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Summary

In the area of systems biology, technologies develop very fast, which allows us to

collect massive amounts of various data. The main interest of scientists is to receive

an insight into the obtained data sets and discover their inherent properties. Since

the data often are rather complex and intimidating equations may be required for

modelling, data analysis can be quite challenging for the majority of bio-scientists who

do not master advanced mathematics. In this thesis it is proposed to use multivariate

statistical methods as a tool for understanding the properties of complex models used

for describing biological systems.

The methods of multivariate analysis employed in this thesis search for latent

variables that form a basis of all processes in a system. This often reduces dimensions

of the system and makes it easier to get the whole picture of what is going on. Thus,

in this work, methods of multivariate analysis were used with a descriptive purpose

in Papers I and IV to discover e�ects of input variables on a response.

Often it is necessary to know a functional form that could have generated the

collected data in order to study the behaviour of the system when one or another

parameter is tuned. For this purpose, we propose the Direct Look-Up (DLU) approach

that is claimed here to be a worthy alternative to the already existing �tting methods

due to its high computational speed and ability to avoid many problems such as

subjectivity, choice of initial values, local optima and so on (Papers II and III).

Another aspect covered in this thesis is an interpretation of function parameters

by the custom human language with the use of multivariate analysis. This would

enable mathematicians and bio-scientists to understand each other when describing

the same object. It was accomplished here by using the concept of a metamodel and

sensory analysis in Paper IV. In Paper I, a similar approach was used even though

the main focus of the paper was slightly di�erent. The original aim of the article was

to show the advantages of the multi-way GEMANOVA analysis over the traditional

ANOVA analysis for certain types of data. However, in addition, the relationship

between human pro�ling of data samples and function parameters was discovered.

In situations when funds for conducting experiments are limited and it is unreali-

sable to study all possible parameter combinations, it is necessary to have a smart way

of choosing a few but most representative conditions for a particular system. In Paper

V Multi-level Binary Replacement design (MBR) was developed as such, which can

also be used for searching for a relevant parameter range. This new design method

was applied here in Papers II and IV for selection of samples for further analyses.
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Sammendrag

(Norwegian summary)

Teknologiutviklingen innenfor systembiologien er nå så rask at det gir mulighet til

å samle svært store datamengder på kort tid og til relativ lav pris. Hovedinteressen

til forskerne er typisk å få innsikt i dataene og deres iboende egenskaper. Siden data

kan være ganske komplekse og ofte beskrives ved kompliserte, gjerne ikke-lineære,

funksjoner, kan dataanalyse være ganske utfordrende for mange bioforskere som ikke

behersker avansert matematikk. I dette arbeidet er det foreslått å bruke multivariat

statistisk analyse for å komme nærmere en forståelse av egenskapene av kompliserte

modeller som blir brukt for å beskrive biologiske systemer.

De multivariate metodene som er benyttet i denne avhandlingen søker etter latente

variabler som utgjør en lineær basis og tilnærming til de komplekse prosessene i et

system. Dermed kan man oppnå en forenkling av systemet som er lettere å tolke. I

dette arbeidet ble multivariate analysemetoder brukt i denne beskrivende hensikten i

Artikler (Papers) I og IV til å oppdage e�ekter av funksjonsparametre på egenskapene

til komplekse matematiske modeller.

Ofte er det nødvendig å �nne en matematisk funksjon som kunne ha generert de

innsamlede dataene for å studere oppførselen av systemet. Med den hensikt foreslår

vi en metode for modelltilpasning ved DLU-metoden (the Direct Look-Up) som her

påstås å være et verdifullt alternativ til de eksisterende estimeringsmetodene på grunn

av høy fart og evne til å unngå typiske problemer som for eksempel subjektivitet, valg

av initialverdier, lokale optima, m.m (Artikler II og III).

Et annet aspekt dekket i denne avhandlingen er bruken av multivariat analyse til

å gi tolking av matematiske funksjonsparametre ved hjelp av et dagligdags vokabular.

Dette kan gjøre det enklere for matematikere og bioforskere å forstå hverandre når de

beskriver det samme objektet. Det var utført her ved å benytte ideen om en meta-

modell og sensorisk analyse i Artikkel IV. I Artikkel I var en lignende metode også

brukt for å få sensoriske beskrivelser av bilder generert fra di�erensiallikninger. Ho-

vedfokuset i Artikkel I var imidlertid et annet, nemlig å vise fordelen ved multi-way

GEMANOVA-analyse fremfor den tradisjonelle ANOVA-analysen for visse dataty-

per. I denne artikkelen ble GEMANOVA brukt til å avdekke sammenhengen mellom

kompliserte kombinasjoner av funksjonsparametrene og bildedeskriptorer.

I situasjoner der ressurser til å utføre eksperimenter er begrenset og det er umulig å

prøve ut alle kombinasjoner av parametre, er det behov for metoder som kan bestemme
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et fåtall av parameterinnstillinger som er mest mulig representative for et bestemt

system. I Artikkel V ble derfor Multi-level Binary Replacement (MBR) design utviklet

som en sådan, og den kan også brukes for å søke etter et relevant parameterrom for

datasimuleringer. Den nye designmetoden ble anvendt i Artikler II og IV for utvelgelse

av parameterverdier for videre analyser.
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Introduction

1 Motivation

In today's science it is not a rare occasion to have large sets of data collected from a

conducted experiment or, simply, from an observation of some phenomenon. Physics,

biology, chemistry, astronomy etc., all of these sciences nowadays have modern tech-

nologies that make it possible, in most cases, to obtain far more data than the human

mind is able to handle [1]. For instance, population growth curves in biology [2] (yeast

cells in a nutritive solution, fruit-�ies in a milk environment, a human population

etc. [3]), concentration of a product in kinetic reactions [4], regulatory mechanisms

[5], temporal change of light absorbency by the 2-Dimensional Gel Electrophoresis

(2DGE) [6] and much more.

To understand the nature of processes and to discover the underlying phenomena,

these data have to undergo di�erent types of analyses. This usually gives an exper-

imentalist an overview of e�ects of di�erent parameters, as well as combinations of

them. Yet another aim of every analysis is to be able to foresee a behavioural change

of a system when the original conditions are altered. The latter is important in many

branches of science in terms of economy: it prevents a scientist from conducting an

experiment or introducing a new technology with a priori known �bad� outcome.

Analysis of data is usually done by model �tting, that is, by �nding a functional

relationship between explanatory and response variables. A model per se is a simpli-

�cation of the real world re�ecting the main processes by means of the mathematical

language. Data modelling has been a research focus for many years [7], and the list of

various methods that have been developed is voluminous. However, there can be made

a distinction between two main types of modelling: so-called hard and soft modelling.

The former is based on an existing theory and binds the data with it, whereas the lat-

ter, on the contrary, has no assumptions (or as few as possible) and is data-driven [1].

Hard modelling is sometimes referred to as bottom-up and builds mechanistic theories

or statistical assumptions into mathematical models. In this connection, mechanistic

and statistical types can be distinguished for hard modelling. Both of them are a bit

disliked by bio-scientists due to their complicated theory (mathematical formulae and

statistical distributions of the error), which is alien to non-mathematicians as well as

to non-statisticians.
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Hard mechanistic approaches try to model processes in details, thereby, often

providing complex dynamical systems containing a large number of parameters. Even

though all the model parameters are meaningful and their e�ects are known, it is quite

di�cult to interpret the entire system and get a general picture of it.

A statistical approach, in its turn, is focused on handling uncertainty. It helps to

understand whether the error of measurements is due to a random noise, or whether

there is a structure in it and possibly if some important processes are missed from

the scientist's view.

Hard modelling, both mechanistic and statistical, has a strong theory behind it

and, therefore, is more traditional and trusted by users unlike soft modelling. The

latter consists in �nding covariation patterns between variables by analysing tables of

data [1] and is sometimes called as a top-down approach. Top-down means that an

insight into a system is gained by its gradual decomposition into sub-systems. This

thesis will focus on soft modelling based on the multivariate analysis. The need for

this arises from the fact that in modern science, quite often, one can a�ord to have

more than one observed/measured variable at a time. This may increase chances of

analysts to get a better picture of processes in a system. Multivariate analysis is more

and more used for data reduction and simpli�cation of data structures by means of

�nding latent variables that describe the underlying processes. These latent variables

are usually fewer than the original variables in the model and may provide a simpler

overview of a system.

However, pure mathematicians and statisticians may argue that soft modelling

is lacking theoretical aspects, and, therefore, require some other methods for model

assessment. It is, indeed, based on a simple linear algebra (matrix algebra) and

does not involve any statistical assumptions about error distribution. Nevertheless,

it does include verifying of the results (whether the found patterns are valid or it is

an apparent error) by simple statistical techniques (e.g., cross-validation). Besides,

it facilitates simple graphical interpretation, which can be used for classi�cation of

samples (grouping) and prediction of new observations. The only danger with such

an analysis is over-�tting of data. One might get overwhelmed by the results and

might unintentionally impose this model on the noise [8]. This can happen when a

too detailed model is considered, and can lead to poor prediction. However, when

being cautious, multivariate analysis is very useful and is preferred by bio-scientists

due to its simple mathematical background and for being more comprehensible.

The aim of this thesis is to show that, with the help of multivariate analysis,

mathematical models from systems biology can be understood by a wide audience

despite complexity of the models and a number of parameters. It has been shown

that results from multivariate analyses can be used multidisciplinary and reduce the
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gap between communities of bio-scientists and data analysts, both mathematicians

and statisticians.

2 Background

Our world is multivariate, and there are no processes that depend only on one unique

variable [9]. There are always some correlations present between observed properties,

and certain values of one variable are linked with those of another, or a set of them.

Therefore, it is important not to lose any signi�cant information when trying to ana-

lyse such data. For this purpose, multivariate analysis is broadly used. Multivariate

analysis is the analysis of data obtained from simultaneous measurements on many

variables [10]. For instance, students' exam marks for di�erent subjects, a set of body

measurements of patients, collection of climatic conditions etc. In the example with

the exam marks, it would be of interest to know how a certain result on one exam

will a�ect such on another; whether there is any relation of marks to the order of the

exams etc.

There exists a long list of multivariate methods for data analysis, and there is no

recipe for which method is the best and gives the most appropriate results in a given

case. It is mostly an analyst's preference that decides the choice of method. However,

data organisation has to be thought through thoroughly, and potential problems of

handling certain data with one or another method should be exposed.

Main objectives of multivariate methods can be divided into three groups [9]:

• data description

• data discrimination/classi�cation

• prediction.

Data description methods are explorative and aim at �nding main patterns in data

tables and positive or negative correlations between diverse variables. It helps to �look

inside� the data and discover the e�ect of each variable on the response. The main

example of explorative methods is the Principal Component Analysis (PCA).

Data discrimination is intended for revealing grouping of samples and vari-

ables with similar properties. For example, in Paper IV we saw a clear separation

of curves into sigmoids and archoids. Unlike discrimination, classi�cation of data

is �supervised� and data clusters are known a priori . In this case it is possible to

determine which group a new data point belongs to. As traditional methods for data

classi�cation SIMCA (Soft Independent Modelling of Class Analogy) [9] and DPLSR
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(Discriminant Partial Least Squares Regression) [8] can be considered, whereas PCA

can be of great help for data discrimination.

Prediction is an essential element in data analysis. In the world of expensive

equipment and reagents, it is important to build an experiment in an accurate way

and not waste money. That is why, it is useful to know how a system will behave

when one or several conditions are changed. This is possible by building a reason-

able model of the existing data and a further prediction of a probable result under

new circumstances. A common method for doing that is the Partial Least Squares

Regression (PLSR) [11].

Even though the multivariate methods addressed in this thesis have di�erent goals

at the end, they have similar principles. All of them are based on matrix algebra and

are aimed at �nding new, latent variables as �cores� of system processes. Latent means

that one cannot measure/observe these variables directly [8]. They are obtained as

linear combinations of the manifest (observed) variables and re�ect the underlying

structure of the data. By means of using simple matrix manipulations, multivariate

analysis may be understood by far more people than both hard mathematical and

statistical modelling and, therefore, attracts a larger number of bio-scientists.

For a successful performance of multivariate analysis, it is preferable to have both

much information about essential properties (many variables) and a large number of

objects. The former is important for discovering true interdependencies between vari-

ables and, optionally, their relevance to some response variable(s), whereas the latter

is important for reducing estimation error and for model validation. Unfortunately,

in real data experiments a shortage of one or the other is common, which makes it

more di�cult to �nd an appropriate model for a given data set.

At the beginning of either type of multivariate analysis, all data obtained should

be organised in a matrix or in a cube. In Papers II-V of this thesis we have dealt with

two-way data, i.e., with data matrices, whereas Paper I was focused on a multi-way

analysis that is described separately below.

As the number of multivariate methods is very large, only descriptions of those that

were used in the enclosed papers are given here. All these methods were implemented

here with the purpose of complexity reduction of the data sets and prediction of new

data.

Principal Component Analysis (PCA)

PCA concerns the analysis of a single data matrix (two-way table), and, as was

mentioned above, is usually used for descriptive purposes and data exploration. It
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implies �nding new, latent variables that describe most of the data variation. These

new variables are called Principal Components (PCs) and lie in directions of the

maximal variation of the data. They describe the data variation in a descending

order: �rst PC is found along the direction of largest variation; second PC - in the

direction of second largest variation but orthogonal to the �rst, and so on. When the

remaining variation is small enough, it is considered that the optimal number (A) of

PCs is found, and the information that is left is regarded as noise. Often, A is much

smaller than the number p of original variables. PCs constitute a new, orthogonal

basis for the variable space and are obtained as linear combinations of the original

variables. Coe�cients of the latter in the space formed by the new variables are called

loadings, namely, a set of loadings is a transformation matrix from old variables to

the new ones. The projection of the observed variables onto the new basis yields

scores � the observed values along the PCs. Together with loadings, the vectors of

scores comprise an explained part of the data, the structure, whereas the remaining

variability is regarded as noise [9]. This can be expressed as:

X = TP′ +E = Structure+Noise (1)

or graphically

where X is the observed data matrix, T and P represent scores and loadings respec-

tively, E is a residual matrix, n is the number of samples, p is the number of variables

and A is the number of PCs.

From Eq. (1) one can notice that matrix X is represented linearly with respect to

both matrices T and P. That is why PCA is referred to as a bi-linear method.

Plots from PCA analysis are of great value for data exploration in the way it may

reveal patterns of covariation between variables or between samples. For instance,

a score plot gives an idea of which samples are similar and which are di�erent. In

this context, PCA can also be used as a pre-step to other methods like clustering,

classi�cation or regression. Loading plots, in its turn, show an analyst what variables

are related to each other and in which way � positively or negatively. If variables

are measured on di�erent scales, it is more recommended to study a correlation load-

ing plot, which is scale invariant due to transformation of the original loadings into
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correlation coe�cients between the input and latent variables [12]. Both score and

loading plots were widely used in Paper IV to get a �rst overview of the sensory data

on curves. These two plots can be combined into one (bi-plot) and give information

about the in�uence of certain variables on di�erent samples.

In this thesis, PCA is extensively applied both as a descriptive tool in Papers I

and IV, as a data compression method and as a basic principle for developing a new

curve �tting method in Papers II and III, and for building the concept of a metamodel

(Papers II and IV), which is described below.

Partial Least Squares Regression (PLSR)

PLSR, unlike PCA, concerns the analysis of two data matrices, a predictor variables

matrix (X) and a response matrix (Y) that may have one or several variables [11].

In case of multiple responses, instead of modelling one response at a time (PLS1),

all variables can be taken into account simultaneously (PLS2), which provides the

information about their interdependence.

The main principle of this method is the same as for PCA and consists in �nding

latent variables that describe the essential structure of the data. However, in case of

PLSR, a matrix of responses is also taken into consideration so that the covariance

between X and Y matrices is maximised. As a matter of fact, PCA may be regarded

as a special case of the PLSR analysis with no Y-variables [8].

The process of building a PLSR model is iterative, that is, components are ex-

tracted one by one through de�ation of both data matrices. As a result of this, sets of

loading weight vectors and corresponding to them score vectors are attained forX and

Y matrices. Loading weights for X matrix represent components of a PLSR model

and are constructed in such a way that they span the direction of the maximal co-

variance between matrices of predictor and response variables. Despite the di�erence

in construction, PLSR components are also called PCs by analogy with PCA.

PLSR is used both for pattern revelation and prediction of new data. For the �rst

purpose, score and loading plots are used much in the same way as for PCA. The

only di�erence is that the loading plots also contain information about Y-variables

(Y-loadings). In this way, explanatory variables are related to the responses, and it is

easily seen whether there is any e�ect of one or another variable on a certain outcome.

When a proper model of the Y ∼ X relationship is found, it is quite often used for

prediction of new responses from a new set of input X-variables.

For a model, to be suitable for prediction, it has to be realistic, that is, X and Y

matrices have to be collections of essential properties and responses, and a new data

set should be obtained under the same circumstances. If the original X and Y are
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representative and span X- and Y -spaces rather extensively, every new observation

should be predicted easily. In order to check whether a found model is reasonable

(neither too complex nor too simple and does not give any strange results), di�erent

techniques have been developed and are applied for a model validation. There exist

two main types of such methods: cross-validation [13] and test-set validation. The

�rst one is internal and considers parts of a data set to be unknown. The latter

is external and applied when another (independent) data set is available. In both

cases, �unknown� values are predicted and compared with the true ones by means

of the Root Mean Square Error (RMSE) [8] or the coe�cient of determination for

prediction (R2
pred) [14]. Validation of a model is an absolutely necessary procedure

since having a poor model may lead to wasting a large amount of time and money.

In this thesis, PLSR was used in Paper IV in order to examine a relationship

between the metascores and sensory evaluation. Later on, the established model was

applied for prediction of function parameters from the estimated sensory values.

Multi-way analysis

All the methods described so far deal with data organised in two-way tables (matrices).

However, quite often it would be more appropriate to structure them as a cube (three-

way) or a hypercube (N -way) [15]. Such data organisation is used, e.g., in food science

when a certain property of a product is observed under several levels of various factors

(temperature, light, moisture etc.) as, for example, in [16]. Each dimension of a cube

is called a mode, and all the data for one of the mode levels is called a slice or a slab.

The two-way methods mentioned above (PCA, PLSR) can also be applied to N -

way data with the requirement for the latter to be unfolded in advance [17]. Unfolding

means reshaping of a (hyper)cube into a matrix, and it is indeed tempting to do so

since two-way multivariate methods are well-known and easy to interpret. Never-

theless, there is no agreement in what way data should be unfolded (along which

dimension). Moreover, such a re-organisation leads to an information loss about

correlation between slabs. For this purpose, multi-way analysis was developed with

PARAFAC (PARAllel FACtor analysis) as one of the main N -way methods [15, 18].

PARAFAC is referred to as a tri-linear generalisation of the bi-linear PCA due to the

similar principle: it projects data down onto several latent variables, thereby reduc-

ing dimensionality of the data. In a three-way case, a PARAFAC model has a set of

three loading vectors for each component; and, if one of the cube modes represents

samples, then the corresponding loadings are called scores by analogy with the PCA.

A three-way PARAFAC model can be illustrated by the following �gure:
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Due to the ability to analyse data in the original structure without unfolding,

PARAFAC is often called the three-way advantage, although it can also be applied

to an N -way data (that is, a hypercube of N dimensions).

The number of factors in each component of a PARAFAC model is equal to the

number of the data modes. This can be changed if its alternative - GEneralised Mul-

tiplicative ANalysis Of VAriance (GEMANOVA) - is used [15, 16, 18]. GEMANOVA

can �eliminate� individual factors from each component by setting all levels of the

corresponding loading vectors to be equal to one. In this case, �rst component may,

e.g., contain two modes, second - all N modes, third - only one and so on. If each

component includes all the modes, then GEMANOVA is identical to PARAFAC. To

assess the goodness of �t, a model-based bootstrap, which is described in [19, 20], can

be applied.

GEMANOVA is focused on �nding higher-order interactions, which are inherent to

the majority of the real world processes, and, therefore, is suitable for analysing a tan-

gled structure of complex systems. Thus, for example, in Paper I GEMANOVA was

applied for studying a mathematical model of a dynamical system � the Delta-Notch

model, which has �ve parameters for each of 2 500 cells. Some complex interactions

between parameters of this model were found by using the named method.

2.1 Metamodel

As was mentioned above, a model is an abstraction of the real world. However,

models themselves can be simpli�ed by means of metamodelling. �Meta�, from Greek,

stands for �after� and in the data analysis means modelling of a model (approximation

of a model) [21]. Generally, it leads to a signi�cant reduction of complexity and

dimensionality of the data:
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This illustration is valid for real data when modelling comes after observations

(a posteriori). In case of having simulated data, a model is known a priori (e.g.,

functional models in Papers II-IV), and a metamodel is then built on the basis of the

simulations:

or more particular for this thesis:

Here FT (function type) represents some mathematical model, realisations at-

tained by a given design compose data, and metamodels are formed by sets of scores

and loadings from PCA on the simulated data.

The aim of metamodelling is to obtain simpler (than original) models in terms

of structure but with a minimal loss of information. In this thesis, metamodels were

used in Papers II and III as a basis for a new curve �tting method described below,

and in Paper IV � for a compact representation of the phenomenon of curvature and

mapping a human pro�ling of curvature into the mathematical language.

3 Paper summaries

Paper I � Using GEMANOVA to explore the pattern generating

properties of the Delta-Notch model

The aim of this paper was to explore a complex nonlinear mathematical model of

dynamics � the Delta-Notch model � by means of multi-way analysis (GEMANOVA).

Delta and Notch are two signalling proteins in a cell, responsible for its colour, and

they in�uence the level of each other both in one cell and in adjacent cells [22].

The data were represented as 2D hexagonal lattices of 2 500 cells, each dependent on
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�ve state parameters. The lattices were generated from a quarter fractional facto-

rial design with two levels for each of the model parameters and contained cells of

di�erent shades of grey. In total, 26 cell grids were used and evaluated by a sen-

sory panel with twelve descriptors portraying the patterns. Obtained values were

organised in a �ve-way array and analysed with GEMANOVA. It was shown that

the latter is more suitable for analysis of such data than standard statistical methods

(particularly, ANOVA [23]) due to its ability to capture an N -way structure and �nd

higher-order interactions without overloading a model with too many parameters.

The GEMANOVA analysis revealed signi�cant interactions between the system pa-

rameters, and the results were validated by non-parametric bootstrapping. Further,

new data were generated by computer simulations in order to check the veracity of the

established GEMANOVA models. It was noted that the majority of the parameter ef-

fects found by GEMANOVA were correct. Besides, the data simulations revealed the

presence of the bifurcation point, which was con�rmed by numerical approximations

from [22].

Paper II � Nonlinear modelling of curvature by bi-linear meta-

modelling

In Paper II we have developed a new method for �tting nonlinear models to data.

Existing methods for estimation of nonlinear functions usually require assumptions

about functional form and parameters. Moreover, they are typically iterative and it

is necessary to choose a set of initial values, which can be extremely di�cult without

any prior knowledge about the data. Most of the methods, in addition, have a local

optima problem: if a choice of starting values is made without a proper attendance,

the �nal solution may be false due to the convergence of the search criterion to a

local, instead of the global, minimum (maximum). The new method (Direct Look-

Up, DLU), proposed in this paper, is based on a modelome � collection of realisations

of 38 simple mathematical functions from di�erent application �elds. The set of

simulations for each function is further approximated by a bi-linear metamodel (PCA

model), that is, by a set of score and loading vectors. When having a new curve,

it is simply projected onto each metamodel, and a list of most plausible functions

along with the parameter estimates is obtained. In that way, the DLU method avoids

problems with local optima and does not require any prior assumptions, including

initial values. The method was demonstrated on a computer simulated noise-free

curve of the Hill function type with random parameter values. The true (Hill) function

was one of the suggested by the method models for the given curve, and parameter

estimates were rather accurate.
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Paper III � Fast and comprehensive �tting of complex mathe-

matical models to massive amounts of empirical data

This article is subsequent to Paper II and extends the method's technique to the level

where it is able to handle noisy data. Firstly, the DLU method was compared to the

traditional method for curve �tting � Iterative Least Squares (ILS) [24] on an example

of a set of arti�cial curves, but this time with homoscedastic noise and missing data

points. Parameter estimates for both of the methods were almost identical, although

estimation errors in case of ILS were much larger due to the fact that ILS did not

converge in 27% of the cases. This points at the obvious advantage of the DLU over

it. Moreover (and most importantly), performance time of curve �tting with the

DLU approach was reduced by factor 24 in comparison to ILS, which is extremely

relevant when having large data sets. At last, the DLU method was tried on a real,

highly noisy data set containing 174 216 curves (time series) over 200 time points.

The estimated function type agreed with the initial guess of the experimentalist, and

the reconstructed from the estimated values data looked very similar to the original

one. The only problem encountered was the di�culty in handling more than 90 000

curves simultaneously, but this was a computer capacity problem only.

Paper IV � The modelome of line curvature: Many nonlinear

models approximated by a single bi-linear metamodel with verbal

pro�ling

The focus of Paper IV was on the further exploration of the concept of a metamodel,

nonlinear phenomenon of curvature and making the latter more accessible to a gen-

eral audience. In contrast to Papers II and III, the metamodel built here was global,

namely, it was constructed for all the models in the modelome jointly. Only 12 PCs

were needed to describe the whole collection of curves by means of PCA, which indi-

cates a signi�cant reduction of dimensionality. Further, using the MBR design from

Paper V on the metascores, 32 extensively spanning the curvature space curves were

chosen and evaluated by a sensory panel with 14 descriptors. The sensory evaluation

was repeated four months later including curves of four new function types with the

purpose of verifying whether the established metamodel captures the entire curva-

ture phenomenon. PCA and PLSR analyses on the sensory values and metascores

have shown high e�ciency of the evaluation and have found a nonlinear model of

their relationship to each other, which allowed us to give meaning to meta-PCs by

the words-descriptors and to predict sensory values for the rest of the curves in the

modelome. The latter led to the opportunity of mapping function parameters into the
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custom language, de�ned by the descriptors, i.e., interpretation of pure mathematical

parameters by words used in the everyday life.

Paper V � Multi-level binary replacement (MBR) design for

computer experiments in high-dimensional nonlinear systems

This paper describes a new method for design of experiments for several factors, with

more than two levels for each of them. The most traditional way to do it is a factorial

design [23]. However, if multi-level multi-factor design is to be performed, the total

cost of the experiments can be very high. Therefore, it is important to reduce the

size of the design in such a way that the chosen factor levels span the parameter

space quite extensively. If only two levels for each factor are available, then fractional

factorial design can be used. For other situations, it is proposed here to employ the

MBR design method, which consists in recoding each multi-level factor into a set of

binary variables yielding a design with only two-level factors. A traditional fractional

factorial design is imposed to give a requested number of design points or resolution.

The design points are then recoded back to the original multi-level factors in order

to run the experiments. The e�ciency of such a procedure was shown on an example

of computer simulations for a growth curve. Moreover, it was demonstrated that,

by means of the MBR design method, it is possible to search for a relevant range of

parameter values, which is extremely important when experiments are very costly.

4 Discussion

4.1 Contribution

The aim of this thesis was to demonstrate e�ectiveness and ease of usage of multi-

variate analysis methods when studying complex mathematical models from systems

biology. The latter are often so complicated that it is only in mathematicians' power

to deal with them. In connection with this, the gap between math-oriented scien-

tists and bio-scientists becomes larger and larger as complexity of systems increases.

As a step towards reducing this gap, sensory evaluations of the outcomes of tangled

processes were run and analysed by means of multivariate methods in Papers I and

IV. It was shown there that frightful mathematical functions and their parameters

can be easily interpreted by custom words used by �normal� people. It means that,

whenever a biologist and a mathematician have a conversation, they can describe the

same object in the way they are most comfortable with, and they will still understand

each other. All what they need for this, is an appropriate multivariate model mapping
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their two languages one into another, be it a two-way or an N -way model.

