn → λ∗ and T (λn, un) = un. Then the equation T (λ∗, u) = u has at
least one solution. Moreover, any limiting point of the sequence {un}
is a solution of this equation, i.e., if unk

→ u∗ then u∗ is a solution of
T (λ∗, u∗) = u∗.

Proof. The sequence {un} define by T (λn, un) = un is a pre-compact
set due to T is a collectively compact. Thus, there exist convergent
subsequence of {un},i.e., {unk

} → u∗ ∈ D. the continuity of T yields
lim
nk→∞

T (λnk
, unk

) = T (λ∗, u∗) = u∗. �

Remark 2.4. If u∗ is unique in D then un has only one limit point,
that is, un → u∗.

Lemma 2.5 (Homotopy invariance). Let D be an open bounded subset
of a real Banach space B. Suppose that {ht} is a homotopy of operators
ht : D̄ → B for t ∈ [0, 1], and assume that ht − I is compact for each
t. If htf 6= p for any f ∈ ∂D and t ∈ [0, 1], then deg(ht, D, p) is
independent of t, see [13].

3. Main results

The stationary Wilson-Cowan model (1.1) is equivalent to the fixed
point problem

(3.1) u = Hu,
where H is the Hammerstein operator

(3.2) (Hu)(x) =

∫

R

ω(x, y)

ρ(y)
P (u(y))dµ(y).

and

µA =

∫

A

ρ(y)dy

is an arbitrary probabilistic measure which is absolutely continuous
with respect to the Lebesgue measure (i.e., µR = 1 and µA ≥ 0 when-
ever the Lebesgue measurable set A has a positive Lebesgue measure).
This can be achieved by putting some necessary properties on the func-
tion ρ.

The function ω(x, y) is a measurable function satisfying the following
assumptions:

(i) for any x ∈ R, ω(x, ·) ∈ L1(R), i.e.,

∀x ∈ R
∫

R

|ω(x, y)|dy <∞,
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(ii) ω is differentiable with respect to the first variable and

ω′x(x, ·) ∈ L1
loc(R) ∀x ∈ R,

(iii) ω is bounded, i.e.,

∃C > 0 |ω(x, y)| < C ∀x, y ∈ R,
(iv) for any y ∈ R lim

x→∞
ω(x, y) = 0.

The function P can be interpreted as a probability function of firing.
Thus, P is a map from R to [0, 1]. We consider the special family of
P : P (u) = S(β, u) where β takes values from (0,∞]. We assume that
S satisfies the following properties:

(i) S : (0,∞)× R→ [0, 1] is a continuous function,

(ii) S(β, ·) is monotonically non-decreasing,

(iii) S(β, ·)→ S(β0, ·) uniformly on R as β → β0 ∈ (0,∞),

(iv) as β →∞ S(β, u) approaches S(∞, u) uniformly on (−∞, θ −
ε] ∪ [θ + ε,∞) for any ε > 0, where S(∞, u) is the unit step
function

S(∞, u) =

{
0, u < θ
1, u ≥ θ

with some threshold value θ > 0.

The Hammerstein operator (3.2) can be represented as the superpo-
sition

(Hu)(x) = (Ω ◦ Nu)(x)

of the linear operator

(3.3) (Ωu)(x) =

∫

R

ω(x, y)

ρ1(y)
u(y)dµ(y),

and the Nemytskii operator

(3.4) (Nu)(x) =
ρ1(x)

ρ(x)
P (u(x)).

Here ρ1 is an auxiliary function satisfying the following properties

(i) 0 ≤ ρ1(x) ≤ Cρ1 , where Cρ1 > 0,

(ii) supp(ρ1) ⊇ supp(ρ),

(iii) |ω(0, y)| ≤ Cωρ1(y) ∀y ∈ R and Cω > 0.

We set ρ1(x)/ρ(x) = 0 and ρ(x)/ρ1(x) = 0 for all x ∈ {R− supp(ρ1)}.
Remark 3.1. In particular, one can assume ρ1 ≡ ρ. However, in order
to keep the theory as general as possible, we allow ρ1 to differ from ρ.
In Section 4 we make use of this difference. See Example 4.5.
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Moreover, when we want to emphasize that some particular prop-
erty is valid only for operators corresponding to S(β, ·), β ∈ (0,∞) or
S(∞, ·) we use the subindexes β and ∞, respectively. That is, we de-
note the Hammerstein operator (3.2) and the Nemytskii operator (3.4)
as Hβ, H∞ and Nβ, N∞. When a property is valid for an operator with
any P : R→ [0, 1] we do not use any subindex, e.g., H, N .

Lemma 3.2. Let Ω̃ : Lp(R, µ)→ Lq(R, µ), 1 ≤ p, q ≤ ∞ be an operator
defined as

(3.5) (Ω̃v)(x) =

∫

R

ω′x(x, y)

ρ(x)ρ1(y)
u(y)dµ(y).

Then, the operator Ω is a map from Lp(R, µ) to W 1,q(R, µ) and (a)

it is a continuous operator if and only if Ω̃ is continuous, (b) it is a

compact operator if and only if Ω̃ is a compact operator.

Proof. We formally apply (2.1) to the element (Ωu)(x). We have

(Ωu)(x) = (Ωu)(0) +

x∫

0

Ω̃u(y)dµ(y)

where

(Ωu)(0) =

∫

R

ω(0, y)

ρ1(y)
u(y)dµ(y),

and

(Ω̃u)(x) =
d(Ωu)(x)

dµ
=

∫

R

ω′x(x, y)

ρ(x)ρ1(y)
u(y)dµ(y).

Using properties of ρ1 we get

(3.6) |(Ωu)(0)| =

∣∣∣∣∣∣

∫

R

ω(0, y)

ρ1(y)
u(y)dµ(y)

∣∣∣∣∣∣
≤ Cω‖u‖Lp .

Further, Ω̃ is a map from Lp(R, µ) to Lq(R, µ), hence Ω maps Lp(R, µ)
to W 1,q(R, µ).

