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ABSTRACT

Forest inventory has benefited from remote sensing for more than 80 years. Spectral
information from aerial cameras has been the dominant data source during this period.
However, over the past decade the use of three-dimensional data from airborne laser scanning
(ALS) has substantially improved the accuracy of forest inventory, although there currently
seems to be certain limitations for ALS in terms of providing tree species information, wall-
to-wall maps in large area inventory and multi-temporal acquisitions in forest monitoring. In
all of these cases, spectral information may be complementary to three-dimensional
information, and the combination of the two data sources may improve both forest inventory
and monitoring. In this thesis, the potential for combining three-dimensional data from ALS
and spectral information recorded by ALS (intensity), as well as multispectral aerial cameras
and satellite sensors, was investigated. This thesis focuses on tree species identification,
delineation of the subalpine zone and the quantifying effects of sensors and seasons in multi-
temporal acquisitions. Improvement in the accuracy of tree species identification was
obtained in relation to both intensity and spectral information from aerial imagery. Aerial
imagery seems to be a more stable spectral data source for tree species identification
compared to intensity. A correct species identification for 85 — 90% of the dominant trees
seems within reach. Moreover, it was revealed that both the three-dimensional and spectral
information from ALS were affected by the sensor used and the season of data acquisition. At
the moment, calibration with contemporary field measurements is needed for individual
acquisitions. Estimates of individual tree height and stem diameter can be accurately derived
for all multi-temporal acquisitions when calibrated with field data. Tree species identification
was significantly better under leaf-off than leaf-on canopy conditions, but did not differ
between sensors. Furthermore, a sample of three-dimensional data covering 8.4% of
Hedmark County, Norway, was combined with full coverage Landsat imagery to help
delineate the subalpine zone. The delineation of the subalpine zone boundaries was found to
be accurate. Combining three-dimensional and spectral information may improve forest
inventory and monitoring in many circumstances, although challenges and costs are increased
by using multiple data sources and must be compared against the advantage of the higher

information level obtained.
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SAMMENDRAG

I skogtaksering har man hatt nytte av fjernmélte data i over 80 ar. Spektralinformasjon fra
flybilder har vert den dominerende datakilden gjennom disse arene. De siste 10 arene har
imidlertid tredimensjonale data fra flybaren laserscanning (FLS) vesentlig forbedret
skogtakseringen. Sammenligning av FLS med andre metoder for fjernméling har vist at FLS
er den mest noyaktige metoden for prediksjon av skoglig informasjon. FLS har likevel noen
begrensinger, blant annet i forhold til & fremskaffe informasjon om treslag, gi heldekkende
kart 1 regionale og nasjonale takseringer og i forhold til skogovervakning som involverer
multitemporale data. Der FLS har begrensinger kan spektral informasjon vaere komplementeer
til den tredimensjonale informasjonen. I denne avhandlingen undersokes mulighetene for &
kombinere tredimensjonal informasjon fra FLS med spektral informasjon fra FLS (intensitet),
digitale flybarne kamera og satellitter. Avhandlingen fokuserer pa treslagsidentifikasjon av
enkelttraer, kartlegging av den subalpine sonen og pa kvantifikasjon av effektene som folge
av flygninger med ulike sensorer og til ulike drstider ved skogtakstasjon. Identifikasjonen av
treslag basert pd tredimensjonal data fra FLS ble forbedret med béde spektrale data fra
intensitet og fra flykamera. Flybilder ser ut til & vaere en mer stabil spektral datakilde enn
intensitet. Korrekt identifikasjon av treslag for 85 — 90 % av de dominante trerne er innen
rekkevidde. Videre ble det pavist forskjeller 1 bdde den tredimensjonale og spektrale
informasjonen fra FLS mellom ulike flygninger med ulike sensorer og til ulike arstider. Pa
det ndverende tidspunkt er bade feltdata og FLS-data fra det samme tidsrommet nodvendig.
Dette fordi predikert hoyde og diameter pa enkelttreer har god neyaktighet nar modellene er
kalibrert mot feltdata uavhengig av sensor og arstid for flygning. Bruk av data fra flygninger
som ble gjort da det ikke var lauv pa treerne ga signifikant noyaktigere treslagsklassifikasjon.
I Hedmark ble tredimensjonal data som dekket 8.4 % av arealet, kombinert med fulldekkende
spektral informasjon fra Landsat for & kartlegge den subalpine sonen. Grensene til den
subalpine sonen ble med denne metoden neyaktig estimert. Kombinering av tredimensjonal
og spektral informasjon kan forbedre skogtaksering og skogovervdkningen under de fleste
omstendigheter, men det er utfordringer og eokte kostnader knyttet til & bruke kombinerte
datakilder. Ulempene ma vurderes opp mot fordelene ved okt tilgang péd neyaktig

informasjon.
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1. INTRODUCTION

Knowledge about the state and development of forests is crucial for sustainable forest
management and decision making at different spatial scales. Forest managers require
information about individual trees, forest stands and the forest property. Information on forest
biophysical properties such as volume, stem density, mean height and basal area distributed
on tree species provide the basis for forest management planning. Public administration and
policy makers need information about the forest resources on an administrative scale for the
implementation, evaluation and development of forest policies. Administrative units could be
the entire nation or regions within the nation. Today, reporting according to international
conventions and agreements, particularly in relation to climate change, has increased the need
for forest information on a national level.

To obtain the required forest resource information a forest inventory is carried out,
with the spatial scale of interest either being an individual tree, a stand, a region or an entire
nation. Terrestrial surveys have and continue to be important in forest inventories. The first
surveys utilized visual estimation of forest resources. During the 19" and beginning of the
20™ centuries objective measurements, the use of sampling techniques and developments in
mathematical statistics increased the accuracy of forest inventories (Loetsch & Haller, 1964).
In addition, progress in the field of forest inventory has benefited from the development in
remote sensing, which started in Germany in the 1920s (Loetsch & Haller, 1964). The
dominant remotely sensed data source over the ensuing 80 to 90 years has been aerial
imagery, which provides both spectral information and information about the horizontal
structure of the forests (Figure 1). Photo interpretation of aerial imagery has been utilized for
stand delineation and derivation of certain forest attributes (Magnusson et al., 2007). As
opposed to non-stereo aerial imagery, laser remote sensing has the capability to provide direct
three-dimensional measurements of the forest canopy, including information about both the
horizontal and vertical structure of forests. Over the past decade, the use of three-dimensional
data from airborne laser scanning (ALS) in forest inventory has become operational (Nesset,
2004). The three-dimensional measurements taken by ALS appear as a number of dense xyz
coordinates (0.1 - < 10 m™) referred to as a point cloud (Figure 1). Such three-dimensional
information has significantly improved the efficiency of forest stand inventories (Eid et al.,
2004). Forest inventories supported by ALS is now the dominant method for obtaining forest
resource information at the stand level within the Nordic countries, and is also becoming

more and more used elsewhere. Furthermore, ALS is under development to support forest
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inventories on the individual tree (Persson et al., 2002) and regional levels as well (Nasset et

al., 2009).

Figure 1 - Illustration of spectral information in natural colors acquired by an aerial digital camera (left) and
three-dimensional information acquired using ALS (middle) from the same forested area. The right illustration
shows the three-dimensional information from the same area in a side view. In the ALS illustrations, height (z)

values are increasing from blue to red through green and yellow.

Comparisons of ALS with other remote sensing methods such as RaDAR (RAdio
Detection And Ranging) (Huang et al., 2009; Hyde et al., 2006; Hyde et al., 2007; Nelson et
al., 2007) and optical sensors (Hyde et al., 2006; Hyyppd & Hyyppd, 1999; Lefsky et al.,
2001) have revealed that airborne laser is among the most capable remote sensing techniques
in terms of accuracy for essential forest properties such as height, volume and biomass.
RaDAR is also capable of capturing three-dimensional information, but faces the problem of
saturation at certain biomass levels (20 - 250 Mg ha™), which does not seem to be a problem
when utilizing lasers (Balzter, 2001; Drake et al., 2002; Patenaude et al., 2005). Photo
interpretation of stereo imagery also provides three-dimensional measurements, though the
accuracy of important inventory properties is lower than when using ALS (Eid & Nasset,
1998; Magnusson et al., 2007). As a result, when considering the accuracy of forest
biophysical properties, ALS is the first choice in forest inventory and monitoring. Although
ALS-based forest inventories provide high accuracies of forest biophysical properties, we
face a few challenges when using ALS in relation to: 1) providing information about tree
species, 2) providing wall-to-wall map products in large area forest inventories, and 3) in
forest monitoring due to challenges with multi-temporal datasets.

Information about tree species is an important parameter for forest inventories,
although it is still not easily obtained from three-dimensional ALS data (McRoberts et al.,
2010). Since crown allometry, branches, leaf structure, etc. differ among species, the three-
dimensional point cloud obtained from ALS may have different characteristics for different

tree species. One obvious example is the differences between spruce and birch. Spruce
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crowns tend to be more conical while birch is more elliptical, whereas the branches and
leaves of spruce and birch exhibit differences as well. Additionally, spectral information is
known to offer species information (Brandtberg, 2002; Carleer & Wolff, 2004; Key et al.,
2001), especially the differences between coniferous and deciduous trees in near infrared
wavelengths is well known. These two sources of information may be seen as complementary
because three-dimensional data provide the structural characteristics and spectral data
reflectance characteristics of tree species. Thus, combining three-dimensional and spectral
information may improve tree species identification in comparison to only using three-
dimensional data.

The use of airborne sensors for large area inventory is limited by the high acquisition
costs. Hence, a strategy for using ALS in large area forest inventories is to sample the area
using ALS and then utilize sampling theory to provide estimates for the biophysical
properties of interests, e.g. utilize ALS as a strip sampling tool (Nesset et al., 2009).
Therefore, no wall-to-wall map products can be presented which cover the entire area. In
terms of medium spatial resolution satellite imagery, spectral information provides large area
cover with appropriate spatial resolution at limited cost, which has relevance for many
forestry applications (c.f. Cohen & Goward, 2004; Wulder, 1998). Utilizing such spectral
information, together with ALS as a strip sampling tool, could provide additional information
to large area inventories. The subalpine zone — the area between the forest and alpine
vegetation communities — is an example of an area in which the demand for information is
increasing. Substantial changes in the position and extent of the subalpine zone are expected
as a result of a warmer climate. Today, low productivity or non-merchantable forests, such as
those forests found in the subalpine zone, are not routinely subject to inventory programs in
many countries. Combining remotely sensed three-dimensional and spectral information to
map the subalpine zone is highly relevant because of the high field inventory costs in remote
mountainous areas.

So far, the utilization of ALS in forest monitoring is not very common. The primary
reason for this is that monitoring is conducted at time intervals of 5 to 10 years, which
corresponds to the period that ALS has thus far been used in forest inventory (Nasset, 2004).
Consequently, ALS has yet to be developed for such tasks, though a few examples of forest
monitoring using ALS over short time intervals does exist (e.g. Nesset & Gobakken, 2005;
Solberg et al., 2006b; Yu et al., 2004; Yu et al., 2006). However, the analyses carried out in
these studies might better be referred to as change detection, or change estimation, than

monitoring. Forest monitoring, change detection or change estimation using multi-temporal
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ALS data will without doubt be more common in the future. Even so, using multi-temporal
ALS datasets remains a challenge, as the lifespan of ALS sensors is often less than four years.
Monitoring programs often revisit areas after 5 to 10 years if no special events have occurred.
In most cases, ALS data available for monitoring will therefore originate from different
sensors. Technological developments in ALS sensors have advanced quite quickly, and
sensor specifications and functionality are also rapidly changing. Over time, changes in
sensors’ specifications and functionality may result in point clouds with highly different
properties compared to previous campaigns. Moreover, seasonal differences, for example in
relation to the phenology of trees, may also impact the properties of the point cloud. Such
seasonal differences are well-known for influencing remotely sensed imagery (Jensen, 2000).
The most extreme seasonal changes are those in the canopy conditions of deciduous trees
between winter and summer (leaf-on/leaf-off). Systematical shifts in estimated properties
caused by changing sensor properties or seasonal differences could exert an influence on
conclusions inferred from multi-temporal observations by either under or overestimating the
true changes, thereby alternatively making the changes undetectable. When both the three-
dimensional and spectral information are utilized multi-temporally, both sources of
information must be evaluated based on differences between sensors and seasons. This area
has been little covered in scientific literature, and it is necessary to quantify the differences in
the point clouds between multi-temporal datasets, and how such differences influence forest
inventory estimates, before ALS can be implemented in forest monitoring applications.

In the three specific cases discussed above, in which three-dimensional data from
ALS have limitations in forest inventory, the combination of ALS with spectral information
may improve the capabilities, but also challenges, of such inventories. A combination of
using different remote sensing sources is also referred to as data fusion, and is well-known in
image remote sensing (Pohl & van Genderen, 1998). Expectations for the potential of
combining ALS and spectral information were high 10 years ago, and were characterized as
bringing airborne data acquisition to a new “revolutionary” level (Ackermann, 1999). In this
thesis, I have investigated the potential for combining three-dimensional and spectral
information in forest inventory and the resultant challenges from the use of such multi-
temporal information. The three-dimensional data used in the current thesis is the point cloud
obtained from ALS. The spectral information tested comes from various sources, including
the spectral information recorded by ALS for each three-dimensional coordinate. The
monospectral signal recorded by ALS is referred to as the intensity, which is a measure of the

energy recorded by the sensor from the backscattered signal. Aerial and satellite imagery are
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two other sources of spectral information investigated. Such imagery is multispectral,
meaning that reflectance is recorded for multiple electromagnetic wavelengths. Typically,
reflectance values are recorded for the visible portion of light, e.g. red, green and blue, in
addition to infrared reflectance in such multispectral sensors.

The main objective of this thesis was to investigate the potential of combining
remotely sensed three-dimensional and spectral information for forest inventory and
monitoring purposes. In order to achieve this, the specific objectives of the thesis concentrate
on: 1) individual tree species identification using three-dimensional and intensity information
from ALS (Papers I, II & III), 2) combining three-dimensional measurements from ALS with
digital multispectral aerial images for tree species identification (Paper III), 3) combining
three-dimensional measurements from ALS and medium spatial resolution multispectral
satellite images for providing a wall-to-wall map of the subalpine zone (Paper IV), and 4)
studying the effects of different sensors and seasons on the ALS measurements, which is
highly relevant for an assessment of how ALS data can best be used for forest monitoring
purposes (Paper II and part of Paper III). Figure 2 illustrates the relationship between the

specific objectives and individual papers of this thesis.

G

Forest inventory Forest monitoring
Objective 1 =1 Paper Objective 4
i ] I i ;

]

C

=

CE L L L e T L L T
H
"
fet)
K=
1)
—

4-

~-{ Paper |...

multi-temporal datasets

Legend
? s " Three-dimensional ALS

I—— Paper 1 Spectral ALS (intensity)
o IV .Spectral aerial imagery

.Spectral satelite imagery

Figure 2 — The relationship between the specific objectives, papers and data sources
brought together in the current thesis



Synopsis

2. BACKGROUND

2.1. Approaches for combining three-dimensional and spectral information

The combining of various data sources is a strategy to improve the accuracy of remote
sensing products. Different approaches for data fusion are described in the literature.
Hutchinson (1982) presented approaches for combining map-based ancillary data (e.g. maps
of geology, soils, vegetation or topography) and spectral satellite information. In addition,
Pohl and van Genderen (1998) review various approaches for combining the imagery of
different spatial, temporal and spectral resolutions. Many of the approaches described by
Hutchinson (1982) and Pohl and van Genderen (1998) may be directly used when combining
the three-dimensional information obtained from ALS with spectral information. Table 1
summarizes these approaches in relation to the combining of three-dimensional and spectral

information, and examples of the different approaches utilized in forest inventory are

presented.
Table 1 - Overview of approaches utilized for combining three-dimensional
and spectral information in forest inventory
Approach Description Example reference
Information level Process data source individually for Koukoulas & Blackburn (2005)

information extraction.

Model inclusion Three-dimensional and spectral data are both  Hyde et al. (2006)

included in models, e.g. used for the Schreier et al. (1985)
prediction or classification of forest or tree
properties.

Extrapolation Relationships between three-dimensional Hudak et al. (2002)
estimates of forest properties and spectral Waulder & Seemann (2003)

derived variables are established and used to
create predictions over an area larger than the
extent of the ALS data.
Stratification One data source is used to produce strata, e.g. Nasset (2004)
for laser model development or area Nelson et al. (2004)
estimation in sample-based approaches.
Post-classification ~ Biophysical forest properties are predicted Packalén & Maltamo (2006)
using one data source. They are further
distributed with the estimates from another
data source, e.g. ALS estimated volume is
distributed for tree species based on the
species’ proportions obtained from spectral
information.

2.2. Three-dimensional information for forest inventory
ALS is a remote sensing method operated from an aircraft based on LIght Detection And

Ranging (LiDAR) technology. LiDAR is also known as laser altimetry and is operated from
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multiple platforms, including aircrafts such as airplanes and helicopters. In addition, LIDAR
systems operated on the ground are referred to as terrestrial LIDAR and those carried by
satellites are known as spaceborne LiDAR. Moreover, various technical implementations
using LiDAR exist and are used in forestry applications.

LiDAR technology is an active method which means that it emits light. The light
emitted by airborne LiDAR sensors is usually a short, 10 ns (3 m), infrared pulse (Baltsavias,
1999). The main principle of LiDAR is ranging, with pulse ranging being the most common
method used, although other methods also exist (Wehr & Lohr, 1999). In pulse ranging, the
distance between the sensor and the target is determined by converting the elapsed time
between emission and detection of a pulse by the sensor to a range by multiplying half the
travel time with the speed of light (3 x 10° m s'). Furthermore, the emitted pulse is
georeferenced such that the position of the target can be determined. One such measurement
will appear as an xyz coordinate in the laser point cloud (Figure 1). A single point
represented by the x, y, z coordinates is referred to as an echo. With airborne sensors, the
georeferencing of the emitted pulse is achieved by global navigation satellite systems (GNSS)
and inertial navigation systems (INS).

When the emitted pulse hits a surface it will cover a specific area, which is called the
laser “footprint.” Based on a specific footprint size obtained with a system, the system can be
classified as small footprint (< 1 m) and large footprint (> 5 m) LiDAR. The large footprint
systems are research systems primarily developed to support satellite missions (Blair et al.,
1994; Blair et al., 1999). Small footprint sensors were originally developed for topographic
mapping, which is still the most important application of small footprint LiDARs. LiDAR
systems can be grouped into discrete return (DR) or full-waveform recording (FW) sensors.
The information recorded by LiDARs differs between DR and FW sensors. DR sensors
typically record one to four echoes or height measurements per emitted pulse based on the
backscattered light. In contrast, FW sensors record the entire backscattered energy in narrow
bins. FW systems typically record backscattered energy at a rate of 0.5-2 ns, which is
equivalent to 15-60 cm vertical bins. The majority of large footprint systems are FW
systems. Additionally, the first small footprint systems used in forestry were FW sensors
(Aldred & Bonnor, 1985; Nilsson, 1996). Today, the majority of commercial ALS sensors
available are small footprint DR sensors. Small footprint FW systems were not commercially
available until 2004 (Mallet & Bretar, 2009).

Moreover, LiDARs may be grouped into profiling systems and scanning systems. A

scanning system has a scanning device which distributes the emitted pulses in different
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directions so that a corridor beneath the aircraft is covered. Overlapping parallel flight lines
enable wall-to-wall mapping of an area. A profiling LiDAR only provides xyz data from a
narrow strip directly underneath the aircraft, creating height profiles across the landscape.
The first LIDARs developed were profiling systems. Nowadays, scanning systems dominate
forest inventory. In the current thesis, the LiDAR technology and system used are small
footprint discrete return airborne scanning sensors.

To the best of my knowledge, the first published attempts to use airborne lasers to
measure forests was conducted three decades ago by the Leningrad Scientific Research
Institute of Forestry in the Soviet Union (Solodukhin et al., 1977). In the beginning of the
1980s similar studies were conducted in North America (Aldred & Bonnor, 1985; Nelson et
al., 1984). Forest properties such as tree height, biomass and stem volume were estimated
highly accurately by airborne lasers (Aldred & Bonnor, 1985; Maclean & Krabill, 1986;
Nelson et al., 1984; Nelson et al., 1988).

Forest inventory using ALS has been operational since 2002 (Nesset, 2004). The
ALS-based forest inventory first implemented in Norway is referred to as the area-based
method. The target for this method is to provide accurate estimates of biophysical properties
on the stand level. The method uses a two stage approach in which stand delineation and pre-
stratification are obtained from photo interpretation of aerial images. Field measurements of
forest properties from accurately georeferenced sample plots are related to three-dimensional
measurements taken from exactly the same area, and prediction models are developed. The
entire area of interest is gridded into gird cells that are the same size as the sample plots. The
three-dimensional measurements inside each of these grid cells and prediction models
developed are exploited to estimate the biophysical property of interest. The predicted values
for all grid cells within a stand are then summarized to obtain stand values.

Another concept is to base the inventory on the identification and characterization of
individual trees in the inventory area of interest The potential of such individual tree methods
has been demonstrated in a number of studies in which properties such as tree position, tree
height and tree volume have been accurately predicted, at least as far as dominant trees are
concerned (Maltamo et al., 2004; Persson et al., 2002; Solberg et al., 2006a). Individual tree
methods are used operationally and have been commercially available from at least 2006
(Johansson, 2007). However, a major problem for individual tree methods is that only
dominant trees (or co-dominant) can be identified. Studies have shown that approximately
50% of trees are indentified in heterogeneous forests and about 75% in more homogeneous

forests (Persson et al., 2002; Solberg et al., 2006a). Another drawback is that this method
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requires high pulse density ALS data, which thereby increases costs compared to the area-
based method. The advantages of individual tree methods is that less field data for calibration
is required and that additional information about the forests can be gained, which otherwise
may be hard to obtain in an economically feasible way (Hyyppa et al., 2008).

Hybrid methods concerning a combination of area-based and individual tree-based
methods also exist. The most frequently used hybrid inventory methods are based on
measurements of individual tree properties using ALS and then aggregating this individual
tree information over plots or stands (Breidenbach et al., 2010; Hyyppa et al., 2001; Popescu
et al., 2002). More information-driven approaches, e.g. utilizing both methods to provide
supplementary information or utilizing individual tree methods in specific stands of high
economical value, are yet not common according to my understanding.

For large area inventories covering counties, states or provinces, LIDAR may be used
as a sampling tool. The first regional forest inventory with LiDAR was conducted in
Delaware in the US (Nelson et al., 2003a). In the Delaware study, a profiling LiDAR was
operated. Airborne profiling lasers have proven their capability in establishing regional
estimates of biomass and carbon at both the state and provincial levels (Boudreau et al., 2008;
Nelson et al., 2004). Such sampling-based applications utilizing data from ALS have recently
been demonstrated along with the development of statistical estimators required to yield
statistically sound estimates for the area in question (Andersen et al., 2009; Gregoire et al.,

2011; Stahl et al., 2011).

2.3. Monospectral information from ALS: intensity

In addition to the three-dimensional information, most ALS systems record spectral
information based on the backscattered laser signal (Wehr & Lohr, 1999). This spectral
information is frequently referred to as intensity. For discrete return lasers, intensity often
represents the peak amplitude of the returned pulse. However, sensor algorithms for both
echo triggering and intensity recordings are proprietary to the sensor vendors, and accurate
descriptions of the intensity recordings are normally not available. The intensity captured by
current commercial LIDAR systems offers a radiometric resolution of 8-bit, 12-bit or 16-bit
(Hofle & Pfeifer, 2007). The wavelength of the emitted pulse and the subsequent recorded
wavelength is 1064 nm in most commercial LIDAR systems used for forestry applications.
The main focus of LiDAR sensor vendors has been to provide accurate three-dimensional
measurements for topographic mapping. Hence, the intensity recorded has been of little

interest, although a decade ago researchers began to explore the possibilities of utilizing this
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information for forest inventory purposes (Brandtberg et al., 2003; Holmgren & Persson,
2004).

The main reason for the limited use of intensity is that the intensity provided by ALS
is noisy. The recorded intensity value is dependent on many factors, such as the range from
sensor to target, incidence angle, atmospheric transmittance and transmitted power (Ahokas
et al., 2006; Wagner et al., 2006). Calibration or normalization of the intensity to remove
noise associated with some of these factors is suggested as being necessary to fully employ
the potential of intensity data (Ahokas et al., 2006). Calibration methods based on both
physical and more data-driven approaches are suggested (Ahokas et al., 2006; Coren &
Sterzai, 2006; Hofle & Pfeifer, 2007). Of all the previously mentioned factors, normalization
based on the range from the sensor to the target, known as range normalization, is the most
mature. Methods to normalize intensity caused by sensors specific properties have been
developed, e.g. normalization based on the Automatic Gain Control of Leica sensors
(Korpela, 2008) and for the differences in intensity between scan directions in Optech
Airborne Laser Terrain Mappers (ALTM) sensors, which is referred to as banding (Paper III).

The use of intensity was demonstrated for discrimination between coniferous and
deciduous trees as far back as 1985 (Schreier et al., 1985). Since the pioneering study by
Schreier et al. (1985), the use of intensity has been little explored up until a few years ago
(Hyyppé et al., 2008). Intensity has shown potential in forest inventory for improving
biophysical properties following the area-based method (Hudak et al., 2006; Lim et al., 2003)
and individual tree methods (Vauhkonen et al., 2010), both with raw and normalized
intensities (Kim et al., 2009a; Korpela et al., 2010). The use of range normalized intensity
provided more accurate predictions of biomass fractions (total aboveground, branches and
foliage) than models utilizing three-dimensional information following the area-based
method (Garcia et al., 2010). In addition, intensity was utilized to estimate live and dead
biomass in mixed coniferous forests in the US, with the intensity being of vital importance
for the estimation of dead biomass (Kim et al., 2009b). In a study by Hudak et al. (2006), the
combination of three-dimensional and intensity variables had a higher accuracy than those
methods only using three-dimensional variables when modeling basal area following the
area-based method. Hudak et al. (2006) also reported that tree density was better estimated by
only utilizing intensity, rather than three-dimensional variables. A large number of studies
include both three-dimensional and intensity variables in tree species identification of
individual trees (See Table 1, Paper III). Morsdorf et al. (2010) expanded the individual tree

species identification approach and demonstrated the use of intensity and three-dimensional
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information to discriminate between different vegetation strata in a multilayered forest. Plot
level species proportions have been reported to be more accurate when estimated with
intensity as opposed to three-dimensional data (Donoghue et al., 2007). Furthermore,
intensity has be utilized for discerning age classes (Farid et al., 2006a; Farid et al., 2006b), in
land-cover classification (Antonarakis et al., 2008; Brennan & Webster, 2006), in lichen
classification (Korpela, 2008), in mire-type classification (Korpela et al., 2009) and in forest

fractional cover models (Hopkinson & Chasmer, 2009).

2.4. Spectral information from aerial imagery

Aerial imagery was the first remote sensing technology utilized in forest inventory. Based on
photo interpretation, various forest properties could be estimated. For a long time analog
photographs were used in forest inventory. At the end of the last century aerial imagery
became digital, thereby increasing the possibilities for the automated processing of such
imagery without first digitizing them by scanning them. Operational forest inventory
following the area-based method still benefits from stand delineation and pre-stratification
obtained by means of photo interpretation. It has been suggested to obtain stand delineation
from ALS or multispectral images by automated methods. However, the combination of laser
derived canopy height models and aerial images does not seem to improve forest stand
delineation in comparison to only using ALS data or aerial imagery (Mustonen et al., 2008).
Although Mustonen et al. (2008) reported that three-dimensional information was highly
usable for stand delineation, photo interpretation is still the dominant technique for stand
delineation in area-based ALS inventories.

Furthermore, aerial imagery has been a powerful tool in terms of obtaining species
information. In Finland, the demand for species-specific information at the stand level has
resulted in a large focus on developing the area-based method to provide such information.
The inclusion of aerial imagery has been important since imagery is already needed for photo
interpretation. Species-specific stand attributes such as volume, stem number, basal area,
basal area median diameter, tree height and diameter distributions were predicted using
variables derived from ALS and aerial imagery (Packalén & Maltamo, 2006, 2007, 2008).
Direct inclusion of spectral variables was utilized in these studies. In an improved procedure
for combining ALS and aerial imagery, the accuracy obtained was higher when compared to
only using three-dimensional information from ALS (Packalén et al., 2009).