However, mathematics is not the only �eld that scare many people away: statistics

with its endless number of distributions, hypotheses testing and error evaluation is

also alien to the majority of bio-scientists. When it comes to modelling their data,

which are very often in a large amount, it is di�cult to make any assumptions about

the error distribution and initial values, especially if an experiment is conducted for

the �rst time and there is no prior knowledge about the data. Even though the

era of modelling is not new at all and a long list of methods has been developed

during many years, these di�culties are still faced by analysts along with many more

problems encountered such as local optima, handling of noisy data, subjectivity in

the choice of methods and models, long performance time and so on. Therefore, there

was a strong need for a novel method that would solve at least some of the named

problems. The DLU approach was proposed as such in Papers II and III, which

consists in a simple projection of a new data set onto a bi-linear metamodel of the

realisations of simple mathematical functions. Here no assumptions have to be made,

i.e., a chance to get stuck in a local optimum is rather low. The computational time

is extremely short in comparison to the traditional �tting methods, which is of great

importance in modern technology that allows a researcher to have massive amounts

of data.

Multivariate analyses have been applied here for a better understanding of com-

plex models that would undergo either mathematical or statistical modelling. Both of

them are tied to a strong theory that bio-scientists are not familiar with. In contrary,

multivariate methods are based on the elementary mathematics verifying the results

by simple statistical procedures. This gives a much easier and quicker overview of

a system than most of the advanced methods. Multivariate analyses are accompa-

nied by rather interpretable graphics that give an analyst a clear insight into the

system processes. Thus, for example, in Paper I, e�ects of the parameters of a highly

nonlinear mathematical model were easily seen from informative GEMANOVA plots.

By means of the bi-linear PCA, the concept of a metamodel was developed further

and de�ned for curvature in Papers II - IV. A general picture of these three papers

can be depicted in the following way with �FT� as a notation for a function type:
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In Papers II and III a metamodel for each of 38 function types from the modelome

was established separately. In this case, as was mentioned above, all metamodels

are represented by a set of scores and loadings. Then, for either simulated curve,

parameter values can be estimated by its projection onto the metamodel for each

function (arrows 1 and 2). When studying real data from the 2DGE experiment,

�ve-parameter logistic (5PL) function turned out to be the one with the best �t,

and through a projection of the data set of curves onto the metamodel of the named

function, parameter estimates for each curve were obtained in a short period of time

(arrows 3 and 4). Furthermore, a global (joint) metamodel for all the curves in the

modelome together was built in Paper IV. Employing the MBR design, a set of 64

curves was chosen as a representative collection from the modelome, and these were

evaluated by a sensory panel. By establishing a reasonable model mapping metascores

into the sensory values for the selected samples (arrow 5), it became possible to predict

sensory evaluation for all the curves in the modelome (arrow 6). In this thesis it was

implemented only for two models � the logistic function and the error function. At

last, a model imitating a relationship between parameter values of the named functions

and sensory estimates of their realisations was constructed (arrow 7). It means that,

given a function type, parameter values for any curve can be predicted with a certain

precision by its human pro�ling.

Certainly, to capture the entire curvature phenomenon, the parameter space for

each function had to be spanned quite densely and extensively. In those cases when a

function depends on two or three parameters, it is of no problem to sample parameter
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space quite densely, but an increase of a number of parameters can lead to a combina-

torial explosion. It is not a big issue if one has to deal just with computer simulations

(computer capacity can easily be extended), but, when it comes to real world data,

it may be very costly, and even unrealisable, to conduct experiments for all possible

situations. Moreover, the relevant parameter range is often unknown, which makes it

even more di�cult. That is why, it is important to plan experiments beforehand by

locating the interval of relevance for each parameter and choosing such combinations

of parameter values that represent the whole parameter space as widely as possible.

For this purpose, the MBR design method was developed in Paper V and employed

in Paper II for simulations of one of the functions and in Paper IV for choosing the

curves for the sensory evaluation so that they �ll up the entire room of curves up to

a considerable extent.

4.2 Future perspectives

There is, of course, still much that can be done for bringing closer various societies

of scientists. Hard modelling should be more comprehensibly taught to bio-scientists;

soft modelling should be proved to mathematicians and statisticians to be an e�cient

tool for analysing data etc. Development of the dictionary between absolutely di�erent

scienti�c languages is an area of great interest, and a �rst step towards this has been

done in this thesis. The next step could be an improvement of accuracy of such

translation and including more and more complex �words� � mathematical functions

� into the dictionary. Currently, our modelome consists of only simple functions that

are smooth and monotonous and have not more than one in�ection point. However,

real processes are rarely described by such elementary models, and therefore, it is

necessary to develop the modelome further to the level of sums and products of

several functions.

The DLU approach proposed in this thesis grants an analyst with a list of plausible

functions for his/her data. To be able to choose the most suitable of them, one should

know to what extent their properties di�er. For this purpose the metamodel can be

of great use. The parameter spaces of two functions can be mapped into each other

along with sensory evaluation of the corresponding curves. Then it should be straight

forward to discover diverging properties between the functions.

Multi-way analysis is not as well known as two-way methods and is not widely

used, however, it has a great potential. Since data often has a (hyper)cube structure

as a result of the experimental design, it is important to learn more how to analyse

such data without losing relevant structure information.

As was mentioned above, a model is just a simpli�cation of the real world, and
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we do not claim that it can describe absolutely all properties of a biological system.

Nevertheless, a reasonable model can mimic the underlying phenomena present in

the data and narrow the region of study. With constant improvement and extension

of methods, it is easy to get lost in the world of multivariate analysis. However,

knowing in detail just a few number of methods and applying them with good care

may provide one with an appropriate model that captures the essential information

about the observed data and help to foresee the results of further experiments.
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Using GEMANOVA to explore the pattern
generating properties of the Delta-Notch
model†

Julia Isaevaa∗, Solve Sæbøa, John AndreasWyllerb, Kristian Hovde Lilanda,
EllenMosleth Faergestadc, Rasmus Brod and Harald Martense

In the area of systems biology, increasingly complex models are developed to approximate biological processes.
The complexity makes it difficult to derive the properties of such models analytically. An alternative to analytical
considerations is to use multivariate statistical methods to reveal essential properties of the models. In this paper
it is shown how the properties of a relatively complex mathematical model for describing cell-pattern development,
the Delta-Notch model, can be explored by means of statistical analyses of data generated from the model. ANOVA
is a well-known and one of the most commonly used methods for analyzing data from designed experiments, but
it turns out that it is not always appropriate for finding and exploring higher-order interactions. For this purpose a
multiplicative alternative—GEMANOVA—was used in the present paper for studying the Delta-Notch model, for which
the properties depend on higher order interactions between the model parameters. It is shown here how a forward
selection strategy combined with bootstrapping can be used to identify GEMANOVA models with reasonable fit to
the data, and it is demonstrated how new insight about the Delta-Notch model can be gained from interpreting the
GEMANOVA output. Copyright © 2010 JohnWiley & Sons, Ltd.

Keywords: GEMANOVA; dynamical systems model; multivariate analysis; sensory data

1. INTRODUCTION

In the area of systems biology, there is an increasing focus
on developing mathematical models that to some extent de-
scribe biological processes (see for example [1–4]). This mod-
elling approach reflects a so-called reductionist view of science,
namely, that the road towards understanding a biological sys-
tem goes through a causal understanding of the elements of
the process. Some, therefore, refer to this as the “bottom-up”
way of doing science. The opposite approach is the “top-down”
method characterized by studying the global patterns of a sys-
tem, typically through observational studies. Through an itera-
tive process involving hypothesis formulation, observation and
testing, the aim is to obtain a causal understanding of the
process, slowly working towards the elements of the process.
Hence, the aim of both approaches is the same, but they attack
the problem from opposite directions. The former is the typi-
cal mathematical approach, whereas the latter is the statistical
counterpart.

Historically, there has been a big “gap” between the steps of
the process, at which these two approaches give us insight. The
detailed mathematical models tend to grow into intractably large
systems if submodels are put together in an attempt to build
more global systems. The number of parameters soon becomes
so large that it is impossible to obtain a purely mathematical un-
derstanding of the properties of the model. On the other hand,
the statistical approaches are typically based on assumptions like
linearity and normality, which may be justifiable in order to study
a biological process at a global scale. Furthermore, statistics is

about finding associations, but unless carefully planned experi-
ments can be performed, the causality question is much more dif-
ficult to answer. In summary we may say that the strength of the
“bottom-up” approaches is the ability to study causality proper-
ties for sub-elements of complex biological systems, whereas the
“top-down” approaches are more suited for studying the global
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properties of the systems. In order to fill the gap between the
global and the detailed understanding of a system, it may, there-
fore, be beneficial to combine statistical and mathematical meth-
ods. The approach described in this paper is just one step towards
fulfilling this goal.

Another example of this is the paper by Veflingstad [5] where a
non-linear model for the dynamics of two pattern generating pro-
teins, Delta and Notch in a discrete cell network, was studied [6].
Even though this model only contained two state variables and
five parameters, it turned out difficult to relate the steady states to
the parameter settings and the choices of initial conditions. Only a
few studies are published on the mathematical exploration of the
pattern generating properties of this model (see [6,7]), and these
studies are for rather limited cell networks due to the complexity
of the model. The way Veflingstad dealt with this was to consider
the model as a data generating system. An experimental design
was put up in order to explore the impact of different parameter
settings on the resulting steady states. Furthermore, multivariate
statistical method (Partial Least Squares Regression, PLSR) was
used to relate steady state categories to the parameter settings
[8]. This combination of dynamic modelling and statistics was a
completely new approach towards increased understanding of
the Delta-Notch model.

Many biological processes are described by very complicated
mathematical models usually containing large number of param-
eters to be estimated [1–4]. It may be desirable to simplify the
model somehow by reducing the number of parameters, e.g., by
neglecting some factors in the biological model. It is important to
do so without loosing essential model properties. Thus, it should
be ensured that the disregarded parameters have only a slight
influence on the model. For recognizing whether a factor is sig-
nificant or not, statistical methods may be used. However, the
statistical toolbox also contains a wide range of other methods
suitable for the interactions between different factors and the
importance of the each term in a model.

ANalysis Of VAriance (ANOVA) is a frequently used method for
analyzing data from designed experiments and may be effective
for screening main and interaction effects of various factors to
some experimental output. A typical search procedure for a good
model is based on a forward selection scheme starting with the
inclusion of significant main effects, then second-order interac-
tions, and so on. Alternatively, a backward elimination procedure
may be adopted leaving out non-significant higher-order interac-
tions first [9]. The aim is usually a simple model, mostly with main
effects and as few interactions as possible, and usually the highest
order interactions are regarded as part of the noise. However, in
reality it may occur that the behavior of a system is defined by
complex interactions and not only by main effects. A large num-
ber of main effects and interaction effects included in the model
will typically lead to increased estimation errors for the effects
and few degrees of freedom left for the error sum of squares. So
unless the number of replicates is sufficiently large, the ANOVA
method may, therefore, fail to discover higher order interactions
that are truly present.

The potentially large number of parameters in ANOVA models
is partly a result of its hierarchical structure and the assumption
of additivity of effects. That is, in a customary way of fitting a
model, if a high order interaction is included to a model, e.g.,
A ∗ B ∗ C , then all lower-order terms containing A, B and C ex-
clusively, should also be in the model even if they are not sta-
tistically significant (this is also referred to as the principle of
functional marginality (e.g [10]). It is of course possible to omit

lower order terms from the model (unrestricted selection) which
will lead to a lower number of parameters to be estimated. How-
ever, using the principle of functional marginality is usually ad-
vised, otherwise the model might be forced to go through certain
points [10].

An alternative to the additive ANOVA approach is to arrange
the data in an N-dimensional hypercube with one dimension for
each experimental factor. This hypercube then is decomposed
into a series of outer products (tensor products) of latent vec-
tors resembling the Principal Component representation of two-
dimensional arrays. The importance of the various factors can
then be derived from these latent components, as described be-
low. This method, known as GEMANOVA (GEneralized Multiplica-
tive ANOVA) [11,12], was used to analyze simulated data from the
Delta-Notch model.

GEMANOVA has, through its multiplicative structure based on
tensor outer products, the potential for discovering higher-order
interaction effects in a parsimonious way. The number of param-
eters needed in GEMANOVA to describe the data may be much
less than when using ANOVA. Veflingstad [5] showed that higher-
order interactions seem to be relevant; and since complex in-
teractions might have more influence on the model than the
main effects, ANOVA would be less useful for exploring the sys-
tem, and the model obtained would be difficult to interpret. The
fact that GEMANOVA models are multiplicative in contrast to the
additive ANOVA models means that higher-order interactions in
GEMANOVA and ANOVA models are not identical; and leaving out
main effects from ANOVA will not give the same effects estimates.

The simulated data from the Delta-Notch model follow a quar-
ter fractional factorial design, which leaves many missing obser-
vations in the data hypercube. GEMANOVA handles missing data
by expectation maximization [13]. This means that the position
and amount of missing data will not bias the results unless cru-
cial information is lacking. Increased amounts of missing data
will, though, lead to higher variability on the estimated param-
eters. Using traditional ANOVA for analyzing fractional factorial
design data necessarily leads to confoundings between certain
main effects and interactions that makes it impossible to distin-
guish the effect of interactions from the main effects [14]. The
usual assumption, made in these cases, namely, that higher-order
interactions are not important and can be neglected, appears to
be a dangerous assumption for the Delta-Notch data. The formu-
lation of the GEMANOVA model also facilitates the estimation of
higher-order interactions without having replicates. For estimat-
ing highest order interactions in a full ANOVA model, replicates
are required, which may be costly to obtain. The absence of repli-
cates in the Delta-Notch model data was one of the reasons for
using GEMANOVA in the analysis.

If higher-order interactions are important, effect plots from GE-
MANOVA may be easier to interpret than ANOVA-based interac-
tion plots. The latter look much complicated, especially for higher-
order interactions, whereas it is clearly seen from GEMANOVA
plots which level of variable has more influence on the whole sys-
tem. GEMANOVA plots show, whether the factor has a positive or
negative effect when going from low to high levels in its values.

One disadvantage of GEMANOVA is the lack of good model fit
evaluation criteria. For instance, there are no uncertainty mea-
sures directly available for the model parameter estimates, which
makes significance testing more complicated. In this paper boot-
strapping of residuals is used for obtaining uncertainty measures
and for testing. Bootstrapping in GEMANOVA was first described
by Faergestad et al. [15].
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Figure 1. Schematic illustration of lateral inhibition mediated by Delta-
Notch signalling [3]. The Notch concentration in cell 1 increases with the
growth of the Delta level in the neighbouring cell. It causes decrease in
Delta-activity in the first cell and later on an increment of the Notch level
in cell 2. After some time, the cells obtain different shades of grey: dark
grey means high concentration of Notch and low concentration of Delta
and vice versa for white cells.

In Section 2 of this paper, we present the Delta-Notch model for
data generation and the GEMANOVA model as a general method
for exploring the properties of dynamical mathematical models.
Moreover, we present a strategy for searching for a good GE-
MANOVA model using a forward selection search and significance
testing using bootstrapping. In Section 3 we give the results from
the GEMANOVA analysis. In order to verify some of our findings,
we generate in Section 4 more data from the Delta-Notch model
using a finer scale on some of the parameters. We close this article
with a discussion of our findings in Section 5.

2. METHODS

2.1. The Delta-Notchmodel

The pattern-generating ability of two signalling proteins (Delta
and Notch) controlling cell differentiation [6] in a 2D hexagonal
lattice is modelled. The concentration of these two proteins de-
termines the colour of each cell. More precisely, the cell with a
high concentration of Notch will be of black colour, whereas a
cell with a high concentration of Delta will be white. If there is
much Delta and little Notch in a cell, the neighbouring cells tend
to have little Delta and much Notch. The mechanism of inter-
action between Delta and Notch in a 1D cell chain is shown in
Figure 1. For a 2D hexagonal lattice, the way the change of con-
centration of one protein triggers the change in another one, is
similar. In case a cell gets perturbed with an increased level of
Delta, an increase in Notch level is observed in the adjacent cells.
Further, due to lateral inhibition [6], the concentration of Delta
in those cells is decreasing with consequent diminution of Notch
level in the center cell. In the case where a 2D hexagonal lat-
tice of cells with equal levels of Delta and Notch (all cells having
the same colour) is slightly perturbed in Delta-Notch concentra-
tions, the protein concentrations tend to converge into a steady
state where the cells obtain different shades of grey. So, if one
cell obtains light grey colour, its neighbours will tend to become
darker. The patterns arising depend on the initial conditions and
parameter values.

The following five assumptions about the model were formu-
lated by Collier in [6]:

1. Cells interact through Delta-Notch signalling only with cells
with which they are in direct contact.

2. The rate of production of Notch activity is an increasing func-
tion of the level of Delta activity in neighbouring cells.

3. The rate of production of Delta activity is a decreasing function
of the level of activated Notch in the same cell.

Figure 2. The scheme for indexing a 2D hexagonal array of cells.

4. Production of Notch and Delta activity is balanced by decay
described by simple exponential decay with fixed rate con-
stants.

5. The level of activated Notch in a cell determines the cell’s fate:
low levels lead to adoption of the primary fate, high levels to
adoption of the secondary fate.

The non-linear dynamic model of how each cell interacts with its
six neighbours has five control parameters. Different combina-
tions of the parameters give different patterns (Veflingstad [5]).
The production rates of the proteins Delta and Notch are ex-
pressed in terms of sigmoidal function given as

S(x, �, p) = xp

xp + �p
,

where x is the amount of Delta or Notch, the parameter � is a
threshold parameter for the sigmoid curve, and p is a steepness-
parameter.

The Delta-Notch model may be defined as follows:

dDk

dt
= �

[
1 − S(Nk, �N, pN) − Dk

]

dNk

dt
= S

({D}k, �D, pD

) − Nk

Here � is defined as a ratio of decay-rates for Delta and Notch;
�D and �N are the threshold-parameters for Delta and Notch re-
spectively; pD and pN are the steepness-parameters for Delta and
Notch respectively; Dk and Nk are concentrations of proteins Delta
and Notch in cell k = 1, 2, . . .; and {Dk} refers to the average of
Delta concentration in 6 neighbouring cells and is defined by

{D}k = 1

6

(
Dk,j+1 + Dk,j−1 + Dk−1,j + Dk−1,j−1 + Dk+1,j+1 + Dk+1,j

)
,

where indexes are according to Figure 2.

2.1.1. The data

In order to explore the properties of the Delta-Notch model,
data were simulated using different parameter settings. All sim-
ulations were initiated from a cell-grid where all cells were grey
(equal amount of Delta and Notch in all cells, i.e., a homogeneous
steady state). But in order to obtain a pattern, a small perturba-
tion was imposed on the homogeneous background state of the
cells (the balance between Delta and Notch was disturbed by a
small amount in all cells). The perturbation is defined by two pa-
rameters: “PertSize” and “PertDir”. Here PertSize is the amount of
the perturbation (percentage of Delta in steady state), whereas

wileyonlinelibrary.com/journal/cem Copyright © 2010 John Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 626–634



6
2
9

Propertiesof theDelta-Notch model

Table I. Description of the attributes used by judges to evaluate the images

Name Description Low (1.0) High (9.0)

Whiteness Average color (NCS-system) No white White
MultiShade How many shades of grey No shades Many shades
Contrast How well the pattern is defined Hardly Clearly
Sharpness Blurred, indistinct pattern None Clear
StraightLines Presence of straight lines, direction is irrelevant None Many
PatternWhite White pattern on black background No clear white pattern Clear white pattern
PatternBlack Dark pattern on light background No clear dark pattern Clear dark pattern
Curls Presence of connected paths that cross None Many
Continuous Degree of continuous regions None High
Regular Degree of order None High
Associations Degree of associations None Many
MentalLoad Visual burden during analysis of image None High

PertDir is the direction of the perturbation: less than or more than
homogeneous steady state value (−1/ + 1). A more detailed de-
scription of how the data were simulated is given in [5].

Two levels were chosen for each of the five model parameters
and the two perturbation parameters: low and high; and a 27−2

fractional design was run. This gave 32 different images after con-
vergence of the models. For six of the parameter settings, the sys-
tem converged back to the state where all cells were grey with no
distinct pattern across the cell grid. These were regarded as miss-
ing values with respect to pattern descriptors, as presented below.
In addition, six “centerpoints” (intermediate values) were run, but
these were not used in the GEMANOVA analyses presented here
since GEMANOVA, as to yet, does not handle centerpoints.

The patterns emerging across the 2D grid are assumed to de-
pend on the parameter settings, but, due to random perturba-
tions, the exact patterns are not reproduced in consecutive runs
with the same parameter setting. Hence, patterns are difficult to
quantify numerically. Therefore, a sensory strategy, known from
food research, was used to summarize the patterns. Twelve pre-
defined descriptors were defined to describe the images. These
descriptors were: “Whiteness”, “MultiShade”, ”Contrast”, “Sharp-
ness”, “StraightLines”, “PatternWhite”, ”PatternBlack”, “Curls”, “Con-
tinuous”, “Regular”, ”Associations” and “MentalLoad” (see Table I,
[5]). The images were presented to eleven sensory judges who
evaluated each image for each descriptor on a scale from 1.0 to
9.0. GEMANOVA was then used to relate parameter settings to the
prescribed descriptor values. Figure 3 shows examples of grids of
cells obtained under different initial conditions.

To get an overview of the associations between the descriptors
and the parameter settings a PCA was run using the average
judge score for all descriptors and the results are summarized as
a correlation loadings plot in Figure 4. As can be read out of the
Figure, the variability in the data was mostly described by two
components.

Figure 3. Examples of patterns with high scores for descriptors: “White-
ness” (left), “Straight Lines” (middle) and “Continuous” (right). White
colour indicates low level of Notch and high level of Delta. Black colour is
vice versa.

Figure 4. Correlation loadings plot from a PCA analysis of the sensory
scoring data of the generated images.

PCA yielded a clear grouping of the descriptors, and, in order
to illustrate the use of GEMANOVA as a tool for relating patterns
to parameter settings, two descriptors were selected for further
analysis. The descriptor “Whiteness” was chosen from the group
“Whiteness”, “MultiShade”, “MentalLoad” and “PatternWhite”; and
“StraightLines” was chosen from the group “StraightLines”, “Con-
tinuous” and “Regular”.

2.2. GEMANOVA

GEMANOVA is a relatively new method of analyzing data that
are organized into an N-way array. It is suitable for data mostly
influenced by complex interactions between factors.

GEMANOVA is based on the N-way method known as PARAFAC
(PARAllel FACtor analysis) [12,16]. As an example, consider a situ-
ation where a response variable x is assumed to be influenced by
three factors, hence, the data can be arranged into a 3-way cube
(N = 3). A 3-way PARAFAC model is defined element-wise by

xijk =
Q∑

q=1

aiqbjqckq + eijk , (1)
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Figure 5. A PARAFAC model.

or by using tensor products by

X =
Q∑

q=1

aq ⊗ bq ⊗ cq + E, (2)

where i, j and k denote the level of the three factors; Q is the
number of model components; E is a residual three-way array
containing terms eijk of unexplainable variation; aq, bq and cq are
the loadings vectors for the three so-calledmodes of component
q; and ⊗ denotes the tensor outer product [11].

Figure 5 shows a pictorial rendition of (2).
GEMANOVA is different from PARAFAC in a sense that certain ef-

fects can be “eliminated” by setting all levels of the corresponding
loading vector equal to one. This means that a given component
in the model may depend on only a subset of the factors. Here
are some examples of some model equations that may occur for
a three-way array of data with modes a, b and c:

X = a⊗ b⊗ c+ E
X = a1 ⊗ b1 ⊗ c1 + a2 + E
X = a1 ⊗ c1 + b2 + E

The first model is a one-component model with one three-way
interaction; the second is a two-component (two effects) model,
where the second component contains only the mode a (modes
b and c are set to one); and, hence, this is similar to a main effect
in classical ANOVA. The third model has a first component with
two modes (a and c),—a two-way interaction effect, and a second
component with only the b-mode,—a main effect.

To show that GEMANOVA yields simplifications of models, let
us compare a non-hierarchical ANOVA-model with a third-order
interaction only and a one-component GEMANOVA model.

xijk = dijk + eijk (3)

xijk = aibjck + eijk (4)

where dijk is a three-way interaction and eijk are residual terms.
The ANOVA model is described by (3) and contains IJK param-

eters, whereas the GEMANOVA model is defined by (4) and has
I + J + K parameters. Hence, a reduction of model parameters is
obtained if one of the modes/factors has more than two levels
[11]. Furthermore, the inclusion of the highest order interaction
in an ANOVA model usually implies that all lower order interac-
tions also should be included, and this will increase the parame-
ter number dramatically (considering functional marginality here
[10]).

2.3. Model selection and validation

The average score across the judges was used with only one de-
scriptor at a time as a response variable and with the four most
relevant parameters (according to the results from Veflingstad [5])

as modes in the GEMANOVA model (�D , �N , pD and pN). A problem
with the GEMANOVA model is that there is no exact way of testing
significance of the modes or determining the number of compo-
nents. An alternative for model selection could be to evaluate the
models in terms of predictive power as was done by [17]. How-
ever, the absence of replicates in our case makes cross-validation
not an option and other model fit criteria must therefore be used.
Another problem is the large number of candidate models to
evaluate. The number of candidates rapidly increases with the
number of modes and the number of components.In order to
find a reasonable model that does not over-fit the data, we thus
developed a forward selection strategy combined with bootstrap
testing. The strategy is as follows: Start by fitting all possible one-
component models (involving from one to the maximum num-
ber of modes) and compute the residual sums of squares (ssq) for
each model. The ssq-values are plotted against the number of es-
timated parameters to guide the selection of a small set of models
with small ssq-values to be extended to two-component models.
The selected models are then extended with a second compo-
nent involving all combinations of the modes. A new evaluation
of ssq can then be performed if further components need to be
added. At the end, the ssq for all models considered are plotted
versus number of parameters to select a final set of models for
further analysis with bootstrapping as described next.

2.3.1. Bootstrapping

A non-parametric model-based bootstrap, as described in Liland
and Faergestad [18], was used for significance testing. In this pro-
cedure a GEMANOVA model is first fitted to the original data. Then
the fits and the residual for every data point are calculated. In the
bootstrap loop random samples of the residuals (with replace-
ment) are added to the fits, and the model is refitted to these
“bootstrap samples”. This procedure is repeated B times yielding
a set of B estimated models. The significance of a given mode
is determined by comparing the estimates based on the original
data with the distribution of estimates based on the bootstrap
data sets.

One way of determining if there is a consistent positive or neg-
ative slope between two levels of a factor is to count how many
of the bootstrapped models have the opposite sign of the slope
compared to model for the original data. If we denote the sign of
the slope between the levels by df,i,j , where f is the component
number, and i and j denote the number of the levels, we can
construct a hypothesis for testing the sign of the slope:

H0 : df,i,j = 0

H1 : df,i,j �= 0
.

This will have an estimated p-value of rejecting the null hypoth-
esis H0 when H0 is in fact true:

p̂ = 1 + #
(
df,i,j �= db

f,i,j

)

B + 1
,

where db
f,i,j is computed from the b-th bootstrap replicate. A p̂-

value close to 0 would indicate that there is a consistent direction
in the effect levels that has not been generated by random noise
in the data.

Using a non-parametric bootstrap means we do not have to
make any assumptions about the distribution of the data. With
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the model-based bootstrap, we re-sample from the residuals,
which is a standard bootstrapping technique for linear models
(Efron and Tibshirani, [19]), but should be equally applicable in
GEMANOVA models. In contrast to using jack-knifing for esti-
mating uncertainty, non-parametric model-based bootstrapping
does not remove any portion of the data. This can be of critical
importance, especially in designed experiments, as key structural
information connected to a limited number of samples could po-
tentially be lost when removing observations, which might lead
to unrealistic estimation of the uncertainty.

The current implementation of GEMANOVA and its underlying
PARAFAC algorithm is prone to errors due to non-unique ordering
of component, and possible pair-wise flipping of signs, and false
convergence of models. In an automated process like the boot-
strap, all these problems could lead to faulty bootstrap replicates
giving unreliable results. Both the shifting ordering and sign-
flipping can be almost completely eliminated from the bootstrap
if the initial PARAFAC model produced in the original GEMANOVA
modelling is used as a starting point for the estimation algorithm
for the bootstrapped models instead of random initializations.

False convergence is sometimes a problem in complex models
or when using data with missing observations. This can be seen,
for instance, when models have poorer fit to the data or need a
much higher number of iterations than could be expected, when
two components are equal but with opposite signs, or when two
components are small and almost identical. In the bootstrap al-
gorithm used in this paper, bootstrap models having an ssq con-
siderable larger than the ssq for the original model, or a very large
number of iterations before convergence, are discarded as false
convergences.