To prove (a) continuity and (b) compactness of Ω we introduce a
linear operator J : W 1,p(R, µ)→ R× Lp(R, µ) such that

J = (J1,J2) : J1w = w(0) ∈ R, J2w =
d

dµ
w ≡ w̃ ∈ Lp(µ,R),

The inverse operator J −1 : R×Lp(R, µ)→ W 1,p(R, µ) then is given as

J −1(a, u) = a+

x∫

0

u(y)dµ(y), (a, u) ∈ R× Lp(R, µ).
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It is easy to check that J is a homeomorphism: Indeed J is an
isomorphism [15] and linear continuous. Thus, J −1 is continuous by
the Banach theorem [16]. We present the proof of (b). The operator
Ω0 : Lp(R, µ)→ R given by (Ω0u)(x) = (Ωu)(0) is compact as soon as
it is bounded, which is the case due to the estimate (3.6). Therefore,
for any bounded subset D ⊂ Lp(R, µ) there is a corresponding pre-
compact subset (Ω0D, Ω̃D) ⊂ R× Lp(R, µ) which is homeomorphic to
ΩD. Hence, ΩD is a pre-compact set in W 1,p(R, µ) and Ω is a compact
operator.
Let us assume now that Ω is a compact operator, while Ω̃ is not com-
pact. Then, for any bounded D we get a pre-compact set ΩD which
is homeomorphic to the non pre-compact set (Ω0D, Ω̃D). This contra-
diction completes the proof. To prove (a) one can proceed in a similar
way assuming boundedness of a set D instead of pre-compactness. �

Lemma 3.3. If ρ1(x)/ρ(x) belongs to Lp(R, µ) the Nemytskii operator
N maps W 1,q(R, µ) to Lp(R, µ), 1 ≤ p, q ≤ ∞. Moreover Nβ, β < ∞,
is continues. The operator N∞ is discontinuous on W 1,q(R, µ), 1 ≤
q ≤ ∞.
Proof. First of all, we notice that due to the boundedness of P, i.e.,
|P (u)| ≤ 1, we have

∣∣∣∣
ρ1(x)

ρ(x)
P (u)

∣∣∣∣ ≤
∣∣∣∣
ρ1(x)

ρ(x)

∣∣∣∣ ∈ Lp(R, µ).

Hence, the Nemytskii operator is a map from W 1,q(R, µ) to Lp(R, µ).
Moreover, S(β, ·) satisfies to the Caratheodory conditions [14, 13]. We
conclude that the Nemytskii operator Nβ is continuous [14, 13].

To show that N∞ is not continuous on W 1,q(R, µ) it is enough to
give an example. Consider un(x) = θ + 1/n and u(x) = θ. We have
(N∞un)(x) = ρ1(x)/ρ(x) for all n ∈ N and N∞u = 0. When n → ∞
we get

‖un − u‖W 1,q → 0, and ‖N∞un −N∞u‖Lp = ‖ρ1/ρ‖Lp 6→ 0.

�

Definition 3.4. Let θ > 0 be fixed. We say that u ∈ W 1,q(R, µ)
satisfies the θ-condition if

• the function u(x)−θ has finitely many simple roots (i.e. u(a) =
θ always implies u′(a) 6= 0);
• there exist σ > 0 and A > 0 such that u(x) ≤ θ − σ for all
|x| > A.

Remark 3.5. Definition 3.4 implies that if u ∈ W 1,q(R, µ) satisfies
the θ-condition then the number of intersections u(x) = θ is an even
number.
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Lemma 3.6. Let θ > 0 be fixed and let U ∈ W 1,∞(R, µ) satisfies the θ-
condition. Assume that the equation U(x) = θ has N solutions. Then
there exists ε > 0 such that for any u ∈ B(U, ε) = {u : ||u−U ||W 1,∞ <
ε}

• the function u satisfies the θ-condition;
• the equation u(x) = θ has exactly N solutions.

Proof. Here we are going to use ‖ · ‖W 1,∞ given by (2.2). Let U satisfy
the θ-condition, and a(k) : a(k) < a(k+1), k = 1, ..., N, be all solutions of
the equation U(x) = θ. Due to these assumptions there exist a positive
ε and the points b(k,1), b(k,2), k = 0, ..., N, satisfying

a(k) < b(k,1) < b(k,2) < a(k+1), k = 1, ..., N − 1,

b(0,1) = −∞, b(0,2) < a(1), a(N) < b(N,1), b(N,2) =∞,

such that

• U(x) > θ + 2ε if x ∈ (b(k,1), b(k,2)), k = 2m− 1, 0 ≤ k ≤ N ;
• U(x) < θ − 2ε if x ∈ (b(k,1), b(k,2)), k = 2m, 0 ≤ k ≤ N ;
• |U ′(x)| > 2Mε if x ∈ (b(k,2), b(k+1,1)), 0 ≤ k ≤ N − 1, where
M = sup

x∈R
ρ(x).

Let u ∈ B(U, ε). Clearly,

|u(x)− U(x)| < ε, |u′(x)− U ′(x)| < ερ(x) a.e. x ∈ R.

This implies the following estimates:

u(x) > θ + ε if x ∈ (b(k,1), b(k,2)), k = 2m− 1, 0 ≤ k ≤ N ; (A1)

u(x) < θ − ε if x ∈ (b(k,1), b(k,2)), k = 2m, 0 ≤ k ≤ N ; (A2)

|u′(x)| > Mε if x ∈ (b(k,2), b(k+1,1)), 0 ≤ k ≤ N − 1. (A3)

Therefore, the equation u(x) = θ has a unique solution in each interval
(b(k,2), b(k+1,1)), 0 ≤ k ≤ N − 1, while |u′(x)| > Mε within any of
these intervals. Remembering that b(0,2) = −∞ and that u(x) < θ for
x > b(N,1) yield exactly N solutions of the equation u(x) = θ, and all of
these solutions must be simple. Fig.1 illustrates graphically Lemma 3.6
for N = 4. Here we have plotted schematically a function u ∈ B(U, ε),
where U has N = 4 intersections with u = θ. �

Lemma 3.7. Let θ > 0 be fixed and let U ∈ W 1,q(R, µ), 1 ≤ q < ∞,
satisfy the θ-condition. For any ε > 0 the ball B(U, ε) = {u : ||u −
U ||W 1,q < ε} contains functions which do not satisfy the θ-condition.
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Figure 1. The θ-condition in W 1,∞(R, µ) for N = 4

Proof. For the proof we give the following example
(3.7)

un(x) =





U(x)− U(a(1) − 1/n) + θ, x ∈ (−∞,−a(1) − 1/n)

θ, x ∈
2⋃
j=1

[a(j) − 1/n, a(j) + 1/n]

U(x)− U(a(2) + 1/n) + θ, x ∈ [a(2) + 1/n,+∞)

We consider the norm in W 1,q(R, µ) given by (2.3). It is easy to see
that

‖un − U‖W 1,q = ‖ũn − Ũ‖Lq =




2⋃

j=1

a(j)+1/n∫

a(j)−1/n

|Ũ(x)|qdµ(x)




1/q

≤

≤ A
(
µ[a(1) − 1/n, a(1) + 1/n] + µ[a(2) − 1/n, a(2) + 1/n]

)1/q
,

where A = sup
x
{Ũ(x)}, for x ∈ [a(1)−1/n, a(1) +1/n]

⋃
[a(2)−1/n, a(2) +

1/n]. Thus, ‖un − U‖W 1,q → 0 as n → ∞, i.e., for any ε > 0 there
exist such nε that ‖un − U‖W 1,q ≤ ε for all n ≥ nε. In Fig.2 we have
plotted the graphs of U(x) (red solid line) and u∗(x) (blue solid line),
where u∗(x) is an example of (3.7) for some n∗ ≤ nε, together with
the constant function θ. From the figure it is clear that u∗(x) does not
satisfy the θ-condition. �

Theorem 3.8. Let θ > 0 be fixed, U(x) ∈ W 1,∞(R, µ) satisfies the
θ-condition and U(x) = θ has, say, N solutions a(1), a(2), ..., a(N). Let
ρ1(x)/ρ(x) belong to Lp(R, µ). (a) There exist ε > 0 such that N∞ :
B(U, ε) = {u : ‖u − U‖W 1,∞ < ε} → Lp(R, µ) is continuous when
1 ≤ p < ∞. (b) The operator N∞ : B(U, ε) → L∞(R, µ) is continuous
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Figure 2. The violation of the θ-condition in
W 1,q(R, µ) for q <∞.

provided that there exist some δ > 0 that supp(ρ1)
⋂

(a(k)−δ, a(k) +δ) =
∅ for any k = 1, 2, ..., N. Otherwise, i.e., if for any δ > 0 there exist

some k̂ such that supp(ρ1)
⋂

(a(k̂)−δ, a(k̂) +δ) 6= ∅, we get discontinuity
of N∞ : B(U, ε)→ L∞(R, µ).

Proof. Let us consider un, u ∈ B(U, ε) ⊂ W 1,∞(R, µ) such that ||un −
u||W 1,∞ → 0. By Lemma 3.6 it is always possible to choose ε in a
such way that both un and u satisfy the θ-condition and the equations
un(x) = θ, u(x) = θ possess N simple roots each. We denote these

roots as a
(k)
n for the first equation, and a

(k)
0 for the second, k = 1, ..., N.

We derive the estimate

|(N∞un)(x)− (N∞u)(x)| = |ρ1(x)/ρ(x)|χ(x),

where

χ(x) =





1, x ∈
N⋃
k=1

[a
(k)
n , a

(k)
0 ],

0, otherwise.

Here [x1, x2] defines the interval [x1, x2] when x2 ≥ x1 and [x2, x1] if
x2 < x1.

First we consider p <∞. Then, after the lemma (follows below), the
case p =∞ will be considered. When 1 ≤ p <∞ we have the following
equality

‖(N∞un)(x)− (N∞u)(x)‖Lp =

(∫

R

∣∣∣∣
ρ1(x)

ρ(x)

∣∣∣∣
p

χ(x)dµ(x)

)1/p
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Using now the Hölder inequality we get

(∫

R

∣∣∣∣
ρ1(x)

ρ(x)

∣∣∣∣
p

χ(x)dµ(x)

)1/p

≤ ‖ρ1/ρ‖L∞
(
µ(

N⋃

k=1

[akn, a
k
0])

)1/p

.

Since |ρ1(x)/ρ(x)| ∈ Lp(R, µ) ⊂ L∞(R, µ) then ‖ρ1/ρ‖L∞ ≤ Cρ, where

Cρ > 0 is some constant. If now µ(
N⋃
k=1

[a
(k)
n , a

(k)
0 ]) → 0 as n → ∞ we

get the continuity of N∞ : B(U, ε) → Lp(R, µ). To prove that we use
the following lemma.

Lemma 3.9. For any un, u ∈ B(U, ε) ⊂ W 1,∞(R, µ) such that ||un −
u||W 1,∞ → 0 we have a

(k)
n → a

(k)
0 .

Proof. For our proof we use the norm (2.2) of W 1,∞(R, µ). From ||un−
u||W 1,∞ → 0 follows that sup

x∈R
|un(x)− u(x)| → 0.

Let us assume the contrary, i.e., there is k = k∗ such that a
(k∗)
n 6→

a
(k∗)
0 . This means that

(∃σ0 > 0) (∀N ∈ N) (∃ñ ≥ N) : |a(k∗)
ñ − a(k∗)

0 | ≥ σ0.

Then we have

sup
x∈R
|uñ(x)−u(x)| ≥ |uñ(a

(k∗)
ñ )−u(a

(k∗)
ñ )| = |θ−u(a

(k∗)
ñ )| = |u(a

(k∗)
0 )−u(a

(k∗)
ñ )|.

Due to the transversality condition on the intersection of any u(x) ∈
B(U, ε) and θ we have |u(a)− u(b)| ≥ κ if |a− b| ≥ σ0.

Thus
(∀N ∈ N) (∃ñ ≥ N) : sup

x∈R
|uñ(x)− u(x)| > κ.

By definition sup
x∈R
|un(x)− u(x)| diverges. Then ||un − u||W 1,∞ diverges

too. This contradiction completes the proof of the lemma. �
Next, we consider the case p =∞. We get

‖N∞un −N∞u‖L∞ = sup
x∈R
|(N∞un)(x)− (N∞u)(x)| = αn,

where αn is a smallest value that µ{x : |(N∞un)(x) − (N∞u)(x)| ≥
αn} = 0, i.e.,

αn = sup
x∈Q
|ρ1(x)/ρ(x)|, Q =

N⋃

k=1

[a(k)
n , a

(k)
0 ].

Let us assume first that there is some δ > 0 such that supp(ρ1)
⋂

(a(k)−
δ, a(k)+δ) = ∅ for any k = 1, 2, ..., N. This means that supp(ρ1)

⋂
Q = ∅

which implies αn = 0. Thus, N∞ is continuous. Assume now that
supp(ρ1)

⋂
Q 6= ∅. Due to ρ1(x) > 0 for all x ∈ supp(ρ1) we have

αn = 0 if and only if a
(k)
n = a

(k)
0 , for all k = 1, 2, ..., N. That is not

necessarily the case, thus, N∞ discontinuous on B(U, ε). �
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Remark 3.10. We notice here that the assumption supp(ρ1)
⋂

(a(k) −
δ, a(k) + δ) = ∅ for all k = 1, 2, ..., N is not interesting here, as it breaks
properties of the model. Thus, further we exclude these types of ρ1 from
consideration.

Theorem 3.11. Let θ be fixed, U(x) ∈ W 1,q(R, µ), 1 ≤ q <∞, satisfies
the θ−condition. There exist no such ε > 0 that N∞ : B(U, ε) ⊂
W 1,q(R, µ)→ Lp(R, µ), 1 ≤ p ≤ ∞ is continuous operator.

Proof. In Lemma 3.7 it has been shown that for any ε > 0 there exists
some nε that un, given by (3.7), for all n ≥ nε belongs to the ball
B(U, ε). We fix n∗ = nε/2 and denote u∗ = unε/2

. Then we consider the

sequence uk(x) given as

uk(x) =





θ − 1

γk
sin(πn∗(x− a1)), x ∈ [a1 − 1/n∗, a1 + 1/n∗]

θ +
1

γk
sin(πn∗(x− a2)), x ∈ [a2 − 1/n∗, a2 + 1/n∗]

u∗(x), otherwise

where γ is a positive constant. We have plotted the graphs of U(x)
(red solid line), u∗(x) (blue solid line), and uk(x) (blue dashed line) in
Fig.2 together with the constant θ. First, we prove that uk → u∗ and
show that there exist γ = γ∗ such that uk ∈ B(U, ε). Next we prove
that ‖N∞uk −N∞u∗‖Lp does not converges to zero.