Moreover, integration of airborne hyperspectral imagery and airborne LiDAR

improved estimation of the basal area, above-ground biomass and quadratic stem diameter in
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a northern temperate forest in US (Anderson et al., 2008). The increase in variation explained
was 8-9% and errors were 5-8% lower than when using individual sensors.

Utilizing multispectral imagery as stratification information in an ALS-based tree
identification approach improved tree height, volume and biomass estimates for pine trees,
though not for deciduous trees (Popescu & Wynne, 2004; Popescu et al., 2004). In another
hybrid inventory system, multispectral image variables were directly used in the prediction of
species-specific timber volume (Breidenbach et al., 2010). However, this study did not
provide any comparisons with the use of three-dimensional data as the sole remote sensing
data.

Moreover, the accuracy of identification for Scots pine, Norway spruce and deciduous
trees was improved by a combination of laser (both three-dimensional and intensity) and
multispectral images acquired in summer and autumn. The improvements compared to only
using laser were 5 and 8 percentage points for the summer and autumn acquisition,
respectively (Holmgren et al., 2008). Other studies have reported improvements by
combining three-dimensional and multispectral data in the identification of individual tree

species without presenting direct comparisons (Heinzel et al., 2008; Persson et al., 2004).

2.5. Spectral information from satellite imagery

Spectral information from satellites has been available ever since the launch of the first
Landsat satellite in 1972. The Landsat program has developed since then, and a total of six
satellites have been delivering spectral information of the earth’s surface on a routinely and
systematic basis. In addition to the Landsat program, a number of satellites have been
launched and delivered information in a variety of spatial, spectral, radiometric and temporal
resolutions. Satellite images are often classified after the spatial resolution of images by the
Ground Sampling Distance (GSD). Satellite imagery with a GSD of less than 10 m is referred
to as high spatial resolution (HSR) imagery. Medium spatial resolution satellite (MSR)
imagery has a GSD of 10 — 100 m, whereas coarse spatial resolution (CSR) imagery has a
GSD of 100s to 1000s of meters (Franklin & Wulder, 2002).

HSR satellites are now able to deliver centimeter scale imagery, thus making such
imagery more and more equal to imagery acquired from digital airborne sensors. As a result,
HSR satellite imagery has nearly the same range of application as airborne imagery in forest
inventory. For example, HSR satellite imagery can be utilized in individual tree inventory
(Gougeon & Leckie, 2006; Wulder et al., 2004) to help support forest stand delineation
(Wulder et al., 2008b) and facilitate estimation of biophysical forest properties (Mora et al.,
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2010a; Mora et al., 2010b). Although the availability of HSR satellite imagery has increased
over the last few years, there are few examples of the combination of such information and
laser data. The combination of three-dimensional ALS and spectral information from the
QuickBird satellite was used to delineate stand boundaries and classify tree species within
these stands. Both stand delineation and tree species identification were improved by
combining the two data sources as compared to using either of them separately (Ke et al.,
2010). Additionally, the combination of spectral information from QuickBird and ALS
improved the accuracy of canopy height estimates by 5.4 — 6.8% compared to only using
laser variables (Hyde et al., 2006). Still, biomass prediction was not improved using
additional variables derived from the QuickBird sensor (Hyde et al., 2006). Another
suggested application is to update forest inventory data using a laser operated as a sampling
tool and HSR imagery (Hilker et al., 2008).

MSR satellite images have been important through the provision of data with
sufficient spatial detail over large areas at low cost in order to meet a range of information
needs (Cohen & Goward, 2004; Falkowski et al., 2009). The opening of the United States
Geological Survey (USGS) Landsat archive to provide free data (Woodcock et al., 2008) has
further accentuated the use of this data. Although MSR imagery is suggested to be
inappropriate for supporting forest planning (Holmgren & Thuresson, 1998), a range of
forestry applications is presented in the literature. To provide wall-to-wall maps of forest
resources and obtaining forest statistics of small areas in national forest inventories, is among
its more important applications (Tomppo et al., 2008). Furthermore, MSR imagery is the far
most common satellite data used in combination with laser data for forest inventory. The
combination of variables from Landsat and LiDAR yielded the most accurate estimates of
canopy height and biomass in a North American study investigating multi-sensor synergy
(Hyde et al., 2006). The improvements in canopy height estimation were 12.3 - 14.0% when
compared to only using LiDAR, and the corresponding improvement for biomass was 1.4%.
This accuracy was better than combining ALS data with either HSR QuickBird imagery,
InSAR data or both (Hyde et al., 2006). By using the Advanced Land Imager (ALI) on board
the Earth Observation 1 (EO-1) satellite, estimates of basal area and tree density were
improved compared to only using LiDAR at 11.7% and 4.1%, respectively (Hudak et al.,
20006).

Furthermore, various methods for predicting canopy height from laser and Landsat
using extrapolation (c.f. Table 1) were presented by Hudak et al. (2002). Both aspatial

(regression) and spatial (kriging, co-kriging) methods for prediction were tested, and an
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integrated technique of ordinary co-kriging and ordinary least squares regression proved to be
the best method for estimating and mapping canopy height. Hudak et al. (2002) also tested
different sampling approaches which could be used, and concluded that a 250 m spacing of
point samples was the best approach for the tested methods. Extrapolation using a LiDAR
sample covering a small area and full coverage MSR spectral data are common. Wulder and
Seemann (2003) extended laser estimates of height from a sample using a profiling large
footprint LiDAR to a larger area using segmented Landsat imagery. The segmented Landsat
imagery was created based on spatial and spectral variables. Based on empirical relationships
between laser estimated canopy height and spectral values of segments, the canopy height
was estimated for an entire landscape based on a laser sample covering 0.48% of the area.
The accuracy of the final model as expressed by the coefficient of variation (R?) and standard
error (SE), was 0.67 and 3.3 m, respectively. Similarly, segmented Landsat imagery and a
600 km transect of profiling laser from 1997 and 2002 were used to characterize various
changes in a boreal forest at the image segment level, and both growth- and disturbance-
related changes were identified (Wulder et al., 2007b). Imagery from the Indian remote
sensing satellite and the k-NN technique were used to extend canopy height predictions from
laser to cover a larger area in Scotland, obtaining accuracies of 2 — 31% (RMSE) (Mclnerney
et al., 2010). Moreover, MSR satellite imagery plays an important role in stratification in
large area inventories in which lasers are used as sampling tools (Nasset et al., 2009; Nelson
et al., 2003b; Nelson et al., 2004).

Also, spectral information from CSR imagery and three-dimensional LiDAR data
have been combined to provide global forest resource maps. Lefsky (2010) provided the first
global map of canopy height using the Moderate Resolution Imaging Spectroradiometer
(MODIS) and the Geoscience Laser Altimeter System (GLAS). In the study by Lefsky
(2010), MODIS represented the full coverage of spectral information and GLAS provided

three-dimensional data from worldwide samples, with a footprint of approximately 65 meters.

3. MATERIALS

3.1. Study areas

Three study areas were used in the current thesis: 1) @stmarka forest reserve (18 km?), 2) the
municipality of Aurskog-Heland (890 km?), and 3) the county of Hedmark (27,400 km?). All
study areas were located in southeastern Norway (Figure 1), which is the main forestry area
in Norway, with most of the forest under management. The dominant vegetation zone is the

boreal forest (Olson et al., 2001). However, Ostmarka forest reserve and Aurskog-Heland are
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located at the northern border of a “temperate broadleaf and mixed forest” (Olson et al.,
2001). Hence, hardwood trees are found scattered throughout the landscape, particularly on
southern facing slopes. In Hedmark, the boreal forest is diminishing at higher altitudes where
alpine and tundra vegetation zones occupy the area. The annual precipitation in the area is
between 400 — 700 mm year," with the highest levels on the coast as they start to decrease
towards the interior (Moen, 1999). The average annual temperature is between -2 ° and 5° C

(Moen, 1999).

63°N

B0°N

57°N

Figure 2 - Map of the three study areas;
Ostmarka forest reserve, municipality of Aurskog-Holand and the county of Hedmark

3.2. Field data
Field data were collected at 28, 40 and 26 locations in Ostmarka, Aurskog-Heland and
Hedmark, respectively. In Ostmarka and Aurskog-Heland, field data were collected to

support analyses on the individual tree level. Therefore, tree positions and individual tree
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properties were recorded. The field work in @stmarka was carried out during the summer of
2003, while the field measurements in Aurskog-Heland were carried out during the autumn
of 2007 and the winter of 2008. The sample plots were positioned with differential Global
Navigation Satellite Systems (dGNSS), and the mean positional accuracy was approximately
12 cm. The plot size was 1000 m* for all plots except for four plots in Aurskog-Heland,
which were 500 m” in size. Tree positions were measured as polar coordinates from the plot
center with a tape measure and compass in Ostmarka, and with a total station in Aurskog-
Holand. Tree properties were recorded for 435 sample trees in Qstmarka and 4,299 trees in
Aurskog-Heland. The stem diameter and tree species were registered for all trees. In
@stmarka, crown radii and tree heights were also measured.

In Hedmark, the overall goal was to provide a wall-to-wall map of the subalpine zone.
The boundaries of the subalpine zone (the forest and tree lines) were mapped at 26
subjectively selected locations during the summer of 2008. At all locations, both the forest
and tree lines were digitized using handheld GPS attached to a PDA, and ALS data were also
acquired for all locations. For additional information and a description of the field data

collection, see the individual papers.

3.3. Remote sensing data

Three-dimensional data were collected at all sites with ALS, using different Optech Airborne
Laser Terrain Mappers (ALTM). The Optech ALTM sensors recorded spectral information
by means of laser intensity in addition to the three-dimensional coordinates. Furthermore,
spectral information was available by multispectral digital aerial images acquired in Aurskog-
Holand with Vexcel Ultracam D and Applanix Digital Sensor System sensors. Finally,
spectral information by means of Landsat satellite imagery covering Hedmark was utilized
for mapping of the subalpine zone. A list of the sensors and acquisition settings for the

remote sensing data used in the current thesis appear in Table 2.

4. METHODS

The analysis and statistical methods used on individual tree crown segments and grid cells
included exploratory data analysis, linear models and various parametric and non-parametric
classification methods. Explorative data analysis was comprised of data visualization by
means of probability density and box-and-whisker plots, while linear models included
analysis of covariance models (ANCOVA), linear mixed effects models and general linear

models. Classification methods were utilized in all papers and consisted of heuristic
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classification, linear discriminant analysis (LDA), binomial logistic regression, support vector
machines (SVM) and classification and regression trees (CART).

In Papers 1, II and III, information from intensity and aerial multispectral imagery was
directly included in models for identifying species at an individual tree level. In @stmarka,
raw intensity values were used because sufficient information to normalize the intensity
values was lacking. In Aurskog-Heland, the intensities were normalized for two effects
(range and banding). Furthermore, multispectral information was tied to the xyz coordinates
from the first returns in Aurskog-Heland, utilizing the method described by Packalén et al.
(2009). In the method by Packalén et al. (2009) multispectral information is transferred to xyz
coordinates as attributes using the interior and exterior orientation parameters of the image
sensor. In Ostmarka and Aurskog-Heland, the laser echoes and spectral attributes were tied to
individual trees. In Ostmarka, field measurements of tree positions, crown radii and the
assumption of circular crowns were used to tie echoes to individual trees. In Aurskog-
Holand, an individual tree crown segmentation algorithm was used to tie the echoes to trees
(Ene et al., in review), and from the echoes tied to individual trees, features were derived
from three-dimensional and spectral information (cf. Papers I, I, and III for details). In Paper
I, we carried out an analysis of covariance (ANCOVA) to investigate the potential of
different features within the classification. Furthermore, the classification accuracy of single
features was tested using LDA. Based on the ANCOVA and LDA, we selected features from
various groups and combined them into a final classification. In Paper III, classification
accuracies of groups of features were tested using cross-validation in which feature selection
and classification were combined. The classification methods used were LDA, SVM, as well
as a special implementation of CART referred to as random forest (Breiman, 2001). In Paper
II, three-dimensional and spectral features were combined to support tree species
identification without subsequent feature selection. The classification method random forest
producer utilized has a built-in feature selection procedure that makes other feature selection
processes prior to classification unnecessary (Breiman, 2001). The classification accuracy
was assessed using an error matrix and the proportion of correctly classified trees for single
species (producer’s accuracy), in total (overall accuracy) and the kappa coefficient in all
papers (Cohen, 1960; Story & Congalton, 1986).

Paper Il focused on the challenges using multi-temporal datasets. The differences in
both intensity and three-dimensional information among three different ALS acquisitions
were investigated. Comparisons between all three acquisitions in Ostmarka (Table 2) were

carried out using explorative data analysis and two-tailed #-tests. In addition, relationships
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between the maximum height of laser echoes inside the crown delineations and field
measured tree heights were modeled with a linear mixed model. The sample plot was used as
a random effect in the model due to the hierarchical data structure. Relationships both with
and without a fixed tree species effect were tested. For modeling the stem diameter, a model
formulation consisting of the maximum laser height inside crown delineations and the crown
width, as proposed by Hyyppi et al. (2001), was utilized. Also, a mixed modeling approach
was used for the stem diameter, with the sample plot as a random effect. The stem diameter
model was developed with and without tree species as a fixed effect. Differences in tree
species identification obtained with the random forest algorithm were evaluated using
Cohen’s kappa coefficient and its variance (Cohen, 1960).

In Paper 1V, three-dimensional and spectral information were combined by means of
extrapolation. This approach utilized proxies for the canopy cover of trees and shrubs derived
from three-dimensional ALS data. The proxies were further used in a heuristic classification
to classify areas based on international definitions of forest, other wooded land and other land
by the United Nations Food and Agricultural Organizations (FAO, 2006) into three cover
types: 1) forest, 2) subalpine zone and 3) alpine, using tree height and canopy coverage
thresholds. A sensitivity analysis was conducted to test the impact of using thresholds other
than the one implicitly given by the definitions in the heuristic classification. Moreover, a
binomial logistic regression was established to model the relationship between the ALS
derived cover types, Landsat imagery and spatial data. A binomial response variable, in
which cover type forest was set equal to 1 and cover type alpine was set equal to 0, was
established. The explanatory variables in the model comprise spectral variables derived from
Landsat imagery and variables derived from a digital terrain model. This approach supported
the extrapolation of ALS derived cover types to the entire area in the form of a probability
surface. The density estimation of all cover types supported the development of alpha-cuts to
separate the probability surface into hard classes, which is necessary for area estimation. The
validation of the cover type classes in the ALS data was conducted with a image gradient
approach (Pitas, 2000; Wulder et al., 2007a). The binomial logistic regression classification
was validated with a test dataset, resulting in an error matrix (Cohen, 1960; Story &

Congalton, 1986).
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5. MAJOR FINDINGS

5.1. Combining three-dimensional ALS data and intensity (Objective 1)

Both the three-dimensional and intensity information from ALS were related to tree species.
The accuracies obtained with three-dimensional, intensity and combined information appear
in Table 3. Used for tree species identification, the three-dimensional information derived
from ALS yielded overall accuracies (percentage of trees correctly classified) of 74 — 77% for
dominant trees, depending on study area and classification method. The ALS intensity alone
yielded slightly lower accuracies of 63 — 73%. The accuracy increased when combining
intensity and three-dimensional data with 12 percentage points in @stmarka, but a slight
decrease in accuracy was observed in Aurskog-Heland. The identification of species of
“Small trees” (Table 3) was most successful when only using three-dimensional data,
although a fairly low accuracy was obtained (65%). In Ostmarka, classification accuracies
between 87 to 93% were obtained for different acquisitions when combining three-
dimensional and spectral information from ALS. In specific cases such as under leaf-off
canopy conditions, even higher accuracies could be obtained.

Table 3 - Overall accuracies (percentage of trees correctly classified) obtained for tree species identification in

Papers I, II and III using three-dimensional ALS data (Three-dimensional) and ALS intensity (Spectral),
separate and combined (Combined).

Paper Dataset” Three-dimensional Spectral Combined
I Large trees 77 73 88.6

I Small trees 65 55 63.6

II ALTM 3100 leaf-off - - 97.1-98.1
I ALTM 3100 leaf-on - - 86.9 - 90.1
II ALTM 1233 leaf-on - - 90.0-93.4
111 ALTM 3100 leaf-on 73.9 -76.5 63.2-70.8 72.0-75.8

*See respective paper for details.

5.2. Combining three-dimensional ALS data and digital aerial imagery (Objective 2)

Adding spectral information from digital aerial images improved the overall classification
accuracy by 8.4 — 14.7 percentage points compared to only using three-dimensional
information (Table 4). The improvements using combined data instead of image data alone
was 8.6 — 14.3 percentage points. This improvement was dependent on the image sensor and
classification method used. The Applanix DSS camera flown together with the ALS sensor
gave a classification accuracy of 88.6%, while using the Vexcel Ultracam resulted in a
slightly lower accuracy of 87.0% when combined with three-dimensional ALS data. Utilizing
both intensity and image data in combination with three-dimensional ALS data did not

improve tree species identification further.
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Table 4 - Overall accuracies (percentage of trees correctly classified) obtained for tree species identification in
Paper I1I using three-dimensional ALS data (Three-dimensional) and digital aerial imagery (Spectral), both
separate and combined (Combined)

Paper Dataset” Three-dimensional Spectral Combined
111 Applanix 73.9-76.5 72.9-79.1 87.2 - 88.6
I Vexcel 73.9-76.5 70.9 - 75.7 84.3-87.0
1 ALS® - - 72.0 - 75.8
11 Applanix + ALS" - - 84.7 - 88.3
111 Vexcel + ALS® - - 82.3-85.6

See respective paper for details.
®Both three-dimensional and spectral data from ALS. See Table 3 above for details.

5.3. Combining three-dimensional ALS data and MSR satellite images (Objective 3)

The subalpine zone delineation derived from ALS proxies by a heuristic classification was
found to be accurate using an image gradient technique for validation and a sensitivity
analysis of the selected thresholds. An underestimation of tree height of approximately 0.5 m
and a species effect on canopy coverage were identified. In the binomial logistic regression
developed, the variables included in the final model were elevation, slope, latitude,
normalized difference vegetation index (NDVI) and brightness from the tassel-cap
transformation. The use of estimated probability density functions provided alpha-cuts to
separate the probability surface into a hard classification of cover types. The overall accuracy
of the hard classification was 69%. The total area covered by the subalpine zone in Hedmark

was estimated to be 3660 km” which represents 14% of the total area.

5.4. Effects on the multi-temporal ALS acquisitions (Objective 4)

The distributions of intensity and three-dimensional information provided by ALS differed
between sensors and canopy conditions. More specifically, the laser height distributions for
deciduous trees shifted towards the ground for the leaf-off acquisition of single and last (last
echoes of many) echoes compared to the leaf-on acquisition. However, the first echoes (first
echoes of many) was slightly higher for deciduous trees under the leaf-off canopy conditions.
The three-dimensional measurements of evergreen coniferous trees (spruce) did not differ
between the two acquisitions with the same sensor. However, different sensors produced
significantly different height distributions and metrics in almost all cases.

The differences in raw intensity between canopy conditions were most pronounced in
the first echoes, in which the intensity distribution was extremely skewed towards lower
values under leaf-off compared to leaf-on canopy conditions. Even the intensity distributions
of single and last echoes were affected by canopy conditions. Nonetheless, the intensity

obtained using the same sensor under leaf-off and leaf-on conditions did not differ for spruce
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trees. The intensity distributions acquired with different sensors diverged significantly. We
observed a difference in the shape of the intensity distribution between the two sensors,
particularly for deciduous trees. For deciduous trees, lower intensities were obtained with the
ALTM 1233 sensor in comparison to the ALTM 3100 sensor.

Differences in the accuracy of estimated individual tree properties were minor among
all three acquisitions when the models were calibrated with field measurements. However,
the intercept of tree height models varied between all acquisitions, thereby suggesting that
individual tree height models must be calibrated with field data to maintain accuracy. The
parameters of stem diameter models did not differ significantly among the three acquisitions.
Furthermore, the accuracy of tree species classification differ between sensors. Yet, a leaf-off
acquisition of ALS data improved the identification of coniferous and deciduous trees by 8
percentage points.

The intensity is noisy and should be calibrated. In Aurskog-Heland, range
normalization and banding normalization were both carried out. It was revealed that intensity
normalization improved tree species identification by 5 — 11 percentage points compared to
only using raw intensities. By comparison, range normalization was better than banding

normalization, when used in the identification of tree species.

6. DISCUSSION

6.1. Tree species identification (Objective 1 and 2)

Three-dimensional information is better in terms of classification accuracy than intensity in
the current thesis, and similar results have been reported in other studies under leaf-on
canopy conditions (Brandtberg et al., 2003; Holmgren & Persson, 2004; Reitberger et al.,
2008). Nevertheless, there are also several studies in which contradictory results have been
reported. Under leaf-off conditions, intensity has been reported to contribute more than three-
dimensional information in helping to identify coniferous and deciduous trees (Reitberger et
al., 2008). Moreover, Korpela et al. (2010) reported that only intensity features were
important for identifying boreal tree species in Finland. Consequently, a clear suggestion if
either intensity or three-dimensional information is better is difficult to give. Today, the
majority of ALS sensors provide intensity recordings. Thus, if intensity is delivered the
opportunity to utilize both intensity and three-dimensional measurements is present.
Furthermore, if intensity is to be utilized in tree species identification, the results from the
current thesis, and other studies (Gatziolis, 2009; Korpela et al., 2010), indicates that the

intensity should be normalized.
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The current research revealed that combining intensity and three-dimensional
information improved classification accuracy under certain circumstances. When considering
the dominant trees in Ostmarka and Aurskog-Heland, the increase in overall accuracy
compared to only using three-dimensional data was 12 percentage points in Ostmarka,
whereas in Aurskog-Heland the overall accuracy decreased by 1 percentage point. In other
studies, increases in overall accuracies up to approximately 10% have been reported
(Brandtberg et al., 2003; Holmgren & Persson, 2004). Reitberger et al. (2008) obtained a
large increase in accuracy by combining three-dimensional information and intensity under
leaf-off, but not leaf-on conditions, though studies in which the intensity did not improve
classification accuracy have also been reported (e.g. Moffiet et al., 2005). The classification
accuracy obtained in tree species identification with normalized intensity from two different
sensors differed by 10 percentage points in a Finnish study (Korpela et al., 2010). Hence,
there are problems in providing stable improvements by intensity in classification accuracies
across study areas and acquisition. Future research in the area of tree species identification
using intensity should focus on the differences in accuracy obtained in different study areas
and with different acquisitions to obtain more knowledge of factors affecting intensity and
their normalization. The stability of classification accuracy under otherwise similar
conditions is a key requirement for the operational use of intensity in forest inventory.

Spectral information from aerial imagery improved tree species classification
accuracy in the current study by 9 — 13 and 11 — 15 percentage points, respectively, using the
Vexcel Ultracam and the Applanix DSS the camera. Similar improvements of 5 and 8
percentage points were obtained using summer and autumn imagery from a Zeiss/Intergraph
Digital Mapping Camera in a Swedish study (Holmgren et al., 2008). The study by Holmgren
et al. (2008) is the only other study in addition to this thesis which has reported separate
accuracies for ALS, aerial imagery, and both combined, on the individual tree level. Studies
reporting improvement in species identification based on the inclusion of spectral information
other than on the individual tree level have been made (e.g Jones et al., 2010; Packalén et al.,
2009). The results from the current thesis indicate that aerial imagery is a more stable spectral
information source than intensity for improving tree species identification. Aerial imagery is
often available in most practical inventories because imagery is also used for stand
delineation in most cases.

Extending the use of hyperspectral data is a highly interesting option as well.
Hyperspectral data consist of many narrow and contiguous spectral bands (Shippert, 2004).

The increased detail of the electromagnetic spectrum may provide information beyond what
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is possible to obtain with multispectral imagery (Shippert, 2004). Additionally, refinement
might also be possible using multispectral images. One possibility for refinement using
multispectral images could be to only select the 10% brightest pixels inside each crown
segment for use in species identification (Persson et al., 2004). Moreover, the viewing
geometry of aerial imagery sensors should be better incorporated. Depending on the overlaps
between images in the acquisition, a tree may be viewed from a number of various angles.
Thus, the spectral response will differ depending on the viewing geometry. In extending the
work of this thesis, these effects should be better accounted for.

One of the objectives in Paper I was to test different features and their suitability for
species identification. It was revealed that a majority of the features derived comprised
relevant information for species identification. In Paper II, we used the non-parametric
random forest algorithm, which has an internal feature selection process. A comparison of the
two strategies demonstrated that non-parametric techniques with no feature selection strategy
yielded similar accuracies compared to using linear discrimination analysis with feature
selection as in Paper I (Orka et al., 2009). For this reason, a modified version of the feature
selection strategy in Paper I was implemented in Paper III. There is the potential to further
test different classification strategies (c.f. Orka et al., 2009). Such studies must incorporate a
range of different ALS acquisitions and study areas to provide general results.

Practical implementation of the approach used in Papers I, II and III is straightforward
in relation to individual tree inventory. A number of sample trees with known species are
necessary for model calibration. To gather detailed information on individual trees in the field
is expensive, and there are some studies testing the effect on the accuracy of reducing the
sample sizes (Korpela et al., 2010). However, the number of samples trees needed in an
individual tree inventory is not yet clear. One option for obtaining inexpensive samples for
calibration of species classification models is to use photo interpretation. Independent on how
the sample data are gathered they would result in a calibrated classification model being used
to assign a class to each segment. An alternative to extensive field measurement could be to
utilize unsupervised classification methods which would not need field data for calibration
(Orka et al., 2009; Reitberger et al., 2008). The problem with this, however, is that
unsupervised methods may not achieve the same classification accuracies (Orka et al., 2009).
Furthermore, the use of prior information from an area-based inventory might aid in the
identification of individual tree species.

The possibility of more than one tree from different species in a segment is not

accounted for using the method presented in the current thesis. One alternative to account for

26



Synopsis

more than one tree species per segment is to use a soft classifier, which instead of assigning a
specific tree species to a specific segment assigns the probability that a specific segment
belongs to a specific tree species. Another possibility is to use methods which assign “doubt”
to segments for which there is a high degree of uncertainty with regard to which tree species
it belongs to (Ripley, 1996). Improvements in the crown delineation algorithms, to reduce the
number of segments with more than one tree, will also facilitate individual tree species
identification.

Further practical issues in implementing the approach include the time of ALS
acquisition and handling of trees not identified by the segmentation process. First, trees not
identified by a segmentation algorithm must be classified by other means than individual tree
classification. This is also relevant for suppressed or short trees (e.g. Table 3, “Small trees”)
which are difficult to classify by means of individual tree species classification. To identify
the species of such trees the area-based method should be used supplementary to individual
tree methods to provide e.g. the number of trees within different species. Second, in the
current study the highest overall accuracy was achieved under leaf-off conditions, which was
8 percentage points higher than under leaf-on conditions. Other studies comparing leaf-on
and leaf-off acquisitions for identification of coniferous and deciduous trees have reported 11
— 16 percentage points higher accuracies under leaf-off canopy conditions (Heurich, 2006;
Reitberger et al., 2008). Consequently, the leaf-off period seems attractive for ALS
acquisition when identification of coniferous and deciduous tree species is needed.

The current research has documented that the direct inclusion of three-dimensional
and spectral information in tree-species identification of dominant trees provides overall
accuracies along the order of 87 - 98%. Similarly, applying three-dimensional data alone
provides overall accuracies for dominant trees of between 75 to 80%. Hence, spectral data
provides a complementary source of information, and in combination with three-dimensional
data, it seems to improve tree species identification. In any case, the use of intensity seems to
be both promising and problematic, while at the moment aerial imagery seems to be a more
stable spectral information source for tree species identification. The aerial imagery that was
acquired simultaneously with the ALS data provided the highest accuracy in the current
thesis. Consequently, multiple sensors carried on the same airborne platform should be

considered in order to achieve a high accuracy for the lowest possible cost.
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6.2. Large area inventory extrapolation (Objective 3)

In the current thesis, ALS and MSR satellite imagery were combined to support delineation
of the subalpine zone. Extrapolation is an increasingly attractive method when used to
combine high resolution and coarser resolution remotely sensed data sources. In Paper IV,
extrapolation is utilized in remote mountainous areas with low biomass and little available
information. The proposed method of combining ALS and MSR satellite imagery succeeded
in mapping the subalpine zone in Hedmark, and provided new information for the area and
extent of the subalpine zone. This example demonstrates that a combination of ALS operated
as a strip sampling tool and spectral information can be utilized to derive additional spatial
information in large area forest inventories without increasing field measurement costs.
Similar approaches using LiIDAR and extrapolation with a range of different satellite sources
have been presented in other studies (see Section 2.5).