3. GEMANOVA RESULTS

The results of GEMANOVA analysis are presented as figures show-
ing the estimated effects of the different levels of each factor.
From the plots it can be observed which level of the factor that
gives high scores for the given pattern descriptor. Also it is pos-
sible to make conclusions on how the parameters influence the
score of the given descriptor, for instance, which parameters in-
fluence the scoring of “Whiteness”.

GEMANOVA was run for the Whiteness descriptor using the
stepwise forward method. The ssq-values versus the number of
parameters are shown in Figure 6.

Figure 6. The ssq of one- and two-component GEMANOVA models for
“Whiteness” vs number of parameters.

Figure 7. The fits vs the data for the ”�D ∗ �N ∗ pD + �D”-model for
“Whiteness”.

The forward selection strategy pointed to the the two-
component model “�D ∗ �N ∗ pD + �D” as a good model with small
ssq and not too many parameters. This model was picked out for
bootstrapping in order to test the significance of the included
parameters. (Since running the bootstrap takes much time (ap-
proximately 5 hours for B = 1000), it was applied for only one
model for each attribute.) As can be seen from the Figure 6, in-
creasing model complexity does not reduce the ssq much. Fur-
ther, choosing simpler models (with six or four parameters) gave
considerable increase in the ssq-values. Moreover, Figure 7 shows
that the model has a very good fit to the data. From this point of
view, “�D ∗ �N ∗ pD + �D” might be the best model to investigate
further.

The results from the bootstrapping of this model are shown in
Figure 8. The small p-values mean that the modes of the chosen
model are significant for the Whiteness descriptor. It is also con-
firmed by the fact that the histograms for the estimated effects
from the bootstrap models are not overlapping for the low and
the high levels of the parameters. One can see from the figure
that a high level of �D and low level of �N and pD , images will most
likely be bright and, hence, will get high scores from judges with
regard to “Whiteness”. All parameters in the selected model were
found to be significant, and no further simplification of the model
seemed to be necessary.

The same procedure for seeking a model was used for the re-
sponse “StraightLines”. In this case the, “�N ∗ pD + �N ∗ pN”-model
was selected. As can be seen from Figure 9, the parameters pD and
pN seem to be not significant. Therefore, a model without pN in
the second component was tried in order to find a better model.
A new bootstrapping gave the results that the second compo-
nent, consisting only of �N , had a large p-value (equal to 0.246).
Finally a model with only one component, containing �N and pD ,
was analyzed. As can be seen from Figure 10, both parameters
included in the model were then significant. This illustrates how
the forward selection procedure combined with bootstrapping
can identify a good model with a good fit and with only signifi-
cantly contributing parameters. Comparing the fits of both of the
models vs the data, one can see that the two-component model
describes the data slightly better (Figure 11), so the final decision
on which model to choose should in this case probably be based
on a follow up study with more refined scales for the �N and the
pN parameters.
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Figure 8. Effects and bootstrap plots for the “�D ∗ �N ∗ pD + �D” model for “Whiteness”. Each row of the figure corresponds to a component of the
GEMANOVA model. The first component has three modes (loadings for pN are set equal to 1 for both levels). The second component has only
contribution from the �D mode. The blue line segments connect the estimated effects for the low and high levels of the parameters. The p-values indicate
the significance of each mode to the model. The histograms are the distributions of the effect estimates as found by bootstrapping. As can be seen, to
get the maximum effect for the descriptor “Whiteness” (that is brighter images and high scores), one should keep �D at high level, whereas �N and pD

should be at the low level.

Figure 9. Effects and bootstrap plots for the “�N ∗ pD + �N ∗ pN” model for the descriptor ”Straight Lines”. pD and pN seem to be non-significant and may
be left out. �N has a positive effect in the model and provide high scores “StraightLines”.

Figure 10. Effects and bootstrap plots for the “�N + pD” model for the descriptor “StraightLines”. Both �N and pD are significant for this model according
to p-values and non-overlapping histograms for the bootstrap estimated effects. A high level of �N and a low level of pD appears to give high scores for
“StraightLines”.

4. SIMULATION

In order to check some of the GEMANOVA results, some pat-
tern simulations were performed. Different sets of parameter val-
ues that according to the GEMANOVA results were supposed
to give high scores for the descriptors were chosen for the
simulations.

As concluded from Figure 8, a high level of �D and a low level of
�N and pD should give high scores for the “Whiteness” descriptor.
Therefore, in the simulations �D and �N were set equal to 0.8 and
0.2 respectively. When it comes to the parameter pD , this was
tested at a more refined scale between 1 to 10 in order to explore
the influence of this parameter to the Whiteness of the patterns..
The parameter pN did not contribute to the scores for “Whiteness”
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Figure 11. The fits vs the data for two models for “StraightLines”:
“�N ∗ pD + �N ∗ pN”- and “�N ∗ pD”-models on the upper and lower plots
respectively.

Figure 12. Patterns simulated for the set of the parameters �D = 0.8,
�N = 0.2. For the left image pD = 1, for the right one pD = 10.

according to the GEMANOVA results, and this parameter was,
therefore, held constant throughout the simulations.

For all values of pD , the images appeared to be bright images
likely to get a high Whiteness score (Figure 12), but the images
appeared to be slightly darker for high values of this parameter.
These simulations supported the GEMANOVA results in its con-
clusion that keeping a high level of �D and low level of �N and pD

yields high scores in “Whiteness”.
For “StraightLines” GEMANOVA gave the conclusion that high

scores are associated with �N at a high level and pD and pN at
the low level. However, such parameters combination yields pic-
tures being homogeneously grey (initial state is a steady state),
corresponding to a missing value combination in the descriptors.
But bootstrapping revealed that there might be a better model
only with one component with the modes �N and pD , indicating
that the parameters pN and �D are not influential. Hence, the GE-
MANOVA results are somewhat inconclusive with respect to the
importance of the parameter pN . Therefore, it was decided to in-
vestigate its importance by means of simulating patterns holding
�N and pD as fixed while varying pN . If pN does not play any signif-
icant role for generating patterns, then images should be similar
in the sense of appearance of straight lines no matter the value
of pN . So the following values of the first three model parameters
were chosen: �D = 0.6, �N = 0.7, pD = 3. The remaining parame-
ter, pN , was tested at multiple values between 1 and 10. Figure 13
shows that indeed different patterns arise for different values of
pN . Grey images were observed for values of pN up to about 5 or
6. For slightly large values the patterns became grainy. It means
that for values from 1 to 5 the initial state is confirmed a steady
state, stable to small perturbations, and somewhere on the inter-
val between 5 and 6 this stability is disturbed and a bifurcation

Figure 13. Patterns generated under similar initial conditions: �D = 0.6,
�N = 0.7, pD = 3. The difference was only in levels of pN . For the image on
the left hand side pN = 1 , for the right hand side image pN = 10.

Figure 14. Images for patterns with the following set of the parameters:
�D = 0.6, �N = 0.7, pD = 3. For the left picture pN = 5.4, for the right one
pN = 5.5.

point is likely to present. In order to localize the bifurcation point,
further simulation were done on an even more refined scale on
interval from 5 to 6. From Figure 14 it can be observed that the
bifurcation point has a value somewhere between 5.4 and 5.5.
These results were checked analytically with the condition for
stability of a steady state (Collier [6]). It has been discovered that
for a two-dimensional array of hexagonal cells the homogeneous
steady state is linearly stable, if and only if

|(fg)′(x0)| < 2,

where

f (Dk ) = fg(Nk ) = S({D}k, �D, pD)

g(Nk ) = 1 − S(Nk, �N, pN)

and (g(x0), x0) is a homogeneous steady state under the assump-
tion, that the concentrations of Delta and Notch do not vary from
cell to cell [6]. The inequality was numerically checked in Matlab
using various values of pN on the range from 5 to 6, and also these
results point to the presence of a bifurcation point between 5.4
and 5.5.

5. DISCUSSION

In this paper descriptors of image patterns generated from the
Delta-Notch model were analyzed as sensory data. The data were
generated under different initial conditions, evaluated by sensory
judges and organized into a multidimensional array. The purpose
was to explore the properties of the system, to find out, which
parameters do not influence the data and which of them play sig-
nificant roles. This may be important for the further simplification
of the mathematical model of the data and for obtaining a bet-
ter understanding of its properties. Since the Delta-Notch levels
are controlled locally in each cell by five parameters and the grid
pattern consists of 2500 cells, more than ten thousand parame-
ters control the whole system. Hence, it has been a challenge to
obtain an understanding of the pattern-generating properties of
the model. Using multivariate statistical methods is a new way
of relating parameter settings to more global properties (such
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as patterns) of a complex system of interacting components. This
can, for instance, be done with statistical methods such as ANOVA,
PLS, PARAFAC or GEMANOVA.

Firstly, PCA was used to investigate correlation between pa-
rameters and descriptors, to classify groups of attributes. Based
on these results, a set of descriptors was chosen for further inves-
tigation with GEMANOVA in this paper. Two descriptors and four
parameters were selected: “Whiteness” and “StraightLines”, and
�D , �N , pD and pN . Some descriptors from the group “Associations”,
“PatternBlack”, “Contrast” and “Sharpness” were indeed analyzed
as well. The results are not presented in the paper since no good
model was obtained. Two-component models had quite large
residuals even with all the modes included. Some of them did
not even converge. According to the PCA results, those attributes
should have been mostly described by the first component. It
might be, that PCA did not capture significance of the third com-
ponent and that group of descriptors is lying on the third axis. If
so, then GEMANOVA analysis was the right about including more
than two components to the model. But at the same time, adding
more components to the “StraightLine”-model did not give a sig-
nificant reduction in ssq. Therefore, only two-components models
were shown here.

GEMANOVA was chosen as a method for further analysis due to
reasons described in the introduction. The Delta-Notch model
seems to be defined mostly by higher-order interactions (as
shown in [8]), which are quite difficult to investigate with ANOVA.
Two attributes were explored with a forward selection/bootstrap
scheme to obtain good GEMANOVA models. There is no precise
criteria for evaluating GEMANOVA models (since no assumptions
about data and errors distribution and variance are made). There-
fore, it should be decided beforehand what is a good model: the
one with small residuals, the one with the fewest parameters etc.

The GEMANOVA results pointed to a two-component GE-
MANOVA model for the attribute “Whiteness” involving an in-
teraction between three of the parameters. Hence, the statistical
analysis pointed directly to the parameter combination yielding
high score with respect to the global property of pattern white-
ness.

For “StraightLines” GEMANOVA pointed out as the best model
(in a sense of small residuals and a small number of parameters)
the one that gave grey images after simulation. Since scores for
this attribute are not defined for such images, there was a miss-
ing value for this parameter setting in the original data. Due to
the fact that GEMANOVA in the estimation process imputes “neu-
tral” values for the missing values, it will be the other corners of
the multidimensional data cube that control the estimation of
the multiplicative parameter effects. The imputations may be re-
garded as neutral from an estimation point of view, but the actual
value being imputed is in this case not interpretable. The boot-
strap testing revealed, that the parameter pN was non-significant,
which led to a reduced model for “StraightLines”. But simulations
gave the opposite conclusion, that pN does influence the degree
of “StraightLines”. So, in summary, the GEMANOVA analysis (and
probably most other statistical analyses) is highly influenced by
the presence of missing values corresponding to “basins” in the
parameter space, for which the response variable (here “Straight-
Lines”) is not defined. However, the statistical analysis did anyhow
lead to the discovery of a bifurcation point on the interval from
5.4 to 5.5, where the steady state is changing from being stable
to being unstable. Probably selecting values of pN larger than 6
for data generation would lead to a model with clear significance
of pN .

Besides presenting the GEMANOVA approach for exploring the
properties of a complex mathematical model, this paper has also
shown that the interplay between multivariate statistical mod-
elling and purely mathematical considerations may be fruitful for
this purpose. The GEMANOVA analysis with subsequent simula-
tions revealed the presence of the bifurcation point, and this was
confirmed by numerical approximations based on purely math-
ematical properties pointed out by Collier [6]. The complexity of
the Delta-Notch model can, of course, not be captured by a sim-
ple statistical model, be it an additive or a multiplicative one, but
combining statistical and mathematical tools iteratively seems
to be a path for gaining new knowledge about the Delta-Notch
model.
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The phenomenon of line curvature – that a smooth line z= f(x) deviates from being straight – is often
observed in scientific data. Fitting nonlinear mathematical models to curves today requires slow iterative
search processes prone to errors due to local optima. A new generic method, the direct look-up method, is
presented for mathematical description of such curvature with less subjectivity and simpler parameter
estimation. The new modelometric method is based on bi-linear metamodelling to emulate a whole set of
potentially relevant nonlinear models capable of describing curvature. A comprehensive set of 38 nonlinear
mathematical models was here collected from different scientific disciplines. Each model can generate a wide
range of monotonous sigmoid or arched output shapes depending on their set of input parameter values. For
each nonlinear model, its model phenome – its repertoire of possible output curves – was established once
and for all by computer simulations statistically designed to fill the relevant model parameter space at a
chosen resolution. This simulated curve set was compressed by Principal Component Analysis. The resulting
set of 38 bi-linear metamodels emulates the input–output behaviour of the nonlinear models. Then, to
parameterise new curves, the input data of each curve were fitted to all relevant nonlinear models via their
metamodels. Models with good enough fit were listed as plausible, and their unknown parameter values were
estimated from their closest known simulation design points. Thereby, the slow, iterative nonlinear curve
fitting was replaced by a fast linear projection with a simple look-up quantification. The traditional problem of
choosing initial values to avoid local optima was eliminated. The multivariate metamodelling allowed a wide
set of nonlinear curvature descriptions to be handled.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Linear and nonlinear curve-fitting

In different fields of experimental science researchers often collect
continuous batches of data where a dependent variable (response
variable) z is related to an independent variable denoted by x. Then
the data may be denoted as vector sets [x, z]. The relationship
between x and z may be visualised as curves and represented
symbolically by

z = f xð Þ: ð1Þ

If f is a smooth function of x, mathematical modelling is useful for
quantifying it. But if relationship z= f(x) is a curve that requires
nonlinear mathematical modelling, the process of obtaining model
parameters can be slow, cumbersome and uncertain. We here present
a faster, safer and less subjective way to parameterise data with

curvature in z= f(x) relationships. For simplicity, we focus on the
simplest case, with only one x-variable and one z-variable.

Simple additive (linear) functions of the straight-line type

z = b0 + x⋅b1 ð2Þ

can give a reasonable local approximation to smooth, weakly non-
linear curve types z= f(x). Moreover, linear functions are easy to deal
with statistically since all their model parameters can be estimated in
a single step by regression, usually by versions of ordinary least
squares (OLS) or weighted least squares (WLS) regression [1]. Single-
step linear regression models may, therefore, for instance, be used for
development of calibration models [2], which can then be applied for
predicting zi from new values xi or vice versa. However, graphical
displays of z vs x from a complex system often show a curved line that
our background knowledge tell us cannot be meaningfully repre-
sented by the straight-line model. A curved polynomial model

z = b0 + x⋅b1 + x2⋅b2 ð3Þ

may possibly give adequate fit to the data. But although polynomials
are also additive and, hence, solvable by a simple one-step regression,
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the polynomial coefficients or parameters b0, b1 and b2 can seldom
give insight into the underlying causal processes. To give scientific
meaning to strongly curved relationships z= f(x) usually require
nonlinear mathematical modelling. Examples of this come from
physiological data (response z= f(stimulus x) [3,4]) , growth curve
data (cell count z= f(time x) [5]), kinetic reactions (concentration
z= f(time x) [6]), regulatory mechanisms (rate z= f(state x) [7]), as
well as statistical distributions (cumulative frequency z= f(level x)
[8]). If response z in Eq. (1) was generated by x by a nonlinear
process, we may approximate this known or unknown nonlinear
phenomenon by one or more nonlinear mathematical models

z = Fm x;pmð Þ;m = 1;2;…;M; ð4Þ

where Fm(⋅) is a mathematically defined function and pm =
pm;1; pm;2;…
h i

is the vector of parameters for this model m for a

given data set [x, z]. If a good choice of the functional form F(⋅) is
available, one can use it to summarise lots of input data [x, z] in
terms of a few estimated parameters pm for interpretation. But if the
functional form of the causal phenomenon is uncertain, and a
mechanistic modelling is called for, then a range of different
mathematical models Fm(⋅), m=1, 2, …, M, should be tried, to see
which of the alternative nonlinear models describe the data
sufficiently well. This can be difficult in practise: Fitting nonlinear
models to observed curves can be challenging, both in terms of
computational load and uncertainty of the parameter estimates due
to local optima, especially if the number of curves is very high.

The fitting of a nonlinear model to input curve data may
sometimes be simplified by linearising the input variables in
nonlinear transformations (e.g. z= log(zinput) or x=1/xinput) and
then applying linear regression to the linearised variables. But the
price of this may be a more complicated heteroscedastic error struc-
ture in the transformed data [9], that may generate high statistical
estimation errors unless handled correctly. Moreover, many nonlinear
models are simply impossible to linearise well enough to allow single-
step regression fitting.

A more versatile curve fitting approach is presented by numerical
approximation. The iterative search process is intended to find
parameter combinations pm in z = Fm x;pmð Þ that minimise or
maximise a chosen criterion. The most common criterion is the least
squares (LS), in which the sum-of-squares of the lack-of-fit between
data z and model Fm x;pmð Þ is minimised [1]. But other criteria are
also common. For instance, in mathematical statistics, maximum
likelihood (ML, [1]) estimator and the Bayes estimator [1] employ
distribution-based criteria that typically depend on certain condi-
tions for or assumptions about F(⋅) and the parameters p, such as
assumptions about the distribution of z given x (ML and Bayes) and
certain prior assumptions about the parameters p (Bayes). To
optimise the criterion, the parameter estimation requires numerical
optimisation [10,11] using a numerical search process, e.g. an
iterative, so-called “hill-climbing” method.

1.2. Problems with nonlinear curve fitting

Iterative fitting of nonlinear models to data is important but
wrought with problems. Curve-fitting methods like simplex optimi-
sation [10] or conjugated gradient optimisation [12] can be compu-
tationally time-consuming. Iterative hill-climbing methods are,
therefore, impractical in cases where a massive number of observed
data sets [x, ziobs], i=1, 2, …, N, are to be described by nonlinear
modelling, as in the case of Isaeva et al. [13], where N170,000 curves
[14] had to be fitted to a five-parameter logistic (5PL) function [15].
Parallel computer processing does not help much since it is difficult to
foresee how many clock cycles are needed in each iterative curve

fitting process. Faster estimation methods for nonlinear functions are,
therefore, needed.

To avoid over-parameterisation, i.e., overly optimistic fit to the
empirical data, it is, of course, important to assess the modelling
critically, both by cross-validation and by test data acquired
independently later on. But more importantly, it can often be difficult
to select the right mathematical form of the function z = F x;pð Þ by
looking at the input data, especially if the system is complex and the
data are noisy, which is often the case in real experiments. So it may
be a good idea to try several different mathematical models
z = Fm x;pmð Þ, m=1, 2, …, M, for each input data set [x, ziobs]. On
the other hand, the high computational load in nonlinear curve fitting
makes it tempting for scientists to fit only one chosen nonlinear
model, z = Fchosen x;pchosenð Þ, to their data — even in situations where
it is not clear that the chosen mathematical form is the best causal
representation of the system at hand. The model may serve its
immediate purpose of summarising the data, but that goal may be too
narrow: An apparently not-too-bad fit to the data may be deceptive
and misleading. Another reason for shunning away from trying more
than one model may be the fear of making false discovery if trying too
many alternative explanatory models on too few data. This is per se a
sound scepticism, but hardly a big problem unless the number of
alternative models is so high that it approaches the number of data
points in [x, z], and the data are noisy. Another possible reason why
scientists may stick to only one nonlinear model is that the scientists'
choice of a mathematical model is a human activity with a strongly
cultural, even subjective component. In the end, a choice of a
nonlinear mathematical model form usually has to be made. But it
would be desirable to delay that decision until it is clear how different,
potentially plausible models fit the observed data.

Another problem with iterative numerical estimation methods is
the risk of getting stuck in local optima, which implies a sensitivity to
the starting values chosen for the parameters prior to the search
process. In statistics this is a well known problem in numerical ML-
estimation. But also the Markov Chain Monte Carlo methods [16–18]
frequently used in Bayes approximations may fail to converge (or
converge very slowly) towards the desired target [19]. Unfortunately,
local numerical sensitivity analysis does not reveal that the attained
optimum is local rather than global. Hence, iterative search processes
can give erroneous results without the user knowing it, due to local
optima. A remedy is to repeat the search process from different
starting points, chosen, e.g., according to some statistical design, and
retain the optimal solution with best fit to the data. But that increases
the computational load and still cannot guarantee that the global
optimum has been found. It would be desirable to have an estimation
method that overcomes the problem of local suboptimal solutions and
that makes the choice of starting values irrelevant.

1.3. Nonlinear curve fitting by bi-linear metamodelling

In order to deal with the problems listed above, an improved
method for fitting nonlinear models to curves should be fast and
accurate, and without a need for prior unnatural assumptions and
conditions (robust method); it should be objective in the sense that a
wide range of functions may be considered; and it should not have
any numerical instabilities or problems with local optima and choice
of parameter start values.

The new generic method to be presented here is based on the fact
that a nonlinear mathematical model can usually be emulated by a
simpler multivariate metamodel [20,21]. For a given problem type
or phenomenon (e.g., smooth curves), a wide range of potentially
relevant nonlinear models are collected. For each nonlinear model,
its so-called model phenome (the collection of all relevant types
of outputs from the model, [20]) is computed, once and for all,
by extensive simulations that span the model's design parameter
space at sufficient density according to a statistical design. A
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compressed bi-linear metamodel is generated by Principal Compo-
nent Analysis (PCA) of the many calibration curves in this model
phenome. Each new unknown curve can then be fitted by the
nonlinear functions via these metamodels: Simple SIMCA classifica-
tion [22] (linear projection onto these bi-linear metamodels) reveals
the best-fitting models for this curve. The unknown nonlinear model
parameters are then estimated, using the known parameter values
of the simulated curve(s) in the model phenome data base, that
resemble the unknown curve the most.

An implicit version of the new parameter estimation method was
used by Kohler et al. [23] for optimised correction of infrared cell
spectra by Extended Multiplicative Signal Correction (EMSC) and by
Kohler et al. [24] for correction of time warping problems in mass
spectra. The method is here demonstrated for nonlinear modelling of
a commonly observed nonlinear phenomenon: curvature (arch- or
sigmoid-like shapes) in observations z= f(x). The method is illustrat-
ed for two situations:

1. The exactmathematical formof the underlying causal structure f(⋅)
is unclear, so that many different nonlinear models z = Fm x;pmð Þ,
m=1, 2, …, M, must be tested.

2. The choice of nonlinear model z = Fchosen x;pchosenð Þ has already
been made, and the problem is to estimate the unknown
parameters pchosen in a fast way without danger of local optima.

A comprehensive set of potentially relevant, but mathematically
different nonlinearmodelswill be identified, each capable of generating
a wide range of similar-looking smooth curves z = Fchosen x;pchosenð Þ
with 0 or 1 inflection point, depending on their parameter values. The
models range from kinetic and regulatory models in biology and
chemistry, via cumulative statistical distributions to trigonometric
functions. The models are very different from each other in terms of
parameters, and onemight say that parameter estimates from this new
method, as from fitting data with polynomials, do not give any insight
into the phenomenon either. However, such a collection of models,
yielding a set of several alternative solutions, might open up new
underlying processes that a scientist did not think of. Hence, in addition
to presenting a useful estimation method, the present paper also
addresses the mathematical richness with which the phenomenon of
curvature can be addressed.

In the next sections we describe the new method, the direct look-
up (DLU)method, whichwe claim largely satisfies these requirements
(Section 2). We then illustrate the method on simulated data in
Section 3 and discuss our results to identify pros and cons of the
method in Section 4.

2. Theory

2.1. Choice of relevant nonlinear mathematical models

The general idea behind the new approach is to construct a large
“library” of alternative nonlinear functions with an extensive set of
realisations – a model phenome – for each function. One would then
be able to compare a new set of input data from an experiment with
the library curves and determine the functions and their parameter
values that best describe the data, simply by finding the closest
matches in the library. To make this approach feasible, the library has
to be organised in such a way that it holds as many potential functions
as possible, and the look-up process must be fast. Although the look-
up principle is simple for one given function, there are many
challenges that need special attention in order to make it work
effectively. For instance, verymany potential curves could be added to
the library, and a number of alternative functions may more or less
describe the same phenomenon. Hence, in the process of building the
library we have to deal with issues like: sampling, experimental
design, storage problems, pattern recognition and nearest neighbour
localisation. The steps towards building a fully functional look-up
library are described in the following.

2.1.1. Choice of relevant models
To describe the phenomenon of a simple curvature in relationships

z= f(x), we limit ourselves to be able to fit smooth monotonous curves
with 0 or 1 inflection points. This includes increasing or decreasing
curves of an arch-like or sigmoid character. A wide range of function
types z = Fm x;pmð Þwere collected fromdifferentfields of science.Most
of the functions in the library yield curves of a sigmoidal form since such
curves are commonly observed in many natural processes (e.g., growth
of bacteria [5]). The set is not intended to be complete, but should cover
a verywide range of curvature, and thus form the basis for developing a
full library of mathematical functions yielding simple curvature.

The left panel of Fig. 1 illustrates the range of curves attainable
with one of the nonlinear functions, the logistic function

z = F x; p1; p2ð Þ = 1
1 + exp

−p1x + p2ð Þ: ð5Þ

The curves were simulated from Eq. (5) using different parameter
combinations (see Table B.1). This function can generate many
different kinds of curves, ranging from approximately straight lines
to almost step functions.

Fig. 1. Examples of curves generated by one model: the logistic function – Model 24 in Table B.1 in Appendix B – under different parameter combinations. One hundred curves were
randomly selected from the 654 curves stored in the model phenome library for this function. On the left panel – curves before preprocessing; on the right panel – after preprocessing.
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The first version of the library consists of a variety of function
types, and amongst them are: the Hill function, the logistic function
and the Michaelis–Menten equation from chemistry/biology, some
trigonometric functions and some cumulative distribution functions
(CDF's) from statistics, e.g.:

Hill z =
xp

xp + θp ; ð6Þ

5PL z =
1

1 +
x
p1

� �p2
� �p3

; ð7Þ

Sinus z = sin p1· πx−π
2

� �h i
; ð8Þ

Michaelis–Menten z =
x

x + 0:01 + p1
; ð9Þ

CDF of normal distribution z =
1
2

1 + erf
x−p1ffiffiffiffiffiffiffiffi
2p22

q
0
B@

1
CA

0
B@

1
CA; ð10Þ

where erf (x) is the error function erf xð Þ = 2ffiffiffi
π

p ∫x
0 e−t2dt.

For completion, some more naive functions like a straight line and
polynomials up to the third degree are also included. A full list of the
38 functions selected is given in the Table B.1 in Appendix B.
Additional parameters describing scale (slope) and offset (baseline)
were omitted from the core function parameters and considered as
preprocessing parameters (see Section 2.1.3).

2.1.2. Choice of design for the computer experiments
Having chosen what functions to include, the next step was to

generate the library of curves for each function, – its model phenome
– by a computer simulation. The parameters are continuous for most
of the functions (except a few number of them that have integer
parameters). In the library only a finite set of curvesmay be computed
and stored. Hence, the parameter range must be explored efficiently
in terms of a finite number of curves. To span the relevant range of
parameter space evenly, factorial designs with many levels of each
factor were employed. It resulted in many curves for each function in
Table B.1 (except for a few functions chosen to be implemented with
no parameters except slope and offset— they are represented by only
one curve). For functions with less than four parameters, a fine grid of
values was chosen for all parameters, and curves for all combinations
of values in the grid were generated. For functions with more than
three parameters, combining all possible combinations of so many
parameter levels will lead to a combinatorial explosion. Therefore,
the multi-level binary replacement (MBR) method, a new method
for reduced multi-level multi-factor designs [20,21] may be used for
choosing a sensible combinations of the factor levels. The MBR design
methodwas demonstrated here for the generalised logistic curvewith
four parameters (Model 26 in Table B.1), resulting in 256=28 curves.