We calculate the norm of |uk(x)− u∗(x)| using (2.3) and derive the
following inequality

‖uk − u∗‖W 1,q = ‖ũk − ũ∗‖Lq = ‖(u′k − (u∗)′)ρ−1(x)‖Lq =

=




2∑

j=1

a(j)+1/n∗∫

a(j)−1/n∗

∣∣∣∣
1

πn∗γk
cos(πn∗(x− a(j)))

∣∣∣∣
q

dx




1/q

≤

≤ 1

πn∗γk

(
2∑

j=1

∣∣(a(j) + 1/n∗)− (a(j) − 1/n∗)
∣∣
)1/q

=
1

πn∗γk

(
2

n∗

)1/q

.

From this inequality we see that ‖uk − u∗‖W 1,q → 0 as k →∞. More-
over, as we assign γ∗ = 2/(επn∗) we get ‖uk − u∗‖W 1,q ≤ ε/2. We
have

‖uk − U‖W 1,q ≤ ‖uk − u∗‖W 1,q + ‖u∗ − U‖W 1,q ≤ ε/2 + ε/2 = ε,

for k = 1, 2, ..., i.e., uk ∈ B(U, ε) for all k ∈ N.
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Using the definition of N∞ we have

|(N∞uk)(x)−(Nu∗)(x)| =





ρ1(x)

ρ(x)
, x ∈

2⋃
j=1

[a(j) − 1/n∗, a(j) + /n∗],

0, otherwise

.

Due to ρ1(x)/ρ(x) > 0 we have ‖(N∞uk)(x) − (Nu∗)(x)‖Lp = δ >
0 independently of k. Hence, we conclude that (N∞uk)(x) does not
converges to (Nu∗)(x). It completes our proof.

�

Now we consider the Nemytskii operator Nβ when β is not fixed, but
belongs to (0,∞]. Then, Nβ is a map (0,∞]×B(U, ε) ⊂ W 1,∞(R, µ)→
W 1,∞(R, µ). We have the following lemma.

Lemma 3.12. Let θ > 0 be fixed, U ∈ W 1,∞(R, µ) satisfy the θ-
condition, ρ1/ρ ∈ L1(R, µ) and B(U, ε) = {u : ‖u− U‖W 1,∞ < ε}. The
operator Nβ : (0,∞]×B(U, ε)→ L1(R, µ) is continuous at β0 ∈ (0,∞]
uniformly for all u ∈ B(U, ε).

Proof. From Lemma 3.3 and Theorem 3.8 Nβ is a map from (0,∞] ×
B(U, ε) to L1(R, µ). Using properties of ρ1 we have

||Nβ −Nβ0||L1 ≤ Cρ1

∫

R

|S(β, u(x))− S(∞, u(x))|dx.

For β0 < ∞ from uniform convergence S(β, z) → S(β0, z) we get
pointwise convergence S(β, u(x))→ S(β0, u(x)). Boundedness of S al-
lows us to applying Lebesque’s dominated convergence theorem. Thus,
we get

(3.8) ||Nβ −Nβ0||L1 → 0, ∀u ∈ B(U, ε).

When β0 = ∞ the proof is not so straightforward. By Lemma 3.6
there is ε > 0 such that for given U there are defined b(k,i) (k = 1, ..., N,
i = 1, 2) such that for any u ∈ B(U, ε) the conditions (A1)-(A3) are
satisfied. We have

||Nβ −N∞||L1 ≤ Cρ1

∫

R

|S(β, u(x))− S(∞, u(x))|dx =

=
N∑

k=0

b(k,2)∫

b(k,1)

|S(β, u(x))− S(∞, u(x))|dx = Cρ1(Σ1 + Σ2),

(3.9)

where

Σ1 =
N∑

k=0

b(k,2)∫

b(k,1)

|S(β, u(x))− S(∞, u(x))|dx
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and

Σ2 =
N−1∑

k=0

b(k+1,1)∫

b(k,2)

|S(β, u(x))− S(∞, u(x))|dx.

Notice, that Σ1 contains only the integrals over such intervals that
S(∞, u(x)) does not have singularities, see for example Fig.1.

Let us consider first Σ1 and then Σ2. Using (A1)-(A2) we have

Σ1 =

N/2∑

m=0

b(2m,2)∫

b(2m,1)

|S(β, u(x))− S(∞, u(x))|dx+

+

N/2−1∑

m=0

b(2m+1,2)∫

b2m+1,1

|S(β, u(x))− S(∞, u(x))|dx ≤

≤
N/2∑

m=0

b(2m,2)∫

b(2m,1)

S(β, θ − ε)dx+

N/2−1∑

m=0

b(2m+1,2)∫

b(2m+1,1)

(1− S(β, θ + ε))dx ≤

≤ S(β, θ − ε)
N/2∑

m=0

(b(2m,2) − b(2m,1))+

+(1− S(β, θ + ε))

N/2−1∑

m=0

(b(2m+1,2) − b(2m+1,1))

Using the property (iii) of S(β, x) we have Σ1 → 0 as β →∞.
Consider now the second term in (3.9). On each interval [b(k,2), b(k+1,1)]

the function u(x) is monotone. Using the condition (A3) we get

Σ2 ≤
Umax∫

Umin

|S(β, y)− S(∞, y)| dy

|u′(x)| ≤
1

Mε

Umax∫

Umin

|S(β, y)− S(∞, y)|dy,

where M = sup
x∈R

ρ(x), Umin = inf
x∈R

U(x), and Umax = sup
x∈R

U(x). Since

S(β, x) → S(∞, x) as β → ∞ almost everywhere on R (see property
(iii) of S(β, x)) and |S(β, x)| ≤ 1 for all β ∈ (0,∞], then by Lebesque’s
dominance convergence theorem, the integral in the last inequality con-
verges to 0 as β →∞. Combining the results for Σ1 and Σ2 we complete
the proof. �

Theorem 3.13. Let θ > 0 be fixed and let U ∈ W 1,∞(R, µ) satisfy the
θ-condition. We define a set Q as Q = supp(ρ) and a ball B(U, ε) =
{u : ‖u− U‖W 1,∞ < ε}. If the following condition is fulfilled

(3.10) sup
x∈Q

(
sup
y∈Q

∣∣∣∣
ω′x(x, y)

ρ(x)ρ1(y)

∣∣∣∣
)
<∞,
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then there exists ε > 0 that the Hammerstein operator Hβ : (0,∞] ×
B(U, ε) is continuous at β0 ∈ (0,∞] uniformly for all u ∈ B(U, ε).