The interest for information about the subalpine zone is increasing. In a global meta-
analysis by Harsch et al. (2009), half of the studied tree lines had advanced over the course of
the last century. The approach presented here offers an improved capacity to map and
monitor the entire area covered by forests and trees. The subalpine zone represents a part of
the forest-tundra ecotone that covers large areas of the northern hemisphere. The projected
change in the climate with global warming will exert a considerable impact on the extent and
location of the ecotone (ACIA, 2004). Thus, approaches to support monitoring like the
current is needed. Furthermore, studies of climate change may be aided by the ability to map
and monitor the subalpine zone over large areas and not only at specific sites. This is
desirable since the impact of climate change will likely be different among regions (Dalen &
Hofgaard, 2005). In addition, changes found over time will be important for describing the
change processes and the rates of transition among cover types.

The proposed approach for delineating the subalpine zone was implemented without
field calibration. A heuristic classification of ALS data based on derived proxies of tree
height and canopy cover was used to delineate the cover types: forest, subalpine zone and
alpine areas. However, not using field calibration increases the risk of systematic errors.
Validation of the approach, together with a sensitivity analysis, indicated a small systematic
shift in laser height measurements, though not in canopy coverage. The systematic
underestimation of tree height with lasers is well-known in the research community. Nasset
(2009a) reported individual tree height underestimations in the subalpine zone in the range of
0.35 — 1.47 m in another subalpine zone area in Norway. In the study by Nasset (2009a),

both sensors and tree species influenced individual tree height measurements. In the current
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thesis, species composition was also found to be a source of systematic errors in the subalpine
zone delineation using ALS. Canopy coverage at a spruce site was systematically
underestimated. Hopkinson and Chasmer (2009) have suggested that some calibration of
canopy cover proxies might be necessary. Despite the aforementioned problems, the
proposed approach seems to be an attractive alternative for providing information about the
subalpine zone when also taking into consideration the low implementation costs. The
calibration of ALS cover type classification with field measurements could increase the
accuracy of ALS delineation, but will also significantly increase costs.

In the current thesis, the accuracy obtained for classification with the binomial logistic
regression model and alpha-cuts was within the range of expected accuracies in satellite
image classification (Wilkinson, 2005). This study attempted to map the transition zone.
Transitions are challenging in remote sensing because they are a mix of the two adjacent
vegetation communities (Foody, 1996; Hill et al., 2007). In light of the high mixing that was
present, the obtained accuracy was considered to be acceptable (Wilkinson, 2005). The
ability of the presented method to calibrate the alpha-cuts with the ALS-derived cover type
classes is attractive and extends previous alpha-cut methods used to characterize the
subalpine zone (Hill et al., 2007; Ranson et al., 2004). The alpha-cut calibration was made
possible by means of the heuristic classification of three-dimensional data. The possibility to
use the proposed approach to produce both a probability map and hard classes increases its
applicability. Hard classes derived using alpha-cuts are needed to estimate the area and extent
of the subalpine zone. Furthermore, the presented probability map is more suitable for
monitoring future changes in the subalpine zone than a map with hard classes (Foody, 2001).

The Landsat satellite is highly suitable for the presented approach in terms of both
accessibility and spatial resolution. However, a major challenge for utilizing optical satellite
imagery is the limited temporal resolution. A low temporal resolution will reduce the
availability of cloud free imagery, which is a problem in many forest areas. For example, the
Landsat satellite only provided five images at a specific scene location in Hedmark with less
than 10% cloud coverage in the growing seasons from 1987 to 2010. Hence, when extending
the proposed approach to monitoring, the availability of imagery will be a critical factor.
About five other existing satellite programs will provide spectral information similar to that
of Landsat does today (Wulder et al., 2008a). These optical satellites will increase the
chances of cloud free images in a monitoring context due to increased temporal resolution.
Future, optical space missions are planned, and alternatives to Landsat include Landsat Data

Continuity Mission (LDCM), Advanced Visible and Near-Infrared Radiometer (AVINIR-2)
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and the Sentinels (Wulder et al., 2008a). The possibility of RaDAR sensors to increase the
availability of full-coverage data by acquiring imagery of areas with 100% cloud cover
makes such information interesting as a full coverage source for use in the presented
approach.

In the current thesis, only airborne lasers were utilized. In large area inventories the
use of spaceborne LiDAR is attractive, particularly in combination with spectral information
similar to the approach presented. Unfortunately, the availability of spaceborne LiDAR
sensors is limited. The National Aeronautics and Space Administration’s (NASA) ICESat-1
satellite that was operational from 2003 to 2009 provided samples (footprints) from all over
the world that were suitable for forest inventory (Boudreau et al., 2008), also in combination
with spectral information (Duncanson et al., 2010). NASA has planed another spaceborne
LiDAR mission called ICESat-2. The benefits from ICESat-2 in forest inventory and
monitoring will be limited due to the sensor properties (Nelson et al., 2010). Moreover,
NASA’s proposed satellite mission DESDynl was planned to include a spaceborne LiDAR
sensor operated in sampling mode and a full coverage RaDAR sensor, though the mission
was cancelled in February 2011. The LiDAR onboard the DESDynl would have been
superior in the assessment of vegetation for large areas (Nelson et al., 2010).

In the near future, no spaceborne LiDARSs suitable for forest inventory and monitoring
applications are planned to be launched. Because of this, methods such as the one presented
here that combine ALS from sample locations and full coverage satellite data will be useful

in future large area inventories for providing wall-to-wall map products.

6.3. Issues related to utilization of ALS in forest monitoring (Objective 4)

In the current thesis, no monitoring applications were implemented or tested. However, some
essential aspects of using multi-temporal datasets were addressed by empirical analyses. The
effects of sensors and seasons (canopy conditions) on the three-dimensional measurements of
ALS were reported in earlier studies (Hopkinson, 2007; Nasset, 2005; Nesset, 2009b). This
thesis complements previous work on sensors and seasonal effects by investigating the effects
on individual trees, as well as the intensity.

Seasonal effects, e.g. leaf-on and leaf-off canopy conditions, are important for forest
monitoring (Yu et al., 2006), but also for operational forest inventory (Naesset, 2005). In
monitoring, changing canopy conditions might interfere with change estimates (Yu et al.,
2006). In operational inventory, leaf-off acquisition of ALS data has been tested to improve

the estimates of biophysical properties in mixed forests, and the accuracy was unaffected or
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slightly improved using leaf-off data (Nasset, 2005). In the current thesis, the effects of
canopy conditions on the last (last echoes of many) and single echoes were most pronounced.
The large influence on last echoes was also reported on plot level by Naesset (2005). The
minor impact on the height distributions of first echoes (first echoes of many) identified in
Paper II is related to the shift in proportions between first and single echoes. The number of
single echoes was 20% lower under leaf-off compared to leaf-on canopy conditions. Thus,
more first than single echoes were recorded under leaf-on conditions, when the amount of
biological matter is higher in the tree crowns. This shift in echo proportions led to higher
height values of first echoes under leaf-off conditions. Furthermore, the effect of canopy
conditions on intensity was notable. All echo categories were affected, especially the first
echoes, which had lower values under leaf-off conditions. The lower intensity values of first
echoes also contributed to the high accuracies obtained for tree species identification under
leaf-off conditions. The effects on the intensity may be attributed to phenomena which result
from the shift in proportions between first and single echoes. The intensities of first echoes
are higher under leaf-on conditions when the amount of biomass in the crown is high and
most of the emitted energy is reflected immediately, which results in a “strong return” with
high intensity. Under leaf-off conditions, the amount of biomass in the tree crowns is lower,
thereby allowing more energy to penetrate further into the crown, resulting in a “weak return”
with low intensity. In addition, the reflectance and structure of branches and other tree parts
will influence the intensity. Both the current thesis and the study by Nesset (2005) analyzed
the effects in the change from leaf-off to leaf-on canopy conditions. However, both studies
only considered the extreme seasonal effects in canopy conditions (leaf-off vs. leaf-on). In
this thesis, the October 2003 flight may have been affected by changes in canopy conditions
due to senescence. Such within seasonal effects on the intensity and three-dimensional
information of ALS are not yet quantified, and remain a topic for future research.

The use of different sensors impacts the three-dimensional recordings of ALS
(Chasmer et al., 2006; Hopkinson, 2007; Nasset, 2005, 2009a). In the current thesis, the
effects of using different sensors on the obtained point cloud were quantified on individual
trees. For that reason, it was possible to study the effects of different sensors on the point
clouds of various tree species. It was revealed that there were species-specific effects from
the sensors. One combination of echo categories (first of many and single echoes) did
produce nearly equal metrics for spruce trees with different sensors, but not for deciduous
trees. Moreover, the current thesis also points out that there are challenges related to using

different ALS sensors for individual tree change estimation, e.g. in growth analysis. Still, it
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should be mentioned that the point clouds were stable between acquisitions for spruce trees
when identical sensors were used. It has been reported in other studies that the effects of
different study areas are small when sensors and acquisition settings are identical (Nasset et
al., 2005; Nasset, 2007). Therefore, if the same sensor and acquisition settings are used in
forest monitoring, change estimation using ALS might be possible without field calibration.

The effects of sensors and seasons did not considerably affect the accuracies of tree
height and stem diameter when using models calibrated with field data in the current study.
However, one exception was the high accuracies for tree species identification under leaf-off
conditions. Similarly, it has been reported that field data calibration provided similar results
independent of canopy conditions and sensors in area-based inventory (Nasset, 2005; Nasset
& Gobakken, 2008; Neasset, 2009b). Approaches using laser proxies are attractive in order to
reduce field measurement costs (e.g. Paper IV). Alternatively, field measurement costs may
be reduced by the reuse of models developed in previous projects (Neasset, 2007; Nasset,
2009b). The rapid technological development of laser sensors seen over the past few decades
is likely to continue in the future. Thus, it seems to be unrealistic at the present time that
monitoring can achieve the same accuracies when not calibrated with field data. Future
research should focus on quantifying the loss in accuracy when reducing the amount of field
data for model calibration. The sampling design should be further addressed in terms of plot
sizes, plot numbers and location of plots (pre-stratification) (e.g. Gobakken & Nesset, 2008;
Hawbaker et al., 2009).

The intensity is noisy and often undocumented. Despite these problems, identification
of tree species was improved by 10% in Ostmarka using raw intensities. Additionally,
normalization of the intensity by the sensor-to-target range improved tree species
identification by 8 percentage points, while sensor-specific intensity normalization improved
tree species identification slightly. Even so, stability for the results in tree species
identification seems to be a problem (cf. Section 6.1). These problems will also be a
challenge in forest monitoring or change estimation. Different sensors may produce different
intensity values. Furthermore, it is likely that some sensors have the possibility to adjust
sensor settings, which in turn will affect the intensities recorded. In @stmarka, the intensity
values recorded on the sample plots ranged from 1 — 170 (numerical values in Paper |
represented by 1/10). Similarly, the range in intensity values for sample plots in Aurskog-
Holand was 1 to 95. In both studies, the ALTM 3100 was flown with approximate the same
settings. Weather conditions and the wetness of the surface will influence the intensity

recordings. Hence, in terms of calibrated intensity values and accuracies of forest biophysical
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properties, stable deliverables obtained from intensity should be achieved before a
widespread utilization of intensity can be expected.

Paper IV was motivated by the anticipated changes in the tree line due to climate
change and the need for information on the rate of these changes. However, only an approach
to support monitoring was developed. Forest monitoring studies combining three-dimensional
and spectral data are rare. Nevertheless, one example utilizing profiling LiDAR and
segmented Landsat satellite imagery exists (Wulder et al., 2007b), and inventory updates
have been conducted with a combination of three-dimensional and spectral information
(Hilker et al., 2008; Wulder & Seemann, 2003). The majority of studies utilizing ALS for
estimating changes over short time spans have only utilized three-dimensional information
(Nasset & Gobakken, 2005; Solberg et al., 2006b; Yu et al., 2004; Yu et al., 2006). A
combination of three-dimensional and spectral information in forest monitoring and change
estimation studies should be investigated based on the promising results of combining such
information in forest inventory. Future research should also include testing of the proposed
procedure for delineating the subalpine zone based on multi-temporal remote sensing datasets

and field observations.

7. CONCLUSIONS

This thesis points at the potential for improvements in forest inventory and monitoring on two
different spatial scales by combining remotely sensed three-dimensional and spectral
information. First, combining three-dimensional and spectral information improved the
accuracy of individual tree species identification in the thesis. Nonetheless, stable
classification accuracies were not obtained using intensity and more research is needed to
fully understand the potential and limitations of the intensity. Until that time comes, the use
of aerial imagery seems to be the best spectral information source available which is suitable
for tree species identification in combination with three-dimensional information. Second, the
presented method for combining three-dimensional information and medium resolution
satellite images seems suitable for mapping the current state and monitoring future changes in
the extent and location of the subalpine zone on a regional scale. In forest monitoring,
contemporary field and ALS campaigns seem to be needed to keep the accuracies at
acceptable levels. Large differences between measurements conducted by various ALS
sensors and under different canopy conditions necessitate field calibration. To summarize,
combining three-dimensional and spectral information may improve forest inventory and

monitoring, although the challenges and costs will be increased by using multiple data
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sources and must therefore be compared against the advantage of the higher information level
obtained. Furthermore, the use of combined three-dimensional and spectral information in
forest inventory and monitoring will probably increase in the future due to the increasing
availability of aircraft carrying multiple sensors, as well as improvements in using a
combination of more than one remote sensing source, as reported in the current thesis and

other studies.
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The objective of this study was to identify candidate features derived from airborne laser scanner (ALS) data
suitable to discriminate between coniferous and deciduous tree species. Both features related to structure
and intensity were considered. The study was conducted on 197 Norway spruce and 180 birch trees (leaves
on conditions) in a boreal forest reserve in Norway. The ALS sensor used was capable of recording multiple
echoes. The point density was 6.6 m~2. Laser echoes located within the vertical projection of the tree crowns,

ﬁfﬁz [;;(isiaser scanning which were assumed to be circular and defined according to field measurements, were attributed to three
Intensity categories: “first echoes of many”, “single echoes”, or “last echoes of many echoes”. They were denoted FIRST,
Species classification SINGLE, and LAST, respectively. In tree species classification using ALS data features should be independent of
Spruce tree heights. We found that many features were dependent on tree height and that this dependency

Birch influenced selection of candidate features. When we accounted for this dependency, it was revealed that
FIRST and SINGLE echoes were located higher and LAST echoes lower in the birch crowns than in spruce
crowns. The intensity features of the FIRST echoes differed more between species than corresponding
features of the other echo categories. For the FIRST echoes the intensity values tended to be higher for birch
than spruce. When using the various features for species classification, maximum overall classification
accuracies of 77% and 73% were obtained for structural and intensity features, respectively. Combining

candidate features related to structure and intensity resulted in an overall classification accuracy of 88%.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, high resolution sampling density airborne laser
scanning (ALS) has become readily available, providing x, y, z point
datasets with 5-20 height measurements per square meter. Such data
are useful for terrain, vegetation, and forest mapping. From these
dense point clouds, individual trees can be identified by means of
various segmentation procedures. These procedures extract the
outline of the tree crowns. Individual tree segmentation is often
done by using an ALS-derived canopy height model (e.g. Hyyppad et al.,
2001; Persson et al., 2002; Solberg et al., 2006), but also other
methods are used, like for example clustering (Morsdorf et al., 2004).
When the outline of a tree crown is defined, laser echoes inside the
segment can be tied to the tree and information about the tree such as
stem position, height, and stem diameter can be derived (e.g. Persson
et al., 2002; Solberg et al., 2006). This high resolution tree information
can form a basis for forest planning by aggregating information to
management units (Hyyppa et al., 2001).

Tree species is another parameter that may be derived from laser
echoes inside individual tree segments. Species classification on a
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individual tree level using ALS-derived features has been accom-
plished in boreal forest in Scandinavia (Holmgren et al., 2008;
Holmgren & Persson, 2004; Liang et al., 2007), in mixed coniferous
and deciduous forest in central Europe (Heurich, 2006; Reitberger
et al., 2008), in deciduous forest in western Virginia (Brandtberg,
2007; Brandtberg et al., 2003), and in sub-tropical forest in Queens-
land, Australia (Moffiet et al., 2005). Individual tree species informa-
tion could also be found using high spatial resolution images (e.g.
Brandtberg, 2002; Carleer & Wolff, 2004; Key et al., 2001; Olofsson
et al.,, 2006). However, acquisition of both ALS data and imagery will
increase inventory costs. Furthermore, because ALS provides more
accurate estimates of biomass and height compared to image remote
sensing methods (Hyde et al., 2006; Hyyppd & Hyyppd, 1999), the
possibilities of utilize ALS data also to discriminate between tree
species are of interest in order to control data acquisition cost.
Structural features of the tree crowns can be derived from ALS
height measurements and such features might be considered for tree
species classification. The basic idea behind using structural features
for tree species classification is that different species have different
crown properties such as crown shape, reflectivity, and location of
biomass. For example, crown shapes for spruce trees tend to be
conical, whereas more spherical or rounded shapes are found for
deciduous trees. Deciduous trees also tend to allocate more biomass
higher in the crown. The structural differences of tree crowns will
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influence on the recorded laser echoes. When a laser echo is recorded,
the elapsed time between emission and receipt of a significant
amount of returned energy is converted to range. Since the position
and orientation of the platform are known by Global Navigation
Satellite Systems (GNSS) and Inertial Navigation System (INS), the
position of the target can be calculated. To trigger a laser echo from a
tree crown or any other surface, the properties of the surface hit by the
laser pulse is of importance. One example is the high rate of success in
detecting power lines. A power line covers just a small portion of a
laser footprint, but is still detectable in an ALS dataset because of the
high reflectivity of power lines. On the other hand, a tree crown
surface represented by branches and leaves often covering the entire
laser footprint has lower reflectivity and a different structure. The
laser pulse will therefore tend to penetrate into the canopy before a
significant echo is recorded by the sensor (Gaveau & Hill, 2003). Thus,
different crown properties affect the distribution of laser echoes
within and on the surface of the tree crowns. This may lead to distinct
echo height distributions for separate species. Therefore, it might be
useful for automated species classification based on ALS data to
identify which structural features derived from the echo height
distribution that are most suited to distinguish species.

In addition to the spatial coordinates of laser echoes, most ALS
systems measure the intensity of the backscattered laser signal (Wehr
& Lohr, 1999). For pulse lasers, intensity often represents the peak
amplitude of the returned pulse. It is expected that this value could
assist species classification. Already in 1985, Schreier et al. (1985)
demonstrated classification of individual trees into conifers and
broadleaves partly based on airborne laser intensity. Since then the
use of laser intensity has been little explored. This is mainly because
of lack of methods for radiometric calibration of intensity values
(Kaasalainen et al., 2005). However, recently some authors have
tested intensity features for tree species classification (Brandtberg,
2007; Brandtberg et al., 2003; Holmgren et al., 2008; Holmgren &
Persson, 2004; Moffiet et al., 2005; Reitberger et al., 2008) and for
discerning age classes (Farid et al., 2006a,b) as well as land-cover
classes (Brennan & Webster, 2006) where deciduous and coniferous
forest were treated as separate classes. Despite the lack of
calibration methods, intensity features derived from ALS data may
improve classification (e.g. Brandtberg et al., 2003; Holmgren et al.,
2008). As methods for calibration of the intensity mature, the
usefulness of intensity used for individual tree species classification
may increase.

In species classification, features derived from the laser height
distribution, such as the mean height of the laser echoes, could be
used directly in the classification algorithm (e.g. Brennan & Webster,
2006) or as a scaled feature, for example normalized with tree height
(Holmgren & Persson, 2004). In individual tree classification,
independence of tree height is important, especially in forests
where tree height distributions differ between species. To ensure
this independence features should be scaled. Brandtberg (2007)
normalized the 3D point cloud using estimated tree height to ensure
independence. Holmgren and Persson (2004) used relative height
features, i.e., laser height features divided by the laser estimated
height, to separate Norway spruce and Scots pine. It should be noted,
however, that it has so far not been tested if scaling methods really
produce independence of tree height. Robust scaling may be
important for practical applications covering large areas. In large
forested landscapes, species-specific height distributions will vary in
the landscape according to soil properties, management history, and a
number of other factors. Hence, selection of robust and unbiased
classification features is important.

The aim of this study was to identify candidate ALS-derived features
suitable for classification of spruce and birch. In order to reach our aim,
we (1) conducted an analysis of differences in (1a) structural- and
(1b) intensity features between spruce and birch trees, and (2) tested
the classification performance of candidate features.

2. Materials and methods
2.1. Study area

The study area is located in the southwestern corner of @stmarka
forest reserve. The forest reserve is located a few kilometers outside
Oslo in southeastern Norway (59°50’N, 11°02’E, 190-370 masl). The
size of the forest reserve is about 1800 ha. No logging or other
silvicultural treatments has been carried out since the 1940s. Today
the forest appears with large within stand variation in ages and sizes
of trees. The forest is dominated by Norway spruce (Picea abies (L.)
Karst.) and is partly multilayered. Deciduous trees are found scattered
in the landscape. Birch (Betula spp.) and aspen (Poplus tremula L.) are
the most commonly occurring deciduous species. An adjacent area
outside the reserve was also included to cover managed forest in
younger and intermediate age classes in the study.

2.2. Field data

During summer 2003, 20 circular field plots (0.1 ha) in the reserve
and eight plots just outside the reserve were established. The plots
were subjectively selected. The plots inside the reserve were selected
according to three criteria, i.e., (1) they should be spruce-dominated,
(2) have multiple canopy layers, and (3) be located on gentle terrain
slopes. These field data were also used in studies by Solberg et al.
(2006) and Bollandsds and Naesset (2007). The plots outside the
reserve were selected to cover productive forest in young and
intermediate age classes.

On each sample plot, we callipered diameter at breast height
(DBH) of all trees with DBH >3 cm and recorded polar coordinates of
each tree from the plot center. The polar coordinates of the trees were
determined using tape measure and a compass. The compass had a
foresight and was attached to a tripod to reduce pointing errors. In
addition a local correction of the deviation between magnetic and true
north were applied. Plot center coordinates were determined using
differential Global Navigation Satellite Systems (GNSS) by means of
Global Positioning System (GPS) and Global Navigation Satellite
System (GLONASS). Random errors reported from the post-processing
combined with empirical experience reported by Naesset (2001)
indicated an average error of 10 cm for the planimetric coordinates of
the plot centers. For further details about the GNSS setup and post-
processing, see Solberg et al. (2006) and Bollandsds and Nasset
(2007).

Selection of sample trees on each plot was performed in three
steps, i.e., (1) four sample trees where systematically selected being
the first non-suppressed coniferous trees found going clockwise
around the plot after passing each cardinal direction. (2) The second
step was to select four coniferous trees among all social status classes,
being the next tree to each of the first sample trees according to
increasing azimuth from plot center, and (3) the last step was to
sample all deciduous trees on the plot. In addition, we subjectively
selected some deciduous trees outside, but close to the plot. The last
step was accomplished to get a better balance between number of
selected coniferous and deciduous trees. The tree with the longest
distance to plot center was located 26.8 m from the center.

Tree height, height to crown base, and crown radius were
measured on the sample trees. Crown radius was calculated as the
average of radii measured in the four cardinal directions. Tree height
was measured using a Vertex Il hypsometer. A summary of
characteristics of field measured spruce and birch trees appear in
Table 1.

2.3. Airborne laser scanner data

ALS data used in this study were acquired 18 June 2005 under leaf-
on conditions with the Optech ALTM 3100 sensor. The sensor operated
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Table 1

Summary of field measurements of trees.

Tree species Characteristic n Mean Std Min Max

Norway spruce  Tree height (m) 209 17.6 8.6 1.8 33.8
Stem diameter (cm) 209 237 129 17 51.0
Crown radius (m) 209 15 0.6 0.5 2.9
Crown base height (m) 209 42 3.7 0.0 16.1

Birch Tree height (m) 203 121 6.4 1.6 291
Stem diameter (cm) 203 141 9.2 21 39.5
Crown radius (m) 203 14 07 03 42

Crown base height (m) 194 5.8 44 00 18.9

with a laser pulse repetition rate of 100 kHz and a scanning frequency
of 70 Hz. In total, eleven individual flight lines were flown to cover the
field plots. Individual strips overlapped with about 15%. Average flight
speed was 75 ms™ ! at a mean altitude of 750 m a.g.l. The maximum
scan angle of 20° yielded a swath width of about 260 m. Pulses
transmitted at half scan angles that exceed 8° were excluded from the
final dataset in order to eliminate erroneous edge points as ALS
sensors with oscillating mirrors have less accurate determination of z
and across track coordinates at the scan edge. These errors occur
because of the difficulty of modeling the rapid deceleration and
acceleration that occur when the mirror is turning. Hence, the total
scan angle used was 16°. The beam divergence was 0.28 mrad which
yielded an average footprint size of about 21 cm. The average point
spacing was 0.37 m by 0.54 m which gave an average point density of
5.09 m~ 2. The recorded mean point density inside the tree segments
of the studied trees was 6.6 m ™2 and the standard deviation was 3.2 m™ 2.
Point density variation is partly caused by overlapping flight lines.
Using ALS data from overlapping flight lines are frequently used in
operational forest inventory and is probably the only way to obtain
species information over large areas in a “wall-to-wall”context.
However, since the ALS is a sample device, the higher point density
will only lead to a more precise determination of laser-derived
features.

Initial processing of the data was accomplished by the contractor
(Blom Geomatics, Norway). Planimetric coordinates (x and y) and
ellipsoidal height values were computed for all echoes. One of the
flight lines was flown perpendicular to the other flight lines and used
in matching and correction for systematic errors between swaths.
Ground points were found and classified using the progressive
Triangular Irregular Network (TIN) densification algorithm (Axelsson,
1999) of the Terrascan software (Terrasolid Ltd., 2004). A TIN was
created from the planimetric coordinates and corresponding heights
of the laser echoes classified as ground points. The ellipsoidal height
accuracy of the TIN model was expected to be around 20-30 cm (e.g.
Hodgson & Bresnahan, 2004; Kraus & Pfeifer, 1998; Reutebuch et al.,
2003). The heights above the ground surface were calculated for all
echoes by subtracting the respective TIN heights from all echoes
recorded.

Older ALS systems (e.g. Optech ALTM 1210) typically record two
echoes for each pulse, i.e., first and last echoes. The ALTM 3100
sensor used in this study is capable of recording up to four echoes per
pulse. To separate different echoes acquired by such a system there
has to be a certain time interval between the echoes. This time
interval is known as the vertical resolution (Baltsavias, 1999). The
vertical resolution for the sensor used in this study varies between
2.1 m for the two first echoes to 3.8 m for the other echoes. If four
echoes are detected by the ALTM 3100 sensor, they are labeled as
“first echo of many”, “second echo”, “third echo”, and “last echo of
many”. If there are three echoes, they are labeled “first echo of
many”, “second echo”, and “last echo of many”. Furthermore, if two
echoes are recorded they are labeled “first echo of many” and “last
echo of many”. Finally, if only one echo is recorded it is labeled as a
“single echo”. “Single echoes” are registered if the distance between

the first echo and the last echo is less than 2.1 m or if it is not enough
energy to trigger a second echo.

In this study, ALS data were delivered by the contractor as two
datasets to be as close to the structure of the data provided by the
ALTM 1210 sensor as possible, i.e., with “first echoes of many” plus
“single echoes” as one dataset and “last echoes of many” plus “single
echoes” as a second dataset. The use of two echoes, i.e., first and last, is
common in operational ALS-assisted forest inventories in Norway
(Nasset, 2004a). However, in this particular study, we split the two
datasets based on spatial coordinates of the echoes into three different
datasets containing the individual echo categories, i.e., (1) “first
echoes of many”, (2) "single echoes”, and (3) “last echoes of many”.
The echo categories were denoted as “FIRST”, “SINGLE”, and “LAST”,
respectively. These three echo categories were used in the analysis.
The relations between echoes of the same pulse have been outlined as
important information to separate tree species (Brandtberg, 2007)
and have been tested in tree species classification (Holmgren &
Persson, 2004). However, given the structure of the data delivery in
the present study, it was not possible to reconstruct the original data
structure and tie the different echoes of each pulse to each other. Each
echo category was therefore treated separately.