Thus, for every functional model Fm x;pmð Þ, m=1, 2, …, 38, there
were generated Nm curves of a form

zj;m xð Þ = Fm x;pj;m

� �
; ð11Þ

where abscissa x is, e.g., time from 0.001 to 1; pj;m is a parameter set
for simulation j for modelm. Vector zj, m(x)=[zj, m(0.001),…, zj, m(1)]
forms time series vector zj, m(1×K) with K data points.

2.1.3. Preprocessing
A certain standardisation step had to be adopted for the library

curves, for two reasons. First of all, the preprocessing had to represent
the curves in a way that allowed efficient bi-linear metamodelling. At

the same time, the preprocessing should ensure that both the x and
the z variables were modelled in a way that was independent
of the unit in which they were originally given. All simulations
were calculated for x in the interval x∈ [0.001;1]. The interval value
xmin=0.001 was chosen so that x=0 was ignored to avoid division
by zero for some functions. The interval value xmax=1 was chosen so
that certain trigonometric curves gave the desired curvature type.
Moreover, we chose to ensure that z increaseswith x in all curves; this
required that decreasing curves were flipped in to increasing ones.
And finally, we required that the z∈ [0;1]. Hence, after the initial
simulations, each curve was forced to start at (0:001;0), to have their
functional values between 0 and 1 and to be increasing.

For simplicity, standardisation of the x-range was not implemen-
ted since only the interval [0.001;1] was considered for all simu-
lations. However, a new curve may later be observed on another
interval. An x-preprocessing must, therefore, be done to make it
compatible with the curves in the data base. In case preprocessing of x
is needed, one may do the following:

x = xmin+ xmax−xminð Þ⋅
xinput−xmin0

xmax0
−xmin0

; ð12Þ

where xinput is whatever abscissa is originally used, with [xmin0
, xmax0]

being the minimum andmaximum of xinput, [xmin;xmax] is the desirable
x-interval (in this case [0.001;1]).

After adjusting the x-interval, preprocessing of z is also needed:

yj;m =
zj;m−offj;m

slj;m
; ð13Þ

where offj, m and slj, m are offset and slope parameters such that
yj,m(0.001)=0 and yj,m(1)=1. From now on, z will represent ordi-
nates of simulated ormeasured input curves and y the corresponding of
preprocessed curves.

All transformations mentioned above are linear, and, therefore, give
no critical change of the shapes of the curves. Furthermore, all of them
can be easily reconstructed given the values of the preprocessing
parameters. An example of preprocessing of the logistic curve
simulations can be seen in Fig. 1, right panel. Fig. 2 displays 100
randomly chosen preprocessed curves from the whole library of 38
differentmodel types. It canbenoticedherehowdifferent the curves are.

2.1.4. Compression of the model phenomes
After generating the curves for many different parameter value

combinations for each of 38 function types, the total number of
simulated curves was approximately 50,000. Since all preprocessed
curves are increasing from 0 to 1, and the function types for given
parameter values may give rise to similar curves, there is a lot of
redundancy in the data. Therefore, the simulated data for each
function were compressed by means of a bi-linear, mean-centred
Principal Component Analysis (PCA), in such a way that a small set of
basis vectors that spans the majority of the variation in the complete
curve set. For instance, assuming that we have 1,000 simulated curves.
Instead of saving all the curves, just a few “basal” curves (the mean
curve and orthonormal loading vectors and score vectors) were
stored. From them all the original curves may be reconstructed with
onlyminimal loss. The number of basal curves to be storedwas chosen
as the minimum number to capture at least 99.9% of the variation in
the original curve set. Usually the size of the basis is from three to
fifteen curves (principle components, PCs) for those function types
included in this study. The only exception in the library is the CDF of
normal distribution with 27 basal curves. Number of PCs for every
function in the library can be found in the Table B.1 in Appendix B.

The compression of data is made in the following way (Fig. 3):

Ym = ym + TmV ′
m + Em; ð14Þ
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where Ym is the collection of all Nm preprocessed curves of model m;
ym is the arithmetic mean of the curves; Tm(Nm×Am) and Vm(K×Am)
are the scores and loadings for this Am-dimensional metamodel, and
Em is the unmodelled residuals. For the metamodel to give adequate
representation, the variance in Em should amount to no more than,
e.g., 0.001% of the initial variance in Ym.

Hence, from the pictorial rendition of such data compression in
Fig. 3, instead of having a data matrix of dimension 1,000×100, we
obtain twomatrices: a loadings-and-meanmatrix of size 7 (e.g.)×100
(basal curves, or PC's) and another matrix of size 1,000×6 (scores, or
coordinates of original curves in the basis).

Thus, data are stored in the library as scores and loadings along
with the corresponding parameter values (including mean centering
values and preprocessing parameters). We will refer to this as the
model phenome of the given function, expressing the “phenotypic”
repertoire of the curves that the function type m may give rise to.
We can use the term phenome here since we have a collection of
observable characteristics or behaviours of these functions. The
collection of function phenomes now comprises the complete look-
up library of functions (Fig. 4).

The residual terms and residual variances are calculated for each
curve j in themodelm to assess goodness of models in future analysis:

ej;m = yj;m−ym
� �

−tj;mV ′
m; ð15Þ

s2j;m =
ej;m⋅e′j;m

K
: ð16Þ

The variance sj, m
2 represents the distance from the curve j to the

model m. For every function phenome m they were sorted in
ascending order and their maximal value was denoted as smax, m

2 .
Then we found such a cut-off variance, s95, m2 , so that 95% of the curves
in that phenome have smaller variance than s95, m

2 . The samewas done
for 99% of the curves (s99, m2 ) and 99.9% (s99.9, m2 ), i.e., three confidence
intervals for every model were defined. All these values for each
model m=1, 2, …, 38, can be found in Table B.1 in Appendix B.

2.2. Look-up

2.2.1. Preprocessing
Let us assume now that a certain experiment yielded N observed

curves z i
obs(x), i=1, 2, …, N, caused by an unknown function f x;pð Þ

with unknown parameter values p. Those curves are to be para-
metrised. For each curve ziobs(x),first, a proper function type F(⋅) has to
be found, and then the parameter values that describe curves best have
to be determined. For each zi

obs the following form is sought:

zobsi xð Þ = ai + bi⋅Fm x;pið Þ + ei xð Þ; ð17Þ

where ai and bi are the offset and slope parameters respectively
that define the difference in units in which the model phenome data
base and the actual curves are given in.

Fig. 2. Examples of z-preprocessed 100 randomly chosen curves from the whole set of
38 different curve-generating mathematical functions in the database. After preproces-
sing all curves are increasing, varying between 0 and 1 and having its minimum at
x=0.001 and its maximum at x=1.

Fig. 3. Compression data with PCA. Here x is a mean curve.

Fig. 4. Model phenomes as they are stored in the data base: represented by scores and
loadings vectors.
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In order to use the metamodel library for parameterising curves,
the new input curves have to be compatible with the curves in the
data base, i.e.:

• to be increasing;
• to have its ordinate values between 0 and 1;
• to be defined on the abscissa interval [0.001;1];
• to have 100 observation points of the same abscissa values as used
in the model phenomes.

Therefore, the same procedure of preprocessing as for curves in the
data base (Section 2.1.3, Eq. (13)) must be applied to the new curve:

yobsi =
zobsi −off obsi

slobsi

; ð18Þ

where off iobs and sli
obs are calculated in such a way that yiobs(0.001)=0

and yi
obs(1)=1.

This will result in an increasing curve on the [0.001;1]-interval
with values from 0 to 1. To fulfil the last requirement, interpolation
along the abscissamay be needed, e.g., if the new curve has fewer than
100 observation points. 1-D linear interpolation [25] can be used to
find values of y at intermediate points inside the interval [0.001;1] so
that those points are equally distributed in the interval.

2.2.2. Non-iterative curve fitting
After preprocessing, the new curves are projected onto each of

the phenome metamodel subspaces m=1, 2, …, 38 in the library.
Considering the way the curves were stored in the data base, this
means that a score vector for a new curve is found using projection
(linear OLS) on the loadings (basal curves) in the library from 2.1.1:

ti;m = yobsi −ym
� �

⋅Vm: ð19Þ

This is donewithin every function phenome in the library producing
a score for each function type and a residual term is obtained:

ei;m = yobsi −ym
� �

−ti;mV ′
m: ð20Þ

2.2.3. Finding the best models
After the projection of the new curves has been done and residuals

were found by Eq. (20), a distance for every curve to each modelm=1,
2,…, 38 is defined by the following formula for residual variance:

s2ei;m =
ei;m⋅e′i;m

K
: ð21Þ

To choose the closest models to each curve in terms of the smallest
residual variance, the latter are sorted in ascending order, and in this
paper those with sei, m

2bs99, m
2 are considered for further parameter

estimation. The choice of a confidence limit is up to the experimen-
talist since he or she should decide how precise models have to be.

2.2.4. Finding the best parameter set
Next step is to find which parameter values give the closest fit to

the curve. This is here done by calculating the distance between the
“unknown” curve and each individual curve in the given function
phenome among those that are chosen in Section 2.2.3. The distance is
calculated in the score space:

sti;j;m =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ti;m−tj;m

� �
ti;m−tj;m

� �
′

r
: ð22Þ

In this paper, when new curves are simulated without noise, the
distance between scores is just a usual Euclidean distance. If new
unknown curves are affected by noise from the experiment, Eq. (22)
has to be modified (see Section 4 and [13]).

This distance measure is used to find the closest fit to the new
curve in the score space within every function phenome. When all
those distances sti, j, m

for chosen plausible models are calculated, they
are sorted over all chosen models, and parameter sets associated
with, e.g., the ten best fits are considered as alternative solutions:

Alternative 1: m1 p̂i;1 = pj;m1

Alternative 2: m2 p̂i;2 = pj;m2

… …

Alternative 10: m10 p̂i;10 = pj;m10

Here ml may be equal to mk for l≠k, l, k=1, 2, …, 10, i.e., one
functional model can appear several times among alternative
solutions.

2.2.5. Removing the preprocessing
The only thing remained is to estimate the unknown offset and

slope parameters ai and bi for each of the alternative suggestions. This
is done by inserting Eqs. (17) and (18) into Eq. (13), which yields

âi = off obsi −offj;m⋅
slobsi

slj;m
; ð23Þ

b̂i =
slobsi

slj;m
: ð24Þ

Fig. 5. Simulated curve to be projected onto the library before (left) and after (right) preprocessing.
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The curve fitting is then completed to yield the fitted model:

ẑ obs
i xð Þ = âi + b̂i ⋅Fm x;p̂i

� �
: ð25Þ

The final step of the look-up procedure is to present a list of the
best curves (in descending order) along with the function parameters
and the preprocessing parameters. Then it is up to the experimentalist
to decide which curve he or she thinks describes the measurements
in the most meaningful way. It may very well happen that the choice
is not from the top of the list if the experimentalist has some prior
knowledge ruling out certain function types. Still, the method
presents a non-subjective list of good fitting function alternatives
that may be enlightening for the user.

3. Results

To verify how the DLU method works, we illustrate the look-up
procedure for a newnoise-free curve. In the subsequent paper (Isaeva et
al. [13]) the method is assessed and employed for massive amounts of
noisy curves. A rather arbitrary choice of a function type andparameters
was made. However, since it was desirable to show that the method is
able to fit a model to an entire curve and not just to segments that can
resemble a straight line, a sigmoidal function type – Hill function –was
chosen. Fig. 5 shows the chosen curve and its transformation after
preprocessing as well as the chosen parameters set.

No preprocessing of the x-axis was required since the curve was
simulated on the same interval as the library curves. Therefore, only
z-scaling was performed, to force the curve to lie between 0 and 1.

Distance measures after fitting the curve to all 38 function
phenomes revealed that the 15 functions in Table 1 match the curve
best (in ascending order of the residuals variance) with sei, m

2bs99, m
2 . It

can be seen that many of the squared distances were quite small
(between 10−9 and 10−6) indicating that most of these models gave
a reasonably good fit to this test curve.

Further, to find the best fit among all possible curves, the distances
from the simulated curve to all library curves within all function
phenomes fromTable 1were computed and sorted, and the parameter
estimates for the 10 best suggestions were found. Fig. 6 shows the ten
best solutions for the simulated curve and their errors. As it can be
seen, all predicted curves are clearly close to the new curve, although
not all of them are Hill-functions. The Hill function is among the best,
although the curve with the best fit is of a 5PL function. Among other
suggestedmodels are log-logistic function, CDF of normal distribution,
generalised logistic and Gompertz functions.

Simulating the scientist's final choice of model type based on
background knowledge, we now focus on the function deemed most
suitable: Fig. 7 shows curves (left panel) and the lack-of-fit residuals
(right panel) for the ten best suggested solutions for the Hill function
phenome. Corresponding parameter values can be found in Table 2.

It is apparent from Fig. 7 that the closest match to the new curve
from the Hill function phenome is a very good fit, although the

Table 1
Parameters for the original curve (first line) followed by the distances and parameter estimates for the best solutions for Hill function. More densely sampled model Hill phenome.

# m Function Formula, Fm x;pmð Þ = sei, m

2 Score distance,
10−4

Parameters Preprocessing
parameters

p1 p2 p3 p4 Slope offset

1 18 Hyperbolic tangent tanh(p1x+p2) 3.47e−09 5.47 4.10 −2.40 0.995 −63.866
2 23 Error function erf(p1x+p2) 5.27e−09 7.06 3.30 −2.00 0.990 −63.860
3 22 Gompertz function exp(p1·exp(p3−p2x)) 4.19e−08 7.05 −2.00 5.10 2.00 2.090 −64.845

4 21 Hill function xp

xp + θp
9.52e−08 1.73 4.10 0.61 2.161 -64.845

5 32 CDF of normal
distribution

1
2

1 + erf
x−p1ffiffiffiffiffiffiffiffi
2p22

q
0
B@

1
CA

0
B@

1
CA 1.16e−07 4.26 0.59 0.21 1.965 −64.850

6 38 CDF of log-logistic
distribution

1

1 +
x
p1

� �−p2 1.60e−07 5.74 0.61 4.10 2.161 −64.850

7 14 Inverse tangent arctan(p1x+p2) 4.63e−07 14.00 5.41 −3.24 0.793 −63.837

8 26 Generalised logistic
function

1 + p1⋅exp p2 p3−xð Þð Þð Þ−
1
p4 6.06e−07 13.00 0.39 6.27 0.56 0.40 2.034 −64.848

9 25 5PL function
1

1 + exp −p1x + p2ð Þ 1.17e−06 0.66 0.50 −3.00 1.80 2.361 −64.845

10 24 Logistic function
1

1 +
x
p1

� �p2� �p3 1.21e−06 14.00 7.50 4.50 2.030 −64.868

11 30 CDF of triangular
distribution

x2

p1
; for x ≤ p1

1− 1−xð Þ2
1−p1

; for x N p1

8>>><
>>>:

1.44e−06 160.00 0.71 1.910 −64.845

12 27 CDF of beta distribution Ix(p1, p2) 3.63e−06 18.00 8.10 6.10 1.910 −64.845

13 29 CDF of Kumaraswamy
distribution

1−(1−xp1)p2 3.82e−06 8.59 3.10 3.10 1.910 −64.845

14 37 CDF of gamma
distribution

γ p1;
x
p2

� �

Γ p1ð Þ 4.17e−05 12.00 5.81 0.11 2.115 −64.845

15 36 CDF of F-distribution I p1x
p1x + p2

p1
2

;
p2
2

� �
5.91e−05 18.00 100.00 2.00 5.140 −64.845
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estimation for parameter p should preferably be better:

p θ slope offset
true qunknownq curve Hillð Þ 3:87 0:62 2:21 �64:845

estimated curve Hillð Þ 4:1� 0:5 0:61� 0:05 2:16 −64:845

This lack of fit comes most likely from the fact that the model
phenome was not sampled densely enough. To check whether this

assumption is correct, it was decided to sample the parameter space
more densely (198,740 curves instead of 1224) and fit a model to the
curve again. This resulted in Fig. 8 and the best solution is:

p θ slope offset
true }unknown} curve 3:87 0:62 2:21 �64:845

estimatedcurve 3:85� 0:05 0:62� 0:01 2:2129 −64:845

Now, even after overall sorting of fits, only Hill functions were
represented in the top-ten list of the best fits. The parameters were
estimated much more precisely in comparison to the previous fit (see
Table 3 for the best estimates for the Hill function curves). This means
that in order to get better fits it is necessary either to sample the
parameter space more densely, or to use a better method for finding
the best fit than simply choosing the closest curve.

4. Discussion

In this paper a new approach, the DLU method, is presented for
mathematical modelling of a given phenomenon (like curvature) in
terms of a best function followed by a number of alternative plausible
nonlinear models. A new and simpler method for fitting a nonlinear
model or function to data is, thereby, obtained. An example with an

Table 2
Adequate models for the simulated Hill function curve and their best corresponding
parameter estimates. For notation of functions used here see Appendix A.

# Score distance, 10−4 p θ slope offset

True parameters (Hill) 3.87 0.62 2.21 −64.845

1 1.73 4.1 0.61 2.16 −64.845
2 5.20 3.6 0.61 2.23 −64.845
3 5.63 3.6 0.66 2.34 −64.845
4 5.82 4.6 0.61 2.11 −64.845
5 6.52 3.1 0.66 2.44 −64.845
6 8.34 3.1 0.71 2.57 −64.845
7 9.68 5.1 0.61 2.06 −64.845
8 11.00 2.6 0.76 2.85 −64.845
9 11.00 4.1 0.66 2.26 −64.845
10 12.00 2.6 0.71 2.69 −64.845

Fig. 6. The ten best fits to the new curve. The red curve is the new curve; green curves – the ten best solutions; blue dotted curve – the curve with the best fit; black dotted curve is the
error of the best curve. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Best solutions for the “unknown”Hill function: fits on the left panel and errors on the right panel. Red curve is the “unknown” curve; blue dotted line is the closest library curve
in the Hill function phenome; black dotted line is the error of the best fit. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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arbitrarily chosen sigmoidal curve was given as a proof of principle.
This new curve was projected onto the data base with 38 function
phenomes in order to identify a likely function type, along with a
parameter set that describes the curve the best.

The model phenome described above is a collection of curves
corresponding to a mathematical function. A comprehensive collec-
tion of model phenomes of a comprehensive set of functions
describing a given phenomenon constitutes its modelome. The
present preliminary modelome of line curvature can probably
describe many processes in biology, chemistry and other fields of
science. With a wide range of parameters the phenome captures a
large variation of curves, from straight lines to approximate step
functions. Each function phenome was sampled rather densely in
order to provide reasonable estimation of parameters by simple look-
up, without the need of local interpolation.

The example given in Section 3 showed that the method works
well on noiseless data, predicting correctly the function type and
parameter values. Since the look-up method also may give a list of
alternative well-fitting functions, a scientist always has a choice to
which model to select. Of course, this might again lead to subjectivity,
but it might also open up for new models to be considered.

The library look-up method is, as far as we know, a new approach
and is at an early stage of its development, so it needs further
improvement. First of all, only an example using noiseless data has
been given in this paper. Real data typically have noise from various

sources, e.g., sampling errors, human errors, and other uncontrollable
sources of variation. The DLU approach, therefore, has to deal
with noise (possibly heteroscedastic) in order to be an alternative
to the statistical approaches. Homoscedastic noise (constant variabil-
ity across time) is not very critical. The look-up approach will still
find a best fit in the library. However, it is beneficial to add a
smoothing step (e.g., lowess smoothing) preceding the other
preprocessing steps in order to reduce noise influence on the
preprocessing variables and to improve the fit. Sometimes the noise
is heteroscedastic and varying over time or with the level of the
dependent variable. In such cases some parts of the data will be more
informative than other parts. One way to deal with this is to define a
vector of weights emphasising which parts of the curve that carry
important information and which parts that are more noisy. This is an
expert-opinion type of information, which the experimentalist often
possesses. He or she may say in advance what level of noise is non-
significant and can be allowed to be neglected. The weight vector may
be used to modify the computation of score distance before look-up in
the library [13].

Another problem arises from the fact that in real life there are
not so many processes that are described by a simple monotonous
function, but rather a sum or even a product of such. In order to handle
this in our proposed framework, high-level modelling (e.g., ANOVA,
GAM or PARAFAC) may be required.

There is also an option for abscissa-preprocessing that consists
in shifting curves along the x-axis. An example is to make each curve
so that it passes through the point (0.5;0.5). This gives a further
reduction of complexity, i.e., less number of components are needed
at the step of PCA compression and less space is required to store the
data.

As it was mentioned in Section 3, choosing the nearest neighbour
curve works perfect in case when function phenomes are sufficiently
densely sampled. However, the more curves there are in the library,
the more time it takes to fit a model in PCA space. Hence, it may be
preferably to use another technique for finding a parameter set that
fits best to the original curve rather than storing more information in
the library. This can be done by applying interpolation between, e.g.,
ten nearest neighbours. In our case, a simple averaging over the ten
best curves did not give an improved fit. A more flexible approach, the
HPLS (Hierarchical Partial Least Squares) (K. Tøndel and H. Martens,
submitted, 2010), could be useful to predict parameter values for the
new curve. This HPLS model, thus, serves as a metamodel connecting

Fig. 8. Case with the more densed Hill function phenome. Best ten estimates for the simulated curve (left panel) and error of estimation (right panel). Red curve is the original curve.
Dotted curve on the right panel is the error of the best fit. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Distances and parameter estimates for the best solutions for the Hill function. The first
line is the new “unknown” curve.

# Score distance, 10−6 p θ slope offset

True parameters (Hill) 3.87 0.62 2.21 −64.845

1 2.13 3.85 0.62 2.21 −64.845
2 3.16 3.90 0.62 2.21 −64.845
3 7.55 3.80 0.62 2.22 −64.845
4 8.34 3.95 0.62 2.20 −64.845
5 12.14 3.75 0.63 2.25 −64.845
6 12.41 3.70 0.63 2.26 −64.845
7 13.09 3.75 0.62 2.23 −64.845
8 13.41 4.00 0.62 2.19 −64.845
9 13.62 4.00 0.61 2.17 −64.845
10 13.87 4.05 0.61 2.17 −64.845
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score to parameter values and makes it possible to predict parameter
values from scores as an alternative to using the average of the
parameters of the nearest neighbours. Another possible solution of
the longer performance problemwith the more dense phenomes is to
use the estimated parameter values from the “normal” modelome as
starting values for a traditional approach, e.g., Hill climbing. Then the
path to the true solution is much shorter; the chance of getting stuck
in the local optima is lower, and, therefore, less time will be spent on
the parameter estimation.

Statisticians may miss the usual significance tests possibilities and
uncertainty measures of the parameter estimates in our proposed
method. However, it should be straight forward to implement a
parametric bootstrap routine to provide such statistics. Fitting, e.g.,
1,000 bootstrap samples within the given function phenome (defined
by the best fit) should be quick. The uncertainty of the parameters
may then be computed directly from the bootstrap fits. It may be the
case here that variability in the bootstrap samples is reduced because
of the discrete sampling of the parameter space, but if an interpolation
strategy between top fits or a metamodel approach is used, this
should be a smaller problem.

Future application of the look-up approach will require that large
sets of curves (thousands, millions) can be fitted quickly. Although it
is relatively fast even at this stage, the look-up speed will be a topic
for further development as we anticipate that the library will grow
to incorporate more complex function types.

All weaknesses of the method and suggestions about its improve-
ment mentioned above are being processed and some of the changes
are shown in [13] (handling both homoscedastic and heteroscedastic
noise, and working with large sets of data). Nevertheless, the
database-method seems to work well even at this stage of
development and can serve as a good alternative for finding model
when having a time-series, stimulus–response or another type of data
set.
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Appendix A

List of functions used
Ix(a;b) regularised incomplete beta function
Γ(x) gamma function
P(a;b) regularised gamma function
γ(a;b) incomplete gamma function
erf(x) error function

Table B.1
All 38 models that are present at the current version of the library along with their parameter values range, number of curves in the model phenome, number of PC's. 95%, 99% and
99.9% confidence interval values are also given.

m Function Formula, z=Fm(x;pm) NObj p1 p2 p3 p4 PC's s95, m
2 s99, m

2 s999, m
2 smax, m

2

1 Straight line x 1 1 0 0 0 0
2 2nd degree polynomial (x+p1)2 49 [0;2] 1 5.49e−032 6.64e−032 6.64e−032 6.64e−032
3 3rd degree polynomial (x+p1)3 74 [0;2] 1 1.86e−007 5.04e−007 7.03e−007 7.03e−007

4 Inverse polynomial
1

x + p1
47 [0.1;1] 2 1.54e−007 6.86e−007 6.86e−007 6.86e−007

5 inverse 2nd degree
polynomial

1

x + p1ð Þ2 + p2
935 [0;3] [0.1;1] 2 7.09e−006 1.79e−005 4.58e−005 5.12e−005

6 Inverse 3rd degree
polynomial

1

x + p1ð Þ3 + p2
2,037 [0;2] [0.1;1] 2 4.67e−005 1.17e−004 1.76e−004 1.77e−004

7
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + x2
p 1 1 x0 0 0 0

8 Sinus sin p1 πx− π
2

� �� �
93 [0.01;1] 1 3.46e−008 1.21e−007 1.56e−007 1.56e−007

9 Cosinus cos(p1 ⋅πx) 160 [−1;−0.01]
[0.01;1]

1 1.77e−006 5.11e−006 6.87e−006 6.87e−006

10 Tangent tan p1⋅ π
2 x

� �
44 [0.01;0.5] 1 1.75e−007 5.55e−007 5.55e−007 5.55e−007

11 Cotangent cot(p1 ⋅πx) 49 [0.01;0.5] 2 9.51e−006 3.22e−005 3.22e−005 3.22e−005
12 Inverse sinus arcsin(p1(2x−1)) 42 [0.01;1] 2 5.90e−008 1.69e−007 1.69e−007 1.69e−007
13 Inverse cosinus arccos(p1(2x−1)) 83 [0.01;1] 3 2.08e−008 2.54e−008 1.90e−007 1.890e−007
14 Inverse tangent arctan(p1x+p2) 1,111 [0.01;10] [−15;3] 5 2.02e−004 2.88e−004 3.20e−004 3.23e−004
15 Inverse cotangent arccot(p1x+p2) 164,000 [0.01;4] [0;0.8]

[1;4]
2 2.46e−006 1.43e−005 2.69e−005 2.70e−005

16 Hyperbolic sinus sinh(p1x+p2) 397 [0.01;3] [0;3] 1 2.74e−006 9.36e−006 1.67e−005 1.67e−005
17 Hyperbolic cosinus cosh(p1x+p2) 110 [0.1;4] [0;4] 2 1.54e−009 1.12e−008 1.13e−008 1.13e−008
18 Hyperbolic tangent tanh(p1x+p2) 1,317 [0.1;15] [−20;3] 8 2.88e−004 3.86e−004 4.67e−004 4.98e−004
19 Hyperbolic cotangent coth(p1x+p2) 246 [0.01;1] [0.01;0.1] 3 1.42e−006 3.30e−006 2.38e−005 2.38e−005

20 Michaelis–
Mentenkinetics

x
x + 0:01 + p1

101 [10−6;10−3] 1 5.46e−011 1.90e−010 3.63e−010 3.63e−010

21 Hill function
xp1

xp1 + pp12
1,224 [0.1;20] [0.01;5] 11 4.09e−004 1.71e−004 2.26e−003 2.26e−003

22 Gompertz function exp(p1 ⋅exp(p3−p2x)) 1,021 [−10;−0.1] [0.1;10] [−10;3] 4 2.12e−004 4.06e−004 6.26e−004 1.06e−003

23 Error function
2ffiffiffi
π

p ∫p1x + p2
0 e−t2dt 1,237 [0.5;10] [−5;3] 6 1.92e−004 2.93e−004 4.02e−004 4.28e−004

24 Logistic function
1

1 + exp −p1x + p2ð Þ 654 [0.1;10] [−6;5] 3 1.78e−004 2.90e004 3.58e−004 3.98e−004