Proof. We consider the norm of |(Hβu)(x)− (Hβ0u)(x)| in W 1,∞(R, µ)
given by (2.3). Here u is an arbitrary function from the ball B(U, ε).
We have

‖Hβu−Hβ0u‖W 1,∞ = |(Hβu)(0)−(Hβ0u)(0)|+‖(Ω̃◦Nβ)u−(Ω̃◦Nβ0)u‖L∞ .
Here Ω̃ is given as in (3.5). We consider the first and the second term
separately.

|(Hβu)(0)− (Hβ0u)(0)| =

= |
∫

R

ω(0, y)

ρ(y)
(S(β, u(y))− S(β0, u(y)))dµ(y)| ≤

≤
∫

R

|ω(0, y)

ρ1(y)
||ρ1(y)

ρ(y)
||S(β, u(y))− S(β0, u(y))|dµ(y)| ≤

≤ Cω‖Nβu−Nβ0u‖L1

By Lemma 3.12 |(Hβu)(0)− (Hβ0u)(0)| uniformly converges to zero.

Under the conditions of the theorem Ω̃ : L1(R, µ) → L∞(R, µ) is
bounded. Indeed, using the Hölder inequality we get

‖Ω̃v‖L∞ ≤ CΩ̃‖u‖L1 , CΩ̃ = sup
x∈Q

(
sup
y∈Q

∣∣∣∣
ω′x(x, y)

ρ(x)ρ1(y)

∣∣∣∣
)
<∞.

Then it is easy to see that

‖(Ω̃ ◦ Nβ)u− (Ω̃ ◦ Nβ0)u‖L∞ ≤ CΩ̃‖Nβu−Nβ0u‖L1 .

Applying Lemma 3.12 we complete our proof. �
We formulate our main theorem.

Theorem 3.14 (Continuous dependence). Let θ > 0 be fixed and
U ∈ W 1,∞(R, µ) satisfy the θ-condition. Assume that 1 ≤ p < ∞
and ρ1/ρ ∈ Lp(R, µ), the operator Ω in (3.3) is a compact operator
from Lp(R, µ) to W 1,∞(R, µ), and (3.10) is satisfied. If there exist so-
lutions of the equation Hβuβ = uβ which belong to B(U, ε) = {u :
‖u − U‖W 1,∞ < ε} for any β ∈ [Cβ,∞], Cβ > 0, then there exist
a solution of H∞u = u and it is any limiting point of the sequence
{uβ}. Moreover, if the solution of H∞u = u, say u∗, is unique then
{uβ} → u∗.

Proof. We base our proof on Theorem 2.3. We choose D (in Theorem
2.3) to be a closure of B(U, ε) = {u : ‖u− U‖W 1,∞ < ε}, and λ = 1/β

and, thus, Λ = [0, 1/Cβ]. The operator Hβ ≡ H1/λ : Λ × B(U, ε) →
W 1,∞(R, µ) is continuous as a superposition of continuous operators, Ω
and N1/λ, for each λ ∈ Λ. The operator Ω : Lp(R, µ) → W 1,∞(R, µ) is
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continuous by the conditions of the theorem, and continuity of N1/λ :

B(U, ε)→ Lp(R, µ) follows from Lemma 3.3 (for λ > 0) and Theorem
3.8 (for λ = 0). Moreover, from Theorem 3.13 we conclude that H1/λ :

Λ×B(U, ε)→ W 1,∞(R, µ) is continuous with respect to both variables.
The observation that the operators H1/λ are collectively compact

as a superposition of a compact operator Ω and collectively bounded
operators N1/λ completes the proof. �

It is usually much easier to study the existence of solutions (which
satisfy the θ-condition) of the fixed point problem H∞u = u than
Hβu = u, β < ∞. Next theorem allows us to prove existence of the
fixed points of Hβ using some knowledge about the fixed point of the
limiting problem. We give more details on existence of fixed points of
H∞ in the next section.

Theorem 3.15 (Existence). Let the conditions of Theorem 3.14 be
satisfied, i.e., θ > 0 be fixed, U ∈ W 1,∞(R, µ) satisfy the θ-condition,
ρ1/ρ ∈ Lp(R, µ), 1 ≤ p < ∞, the operator Ω : Lp(R, µ) → W 1,∞(R, µ)
is compact, and (3.10) is fulfilled. Let B0 define an open subset of
B(U, ε) = {u : ‖u − U‖W 1,∞ < ε}. If U is a unique fixed point of the
operator H∞ on B0 such that deg(H∞−I, B0, 0) 6= 0, then Hβ possesses
a fixed point uβ ∈ B0 for any β >> 1.

Proof. We define ht(u) = (Hk/t−I)(u), where I is an identity operator,
t ∈ [0, 1], and k ≥ 1. We show that ht is a homotopy, i.e., (a) continuous
with respect to t and u for all t ∈ [0, 1] and u ∈ B0, (b) ht(u) 6= 0 for
any t ∈ [0, 1] and u ∈ ∂B0. The property (a) is satisfied. Indeed Hk/t is
continuous (for details see proof of Theorem (3.14)) and thus, Hk/t− I
is continuous as well.

In the proof of (b) we first observe that H∞u 6= u for all u ∈ ∂B0

since U is a unique solution on B̄0 and U ∈ B0. Assume that Hβu 6= u
for all u ∈ ∂B0 does not hold true, i.e., there exist {un} ∈ ∂B0 such
that Hβnun = un. From Theorem 3.14 it follows that un → u0 ∈ ∂B0

where u0 = H∞u0. This contradiction competes the proof of (b). It is
easy to see that ht satisfies the conditions of Theorem 2.5 and thus,
deg(ht, B0, 0) = deg(H∞ − I, B0, 0) 6= 0 for any t ∈ [0, 1]. This implies
existence of solutions of Hk/tu = u belonging to B0 ∈ B(U, ε). �

4. Bumps in neural field model

Definition 4.1. Let θ > 0 be fixed, and U be a stationary solution of
(1.1) where P (u) = S(∞, u). A set R[U ] = {x : U(x) ≥ θ} is called an
excited region of U, [4].

Definition 4.2. Let θ > 0 be fixed, and U be a stationary solution
of (1.1) where P (u) = S(∞, u). If the excited region of U is such that
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R[U ] =
N⋃
k=1

[a(2k−1), a(2k)] and U ′(a(k)) 6= 0, k = 1, ..., 2N then U(x) is

called a bump, or more specificity, N-bump.

The existence of 1-bump solutions was studied in [4]. Later, 2-bumps
and multibumps were considered in [17, 18]. In all these cases the con-
nectivity function was assumed to be translation homogeneous, i.e.,
ω(x, y) = $(x − y) where $(z) is an even function. These type of
solutions were linked to the mechanisms of the working memory, repre-
sentations in the head-direction system, and feature selectivity in the
visual cortex, see [5] and references therein.

Remark 4.3. Although the condition U ′(a(k)) 6= 0, k = 1, ..., 2N was
not postulated in [4], it was used for studying stability of these bumps.