The intensity values used in this study were the uncalibrated
intensity as recorded by the sensor. The intensity data recorded by ALS
are noisy and will vary with target and sensor properties. Several
studies have explained this noise by varying reflectivity with different
directions of different target surfaces (Song et al., 2002; Wotruba et al.,
2005). Hence, intensity of a target as measured by ALS will change
with the scan angle of the emitted pulse (Kaasalainen et al., 2005).
This could be adjusted for, but we did not have sufficient information
to apply such a radiometric correction of the raw intensity values.

2.4. Computation of features of individual tree segments

In the present study, we did not use any crown delineation
algorithm to identify the individual tree segments. Instead, we
computed the crown radius for each tree as the mean of the field
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Fig. 1. Example of crown map (plot #14) showing the heterogeneous structure of the
forest which lead to a number of overlapping crowns. The crown shapes are draped
above a canopy surface model interpolated from laser echoes.
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measured radii in the four cardinal directions and this quantity was
used to buffer the field-measured stem position producing circular
crown outlines (Fig. 1).

After having generated the circular tree segments, each laser echo
was assigned to its corresponding tree crown. For trees with
overlapping crowns, echoes in the overlapping zone were assigned
to the tallest tree. Since laser measurements always will under-
estimate true tree height (Gaveau & Hill, 2003), echoes with higher z-
value than the actual field-measured tree height were deleted. This
correct for errors caused by erroneous positions and the assumption of
circular crowns.

In area-based forest inventory where the ALS-related metrics are
derived from the laser height distribution of a plot or certain target
area (cf. Naesset, 2002), laser echoes between the ground surface (the
TIN surface) and a threshold of, say, 2 m, are often considered as
echoes from stones or under-vegetation and thus not included in
analyses of the canopy (Nasset, 2002; Nasset & Bjerknes, 2001). A
Ground Threshold Value (GTV) of 2 m is in accordance with the work
by Nilsson (1996). In forestry, parameters like diameter, age, and basal
area are most commonly registered at breast height, i.e., the point of
the stem located 1.3 m above ground. We argue that breast height
should be used as the GTV in individual tree assessment based on ALS
data for consistency, unless there are specific reasons not to, for
example when a priori knowledge of the height of the under-
vegetation exist (Holmgren, 2004). In the multi-layered forest in our
study area we also wanted to keep as much information as possible
about the small trees. Hence, in the present work we used breast
height (1.3 m) as the GTV.

For each tree segment, we used the point cloud to calculate four
groups of structural features, i.e., (1) Normalized Height Features
(NHF), (2) Canopy Penetration Depth (CPD), (3) Other Height
Features (OHF), and (4) Crown Density Features (CDF). We also
used one group of intensity features, i.e., Laser Intensity Features
(LIF). From the echo height distribution we computed maximum
(HMAX), mean (HMEAN), and height percentiles at 10% intervals
(H10, H20, ...., H80, H90) for each segment. These features were
scaled to produce NHF and CPD (Egs. (1)-(2)) described in Section
2.5. We selected the H10, H50, and H90 percentiles for further
analysis. In addition we computed Other Height Features (OHF)
including kurtosis (HKURT) and skewness (HSKEW) of the laser
height distributions. Furthermore, standard deviation (HSTD), scaled
according to Eq. (1), and coefficient of variation (HCV) for the laser
height values were calculated in the OHF group. The features were
calculated from all echoes above the GTV and for separate echo
categories, i.e., FIRST, SINGLE and LAST.

Crown density features (CDF) were calculated in accordance with
canopy density calculation in area-based forest inventory (Nasset,
2004c). The crown was divided into vertical crown layers by dividing
field-measured tree height minus the GTV value (1.3 m) into 10 layers
of equal height. Crown density was calculated for each echo category
as the proportion of echoes above layer number 0 (>GTV), 1, ..., 9, to
total number of echoes in that category for each tree, and these
densities were denoted as DO, D1, ..., D9. D1, D5, and D9 were selected
for further analysis.

Laser intensity features (LIF) derived for each individual tree were
maximum intensity (IMAX), mean intensity (IMEAN), median
intensity (IMEDIAN), kurtosis (IKURT), skewness (ISKEW), standard
deviation (ISTD), and coefficient of variation (ICV) for echoes above
GTV for the separate echo categories.

2.5. Scaling of laser height features

As stated above, two different scaling methods were applied in
order to ensure independence of tree height and to utilize laser height
features (i.e., HMAX, HMEAN, H10, H20, ...., H90, HSTD) in species
classification. In our study, two scaling approaches were used, i.e.,

(1) normalized with tree height to produce NHF (Eq. (1)) and (2)
transformed to CPD using tree height (Eq. (2)):

NHF = o (1)

where

NHF laser-derived height feature normalized with field-measured
tree height,

h field-measured tree height,

LHF laser-derived height feature, i.e., HMAX, HMEAN, H10, H20,
...., H90, HSTD.

CPD = h — LHF (2)

where

CPD laser-derived height feature scaled to crown penetration
depth,

h field-measured tree height,

LHF laser-derived height feature, i.e. HMAX, HMEAN, H10, H20,
.., H90.

2.6. Tree height and laser echo categories

The forest in the @stmarka forest reserve is heterogeneous with
complicated structure and a number of overlapping tree crowns
(Fig. 1). The spatial distribution and size of the trees will influence on
the number of echoes returned from inside a tree segment. In
addition, not all the field-measured trees will have echoes of all
categories. For short trees, FIRST and LAST echoes in particular will be
limited in number because of the limited vertical resolution of the ALS
sensor. In order to calculate all the defined variables for a tree, at least
three echoes above GTV in each echo category are needed. This
requirement reduced the number of trees subject to analysis
significantly. We therefore analyzed two separate datasets, i.e.,
(1) one containing trees hit by at least three echoes of each category
above GTV and (2) one with those trees not satisfying the criteria of
the first dataset, but with at least three SINGLE echoes above GTV for
each tree. The first dataset comprised 201 trees and was labeled Large
Trees because it on average contained higher trees (Table 2) than the
Small Trees dataset of 176 trees. The field-measured tree height
distributions of each species for the two tree categories are displayed
in Fig. 2. For the two datasets, we computed and reported the
proportions of echoes in the different echo categories (FIRST, SINGLE,
LAST) as observed in the sample trees above and below GTV (Table 3).
The proportions of echoes were computed relative to the sum of FIRST
and SINGLE echoes. This information is interesting in evaluating the
split into tree categories and to assist evaluation of crown density
features.

Table 2
Summary of number of trees and heights in the two tree categories used in the analysis.

Tree Tree n Tree height (m)

categories species Mean Std Min Max

Small Trees Spruce 78 9.6 5.5 2.6 27.8
Birch 98 85 45 24 24.0

Large Trees Spruce 119 238 4.2 12.0 338
Birch 82 17.6 43 9.2 29.1
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Fig. 2. Histogram of tree height distribution in the two datasets labeled Small Trees and
Large Trees. The dataset Large Trees contains trees hit by at least tree pulses with all
echo categories and the dataset Small Trees contains the remaining trees with at least
tree pulses with echoes of the SINGLE category.

2.7. Analysis of differences between tree species

Generally, a laser feature can be used for species classification if it
differs significantly between species (e.g. Brandtberg et al., 2003;
Holmgren & Persson, 2004). Instead of only analyzing differences in
mean values using t-tests or analysis of variance we incorporated tree
heights into our analysis. Hence, we computed a linear regression
model including tree species and field-measured tree height as
covariates and the specific laser features as the response variable. Tree
species was included as a dummy variable. Such analyses are often
refereed to as analysis of covariance (ANCOVA). The full model
(Eq. (5)) was estimated with ordinary least square regression using
the R stats package (R Development Core Team, 2007). In addition,
simpler models were estimated by removing one (Eq. (4)) or two
(Eq. (3)) of the latter terms of the full model (Eq. (5)). All together
three different models were estimated:

LF = By + B4SP 3)

LF = By + BSP + B,h 4)

LF = By + B;SP + B,h + B3h*SP (5)

where

LF laser-derived feature, i.e., all features in the five feature
groups (NHF, CPD, OHF, CDF, LIF),

h field-measured tree height,

sp dummy variable for tree species. SP=1 if spruce and SP=
—1 if birch.

The “best” model of the three estimated, was selected using F
statistics, also known as the partial F-test. Simpler models, i.e., fewer
parameters estimated, were selected if they did not have signifi-
cantly (p<0.05) lower explanatory power than more complex
models. The F statistics was computed with the anova-function of
the R stat package (R Development Core Team, 2007) and it was
computed by dividing the difference in model residual sum of
squares by the ratio of model residual sum of squares by degrees of

freedom for the more complex model (Eq. (6)). In the complex
model, one parameter more than in the simple model is estimated.

_RSS, — RSS,
~ "RSS, /DF, ®)

where

RSS, residual sum of squares of simpler model, e.g. Eq. (4),
RSS, residual sum of squares of complex model, e.g. Eq. (5),
DF, degrees of freedom of complex model, e.g. Eq. (5).

If the best model selected based on Eq. (6) was the full model
(Eq. (5)) the estimated (3¢ is the intercept, 3, is the change in intercept
for species (plus for spruce and minus for birch), 3, is the estimated
slope for tree height, and 35 is the change in slope for tree species (plus
for spruce and minus for birch). The significance of the model terms
(SP, h, h*SP) was tested using an F-test. The null hypothesis tested was
that the betas (34, B2, B3) were equal to zero when all other terms were
included in model, i.e., using adjusted sum of squares — also called
Type Ill-test. In order to compare variance explained for different
features, we compute single term coefficients of variation using
adjusted sum of square for the single term divided by the sum of single
term sum of squares plus residual sum of squares, i.e.,

2 SS
Teffect = S elfect x 100 (7)
total

where

Nefect eta-squared for effect, i.e. tree species (SP), tree height (h)
or interaction (h*SP),

SSeffect  adjusted sum of squares for single model terms, i.e. tree
species (SP), tree height (h) or interaction (h*SP),

SStotal adjusted sum of squares for all model terms i.e. tree species

(SP), tree height (h) or interaction (h*SP), and the error
term.

In variance analysis such measures are often referred to as the
correlation ratio or eta-squared (1)2ec:) (Kline, 2004). Eta-squared
will sum to 100 for all model terms. However, the sum of eta-squared
(Mtrece) for all terms is different from the coefficient of determination
(R?) although both are measures of explained variability. The reason
for this difference is that in computation of 1? adjusted sum of square
is used and in computation of R? sequential sum of square is used. We
used eta-squared for the tree species term (12p), or as referred to in
this study, the proportion of variability explained by tree species, to
identify candidate features. Candidate features should have a high
proportion of variability explained by tree species (12p) and explained
variability should be higher for tree species than by other model
terms.

In order to test classification performance of candidate features
(objective 2), classification was carried out using Linear Discriminant

Table 3

Proportion (%) of echoes relative to the sum of FIRST and SINGLE echoes for the two tree
categories (Large Trees and Small Trees) split on tree species and above and below ground
threshold value (GTV=13 m).

Tree species Echo Large Trees Small Trees
category  H-—GIV ~ H<GIV  H>=GIV  H<GIV
Norway spruce FIRST 35 0 12 0
SINGLE 62 3 81 7
LAST 21 20 5 10
Birch FIRST 41 0 25 0
SINGLE 52 7 65 10
LAST 18 26 2 26
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Analysis (LDA). The estimation was conducted using the Ida-function
of the R package MASS (Venables & Ripley, 2002) using equal prior
probabilities and full cross validation. From the resulting error matrix,
accuracy was computed for each tree species and for the overall
classification. Classification was carried out for single candidate
features. Features with low overall accuracy were removed from the
set of candidate features. Finally, classification was carried out for the
combination of the “best” candidate feature in each feature group and
for separate echo categories.

In addition to the analysis described above, we also visualized the
distribution of normalized laser heights and the raw intensity values
by density plots. The plots will identify differences in the height and
intensity distributions between species. Density estimation is a
method used to estimate probability density functions from sample
data. Density estimates are very useful in exploration and presenta-
tion of data (Silverman, 1986). In this study, we used the kernel
estimator to estimate the density function. The density function was
computed with the R stats package (R Development Core Team, 2007)
using a Gaussian kernel and bandwidth selection using the Silver-
man's “rule-of-thumb” (Venables & Ripley, 2002). The kernel density
plots will produce a better visualization of the height- and intensity
distributions than histograms, but interpretation will be the same.

3. Results

The results of the analysis of covariance (ANCOVA) (Egs. (3)-(5))
and model selection procedure (Eq. (6)) are summarized in Table 4.
The analysis revealed that many of the computed laser features

Table 4
Summary of analysis of covariance (ANCOVA)?.

differed significantly between tree species. In 52 of 72 estimated
models, tree species was a significant (p<0.05) explanatory variable of
the specific laser feature analyzed. However, selected models also
demonstrated that analyzed laser features were influenced by tree
height. For the 72 laser features tested, 41 models included the
covariate (tree height). Among these 41 models, 13 also included the
interaction term. Comparing proportion of variability explained by
tree species (12p) in the selected model and the simple one-way
ANOVA model (Eq. (3)) illustrates that tree height would influence
selection of candidate variables if we did not considered tree height as
a covariate (Fig. 3).

3.1. Differences in structural features between tree species (Objective 1a)

The height distributions of laser echoes for different species, echo
categories, and tree height categories (Large Trees and Small Trees)
are visualized in Fig. 4. The normalized laser height features (NHF)
computed from FIRST and SINGLE echoes for birch trees were larger
than for spruce trees (Table 4). Conversely, NHF computed from LAST
echoes were smaller for birch trees than for spruce trees. The highest
proportion of variability explained (1%p) obtained for tree species from
NHF was 11% for Large Trees and 17% for Small Trees. However, a
similar or higher proportion of the variation was explained by tree
height. Moreover, we also carried out the ANCOVA with height
features scaled as crown penetration depth (CPD) (Eq. (2)). CPD from
FIRST and SINGLE echoes were significantly deeper for spruce
compared to birch (Table 4). In the CPD group, only features not
influence by tree height, i.e., CPD computed from SINGLE echoes and

Laser feature® Large Trees Small Trees
FIRST SINGLE LAST SINGLE
SP h h*SP SP h h*SP  SP h h*SP SpP h h*SP
HMAX (NHF) —4 ** GF3 =3 = W+ +0 ns +13  wx = = SO
HMEAN (NHF) —6  *&* +6 kek 13wk —11 W 1] kxx +7 Rk 15 kxk —17 *** 115 kxk
H50 (NHF) -5 skokok +5 *k 43 T3 -9 sKkok 47 Kok 43 skkok +13 Kok —17 Kok +17 Kok
H90 (NHF) —2 * +4 ** —9 kwk +6 k** +1 ns +10 Bk —9 k¥k +9 ¥ 42 X
HMAX (CPD) 411 %% +4  xx +1 ns +3 * +2 %
HMEAN (CPD) +6 % 49 &k 3 % |2 ekk +1 ns  +25 R D kg kex 3] Rk
H10 (CPD) +5 Rk L1 kek 3wk +16  *F* +2 * +31 ke 3 ok +5 Rk 37 kek
H50 (CPD) FH R PP R =g B AR1E) R +1 ns iy R =g R qRifil AR Rl BRE
H90 (CPD) +2 * F3 +18 ek -1 ns +4 +6 R +8
HSD (NHF) +10 e —1 ns =7 B +0 ns —9 kkx +2 ns —0 ns -2 * +7 Rk —5 *x
HCV +11 *okk -2 * -8 KoKk +1 ns -9 KoKk -6 Kok -3 ET3 +11 KoKk -7 *okk
HKURT =B = 4y @ —14 e -0 ns 43 * -1 ns
HSKEW +7 w3 & +18 —4 = 3 +2 ns =7 e
D1 +1 ns EIaR1 2 qRIlil +1 ns +16 ¥
D5 =10 7 @ W 0 s B i EE gy =7 ¥ s
D9 +1 ns —20 k®k +6 Rk +17  *H* —7 Rk 119 kwk
IMAX —19 Bk -3 * +1 ns +2 ns +2 ns —4 *
IMEAN —18 Wk —1 ns +19 ek =@ +2 ns +0 ns =5
IMEDIAN —14 Bk —1 ns +18  FF* —6 Rk +2 ns +0 ns =5 =
ISD = o -3 * +3 * —0 ns +6 **
IcvV +2 ns -2 ns +2 ns +0 ns +5 **
IKURT —4 ** +1 ns —5 FRE +3 % +4  F* +1 ns —5 ok
ISKEW +2 * -2 * — 11 hx +5 @ kxk +0 ns

The sign of the regression coefficients® variability explained by (12fec) model terms, and the significant level® of the term for selected models are displayed for different tree height
categories, echo categories, and model terms, i.e., tree species (SP), tree height (h), and the interaction term (h*SP). Model terms with higher variability explained (1%ect) than 10

appear in bold.

@ The displayed models are the best ones (i.e. Eq. (3), Eq. (4), or Eq. (5)) selected according to Eq. (6).

> HMAX = maximum height of laser height distribution; HMEAN = mean height of laser height distribution; H10, H50, and H90 = 10, 50, and 90 percentiles of laser height distribution;
HSD = standard deviation of laser height distribution; HCV = coefficient of variation of laser height distribution; HKURT = kurtosis of laser height distribution; HSKEW = skewness of laser
height distribution. Abbreviations in parenthesis refer to scaling method, i.e. normalized height features (NHF) (Eq. (1)) or canopy penetration depth (CPD) (Eq. (2)). D1, D5, and D9 =
crown densities corresponding to proportions of laser echoes above layer # 1, 5, and 9, see text for further details; IMAX = maximum value of laser intensity distribution.; IMEAN = mean
value of laser intensity distribution.; IMEDIAN = median value of laser intensity distribution.; ISD = standard deviation of laser intensity distribution.; ICV = coefficient of variation of laser
intensity distribution.; IKURT = kurtosis of laser intensity distribution.; ISKEW = skewness of laser intensity distribution.

¢ Plus (+)for species (SP) and interaction (h*SP) represent higher values for spruce compared to birch. Plus (+) for tree height (h) represent increasing values with increasing tree height.

4 Level of significance: ns = not significant (>0.05); *<0.05; ¥¥<0.01; **¥<0.001.
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Fig. 3. Proportion of variability explained by tree species (1%p) for different laser features
in ANOVA model (Eq. (3)) compared to in selected ANCOVA model (Egs. (3)-(5)). Laser
features in the upper left of the plot have lower explained variability of tree species
when tree height is introduced as covariate. Laser features in the lower right of the plot
will explain more of the difference between tree species when the covariate is
introduced. Laser features at the 1:1 line are features where the ANOVA model (Eq. (3))
is selected as the one with the significantly highest variability explained.

HMAX from FIRST echoes, had potential for tree species classification.
The Small Trees category was highly influenced by tree height both
within NHF and CPD.

The effect of the two different scaling methods is illustrated with
proportion of variability explained by the tree species term (12p) in

FIRST SINGLE LAST

1.0

— Spruce
--- Birch

0.8

0.6

0.4
|

Normalized height
(Laser echo height / Field measured tree height)

Small Trees
cat. in grey

T T T T 1 T T T 1
2 3 45 12 3 45

0.0

Density

Fig. 4. Normalized laser height distributions, estimated as kernel density, for different
tree species and echo categories for both tree categories. The Small Trees dataset is only
represented by SINGLE echoes.
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percentile (H10-H90) models (Fig. 5). The proportion of variability
explained for percentiles derived from SINGLE echoes scaled to crown
penetration depth (CPD) were on average 11% higher than the
corresponding relative heights (NHF).

The normalized standard deviation (HSTD) and coefficient of
variation (HCV) differed between the two species for FIRST echoes and
FIRST and LAST echoes, respectively, in the Large Trees category
(Table 4). For Small Trees, both HSTD and HCV differed between
species. However, both features were always dependent on tree height
in the Small Tree category. HCV was found to be as good as HSTD or
better in terms of proportion of variability explained by the models.
The analysis also revealed that HSTD and HCV in general were lower
for birch trees for all echo categories.

Skewness (HSKEW) and kurtosis (HKURT) were found to have
potential for tree species classification for the Large Trees category
when computed from FIRST and SINGLE echoes (Table 4). Skewness
and kurtosis for the FIRST and SINGLE echoes indicated that the
distribution was more skewed, sharp, and a bit more shifted upwards
for birch than for spruce (Table 4 and Fig. 4).

The differences in crown density between tree species were most
pronounced for features computed from LAST echoes (Table 4, Fig. 6).
For FIRST echoes, the largest differences were found in the
intermediate parts and for SINGLE echoes the largest differences
were found in the lower and upper part of the crown. Small Trees
crown density features were highly influenced by tree height and
were only statistically significant in the upper parts of the tree crown.
Furthermore, it was also found that tree heights significantly
influenced the values of most crown density features also for the
Large Trees category.

3.2. Differences in intensity features between species (Objective 1b)

The estimated distributions of uncalibrated intensity for the two
species for each echo category and for the two tree categories are
plotted in Fig. 7. The main difference in the intensity distributions was
between the echo categories. SINGLE echoes had higher intensities
compared to FIRST and LAST echoes. Both FIRST and LAST echoes had
approximately half the mean intensity values compared to SINGLE
echoes, i.e., 56 and 41%, respectively. There was no clear difference
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Fig. 5. Proportion of variability explained by tree species (1) for different percentiles
(H10-H90) and scaling methods, i.e., normalized height features (NHF) (Eq. (1)) and
crown penetration depth features (CPD) (Eq. (2)), displayed for echo- and tree
categories.
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Table 5

The three features® within tree categories, echo categories, and feature groups® with the
highest proportion of explained variability (1)%p) for tree species in ANCOVA model.
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Fig. 6. Proportion of variability explained by tree species (1) for different crown
density features (D1-D9), echo- and tree categories. Crown densities are computed as
the number of echoes of an echo category above a given vertical layer as a proportion of
total number of echoes of that specific category, see text for further details.

between tree species in the density plots (Fig. 7). The ANCOVA
(Table 4) revealed that laser intensity features were higher for birch
trees than for spruce with exception of the LAST echoes where the
opposite effect was observed. The largest proportions of variability
explained were in intensity features from FIRST echoes (IMAX, IMEAN,
IMEDIAN) and LAST echoes (IMEAN, IMEDIAN). Furthermore, features
derived from the LAST echoes were significantly related to tree height.
For Small Trees, none of the computed intensity features, except from
IKURT, differed between the two species (Table 4).

0.3

7| FIRST
— Spruce

--- Birch

0.3

SINGLE Small Trees

cat. in grey

Density

T
0 5 10 15
Raw intensity

Fig. 7. Laser intensity distributions, estimated as kernel density, for different tree species
and echo categories for both tree categories. The Small Trees dataset is only represented
by SINGLE echoes.

Feature Large Trees Small Trees
groups” FIRST SINGLE LAST SINGLE
NHF H10(59) HMEAN(60) HMEAN (74) HMEAN(64)
HMEAN(58) H50(61) H50(74) H50(64)
H50(55) H90(61) H10(70) H10(62)
CPD HMAX (61) HMEAN(75) H10(58) H50(66)
HMEAN(71) H50(74) H50(28) HMEAN(65)
H50(72) H90(69) HMEAN(52) H90(64)
OHF HKURT(70) HSKEW(70) HCV(69) HCV(65)
HCV(57) HKURT(72) HSKEW/(66) HSD(63)
HSD(55) HCV(55) HSD(53) HSKEW(56)
CDF D5 (58) D9(67) D9(67) D9(58)
D1(61) D1(70) D5(77) D5(52)
D9(54) D5(60) D1(65) D1(55)
LIF IMAX(73) ISD(55) IMEAN(67) IKURT(51)
IMEAN(70) IMAX(58) IMEDIAN(66) IMEDIAN(55)
IMEDIAN(66) ISKEW(59) ISKEW(65) IMEAN(53)

Overall accuracy of classification for single features is shown in parenthesis. Italic letters
indicate that variability explained by tree species (1%p) is greater than 10 and no other
model term has higher explained variability (12,17 «sp). Bold letters indicate candidate
features having both high n2p for tree species and high overall accuracy.

@ Symbols explained in Table 4.

> NHF = normalized height features, CPD = crown penetration depth, OHF = other
height features, CDF = crown density features, and LIF = laser intensity features.

3.3. Classification performance of candidate features (Objective 2)

The overall classification accuracies of the three features with
highest proportion of variability explained by tree species (n%p) in the
five feature groups (NHF, CPD, OHM, CDF, and LIF) are presented in
Table 5. Laser features with proportions of variability explained by tree
species (1%p) higher than 10 and where a greater proportion of
variability was explained by tree species than by other model terms
are presented in italics. Features presented in bold were considered as
candidate features. In addition to meeting the criteria for proportion
of variability explained by tree species (1)%p), the candidate features
had high (>67%) overall classification accuracies.

Combining the candidate features with highest proportions of
variability explained by tree species (1) in each feature group and
echo category increased the overall accuracy obtained for the Large
Trees category. The combination of candidate features yielded an
overall accuracy of 88% for Large Trees and 64% for Small Trees
(Table 6).

4. Discussion and conclusions
4.1. Materials and methods

In this study, the main focus was on identifying candidate laser-
derived features suitable for discriminating between coniferous

Table 6
Classification performance for a combination of features selected.

Tree Features selected?® Classification accuracy (%)
categories  FIRST SINGLE LAST Spruce Birch Overall
Large HKURT HMEAN(CPD) HCV 93.3 81.7 88.6
Trees IMAX HSKEW D9
D9 IMEAN
Small HMEAN(NHF) 57.7 68.4 63.6
Trees HCV

The features are selected from the candidate features (Table 5) having the highest (1)
in each feature group®, echo category, and tree category.

“Symbols explained in Table 4.

PNHF = normalized height features, CPD = crown penetration depth, OHF = other
height features, CDF = crown density features, and LIF = laser intensity features.
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(spruce) and deciduous (birch) species. The study area is located in a
forest reserve, and the tree height distributions observed in such a
forest are likely to be different from those found in a managed forest.
However, we found the data suitable for this study because datasets
with large variation in tree size and spatial distribution of trees may
provide a better basis for selecting robust laser features for species
classification compared to less complex forests.

A possible source of error in the analyses are related the matching
of field and laser data. The quality of this matching is dependent on
the accuracy of the field measured tree coordinates and the
assumption of circular crowns. However, the assumption of circular
crown outlines as measured and reconstructed from field data will
probably be more accurate than an outline produced by a segmenta-
tion algorithm in a relatively complex forest like the current.
Moreover, tilting stems will offset the tree top positions relative to
the measured positions registered in breast height using compass and
measure tape. All these positional errors and errors in determining the
true crown outline may cause commission of echoes from neighboring
trees and omission of echoes from the tree in question. If there are
between species commission and omission errors, they will tend to
even out the differences in echo distributions between species. Since
spruce is the most frequently occurring species in the study area, it is
likely that echo distributions of birch trees will be more similar to echo
distributions of spruce trees. Hence, computed features will be more
similar between species. Therefore, identified candidate features
probably are robust features not affected by these commission and
omission errors.

4.2. General remarks on laser features and tree height scaling

This study has demonstrated that there are significant differences
in many laser-derived features between spruce and birch. Therefore,
many laser features may contribute to an improved tree species
classification of individual trees based on ALS data. From the different
types of features considered, i.e., normalized height features, canopy
penetration features, crown density features, and uncalibrated laser
intensity features, we identified laser features suitable to discriminate
between the two species (Table 5). In the identification of features
both echo category and tree size category were important. A specific
type of feature may work well for species discrimination when it is
computed for a certain echo category, but provide little or no useful
information when computed from other echo categories. The
identified candidate features varied also highly between tree
categories (Large Trees and Small Trees).

We also found that many laser-derived features are affected by tree
height. The relationship between laser derived features and tree
height may also be linked to other properties which are related to tree
height, e.g. size and shape (i.e. allometry) and the interior structure of
the tree crown. Thus, changes in laser features with increasing tree
heights will occur for both laser height features and laser crown
density features, but to a smaller degree for laser intensity features.
Therefore, discriminating between species based on structural
properties derived from ALS data may be challenging in a forest
where different species have different height distributions. A priori
knowledge of forest structure and variation in species may therefore
be important. Laser height features used must be scaled, trees
stratified into height classes, or tree heights must be included in a
classification algorithm. The two simple scaling methods applied in
this study, i.e., normalization with tree heights and canopy penetra-
tion depth, failed to provide independence of tree height in most
cases. Selected candidate features for Large Trees were only selected
from crown penetration depth scaling. From the normalized height
features often used in individual tree species classification no features
was selected for the Large Tree category. However, if we had based our
selection on the ANOVA model, such features might have been
selected (Fig. 3). The overall accuracy of normalized HMEAN

computed from LAST echoes was 74% (Table 5) and were among the
highest in this study. However, the proportion of variability explained
was 7% for tree species (1%p) and 15% for tree height (1)2) (Table 4).