Appendix B
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Table B.1 (continued)

m Function Formula, z=Fm(x;pm) NObj p1 p2 p3 p4 PC's s95, m
2 s99, m

2 s999, m
2 smax, m

2

25 5PL function
1

1 +
x
p1

� �p2� �p3
6,342 [0.05;0.9] [−25;−2] [0.3;1.8] 12 4.17e−004 6.64e−004 9.28e−004 2.13e−003

26 Generalised logistic
function

1 + p1·exp p2 p3−xð Þð Þð Þ−
1
p4 253 [0.3;1] [3;10] [0.05;0.9] [0.1;1] 4 1.83e−004 3.87e−004 9.32e−004 9.32e−004

27 CDF of Beta
distribution

Ix(p1, p2) 1,186 [0.1;100] [0.1;100] 12 2.60e−004 5.24e−004 1.91e−003 7.59e−003

28 CDF of Student's
t-distribution

1
2

+ x·Γ
ν + 1

2

� �
106 [0.1;1.5]

[2;40]
2 2.65e−007 3.00e−007 1.00e−006 1.00e−006

29 CDF of Kumaraswamy
distribution

1−(1−xp1)p2 1,198 [0.1;5]
[6;50]

[0.1;25] 8 1.86e−004 6.34e−004 9.04e−004 9.29e−004

30 CDF of triangular
distribution

x2

p1
; for x ≤ p1

1− 1−xð Þ2
1−p1

; for x N p1

8>>><
>>>:

91 [0.1;1] 4 1.75e−005 4.65e−005 5.24e−005 5.24e−005

31 CDF of U-quadratic
distribution

4·((x−0.5)3+11.52) 1 1 0 0 0 0

32 CDF of normal
distribution

1
2

1 + erf
x−p1ffiffiffiffiffiffiffiffi
2p22

q
0
B@

1
CA

0
B@

1
CA 481 [0.01;0.99] [0.01;0.5] 27 5.34e−004 6.49e−004 1.14e−003 1.14e−003

33 CDF of Chi-square
distribution

1

Γ
p1
2

� � γ
p1
2

;
x
2

� �
4 [1;10] 2 3.28e−006 3.28e−006 3.28e−006 3.28e−006

34 CDF of Chi
distribution P

k
2

;
x2

2

� �
81 [0.5;15] 3 5.66e−005 8.50e−005 2.23e−003 2.23e−003

35 CDF of exponential
distribution

1−exp(−p1x) 97 [10−2;101] 3 6.40e−006 1.27e−005 2.57e−005 2.57e−005

36 CDF of F-distribution I p1x
p1x + p2

p1
2
;
p2
2

� � 10,000 [1;100] [1;100] 3 5.31e−005 1.56e−004 2.03e−004 2.63e−004

37 CDF of Gamma
distribution

γ p1;
x
p2

� �

Γ p1ð Þ 352 [0.01;9] [0.01;2.2] 4 1.36e−004 3.21e−004 4.83e−004 4.83e−004

38 CDF of log-logistic
distribution

1

1 +
x
p1

� �−p2� � 215 [0.01;1]
[2;3]

[0.1;10] 7 3.21e−004 6.09e−004 7.96e−004 7.96e−004
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The new method for parameterising a high number of observed curves in terms of nonlinear functions,
presented by Isaeva et al. is here applied to noisy data and tested with respect to computational speed, ease of
use and estimation precision. The method employs conventional least squares minimisation of the lack-of-fit
residuals. But algorithmically it replaces traditional, time-consuming iterative hill-climbing (e.g., simplex
optimisation) by a fast, non-iterative linear projection. Each nonlinear function is emulated by its multivariate
metamodel (a low-dimensional bi-linear principal component analysis model of its behaviour), and yields
parameter estimates by a simple projection plus a data base look-up.
For setting up a generic, fast modelling system for line curvature, a set of 38 widely different mathematical
functions - most of them nonlinear - were selected for their ability to give sigmoid curves. For each model, its
behavioural repertoire was established by designed computer simulation, and its multivariate metamodel
was estimated. Then the new curve fitting approach was compared to conventional simplex optimisation, by
fitting artificial, but noisy curves to the 38 curve-functions, in order to identify the correct function type and
parameter values. Finally, the new method was adapted to heteroscedastic noise and employed for
parameterisation of N170,000 sigmoid curves from time lapse monitoring of proteomic 2D Gel Electrophoresis
(2DGE) image development.
The new method gave at least as precise parameter estimates as the simplex optimisation and worked well
both for homoscedastic and heteroscedastic noise. It speeded up the parameter estimation in the nonlinear
models by a factor of about 24 compared to the simplex optimisation.
Moreover, per definition it avoids the problems of having to select starting values and endingup in locally optimal
solutions. And it reduced the problem of subjective, possibly erroneous choice of nonlinear model specification.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Isaeva et al. [1] introduced a new method for fitting one or more
nonlinear mathematical models to a large number of observed data,
e.g., growth curves. The new method is based on an extension of a
bi-linear modelling method first presented by Kohler et al. [2] for
spectroscopic data and by Kohler et al. [3] for mass spectroscopic data.
It consists in, first, preparing simple bi-linear metamodels that
represent the individual, potentially relevant nonlinear models, and
then fitting these metamodels to the observed input data. For each
input curve, this fast, linear fitting and look-up in the metamodel
reveals which of the nonlinear models are most plausible, and yields
estimates of their model parameters and their uncertainties.

The metamodels are developed in the following way: for a given
problem type (e.g., sigmoid growth curves), a set of nonlinear functions

(e.g., aHill function, a logistic curveandacumulativenormaldistribution)
are chosen by a user as potentially relevant. For each of these nonlinear
functions, its so-called model phenome is established, once and for all,
in terms of a large data set that represents all of the model's relevant
“phenotypes” (output curves), by extensive, statistically designed
computer simulations. This large set of curves is then preprocessed and
compressed, e.g., by a singular value decomposition, into a bi-linear
multivariate metamodel representing the nonlinear function.

Then, when a new set of measured curves is to be parameterised,
each curve is fitted to the bi-linear metamodels for each of the
potentially relevant nonlinear models. From the lack-of-fit to the
metamodels, the models that fit that curve sufficiently well are found.
Its parameter values for each of these plausible models are estimated
by a look-up or a local interpolation within the bi-linear metamodel
subspace. Each measured curve is, thus, emulated by the simulation
curve in the model phenome data base that looks most like it. If
several nonlinear models can generate curves that fit the empirical
curve equally well, then it is up to the user tomake the final choice of a
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model. This allows the user to discover unexpected modelling
opportunities. But the choice can also be automatic, based on the
user's prior specification of preference among the potential models.

The approachwas shownby Isaeva et al. [1] to have several potential
benefits over classical iterative estimation methods, in the way it can
reduce computation time, modelling subjectivity and the risk of ending
up in local optima. The look-up method was illustrated on a simple
example of a sigmoid function (a Hill function) with noise-free data.

In the present paper we turn to more real-world problems where
data are affected by noise andwhere the number of curves is very large.
This introduces the need for some modifications to the basic method
described by Isaeva et al. [1]. These will here be described and assessed
on artificial datawith known structure before they are applied to a large
set of nonlinear time series—in this case 5-parameter logistic (5PL)
curves.

Efficiency of the method will here also be tested on a real data set
with a large number of curves in it highly affected by noise.

Massive sets of empirical curves are to be fitted to nonlinear
models: the curves come from gel development in 2-Dimensional Gel
Electrophoresis (2DGE). 2DGE as such is a standard method in
proteomics, in which a number of different known or unidentified
proteins, present in a mixture at low, but different and unknown
concentrations, can be separated from each other in terms of their
molecular charge and mass. The proteins are then revealed as spots in
a two-dimensional image by a sensitive staining technique, and from
the volume under the spots, the individual proteins are quantified and
sometimes even identified. The use of silver nitrate for the staining of
the protein spots in 2DGE, followed by photographic scanning the
stained gel, is a standard procedure. Traditionally this has required
that the staining development process is stopped at some point in
time, after which the gel is scanned and represented a digital image.

This stopping is suboptimal because it is difficult to find a good
compromise between over-developing (saturating) the proteins
present at high concentrations and under-developing (being insensi-
tive to) the proteins present at low concentrations in themixture. Grove
et al. [4] overcame this dilemma by time lapse photography, recording
the temporal development process as a continuous video. For each pixel
in the video image, a time series ”growth curve” is thus obtained. After
conversion of the raw image data to absorbance, themaximum slope of
this curve was taken as a measure of the protein concentration.

However, it was later discovered that the colour development
process for different proteins display qualitatively different “growth
curves”. Hence, we decided to parameterise each of the growth curves
by a nonlinear function. In the present case just one of the 3 RGB
colour camera channels, for just one single 2DGE gel, yielded several
hundred thousand growth curves. To parameterise all of these in
terms of a truly nonlinear function is a computational challenge.

In Section 2 we describe the methodological modifications of the
direct look-up (DLU) method. Then in Section 3 we describe the data
that have been used in the present article to demonstrate performance
of the DLU. In Section 4.1 we compare the DLU method with Iterative
Least Squares estimation (ILS) [5] for simulated data. In Section 4.2 we
apply the data base approach to find a model for a very large real 2DGE
data set. The article is closed by discussing the results andmaking some
conclusions in Section 5.

2. Methods

2.1. Summary of the metamodelling method

Curve generating functions m=1, 2, …, 38 were collected from
different fields of science, and for each of them extensive simulations
were performed with various parameter combinations:

zj;m = Fm x;pm

� �
; ð1Þ

where j=1, 2, …, Nm is the index of a simulation for model m, m=1,
2, …, 38; Fm is the functions in the data base from Ref. [1] defined at
K=100 x-values (e.g., time points) on the interval x∈ [0.001; 1].

These curves were then preprocessed to make them compatible
between each other—the ordinates of the curves were forced to be
between 0 and 1:

yj;m =
zj;m−off j;m

slj;m
; ð2Þ

where offj,m and slj,m are offset and slope parameters such that
yj,m(0.001)=0 and yj,m(1)=1.

The table of simulated curve data Ym(Nm×K) for each function was
decided to be stored in a compressed way as a bi-linear principal
component analysis (PCA) model

Ym = ym + TmV ′m + Em; ð3Þ

with scores (Tm), loadings (Vm) and residuals Em. The number of
principal components (PCs) was chosen so that at least 99.9% of
variance in Ym was explained.

Then, when new curves zi
obs(x), i=1, 2, …, N, are obtained, they

are first preprocessed in the same way as curves in the data base:

yobsi =
zobsi −offobsi

slobsi

; ð4Þ

where zi
obs(x) are new curves. Afterwards, when the new data are

compatible with the curves in the data base (are defined on [0.001;1],
have values between 0 and 1, and are increasing), they are to be
projected onto loadings in every relevant function phenome m in
order to find a score vector and a residual term for the new curves:

ti;m = yobsi −ym
� �

·Vm; ð5Þ

ei;m = yobsi −ym
� �

−ti;mV ′m: ð6Þ

Then, for every simulated curve i, the residual term gives a residual
variance, i.e., distance from the curve i to every model m in the data
base:

s2ei;m =
ei;m· e′i;m

K
; ð7Þ

where K is the number of observation points.
These sei,m

2 values determine which models out of 38 present in the
data base that have adequate fit to this curve i. It is defined by
comparing them with the values for 99% confidence intervals for
corresponding models (see [1]). Models with sei,m

2 bs99,m
2 are consid-

ered as a good fit and are taken into account when estimating
parameters.

To find p̂i;m, the unknown parameter values of the new curve, its
distances to each individual curve in the phenomes of plausible
models are computed:

sti;j;m =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ti;m−tj;m

� �
ti;m−tj;m

� �
′

r
: ð8Þ

The closest fits are found by sorting sti,j,m over all good functional
forms and taking the ten best with the smallest sti,j,m. Here we then
employ a simple direct look-up for parameters that correspond to the
found curves.
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For estimation of offset and slope parameters one has to apply the
formulae:

âi = off obsi −off j;m·
slobsi

slj;m
; ð9Þ

b̂i =
slobsi

slj;m
: ð10Þ

Thus, the final estimate of the curve is obtained:

ẑobsi xð Þ = âi + b̂i · Fm x; p̂ið Þ: ð11Þ

For further details on the DLU method with the steps involved in
making the data base of curves and estimating parameters of new
curves see Ref. [1].

2.2. Method improvements

Themethodology described in Isaeva et al. [1] was improved in the
following way: for the speed-up needed for parameterising large sets
of curves, the code was rewritten in such a way that number of “for”
loops and calls for disc operation (including swapping due to memory
problems) was reduced. A test-set with 1000 curves (noise-free) was
used to check time performance of the program. The process of
finding a model for all the curves took now approximately 30 seconds

against almost 600 with the former version, used in Ref. [1], that is
time was reduced by factor of 20.

2.3. Handling different noise structures in the input curves

In Ref. [1] it was demonstrated only how DLU works for noise-free
data. During the simulations, no noise is expected in the obtained curve
vectors zj, j=1, 2, …, Nm, m=1, 2, …, 38, that are to be stored in the
model phenome data base. So no special statistical precaution is needed
when compressing the data base into the bi-linear metamodel. The
lack-of-fit residuals in the metamodel generation are only due tominor
nonlinearities left unmodelled. Even though the data themselves are
error-free and deterministic, the presence and nature of these small
residuals appear to us as if they are random.

However, real measured curve vectors zi
obs, i=1, 2, …, N, are

typically additionally affected by noise of some sort. Therefore, a few
modifications to the data base look-up approach were introduced so
that even noisy data may be fitted.

First of all, some degree of pre-smoothing of zi
obs may be

advantageous in order to facilitate the subsequent estimation of the
preprocessing parameters. Secondly, the fitting of the preprocessed,
but noisy curves yiobs to ametamodel Vmmay require special attention.
In case of homoscedastic noise, where the noise is expected to be
independent and identically distributed across all time points, all
parts of the curve are expected to carry equal amounts of information.
In these cases no major modifications to the unweighted least squares

Fig. 1. Two examples of curves from 2D electrophoresis data. The curve on the left becomes noticeably noisy approximately after x=0.52, whereas for the curve on the right hand
side, the section part after x=0.73 might be considered more noisy. (Note that here the curves are not yet preprocessed.)

Fig. 2. An example of a simulated five-parameter logistic curve: before (left) and after (right) preprocessing.
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method are needed. The look-up approach after the least squares
projection of the preprocessed curves into the metamodel subspace
will still find sensible estimates of the model parameters.

When it comes to heteroscedastic noise, where some parts of the data
are known to be more affected by noise than other parts, more attention
should be given to the most informative data. In this case weighted least
squares (WLS) approach [6] is used, in order to emphasise thoseparts that
are less effectedbynoise in the computationof scores and residuals. This is
done by setting vectors of weights, wi, of the same length as the data
vector ziobs, which, for instance, may have ones as values at informative
observation points and lower at more noisy points.

The scores for a new curve i (Eq. (5)) are now estimated by WLS
regression on the loadings in the metamodel of model m over curve
points x=0.001, …, 1:

ti;m = yobsi −ym
� �

WiVm V ′mWiVmÞ−1
;

�
ð12Þ

where Wi is the diagonal matrix of weights wi chosen for curve i. The
residual lack-of-fit of curve i to metamodel m is estimated by Eq. (6)
and the squared distance of curve i to metamodel m is found by

s2ei;m =
ei;m·Wi·e′i;m
1·Wi·1′

: ð13Þ

The distance of curve i to each of the individual simulated curves
j=1, 2, …, Nm is computed in the following way:

sti;j;m =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ti;m−tj;m

� �
ðV ′mWiVmÞ−1 ti;m−tj;m

� �
′

1·ðV ′mWiVmÞ−1·1′
:

vuut ð14Þ

The best model fit to input curve zi
obs would then be expected

among the simulated curves with lowest sti,j,m in the metamodel(s) m
with lowest sei,m

2 . Eqs. (9) and (10) are subsequently applied in order to
remove the effect of the offset and slope preprocessing yielding the
final fit of the input curve number i (Eq. (11)).

TheWLSmethod inEqs. (12)–(14)ensures that the least informative
parts of the input curves will haveminimal contribution to the distance
measures used in the library look-up process for choosing relevant
metamodels and also for choosingnearest neighbour(s)within a chosen
metamodel m.

Fig. 1 shows twoexamplesof noise-affectedcurves fromadynamic2D
electrophoresis experiment representing the growth or development of
silver colour over time (see Section 4.2 for details about the data). The
curve on the left is by the experimentalist judged to be highly informative
from x=0 to x=0.52, after which the noise level increases, whereas the
curve on the right is found to be informative until x=0.73. In these
examples the lastpartof thecurveswere thenoisyparts, but, of course, the
noise may equally well be in the beginning or in the middle of a curve.

When a curve is noise-free or the noise is homoscedastic, weight
vectors are just set equal to ones.

3. Data

3.1. Simulated noisy curves

As test data with known structure, a random 5PL curve (see [7])
with 20 observation points was simulated:

z = slope·F x; p1;p2;p3ð Þ + offset = slope·
1

1 + x
p1

� �p2
� �p3

+ offset;

ð15Þ

where x is a vector with 20 equally distributed values between 0.001
and 1 values and

p1 = 0:35
p2 = −5
p3 = 1:45

slope = −0:2593
offset = 32:3497:

Fig. 3. The plot on the left panel shows an “unknown” curve (red) (a randomcurve fromthe set) and itsfits fromDLU (blue) and ILS (black). The lackof thefits canbe seenon the right: blue
solid line - for DLU and black dashed line - for ILS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Parameter estimates obtained from DLU and ILS for the curve in Fig. 3. Numbers in parentheses show preceding and following values in the function phenome for given parameter
estimates.

p1 p2 p3 Slope Offset

True “unknown” parameters 0.35 −5.24 1.45 −0.25 32.34
DLU 0.35 −5.00 1.45 −0.250 32.350

(0.30;0.40) (−4;−6) (1.35;1.45)
ILS 0.34 −5.03 1.61 −0.250 32.350
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Then, a set ofN=1000 noisy replicates of this curvewas generated
by adding random noise ei to this curve:

zi = slope·f x;pð Þ + offset + ei; ð16Þ

where ei is independent identically (uniformly) distributed random
errors with standard deviation of 0.01. Hence, even the perfectly fit of
such a curve to a nonlinear model (or its bi-linear metamodel) is
expected to have a distance (Eq. (14)) of 0.01.

3.2. Growth curves from dynamic proteomic imaging

For the present paper, a rather complex bovine serum albumin
(BSA) protein sample was run on a 2-DE mini gel (XCell SureLock
Mini-Cell, Invitrogen). Proteinswere focused in IPG 5–8 and separated
on 12.5% SDS-PAGE in the second dimension. The developer was
added to the gel while the white translucent plastic tray was standing
on a light box (qug/a2sl, 3×18W, DW Viewboxes). Pictures of the
developing gel were taken at 5-second intervals for up to 17 minutes,
whereafter it was considered that no further changes occurred.

Images were recorded with a Canon EOS 40D using a 28 mm lens at
aperture f 9 and a shutter speed 1/50 seconds, and were saved in 14 bit
raw colour format, and then converted and cropped into TIFF format
without compressionusingPhotoshopCS. The redRGBchannel readings
for each pixel were transformed into transmittance T (division by the
readings at time zero for that pixel), and converted to approximate
absorbance:

A = log10 1 = Tð Þ:

In order to correct for slightmotionsof the gels relative to the camera
during the development, the whole-gel affine motion estimation and
compensationwas applied. The 174216 pixels in the cropped time lapse
image datawere then taken asN=174216 input time series or “growth
curves”.

4. Results

4.1. Simulated data: comparison with conventional iterative hill-climbing
estimation

To check if DLU works any better than other very well-known and
widely used methods for fitting nonlinear models to data, it was
decided to test the method on noisy, but artificially created data with
a known structure, as described above, and compare the DLU results
with those from a typical representative of more classical estimation
procedure. The method chosen for comparison was an ILS optimisa-
tion using the SIMPLEX implementation in Matlab [8]. Hence, the
approach searches for the function and parameters minimising the
least squares criterion:

S2i;m =
1
K

∑
K

k=1
zobsi xkð Þ− Fm xk;pm

� �h i2
; ð17Þ

where zi are observed data; Fm is a model of typem to be fitted and K is
the number of observations.

The functions Si,m2 were, thus, minimised with simplex optimisation
for each candidate model type (see [8]).

In order to check the speed and precision of estimation for both
methods, the set of 1000 curves that were obtained by adding random
homoscedastic noise to the original curve was considered (Fig. 2 on
the left shows one representative from the set).

To assess if the DLU gives computational compaction over the ILS,
the following steps were performed:

• ILS estimation was run for each of the three functions:

the Hill function F x;pð Þ = xp1

xp1 + pp12
; ð18Þ

the logistic function F x;pð Þ = 1
1 + exp −p1x + p2ð Þ ; ð19Þ

and 5PL function F x;pð Þ = 1

1 + x
p1

� �p2
� �p3

: ð20Þ

These functionswere chosen since they are thebest known sigmoids
and often used in biology to describe microbial growth [9] or biological
regulation ([10–12]). They were sampled at 20 abscissa points.

Table 2
Comparison of fitting time and estimation errors for DLU and ILS.

DLU, 38 functions DLU, 3 functions ILS

Time, seconds 28.80 5.04 120.61
Estimation error for p1 4.75e−05 4.75e−05 0.0100
Estimation error for p2 0.0728 0.0728 29.7866
Estimation error for p3 0.0085 0.0085 0.7074
Estimation error for slope 4.92e−05 4.92e−05 5.12e−05
Estimation error for offset 7.27e−05 7.27e−05 7.23e−05
Lack-of-fit 0.0034 0.0034 0.0299

Fig. 4. Examples of curves from 2DGE data. On the left—ten randomly chosen original curves; in the middle—the same curves with only 100 observations considered shifted to the
interval [0.001;1]; on the right—one hundred randomly chosen curves, preprocessed, smoothed and shifted to the interval [0.001;1].
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• Fitting with DLU was done twice: first checking all M=38 available
curvature models included in the “modelome of curvature” [1]
(representing a situation when we do not know anything about the
data and want to try many different mathematical models); and then
considering only three functions out of 38 (the same as for ILS) in order
to compare the timeoffittingwith such for ILS under similar conditions.

• A modification of DLU was used here which only searched for the
single best solution instead of a list of alternatives. This was for the
sake of having a fair comparison of fitting time for two different
methods with similar outcomes.

To implement the look-up method here, the 20 time points of the
abscissa xwere first re-scaled and interpolated at 100 time points [13]
in order to make them compatible with the curves in the library (i.e.,
to have 100 observation points in the [0.001;1] range). The
interpolated curve ordinates z were preprocessed to ordinate y with
a minimum of 0 and a maximum of 1. The preprocessed set of curve
vectors Y=[y1, y2,…, y1000] (Fig. 2 on the right) was projected onto
the bi-linear metamodel of the model phenome of each of the
potential nonlinear models.

Since the noise added to the curveswas independent and identically
distributed everywhere on the curves, the weights w were ignored

because all the parts of the curveswere considered equally important in
terms of information.

For each of the 1000 noise-contaminated replicates of the original
curve, it was found – as expected – that the 5PL function gave the best
bi-linear fit, showing that 5PL was the best nonlinear model of the
noisy curves out of the 38 potentially relevant nonlinear functions.

The same procedure (projecting onto the library) was repeated
again, but this time the search for the best solution was done only
among three functions mentioned above. The result was, of course,
expected to be absolutely the same as from within 38 models, but
with correspondingly shorter estimation time.

For ILS estimation of parameters, there was no need for interpola-
tion, and, therefore, curves with 20 observation points were used. The
choice of functions to befittedwas due to the fact thatwewere aware of
the type of the “unknown” curve (5PL). The other two functions were
taken as the most typical alternative sigmoids.

The ILS parameter estimation encountered some problems when
fitting these three models to the data. First of all, different sets of initial
values for the parameters pm sometimes led to different solutions and
sometimes even implied divergence of solutions. Therefore, some of the
termination conditions were relaxed, such as maximum number of
iterations and function evaluations and termination tolerances with
respect to function fit (yi−ŷi) and parameter estimate (p̂i) value. Given
that all solutions converged. However, for the 5PL function, many of
themhadparameter estimates far fromthe trueones. Thismay either be
due to the fact that the termination toleranceswerenot small enough, or
that localminimawere reached.Moreover, for approximately 30% of the
curves the Simplex optimisation erroneously reported that the logistic
function, rather than the 5PL, was the best model since it gave the
smallest lack-of-fit in y:

Si =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

∑
K

k=1
zobsi xkð Þ− ẑi xkð Þ	 
2

:

s
ð21Þ

Fig. 3 (left panel) shows an example of a curve from the set and its
fits both fromDLU and ILS estimation. Predicted curves are very close to
the original one, and it is rather difficult to decide visually which fit is
better. The right panel of Fig. 3 gives a slight notion that DLU provided
with models with a smaller lack-of-fit, although it is not very clear.
Therefore, let us compare parameter estimates (Table 1), estimation
errors, lack-of-fit's and fitting time for all three cases (look-up with 38
and 3 functions and ILS) (Table 2).

For all practical purposes, the parameter estimates for this particular
curve are equally good for both DLU and ILS, although with the
experimental design presently used when establishing the 5PL model
phenome, the DLU did estimate them slightly more correct. Neverthe-
less, estimation errors are dramatically differentwhen calculated for the
whole set of 1000 noisy curves (Table 2). For ILS they depend on
whether optimisation functionhits thedesired globalminimumor just a
sub-optimal local minimum, whereas DLU always gives solutions close
to the global minimum since its linear projection is non-iterative and,
thus, requiresno initial values and is only limitedby the resolutionof the
experimental design behind the model phenome.

To get the average lack-of-fit for each method (DLU with 38
models, DLU with 3 models and ILS with three models), the minimal
lack-of-fit's for each curve were taken:

S =
1
N

∑
N

i=1
Si: ð22Þ

From Table 2 it can be noticed that the lack-of-fit, when using the
DLU approach, is smaller than the one for the ILS approach. Besides, as
it was mentioned before, in 282 cases out of 1000 logistic curve was
found to fit the best. Therefore, the lack-of-fit becomes even larger
when calculating it only for fits from 5PL function (0.0341).
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Fig. 5. Distribution of function types among fits to 2DGE data.

Fig. 6. Time spent by the look-up method to estimate sets of data of different sizes.
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Another important aspect of comparison of these twomethods is the
time that each of them needs to find an appropriate model and
corresponding parameters. Fitting time for all three cases (DLUwith 38
and 3 functions and ILS for 3 functions) are shown in Table 2. Of course,
DLU needs considerable time to find the right function among all 38
possibilities and estimate theparameters in each, for all 1000 curves. But
even this amount of time is much smaller than the time that ILS needs
having only three functions. Further, if both methods are run under
comparable conditions, with only three functions considered, the DLU
wins against ILS in time with a huge difference: 5 seconds against
120 seconds.

Here each input curve-vector ziobs had only 20 observation points.
Increasing this number implies increase of ILS working time (it took
almost 167 seconds to fit a model to 1000 replicates of the curve with
100 observation points. In contrast, the DLU only used 5 seconds for
the same curve resolution, see Table 2).

4.2. Real data

For an example of how the look-up method works on massive
amounts of real data, dynamic developments of 2DGE data were
taken. These growth curves represent time series for individual pixels
in a high-resolution camera image, as described in Section 3.2.

The original data set consists of 174,216 curves of an unknown
function with unknown parameters and 200 observation points. Left
panel on Fig. 4 shows ten randomly chosen curve examples from the
data set. To make them compatible with the curves in the data base,
only K=100 time points were employed, so only every second
observation was taken into account, and abscissa was rescaled and
shifted to the desired interval x∈ [0.001; 1] (Fig. 4 in the middle).

The rather large undulations in the uppermost curve is probably
due to imperfect compensation of some small camera/gel motions,
while the high-frequency noise is probably mostly due to random
detector noise in the camera. Since the data were rather noisy, it was
decided to smooth them first and then set up weight-vectors to apply
WLS afterwards. Temporal smoothing was done by means of a twice
moving average filtering with a half-width of three time points, to
remove sharp features in the time series due to imperfect motion
compensation and/or camera noise spikes (Fig. 4 on the right). It was
noticed that in most of the cases the general noise level increased
significantly once the absorbance ordinate reached above 0.3. In order
to avoid having to redefine the projection matrices etc. (Eq. (12)) for

each of many individual curves, a standard set of only ten weight
vectors wn, n=1, 2, …10, were defined according to the formula:

wn xð Þ =
1 for xb xn
K−x
K−xn

for x≥ xn
;

8><
>: ð23Þ

where xn are predefined abscissa points dividing x-interval into ten
equal parts. To determine which weight class a curve belongs to, one
has to find an abscissa value of the curve corresponding to when it
first time reaches 0.3 in its ordinate. The nearest on the left predefined
xn will indicate the weight class:

xn;i = x zobsi xð Þ N 0:3
� �

:

These tenweight vectors were used then for generating tenweight
versions of the projection matrices (Eq. (12)). When fitting the
empirical curves, each weight version of the projection matrices was
applied to the input curves classified into the corresponding weight
group.