Theorem 4.4. A bump solution of (1.1) with P (u) = S(∞, u) belongs
to W 1,∞(R, µ) and satisfy the θ-condition.

Proof. By Definition 4.2 and (3.1) a bump is given as

(4.1) U(x) =

∫

R[U ]

ω(x, y)dy.

We use the norm (2.3) and get the following estimate

‖U‖W 1,∞ = |
∫

R[U ]

ω(0, y)dy|+ sup
x∈R
|ρ(x)

∫

R[U ]

ω′x(x, y)dy| ≤

≤
∫

R[U ]

|ω(0, y)|dy +M sup
x∈R

∫

R[U ]

|ω′x(x, y)|dy, M = sup
x∈R

ρ(x).

Applying the property (i) of ω to the first term of the sum, and the
property (ii) to the second, we get ‖U‖W 1,∞ <∞, i.e., u ∈ W 1,∞(R, µ).

Next, we show that U satisfies the θ-condition. By the definition of
bumps the first condition of Definition 3.4 is fulfilled. To show that
the second one is fulfilled as well we consider the limit

lim
|x|→∞

U(x) = lim
|x|→∞

∫

R[U ]

w(x, y)dy.

The properties (iii) and (iv) of ω allows us to apply Lebesque’s dom-
inated convergence theorem, i.e., we get lim

|x|→∞
U(x) = 0. This observa-

tions complete the proof. �

Below we give two examples where quite simple requirements on
ω(x, y) allow us to choose ρ, ρ1 in a such way that all conditions of
Theorem 3.14 are satisfied.
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Example 4.5. For any ω such that

(4.2) |∂
mω(x, y)

∂xn
| ≤ Ce−a|x|e−b|y|, m = 1, 2, a, b > 0,

the conditions of Theorem 3.14 are satisfied.

Proof. We set

(4.3) ρ1(x) = e−α|x|, ρ(x) =
β

2
e−β|x|,

for some positive α and β. To satisfy the first condition of Theorem
3.14 (ρ1/ρ ∈ Lp(R, µ), 1 ≤ p <∞), it is sufficient to fulfill the following
inequality p(α− β) + β > 0 or, equivalently,

α > 0 if p = 1,
β > αp′ if p > 1.

Let us now focus on the second condition of Theorem 3.14 (Ω is com-
pact). By Lemma 3.2 it is sufficient to prove compactness of Ω̃ given
by (3.5). We use Lemma 2.2. We denote the kernel of the operator Ω̃
as k(x, y). Using the estimates (4.2) and (4.3) we have

(4.4) |k(x, y)| ≤ 2
C

β
e−(a−α)|x|e−(b−β)|y|,

and

|k′x(x, y)| ≤ |ω
′′
xx(x, y)|+ |ρ′(x)/ρ(x)||ω′x(x, y)|

ρ1(y)ρ(x)
≤

≤ |ω
′′
xx(x, y)|+ α|ω′x(x, y)|

ρ1(y)ρ(x)
≤ 2C

1 + α

α
e−(a−α)|x|e−(b−β)|y|.

Moreover, the requirement

(4.5) a > α, b > β,

implies that both conditions of Lemma 2.2 are satisfied. While it is
obvious that k(x, ·) ∈ Lp′(R, µ) for almost all x ∈ R, (2.6) is needed to
be explained. We notice that

(4.6) |k(x, y)| ≤ C1e
−c|x|, |k′x(x, y)| ≤ C2e

−c|x|,

where c = a − α > 0, and C1, C2 > 0. First, we assign A to be
some constant larger than c−1 ln(2C1/ε). Then, for |x| > A we have
C1e

−c|x| < ε/2 and for any x1, x2 : |x1| > A, |x2| > A we get

(4.7) |k(x1, y)− k(x2, y)| ≤ C1(e−c|x1| + e−c|x2|) < ε/2 + ε/2 = ε.

Next, using the mean value theorem we have

|k(x1, y)− k(x2, y)| ≤ |k′x(x̃, y)(x2 − x1)| ≤
≤ C2e

−c|x̃||x2 − x1| ≤ C2|x2 − x1|,
(4.8)
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where x̃ = λx1+(1−λx2), λ ∈ [0, 1]. We define some ∆ : 0 < ∆ < ε/C2

and set

D1 = (∞,−A), D2 = (−A,−A+ ∆),

D3 = (−A+ ∆,−A+ 2∆), . . . Dn = (−A+ n∆,+∞),

where n is defined in a such way that −A+n∆ > A, e.g., n = [2A/∆]+
1. Therefore, (2.6) is fulfilled for j = 1, n due to (4.7), and for j =
2, 3, ..., n− 1 due to (4.8). Thus, under assumptions (4.5) the operator
Ω̃ maps Lp(R, µ) to L∞(R, µ) and is compact.

Combining all the restrictions on α, β we have

(4.9)
0 < α < a, 0 < β < b if p = 1,
0 < α < a, αp′ < β < b if p > 1.

It is clear that for any given a, b > 0, and 1 ≤ p < ∞ it is always
possible to choose α and β satisfying (4.9).

Finally, using (4.4) it is easy to see that (3.10) is valid. �

The case when ω(x, y) = $(x − y) seems to be more complicated.
The main difficulty here is that the kernel of the operator Ω becomes
unbounded along the line y = x. We have not found a general approach
how to deal with this problem. However, the theory developed in pre-
vious section works very well for the family of firing rate functions,
S(β, u), which possesses the following property:

(4.10) S(β, u) = 0 for all u ≤ θ − τ, and β > 0.

Example 4.6. Let ω be given as ω(x, y) = $(x − y) with $(z) such
that

(4.11) $(m)(z) ≤ Ce−c|z|, m = 1, 2.

In addition to the properties of S, we assume (4.10). Then there exist
such τ > 0 that the conditions of Theorem 3.14 are satisfied.

Proof. Let θ > 0 be fixed and U ∈ W 1,∞(R, µ) satisfy the θ-condition.
Moreover, assume that U(x) = θ has N solutions. Then, by Lemma
3.6 there exist such ε > 0, and b(0,2), b(N,1) that for any u ∈ B(U, ε) =
{u : ‖u − U‖W 1,∞ < ε} the following inequality U(x) < θ − ε for all
x ∈ (−∞, b(0,2)) ∪ (b(N,1),∞) is valid.

We introduce a set D = [b(0,2), b(N,1)]. Next, we set τ < ε and define

ρ(x) ≡ ρ1(x) =

{
1/(b(N,1) − b(0,2)), x ∈ D,
0, x 6∈ D.

This definition of ρ implies that Ls(R, µ) ≡ Ls(D) and W 1,s(R, µ) ≡
W 1,s(D) for any 1 ≤ s ≤ ∞.

By Theorem 3.3 and Theorem 3.8 N is a continuous map from
B(U, ε) to Lp(D).
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Using Lemma 3.2 and Lemma 2.2 we next show that the operator Ω
is compact operator from Lp(D) to W 1,∞(D). The operator Ω̃ is given
by

(Ω̃u)(x) =

∫

D

$′(y − x)u(y)dy, x ∈ D.