4.3. Structural features

The main differences between spruce and birch in general are the
rounder (spherical) crowns of birch compared to the more conical
crowns of spruce. In addition, the higher crown base height and
allocation of biomass higher up in the crowns are typical for many
deciduous tree species. These two differences were also expressed in
the laser-derived features, see illustration in Fig. 8. First, the values of
laser features computed from FIRST and SINGLE echoes revealed that
echoes from these categories were reflected higher in birch trees than
in spruce trees. The plausible explanation for this is the differences in
crown shape between the species. It is also likely that other crown
structural characteristic influenced on the echo distributions, such as
crown density, leaf area, and leaf orientation (Gaveau & Hill, 2003).
Secondly, the higher proportion of LAST echoes in the crown of spruce
trees may be explained by the relatively lower crown base of spruce. In
addition to having lower crown base, spruce trees also have a larger
proportion of the crown located at a lower level in the tree. Both the
differences in crown base height and crown biomass distribution will
tend to allow more LAST echoes to penetrate below GTV for birch trees
instead of being recorded in the canopy.

The 1-2 cm long needles of spruce in comparison to the ca 5-6 x
5 cm plane birch leaves is another obvious difference that influences
the crown structure. ALS data are influenced by the vertical
distribution of biomass/leaf area (Coops et al., 2007; Magnussen &
Boudewyn, 1998). Hence, the higher number of echoes in the upper
crown of birch trees may also be attributed to denser and more
compact tree crowns of this species. This effect is also expressed by the
smaller variation in height of laser echoes in birch trees described by
standard deviation and coefficient of variation. Especially SINGLE
echoes were located at a point relatively higher up in birch crowns
compared to spruce trees (Fig. 4). However, spruce had a higher
portion of SINGLE echoes than birch (Table 3). This may be attributed
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Fig. 8. Echoes of different categories plotted for two individual trees of spruce and birch.
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to the fact that for spruce trees more echoes are located at a point
where no additional echoes will be recorded, i.e., near the stem where
no further penetration can be expected. In addition, the reflectivity
properties of canopy elements, i.e., foliage, bark, and stem, will
influence the distribution of laser echoes. In the wavelengths typically
used by ALS sensors birch has higher reflectivity than spruce (Kuusk,
A. pers comm.). Hence, FIRST and SINGLE echoes will tend to be
recorded higher in the crown for birch trees.

In the Small Trees category only SINGLE echoes were observed.
The main reason for this is probably the limited vertical resolution
(2.1 m) of the laser sensor used. Another factor which will influence
on the probability of reflecting three echoes or more of each category
from an individual tree, which is the criteria for Large Trees, is the
tree crown diameter. Hence, number of echoes will be low in the
Small Trees category as a result of the limited vertical resolution and
small crown diameters. Our analysis showed that SINGLE echoes were
found higher in birch trees than spruce trees. This pattern coincides
with what we found for the Large Trees category. In addition, it is
important to notice the higher impact of tree height on laser height
features computed from the Small Trees category. The large impact of
tree height in this tree category resulted in quite few selected
candidate features and made the selection of candidate features less
convincing.

4.4. Intensity features

Among the intensity features, we found that the uncalibrated
intensities from the FIRST echoes were the only ones that carried
information useful for species discrimination. It seems that the
uncalibrated intensities of FIRST echoes mostly are functions of the
canopy reflectance of trees. Reflection from birch tends to be higher
than for spruce for all canopy elements, i.e., stem, branches and leaf/
needles, in the wavelength used by the current sensor (1064 nm)
(Kuusk, A. pers comm.). The FIRST echoes are also likely to be less
influenced by the biomass than subsequent echoes. The intensity of
the LAST echo will be influenced by reflection and absorption higher
up in the crown, and thus a higher intensity of e.g. the FIRST echo will
tend to result in a lower intensity of LAST echoes, as we observed in
this study. However, Reitberger et al. (2008) found that the mean
intensity of laser echoes inside a tree produced higher classification
accuracies than mean intensity of the upper 10% of the crown, but
they did not distinguish between echo categories. A high proportion
of reflections from the top of a tree will most likely be SINGLE echoes
and hence the intensity will be higher and less different between
species.

The advantage of intensity features computed from FIRST echoes is
that they are independent of tree heights, at least for Large Trees,
which we found not to be the case for the majority of the other derived
features. We expected that intensity of SINGLE echoes of the Small
Trees would be quite similar to FIRST echoes of the Large Trees, i.e.,
that the intensity primarily would be a function of species reflectivity.
However, we found that intensity features were of little value for
classification of spruce and birch when tree heights were <5-10 m.
The difficulties of distinguishing between young conifers and young
broadleaves were also reported by Schreier et al. (1985).

A large variability was inherent in the uncalibrated intensity values
we used, and just a small portion of this variability seemed to be
attributed to differences between species. Radiometric calibration of
ALS intensities is not yet common practices in classification studies
because of lack of appropriate methods (Boyd & Hill, 2007;
Kaasalainen et al., 2005). Factors such as variable scan angle and
flying altitude, atmospheric attenuation, and lack of stability of
emitted pulse energy introduce noise to the recorded intensities.
Using radiometric calibrated intensities instead of the raw intensities
may yield less noise in the computed intensity features. Hence,

radiometric calibrated intensities features may be more suited to
distinguish between tree species.

4.5. Selected candidate features

We found that normalized height features were of little value in
classification of larger trees, opposed to other studies. For example,
Brandtberg et al. (2003) found that the normalized maximum height
from first echoes had the highest overall tree species classification
accuracy in a deciduous forest in eastern USA. In a Swedish study
(Holmgren & Persson, 2004), the 90 percentile calculated for all
echoes within the crown produced the lowest overall accuracy of
features selected. Normalized percentiles tended to produce a very
low accuracy using waveform data under leaf-on conditions in
Germany (Reitberger et al., 2008), but was the group with second
highest overall accuracy in another study conducted in the same area
(Heurich, 2006). The new scaling method proposed in the present
study, i.e., the canopy penetration depth scaling, is promising as a
method to scale laser height features.

The other height features included variability features such as
standard deviation (HSTD) and coefficient of variation (HCV) and
features describing the shape of the distribution, i.e., kurtosis
(HKURT) and skewness (HSKEW). HCV was selected as a candidate
feature from the LAST echoes for Large Trees and from the Small Trees
category. It should also be noted that HCV always was higher ranked
than HSTD. Holmgren and Persson (2004) selected normalized
standard deviation from all laser echoes within the tree crown as a
candidate feature and overall accuracy was in the lower end compared
to other features in the study. Also in a German study the standard
deviations produce the lowest overall accuracies of features consid-
ered (Heurich, 2006). Our results indicate that the coefficient of
variation should be used rater than the normalized standard
deviation. In the study by Brandtberg et al. (2003), both standard
deviation and kurtosis were selected as candidate features from the
first echoes. In our study, kurtosis from FIRST and SINGLE echoes are
recommended as features in addition to skewness for SINGLE echoes.
The descriptions which kurtosis and skewness provide of the laser
height distribution seem to be important in tree species classification.

Crown density features from the intermediate and upper part of
the crown for LAST echoes and in the upper and lower part of the
crown for SINGLE echoes are suggested as candidate variables in the
present study. In a study from Germany, CDFs computed from a dual
recording sensor provided the highest overall tree species classifica-
tion accuracy under leaf-on conditions (Heurich, 2006). However,
CDFs derived from waveform data in the same study area did not
perform as well (Reitberger et al., 2008). In other studies, measures of
crown density have been defined as proportion of echoes traveling
below GTV (Moffiet et al., 2005) or as the proportion of echoes found
above crown base to the total number of echoes (Holmgren & Persson,
2004). In both these latter studies, such features were shown to be of
great importance in species classification. Also in our study density
features contributed significantly to the separation of spruce and birch
when computed from appropriate echo categories.

The three laser intensity features expressing the largest difference
between species were suggested as candidate features in our study.
These were the maximum intensity (IMAX), mean intensity (IMEAN)
of FIRST echoes, and the mean intensity (IMEAN) of LAST echoes.
Mean intensity and standard deviation of intensity computed for all
echoes were among the three best features in a Swedish study
(Holmgren & Persson, 2004). In another Swedish study, mean
intensity was incorporated as the third classification feature (Holmg-
ren et al, 2008). However, Moffiet et al. (2005) found that raw
intensity features did not contribute to species classification in their
study. In a study in North America, three of the six best features were
derived from the intensity distribution of first echoes (Brandtberg
et al., 2003). Reitberger et al. (2008) found mean intensity of the tree
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useful in classification of coniferous and deciduous trees — both as a
single feature and in combination with one or two other features.

4.6. Classification performance

In spite of the complex forest in the current study, the obtained
classification accuracy of 88% for Large Trees is promising. In the
current study, the sample trees were not segmented, but delineated
on the basis of field measurements. Segmentation will most likely
reduce the number of detected sub-dominant trees (Solberg et al.,
2006) compared to the number of trees of these categories that were
included in the current study. Thus, an increased classification
accuracy would be expected if the trees were detected by a
segmentation algorithm since less trees are detected and since these
trees on average will have more laser echoes than the sub-dominant
trees of this study. In other studies dealing with discrimination
between coniferous and deciduous trees overall accuracies are at the
same level as found in our study. Reitberger et al. (2008) obtain an
overall accuracy of 85% classifying deciduous and coniferous trees
whereas Holmgren et al. (2008) obtained an overall accuracy of 88%
when classifying spruce, pine, and birch. Under leaf-off conditions
Liang et al. (2007) achieve an overall accuracy of 90% when separating
coniferous (spruce and pine) and deciduous (birch) trees. In another
study conducted in the @stmarka forest reserve in which only inten-
sity features were considered, an accuracy of 74% was achieved when
classifying into three different categories, i.e., spruce, birch, and aspen
trees (@rka et al., 2007).

The overall classification accuracy for Small Trees was low (65%).
Hence, classification of small individual trees may be a challenging
task. The number of trees in the Small Trees category found by an
segmentation algorithm will be low, since these trees likely are sub-
dominant or suppressed (Solberg et al., 2006). In forest inventory tree
species distribution for Small Trees may be classified using an area-
based approach as an alternative to the individual tree classification.
An area-based approach will have a higher number of echoes available
to compute features from the echo distributions. Therefore, features
will be more stable and may be more suitable for separating
coniferous and deciduous tree species.

In addition to being influenced by crown characteristics, echo
distributions are also affected by the laser acquisition parameter
settings or sensor specific settings like e.g. pulse repetition
frequency, beam divergence, and flying altitude (Chasmer et al.,
2006; Goodwin et al., 2006; Hopkinson, 2007; Nasset, 2004b;
Neasset, 2009). Thus, the selection of suitable features for tree species
classification may be influenced by the ALS sensors and acquisition
parameters used.

To conclude, promising classification results for spruce and birch
were obtained using identified candidate ALS-derived structural- and
intensity features. These candidate features included intensity
features and different structural features derived from different echo
categories. The echo category (FIRST, SINGLE, or LAST) is important in
whether the feature is selected as a candidate feature or not. Further
research should include validation of the suggested candidate
variables on independent datasets, testing features from subsequent
echoes of the same pulse, and assessment of radiometrically calibrated
intensities.
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The objectives of this study were to quantify and analyze differences in laser height and laser intensity
distributions of individual trees obtained from airborne laser scanner (ALS) data for different canopy
conditions (leaf-on vs. leaf-off) and sensors. It was also assessed how estimated tree height, stem diameter, and
tree species were influenced by these differences. The study was based on 412 trees from a boreal forest reserve
in Norway. Three different ALS acquisitions were carried out. Leaf-on and leaf-off data were acquired with the
Optech ALTM 3100 sensor, and an additional leaf-on dataset was acquired using the Optech ALTM 1233 sensor.
Laser echoes located within the vertical projection of the tree crowns were attributed to different echo
categories (“first echoes of many”, “single echoes”, “last echoes of many”) and analyzed. The most pronounced
changes in laser height distribution from leaf-on to leaf-off were found for the echo categories denoted as
“single” and “last echoes of many” where the distributions were shifted towards the ground under leaf-off
conditions. The most pronounced change in the intensity distribution was found for “first echoes of many”
where the distribution was extremely skewed towards the lower values under leaf-off conditions compared to
leaf-on. Furthermore, the echo height and intensity distributions obtained for the two different sensors also
differed significantly. Individual tree properties were estimated fairly accurately in all acquisitions with RMSE
ranging from 0.76 to 0.84 m for tree height and from 3.10 to 3.17 cm for stem diameter. It was revealed that tree
species was an important model term in both and tree height and stem diameter models. A significantly higher
overall accuracy of tree species classification was obtained using the leaf-off acquisition (90 vs. 98%) whereas
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classification accuracy did not differ much between sensors (90 vs. 93%).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Over the past decade airborne laser scanning (ALS) has contrib-
uted significantly to improved efficiency of forest inventories (Eid
et al.,, 2004; Neasset, 2007). Comparisons of ALS with other remote
sensing methods like radar and optical sensors have shown that ALS
is among the most promising remote sensing techniques in terms of
accuracy of essential forest parameters such as height, volume, and
biomass (Hyde et al., 2006; Hyde et al., 2007; Hyyppd & Hyyppd, 1999;
Magnusson, 2006). Today, ALS is used operationally in stand based
forest inventory where the products are biophysical characteristics
like mean height and timber volume presented at the stand level
(e.g. Naesset, 2007; Nasset et al., 2004). However, the first operational
inventories in landscapes with a size of up to 2000 km? where
individual trees derived from high-density ALS data are the primary
units of interest, are now about to be completed. In both procedures,
i.e,, area-based methods and individual tree methods, biophysical
parameters of interest such as canopy/tree height and volume are

* Corresponding author. Tel.: +47 64965799; fax: 447 64965802.
E-mail address: hans-ole.orka@umb.no (H.O. @rka).

0034-4257/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.rse.2010.01.024

estimated from statistical measures derived from the laser echo
distributions, in particular the laser height distribution, but also the
laser intensity distribution is considered (e.g. Lim et al., 2003).

The echo distributions derived from ALS measurements are sensor
dependent. Sensor and acquisition parameters like flying altitude,
footprint size, pulse repetition frequency, beam divergence, and
scan angle have been tested and found to influence the echo height
distribution (Chasmer et al., 2006; Goodwin et al., 2006; Holmgren et al.,
2003; Hopkinson, 2007; Nasset, 2004b; Nesset, 2009; Neesset et al.,
2005; Yu et al,, 2004). The sensor effects on echo distributions are of
concern in several areas of application in forest inventory. First, the
sensor effects are of interest when developing ALS methods for regional
biomass-, carbon-, and forest health inventory and monitoring (Naesset
& Nelson, 2007; Neasset et al., 2009; Solberg et al., 2006b). Examples of
such inventories are the national forest inventory programs found in
many countries. The inventory cycle in such programs is usually 5-
10 years. The typical life time of commercial laser sensors is less
than 4 years. Hence, the time period between repeated inventories is
most likely longer than the life time of a sensor and two subsequent
acquisitions will thus be conducted with different sensors. For regional
and national systems for forest monitoring and carbon reporting
compatibility between sensors over time is essential (Naesset et al.,
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2009; Nelson et al., 2003; Nelson et al., 2004). Systematical shifts
in estimated properties caused by changing sensor properties could
influence on conclusions inferred from multi-temporal observations by
either overestimating the true changes or making changes undetectable.
Second, sensor-specific effects are important in operational forest in-
ventory at a more local scale. An expensive part of such inventories is
the field survey conducted to collect local plot data for estimation of
relationships between metrics derived from the ALS data and
biophysical properties of interest. If estimated models of biophysical
properties could be based on already existing field plots with associated
ALS metrics derived from previous acquisitions in nearby areas the
costs of the inventories could be reduced. It has been demonstrated that
laser data from two different areas, acquired with the same sensor, can
be handled together by common regression models without loss in
accuracy of the estimated stand level biophysical properties (Naesset,
2007). Hence, stability in laser echo distributions, model parameters,
and predicted values across different sensors are important when
considering ALS and ground data to be combined across different areas
(Naesset, 2007; Nasset et al., 2005).

Another concern in forest inventory is the time of data acquisition.
Appropriate acquisition periods are commonly separated into two
distinct times of the year, i.e., (1) when the deciduous trees have leaves
(leaf-on) and (2) the dormant period of deciduous trees (leaf-off). It is
common practice to acquire ALS data for operational forest inventories
under leaf-on conditions, but in some areas leaf-off conditions are
preferred. One reason for avoiding the leaf-off period is the much
more narrow time window of having leaf-off conditions and bare
ground (without snow) at northern latitudes combined with the risk
of snowfall. However, there may be several reasons why leaf-off
acquisitions may be considered as an alternative season for forest
inventory ALS acquisitions. First, under leaf-off conditions a larger
amount of pulses will be capable of penetrating through the canopy
and be reflected off the ground in deciduous forest. Higher proportions
of ground echoes will give more accurate digital terrain models (DTM).
ALS acquisitions for regions or even for entire nations are sometimes
performed under leaf-off conditions to optimize the accuracy of the
DTMs (Liang et al., 2007). Hence, forest inventories may take
advantage of laser data collected for DTM generation to reduce the
overall inventory costs. Second, leaf-off data may help in reducing
the influence of the so-called “hardwood problem” in ALS assisted
forest inventories (Nelson et al., 2007). The “hardwood problem”
refers to the poorer laser based estimates of biomass sometimes found
in mixed (Nasset, 2005) and deciduous (Nelson et al., 2004) forests as
compared to pure coniferous forest. Nasset (2005) studied this
problem in an area-based inventory of a mixed forest under leaf-on
and leaf-off conditions. It was revealed that utilizing the leaf-off
laser data slightly improved estimates of mean height, basal area, and
timber volume compared to utilization of the leaf-on data. Further-
more, at the individual tree level, species classification have been
tested and found to be promising under leaf-off conditions. In a
comparative classification study of coniferous and deciduous trees
using waveform data the overall accuracy was 85% under leaf-on
condition and 96% under leaf-off condition (Reitberger et al., 2008).
Species classification can be a strategy for reducing the impact of
the “hardwood problem”. Thus, there are multiple reasons why leaf-
off acquisitions may be considered as an alternative to leaf-on
acquisitions; (1) cost sharing of leaf-off ALS data acquired for DTM
production, (2) the slightly more accurate results likely to be obtained
in area-based forest inventory of certain forest types, and (3) the
promising results of tree species classification obtained for individual
trees. Hence, knowledge and understanding of the differences
between echo distributions obtained under leaf-on and leaf-off canopy
conditions are needed.

In the current study, we compared the differences in echo
distributions (height and intensity) of individual trees obtained
under different canopy conditions and with different sensors. Analyses

of individual trees will give us better understanding of echo distri-
butions derived from ALS data. A specific advantage of studying
individual trees is that the different tree species can be analyzed
independent of each other. Tree species produce different echo
distributions which may provide significant differences in derived
metrics (drka et al., 2009). Tree species is clearly an important factor in
the analysis of effects of canopy conditions where only deciduous trees
will be affected by the changes form leaf-off to leaf-on conditions.
Likewise, the emitted pulses from different sensors may interact
differently with different tree species creating a species specific
sensor effect. In the current study, we addressed the species specific
effects of different sensors and canopy conditions by analyzing the
echo distributions of individual trees.

To the very best of our knowledge, studies of the effects of sensor and
canopy conditions on echo distributions and biophysical properties
have until now focused on the area-based approach and have mostly
been conducted at the plot level (Hopkinson, 2007; Naesset, 2005;
Nasset, 2009). As individual tree inventory now becomes operational,
effects of different sensors and canopy conditions on prediction of
biophysical properties of individual trees will be important as well. A
proposed advantage with individual tree inventory is that a smaller
amount of reference data will be needed for model calibration (Hyyppa
et al., 2008). Stability of model parameters and predictions using
different sensors will support the idea of using a small number of
reference trees in individual tree inventory. It will also support the idea
of reusing models across nearby areas flown with different sensors and
contribute to lower inventory costs. Higher accuracy obtained with data
acquired under leaf-off conditions would favor this time period for
acquisition of ALS data for forest inventory. Therefore it is important
to assess how different canopy conditions and sensors affect model
parameters and predicted values of important individual tree properties
likely to be a part of such inventories. In this study, we considered tree
height, stem diameter, and tree species as the most important properties
to be derived using the individual tree method (c.f. Holmgren & Persson,
2004; Hyyppd et al,, 2001; @rka et al., 2009; Persson et al., 2002).

The objectives of the present study were to quantify and analyze
differences of (1) leaf-off vs. leaf-on conditions and (2) acquisitions
with two different sensors on (a) the laser height echo distributions
and (b) the laser intensity echo distributions of ALS point cloud data.
The differences were analyzed for separate echo categories and tree
species. Furthermore, (3) we assessed how these changes in canopy
conditions and change of sensors influenced on the accuracy and
model parameters for three individual tree properties derived from
ALS data, i.e., (a) tree height, (b) stem diameter, and (c) tree species.

2. Material and methods
2.1. Study area

The study area is located in @stmarka forest reserve (59°50°N,
11°02°E, 14 190-370 masl) in southeastern Norway. The forest reserve
is about 1800 ha in size. This forest has developed without logging
and silvicultural treatments since the 1940s. Today, the forest in the
reserve is size diverse and it is partly multilayered. The dominating
tree species are Norway spruce (Picea abies (L.) Karst.) and Scots
pine (Pinus silvestris L.). Deciduous trees are found scattered in the
landscape. Birch (Betula ssp.) and aspen (Poplus tremula) are the most
commonly occurring deciduous species. Data from an adjacent area
outside the reserve was also used to include younger forest in the
study. This particular forest area is actively managed.

2.2. Field data
Field data collection was carried out on 28 field plots of 0.1 ha

size during summer 2003. The 20 plots inside the reserve were laid
out subjectively to comprise spruce dominated sites (Bollandsas &
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Fig. 1. Box-and-whisker plot of tree height and stem diameter for sample trees analyzed in the study. The first and third quartiles define the box, the median is showed as the

horizontal line dividing the box, and the whisker defines the range of the data.

Nasset, 2007; Solberg et al., 2006a). The locations of plots outside the
forest reserve were selected to cover productive forest in young and
intermediate age classes. The plot center coordinates were deter-
mined with differential Global Navigation Satellite System (dGNSS)
measurements (c.f. Bollandsds & Nesset, 2007; Solberg et al., 2006a).
The average accuracy of the plot coordinates was 10 cm (Bollandsds
& Neasset, 2007). On each sample plot the polar coordinates and
diameter in breast height (dbh) were measured for all trees with
dbh >3 cm. Tree species and crown radius in four cardinal directions
was also recorded. Sample trees were selected in two steps. First, eight
trees were selected by including the first dominant or co-dominant
tree in each cardinal direction and the nearest tree to each of these.
Second, all deciduous trees on the plot and a few deciduous trees just
outside the plot were selected as sample trees. On all sample trees
tree height was measured. The tree heights and stem diameters of the
435 sample trees are summarized in Fig. 1. The sample tree dataset
contained 209 spruce trees, 203 birch trees, and 23 aspen trees.

2.3. Laser scanner data

Airborne laser scanner data were acquired during three different
laser campaigns, i.e., (1) in October 2003 under leaf-on canopy
conditions using the Optech ALTM 1233 instrument (Bollandsds &
Nasset, 2007; Solberg et al., 2006a). This acquisition was denoted as
ALTM 1233-on. The Optech ALTM 3100 instrument was used for the
two last acquisitions, i.e., (2) in April 2005 under leaf-off conditions,
denoted as ALTM 3100-off, and (3) in June 2005 under leaf-on
conditions (@rka et al., 2009), denoted as ALTM 3100-on. The flight
specifications in the two acquisitions with the ALTM 3100 instrument
used when comparing canopy conditions were identical. However, the
specifications used for the ALTM 1233-on acquisition differed from
those of the two ALTM 3100 acquisitions. An overview of the sensor
settings and other acquisition parameters is displayed in Table 1. The
acquisition parameters were decided from a goal of having a pulse

density of about 5 m™2. The pulse density goal was achieved with
as low cost as possible, given the capacity of the instruments (i.e.
both sensors were flown with the highest possible pulse repletion
frequency) and the spatial distributions of the sample plots.

The initial processing of the data was accomplished by the con-
tractor (Blom Geomatics, Norway). Planimetric coordinates (x and y)
and ellipsoidal height values were computed for all echoes. For each
acquisition, ground returns were found using the Terrascan software
(Terrasolid Ltd, 2004) and a triangulated irregular network (TIN) was
created from the echoes classified as ground returns. Heights above the

Table 1
Technical specifications of the three airborne laser data acquisitions used in the study.

Acquisition

ALTM 1233-on

ALTM 3100-off ~ ALTM 3100-on

Date of acquisition 9 October 2003 17 April 2005 18 June 2005
Canopy conditions Leaf-on Leaf-off Leaf-on
Platform Huges 500 Piper PA31-310  Piper PA31-310
helicopter
Sensor Optech Optech Optech
ALTM 1233 ALTM 3100 ALTM 3100
Pulse width (ns) 11 16 16
Pulse energy (1) 84 66 66
Peak power (kW) 7.6 4.1 4.1
Wavelength (nm) 1064 1064 1064
Mean flying altitude 600 750 750
AGL (m)
Pulse repetition frequency 33 100 100
(kHz)
Scanner frequency (Hz) 50 70 70
Half scan angle (deg.) 11 10 10
Flying speed (ms~!) 35 75 75
Swath width (m) 230 264 264
Mean pulse density (m~2) 5.0 5.09 5.09
Beam divergence (mrad) 0.30 0.26 0.26
Footprint diameter (cm) 18 21 21
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ground surface were calculated for all echoes by subtracting the
respective TIN heights from the height values of all echoes recorded.

In this study, the uncalibrated intensity values recorded by the
sensors were analyzed. The intensity values recorded by most laser
systems are noisy for several reasons. For example, variations in
recording settings such as the amplitude of the returned signal and
flying altitude together with varying incident angles, variable emitted
energy, and changing atmospheric conditions make the intensity values
difficult to interpret. Calibration of intensity to remove noise and make
intensity measurements independent of acquisition parameters
is important for increased utilization of intensity measures (Hofle &
Pfeifer, 2007; Kaasalainen et al., 2005). However, in the current study
we did not have sufficient information to perform such corrections of
the intensity values.

ALTM 1233 always records two echoes for each emitted pulse, i.e.,
a first and a last echo. The sensor has two separate receivers, one
recording the first echo and one the last echo. When ALS data from the
ALTM 1233 are used in multi-temporal studies it is necessary to calibrate
recorded heights of the two receivers to avoid systematic shifts in the
surface heights (Nasset, 2005; Naesset & Gobakken, 2005; Solberg et al.,
2006b). In the current study, we calibrated the echoes using a parking
space outside the study area as calibration surface. Five circular plots
with 1 m radius where selected subjectively inside the parking area.
Within each plot, we recorded the height values of all first and last
echoes. The average difference in height values between the two echo
categories was — 5 cm. Hence, 5 cm was added to the height values of
all the first echoes of the ALTM 1233-on acquisition. Both the first
and last echo categories acquired by ALTM 1233 were used in this study.
For convenience, we labeled them FIRST and LAST, respectively.

The Optech ALTM 3100 sensor records multiple echoes. The sensor
is capable of recording up to four echoes. All echoes are recorded with
the same receiver. The actual number of echoes recorded will depend
on the amount of energy needed to trigger a return, the triggering
algorithm, and the minimum time differences between two echoes,
i.e., the minimum vertical distance required to separate the echoes.
The vertical distances for the particular ALTM 3100 instrument and
acquisitions used in this study are stated by the contractor (Blom
Geomatics, Norway) to vary from 2.1 m for the two first returns to
3.8 m for the other returns. The number of echoes recorded by the
ALTM 3100 sensor can also be one. If only one echo is recorded for an
emitted pulse it is labeled as a “single echo”. If more than one echo is
recorded, the first echo is labeled “first echo of many”. The subsequent
echoes (second and third echoes) are referred to as intermediate
echoes dependent of how many echoes that are recorded. The last
echo recorded is always labeled as “last echo of many”, even if there
are only two echoes. In this study, we analyzed “first echoes of many”,
“single echoes”, and “last echoes of many” from the ALTM 3100
sensor. For simplicity they are labeled FIRST, SINGLE, and LAST,
respectively. The intermediate echoes were not provided by the
contractor and thus not analyzed in the current study.