4.2.1. Finding a suitable nonlinear model
First it was decided to find out which model describes the data

best. A sample of 1000 randomly selected curves was taken out of the
whole set of 174216 curves and projected onto the modelome library
of 38 curvature models. The ten best alternative solutions were saved
for every curve and the respective function types were noted. Among
the suggested functions were inverse polynomial of the third degree,
inverse tangent, hyperbolic tangent, Hill function, error function and
cumulative distribution function (CDF) of F-distribution. However,
the histogram in Fig. 5 shows that the function type 25 (correspond-
ing to 5PL function) clearly dominates among listed “best” models.
Therefore, for the sake of saving time, only this function model was
considered when estimating parameters for the whole set of curves.
Unlike, e.g., the Hill function, the 5PLmodel cannot, to our knowledge,
be linearised. Hence, to fit it to empirical data would traditionally
require iterative nonlinear curve fitting.

4.2.2. Finding parameters
After the function type describing the data was found, each of the

174,216 curves was projected onto the model phenome data base of
the 5PL model by WLS, and the parameter values for each of them

Fig. 7. Ten random curves (black) from the 2DGE data and their fits (red) with the DLU. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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were estimated. The time needed for fitting an increasing number of
input curves was recorded and is shown in Fig. 6. Naturally, working
time increases with the size of a data set. Hence, with the DLU one can
know exactly how many floating point operations which are needed,
and, hence, approximately how much CPU time it would take to
analyse a given amount of data. For fitting large numbers of curves,
disk swapping and other householding activities comes in addition.

Fig. 6 shows that a linear increase in fitting time for the DLU is
observed for up to 90,000 curves at the same time, above which it
increases, probably due to memory limitations causing disk swapping
etc. Nevertheless, even such amount of time is still far less than ILS
would spend to estimate parameters for 90,000 curves
(90*120.61=10,854.90 seconds (Table 2) against 295.80 seconds
with DLU). To escape the jump in fitting time due to disk swapping,
it could be useful to increase memory capacity or divide the data set
into several parts (up to 90,000 curves in each in our case) and use the
DLU approach on each of it.

Fig. 7 shows DLU fits for ten randomly chosen curves from the data.
Among these both good and poor fits can be observed. In order to
prove that poor fitting is a seldom phenomenon, weighted lack-of-fit
was calculated

Si =
1

∑K
l=1wi xlð Þ ∑

K

l=1
zobsi xlð Þ−ẑi xlð Þ
h i2

·wi xlð Þ ð24Þ

and plotted as a histogram on Fig. 8. The histogram indicates that
there is only a very small number of curves with poor fit and, hence,
unreliable parameter estimates. Table 3 presents parameter estimates
of the example curves plotted in Fig. 7.

After the parameters for the whole data set had been estimated, the
curves were reconstructed from the 5PL function with the appropriate

parameter estimates. It was then possible to get a movie of how the gel
dying process was estimated to develop. While the input movie had
some artefacts due to incomplete motion estimation, the reconstructed
movie was without these or other visible artefacts. Fig. 9 compares the
spatial configuration of the silver staining of the original and the
reconstructed movies at the time point 44. This illustrates that the
estimation of the parameters was quite satisfactory. More details on
how the five different parameters from the 5PL model manifested
themselves spatially in the 2DGE images are given in Nhek et al. (2011)
(in preparation).

5. Discussion

In this paper the DLU method was improved in comparison to the
version in Ref. [1] by introducingWLS instead of OLS in the estimation
of metamodel scores and distances. It means that the whole
modelome of curvature (38 curvature models [1]), or selected parts
of it, can now be applied to large sets of sigmoid curve data, with both
homoscedastic and heteroscedastic noise.

Table 2 shows that using the direct look-up data base of curves
works at least as well as the ILS estimation, with respect to the
precision of the parameter estimates. Moreover, it does not need any
additional assumptions about function or parameter values (as many
statistical methods do). In the first example it was easy to decide what
kind of functions to explore, since we knew how the curves had been
generated. But in the second example, the underlying chemical
mechanism behind the silver staining development and its kinetics
remains more or less unknown. In such cases, considering only one
nonlinear function – or even only three functions – among a large
number of possible causal mechanisms or usual function forms, may
lead to a mistaken mechanistic interpretation or suboptimal func-
tional form. In the present case, the 5PL function was generally found
to give much higher frequency of acceptable fit than the other 37
curve models. The reason may be its ability to model also asymmetry
in the sigmoid curves, as represented by its parameter p3.

The performance of the data base approach was compared with an
ILS approach in terms of computation time and parameter estimation
accuracy (Section 4.1).When having equal conditions for bothmethods
(the same number of curves and tested functions), the look-up method
reduced the time needed for finding amodel by a factor of 24 compared
to the ILS estimationmethod in the caseswhen ILS found a solution. It is
also very important that DLU in contrary to simplex does not depend on
initial values. As we saw in Section 4.1, results from ILS are highly
dependent on the point where we start. Choosing good starting values
for every single curvemay be very time-consumingwhenhaving a large
data set, like, for example, in Section 4.2.With default settings inMatlab
(both termination tolerance on the function and variable value equal to
1.0000e−04), in 276 cases out of 1000 the ILS did not converge to a
sensible solution, whereas the look-up method had no cases of
non-sensible solutions. In the Discussion section of Ref. [1] it was
mentioned the opportunity to use DLU and ILS together: first use DLU to
identify function type and a good set of parameters, and then use these
parameters as starting values for ILS. This would reduce the chance of
getting stuck in the local optima and computation time is expected to be
shorter than for ILS alone. The results from Section 4.1 showed that ILS
needed 120 seconds when trying out three functions, whereas with the
DLU approach three functions are checked in 5 seconds. Hence, in
addition to avoiding the risk of local optima, there may be considerable
time saving benefits from using DLU for pre-optimisation ahead of ILS.

In a practical solution,modellingwith theDLUmethod alonemay be
by far more time effective than the ILS approach, which may give bad
solutions requiring further actions from the analyst. Moreover, the
speed and stability of the look-up method shown here are valuable for
experiments giving a large number of curves to be analysed. Although
the look-up method is relatively fast in comparison to ILS, it would be
preferable to speed it up even more to perform parameters estimation

Fig. 8. The histogram showing a number of curves with a certain lack-of-fit.

Table 3
Parameter estimates for the curves shown in Fig. 7. Numbers correspond to the plots in
the following way: from the left to the right, from the top to the bottom.

p1 p2 p3 Slope Offset

1 0.35 −3.00 0.75 0.2194 0.1271
2 0.15 −3.00 0.55 0.2201 0.1275
3 0.55 −3.00 0.65 0.1968 0.1311
4 0.80 −3.00 0.35 0.2327 0.1321
5 0.25 −3.00 0.50 0.2904 0.1275
6 0.45 −3.00 0.75 0.1682 0.1281
7 0.25 −3.00 0.95 0.3207 0.1293
8 0.60 −3.00 0.30 0.2902 0.1340
9 0.60 −3.00 0.70 0.1006 0.1351
10 0.50 −3.00 0.60 0.2541 0.1319
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on the fly. At the time being, new and more effective search algorithms
are tested for the look-up step in our approach, and we anticipate a
further reduction in computation time for newer versions of our
methodology. This will be valuable if the method is to become practical
for computational compaction in more complex models, such as high
dimensional systems of nonlinear coupled differential equations.

It was also verified that the look-up method is able to work with
data that are affected by heteroscedastic noise. It was tested on the
2DGE data (Section 4.2). For all curves tested the look-up approach
predicted that the 5PL function describes the data best (which
confirmed the initial guess of the experimentalist). It should be
noticed that the fitting time was increasing linearly depending on the
number of curves in the data set (when fitting less than 90,000 curves
at the same time). Hence, the time needed for fitting a huge number of
curves can be well predicted up front of the analysis. In order to fit
larger sets of data (more than 90,000 curves), the program has to be
further improved or, otherwise, the data set has to be divided into
smaller parts. More than 97% of curves (1.69e−05) were fitted very
precisely shapewise, with the lack-of-fit less than 1.0000e−03. It
means that setting a priori weight vectors enables the DLU approach
to handle heteroscedastic noise.

Besides, the choice of starting values for the function parameters is
often a problem in iterative hill-climbing, as we found here. With the
wrong choice of starting values, the simplex optimisation function
often ended up in a local minimum, which gave a bad curve fit and
erroneous parameter value estimates.

There is still room for improvement of themetamodelling approach.
One of these is to introduce an x-shifting forcing all the curves to pass
through the point (0.5 ;0.5). This may reduce the number of
components needed in the compression of the database and hence
may reduce the storage space. Whether this gives a computation time
benefit is unclear at the moment.

Another possible (and needed) improvement is to use a different
way of selection the best parameter set. Calculating the distance for all
possible solutions and them sorting them takes relatively much time,
and it is believed that this time can be significantly reduced.

All pros for the DLU approach, despite cons existing at the
moment, allow us to conclude that this method presented here works

very well and may be highly competitive with other traditional
methods in terms of speed and precision of work.
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Abstract

A generic mathematical phenomenon (line curvature) is described quantitatively and linguistically:
a range of very di�erent in form and representation models z = Fm(x), m = 1, 2, .., 38, each yielding
smooth, but curved relationships z = f(x) with 0 or 1 in�ection points, were collected from di�erent
�elds of science, ranging from systems biology and statistics to trigonometry and psychophysics (Isaeva
et al. (2011)). The behavioural repertoire of each of the models was realised by exhaustive statistically
designed computer experiments, yielding a total of about 50,000 curves z = f(x), each recorded at 100
x-values. A modelome of curvature was formed by this set of arched or sigmoid curves and was prepro-
cessed and combined in a joint metamodel based on a bi-linear subspace analysis. To describe a total of
99.9% of the variability in the curves, 12 eigenvectors were needed. These 12 common curve descriptors
were successfully related back to the original model input parameters in each of the individual models.
Furthermore, to give verbal meaning to the per se meaningless axes in this 12-dimensional eigenvector
space, a total of 64 curve images were selected by a statistical design, printed and submitted to descript-
ive sensory analysis, using a panel of ten trained judges. A quantitative map between the eigenvector
space and the sensory space was successfully established and then used for predicting what the human
descriptive pro�ling would be for each of the 50,000 curves. Thus, a �rst version of a complete �modelome�
of the mathematical phenomenon �line curvature� has been established by multivariate metamodelling
and described in terms of quantitative maps both to the original model parameters in the 38 individual
models and to human verbal description of curve shapes.

Keywords: modelome, sensory science, human description, function parameters, curves



1 Introduction

1.1 The optimal model level: Detailed mechanism, crude approximation or

general phenomenon?

This paper concerns the relationship between a generic relational phenomenon, its possible mathematical
realisations and their causal interpretations. Mathematics is said to be the lingua franca of science. Applied
mathematical modelling allows complicated conceptualisations to be formalised and tested. Mechanistic
modelling allows specialists to describe their system of interest in light of their understanding, in a very
e�cient way, at the desired level of resolution. A model description that matches well to the available empirical
evidence is a compact, concise, �exible and relevant representation of knowledge. Even if a mathematical
formulation is uncertain, or causally wrong, it may still be useful, for crude approximation, as a functional
building block in a larger system or as a tentative realisation of a thought experiment.

However, outputs from an uncertain formula must be interpreted with care; the concise nature of math-
ematical functions make them appear more objective or accurate than they really are. For instance, a chosen
nonlinear function may, of course, give a good �t to empirical data if it has su�ciently many independent
model parameters to be estimated. But the estimated parameter output may give problems, not just for stat-
istical reasons (instability due to general over-parameterisation or speci�c collinearity), but � more seriously
� model misspeci�cation: a reasonable curve �t may appear to con�rm a wrong mechanistic understanding.

Good modelling practice, therefore, lets the level of technical detail in a model correspond to a con-
scious choice of explanatory ambition. At one extreme, high-resolution mechanistic details may be modelled
explicitly (usually requiring nonlinear formulations) as long as they re�ect reliable knowledge or important
postulates. At the other extreme, low-resolution crude linear or polynomial approximations may be preferable
if the underlying mechanisms are unknown or irrelevant, and accuracy is not important.

But what about situations when a functional phenomenon needs to be parametrised accurately, but
the underlying causal details are unknown or uncertain? Choosing to use wrong mechanistic model may
give adequate curve �t, but lock the user's mind onto the wrong thought track. On the other hand, a
simple straight line might give bad curve �t, while a more �exible polynomial might give meaningless model
parameters and bad extrapolation properties. The idea in this paper is to develop and employ an intermediate-
level, multivariate metamodel that describes a functional phenomenon at a generic level, with su�cient
accuracy and focus but without unwarranted detailed mechanistic assumptions.

1.2 Line curvature: a functional phenomenon and its modelling

As an example of such a generic functional phenomenon, we here focus on simple line curvature, i.e., nonlin-
earity in a two-dimensional plane. Plane curves can be de�ned in di�erent ways, e.g., in analytical geometry
it is a set of points that satisfy the following equation [1]:

F (x, y) = 0 (implicit function) (1)

or, in the more familiar form of a function,

y = f(x) (explicit function). (2)

We restrict the phenomenon further, to line curvature, i.e., monotonic bi-variate relationships with zero
or one in�ection point. Even this simple phenomenon includes a wide range of curves, from a straight line
via smooth arches and sigmoids and to near-step functions.

Monotonic, arched or sigmoid, relationships response curves are generated in many di�erent natural
systems, ranging from growth curves to cumulative statistical processes, with di�erent causal mechanisms.
Conversely, a wide range of mathematical functions can describe such line curvature. To choose the right
mechanistic model in a given natural system can be di�cult, while a wrong model may give misleading
interpretation.

The present goal is to develop a metamodel of the phenomenon of line curvature as such, and to charac-
terise this metamodel both by concise mathematical parameters and in more mundane human language. The
generic line curvature model is intended to provide precise description of all such curves, without unwarranted
assumptions, with simple parameter estimation. It is intended to encompass a wide range of speci�c curvature
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models, which, thereby, can be related to each other via the parameters of their common metamodel. The
paper, thus, presents a �rst version of the �modelome of line curvature�, combining a very wide choice of
mathematical curvature models and functions, from a variety of sciences, into one single metamodel.

The metamodel is an approximation model intended to span all the variabilities in the output of all the
chosen mathematical curvature models up to a chosen, high approximation accuracy. It is generated based on
data from extensive computer simulations, summarised by a joint multivariate metamodel. This metamodel
is obtained by an automatic preprocessing and subspace expansion. For each of the many explicit input
models, its parameters are linked to the parameters in the metamodel by dedicated multivariate regression
models.

1.3 Sensory description of the metamodel

Nonlinear mathematical modelling is increasingly used also by non-mathematicians, helped by standard
computer software. The choice of model and the interpretation of their parameters may be di�cult for
non-mathematically oriented people. For instance, in the bio-sciences, specialists in biology, microbiology,
physiology, biochemistry and biophysics collect a large amount of data that happen to display curvature.
Due to the lack of advanced mathematical knowledge, some of them may face a problem of analysing their
data and of communicating with mathematicians and physicists in scienti�c terms. Therefore, to be useful
also for non-mathematicians, a generic metamodel of curvature must be interpretable.

Contrary to the parameters in the individual functions (Eqs. (1) and (2)), where the model parameters
usually have explicit meaning, the parameters in a subspace model have no meaning per se � they only rep-
resent coordinates and directions in an orthogonal axis system. To provide meaning and allow interpretation,
there is a need for additional characterisations of the metamodel, at least in its dominant subspace dimen-
sions. This will here be done with two di�erent methods of conceptualisation � visual prototype illustration
and verbal descriptive pro�ling. The former is simple � �nding and plotting representative curves for each
of the main regions in the metamodel. The latter requires considerable interdisciplinary cooperation, within
the framework of sensory science.

The majority of people probably do not think of curves in mathematical terms: they rather see them as re-
sembling familiar objects: outlines of buildings, shapes of fruits, trajectories of movements etc. Simple words
from every-day use are employed to describe contours and patterns: long, heavy, rigid, symmetric, gentle
etc. On the other hand, scientists may prefer descriptors corresponding to their general understanding �
delay phase, linear, saturation etc. From this, the idea arose of characterising the modelome of line curvature
sensorically, by mapping between its formal representation with mathematical models and metamodel para-
meters on one hand, and human language on the other.

There already exists a large amount of literature describing and studying curvature and its perception
by human beings as for example in Refs. [2, 3, 4]. However, it was not clear whether the human perception
of curves and mathematical expressions could be mapped into each other. For instance, to what degree is it
possible, for a data set forming a given curve, to identify the reasonable function types and estimate their
parameters from a verbal description of a curve using a list of attributes established beforehand? Such a
verbal descriptor list, along with calibration scales, could play a role in cross-disciplinary communication:
it could improve understanding, e.g., between bio-scientists and mathematicians, even though they speak
di�erent languages.

For this purpose, a sensory study was conducted. Descriptive sensory analysis is widely used in food
science [5, 6] and consists in selecting a representative set of objects (in this case � individual curves) and
pro�ling each of them (in this case the individually curves printed on paper) by a well trained panel of judges,
using a prede�ned list of words-descriptors developed for the problem at hand. The sensory panel average
pro�les can then be mapped to external information about the same objects (in this case the model parameters
or metamodel parameters of the chosen curves). In principle, it should then be possible to predict the sensory
pro�le for new curves from their metamodel parameters, and, likewise, to predict their metamodel parameters
from their sensory pro�le. The metamodel parameters are unique, but may, in turn, be linked to the model
parameters in the individual curvature functions (of course, this may be a one-to-many mapping since the
range of shapes from di�erent functions will be partly overlapping). Hence, if successful, this combination of
metamodelling and sensory pro�ling should allow both a mathematical and a verbal description of each and
every parameter combination for each and every curvature function.
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A previous use of sensory descriptive analysis in mathematical modelling was published by Martens et
al. [7], Martens et al. [8] and Isaeva et al. [9]. In that case, one given, high-dimensional nonlinear dynamic
model of cell di�erentiation was studied with respect to the e�ects of varying certain input parameters
and initial conditions on the output cell pattern. The human sensory assessment of printouts of selected
2D solution patterns, combined with multivariate data mapping, was essential in the discovery of a new,
systematic, but highly unexpected di�erentiation pattern. The same sensory pro�ling approach is here applied
to mathematical models with simpler outputs (curves), but now for a whole class of models representing the
same phenomenon (curvature), each with its parameter space probed in much higher resolution.

It is known that the visual cortex of the brain contains simple cells that easily can recognise a straight
line [10, 11]. Besides, there exist hypercomplex cells that react on the curvature [10], but not that intensively
as on the straightness. Perhaps, due to this separation of the perception cells, humans tend to distinguish
straight lines from curves and consider them as two individual concepts. Nevertheless, according to the
de�nition of a line (curve) in [1], a straight line is one of the curve types, so to say, a critical form, with the
curvature equal to zero. Hence, another aim of the sensory analysis here was to verify whether a straight line
would �t into the �community� of curves according to the sensory panel or not.

1.4 Model, metamodel and mapping

The term �model� is already familiar to scientists and means a simpli�cation of the real world, e.g., by the use
of mathematical �language� (functional forms and parameter values). For instance, having a large amount of
data, one wants to know common properties of these data and implements various types of analyses to �nd
a proper model describing most of the observed properties and reducing the data dimension. Metamodel,
in turn, is a further simpli�cation of data achieved by modelling of a model [12]. In our case, a particular
metamodel is employed, based on a simple preprocessing and bi-linear eigenvector compression, followed by
mapping back to the original nonlinear model parameters as well as external verbal descriptions.

The choice of curvature models, design of computer simulations and the general technique for a bi-linear
metamodel development was explained in detail in Ref. [13]. A set of 38 functional models of line curvature
was collected from di�erent scienti�c �elds. For each of them, extensive simulations were used for generating
output curves, and a metamodel for each model was established by the principal component analysis (PCA)
of the curves after a simple preprocessing. The compact eigenvector representation of the metamodel led to a
signi�cant reduction of dimensionality compared to the original data since all redundancy is compressed into
joint metamodel parameters. The collection of 38 individual metamodels was used in Ref. [14] for �nding the
most adequate nonlinear model type (the �ve-parameter logistic curve) to describe proteomic growth curves
based on their lack-of-�t. Moreover, the parameters of the optimal model, which was highly nonlinear, were
estimated for a massive number (> 170,000) of curves via its metamodel. Supervised use of conventional
nonlinear iterative hill-climbing proved to be impractical due to long and unpredictable estimation time, and
unsupervised use was deemed dangerous due to the risk of local minima. But since the metamodel was linear,
the parameter estimation took only a fraction of the time, since each curve �tting consisted only in a simple
linear projection followed by a local table look-up, apparently with no risk of �nding local minima.

Instead of using individual metamodels for each mathematical model, in the present paper one joint
metamodel for all the individual mathematical models is developed and described. Figure 1 outlines the
comparison of conventional modelling and the multivariate metamodelling. A nonlinear model is constructed
from prior knowledge, and matched to observed data (top plot). The corresponding metamodel of its model
is developed (plot in the middle) by using prior knowledge to construct a statistical design to span the
parameter space at a chosen resolution and range, then performing extensive computer simulations with
high-dimensional monitoring of the outputs; the large tables of simulated data are compressed into a bi-
linear metamodel, whose parameters are mapped back to the original parameters, or to external information
(e.g., sensory pro�ling). The original model may be �tted to massive amounts of observed data (plot at the
bottom) via its established metamodel, and the resulting metamodel parameter estimates may then predict
the unknown parameter values.

In Section 2.1 of this paper we describe construction of a metamodel for this particular analysis that is
described in Section 2.2. We present obtained results in Section 3 and close the paper by the discussion of
them in Section 4.
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Figure 1: The relationship between conventional modelling and metamodelling. Top plot: Development of a
nonlinear model. Middle plot: Development of a bilinear metamodel. Bottom: Fitting the model to massive
amounts of observed data, via its metamodel.
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Figure 2: Construction of a global metamodel: data were generated for each model separately, then all of
them were merged into one large data set and modelled altogether.

2 Methods

2.1 Metamodel

In Section 1.4, we mentioned a collection of realisations of 38 mathematical functions that has been formed
for parameter estimation of each new curve obtained from an experiment. All curves in the collection were
simulated on the x-interval of [0.001;1] with 100 observation points (x = 0 was omitted here to avoid division
by zero for some of the functions). Curve shapes vary from a straight line to almost a step function showing
that each function can give a wide spectrum of curves depending on parameter values, and the complete set
of curves is hereby called the modelome, whereas a set of realisations for each single function type is called
a function phenome [13]. Among functions represented in the modelome are polynomials, trigonometric and
hyperbolic trigonometric functions, cumulative distribution functions for statistical distributions and others.

In order to verify that the modelome of curves captures the entire phenomenon of curvature, it was
decided to make a joint metamodel for all the curves. In view of the fact that the original curves may have
extremely di�erent scales, all curves were preprocessed to be increasing functions on the [0;1] interval on the
y-axis before they were put together and formed one modelome. The total number of curves was 47,840,
hence, the size of the modelome was 47,840×100. These curves were then mean centred altogether, and, as
expected, the global mean centre was a diagonal line. Further, PCA was used to compress the modelome of
curves and to make a metamodel:

Z = z̄ + TG · P ′G + E, (3)

where Z is the matrix of the preprocessed centred curves from all the 38 models; z̄ is the global mean centre
curve; TG and PG are scores and loadings of the modelome respectively; E is a matrix of the unmodelled
residuals; and index G corresponds to global here. The set of scores and loadings formed the global metamodel
that we are interested in. Figure 2 shows how the modelome of a generic phenomenon is developed, as a joint
metamodel encompassing a whole set of alternative mathematical models of that phenomenon.

Such a compression ensures a minimal loss of information from the data set. It is a simple bi-linear
transformation with a precision set in advance by an analyst. For now we just say that six principal com-
ponents (PCs) were considered as an optimal number for building a data set for the sensory analysis since
they explained 99.3% of the variability in the data; and more details about results of metamodelling can be
found in Section 3.1.
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2.2 Sensory data

2.2.1 First run

Our main interest was to check whether it is possible to map outcomes of pure mathematical expressions
into the daily language used by people far from mathematics. With that end in view, a sensory panel was
set up with ten well trained judges. The curve set consisted of 32 preprocessed curves, and the evaluation
was run during two days, where the second day was a randomised repetition of the �rst one. In this way, two
replicates for each sample were obtained giving an opportunity to assess reproducibility of the judges.

Curves for the sensory panel were chosen based on the requirement of their equal distribution in the
curvature space to provide the judges with as many types of curves as possible. For this reason, multi-level
binary replacement (MBR) design [15, 16] was applied here on the six-dimensional global score-space of the
metamodel. A fractional factorial MBR design was employed to obtain 64 sample-curves for the sensory
study. Further, values from TG closest to the design levels were found, that is, 64 score vectors, equally
distributed in the six-dimensional score space, were obtained. To reconstruct the curves corresponding to the
chosen score vectors, Eq. (4) was applied:

Zrecon = z̄ + TG−design · P ′G. (4)

We wanted to make sure that curves for the sensory evaluation are accurately estimated by the global
PCA model, and, therefore, it was decided that only curves that were monotonous after the reconstruction
would be possible candidates for the sensory analysis. Since the conducted reconstruction brought us back
to the curves after preprocessing, all the samples were supposed to be increasing. Here this requirement
was relaxed a little since six PCs explained not exactly 100% of variability. A curve was considered to be
increasing if

z(x2)− z(x1) ≥ −0.005, where x2 > x1. (5)

Following this condition, 49 out of 64 curves turned out to be monotonous and were kept for further
investigation. To get more curves, scores for all curves in the modelome for the �rst two PCs were plotted
and colour-coded according to the monotonicity of the corresponding reconstructed curves; and another 20
plausible curves were randomly picked out from that plot in addition to already chosen 49.

Thus, a set of 69 potential candidates was formed. Corresponding original preprocessed curves from the
modelome were printed out, and only 32 of them, representing as many curve types as possible, were selected
for the sensory evaluation.

As was mentioned above, each curve was evaluated twice: the �rst day and the second day. However,
mistakenly, curve number 3 got into the sample of the second day twice, forcing out curve number 21.
Thereby, curve number 21 has no replicates at the end, whereas curve number 3 got three replicates.

The judges used 14 descriptors to evaluate each of the curves (see Table 1) on the unstructured scale from
1.0 to 9.0. At the end of each day, average across the judges was taken for all the attributes for every curve.
Figure 3 demonstrates examples of the curves that got high values for some of the descriptors.

2.2.2 Second run

Sensory analysis was repeated with the same descriptors four months later. The size of the data set was
the same (32 curves per day), but the content was slightly changed: some new models were added. Three
psychophysical laws and their curve outputs were studied here: Weber's law, Fechner's law and Steven's law
[17]. The formulations of the laws were rewritten in such a way that they would �t our criteria of curves in
the modelome, namely, to depend only on one variable x. After omission of slope parameters we got:

Weber's law y = x (6)

Fechner's law y = ln(x) (7)

Steven's law y = xp. (8)
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Name Description Low (1.0) High (9.0)
Sigmoid Degree of sigmoidness (s-curve) Not sigmoid Sigmoid
Arc Degree of arc, one long arc Small arc Long arc
Symmetrical Degree of symmetry Asymmetrical Symmetrical
Heavy Degree of heaviness Light Heavy
Deviation from Distance from the peak till the diagonal Short distance Long distance
a straight line

Pliable Degree of pliability Little pliable (rigid) Pliable
Initial phase Length of the initial phase (at the bottom) Short Long
Lower arc Degree of curvature Small arc Long arc
Steepness Degree of steepness of the steepest part Low steepness High steepness
Upper arc Degree of curvature Small arc Long arc
Stationary phase Length of the stationary phase (at the bottom) Short Long
Harmonic Feeling of harmony and balance No harmony Harmony
Elegant Feeling of an elegant form No elegance Elegance
Associations Degree of associations No associations Many associations

Table 1: Description of the sensory variables used for evaluation of the curves.