Due to the estimate (4.11) the first condition of Lemma 2.2 is satisfied.
It remains to check the second condition of Lemma 2.2. Making use of
the mean value theorem and (4.11) for m = 2, we get

‖$′(x1 − y)−$′(x2 − y)‖Lp′ ≤ ‖$′′(x̃− y)‖Lp′ |x2 − x1| ≤ C|x2 − x1|.
Here we assume x̃ = λx1 + (1− λx2), λ ∈ [0, 1].

Similarly to Example 4.5 we choose some ∆ : ∆ < ε/C and set

D1 = (b(0,2), b(0,2) + ∆), D2 = (b(0,2) + ∆, b(0,2) + 2∆),

. . . , Dn = (b(0,2) + n∆, b(N,1)),

where n is defined in a such way that b(0,2) + n∆ < b(N,1) and b(0,2) +
(n + 1)∆ ≥ b(N,1), e.g., n =

[
(b(N,1) − b(0,2))/∆

]
. Thus, by Lemma 2.2

Ω̃ : Lp(R, µ) → L∞(R, µ) is compact. This implies Ω : Lp(R, µ) →
W∞(R, µ) be a compact operator, see Lemma 3.2.

Finally, we remark that (3.10) is fulfilled. Hence, all the conditions
of Theorem 3.14 are verified. �

In neural field theory one often assumes that ω(x, y) is given as a
homogeneous and distant dependent function, i.e., ω(x, y) = $(x− y),
where $ is an even function. In this case any stationary solution of
(1.1) is translation invariant.1 A typical example of a homogeneous
connectivity function $ is

(4.12) $(x) = M1e
−m1|x| −M2e

−m2|x|, M1 > M2, m1 > m2.

This function is called a ’Mexican-hat’ function and models a neural
network with local excitation and distal inhibition. This function sat-
isfies (4.11) and thus it is a particular case of Example 4.6. Existence
of 1- and 2-bumps for the model (1.1) with P (·) = S(∞, ·) and this
type of connection was shown in [4] and [17], respectively.

Next, we formulate our second theorem which rigorously shows that
the bumps solutions in the steep firing rate regime approach the bumps
solutions of the stationary Wilson-Cowan model in the unit step func-
tion approximation of the firing rate function.

Theorem 4.7. Assume that ω(x, y) = $(x − y) with $ be an even
function satisfying (4.11). Let θ > 0 be fixed and U be a symmetric 1-
bump solution of (1.1) where P (·) = S(∞, ·). Moreover, we let S(β, ·)
satisfy the condition (4.10). Then, there exists ε > 0 such that for
any τ < ε and all β >> 1 the operator Hβ has a fixed point uβ ∈

1i.e., if U(x) is a solution so is U(x+ c) for any c ∈ R.
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Be(U, ε) = {u−even function:‖u−U‖W 1,∞ < ε}. Moreover, uβ depends
continuously on β, i.e., uβ → U as β →∞.

The proof of the theorem involves some knowledge of degree the-
ory and topological fixed point index theory. We do not recall any
definitions and properties here but refer a reader to [12].

Proof. We notice that all conditions of Theorem 3.14 are fulfilled, see
Example 4.6. This means that if u = Hβu possesses a solution uβ ∈
B(U, ε) for for all Cβ < β < ∞ then uβ → U. It remains to show
that such uβ exist. For that we are going to use Theorem 3.15 where
we choose B0 = Be(U, ε). To be able to apply Theorem 3.15 we need
to show that (a) U is a unique fixed point of H∞ in Be(U, ε) and (b)
deg(H∞ − I, Be(U, ε, 0)) 6= 0.

By Theorem 4.4, U satisfies the θ-condition and U ∈ W 1,∞(R, µ).
By Lemma 3.6 there exists ε > 0 such that any u ∈ B(U, ε) = {u :
‖u − U‖W 1,∞ < ε} satisfies the θ-condition and possesses exactly two
intersections with the straight line θ. Obviously, the same properties
are valid for u ∈ Be(U, ε), i.e., for any u ∈ Be(U, ε) there is cu > 0 such
that u(±cu) = θ, u′(±cu) 6= 0. For u = U we denote the intersections
as ±a.

We define an auxiliary function

W (x) =

x∫

0

$(y)dy.

Then, for any u ∈ Be(U, ε) there is defined v(x) = (H∞u)(x) = W (x+
cu)−W (x− cu). In particular, we have

(4.13) U(x) = W (x+ a)−W (x− a),

where

(4.14) W (2a) = θ, $(2a) < 0.

Lemma 4.8. A symmetric 1-bump, U, is a unique fixed point of H∞
on Be(U, ε).

Proof. Let us assume the contrary. Then there exist a sequence {un} ∈
Be(U, ε) such that un → U and H∞un = un. Similarly to (4.13) and
(4.14) we have

(4.15) un(x) = W (x+ an)−W (x− an)

with

(4.16) W (2an) = θ, $(2an) < 0

where we set an = cun .
From Lemma 3.9 we have an → a. The condition $(2a) < 0 im-

plies that any vicinity of a contains such an that W (2an) 6= θ. This
contradicts with (4.16) and thus, with un being a fixed point of H∞.
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We conclude that U is an isolated fixed point of the operator H∞ on
Be(U, ε). Therefore, without loss of generality we assume that Be(U, ε)
does not contain any other fixed points than U. We emphasize here,
that U is not an isolated fixed point of H∞ on W 1,∞(R, µ) due to the
translation invariance translation invariance of bumps in a homoge-
neous neural field. �

Due to Lemma 4.8 and definition of the topological fixed point index
we have

deg(H∞ − I, Be(U, ε), 0) = ind(H∞, Be(U, ε)).

We notice that H∞ maps Be(U, ε) into a manifold EM ⊂ W 1,∞(R, µ),
where EM = {v : v = W (· + c) −W (· − c), c ∈ [m,M ]}. The interval

[m,M ] is chosen in a such way that it contains cu for all u ∈ Be(U, ε).
By Lemma 3.6 this is possible to achieve if one chooses, for example,
m = 0, and M = b(N,1).
We define φ : [m,M ]→ EM where φ(c) = v(x) ≡ W (x+c)−W (x−c),
x ∈ R. Next, we show that φ is a homeomorphism.

Lemma 4.9. The map φ is a homeomorphism from [m,M ] to EM , and
EM is ANR2.