The ALTM 1233 and ALTM 3100 sensors differ conceptually in the
way echoes are recorded. In particular, the FIRST and LAST echo
categories of the ALTM 3100 acquisitions differ from the respective
FIRST and LAST echo categories acquired by ALTM 1233. However,
combining FIRST and SINGLE echoes of the ALTM 3100 is in principle
equal to the FIRST echoes of the ALTM 1233 (Nasset, 2009). The
combination of LAST + SINGLE echoes of ALTM 3100 may also be viewed
as identical to LAST echoes of ALTM 1233, but is not. LAST + SINGLE
echoes of ALTM 3100 will differ from LAST echoes of ALTM 1233 because
of the vertical separation of at least 2.1 m for LAST echoes in ALTM 3100
compared to a vertical separation of zero in the ALTM 1233 (Nasset,
2009). In the subsequent analysis where we compared data collected
by the two sensors, we compared aggregates of FIRST + SINGLE and
LAST + SINGLE of ALTM 3100 with FIRST and LAST echoes, respectively,
of ALTM 1233. The proportion of echoes of different echo categories to
the total number of pulses is displayed in Table 2.

Table 2

Proportion of echoes to total number of pulses (“Total”), proportion of echoes above
GTV=1.3m to total number of pulses (“Canopy”), and proportion of pulses below
GTV=1.3 m to total number of pulses (“Ground”) for different echo categories. The
total number of pulses is defined as the sum of FIRST and SINGLE echoes for the multiple
echo recording sensor (ALTM 3100) and as the number of FIRST echoes for the ALTM
1233 sensor.

Acquisition and echo category Proportions of echoes (%)

Total Canopy” Ground?
FIRST®
ALTM 3100-on 36 36 0
ALTM 3100-off 57 57 0
ALTM 1233-on 100 93 7
SINGLE
ALTM 3100-on 64 58 6
ALTM 3100-off 43 35 8
ALTM 1233-on - - -
LAST
ALTM 3100-on 37 16 21
ALTM 3100-off 53 21 32
ALTM 1233-on 102 73 29

@ First echoes of many for ALTM 3100-on and ALTM 3100-off. First echoes for ALTM
1233-on.
b Canopy and ground are separated with the ground threshold value (GTV) of 1.3 m.

2.4. Extraction of individual tree segments

In this study we did not use any algorithm for automatic tree
segmentation to delineate individual tree crowns. Instead field
measurements were used to delineate the crown segments. For each
tree, we used the field-measured tree position and a fixed crown
radius to produce a circular crown segment. The crown radius was
determined as the mean of the measured radii in the four cardinal
directions. Echoes inside the defined crown segments were assigned
to the corresponding tree. The forest in the reserve is multilayered and
in many cases our method produced overlapping crown segments.
This will never be the case when using canopy surface models and
watershed, pouring, or other similar algorithms in automatic tree
segmentation. We handled the problem of overlapping crowns in a
similar way as many automatic segmentation algorithms, i.e., by
assigning the echoes of the overlapping regions to the tallest tree.

The heterogeneous structure of the study area may cause echoes
from higher neighboring trees to be assigned to lower trees. Such
assignment errors may be due to erroneous tree positions and the
assumption of circular crowns. To correct for such errors we removed
echoes with higher z-values than actual field-measured tree height plus
a random error component representing a 95% confidence band. This
confidence band was defined as 1.96 times the standard deviation
associated with random errors of (1) the DTM, (2) the laser system, and
(3) field measurement of tree height. It is important to be conservative
and allow such random errors to be inherent in the data. Otherwise
the removal of seemingly erroneously allocated laser echoes could have
led to too optimistic results. The random error of a DTM in a typically
forested area was anticipated to be 30 cm (Reutebuch et al.,, 2003), while
random errors of the laser system and the field measurements were
set to 20 cm (Baltsavias, 1999) and to 5% of the tree height (h) (Daamen,
1980; Eriksson, 1970), respectively. Hence, the echoes removed were
echoes higher than a threshold (T), defined as:

T =h+ 1.96%,/030% + 0.20% + (h* 0.05)* (1)

In the analysis, we only included trees hit by at least one pulse in
each of the three acquisitions, i.e., trees which had at least one FIRST
or SINGLE echo. Thus, the dataset we analyzed comprised 412 trees,
i.e., 203 spruce trees, 187 birch trees, and 22 aspen trees.
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2.5. Analyzing effects of canopy conditions and different sensors on laser
echo height- and intensity distributions (objectives 1 and 2)

The differences between the leaf-on and leaf-off acquisitions and
the differences between the two sensors were analyzed using a visual
approach to assess the differences between the echo distributions. The
visual approach was to compute the probability density function for
both height and intensity for different echo categories, tree species,
and acquisitions. The distributions were estimated with a Gaussian
kernel and bandwidth selection using “Silverman's rule of thumb”
(R Development Core Team, 2008; Venables & Ripley, 2002).

In addition to the visual approach we computed the first four
moments of the distributions (mean, variance, kurtosis, and skew-
ness) and the maximum value to compare statistical differences of the
echo distributions. The maximum value was included because of its
importance in individual tree methods, especially for the tree height
estimation. The moments and maximum values were computed for
separate echo categories for both the height and intensity distribu-
tions for all echoes higher than 1.3 m above ground. In order to
compare differences between ALTM 3100-on and ALTM 1233-on
we also computed moments and maximum values of the combined
echo categories, i.e., FIRST+SINGLE and LAST+ SINGLE. Thus, to
address the sensor effects and the effects of canopy conditions on the
echo distributions, pair-wise differences were computed between
the respective moments and maximum values of the ALTM 3100-on
and ALTM 1233-on acquisitions and the ALTM 3100-on and ALTM
3100-off acquisitions. Furthermore, two-tailed t-tests were applied
to test the significance of the differences. Finally, 95% confidence
intervals of the differences were computed.

2.6. Analyzing effects of canopy conditions and different sensors on
individual tree properties (objective 3)

2.6.1. Tree height

In the current study we used the maximum height of laser echoes
inside individual tree crown segments to establish relationships to field-
measured tree height. The maximum laser echoes were derived from
the FIRST echoes of the ALTM 1233 sensor and from the combination of
the echo categories FIRST + SINGLE echoes of the ALTM 3100 sensor.
Regression analysis was applied to relate laser derived maximum laser
heights and field-measured tree heights. Separate regressions models
were established for each of the three acquisitions. Because of the
hierarchical structure inherent in the data, where trees were measured
within sample plots, a mixed modeling approach was applied (Eq. (2a)).
We also estimated models including a term accounting for tree
species to enable testing of effects of tree species (Eq. (2b)). The two
tree height models (Eqgs. (2a) and (2b)) were estimated according to

hy = Bo + bi + Bi (Rimaxy) + & (2a)
and
hy = B + by + By <hlmaxij) + B <sbij> + B (Suij> + & (2b)

where h;; is height (m) of tree j on plot i measured in field, hjmax; is the
maximum laser height (m) of the corresponding tree, 3o and 3, are fixed
parameters, b; is the random intercept for plot i (b~N(0, 0%)), and &; is
the error for tree j on plot i (g;~N(0, 02)).InEq. (2b), B, and [3; are fixed
parameters, sp;;and s,; are dummy variables indicating if the tree is birch
or aspen, respectively. A value of 1 was assigned to s; if tree species
was birch. Otherwise sy,;; was set to 0. Correspondingly, a value of 1 was
assigned to s, if tree species was aspen. Otherwise s,; was set to 0.
All linear mixed models were estimated with the R package
nlme (Pinheiro et al., 2008). Approximate 95% confidence intervals
were computed for the model parameters to examine if estimated

parameters differed between acquisitions. These confidence intervals
for the B's were compared to see if parameters differ significantly
between different acquisitions. We tested if there were species spe-
cific differences between estimated values (using Eq. (2a)) obtained
from acquisitions with different canopy conditions (ALTM 3100-on
vs. ALTM 3100-off) and different sensors (ALTM 3100-on vs. ALTM
1233-on). Two-tailed t-tests were applied to assess if the difference
between values estimated by Eq. (2a) for separate species and
acquisitions were significantly different in the statistical sense.
Furthermore, we tested if models that included tree species
(Eq. (2b)) were better than models without the tree species term
(Eq. (2a)). The model comparisons were carried out with the
likelihood ratio test for fixed-effects parameters (Pinheiro & Bates,
2000; West et al., 2007). Model comparisons were carried out with
the anova.lme - function of the R package nlme (Pinheiro et al., 2008).

2.6.2. Stem diameter

Stem diameters of individual trees segmented from ALS data are
usually estimated from tree height and crown width. Crown width is
often computed as the diameter of a circle having the same area as
the individual tree segment. Since we did not apply automatic tree
segmentation, the crown widths used in the current study were those
derived from the field measurements. In the comparison of different
canopy conditions and sensors, it is therefore implicitly assumed that
the size of the crown segments would be stable across acquisitions.
Different model specifications of the relationship between stem
diameter and the covariates, i.e., maximum laser height and crown
width, have been proposed (e.g. Heurich, 2006; Hyyppa et al., 2001;
Persson et al., 2002). Based on preliminary studies we chose the
model proposed by Hyyppad et al. (2001). The models were estimated
as mixed models including a random term for the intercept on plot
level. Hence, our basic model included maximum laser height and
field-measured crown width (Eq. (3a)). In addition we estimated a
model also including a tree species term (Eq. (3b)). The two stem
diameter models (Egs. (3a) and (3b)) were estimated according to

dj = Bo + by + B (Mimaxy ) + o (o) + & (3a)
and

dij =PBo + bi + B (hlmaxij> + P (CWU) + Ps (Sbij> + P (Saij) + g
(3b)

where dj; is diameter (cm) of tree j on plot i measured in field, hjmayij IS
the maximum laser height (m) and cwj;is crown width (m) of the same
tree, 3o, 31 and [3, are fixed parameters, b; is the random intercept for
ploti (b~N(0,02)), and &; s the error for tree j on ploti (¢;~N(0,02)).In
Eq. (3b), B3 and B4 are fixed parameters, Sp; and s,; are dummy
variables indicating if the tree is birch or aspen respectively. A value of
1 was assigned to s; if tree species was birch. Otherwise s,;; was set to
0. Correspondingly, a value of 1 was assigned to s; if tree species was
aspen. Otherwise s,;; was set to 0. Model estimations and evaluations
were carried out as for tree height (See Section 2.6.1).

2.6.3. Tree species

In this study, we only considered classification of trees into two
species categories, i.e., spruce and deciduous trees (birch and aspen).
We pooled the two deciduous species into one class because of the small
number of aspen trees available in the dataset, but also because ordinary
inventory practice in Norway does not discriminate between different
deciduous species. The first step in individual tree species classification
with ALS data is usually to perform a feature selection that aims at
selecting features which differ significantly between tree species and
then subsequently include these features in a classification algorithm
(Brandtberg et al., 2003; Holmgren & Persson, 2004; Holmgren et al.,
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Fig. 2. Leaf-on and leaf-off echo height distributions. Distributions are computed as kernel density under leaf-on (solid line) and leaf-off (dashed line) conditions for different tree

species and echo categories.

Fig. 3. Leaf-on and leaf-off echo intensity distributions. Distributions are computed as kernel density under leaf-on (solid line) and leaf-off (dashed line) conditions for different tree

species and echo categories.

Tree species

Tree species

Spruce

Birch

Aspen

Spruce

Birch

Aspen

0.1
I

H.O. Orka et al. / Remote Sensing of Environment 114 (2010) 1445-1461

0.3 0.5
L

Density

01 03 05
L I

| |

0.1
I

1

0.3
L1

0.5
I

25

T
15

T
25

15
Height (m)

25

15

0.1

FIRST

0.3

05 0.1
| |

SINGLE
Echo category

Density
0.3 0.5
|

0.1
1

LAST

0.3

15

10
Intensity

15

10

SINGLE
Echo category

LAST



H.O. @rka et al. / Remote Sensing of Environment 114 (2010) 1445-1461

2008). In the current study we used a classification algorithm with
a built in feature selection technique. We used the random forest
algorithm proposed by Breiman (2001). The random forest algorithm
has several advantages with respect to the current comparison of
different ALS acquisitions in tree species classification. The random
forest algorithm (1) handles large numbers of input features, (2) it
computes an error matrix based on an internal validation process,
and (3) it computes a measure of the importance of the features in
the classification, measured as the mean decrease in the Gini-index
(Breiman, 2001; Liaw & Wiener, 2002). Hence, both classification
accuracies and variable selection can be derived directly and be
compared for the three acquisitions. The classification was carried out
with the R package randomForest (Liaw & Wiener, 2002).

The features used in the classification were ALS derived features
from the height and intensity distributions. For each echo category
of all acquisitions we computed height-, density-, and intensity
features. Features were computed for all echoes higher than 1.3 m
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above ground. This height, also known as the breast height, was used
as the ground threshold value (GTV). Height features computed
were the maximum laser height (Hmax), the mean laser height
(Hmean), coefficient of variation (Hcv), skewness (Hskew), and
kurtiosis (Hkurt). In addition, we computed the 10, 20,...., 80, 90
height percentiles (H10, H20,..., H80, H90). The Hmax, Hmean, and
the percentiles (H10-H90) were normalized in two ways. First, by
dividing the respective height features with estimated tree height
obtained using Eq. (2a), producing “normalized height features”
(NHF), and second, by subtracting the value of the respective
height features from estimated tree height obtained using Eq. (2a),
producing “crown penetration features” (CPF). Hcv, Hkurt, and Hskew
were used directly without normalization and labeled as “other
height features” (OHF). The “density features” (DF) were calculated as
canopy densities in accordance with Nasset (2004a). The crown was
divided into vertical crown height bins by dividing field-measured
tree height minus the GTV value (1.3 m) into 10 vertical bins of equal
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Fig. 4. Differences in height and intensity metrics between leaf-on and leaf-off canopy conditions. Mean differences (dots) and 95% confidence intervals (vertical lines) for the
maximum value and the first four moments of the distributions (i.e., mean, variance (var), kurtiosis (kurt), and skewness (skew)) for different echo categories and tree species.

Significant differences (p<0.05) according to two-tailed t-tests are indicated by filled dots.
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height. For each echo category, tree level crown density features were
calculated as the number of echoes above bin number 0 (>GTV), 1, ...,
9 as proportions of total number of echoes and denoted as DO, D1, ....,
D9. The “intensity features” (IF) computed were maximum (Imax),
mean (Imean), coefficient of variation (Icv), skewness (Iskew), and
kurtiosis (Ikurt).

The classification performance was assessed using an error matrix
(Congalton, 1991). From the internal random forest classification
an error matrix was established and overall accuracy, producer's
accuracy, and the kappa-coefficient (Cohen, 1960) were computed.
The classification was performed for all 412 trees for each of the
three acquisitions. However, if an insufficient number of echoes were
returned from a tree, not all of the laser metrics could be calculated
and with lack of information the tree could not be classified. To
be able to compute all laser features we needed at least tree echoes
in all echo categories. Thus, to achieve a reasonable comparison we
established a subset of trees (n=211) which had all features
computed in all echo categories. Hence, classification performance
was assessed and compared on the same set of trees for all three
acquisitions, in addition to the full dataset. To test if one of the
datasets among the three acquisitions differed significantly we
tested if the kappa-coefficients differed significantly by computing
the Z-statistics:

K1 —Ky

VO, + Ok,

zZ=

(4)

where K1 and k; are the kappa-coefficients for the two classifications to
be compared, 0,; and 0, are their respective variances and Z~N(0,1)
(c.f. Cohen, 1960).
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3. Results

3.1. Effects of canopy conditions on laser echo height and intensity
distributions (objective 1)

The estimated distributions for height and intensity appear in
Figs. 2, 3, respectively. The mean differences and confidence intervals
of the mean differences for maximum values and the four moments
appear in Fig. 4.

The largest discrepancies in the height distributions between leaf-
off and leaf-on canopy conditions occurred for deciduous trees in
the LAST and SINGLE echo categories (Figs. 2, 4). Under leaf-off
conditions, a larger portion of LAST echoes tended to come from the
ground surface. In addition, the peak of the height distributions
of SINGLE echoes was shifted from the upper part of the canopy
under leaf-on conditions towards the ground level. There were no
differences in the echo distributions computed from coniferous
(evergreen) trees, i.e., the spruce trees (Figs. 2, 4). Maximum and
mean laser heights were lower for aspen trees under leaf-off
conditions. However, for birch trees FIRST echoes were significantly
higher under leaf-off conditions (Fig. 4).

For the intensity values the largest discrepancies between data
acquired under different canopy conditions occurred for deciduous
trees in the FIRST echo category (Figs. 3, 4). For deciduous trees,
the intensity distributions of FIRST echoes were extremely skewed to
the lower values under leaf-off conditions compared to leaf-on
conditions. All intensity metrics computed from FIRST echoes differed
significantly between acquisitions for deciduous trees (Fig. 4). As
opposed to the patterns of the FIRST echoes, the distributions of LAST
echoes were less skewed under leaf-off conditions for deciduous trees.
LAST echoes had higher intensity values under leaf-off conditions
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compared to leaf-on conditions (Fig. 4). For SINGLE echoes, maximum
intensity and mean intensity were significantly lower under leaf-off
conditions. For spruce trees there were no differences between the
recorded intensity distributions (Figs. 3, 4).

3.2. Effects of different sensors on laser echo height and intensity
distributions (objective 2)

The estimated distributions for height and intensity for the
different sensors are displayed in Figs. 5, 6, respectively. The mean
differences and confidence intervals of the mean differences for
maximum values and the moments appear in Fig. 7.

Only few of the compared moments which we derived from the
distributions did not differ significantly between the two sensors
(Fig. 7). The visual inspection indicated that FIRST echoes of ALTM
1233-on were most similar to FIRST + SINGLE echoes of ALTM 3100-on
and correspondingly LAST echoes were most similar to LAST + SINGLE
echoes (Fig. 5). However, moments computed indicated that echo
distributions differ for all echo categories except for the combination
of FIRST + SINGLE and LAST + SINGLE for spruce trees (Fig. 7).

The intensity distributions differed between the two sensors
irrespective of how the echo categories of the ALTM 3100-on were
combined (Fig. 7). Fig. 6 indicates that the LAST echoes produced
the most similar intensity distributions of the two sensors. In Fig. 6 a
species specific difference between sensors can be observed. For
spruce, the shapes of the intensity distributions of FIRST echoes
were almost identical for the two sensors. For deciduous trees, FIRST
echoes were more skewed towards lower intensity values for the
ALTM 1233-on than with ALTM 3100-on.
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3.3. Effects of canopy conditions and different sensors on individual tree
properties (objective 3)

3.3.1. Tree height

The estimated parameters, confidence intervals, coefficients of
determination, and RMSE of estimated acquisition-specific models
of tree height (Egs. (2a) and (2b)) appear in Table 3. The smallest
RMSE for tree height was obtained for the ALTM 3100-on acquisition
(Table 3).

Comparison of models without a tree species term developed
under leaf-on and leaf-off conditions revealed that the intercept was
58 cm higher under leaf-off conditions and that the confidence interval
of the estimated slope overlapped (Table 3). The estimated height
values obtained with Eq. (2a) for the acquisitions with different
canopy conditions differ significantly between spruce (p =0.008) and
aspen (p<0.001), but not for birch (p=0.228). Spruce trees had on
average 10 cm higher estimated height values under leaf-off condi-
tions as compared to leaf-on conditions, whereas aspen had almost
55 cm lower estimates under leaf-off conditions. The models including
a tree species term (Eq. (2b)) improved the tree height model for the
ALTM 3100-on (p<0.001) as well as the ALTM 3100-off (p =0.036)
acquisition.

The estimated intercept in models developed for the two acquisi-
tions with different sensors were 66 cm higher with the ALTM 1233-
on. The confidence interval of the intercepts and slopes did not overlap
for the two models (Table 3). The estimated tree heights obtained
from Eq. (2a) developed for the acquisitions with different sensors
(ALTM 3100-on vs. ALTM1233-on) differed significantly for birch and
spruce. Birch trees had 13 cm lower estimated values using ALTM
3100-on (p<0.001) and spruce trees had 11 cm higher values using
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Fig. 7. Differences in height and intensity metrics between ALTM 3100-on and ALTM 1233-on. Mean differences (dots) and a 95% confidence intervals (vertical lines) for the
maximum value and the first four moments of the distributions (i.e. mean, variance (var), kurtiosis (kurt), and skewness (skew)) for different species and for different comparisons
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LAST (L), FIRST + SINGLE (F +S) and LAST + SINGLE (L+S) are displayed. Significant differences (p<0.05) according to two-tailed t-tests are indicated by filled dots.

ALTM 3100-on (p =0.027) compared to ALTM 1233-on. There were no
differences for aspen trees in estimated values using the two sensors
(p=0.510). The variability explained by the models including the
tree species term (Eq. (2b)) was significantly higher (p<0.001) for
both acquisitions.

3.3.2. Stem diameter

The estimated parameters, confidence intervals, coefficients of
determination, and RMSE of estimated acquisition-specific models
for stem diameter (Eqgs. (3a) and (3b)) are displayed in Table 4. The
smallest overall RMSE for stem diameter was obtained with models
including the tree species term (Eq. (3b)) using data from ALTM 1233-
on. The smallest RMSE for models estimated according to Eq. (3a) was
obtained utilizing data from the ALTM 3100-off acquisition (Table 4).
For all three acquisitions the estimated model parameters had
overlapping confidence intervals for both model forms (Table 4).

The estimated values obtained with models (Eq. (3a)) calibrated
for different canopy conditions differed for spruce and aspen. Spruce
had 0.13 cm (p=0.014) higher estimated values for leaf-off condi-
tions as compared to leaf-on conditions whereas aspen had 0.66 cm
(p<0.001) lower estimated values for leaf-off conditions. There were
no differences in the estimated values of birch trees (p=0.233).
Models which included a tree species term had significantly higher
explanatory power for both canopy conditions (p<0.001).

The differences between the estimated values for stem diameter
obtained for the two sensors (ALTM 3100-on vs. ALTM 1233-on)
differed for two of the species. We found that spruce had 0.16 cm
higher estimated values (p = 0.023) whereas birch had 0.17 cm lower
estimated values (p<0.001) with the ALTM 3100-on compared to
ALTM1233-on. There were no differences in the estimated values of
aspen trees (p = 0.728) between sensors. Including a tree species term
improved the stem diameter models for both sensors (p<0.0001).
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Estimated parameters, approximate 95% confidence intervals for parameters in parenthesis, coefficient of determination (R?), and root mean square error (RMSE) for regression

models of tree height for different laser acquisitions and model equations.?

Acquisition

ALTM 3100-on ALTM 3100-off ALTM 1233-on
Model equation® 2a 2b 2a 2b 2a 2b
Intercept (30) 0.21 0.46 0.79 0.95 0.87 1.29

(—0.02 to 0.43) (0.21 to 0.71) (0.57 to 1.02) (0.69 to 1.21) (0.66 to 1.06) (1.04 to 1.54)
B 1.00 0.99 0.98 0.97 0.97 0.97

(0.98 to 1.00) (0.98 to 1.00) (0.96 to 0.99) (0.96 to 0.98) (0.96 to 0.98) (0.95 to 0.98)
B2 - —0.35 - —0.19 - —0.61

(—0.51 to —0.18) (—0.37 to —0.01) (—0.78 to —0.42)
B3 - —0.48 - 0.22 - —0.48
(—0.83 to —0.12) (—0.16 to 0.60) (—0.87 to —0.09)

Op 0.19 0.18 0.18 0.18 0.09 0.14

(0.10 to 0.38) (0.08 to 0.35) (0.09 to 0.35) (0.09 to 0.35) (0.01 to 0.86) (0.05 to 0.41)
O 0.79 0.77 0.84 0.83 0.90 0.86

(0.73 to 0.85) (0.71 to 0.83) (0.78 to 0.90) (0.78 to 0.89) (0.84 to 0.97) (0.80 to 0.92)
R? 0.990 0.991 0.989 0.989 0.987 0.989
RMSE 0.78 0.76 0.83 0.82 0.90 0.84
RMSE (spruce) 0.75 0.74 0.79 0.79 0.91 0.85
RMSE (birch) 0.77 0.75 0.82 0.81 0.88 0.82
RMSE (aspen) 0.99 0.94 1.13 1.10 1.00 0.96

2 Model equations are with or without tree species term, i.e., Eqs. (2a) and (2b), respectively.

3.3.3. Tree species

The overall classification accuracy ranged from 86.9 to 98.1% and
kappa values ranged from 0.74 to 0.96 (Table 5). The class accuracy
was 89.4-99.2% for spruce and 82.4-96.7% for deciduous trees
(Table 5). The highest accuracy was obtained using the leaf-off
dataset. The accuracy obtained using the ALTM 3100-off dataset was
significantly higher than using the ALTM 3100-on (p<0.001) and
ALTM1233-on (p<0.001) datasets. The accuracy of the classification
obtain with the ATLM 1233-on dataset did not differ significantly
from that obtain with the ALTM 3100-on dataset (p =0.215).

The number of trees classified is reduced when missing values
occur. Trees with missing values in computed features are not classified.
Of the total number of trees (n=435), 89% of the trees were correctly
classified using data from the ALTM 1233-on acquisition, compared to
55% and 60% using the ALTM 3100-on and ALTM 3100-off, respectively.
When analyzing the three different ALS datasets with exactly the
same subsets of trees (n=212), the classification accuracies improved

Table 4

slightly. However, the same patterns persist in the results as when
analyzing all trees (Table 5).

The feature importance, measured as the mean decrease in the
Gini-index, for the classification of spruce and deciduous trees
(n=212) using data from the three acquisitions is displayed in
Fig. 8. Higher values of feature importance mean that the feature is
more essential, than features with lower values, in the classification.
Fig. 8 indicates that there were only minor differences in important
features between the two different sensors. The normalized height
features and density features from LAST echoes and intensity features
from FIRST and LAST echoes were important classification features for
both sensors under leaf-on conditions. Furthermore, crown penetra-
tion features (CPF) features from SINGLE echoes were important
in the classification for the ALTM 3100-on acquisition. Important
features in the leaf-off classification were CPF for FIRST and SINGLE
echoes, density features computed from SINGLE echoes, and intensity
from both FIRST and SINGLE echoes (Fig. 8).

Estimated parameters, approximate 95% confidence intervals for parameters in parenthesis, coefficient of determination (R?), and root mean square error (RMSE) for regression

models of stem diameter for different laser acquisitions and model equations.?

Acquisition

ALTM 3100-on

ALTM 3100-off

ALTM 1233-on

Model equation® 3a 3b 3a 3b 3a 3b
Intercept (o) —7.08 —4.76 —6.56 —4.34 —6.17 —4.08
(—8.85 to —5.30) (—6.41 to —3.11) (—8.29 to —4.82) (—5.97 to —2.71) (—7.91 to —4.43) (—5.70 to —2.45)
B 141 1.24 1.39 1.24 1.38 1.23
(131 to 1.50) (1.15 to 1.33) (1.30 to 1.48) (1.15 to 1.33) (1.28 to 1.47) (114 to 1.32)
B2 1.73 2.37 1.75 2.29 1.71 2.37

(143 to 2.11) (1.98 to 2.76)
Bs = —368 =

(137 to 2.12)

(1.90 to 2.68) (1.33 to 2.10) (1.98 to 2.75)
—343 = —403

(—4.46 to —2.90)

(—4.21 to —2.66)

(—4.78 to —3.27)

Ba - —215 - —1.19 - —225
(—3.84 to —0.47) (—2.86 to — 0.49) (—3.91 to —0.59)

Ob 2.74 236 2.77 242 2.69 245

(1.89 to 4.00) (1.60 to 3.47) (1.91 to 4.02) (1.65 to 3.54) (1.83 to 3.95) (1.67 to 3.60)
o, 3.59 328 3.50 323 3.62 322

(3.34 to 3.86) (3.05 to 3.53) (3.25 to 3.76) (3.00 to 3.47) (337 to 3.89) (2.99 to 3.46)
R? 0.919 0.933 0.923 0.935 0918 0.936
RMSE 347 3.17 3.38 3.11 3.50 3.10
RMSE (spruce) 3.35 3.02 323 2.95 3.44 2,97
RMSE (birch) 3.15 2.79 3.07 2.74 3.17 2.72
RMSE (aspen) 6.13 6.15 6.17 6.13 5.96 6.01

2 Model equations are with or without tree species term, i.e., Eqs. (3a) and (3b), respectively.
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Table 5

Result of classification of spruce and deciduous trees for the three acquisitions (Table 1).
Producer's accuracy for the individual tree species (spruce, birch, and aspen), overall
accuracy (overall), kappa-coefficient (kappa), and the number of trees classified (n).
Also a subset of 212 trees was analyzed separately, denoted as comparable trees.?