Figure 3: Examples of the curves with high values for Sigmoid, Arc, Heavy, Pliable, Steepness and Stationary
phase respectively (from the left to the right, from the top to the bottom). Here the dotted diagonal line is
a reference line for the sensory panel. It was decided to have it on the print outs for better visualisation of
the curves behaviour with respect to the straight line.
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In total, ten representatives of these new functions were taken to the sensory panel (one, two and seven
curves for each of the laws respectively). Among them, a straight line happened to be twice: as an outcome
of Weber's law and as one representative of Steven's law (p = 0).

Six other curves were obtained by simulations of a dynamic model of a gene regulatory network studied
by Gjuvsland in Ref. [18]. Each model described there has three state variables, and for this paper model
number 6, scaled and dimensionless, was randomly picked. Di�erential equations for the chosen model are
following:

z′1 = α1(1− Y1)Y2 − γ1z1,
z′2 = α2(1− Y1)− γ2z2, (9)

z′3 = α3Y1Y2 − γ3z3,

where z is a function of x; α3 ∈ (0; 1); all γj ∈ (0; 1), and Yj = zpj /(z
p
j + 1). Details see in Ref. [18].

Simulations were done with 125 di�erent sets of starting values, and two of those that gave monotonous
integral curves were picked out, that is, we obtained three curves for each set of starting values.

Further, for checking how good judges are in reproducing their own evaluation several months later, 14
random curves from the �rst run, of various shapes, were selected to be in the second round as well. And
�nally, to complete the data set (to have 32 curves), remaining two curves were chosen from those that were
in the candidates' list for the �rst run but were not evaluated.

Hence, 32 curves were collected for the second run of the sensory evaluation. Among them are 16 curves
from the new models, 14 old curves (old models, same parameters) and two curves of the old models but
new parameter sets. Again, as during the �rst run of the sensory analysis, only preprocessed curves were
considered here.

It was hoped that by the �rst curve set, the phenomenon of curvature would be explained quite extensively.
In that case, having new models and projecting their curves onto the metamodel of the library would not
give us any outliers or protruding results. Presence of a straight line made it even more interesting to see
how the sensory panel would evaluate it in comparison to the other �typical� curves.

3 Results

3.1 Metamodel

Construction of a metamodel, as was mentioned above, leads to a simpli�ed representation of the models in
the modelome. For example, in Figure 4a one can see a wide variety of curves in the modelome represented
by a subset of 500 random curves out of the 47,840. Six PCs of the global PCA model explained so much
variability in the data that, after subtracting them from the latter, the residuals are rather small (Figure
4b). However, for building a more accurate model of the relationship between sensory values and function
parameters, 12 PCs were taken into consideration, which explained 99.9% of the data variability (Figure 5).
It means that having 12 basal curves (loadings) is enough to reconstruct each original curve with a precision
deemed high enough for most practical purposes. Examples of the �rst six orthonormal loadings together with
the global mean centre curve are presented in Figure 6b. It can be noticed that all basal curves have di�erent
degree of curvature, thereby providing various sigmoids by their linear combinations. These orthonormal
prototype curves resemble sine waves with increasing frequencies, but contrary to a Fourier series, they are
designed to describe as much variability in the curves as possible with as few terms as possible. Figure 6a,
in its turn, shows the scores for all the curves for the �rst six PCs of the metamodel. Since the 38 di�erent
models are stored sequentially, it can be seen how the di�erent models contribute to the di�erent metamodel
dimensions. Among them are polynomials, hyperbolic tangent, Hill function, �ve-parameter logistic function,
generalised logistic function and cumulative distribution function for Student's t-distribution.

Hence, by building a global metamodel, we managed to represent the large original data matrix of size
47,840×100 by two, much smaller matrices of scores and loadings of size 47,840×12 and 12×100 respectively.
The latter two are apparently easier to store and to handle. It is believed that this metamodel, comprising
the 12 dimensional bi-linear model, captures the essential dimensionality of the line curvature phenomenon.
It is expected that any new parameter combination of any of these 38 models will at the chosen resolution fall
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(a) (b)

Figure 4: 500 random curves from the joint modelome: (a) � original (locally mean centred) curves, (b) �
shows residuals from the data after subtracting six PCs. Here black curves correspond to the logistic function
type that is used in the �rst example in Section 3.4.

Figure 5: Number of PCs and corresponding percentage of explained variability in the data by the global
metamodel. Six PCs are considered for making design for sensory evaluation, whereas for building a model
of a further model 12 PCs are taken.
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(a) (b)

Figure 6: Scores (a) and loadings (b) of the global metamodel for the �rst six PCs. Top right plot in Figure
(a) shows a vector of ones corresponding to the global mean centre curve (top left plot in Figure (b)). We
denote it as t0 here since mean centre can be considered as a zeroth PC in any PCA model.
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Figure 7: Metamodel scores for 500 random curves from the modelome: �rst meta-PC vs second meta-PC.
Black dots here correspond to the curves of the logistic function type.

inside the 12-dimensional subspace of PG. From its metamodel scores TG (metascores), the mathematical form
and the parameter value of the generating function may, therefore, be identi�ed in that process. Of course, in
the generic modelome metamodel, several di�erent nonlinear models may yield more or less the same output
curve, although with di�erent model parameters. This is illustrated in Figure 7 for the �rst two metamodel
dimensions: to avoid graphical cluttering, only a small, random subset of curves was selected in the score
plot. Among them were some realisations of the logistic function type; these are marked explicitly. Clearly,
the line curvatures produced by the simple logistic function are not unique, at least not in this projection.
Given such many-to-few relationships, this is to be expected: for curves displaying simple, symmetric line
curvature, a �t to this generic model may yield a range of alternative model types and parameter ranges.
However, for curves with clear asymmetry, there are fewer model alternatives, as demonstrated by Isaeva et
al. [14]. From now on, to avoid confusion, we will refer to the PCs of the metamodel as to meta-PCs.

3.2 PCA

To get a primary overview of the data, PCA was run on the values of the sensory variables from the �rst
trial. From the score plot (Figure 8b), one can see that the judges had a high repeatability from one day
to another, i.e., scores for the replicates lie close to each other. Moreover, it was noticed that there is a
clear grouping of samples along the �rst PC: the samples divided into �sigmoid� and �arc� groups. Second
PC made a distinction between curves according to their location with respect to the line y = x: for the
�arcs� it was a clear separation of the curves into �upper� and �lower� arcs. Third PC (not shown on the
�gure) divided �arcs� into those that have at least one long phase (initial or stationary) and those without
phases at all. In total, �ve PCs explained 94.6% of the variability in the data. The model was validated by
cross-validation with two segments formed by data from each of the two days. That allowed us to verify how
di�erent or how similar evaluations at each day were with respect to each other.

Loadings of the model were logically correlated, e.g., Sigmoid was negatively correlated to Arc; Lower
Arc was negatively correlated to Upper Arc while positively correlated to Initial Phase and Heavy ; naturally,
steep curves deviated much from the straight line and were neither elegant, nor harmonic, nor pliable (Figure
8a).

To check whether the �ve-component PCA model on the curves from the �rst run was reasonable or not,
sensory data from the second run was projected onto its score space. The variability in the new data was
explained up to 82.8%. One might say that this prediction is not perfect and it is not. However, this fact
is believed to be due to the presence of the straight line among other curves. Most likely, for the judges it
was di�cult to evaluate it since they were not trained on such a curve, or/and, as was mentioned above, a
straight line is always separated from custom curves in a human mind.

Otherwise, scores for the curves that were present in both evaluations fell really close to each other, which
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(a) (b)

Figure 8: Score (a) and correlation loading (b) plots for the �rst and second PCs from the PCA model on
curves from the �rst run. The scores are colour-coded according to their shapes: blue squares - sigmoidal
curves, red circles - curves with one arc. Curve number 19 is not colour-coded here due to its unclearness:
it is a one long arc, although it has a small tail like a sigmoid. The correlation loading plot shows relations
between the sensory variables.

tells us that the evaluation was structural, not random, and did not depend on the time of evaluation. Even
four months later they were able to give the same scores to the curves. This was also veri�ed by comparison
of the means and standard deviations of the sensory evaluation of the common curves of runs 1 and 2 (the
results are shown in Figure 9). One can see here that the evaluation of the common curves from the second
run for most of the descriptors did not vary signi�cantly in comparison to such from the �rst run. The only
variable that seemed to change much was Associations. It is a very unclearly de�ned descriptor and is rather
subjective. Some judges may not associate a curve with anything, whereas others might see a shoulder, a
wave or even a belly of a pregnant woman. Therefore, it was decided to eliminate Associations from the
further analysis.

3.3 PLSR

In order to achieve the aim of �nding a relationship between metascores of the curves in the global PCA
model and the sensory descriptors, partial least squares regression (PLSR) analysis was implemented here
[19]. Metascores for the �rst 12 meta-PCs for the curves from the �rst run were considered as predictors
(forming a matrix X), whereas the response matrix Y held the sensory values for all the descriptors except
Associations.

First, a model without interactions and square e�ects was studied, but this turned out to be too simple
to yield good sensory predictions. Many variables were poorly predicted and some of them even showed a
presence of nonlinearity, e.g., Deviation from a straight line, Lower arc and Steepness. Obviously, having just
main e�ects (metascores) was not enough to build an appropriate model: only 73.5% of the Y -variability
was explained by eight PCs. As a result of this, it was decided to extend the model with the interaction and
square e�ects for the �rst six metascores-variables (since they were the most signi�cant in the metamodel),
so that the X- and Y -matrices were of size 64×33 and 64×13 respectively. Raising to the second power and
multiplying values of scores for di�erent meta-PCs with each other might lead to immense values of the new
variables (interactions and square terms). Therefore, in order to avoid it, X-variables had to be weighted.
Since the scale of the original metascores was di�erent, their weighting was necessary as well. In this way,
following weight vectors were imposed on the 12 main e�ects:

wmain =
1

std+ 0.1
(10)
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Figure 9: Mean and standard deviation of the sensory evaluation of the 14 common curves that were present
in both runs of the sensory analysis: solid black bars correspond to the �rst run, hatched bars - to the second.

and on interaction and square terms:

wIns_Sqs =
0.11

std+ 0.1
, (11)

where std denotes the standard deviation of the given variable. The number 0.1 in the denominator was
introduced to prevent an in�ation of the e�ects of the meta-PCs that are de�ned on a small scale and,
therefore, have a small standard deviation; whereas the value 0.11 for the interaction and square terms was
obtained by trial and error method aiming at supressing the e�ect of their large values. As in Section 3.2, a
goodness of the model was tested by �leave-one-day-out� cross validation.

Naturally, adding more variables to the model led to an increase in the number of PCs needed: now 12
PCs seemed to be an optimal number, and they explained 89.4% of the Y -variability. It is much better than
for the model with only main e�ects despite the increased complexity of the model. Besides, all the sensory
variables were explained noticeably better: the smallest coe�cient of determination for prediction r2 was
equal to 0.80 for the descriptor Deviation from a straight line. That was most likely due to the fact that
some judges did not know how to evaluate steep sigmoids with respect to this attribute: such curves, despite
their large deviation from a straight line, still intersect it. The rest of the variables were predicted very well
(see examples in Figure 10), that is, the found PLSR model is suitable for explaining the relationship between
metascores and sensory values and for prediction of sensory evaluation for new observations.

Projection of the curves from the second run onto this model gave rather good results indicating that
the model found captured the main interdependences between sensory descriptors and metascores, and this
dependence is nonlinear. However, it was again noticed here that the prediction of the sensory values struggled
for the straight lines, meaning that there was a distinction in judges' minds between traditional curves and
a straight line.

From the correlation loading plots in Figure 11, one can give interpretations to the meta-PCs by means
of the sensory descriptors. It can be noted that the �rst meta-PC divides curves into �lower� and �upper�
curves; the second meta-PC represents a division of curves into �sigmoids� and �arcs�, whereas the fourth
meta-PC seems to be negatively correlated to Steepness. Indeed, it is con�rmed by the plots in Figure 12
showing a negative slope for the association between meta-PC-1 and the sensory descriptor Initial phase;
whereas the descriptor Sigmoid has a positive associations to the meta-PC-2.

3.4 Interpretation of function parameters

Interpretation of parameters of various mathematical functions is a di�cult task, especially if a function is
not elementary. It gets next to impossible if one does not have advanced knowledge in mathematics. That is
why, it is extremely important to make it accessible to a more general audience and help them in conducting
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Figure 10: Predicted vs true values of the sensory evaluation for some sensory descriptors (from PLSR model
on the curves form the �rst run). It can be seen that the points lie close to the straight line indicating that
the prediction using the found model works reasonably good.

(a) (b)

Figure 11: Correlation loading plots for the PLSR model for the curves from the �rst run: (a) � �rst PC vs
second PC; (b) - third PC vs fourth PC. Here notation �PC� on the plots correspond to the meta-PCs.
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Figure 12: Relationship of the �rst and second meta-PC to Initial phase and Sigmoid respectively.

relevant experiments by giving a custom meaning to the complex mathematical parameters. A way to achieve
this is to model the relationship between these parameters and the curve descriptors from Section 2.2. Here
we show how it works on the example of the logistic and error functions from the modelome in Ref. [13].

First, a PLSR model based on the both runs of the sensory analysis was built. The model from Section 3.3
could, of course, also be used here, but it was decided to use all available data to build a more robust model
for predicting new curves. The samples of the straight line were eliminated here due to reasons discussed in
Section 3.3. That is, matrices X and Y were of size 124×33 and 124×13 respectively.

First, we study the example with the logistic function. Curves for that function phenome were simulated
according to the formula

z(x; p1, p2) =
1

1 + exp(−p1x+ p2)
, (12)

where the x-interval was set to [0.001; 1], p1 varied from 0.1 to 10 in steps of 0.2 and p2 had values from the
interval [−6; 5] in steps of 0.5.

The scores for these curves from the global PCA model were projected onto the PLSR model described
above, and predictions of sensory values were obtained. The projection was very good explaining 93.3% of
the variability of the matrix with the design parameters indicating that the chosen curve set (joint curves
from both runs) represents the curvature phenomenon quite extensively. Then, predicted sensory values were
used to �nd a relation to the parameter values for the logistic function. For this purpose, PLSR analysis
was run with the predicted sensory values as an X-matrix and the functional design as a Y -matrix. The
functional parameters were predicted extremely good with correlation coe�cients r2 equal to 0.93 and 0.94
between true and predicted values of p1 and p2, respectively (Figure 13).

Figure 14 shows a correlation loading plot. One can notice here that high values of both p1 and p2 will
lead to high values of Sigmoid and Symmetrical, medium and high values of p1 and p2 respectively will
result in high values of Heavy and Initial phase, whereas low values of p2 are associated with high scores for
Deviation from a straight line and Arc. These facts are con�rmed by the plots in Figure 15.

Thus, as a custom interpretation of the mathematical parameters p1 and p2, for instance, Upper arc and
Initial phase can be used respectively.

Here prediction of function parameters was made in two steps:

1. Metascores → Sensory values

2. Sensory values → Function parameters

This was done with the purpose to show that function parameters can be interpreted and predicted from
a human description of the curves provided a function type. Prediction of parameters directly from the
metascores is presented in Ref. [13, 14], although by using local metamodels. Results of employing the global
metamodel for this purpose are provided in the supplementary to this paper material.
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(a) (b)

Figure 13: True vs predicted parameter values for the logistic function.

Figure 14: Correlation loading plot for the logistic function. Here black diamonds represent function para-
meters, whereas grey dots correspond to the sensory descriptors. It is easily seen from the plot how function
parameters are associated with the sensory descriptors.

Figure 15: Plots of the logistic function with various parameter values. Shapes of curves are in agreement
with the relation found between parameter values for this function and sensory evaluation.
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Figure 16: Correlation loading plot for the parameters of the error function and estimated sensory evaluation:
black diamonds � function parameters, grey dots � sensory variables.

A similar procedure was also run for the error function:

z(x; p1, p2) =
2√
π

p1x+p2
ˆ

0

exp(−t2)dt, (13)

where x, as before, varied from 0.001 to 1; p1 ∈ [0.5 : 10] and p2 ∈ [−5 : 3] in steps of 0.2 for both. The
error function is used in statistics and gives the probability that a measurement error will have a distance
less than p1x + p2 to the average value [20]. It is, in fact, the integral of the Gaussian curve and is often
referred to as the cumulative Gaussian function. As can be seen from Eq. (13), the mathematical expression
of this function looks rather complicated and intimidating for non-mathematicians (integral sign, exponential
function, squaring). However, there was no problem to relate those parameters to the sensory descriptors
by a PLSR model. Both parameters were predicted very well with the correlation coe�cient between true
and predicted values equal to 0.96 for each of them. Associations of p1 and p2 with the sensory variables
can be seen in Figure 16. Here one can observe that with the increment of p1 (parameter of the increasing
speed), a curve becomes steeper since it grows faster; increase of p2 gives a curve with a larger shift to the
left and, consequently, larger deviation from a straight line, and reverse, decrease of p2 (shift to the right)
brings Initial phase to a curve and makes it Heavy.

4 Discussion

At a detailed mechanistic level, individual processes and relationships in nature can be understood by estab-
lished physical laws which are described mathematically. These can, in turn, be combined into mathematical
models summarising more complex systems, based on theory and evidence. Mechanistic mathematical mod-
elling, based on sound physical principles, can reveal many phenomena about our reality, e.g., in biology,
namely, how di�erent factors of various processes in�uence each other.

But mechanistic modelling of complex systems has a strong subjective or inter-subjective component, for
better or worse: it provides elegant, compact representation of otherwise overwhelming complexities, and,
thus, simpli�es thinking and communication. But it also has the danger of codifying incomplete or erroneous
assumption to the extent that they become hard to correct. Consistently using an erroneous mechanistic
model may work functionally to produce line curvature, but it may hamper the user's analysis and intuition.
This paper, therefore, provides a precise, but pragmatic alternative to mechanistic modelling of line curvature,
which gives the same functionality but with a less need for mechanistic assumptions.

This metamodelling can also have advantages in subsequent curve �tting; since the metamodel consists
of linear projection followed by local mapping, the parameter estimation does not require an iterative search
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process.
More generally, we have focused on modelling a generic phenomenon line curvature and shown that, in

spite of its wide range and high number of nonlinear model alternatives, the phenomenon per se has a rather
low dimensionality.

Finally, the bi-linear metamodel dimensions themselves just represent an orthogonal axis system, and
there is a need for naming the structure in this subspace, at least with respect to its main dimensions.
We have, therefore, studied the phenomenon of nonlinearity in terms of the custom human language. The
reason for that was a complexity of nonlinear systems and di�culties of their understanding by bio-scientists.
Nonlinear models can be broadly seen in the world phenomena and are studied by a wide scienti�c society.
Quite often it causes troubles even for mathematicians and physicists, who are used to such a complexity,
to �nd out what each parameter in a formula stands for. There is no need to mention then what kind of a
problem it is for bio-scientists to do that without advanced mathematical knowledge. The purpose of this
paper was to show that this tangled phenomenon of nonlinearity can be related to simple words used in the
everyday life. Here only nonlinearity on a plane was studied, that is, the main object was a variety of curves
obtained by simulations of di�erent mathematical functions [13].

First of all, a global metamodel of curvature was built based on the modelome from Ref. [13]. It has been
shown that modelling a model gives a noticeable reduction of complexity and dimensionality. There was
found a basis of 12 curves whose linear combinations would provide a large variety of curves.

Secondly, a sensory panel was set up to study a human perception of curves. The analysis was performed
on two sets of curves, 32 curves in each. PCA on the results showed that the judges were able to reproduce
their evaluation days and even months later indicating that they are well trained (similar scores for identical
curves). It was shown that, by having a nonlinear model (containing interactions and square terms along
with the main e�ects), it is possible to predict sensory values for a new curve (with a PLSR model). This is a
big step towards reducing a gap between mathematics and non-mathematically oriented people. It is shown
that it is indeed possible to describe outputs of mathematical expressions by the custom language, and this
description is not random.

Appearance in the second run of the new models that were not presented in the modelome did not give
any protruding results in the model construction. Their scores fell to the space as those for the old models,
indicating thereby that the existing modelome captures so many curve types that any new curve will be
inside the modelome's score-space.

When building a PLSR model, there were some problems with modelling straight line samples. It was
seen that, even though a straight line is de�ned to be a curve as well, a human mind still distinguishes it
from a traditional curve. Apparently, the judges had troubles with evaluation of the straight lines presented
in the curves set from the second run. It was di�cult to model those samples, and their elimination led to a
better predictive ability of the model. Perhaps, if straight line samples had been included into the set of the
curves for the �rst run, the results would have been di�erent since judges would have trained themselves in
evaluation of this critical form of curves.

With the obtained PLSR model (on curves from the �rst run) it became possible to give meaning to the
meta-PCs. Before, they were only linear combinations of the original curves making a basis of the modelome.
Now, by relating the metamodel to the sensory descriptors, we know what each meta-PC is responsible for.

Yet another important result of this work is the ability to map function parameters into the sensory
attributes. It can enable many experimentalists to conduct their experiments better since they will know
beforehand what property of a curve every parameter corresponds to. And since this knowledge does not
require advanced mathematical skills, it is accessible to a wide audience. However, this has to be done
carefully. This linkage of function parameters to the sensory descriptors involves projection of new samples
onto the built PLSR model. It can well happen that scores for the new curves are lying close to the edge of
the range tested for this model. In that case the distance to the centre of the model may be quite large and
the predictions for these samples may be expected to be more uncertain, due to statistical estimation errors
of various kinds.

It was shown that the relation of sensory evaluation of curves to their function parameters can be modelled
by the PLSR. This can possibly be applied for estimation of function parameters from values of the sensory
descriptors; namely, by knowing �grades� of a curve for all the sensory variables and given a function type, it
would be possible to predict values for the parameters.

The obtained results might also be used in the future for comparing two incompatible functions that seem
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to be absolutely di�erent in terms of mathematical expressions and may even have a di�erent number of
parameters, but have the same type of curves. It should be possible to �nd out by using established models
what are the similarities of given functions and what are the di�erences.

To sum up, we have discussed the generic phenomenon of nonlinearity (in particular curvature) from a
new perspective, namely building of its metamodel and the process of interpretation of this phenomenon by
people not familiar with advanced mathematical notions and terms. We believe that this will contribute to
make communication between di�erent scienti�c communities easier.
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Multi-level binary replacement (MBR)
design for computer experiments in
high-dimensional nonlinear systems
Harald Martensa*, Ingrid Mågeb, Kristin Tøndelc, Julia Isaevad,
Martin Høyb and Solve Sæbød

Computer experiments are useful for studying a complex system, e.g. a high-dimensional nonlinear mathematical
model of a biological or physical system. Based on the simulation results, an empirical ‘‘metamodel’’ may then be
developed, emulating the behavior of the model in a way that is faster to compute and easier to understand.
In modelometrics, the model phenome of a computer model is recorded, once and for all, by structured simulations
according to a factorial design in the model inputs, and with high-dimensional profiling of its simulation outputs.
A multivariate metamodel is then developed, by multivariate analysis of the input–output data, akin to how
high-dimensional data are analyzed in chemometrics. To reveal strongly nonlinear input–output relationships,
the factorial design must probe the design space at many different levels for each of the many input factors. A
reduced factorial designmethodmay be required if combinatorial explosion is to be avoided. In the multi-level binary
replacement (MBR) design the levels of each input factor are represented as binary numbers, and all the individual
binary factor bits are then combined in a fractional factorial (FF) design. The experiment size can thereby be greatly
reduced at the price of some binary confounding. The MBR method is here described and then illustrated for the
optimization of a nonlinear model of a microbiological growth curve with five design factors, for finding the relevant
region in the design space, and subsequently for estimating the optimal design points in that space. Copyright� 2010
John Wiley & Sons, Ltd.

Keywords: binary replacement; combinatorial explosion; computer experiment; fractional factorial; multi-level design

1. INTRODUCTION

1.1. The importance of computer experiments

Computer models are increasingly used in many fields of science,
ranging from global climate assessment, weather forecasting and
process control, via design of mechanical devices in industry and
defense, to quantum physics and the representation of genomic
and metabolic regulation in systems biology and medicine. To
represent a complex system for a given purpose, a ‘‘mechanistic’’
computer model is usually built in a bottom-up fashion,
combining computational elements that mimic the individual
mechanism thought to control the compositional, spatial, and
temporal behavior of the system. Different types of computer
models are used, involving nonlinear finite elements, cellular
automata, or coupled nonlinear ordinary and partial differential
equations. Irrespectively, such models usually have a number of
inputs and can yield a number of outputs. Due to nonlinear
feedback and sheer dimensionality, it is often difficult for
scientists to assess the properties of such a model theoretically,
e.g. to predict how variations in its inputs will affect its outputs or
to foresee unexpected patterns of behavior or unexpected
computational problems. For a complicated computer model,
important properties therefore remain unknown to the user. And
it can have dire consequences for the practical use of a computer
model if the range in which its input gives acceptable model
behavior without computational pitfalls is unknown. Likewise,

not knowing which parameter values correspond to real-world
conditions can make computer simulations misleading.
However, the behavior of a complex computer model may be

studied empirically in computer experiments. An ideal computer
experiment is a set of simulations that reveals how the model
behaves under—more or less—all relevant input conditions.
When each simulation is computationally demanding, it is
necessary to reduce the size of the computer experiment. A
structured experimental plan must then be employed, in order to
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get as much insight as possible with as few simulations as
possible. That is the purpose of the statistical design method
presented here. But before describing the new method itself, the
context for which it is intended needs to be outlined.

1.2. Model phenomes and multivariate metamodels

For simulation with a computer model, the inputs, which will be
controlled by the experimental design, may typically consist of
model parameter values and/or initial values of state variables.
The corresponding outputs may be of various kinds, but should
be sufficiently informative to describe all the potentially
important aspects of the model behavior. The output profile
may e.g. consist of the final values of all the important computed
state variables and their systematic temporal and spatial
distribution patterns, in addition to high-level result summaries
(e.g. cycling time) and descriptions of the simulation process itself
(e.g. convergence rate).
An experimental design for studying a computer model

defines where to probe a system in its input design space[1]. Not
knowing the outcome from the experiment, one cannot expect
to make a perfect choice of experimental design. But the design
should reflect the investigator’s prior knowledge or beliefs about
the model, the range of simulation conditions expected to be of
highest interest, the way each of the simulations is going to be
characterized and how these outputs are going to be stored and
subsequently analyzed.
The set of recorded outputs from designed computer

experiments with a given computer model is here termed the
‘‘model phenome.’’ It represents all the behaviors of themodel, up
to the chosen resolution of the inputs and the outputs. Themodel
phenome may be considered to contain the same information as
the computer model itself—but in a different domain and only to
the said resolution. For a given computer model, the model
phenome is established once and for all. Later, it may be used e.g.
as a look-up table, to speed up the way the outputs are obtained
from new inputs.
However, for this mass of data to be interpretable and

validated in practice, statistical data analysis is required. A data
model that links the inputs and the outputs of a computer model
is called a ‘‘metamodel’’[1]. Computer experiments with a high
number of input- and output-variables call for multivariate data
modeling, i.e. ‘‘multivariate metamodeling.’’ Many of the output
variables must be expected to be intercorrelated. The multi-
variate metamodeling then requires regression methods that
handle collinearities, to simplify interpretation and to stabilize
the parameter estimation. Since pre-processing and regression
methods developed in the field of chemometrics and other
‘-metrics’ fields appear particularly suitable for multivariate
metamodeling, we here coin the term ‘‘modelometrics’’ for
representing the multivariate metamodeling by typical chemo-
metric methods.