Proof. First we show that φ is bijection. It is a surjection since EM is
defined as an image of [m,M ]. To prove that φ is injection we assume
the contrary: Let c1, c2 ∈ [m,M ] and c1 6= c2 imply v1 = v2. From
v1 = v2 and v1, v2 ∈ W 1,∞(R, µ) it follows that |v1(x) − v2(x)| = 0 for
almost all x ∈ R. Applying the mean value theorem we get

|v1(x)− v2(x)| = |W (x+ c1)−W (x− c1)−
−W (x+ c2) +W (x− c2)| =

= |$(x+ ξ) +$(x− η)||c1 − c2| = 0, a.e. on R
(4.17)

where ξ, η ∈ [c1, c2].
As c1 6= c2 we have

$(x+ ξ) = −$(x− η) a.e. on R,
or, that is equivalent,

$(x+ 2(ξ + η)) = $(x) a.e. on R.
The last equality contradicts with the property (iv) of ω. Thus, φ is a
bijective map.
Next, we observe that φ is differentiable for all c ∈ [m,M ] and φ′(c) 6=
0. Indeed, as we assume the contrary we get

$(x+ c) = −$(x− c), a.e. on R
which implies 4c periodicity of $. This contradicts with the property
(iv) of ω. Hence, we conclude that φ defines a homeomorphism on

2Absolute Neighborhood Retract, see [12].
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[m,M ]. Moreover, since [m,M ] is a closed convex subset on R then it
is ANR. By properties of homeomorphism φ([m,M ]) = EM is ANR
too.

�

Let H′∞ be the excision of H∞ on EM ∩Be(U, ε), i.e.,

(4.18) H′∞ = H∞|EM∩Be(U,ε) : EM ∩Be(U, ε)→ EM .

The fixed point U belongs to EM ∩Be(U, ε) and thus, by the property
of the topological fixed point index [12] H′∞ is admissible3 compact
map and

ind(H∞, Be(U, ε)) = ind(H′∞, EM ∩Be(U, ε)).

Next, we apply the topological invariance property of the index and
get

ind(H′∞, EM ∩Be(U, ε)) = ind(φ−1 ◦ H′∞ ◦ φ,D)

where D denotes the following set φ−1(H∞(EM ∩Be(U, ε))).
We prove the following lemma which enables us to compute ind(φ−1 ◦
H′∞ ◦ φ,D).

Lemma 4.10. There exist such δ > 0 that D = φ−1(H∞(EM∩Be(U, ε))) ⊃
[a− δ, a+ δ].

Proof. The map c̄ : u 7→ cu is defined for all u ∈ Be(U, ε). Let v(x) =
W (x + c) − W (x − c), c ∈ [m,M ]. Then using the norm (2.3) in
W 1,∞(R, µ), the equality (4.13), and the mean value theorem we have

‖U−v‖W 1,∞ = (‖$(ξ1) +$(η1)‖L∞ + ‖$(x+ ξ2) +$(x− η2)‖L∞) |c−a|,
ξi, ηi ∈ [c, a], i = 1, 2.

Thus, using (4.11) we get

‖U − v‖W 1,∞ ≤ 4C|c− a| < ε,

for all c ∈ [a − δ, a + δ], where δ < ε/4C. From this observation we
conclude that

c̄(B(U, ε) ∩ EM) ⊃ [a− δ, a+ δ]

which implies

H∞(Be(U, ε)∩EM) ⊃ Eδ = {v : v = W (·+c)−W (·−c), c ∈ [a−δ, a+δ]}.
Furthermore, it follows that

φ−1(H∞(Be(U, ε) ∩ EM)) ⊃ φ−1(Eδ) = [a− δ, a+ δ].

�
3A continuous map g : B → B is called admissible provided B is an open subset

of B and the fixed point set of g is compact, see [12].
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Finally, we have all the ingredients to calculate ind(φ−1 ◦H′∞ ◦φ,D).
We define the finite dimension operator T = φ−1 ◦ H′∞ ◦ φ which, as
we have shown above, maps [a− δ, a+ δ]→ [m,M ]. It is easy to check
that a is a fixed point of T, i.e., T (a) = a. Moreover a is an isolated
fixed point of T. The latter statement follows from U being the isolated
fixed point ofH∞ and topological invariance property of the index. The
topological index of a finite dimensional map can be calculated as

ind(T,D) = sgn(T ′(a)− 1),

see [19].
The following equality holds true fore all c ∈ [a− δ, a+ δ]

W (T (c) + c)−W (T (c)− c) = θ.

Using the implicit function theorem and the chain rule for differentia-
tion we find

T ′(a) =
$(0) +$(2a)

$(0) +$(2a)
.

Thus, we have

deg(H∞, Be(U, ε), 0) = ind(T,D) = sgn($(2a)) = 1.

Combining all the results, we get that there exists Cβ >> 1 that
u = Hβu possesses a solution uβ ∈ Be(U, ε) for all β > Cβ and uβ → U.
We also notice here that uβ is a symmetric function which satisfy the
θ-condition and has two intersection points with straight line θ. �

5. Conclusions and outlook

In the present paper we have studied the properties of the one-
parameter family of Hammerstein operators Hβ, 0 < β ≤ ∞ given
by (3.2). Fixed points of an operator belonging to this family are sta-
tionary solutions of (1.1). For functions in W 1,q(R, µ), 1 ≤ q ≤ ∞ we
have introduced the definition of the θ−condition, which means that we
consider functions with a finite number of intersection points with the
line u = θ. We have shown that the continuous dependence theorem
(Theorem 3.14) holds in a vicinity of a function U ∈ W 1,∞ satisfying
the θ−condition, while for the case U ∈ W 1,q(R, µ), 1 ≤ q < ∞ the
conditions of the theorem are not satisfied. Next, with Theorem 3.15
we show that if H∞ possess an unique fixed point with some additional
assumptions, then the solutions of the fixed point problem Hβu = u
exist for β > Cβ. This theorem allows us to prove existence of multi-
bump solutions of (1.1) with sigmoidal firing rate functions.

We believe that these results can be very useful in neural-field the-
ory. We have given two examples of restrictions on the connectivity
functions (one with inhomogeneous connectivity and the second one
for homogeneous connectivity) where all the conditions of the contin-
uous dependence theorem are satisfied. Moreover, for a homogeneous
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type of connectivity we have proved existence of 1−bump solutions
for (1.1) with steep gradient continuous firing rate function, S(β, ·),
satisfying the condition (4.10). Although the latter condition imposes
restrictions on the choice of S(β, ·), we would like to emphasize that
this result is more general than one obtained in [8, 11]. Here we would
like to point out that the results of this paper can be useful for studying
not only continuous dependence and existence of bumps but also sta-
bility of these solutions. The methods for studying stability of bumps,
Evans function technique and Amari approach, assume that small per-
turbation of a bump solution possess the same number of intersection
with a straight line θ as a bump itself. As we have shown, this is the
case only if we work in the Sobolev space W 1,∞(R, µ). However, if one
studies stability of bump in W 1,q(R, µ), 1 ≤ q < ∞, then any vicinity
of a bump contains functions which do not satisfy the θ−condition,
and thus, these stability approaches do not work.
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1) Paper I, Section 3, Theorem 3.1. The typos in the formulation of the theorem have
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2) Paper I, Section 2. There was a misprint in the sentence after Assumption 2. "ge"
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