Classification accuracy n
Spruce Deciduous Overall Kappa®
All trees
ALTM 3100-on 90.1 83.2 86.9 0.742 260
ALTM 3100-off 97.8 96.1 97.1 0.94° 241
ALTM 1233-on 89.4 90.6 90.0 0.80* 390
Comparable trees’
ALTM 3100-on 95.9 824 90.1 0.79* 212
ALTM 3100-off 99.2 96.7 98.1 0.96" 212
ALTM 1233-on 95.0 91.2 934 0.86% 212

“Trees hit by at least three echoes of each echo category in all three acquisitions, i.e., all
metrics could be computed.

PDifferent letters in superscript indicate significant differences (p<0.05) in kappa-
coefficient between the three acquisitions.

4. Discussion and conclusions

The major findings of this study regarding the three specific
research objectives indicated that:

1. Effects of canopy conditions on laser echo height and intensity

distributions (objective 1):

a. For deciduous trees, the echo height distributions derived from
the LAST and SINGLE echo categories were significantly affected
by changes in canopy conditions. The distributions were shifted
downwards under leaf-off conditions. The height distribution
of the FIRST echo category was little affected by the change in
canopy conditions.

b. For deciduous trees, the echo intensity distribution of the FIRST
echoes was most affected by canopy conditions, but even the
echo categories SINGLE and LAST were affected. The distribu-
tion of FIRST echoes of deciduous trees was skewed to lower
intensity values under leaf-off compared to leaf-on conditions.
The intensity distributions of spruce trees were not affected by
canopy conditions.

2. Effects of different sensors on laser echo height and intensity

distributions (objective 2):

a. The echo height distributions differed significantly between the
sensors, except for those derived for spruce trees where the
combined echo categories of ALTM 3100-on (FIRST + SINGLE
and LAST+SINGLE) did not differ from the corresponding
echoes categories of ALTM 1233-on (FIRST and LAST).

b. The echo intensity distributions differed significantly between
sensors. A difference in the shape of the intensity distributions
of FIRST echoes for deciduous trees was found. The ALTM 1233-
on distributions were more skewed to lower values compared
to the intensity distributions obtained with ALTM 3100-on
which were more Gaussian shaped.

3. Effects of canopy conditions and different sensors on individual
tree properties (objective 3):

a. Estimates of individual tree heights had lowest RMSE when
they were based on the ALTM 3100-on dataset. In most cases
the parameter estimates differed between acquisitions.

b. Individual stem diameter estimates had lowest RMSE when
they were based on the ALTM 3100-off data and included a tree
species term (Eq. (3b)). Among the models without a tree
species term (Eq. (3a)) the ALTM 1233-on data provided
the lowest RMSE. However, model parameters did not differ
significantly between the acquisitions using a fixed crown
width for all acquisitions.

c. Tree species was a significant term in both the tree height and
the stem diameter models. By not including tree species as a
model term, the estimated values of tree height and stem
diameter became significantly different for separate tree species.

d. Leaf-off ALS data was superior to leaf-on data in discriminating
between spruce and deciduous trees. There was no significant
difference in classification accuracy obtained using the two
different sensors.

4.1. Material and methods

A possible source of error in the analyses is related to the matching
of field and laser data. Possible errors in tree coordinates, crown
width, and the assumptions of circular crowns and tying echoes in the
overlapping zone between crowns to the tallest tree could affect the
quality of this matching. Inaccuracies in the positioning of the trees
and in tree crown will introduce errors of commission (inclusion
of echoes not belonging to the tree) as well as errors of omission
(exclusion of echoes belonging to the tree). Birch and aspen trees are
found scattered among trees of the dominating conifer species
(spruce) in the forest reserve. Thus, commission and omission errors
will lead to smaller differences in laser features between tree species.
In addition, the assignment of echoes to the tallest tree when there
is an overlap between tree crows might potentially introduce errors.
If we instead had used a segmentation algorithm the number of trees
would have been reduced and the proportion of dominating-/co-
dominating trees had increased in the dataset (Solberg et al., 2006a).
Using other assumptions, e.g. discarding the overlapping area, would
also have introduced errors in the data. A visual control of the circular
crown segments with the laser data provided no evidence that
positional errors or errors introduced by the assumptions influenced
the results of this study. Hence, we believe the current matching of
echoes and trees was appropriate for the study and that the potential
errors caused by the chosen method of matching field and laser data
are negligible.

The current study used the raw uncalibrated intensity values.
The use of intensity values calibrated with range from sensor to target
is preferable. The most common calibration of intensity is range nor-
malization (e.g. Ahokas et al., 2006; Donoghue et al., 2007; Korpela
et al, 2009). Intensity calibration was not possible in the current
study because of a lack of information. The use of raw intensities will
introduce noise to the intensity metrics calculated for individual
trees. Hence, differences between canopy conditions and sensors
will be less pronounced. The two ALTM 3100 datasets were acquired
at the same flying altitude and almost identical geographical location
of the flight lines which minimized the impact of different ranges on
intensity metrics calculated for individual trees. The utilization of
raw intensities vs. calibrated intensities of the ALTM 3100 sensor has
been tested for tree species classification (Korpela et al., in review).
The accuracy of classification of spruce, birch, and pine improved only
marginally from 73% to 75% by performing range normalization on
ALTM 3100 data.

4.2. Effects of canopy conditions on laser echo height and intensity
distributions (objective 1)

Studies comparing leaf-on and leaf-off echo distributions are
rare. To the very best of our knowledge, the study by Nasset (2005)
concerning a mixed conifer-deciduous forest is the only one
addressing the influence of canopy conditions on canopy height
distributions derived from ALS data. The study by Nasset (2005) was
performed using a dual recording sensor (Optech ALTM 1210) and the
comparison was conducted on sample plot level. Naesset (2005) found
that last echoes were more affected by canopy conditions (leaf-on vs.
leaf-off) than first echoes. In the current study the high influence
on LAST echoes was confirmed (Figs. 2, 4). A more open canopy will
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allow more echoes to penetrate to the ground and shift the LAST echo
distribution towards the ground.

In the current study we also found that the height distribution of
the SINGLE echo category was highly affected by the canopy
conditions (Figs. 2, 4) whereas the influence on the FIRST echoes
was only minor (Figs. 2, 4). The effect of canopy conditions on the
SINGLE and FIRST echo categories are closely related. First, the
proportions of echoes in the FIRST and SINGLE echo categories tend to
shift between acquisitions performed under leaf-off and leaf-on
canopy conditions. The number of SINGLE echoes was 20% lower
under leaf-off conditions compared to leaf-on conditions (Table 2).
Hence, the proportion of pulses that result in two or more echoes was
greater under leaf-off conditions. The reason is the lower density of
the canopy when there are no leaves on the trees. The less amount of
biological matter in the higher parts of the tree crown under leaf-off
result in that a larger portion of the energy of the emitted pulse will
travel to lower levels of the crown making the probability of a second
or even multiple echoes higher. On the other hand, under leaf-on
conditions more return signals will have a short duration and the
amplitude of the signals will be high which result in SINGLE echoes.
This shift in the proportions of FIRST (multiple returns) and SINGLE
echoes will influence on the height distributions directly. In the
current study, maximum laser heights of FIRST echoes were higher in
birch trees under leaf-off compared to under leaf-on conditions. It is
known that SINGLE echoes tend to be higher than FIRST echoes under
leaf-on conditions (Naesset, 2009; @rka et al., 2009). Thus, targets that
result in SINGLE echoes under leaf-on and FIRST echoes under leaf-off
will shift the echo distribution of FIRST echoes upwards and SINGLE
echoes downwards. Consequently, canopy conditions have little
influence on the maximum height obtained for the individual trees.
At the plot level stability of maximum height under different canopy
conditions are reported by Nasset (2005) and the current study on
individual trees verify this result.

The effects of the change from a permeable surface of small
branches to a densely foliated crown were also observed in the
intensity distributions (Fig. 3). FIRST echoes under leaf-off conditions
had much lower intensity values than under leaf-on conditions for
deciduous trees. The lower intensity of FIRST echoes under leaf-off
conditions compared to leaf-on is a result of the longer duration and
lower amplitude of the backscattered energy under leaf-off. Lower
reflectivity of bark and branches compared to leaves at the
wavelength used by the laser (1064 nm) will also result in decreasing
intensity values under leaf-off conditions.

4.3. Effects of different sensors on laser echo height and intensity
distributions (objective 2)

Potential differences between echo distributions obtained with
different ALS sensors are well illustrated and known in the laser
community (Chasmer et al., 2006; Hopkinson, 2007; Nasset, 2005;
Nasset, 2009). While previous studies have focused on plot or stand
level, the present work addressed individual trees. The two sensors
that we compared represent sensors commercially available with a
two year time span. Thus, differences between these two sensors
illustrate effects one must be prepared to handle and account for in
forest monitoring.

The ALTM 3100 sensor used in the current study had higher pulse
repetition frequency (100 vs. 33 kHz), lower pulse energy (66 vs.
84 1]), lower peak power (4.1 vs. 7.6), and larger footprint (21 vs.
18 cm) than the ALTM 1233. Because the specific algorithms used
to record echoes of proprietary ALS instruments in most cases are
unknown to the user and scientific communities, there are uncertain-
ties related to the amount of energy required to trigger an echo.
Different triggering algorithms are shown to produce highly different
z-values (Wagner et al., 2004). Hence, drawing conclusions on the
direction of the shifts in z-values base on available sensor information

will be speculative since not all information is known. In the current
study we observe that the combinations of FIRST + SINGLE and
LAST + SINGLE, and for SINGLE echoes had higher echo distribu-
tions for the ALTM 3100-on compared to ALTM 1233-on (Fig. 7).
The FIRST and LAST echoes had lower values with the ALTM 3100
sensor compared to the same echo categories recorded with ALTM
1233, while SINGLE echoes was higher than the FIRST echoes. The
higher values of SINGLE echoes have also been reported previously
at the plot level comparing the same sensors as used in the current
study (Naesset, 2009). The likely reason for the higher SINGLE echoes
is that they are returned from an area within the tree crown with
high density of biological material, i.e., near or at the stem of the tree
which for regularly shaped coniferous tree crowns normally will be
close to the top of the tree. In areas with more biological material a
larger amount of the backscatter will be reflected from the top of the
canopy and only minor energy is reflected from lower canopy layers,
resulting in SINGLE echoes. FIRST echoes may be returned from areas
with lower density of biological material, e.g. the perimeter of the
tree crown. However, using the ALTM 1233 sensor the SINGLE and
FIRST echoes will always be recorded as a FIRST echo.

In the current study the echo distributions obtained from the two
different sensors provided significant different moments and maximum
values. There was one exception for spruce trees where FIRST and LAST
echoes from ALTM 1233-on did not differ from the combinations of
FIRST + SINGLE and LAST + SINGLE, respectively, of ALTM 3100-on.
There was one growing season between the two ALS acquisitions which
may confound with the sensor effects. Different height growth of spruce,
birch, and aspen trees could affect the results. However, the intensity
distributions were also highly influenced for deciduous trees (Fig. 6).
Growth of trees should not necessarily influence on the intensity
distributions. Hence, the difference in the backscattered signal due the
more energy reaching the target with the ALTM 1233 sensor is the most
likely reason for the observed differences in computed height metrics.

The raw uncalibrated intensities used in the current study indicated
highly different shapes of the intensity distributions between the two
sensors. Especially, the highly skewed distribution of FIRST echoes for
deciduous trees obtained with the ALTM 1233-on acquisition compared
to the more Gaussian distribution obtained with the ALTM 3100-on
should be noticed. The distribution obtained with ALTM1233-on was
very similar to the distribution of FIRST echoes of the ALTM 3100-off
dataset. One explanation may be the phenology of the deciduous
trees. In the autumn flight (ALTM 1233-on) the observed intensity
distribution is more similar to leaf-off conditions (ALTM 3100-off)
than leaf-on conditions in June (ALTM 3100-on). The foliage mass is
decreasing during the summer and early autumn as chlorophyll and
water are removed from the foliage, also defoliation will start already in
late summer. This loss of leaf-mass will provide a signal more like the
leaf-off case.

Calibration of ALS intensities is an important issue (Kaasalainen
et al., 2007). Calibration of intensities obtained by ALS may increase
the befit of intensity measurements in forest inventory. Simple range
corrections have been applied successfully (Korpela et al., in review;
Ahokas et al.,, 2006; Donoghue et al., 2007). However, the two
conceptually different intensity distributions obtained from the two
sensors for FIRST echoes indicates that calibration of intensities must
incorporate sensor settings. A correction of intensities only by the
range from the sensor to target will most likely be insufficient.

4.4. Effects of canopy conditions and different sensors on individual tree
properties (objective 3)

4.4.1. Tree height

The most accurate estimates of individual tree height were based
on data from the ALTM 3100-on acquisition. The lower RMSEs of tree
height in the leaf-on case compared to the leaf-off case may be
explained by the denser canopy under leaf-on conditions. A leaf-on
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canopy will provide a better representation of the tree top with less
noise inherent in the maximum height measured by ALS compared to
leaf-off conditions. Furthermore, the lower RMSEs of tree height with
the ALTM 3100-on compared to the ALTM 1233-on are explained by
the sensor settings. The ALTM 3100 sensor was operated at a higher
pulse repetition frequency and with lower pulse energy than the
ALTM 1233 sensor. It has been shown that such sensor properties tend
to decrease the penetration into tall tree canopies (Chasmer et al.,
2006). Hence, less noise will be inherited in the maximum laser height
with the ALTM 3100-on compared to ALTM 1233-on.

The obtained RMSEs for the different tree height models were in
the range from 0.78 to 0.90 m with R? above 0.98 for all acquisitions,
which are similar to results from other studies. Persson et al. (2002)
obtained an RMSE of 0.63 m and an R? of 0.98 in a spruce and pine
forest. In a study conducted in a similar type of forest as in the current,
R? values of 0.92 and 0.93 were obtained for models excluding
and including a tree species term, respectively (Maltamo et al., 2004).
Furthermore, in the current study, the parameter estimates for
maximum laser height in the tree height regression models were
always less than one, indicating that the laser underestimated tree
height of tall trees more than short trees. The most likely reason for
the smaller underestimation of short trees is the larger influence of
taller neighboring trees providing erroneous measurements. Maltamo
et al. (2004) also obtained slope values below one, but in contrast to
the current study their confidence interval for the slope included the
value one, indicating that the slope coefficient was not significantly
different from one in the statistical sense.

The results of the current study indicated that field calibrated tree
height models should include tree species as an explanatory variable to
provide comparative results over time. For all the three acquisitions,
models that included the tree species term had significantly higher
explanatory power than models not including the tree species as a
variable. The estimated values differed for different tree species when
the models did not include a tree species term. Thus, a systematic
species specific error will be introduced if tree species is not a model
term.

The idea of reusing model equations established with previously
and already existing field plots and acquisitions is relevant and
interesting. The current study revealed that all model parameters, i.e.,
intercept, slope, and species specific adjustment of the intercept
differed between the models developed for the specific sensors.
Therefore, this study suggests that models cannot be reused across
sensors without losing accuracy. The most explicit differences are in
the intercepts of the models.

4.4.2. Stem diameter

The estimated parameters for models calibrated with different
acquisitions did not differ significantly. The number of models that
has been proposed for estimation of stem diameter of individual trees
from ALS data is large and we only tested one of these previously
proposed models in the current study (Hyyppd et al., 2001). Other
models may yield different results. Preliminary analysis revealed
that published models estimating stem diameter from ALS data
produce highly different estimates of stem diameter. We believe that
more research is needed to find models performing equally well - if
possible - on different sites and under different forest conditions.

Differences in RMSEs for stem diameter was only 0.06-0.09 cm
for different canopy conditions and 0.03-0.07 cm for the different
sensors. In addition, none of the estimated parameters differed
between acquisitions. Hence, the effects of acquisitions on the stem
diameter estimation seem to be minor and a common model may be
established. An important constrain — and thus a limitation in the
current study was the use of field-measured crown width rather than
using crown width derived from the ALS data. Different acquisitions
may result in different estimates of crown width when obtained from

an automatic tree segmentation based on the ALS data, which in turn
may alter the model parameters.

The RMSEs for stem diameter varied between 3.1 and 3.5 cm,
corresponding to 15-17% of the average stem diameter. The R* values
were 0.93 and 0.92 for models with and without tree species,
respectively. Persson et al. (2002) obtained an RMSE value of 3.8 cm
or 10% of the average stem diameter in a boreal conifer forest in
Sweden. They reported an R? value of 0.83. In a pine forest in Texas,
Popescu (2007) obtained an RMSE of 4.9 cm (18% of the average
stem diameter), with an R? value of 0.87, Hence, the accuracy in this
study seems to be fairly similar to results obtained in other studies.

Models with a tree species term were significantly better in all
three acquisitions. When not including a tree species term in the
model, significant differences in estimated values for separate species
were found. We suggest that tree species should be included in
models for stem diameter based on ALS data.

4.4.3. Tree species

Most of the studies dealing with the ALS data acquired under leaf-
off conditions at the individual tree level have been on species
classification (Brandtberg, 2007; Brandtberg et al., 2003; Liang et al.,
2007; Reitberger et al., 2008). In our study the leaf-off classification
performance was better in terms of classification accuracy than the
leaf-on classification. Reitberger et al. (2008) also performed a
comparison of conifer and deciduous tree species classification
under leaf-off and leaf-on canopy conditions with a waveform laser
in Germany. In that study the overall accuracy was 96% under leaf-off
conditions and 85% under leaf-on conditions. In the same area Heurich
(2006) got the highest accuracy under leaf-off canopy conditions, i.e.,
97% overall accuracy whereas the best overall accuracy under leaf-on
acquisition was 81%. In our study we obtained classification accuracies
of 98 and 90% under leaf-off and leaf-on canopy conditions,
respectively. Thus, it seems to be a common and consistent finding
that higher classification accuracies can be obtained during the leaf-
off season when using ALS for species classification.

In the current study, the Z-statistics of the kappa-coefficients
revealed that there were no significant differences between the
classifications obtained with the two sensors. The class accuracies
tended to be slightly more uniform with the ALTM 1233-on compared
to ALTM 3100-on. In another study sensor differences were found in
the classification accuracy obtained with Optech ALTM 3100 and Leica
ALS 50-1I (Korpela et al., in review).

The important classification features derived from the random
forest classification are quite similar in the two leaf-on acquisitions in
the current study. This result indicates that there may be a set of
features that may be generally applicable in tree species classification
across different acquisitions. The important classification features
common for the two acquisitions seemed to be normalized heights
from LAST echoes, density features from LAST echoes and intensity
features from FIRST and LAST echoes. However, another study
conducted in the same area indicated that feature selection was
influenced by species specific tree height distributions (@rka et al.,
2009). The ranking of features by the GINI-index in random forest
does not account for different tree height distributions for different
species in the study area (Fig. 1). Hence, the features selected by
random forest are influenced by the differences in height distributions
of the spruce and deciduous trees and the important classification
features should be validated in other studies.

4.5. Concluding remarks

To conclude, echo distributions and derived metrics differ between
sensors. However, differences in accuracy of individual tree properties
are minor between sensors when the models were calibrated with
field measurements. Field measurements for model calibration are
important in individual tree inventories by ALS. Moreover, tree species
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should be included in as a model term in tree height and stem diameter
models. Differences in estimated model parameters were found for
models calibrated on data from different sensors, the most affected
parameter was the intercept in tree height models.

Different echo categories were affected differently by canopy
conditions. Accuracy in estimates for tree height or stem diameter
was minor between acquisitions with different canopy conditions.
However, significantly more accurate tree species discrimination was
obtained during the leaf-off conditions. The classification accuracies
were in the order of 10 percentage points higher in overall accuracy.
Hence, ALS based individual tree inventory could benefit from
the leaf-off acquisitions without losing accuracy of tree height and
stem diameter estimations, and at the same time obtain higher
accuracy of tree species detection. Since tree species also are iden-
tified to be important in tree height and stem diameter models, the
total accuracy of the inventory may be improved even more under
leaf-off acquisition.
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Abstract

The objective of the current study was to investigate the effects of using spectral data in
addition to structural three-dimensional airborne laser scanning (ALS) data for tree species
identification. Spectral information from the ALS intensity and two different types of
multispectral images were tested. The classification accuracy was assessed using 1520
segmented trees (52% spruce trees, 40% pine trees, and 8% deciduous trees). Both Applanix
DSS images acquired simultaneously as the ALS-data and Vexcel Ultracam D images
acquired on a separate flight mission were used. Intensity was normalized using the range
from sensor to the target (range normalization). In addition, a source of variation in intensity
known as banding is described, together with a normalization procedure for diminishing this
effect. When only intensity data was used, normalization of intensities increased the overall
classification accuracy for tree species with 5 - 11%. The range normalization was more
beneficial than banding normalization. ALS structural information alone provided overall
classification accuracies of 74 - 77%. Adding normalized intensity information to the
structural information did not improve the classification. The accuracies obtained using only
multispectral imagery (71 - 79%) were on the same level as using ALS structural
information. However, combined use of ALS structural information and multispectral
imagery from the Applanix sensor and the Vexcel Ultracam D sensor provided overall

accuracies of 87 - 89% and 84 - 87%, respectively.

Keywords: Airborne laser scanning; Multispectral images; Intensity; Intensity normalization,

Range normalization; Banding; Tree species identification;
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1. Introduction

Airborne laser scanning (ALS) is superior compared to other remote sensing techniques, like
RaDAR and optical imagery, to estimate important biophysical properties of forests such as
tree height, stem volume and biomass (Hyde et al., 2006; Hyyppd & Hyyppd, 1999).
However, information about tree species is also an essential parameter of forest inventories
and in recent years research on tree species identification utilizing ALS data has increased
(Heinzel & Koch, 2011; Korpela et al., 2010b; Orka et al., 2009a; Suratno et al., 2009).
Nevertheless, providing species information represents a challenge in the utilization of ALS
in forest inventories.

There are two main approaches in ALS aided forest inventory; (1) area-based
inventory and (2) individual tree inventory. Although during the last few years individual tree
inventory has become commercially available, the area-based inventory (Naesset, 2002) is
still dominating the operational forest inventories using ALS, mainly because of lower cost
and maturity of the approach compared to individual tree approaches. Estimation of species
specific volumes following an area-based approach is documented e.g. by Packalén et al.
(2009). However, studies based on the individual trees approach has dominated the research
on tree species identification (Hyyppd et al., 2008). An advantage of individual tree
approaches over area-based approaches is that separate tree species may be considered
instead of only species mixtures. Individual tree analyses result in detailed knowledge of the
laser pulse - tree interactions regarding specific species (Orka et al., 2009a). Knowledge from
individual tree studies can furthermore be implemented in area-based projects or contribute to
the maturation of individual tree inventories.

The procedure of individual tree species identification includes steps of object
segmentation, feature computation, and object classification. First, individual tree crowns are
delineated from ALS data using an object segmentation process (e.g. Persson et al., 2002;
Solberg et al., 2006). Then, several classification features are computed from the ALS echoes
within the tree crown segments. Features considered are statistical measures derived from the
height- or intensity distribution of laser echoes (e.g. Holmgren & Persson, 2004; Korpela et
al., 2010b; Orka et al., 2009a), parameters of fitted surfaces (Holmgren & Persson, 2004) and
laser estimated crown base height (Holmgren et al.,, 2008). Recently, three-dimensional
textural features derived from alpha-shapes have also been utilized (Vauhkonen et al., 2009).

Finally, species are assigned to crown segments according to a supervised or unsupervised
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classifier. Linear discriminant analysis (LDA) is frequently used for individual tree species
classification, but other parametric and non-parametric methods are applied (Table 1).

The average classification accuracy obtained in tree species identification studies
(table 1) is approximately 83%. The errors obtained in tree species identification would
further affect the accuracy of other forest estimates through species specific models, e.g. for
stem diameter and stem volume (Korpela & Tokola, 2006). Many applications require higher
tree species classification accuracies than those obtain using ALS. Hence, improvements of
ALS tree species identification are desired. Acquisition of ALS data in the dormant period of
deciduous trees seems to be one option to improve individual tree species identification.
Studies comparing leaf-off and leaf-on data reported 8 - 16 percentage points increase in the
overall classification accuracy (Heurich, 2006; Orka et al., 2010; Reitberger et al., 2008).
However, the leaf-off period is often limited because of short time periods where trees do not
have leaves and the ground is snow-free, at least at high latitudes. Consequently, other means
to improve tree species identification should be considered.

The majority of the studies have used spectral information in terms of the raw ALS
intensities (Table 1). The intensity measures provided by ALS sensors are noisy and are
dependent on many factors. Thus, it has been suggested that intensity normalization is
necessary (Ahokas et al., 2006; Korpela et al., 2010b). Factors affecting the intensity are
amongst others range from sensor to target, incidence angles, atmospheric transmittance, and
transmitted power (Ahokas et al., 2006). Of the previous mentioned factors normalization
based on range from the sensor to the target - range normalization - is the most important.
The backscattering from different incidence angles are dependent on the target and thus it is
difficult to calibrate intensity based on this factor. Atmospheric transmittance is often omitted
and can be assumed to be constant during a given acquisition. This assumption also applies to
the transmitted power from the sensor. Transmitted power varies between sensors and with
acquisition setting such as flying altitude and pulse repetition frequency. A few studies have
reported that range normalized intensity has improved tree species identification (Gatziolis,
2009; Korpela et al., 2010b). However, additional studies comparing raw and range
normalized intensities are needed to confirm these results.

Different ALS sensors are known to produce different height- and intensity values
over the same target due to differences in e.g. emitted energy, pulse repetition frequency, and
other factors (Nasset, 2009; Orka et al., 2010). Orka et al (2010) found different intensity
distributions between the two Optech sensors studied and suggested that intensity

normalization should incorporate sensor settings. Korpela et al. (2010b) normalized intensity
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recordings from the Leica ALS 50 sensor by applying a sensor specific normalization
equation. They normalized the intensity using both the range and the automatic gain control
value (AGC) recorded by the Leica sensor. The normalized intensity provided by the Leica
sensor based on range and AGC outperformed the range normalized intensity recorded by the
Optech sensor in classification of tree species, with a difference in overall accuracy of 5.0 -
9.1 percentage points. Different sampling rates and footprint sizes, in addition to campaign
dependent intensity recordings were suggested as explanations for these differences (Korpela
etal., 2010b).

The AGC-effect on intensity is unique to Leica sensors. Another effect on intensity
which is unique for Optech ALTM sensors is referred to as banding. Banding is caused by
differences in intensity between scan directions of the oscillating mirror (Fig. 1). In the
American Society for Photogrammetry and Remote Sensing (ASPRS) LASer (LAS) file
format specification (ASPRS, 2009) the differences between scan directions of the mirror are
stored in the “Scan Direction Flag” item. The Scan Direction Flag has a bit value of 1 for a
positive scan direction, and a bit value of 0 for a negative scan direction. A positive scan
direction is defined as a scan moving from the left to the right side of the in-track direction
(negative scan direction is the opposite). Banding will result in different intensity

distributions for the two scanning directions. Hence, more noise is present in the data when

+ —— positive scan direction
3 1" — = negative scan direction
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Fig. 1. A subset of an ALS flightline illustrates the banding effect, i.e., the differences in intensities between
scan directions. The images to the left display the intensities of first returns with a positive scan direction (top)
and negative scan direction (bottom). The images are equalized for better interpretability. The respective
estimated probability density functions (pdf) of the raw intensities (/,,,,) in the displayed area appear to the right.
In the images the banding effect appears as brighter areas in the lower image compare to the image above (see
arrows).
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the effect of banding is not taken into account. Furthermore, calibration methods for the
banding effect and comparisons of uncalibrated and calibrated data are needed.

Combination of ALS and multispectral images are another frequently suggested
technique to improve accuracy of individual tree species identification (Heinzel et al., 2008;
Korpela et al., 2010b; Persson et al., 2004). Holmgren et al. (2008) combined ALS data and
multispectral images for individual tree identification. They obtained improvements in the
order of 5 - 8 percentage points in overall classification accuracy compared to only utilizing
ALS data. Furthermore, combining ALS and imagery data for stand delineation and species
classification produced more accurate results than using each of these data sources separately
(Ke et al., 2010). The main drawback by adding images to the inventory protocol is higher
acquisition costs since ALS and image data usually are acquired in separate flight missions.
However, acquiring ALS and image data simultaneously from the same platform is possible
and an attractive option to reduce costs.