1.3. Testing combinations of too many levels of too
many factors?

In many complex computer models, representing e.g. living
systems, the response variables may be expected to be strongly
nonlinearly related to each other and to the input variables: In
a certain parameter range, small changes in an input parameter
may cause particularly large changes in computed output

phenotypes. To be prepared for unknown, but possibly
abrupt nonlinearities in the model behavior, it is important to
be able to study many levels of each factor. For instance, in
order to emulate a cumbersome nonlinear mathematical
description of an aberration in infrared spectroscopy of individual
cancer cells, Kohler et al.[2,3] sampled a certain optical parameter
densely in order to develop a fast and simple PCA/EMSC-
based pre-processing metamodel to render the infrared spectra
interpretable.
On the other hand, it is usually important that the experimental

design allows testing of many different combinations of the
controllable input factors. This is traditionally attained by factorial
experimental designs. For instance, Martens[4] analyzed time
series data, obtained by computer simulation according to a
full-factorial design, by nominal-level PLS regression, to identify
and quantify various feedback structures in dynamic models of
simple, but nonlinear regulatory systems.
For systems where each run is expensive, either due to high

computational load or due to high cost of subsequent output
characterization, it is important to reduce the number of runs,
N, as much as possible. For instance, the behavioral repertoire of a
dynamic, nonlinear, and spatially high-dimensional model of cell
differentiation was studied[5], using a reduced simulation
design: To be able to detect and quantify even unexpected
patterns, sensory descriptive analysis of computer simulation
outputs was employed, submitting paper print-outs of the
computed cell patterns to the sensory panelists. To make
this assessment cost-effective, a standard fractional factorial (FF)
design (see below) was employed, combining K¼ 7 input
parameters at two levels each, in a total of N¼ 32 runs. The
input–output maps generated by PLS regression led to the
discovery of new and unexpected pattern types that had not
been foreseen by theoretical mathematical analysis of the
dynamic model. However, probing only two levels of each
factor was found to be an undesired limitation, given the locally
nonlinear nature of the model behavior. Like in many other
systems, the topology of the input–output map of the computer
model proved later to be so complicated that particularly
nonlinear model behavior only occurred at certain combinations
of certain levels of the input variables.
To be prepared to detect unknown, locally nonlinear

input–output topologies, all relevant input factors should ideally
be tested at many levels each, and in all possible combinations.
But this creates combinatorial explosion. For instance, even in
a small system with only K¼ 5 input parameters, a full
factorial design testing all combinations of the K design factors,
at M¼ 8 levels each, would require N¼ 32 768 experiments.
Complicated computer models of real-world relevance may
easily have K equaling between 10 and 100 input parameters,
whose effects need to be assessed at many levels, alone and in
combination.

1.4. Factorial design of experiments

Unless an efficient Design Of Experiments (DOE) method
is employed, multi-level multi-factor factorial designs make
computer experiments in complex models studies prohibitively
expensive. But till now, reduced design methods for cost-
effective, but systematic testing of combinations of many factors
at many levels are not well known, at least not within the fields of
systems biology and chemometrics.

J. Chemometrics 2010; 24: 748–756 Copyright � 2010 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

Reduced multi-level multi-factor designs

7
4
9



The general research on DOE dates back to the work of
Fisher[6] in 1926, and since then, this important statistical issue
has been studied and developed further by a long line of authors.
The research on experimental design problems had a golden
age in the 1960s and 1970s with numerous published papers,
especially in the journal Technometrics. An excellent review of the
achievements of this period was written by Steinberg and
Hunter[7] in 1984. They present the development of experimental
design from the early agricultural experiments with qualitative
factors in the agricultural tradition, to later specialized designs
such as response surface designs[8–10] and mixture designs[11]
for continuous factors in chemical experiments.
Much effort has been put into constructing response surface

designs, which were developed to be optimal with regard to
certain optimality criteria (e.g. D- and G-optimality, resolution,
and minimum aberration). However, these optimal designs have
received criticism because of the apparent sensitivity of the
optimality properties to the choice of the approximation model
used for summarizing the results—in this case a surface model
such as a second-order polynomial with interactions and square
terms. Of course, higher-order polynomials may be more
accurately estimated if a larger number of levels are run for
each factor.
The problem of combinatorial explosion in multi-factor

factorial designs was recognized already by Finney[12] in
1945, who introduced the concept of fractional factorial (FF)
designs. In subsequent years the fractional designs were further
developed, but mainly for two-level factorial designs. The
so-called 2K-P fractional factorial designs are powerful tools for
investigating the main effects of factors, but at the expense of
losing the possibility of assessing higher-order effects. If
high-order response surface models are of main interest though,
the two-level fractional designs are less appropriate unless a
sequential experimental strategy is adopted. When it comes to
experiments with many factors, each measured at multiple
levels, some asymmetrical 4� 2K-P FF designs are available,
but Montgomery[13,14] advises that such designs should be
used with caution, firstly, because central composite designs
may be more optimal, and secondly, because the number of
runs necessary for obtaining designs of minimum resolution IV is
relatively high. However, as discussed above, the optimality
properties may be sensitive to model choice, and new and more
efficient measurement technologies may make experiments
with relatively many runs more feasible. Computer experiments
based on designed computer simulations, represent one such
technology.
For designing computer simulation studies, Simpson et al.[15]

reviewed literature and compared four sampling strategies:
Latin hypercubes, Hammersley sequence sampling, orthogonal
arrays, and uniform designs. The uniform designs may be
described, for continuous design factors, as a type of FF design
with an added uniformity property, akin to Latin hypercubes, but
with n-dimensional uniformity.
We here present a similar approach, the 2K-P FF designs

with the so-called replacement method. The basic concept was
introduced by Adelman[16] as early as in 1962, and has later been
acknowledged as the ‘‘replacement method’’ in design literature.
However, the original replacement method has its main purpose
as a step toward constructing orthogonal asymmetric designs,
e.g. the 3� 2k design. Our replacement method has another
application, as a tool for constructing fractional designs recoded
into multilevel factorial designs. As implemented here, we term

the method Multi-factor Binary Replacement (MBR). The method
represents a combination of elements from statistical design
theory (FF design) and from signal processing (binary number
representation), both having well-known theoretical properties.

1.5. Overview of this paper

The MBR design method will here be outlined and illustrated in a
simple example involving a nonlinear system with five design
factors:

1.5.1. Initial range finding: where is the relevant search region?

The MBR design will first be used for initial range finding. A
problem in DOE, as mentioned by Steinberg and Hunter[7], is the
necessity of initially defining the interesting region in the design
space—usually defined by the experimental range for each
factor. The region of interest is usually not known a priori, and the
bias for the chosen model may become large if the experimenter
chooses too extreme limits for the factors in order to
accommodate for this unknown region problem. The reason is
that the optimal designs tend to place many experimental runs at
the extremes of the chosen region. At present there is no general
method in classical design theory for initially finding the relevant
ranges of design factors within which to apply the DOE; that is
usually left to the domain expert, who often finds it difficult to
balance the need to avoid irrelevant extremes against the need
for spanning the design space.
The purpose of the present range finding experiment is to

show how the MBR design can be used for finding transitions,
possibly abrupt, which delineates the unknown region of interest
in the design space from irrelevant regions outside. To find sharp
limits between interesting and uninteresting regions, a high
number (16) of levels for each of the five design factors will be
tested. Still, to lower the risk of wasting resources on conditions
found to be irrelevant, a reduced design (64 runs) will be used.

1.5.2. Final optimization finding: Where is the optimal system
behavior?

Once the region of interest in the design space has been broadly
identified based on relatively few runs, a new, more detailed
experiment may be planned, in a more narrow design range. The
MBR design method, although with different settings, will here
be employed instead of more classical response surface designs:
The purpose is now to show how the MBR designmay be used for
nonlinear response surface estimation—finding the point in the
design space that is optimal with respect to a certain criterion.
Since we now expect a simpler response, for which a smoother
surface may be fitted, a lower resolution (8) for each factor is now
accepted in the design.
In a follow-up paper, Tøndel et al.[17] optimize the MBR design

method and compare it to some alternative design methods
and apply it for efficient metamodeling of a high-dimensional
nonlinear dynamic model from systems biology.

2. METHODS

2.1. The multi-level binary replacement design

The MBR design method combines binary recoding of multi-level
design factor levels with fractional factorial designs in binary
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variables. Assume that a complex, unknown system has K
quantitative design factors X¼ [x1,. . ., xk, . . .xK ], whose effects on
the system are to be studied, individually and in combination.
Some or all of these design factors need to be assessed at a
number of levels L(k), k¼ 1,2,. . .,K, in order to reveal abrupt
input–output changes.
If abrupt interaction effects are also to be revealed, factorial

designs are required, at different levels of spatial resolution in the
design space. With conventional full-factorial design of all factors
at all levels, this would create combinatorial explosion: For a
system with, for instance, K¼ 3 factors, a full factorial design at 16
levels each would require N¼ 163¼ 4096 runs. For K¼ 5 factors,
a full factorial design at 8 levels each, would require
N¼ 85¼ 32 768 runs. The MBR design method, as used here,
reduces these two experiments to N¼ 26¼ 64 and N¼ 25¼ 32
runs, respectively. Figure 1 illustrates the MBR design, which will
now be defined:

2.2. Binary replacement of multi-level factors

With little loss of generality, the number of levels for each factor k,
L(k), may be chosen to be a multiple of 2; L(k)¼ 2M(k), e.g. 2, 4, 8,
16, . . .. For each quantitative design factor xk, its actual
quantitative levels may take any values, at even (e.g. 0, 5, 10,
15, 20,. . .) or uneven (e.g. 0, 3, 4, 7, 10, 12, 14) steps. As usual, a
factorial design is most easily attained if each design factor xk is
mapped into a decimal indexing variable dk with equally spaced
steps. The MBR design, the indexing representation of each
recoded factor dk, is then further recoded into a binary (modulus

2) variable fk (N� 1) which hasM(k) factor bits [fk,1, . . ., fk,M(k)]. For
instance, if dk has 8 levels (0, 1, 2, 3, 4, 5, 6, 7), this yields M(k)¼ 3
binary variables, each with two values (0 or 1), but representing (0
or 4), (0 or 2) and (0 or 1). A value di,k¼ 5 is thus written fi,k¼ 101,
yielding 3 individual factor bits [fi,k,1, . . ., fi,k,M(k)]¼ [1,0,1], and
represents the 6th level of factor xk Hence, the factor bits [fk,1, . . .,
fk,M(k)], the binary variable fk, the indexing variable dk, and the
original quantitative design factor xk are equivalent representa-
tions of a given design factor:

dk : xk ¼ xdkþ1

fk ¼ mod2 dkð Þ
fk;1; fk;2; . . .; fk;MðkÞ
� � ¼ bits fkð Þ

i:e:

dk ¼
PM kð Þ

m¼1
2m�1 � fk;m

(1)

TheM(k) bits in the binary factor fk determine the granularity of
the design: They allow us to probe different spatial resolutions in
the design factor space for that factor k. With Kmulti-level factors
x1. . ., xk, . . ., xK to be investigated, the total number of binary
replacement factors is Mtot ¼

PK
k¼1 M kð Þ.

2.3. Fractional factorial design in the binary replacement
factors

In accordance with standard procedures in FF design, the factor
bits [fk,1, . . ., fk,M(k)], each with values 0 or 1, are recoded into
two-level replacement design factors [gk,1, gk,2, . . ., gk,M(k)] with

Figure 1. Multi-level binary replacement (MBR) design for computer experiments. From user definitions of the size of the design, N, and the possible

levels for each design factor, each design factor xk,k¼ 1,2,. . .,K is represented as binary numbers with Mk bits with values 0 or 1. The individual bits are

recoded to values�1 or 1 and submitted to fractional factorial design withMtot¼SMk binary factors. From the obtained FF design, theM(k) bits for each
individual design factor are then decoded and recombined to yield the quantitative value of the factor xk. The resulting experimental design is employed

as input to experiments and mapped to the resulting outputs by multivariate data modeling.
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values �1 or þ 1:

gk;1; gk;2; . . .; gk;M kð Þ
h i

¼ fk;1; fk;2; . . .; fk;M kð Þ
� �� 2�1 (2)

Hence, X(N� K)¼ [x1,. . ., xK], D(N� K)¼ [d1,. . ., dK], F(N�
Mtot)¼ [f1,1. . ., f1,M(1), . . ., fK,1 . . ., fK,M(K)] andG(N�Mtot)¼ [g1,1. . .,
g1,M(1), . . ., gK,1 . . ., gK,M(K)] are equivalent representations of the
design.
A full-factor experiment in G would still require 2M(tot) runs,

since the full replacement design now has M (tot) design factors,
each at two levels, creating 2M(tot) design dimensions—main
effects, two-factor interactions, three-factor interactions, etc. The
design size reduction is attained by applying standard fractional
factorial (FF) design to theM(tot) replacement design factors inG,
choosing only a reduced set of M(ind) design dimensions to vary
independently of each other. This greatly limits the number of
runs in the design, N. But this comes at a price: The remaining
M(conf)¼M(tot)�M(ind) dimensions are confounded—set to
vary together with combinations of other dimensions. This
procedure results in a 2M(tot)�M(conf ) FF design. The effect of this is
that, in the end, all M(tot) individual binary design factors
are confounded with one or more higher-order interactions,
each being a product of one or more of other binary design
factors.

2.4. Confounding strategies

Depending on the chosen design resolution, each of the
two-level design factors gk,m will thereby be confounded with
higher-order interactions of other two-level factors. However,
there are hard choices to be made setting up such a confounding
pattern.
The experimental design should be optimized and assessed

in light of its intended use. Depending on the number of
quantitative design factors and their chosen resolutions
L(k),k¼ 1, 2, . . .., K, there are many different ways to define a
quality criterion for optimizing the FF confounding pattern. For
systems with smoothly changing design responses, it is most
important to distinguish simple main effects and two-factor
interactions from each other; confoundings with more unlikely
higher-order interactions are less damaging. In classical FF
design with only K binary design variables, this is attained by
choosing a design with maximum resolution at the given number
of N and K. For instance, a design resolution III confounds
the main effects with two-factor and higher-order interactions,
while V confounds the main effects only with four- and
higher-order interactions. Among the many possible founding
patterns, one would select one with resolution V, not with IV or III,
if possible, given N.
However, in MBR designs we have many more binary

design variables in G because we expect the responses to
change abruptly with small changes in a design factor xk, and
differently so at different levels of other design factors xk� 6¼k.
Hence, the classical FF resolution concept is not necessarily
applicable. Since the different bit factors now represent
the different spatial resolutions of the different factors xk in
the design space, many different quality criteria may be
envisioned. In general, they should now be based on the values
of quantitative design factors in X, not on the binary replacement
factors themselves.

For simplicity, we here generated a number of alternative MBR
confounding patterns and informally chose one that by graphical
inspection (e.g. Figure 3) seemed to give adequate spatial
coverage. In the follow-up paper[16] a formal optimization of the
MBR design is presented.

2.5. The system to be studied: optimizing a growth curve

The MBR design will be illustrated by a computer-based
simulation of the growth curve of a microorganism[18] under
different conditions. A few parameters control the process, and a
certain response is to beminimized—in this case the deviation of
each growth curve from an ideal curve shape. Thus the example
may be regarded as a designed computer experiment to study
the model phenome of a highly nonlinear mathematical model,
as well as an illustration of how the MBR design may be used for
planning a physical study of a biological system with a highly
nonlinear response.
Sigmoid growth curves of various shapes are here simulated by

the logistic curve function[19] with K¼ 5 parameters:

y ¼ f t; xð Þ ¼ f t; x1; x2; x3; x4; x5ð Þ ¼ x5 þ x4

1þ t
x1

� �x2� �x3 (3)

where t2[0;100] represents time, parameter x1 stands for time
delay, x2 for sigmoid steepness, x3 for sigmoid asymmetry, x4 for
maximum growth, and x5 for baseline offset. In a real biological
experimental setting, parameters x1, x2,. . ., x5 might instead
represent five generic parameters affecting the growth curves,
such as the composition of the growth medium, the sample
temperature, the cell concentration added at time zero, and cells
lost before counting.
First we employ the MBR design technique for initial range

finding, to identify a relevant search range for the K¼ 3 first
parameters, which are most difficult to assess a priori. Then,
within the range found relevant, we seek to optimize the curve
shape by a local design combining all K¼ 5 parameters.
In this presentation we focus on the MBR design method and

intentionally down-play response measuring, data modeling
methodology and realism in the chosen application. The
follow-up paper[17] demonstrates its use for studying an actual,
high-dimensional application.
The present design and simulation software was pro-

grammed in MATLAB1 by the authors, and is available at
www.specmod.org.

3. RESULTS

3.1. Initial range finding experiment

As in any design of experiment, there was first a need to find
the interesting factor range to be investigated—in this case the
relevant ranges for the five model parameters in the logistic
curve model.

3.1.1. Response

Curves are here only considered interesting if they do not grow
too fast or too slowly, as illustrated in Figure 2). Simulating a
low-cost assessment, this response (1¼OK, 0¼ not OK) was
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determined by the growth response y at only two points in time
(t¼ 20 and t¼ 80).

3.1.2. Design

The simple offset and scale parameters x4 and x5 were considered
easy to control and therefore kept constant at 1 and 0,
respectively. A 23*4–6 MBR design was defined, with 3 design
factors, each at 16 levels (4 bits), requiring N¼ 26¼ 64 runs.
Recoded back to index design with levels 0, 1, . . ., 15, the
distributions of the chosen design factors [d1, d2, d3] are plotted
pair-wise for the recoded integer factors in Figure 3. The
confounding pattern was selected so that the factor space was
sufficiently spanned.

3.1.3. Range

The MBR design levels D were then mapped into the
corresponding design matrix X¼ [x1, x2, x3] representing the
three first parameters in Equation 3. Not knowing the effects of
the parameters and their interactions on the response, the ranges
were set rather wide (Table I, column 1).

3.1.4. Evaluation

The designed simulations were run to generate the 64 curves,
and evaluated by the simple OK/not OK response criterion.
Figure 4 shows the range finding results. The main effect of
parameter x2 is seen to have the most abrupt effect on the
response criterion. But at high values of x2, an interaction with
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Figure 3. Range finding experiment: choosing anMBR design. Range finding design for K¼ 3most important design factors d1, d2, and d3 representing
the three first parameters x1, x2, and x3 in the logistic model (Equation 3), each at L(k)¼ 16 levels (4 bits) in a design with N¼ 64 runs (i.e. a 23 x 4–6

MBR design).

Figure 2. Range finding experiment: system response, y. The known

ideal curve (B, dotted) and curves from two conditions (A, C; solid)

deemed unacceptable by the simple range finding criteria: y< 0.5 at

t¼ 20 and y >0.5 at t¼ 80.

Table I. Initial range finding design

Factor
name

Range tested
initially

Range found
to be OK

Range found to
give curves

somewhat similar
to the ideal

x1 [0.01, 100] [10,80] [10,75]
x2 [�100, 0.01] [�100, �0.01] [�20, �5]
x3 [0.01, 100] [0.01, 100] [0.01, 2]
x4 1 1 1
x5 0 0 0
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parameters x1 and x3 is also evident. Based on these results, the
acceptable range for parameters x1�x3 was identified (Table I,
column 2).
To illustrate an iterative way of using range finding designs, the

MBR design was run twice with a purpose to find even
better ranges of values for x2 and x3, but now with another
response criterion—to find curves somewhat similar to the
ideal one (Figure 2). It was now assumed that the ideal curve
would have the property that it starts growing not long
time before 1/2 of the maximum time, grow smoothly, and
become stable at approximately 3/4 of the maximum time. This
yielded the ranges given in Table I, column 3.

3.2. Final optimization experiment

Now that a sensible search range had been identified, a more
detailed study was set up in order to identify the optimal values
of all five parameters in the logistic curve model.

3.2.1. Response

A certain, predefined ideal curve yIdeal (red, dotted curve in
Figure 5) was generated from a set of parameter values (Table II,
column 4), which are subsequently considered ‘‘unknown.’’
Simulating a more expensive, but relevant quality, the criterion to
be optimized is then the Euclidian distance of any curve to this
ideal curve, measured at 100 time points over the time span
0� t� 100.

3.2.2. Design

If the experiment had been real, and not simulated, the cost of
effectuating and profiling every run might be high, so the
maximum number of runs was limited to N¼ 32. Still, since the
response might display strongly nonlinear dependency on
some of the K¼ 5 model parameters and some of their
interactions, we wanted a design that spanned the main
effects at high resolution (L(k)¼ 8 levels, i.e. 3 bits, for each
factor), and at the same time also sampled the two- and
three-factor interactions reasonably well at different resolutions.
The upper triangle in Figure 6) shows the pair-wise level
combinations D defined from the chosen 25� 3-10 MBR design
with only N¼ 25¼ 32 runs.

3.2.3. Range

The MBR design levels D were then mapped into values of
corresponding design factors X for all 5 parameters (Table II,
column 1), with maximum and minimum values now defined
by the acceptable ranges from the initial range finding design
(Table I, column 3).

3.2.4. Evaluation

The designed simulations were run to generate the 32 curves
y1�y32, which were evaluated in terms of their distance from the
ideal curve yIdeal. Figure 5 shows this ideal curve yIdeal (dotted),
together with yDesignBest, the best-fitting alternative among the 32
runs (dashed, blue). Moreover, the figure shows the 2� K¼ 10
surrounding neighbor curves (continuous, green), representing
the best-fitting alternatives among y1,. . .,y32 that, for each of the
5 parameters, have a design value just above or just below this
very best-fitting design alternative yDesignBest. The lower left
triangle in Figure 6 shows the parameters plotted pair-wise,
but now with respect to the actual factor values X. The red
triangle represents the ‘‘unknown’’ parameters for yIdeal. The blue
square represents the very best design point, yielding the curve
yDesignBest with smallest deviation from yIdeal. The green, filled
circles represent the 10 neighbors circumscribing yDesignBest,
while the black circles represent the rest of the 32 design points.
The circle diameters are proportional to the distance between the
curves y and yIdeal; small circles represent good fit to yIdeal.
Since the reduced design has limited resolution, it is useful

to interpolate between the best design points, e.g. by local
polynomial regression or local weighted averaging. The blue
diamond, connected to yDesignBest, is yWAvg, the weighted
average of the parameters corresponding to yDesignBest and the
10 runs surrounding it, with weights defined as inversely
proportional to the squared distance of each curve y from
yDesignBest.
Table II summarizes the optimization results. It shows that the

parameters for yWAvg, the weighted average of the parameters of

Figure 4. Range finding experiment: finding the acceptable design

region. Design factors d1, d2, and d3 displayed in 3D; circles ¼ OK curves

(y¼ 1); triangles and squares ¼ not OK curves (y¼ 0). Acceptable region
of interest is roughly outlined at high and low levels of d3.
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Figure 5. Optimization experiment: system optimization. The resulting

curves from the optimization experiment. Red dotted line: the yIdeal, with

‘‘unknown’’ parameters. Solid curves: The 32 design samples’ curves. With
blue dots: yDesignBest. Green curves: the set of 2� K surrounding neighbors

circumscribing yDesignBest in parameter space. Dashed blue curve:

weighted average estimate of optimum yWAvg.
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1þ K nearest neighbors to the ideal curve yIdeal, are quite close to
the true, but ‘‘unknown’’ parameter values for the ideal curve.

4. DISCUSSION

We have presented a design method—the multi-level binary
replacement MBR method in its basic form—that appears
cost-effective for establishing a model phenome and thus for
developing a suitable metamodel.
The simple example is intended to illustrate, generically,

how the MBR design method may be applied to a system with
relatively complex behavior. The chosen system may represent
the growth of a microorganism or the dissolution of a
pharmaceutical product under different conditions, as well as

a computer model mimicking such a system. First the relevant
region in the parameter space of the computer model was found
by an initial range finding experiment. Then we illustrated how a
reduced, but useful model phenome could be established and
analyzed for optimizing the model with respect to a desired
output profile. If yIdeal had happened to lie further away from the
center of the design, the locally weighted interpolation yWAvg

would have done likewise.
We believe that the MBR method is particularly useful for

initial range finding—be it for computer experiments or for real
world experiments. The system may be probed at many levels of
many input factors with a limited number of runs. If the
system behavior is then monitored by a fast or low-cost output
characterization, the scientist can afford the risk of wasting many
of the runs in regions of the design space that are afterwards

Table II. Final parameter levels for MBR response surface design

Factor Name Range tested yDesignBest, the curve
most similar to the
ideal curve, (yIdeal)

yWAvg, the wgt.
avg. of yDesignBest and its10

surrounding neighbors

yIdeal, the ideal
target curve with

‘‘unknown’’ parameters

x1 [10,75] 47.1 46.9 47
x2 [�20, �5] �15.7 �11.9 �10
x3 [0.01, 2] 1.43 1.30 1
x4 [0.9, 1.1] 1.01 0.98 1
x5 [0,0.05] 0.036 0.029 0.025
Distance from ideal curve 0.091 0.038 0

Figure 6. Optimization experiment: An MBR design and its analysis. Design for K¼ 5 factors, each with L(k)¼ 8 levels, studied in N¼ 32 samples, using a

25*3–10 MBR design. Upper right triangle: Levels 0–7 for the five formal design factors D¼ [d1, d2, d3, d4, and d5], replacing the 25*3-10 fractional factorial

design F. Lower left triangle: actual factor values X¼ [x1, x2, x3, x4, and x5] mapped linearly from D. Red triangle¼ true, but ‘‘unknown’’ parameters of
yIdeal. Square: The parameter combination whose curve yDesignBest had the lowest Euclidian distance to yIdeal. Filled circles: The set of 2*K surrounding

neighbors circumscribing yDesignBest in parameter space. Connected blue diamond¼optimized parameter combination corresponding to yWAvg.

‘‘Bubble’’ diameters correspond to distance from yIdeal.
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found to be unacceptable. Subsequently, a more informative, but
demanding phenotyping may then be used, to characterize the
output from computer experiments within the relevant
parameter region.
To reduce a multi-factor multi-level design carries a risk,

irrespective of design methodology: If an unknown, abrupt
response change happens to occur only in a highly localized
part of the design space, corresponding to a very high-order
interaction of certain design factors at certain values, it may not
be observed, because that region in the design space is not
probed. But the alternative is even riskier—choosing too few
factors or too few levels of each factor may cause abrupt effects
to be overlooked. However, combining toomany factors, with too
many levels each, causes combinatorial explosion.
The MBR design is intended to reduce this risk, by detecting

abrupt effects as long as they are not limited to very narrow, local
design regions. But this remains to be verified. Also, there is a
need to compare the MBR design to alternative design methods
such as the uniform designs[15,20]. The MBR design method is
still at an early stage of development. More work is needed in
order to optimize the binary confounding strategy, theoretically
or empirically. Since there is a well-defined quantitative relation-
ship between the quantitative design factors X and the binary
factors in which the fractional factorial design is defined, G,
it is possible to choose confounding pattern in G based on an
optimization criterion computed in X. In the ensuing modelo-
metrics paper, Tøndel et al.[17] apply an optimized version of the
MBR design method for computer experiments with a more
realistic, complex and high-dimensional computer model from
systems biology. To develop a full multivariate metamodel, a
multivariate data modeling method from chemometrics is then
employed.
Sequential use of the MBR design method calls for special

consideration. For instance, when a conventional fractional
factorial designwith one factor bit per design factor is used, it is well
known that follow-up experiments with just a few extra runs can
resolve a given confounding structure. The effect of the binary
confoundings does seem to be less drastic in theMBR design. Still, it
may be useful to do a few follow-up runs even with the MBR
method, but how to choose those remains to be elucidated.

5. CONCLUSION

Designed computer experiments are useful for studying the
behavior of complicated mathematical or computational models.
Based on computer simulation, the model phenome is
established as an empirical representation of the behavioral
repertoire of a complicated computer model. The information
content of the model phenome is limited by the chosen design
size and resolution. We have presented a design method—the
multi-level binary replacement (MBR) method—that appears
cost-effective for establishing a model phenome, since the
different binary factor bits probe the parameters in the design
space at different spatial resolutions simultaneously. The resulting
model phenome, computed once and for all, may be used for
developing data-driven multivariate metamodels. These may, in
turn, be used for model optimization, computational compaction,
and more confident modeling of the system at hand.
The MBR method may of course also be used for designing

high-dimensional physical experiments. It was here illustrated for
the optimization of a microbiological growth curve, represented

by a non-linear function with five design factors, for finding the
relevant region of potential interest in the design space, and
subsequently for estimating the optimal design point in that
space. This simple example is intended to illustrate, generically,
how the MBR design method may be applied to a biological
system with relatively complex behavior.
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