The main objective of the current research was to investigate the effects of using
spectral data in addition to structural three-dimensional airborne laser scanning data for tree
species identification. Spectral information from the ALS intensity and two different types of
multispectral images were tested. The specific objectives were to assess effects of using

1. range normalized intensity,

2. normalization of the sensor specific banding effect,

3. inclusion of color infrared images (red, green, infrared) from the Applanix
DSS sensor acquired from the same platform as the ALS data, and

4. inclusion of multispectral images (red, green, blue, infrared) from Vexcel

Ultracam D sensor acquired on a separate flight.

2. Materials and methods

2.1. Study area

The study area is located in the municipality of Aurskog-Heland, southeastern Norway, 40
km east of Oslo (59°50'N, 11°40'E, 120-390 m a.s.l.) (Fig. 2). Aurskog-Heland is dominated
by forests, agricultural areas and lakes. About tree quarter of the total land area, which is 890
km?, is managed productive forest dominated by Scots pine (50%), Norway spruce (35%) and

deciduous tree species (15%).
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Fig. 2. Map of the study area, location of the sample plots, and ALS data cover. Inset map shows extent
rectangle with black outline of the large map.

2.2. Field measurements

During the fall of 2007 and winter of 2008 field data was collected on 40 circular sample
plots (Fig. 2). Half of the sample plots were located in spruce dominated stands and the other
half in pine dominated stands. Furthermore, 30 of the plots were located in mature forest. The
remaining 10 plots were located in young productive forest. The plots located in mature and
young productive stands were equally distributed in spruce and pine dominated stands. The
size of the plots was 1000 m”. However, for four plots in young forest where the stem
densities were very high and the field work exceeded one day per plot the plot size was
reduced to 500 m”.

On each sample plot, tree species, diameter at breast height (DBH) and the tree
coordinates were recorded for all trees with DBH > 5 cm. Totally 4299 trees were recorded
on the 40 sample plots. The trees were distributed on 52% spruce, 34% pine and 14%
deciduous trees. The position of the trees was determined by measuring the azimuth and
distance from the plot center to the tree with a total station (Topcon Sokkia SETSF). Plot
center coordinates were determined using differential Global Navigation Satellite Systems
(GNSS) (Topcon Legacy E+). Random errors reported from the post-processing indicated an
average error of 12 cm for the planimetric coordinates of the plot centers. The field data is

further described by Breidenbach et al. (2010) and Maltamo et al. (2010).
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2.3. Remote sensing data

ALS data were acquired on 12 June 2006 under leaf-on conditions using the Optech ALTM
3100 EA sensor. The ALS sensor was mounted on a Piper Navajo fixed-wing aircraft flown
at approximately 800 m above ground with an average flying speed of 75 ms™. The sensor
was operated with a pulse repetition frequency of 100 kHz and a scan rate of 70 Hz. The
maximum scan angle was + 5° and the beam divergence was 0.3 mrad. The sensor and
acquisition settings resulted in an approximate pulse density of 7.2 m™ and a footprint size of
25 cm. Five parallel flight lines spaced at approximate 8.7 km were flown across the
municipality in east - west direction to cover the 40 field plots (Fig. 2).

The ALS data were delivered on the proprietary Optech comprehensive file format
from the contractor (Blom Geomatics, Norway). The data contained all echoes recorded. The
ALTM 3100 EA is capable of recording from one and up to four echoes for each emitted
pulse. Ground echoes were identified with the proprietary algorithm of Terrascan (Terrasolid
Ltd., 2004) following the principles of Axelsson (1999; 2000). From the echoes identified as
ground a triangular irregular network (TIN) was created. The ground elevation underneath all
echoes was computed from the TIN by linear interpolation. The relative height above ground
(dz) was computed for every echo by subtracting the ground elevation from the recorded echo
height. Additional parameters extracted from the comprehensive file format for every echo
were the calibrated range from the sensor to the target and the intensity, which is a 12 bit
integer indicating the amplitude of the returned signal. Furthermore, the scan direction flag as
specified by the LAS file format (ASPRS, 2009) was created using the scan angle and time
stamp registered for all pulses in the comprehensive file format.

The raw recorded intensities (/,,v) recorded by the ALTM sensor were range

normalized. The range normalization was performed as:

a
Lran = Lrqw X (L) (1

Rref

where /.4, 1s the range normalized intensities, R is the range from sensor to target, and R,.s1s
the reference range. The value for parameter a was set to 2 (Ahokas et al., 2006; Korpela et
al., 2010a). Furthermore, /., and I,,, were normalized for the sensor specific banding effect
and named 7,4y pan a0A L4y pan, respectively. Normalization was carried out using a standard

histogram matching technique (Ricards & Jia, 2006). The intensities in the negative scan



Paper 111

direction were altered to match the histogram of intensities in the positive scan direction such

that the banding effect was normalized (Fig. 3).
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Fig. 3. Estimated probability density functions (pdf) for intensity values of negative and positive scan directions

before and after normalization of the banding effect. The individual graphical plots show pdfs for raw intensities

(1), range normalized intensities (Z,,,), and for /,,,, and 7,,,, normalized for the banding effect (Z... pan Lran.ban)-

A digital camera, Applanix Digital Sensor System 322 (referred to as Applanix), was

carried on the same plane as the ALS sensor and Applanix images were acquired

simultaneously with ALS data. The Applanix sensor is a medium-format digital frame

camera with only one charge-coupled device. The sensor can be fully integrated with various

ALS systems. The camera provides 22.2 megapixel (5436x4092) images in either color (VIS)

10
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or color infrared (CIR). The physical pixel size was 9 pm. In the current study the camera
was operated with a 60 mm lens and in CIR mode. Thus, the red, green and infrared bands
with a ground sampling distance (GSD) of 12.0 cm were acquired. The overlap between the
images in the along track direction was approximately 50%. Raw images together with
orientation parameters were provided by the contractor.

A separate acquisition of aerial images was conducted on 28 and 29 June 2005 with a
Vexcel UltraCam D (referred to as Vexcel). The Vexcel sensor is a large format digital aerial
camera capable of acquiring both panchromatic and four multispectral bands (red, green,
blue, and infrared). The camera provides 86.3 megapixel (7500%11500) images with a pixel
size of 9 um in the panchromatic band, while the multispectral sensor has a resolution of 8.8
megapixels (2400x3680) with a pixel size of 28.125 um. The Vexcel images were acquired at
a flight altitude of approximately 3100 m above ground with an average flying speed of 80
ms™'. The focal length of both panchromatic and multispectral lenses was 101.4 mm. The
GSD achieved was therefore 27.5 cm and 84.0 cm in panchromatic and multispectral bands,
respectively. The delivery from the contractor included raw pansharpened images with a
resolution of 7500%11500 and orientation parameters.

Pixel values from the Applanix and the Vexcel digital images were linked separately
to the ALS data following the method described by Packalen et al. (2009). By using a rotation
matrix, the x, y, and z coordinates of each laser echo were converted to a pixel position in the
aerial images. Furthermore, the digital numbers from all multispectral bands were added to
the respective laser echo in the original scale. If the laser echo position occurred on multiple
images, the mean image value of all overlapping images was computed for all bands before
adding the values to the respective laser echo. The average number of images per laser echo
were 1.96 (SD=0.27) and 3.64 (SD=1.56) for the Applanix and Vexcel camera, respectively.
The ability to locate the laser echoes in the image pixels was made possible through the
GNSS and inertial navigation systems providing interior and exterior orientation parameters.
Pixel values were only assigned to those laser echoes which best represent the canopy
surface, i.e., first returns (first of many and single echoes). All other subsequent echoes will

penetrate into the canopy and image values were not assigned to these echoes.

2.4. Individual tree crown delineation
Individual tree crown delineation was performed using an adaptive segmentation method
based on a Poisson forest stand model (Ene et al., in review). The algorithm utilizes the

average stem density per plot for optimizing the canopy height model smoothing. The stem

11
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density was obtained using the area-based approach (Nesset, 2004) and trees were assumed
to be randomly located within plots. Furthermore, the tree crowns were extracted using a
marker-based watershed algorithm. The algorithm identified 1957 crown segments containing
at least one field measured tree. In the current study 50.3% of the segments contained only
one tree, 24.1% two trees, and 25.6% contained three or more trees. Of the 4299 field
measured trees 4050 were covered by one of the tree crown segments identified by the
algorithm. For further details about the individual tree crown delineation the reader is referred

to Ene et al. (in review).

2.5. Feature computation

In classification terminology a feature is defined as a measurement on an object, so an object
may have several features measured, but only one class assigned to it (Ripley, 1996). In the
current study structural and intensity features were derived from the ALS data. In addition
image features were derived from Vexcel data and Applanix imagery data. The structural,
intensity, and image features utilized for tree species identification in the current study appear
in Table 2. Features were computed for all first returns (first of many and single echoes)
higher than 1.3 m above the ground surface.

Structural features were derived from the distribution of ALS echo heights (dz). The
structural features derived were grouped into four feature groups (FGs) (Table 2). The four
FGs were “relative height” (H,.;) (c.f. Orka et al., 2009a), “canopy penetration depth” (H.pq)
(c.f. Orka et al., 2009a), canopy density (DF) (c.f. Naesset, 2004), and echo proportions (EP)
(c.f. Holmgren et al., 2008; Moffiet et al., 2005). H,., and H,, consist of mean, kurtosis,
skewness, coefficient of variation, and percentiles (10", 30", 50", 70™ and 90"™) derived from
the echo height distribution and normalized with the 95t percentile of the distribution
according to @rka et al. (2009a). Canopy density was computed by dividing the 95™ height
percentile minus 1.3 m into 10 vertical layers of equal height. For each layer, tree level
canopy densities were calculated as the number of echoes above layer number 1, 3, 5, 7, and
9 as proportions of total number of echoes, respectively. EP was defined as the proportion of
echoes in the four different echo categories; single, first of many, intermediate, and last of
many to the number of first returns (first of many and single echoes). The four FGs (H,.,,
Hpa, DF, and EP) were tested separately and in different combinations. The combination of
structural FGs which achieved the highest tree species classification accuracy was used as the
ALS benchmark. Furthermore, effects of including intensity and image derived features were

compared to the ALS benchmark.

12
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Four intensity FGs were created. The FGs were created from the different intensity
distributions; Law, Lrans Lrawban, and Lrgnpan. From the intensity distributions the maximum,
mean, kurtosis, skewness, coefficient of variation, and percentiles (lOth, 30th, 50th, 70" and
90™) were derived for each segment. Furthermore, “canopy layer means” were computed as
the mean intensity value of echoes in each canopy layer (Table 2). Canopy layers were
defined as described for canopy density. The classification accuracy obtained with the
intensity FGs were compared separately and combined with the ALS benchmark.

From the three Applanix bands and the four Vexcel bands maximum, mean, kurtosis,
skewness, coefficient of variation, and percentiles (IOth, 30" 50" 70™ and 90th) were derived
for each segment together with “canopy layer means” from the original values, relative band
values (Breidenbach et al., 2010), and band ratios (Packalén et al., 2009). The image features
were combined into one Applanix FG named DSS and a Vexcel FG, named VEX. The two
image FGs were combined with the ALS benchmark to test improvement in tree species

classification accuracy.

Table 2. Structural, intensity, and image features computed to support tree species classification. Structural
features are derived from the ALS height distribution. Intensity features are computed from the ALS raw and
normalized intensity distributions. Image features are computed from each band in the imaging sensors used and
for raw values, relative values, and band ratios. The features are organized into feature groups H,e;, Hepa, Lraws
Iram Iraw.ham Irun.bun’ DSS, and VEX

Structural (dz) Intensity (i) Image (bands)
Features H./ H, db EP DF Lo, Law Lavvan  1ranpan DSS VEX
Maximum value X X X X X X
Mean value X X X X X X X X
10" percentile X X X X X X X X
30™ percentile X X X X X X X X
50™ percentile X X X X X X X X
70™ percentile X X X X X X X X
90™ percentile X X X X X X X X
Coefficient of variation X X X X X X X X
Skewness X X X X X X X X
Kurtosis X X X X X X X X

Prop. of first echoes

Prop. of single echoes

Prop. of last echoes

Prop. of intermediate echoes
Canopy density Layer 1
Canopy density Layer 3
Canopy density Layer 5
Canopy density Layer 7
Canopy density Layer 9

> KR

XK R

Canopy layer mean 1
Canopy layer mean 3
Canopy layer mean 5
Canopy layer mean 7
Canopy layer mean 9

RNl
XK KA
e
el
el
el

*Features represented with bold X are scaled relative to the maximum laser height H,,; (c.f. Orka et al., 2009a).
® Features represented with bold X are scaled to canopy penetration depth (Hpa) by subtracting the feature value
from the maximum laser height (c.f. Qrka et al., 2009a).
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2.6. Classification and accuracy assessment

From the 1957 available crown segments we only used a subset of 1520 where all field
measured trees inside the crown segment belong to the same species. The subset of 1520 trees
consisted of 783, 622, and 115 spruce, pine and deciduous trees, respectively.

Previous studies of tree species identification utilized different classification methods
(Table 1). There have been some attempts to test different classification methods (Heinzel et
al., 2010; Korpela et al., 2010b; Orka et al., 2009b). In the current study we utilized linear
discriminant analysis (LDA), random forest (RF) classification, and support vector machines
(SVM). LDA is the most frequently used method in individual tree classification studies
(Table 1). We used the LDA implementation in the R-package MASS for the classification
(Venables & Ripley, 2002). RF is an extension of classification and regression trees
(Breiman, 2001). RF has shown good results in comparative classification studies on
individual trees (Korpela et al., 2010b; Orka et al., 2009b). RF classification was conducted
using the R-package randomForest (Liaw & Wiener, 2002). SVM has not been extensively
used in individual tree species classification. However, the benchmark which RF is compared
against, is often SVM (Liaw & Wiener, 2002; Pal, 2005). SVM classification was conducted
using the e1071 package in R (Dimitriadou et al., 2008) using a radial kernel function.

The distribution of tree species in the study area was unbalanced. The deciduous class
appeared less frequently than the conifer classes since sample plots were located in either
spruce or pine dominated stands. We applied a strategy to equally well estimate the accuracy
of the minority class as the two majority classes. We used equal prior probabilities in LDA, a
balanced RF procedure (Chen et al., 2004), and weights in SVM. Using this strategy the
producer’s accuracies obtained would be more uniform and we avoided high omission errors
of the minority class.

The number of features derived was high (Table 2). Feature selection was therefore
applied to reduce the number of features used in the classification. In previous tree species
identification studies feature selection based on the analysis of group differences, like #-tests
(Holmgren & Persson, 2004), analysis of variance (ANOVA) (Brandtberg et al., 2003), and
analysis of covariance (ANCOVA) (QOrka et al., 2009a) have been popular. We used a similar
approach utilizing analysis of variance (ANOVA) and correlation analysis. First, F-values for
the differences of features between species were computed. Features which not differed
significantly at the 0.05 level were omitted. Then, the remained features were ordered from

high F-values to low F-values and the feature providing the highest F-value was included in
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the set of selected features. Furthermore, subsequent features were added to the set if they did
not correlate (r < 0.50) with features already included.

In many studies leave-one-tree-out cross validation has been used for assessing the
performance of classification algorithms (Korpela et al., 2010b; Suratno et al., 2009). Thus,
spatially adjacent trees could be calibration and validation trees. To get reliable accuracy
estimates, leave-one-sample-plot-out cross validation was used in the current study.
According to Hastie et al. (2009) cross validation should include the feature selection step.
The leave-one-sample-plot-out cross validation carried out in the current study ensured that
both feature selection and accuracy assessment were spatially independent of the validation
trees. The accuracy indices used were the proportion of correctly classified trees for single
species (producer’s accuracy), the total (overall accuracy) and the kappa coefficient («)

(Cohen, 1960, Story & Congalton, 1986).

3. Results

3.1. Benchmark classification using structural features

The accuracies of the structural FGs and combination of these appear in Table 3. The FGs
H,,, and H.,,; contained little information about tree species in the current study. The
maximum kappa value obtained for H,.; and H,q was 0.27. A somewhat higher accuracy was
achieved when utilizing canopy density features (DF) (x = 0.30 - 0.34). However, echo
proportions (EP) were the structural FG that achieved the highest accuracy (x = 0.52 - 0.57).
Combing the DF and EP further improved the accuracy (x = 0.57 - 0.60). Adding additional
structural FGs generally did not improve the classification. Hence, EP and DF were selected
for the ALS benchmark. The overall accuracy obtained utilizing the ALS benchmark was 74 -
77%. The producer’s accuracies obtained were 80 - 86%, 72 - 76%, and 31 - 36% for spruce,
pine, and deciduous trees, respectively. The features selected in all 40 cross validation
iterations were the DF from the highest and lowest layers, together with the proportions of
last and proportion of intermediate echoes. The proportions of first and single echoes were
selected in about half of the cross validation iterations and the middle DF was selected in one

of the iterations.

3.2. Effects of intensity normalization

The accuracies of individual intensity FGs and combination of the best intensity FG with the
ALS benchmark appear in Table 4. The accuracy obtained using only raw intensity was on
the same level as using canopy density (x = 0.32 - 0.34). Range normalization of the intensity

(Eq. 1) resulted in an increase in the kappa value with 0.09 - 0.17. The correction of sensor
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specific banding effect did not improve the classification for raw intensities and provided
only a marginal increase of the kappa values for range normalized intensities using LDA and
SVM. Combining the ALS benchmark and normalized (range and banding) intensity FG
further improved the classification, by increasing the kappa value with 0.08 — 0.11 comparing
to using only raw intensity. Compared to ALS benchmark, the increase in accuracy of the
combination of the ALS benchmark and normalized intensity was minor. Including intensity
resulted in improving the kappa coefficient with 0.01 when the SVM classifier was used, and
lower accuracies were obtained using the two other classifiers when structural and intensity
information were combined. The intensity features selected using /.., FG were kurtosis,

90™ percentile, and the coefficient of variation in all the 40 iterations of the cross validation.

Table 3. The producer’s accuracy for the different species groups (Spruce, Pine and Deciduous), overall
accuracies (Overall), and the kappa coefficient (k) of different structural feature groups and combinations of
these. Accuracies are presented for the different classification methods used: Linear discriminant analysis
(LDA), random forest (RF), and support vector machines (SVM).

Feature groups” Spruce Pine  Deciduous Overall K
LDA
H,o 55.6 46.6 63.5 52.5 0.27
Hepa 57.6 26.4 60.9 45.1 0.15
DF 67.4 55.3 41.7 60.5 0.34
EP 86.3 67.7 14.8 73.3 0.54
EP+DF 85.8 72.3 35.7 76.5 0.60
EP+DF+H,, 86.7 66.1 35.7 74.4 0.57
EP+DF+H,p, 85.2 73.5 38.3 76.8 0.61
EP+DF+Hrel+H,,, 54.9 45.5 57.4 51.2 0.24
RF
H,o 56.2 51.9 43.5 53.5 0.25
Hepa 50.1 48.6 37.4 48.5 0.17
DF 61.2 571 304 57.2 0.30
EP 82.2 65.1 27.8 71.1 0.52
EP+DF 82.0 76.2 31.3 75.8 0.59
EP+DF+H,, 84.8 76.7 29.6 77.3 0.61
EP+DF+H,,, 84.3 73.8 31.3 76.0 0.59
EP+DF+Hrel+H. g 54.9 52.1 40.0 52.6 0.24
SVYM

H,o 51.6 48.7 63.5 51.3 0.25
Hepa 45.6 47.6 56.5 47.2 0.20
DF 63.2 60.8 37.4 60.3 0.34
EP 82.1 74.4 27.0 74.8 0.57
EP+DF 80.2 73.5 33.9 73.9 0.57
EP+DF+H,, 79.2 74.6 32.2 73.8 0.56
EP+DF+H. .4 81.1 71.7 32.2 73.6 0.56
EP+DF+Hrel+H. 4 51.0 46.8 58.3 49.8 0.23

*Feature groups used, see section 2.5. for detailed description. H,,, is relative height, H,,, is canopy penetration
depth, DF is canopy density, and EP is echo proportions.
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Table 4. The producer’s accuracy for the different species groups (Spruce, Pine and Deciduous), overall
accuracies (Overall), the kappa coefficient (k) of individual intensity feature groups, and combination of the best
with the ALS benchmark. Accuracies are presented for the different classification methods used: Linear
discriminant analysis (LDA), random forest (RF), and support vector machines (SVM).

Feature groups” Spruce Pine Deciduous  Overall K
LDA
Liaw 50.6 74.6 13.0 57.6 0.32
Lian 62.8 72.3 13.0 63.0 0.41
Lraw.ban 49.7 74.3 10.4 56.8 0.31
Lian.ban 60.3 75.7 14.8 63.2 0.42
EP+DF+1,4.pan 77.8 72.7 29.6 72.0 0.53
RF
Liaw 58.0 68.3 14.8 58.9 0.31
Lian 72.5 77.7 19.1 70.6 0.50
Lraw ban 56.4 65.9 17.4 57.4 0.29
Lan.ban 72.5 76.5 20.9 70.3 0.49
EP+DF+1,4n pan 78.5 80.7 18.3 74.9 0.57
SVM
Liaw 57.0 71.7 20.0 0.60 0.34
Lran 73.2 74.1 23.5 0.70 0.48
Leaw ban 54.8 70.7 18.3 0.59 0.31
Lan.ban 74.3 75.2 22.6 0.71 0.49
EP+DF+1, 41 ban 78.8 81.5 243 0.76 0.58

*Feature groups used, see section 2.5. for detailed description. /., is features derived from the raw intensity, /..,
is features derived from the range normalized intensities 7, pa, and I,y pan are the 1., and 1,,,, normalized for the
banding effect, DF is canopy density, and EP is echo proportions.

3.3. Effects of multispectral images

The accuracies obtained using only the image FGs and combination of these with ALS are
presented in Table 5. Slightly higher accuracies were obtained using the Applanix data (x =
0.55 - 0.64) compared to Vexcel data (x = 0.52 - 0.57). However, the results were similar to
the ALS benchmark. Combining image data with the ALS benchmark increased the
classification accuracies and kappa values of 0.78 - 0.80 and 0.72 - 0.77 were obtained using
the Applanix and Vexcel cameras, respectively. Utilizing normalized intensity in addition did
not improve the classification any further. The highest accuracy was obtained using the echo
proportions (EP), canopy density (DF), and Applanix data (DSS). The overall accuracies
obtained for the classification were 87 - 89% and the producer’s accuracies were 87 - 90%,
89 - 92%, and 59 - 79% for spruce, pine, and deciduous trees, respectively. Using the Vexcel
camera (VEX) an overall accuracy of 84 - 87% was obtained. Producer’s accuracies were 85 -
89% for spruce, 87 - 90% for pine, and 58 - 70% for deciduous when combining features

from the ALS benchmark and Vexcel camera.
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Table 5. The producer’s accuracy for the different species (Spruce, Pine and Deciduous), overall accuracies
(Overall), the kappa coefficient (x) of individual image feature groups, and combined with the ALS benchmark
and the best intensity feature groups. Accuracies are presented for the different classification methods used:
Linear discriminant analysis (LDA), random forest (RF), and support vector machines (SVM).

Feature groups” Spruce Pine Deciduous  Overall K
LDA
DSS 66.4 81.7 69.6 72.9 0.55
VEX 62.1 82.8 67.0 70.9 0.52
EP+DF+DSS 87.1 88.7 79.1 87.2 0.78
EP+DF+VEX 85.3 87.1 69.6 84.9 0.74
EP+DF+1,41 pantDSS 84.7 88.4 65.2 84.7 0.74
EP+DF+1,upant VEX 81.9 86.5 62.6 82.3 0.70
RF
DSS 73.7 82.8 64.3 76.7 0.60
VEX 76.0 80.7 46.1 75.7 0.57
EP+DF+DSS 87.6 90.0 69.6 87.2 0.78
EP+DF+VEX 86.2 87.1 55.7 84.3 0.72
EP+DF+1,4 pant+DSS 86.2 90.2 63.5 86.1 0.76
EP+DF+1,anpantVEX 83.3 88.1 47.0 82.5 0.69
SVYmM

DSS 75.9 86.5 61.7 79.1 0.64
VEX 69.3 84.1 55.7 74.3 0.56
EP+DF+DSS 90.0 92.1 59.1 88.6 0.80
EP+DF+VEX 88.9 89.9 58.3 87.0 0.77
EP+DF+1,4npantDSS 90.0 923 54.8 88.3 0.79
EP+DF+1unpant VEX 87.4 88.7 56.5 85.6 0.75

*Feature groups used, see section 2.5. for detailed description. DSS is features derived from the Applanix sensor,
VEX is features derived from the Vexcel Ultracam sensor, Iran.ban is the range and banding normalized
intensity, DF is canopy density, and EP is echo proportions.

4. Discussion

4.1. Classification using structural features

Moderate classification accuracies were obtained utilizing structural information derived
from ALS data. The intensity is still only an optional item in the LAS file format (ASPRS,
2009). Hence, it may not be available in operational surveys where data are delivered
according to the LAS file format specification. However, applying only structural features,
overall accuracies of 74 - 77% were obtained in the current study when classifying the three
tree species groups commonly used in operational forest management inventories in Nordic
countries (Table 3). In two other Nordic studies accuracies of 88 - 92% were obtained only
using structural features (Holmgren & Persson, 2004; Vauhkonen et al., 2009). In these
studies accuracies were 11 to 18 percentage points higher compared to the results obtained in
the current study. The differences may be attributed to the more heterogeneous forest in the
current study area or the different sensors used. Both the study by Holmgren and Persson

(2004) and the study by Vauhkonen et al. (2009) used a Topeye ALS sensor. Vauhkonen et
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al. (2009) used only dominant trees visible in the images where no branches overlapped with
neighboring trees. The structure of the forest in the current study area is more diverse and
represents practical challenges.

The normalized height features did not improve the species classification. Similar
results are found in other studies in boreal forests (Korpela et al., 2010b; Orka et al., 2009a;
Orka et al., 2010). However, in a Swedish study site the 90 percentile computed from all
echoes within the crown produced the highest overall accuracy (Holmgren & Persson, 2004).
Although the normalized height features carried some useful information in the current study
and also in the study of Holmgren and Persson (2004), such features seem to be of minimal
practical use in applications covering large areas. Moffiet et al. (2005) found a density related
feature to be useful in tree species identification. Based on the study by Moffiet et al. (2005),
some other studies on species identification (Orka et al., 2009a; Orka et al., 2010), and the
results obtained in the current study, it is indicated that density features better describe the
structural differences between boreal tree species than the normalized height features.

Features derived from different echo categories may be important in species
identification (QOrka et al., 2009a). However, the use of separate echo categories limits the
number of trees where all features can be computed and consequently, the number of trees
which can be classified (Orka et al., 2010). In the current study the information suggested to
be inherent in different echo categories was incorporated using echo proportions. The echo
proportions contributed significantly to the higher accuracies using structural information,
which coincides well with previous findings from boreal forests (Holmgren et al., 2008). In
the current study the echo proportions of last and intermediate echoes were most important.
Proportions of single and last echoes was important for separating spruce, pine and deciduous
trees in the study by Holmgren et al. (2008). Orka et al. (2009a) found that the density of last
echoes was important for separating spruce and birch trees because of the higher proportions
of last echoes in the lower crown of spruce trees. The importance of the echo proportions in
the current study was probably also due to differences in crown allometry and crown

permeability for the different tree species.

4.2. Improvement using normalized ALS intensity

The current study has two main findings regarding utilization of normalized intensity. First,
intensity normalization improved accuracy of species classification when only intensity
features were used. Normalization based on range from sensor to target was the most

important in terms of improving the classification accuracy. However, also correction of the
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banding effect improved the classification slightly. Korpela et al. (2010b) found
improvements of 0.03 — 0.04 in the kappa coefficient and 2 - 3 % in overall classification
accuracy when conducting range normalization of intensity collected by the Optech ALTM
3100 sensor. Hence, the effect of intensity normalization was greater in the current study
compared to the study by Korpela et al. (2010b). Consequently, range normalization of
intensity seems to be a useful preprocessing step when intensity features are used for tree
species identification and probably in other applications where intensity is utilized.

The second major finding regarding intensity was the lack of improvement in
accuracy when combining intensity features with other ALS and/or image features. In another
study in a boreal forest only intensity features were selected and all structural features were
omitted in the feature selection carried out before classification (Korpela et al., 2010b).
Furthermore, Vauhkonen et al (2009) found that combination of intensity features and other
ALS features increased the accuracy when classifying spruce, pine, and deciduous trees in
Finland. From Queensland, Australia Moffiet et al. (2005) reported that the intensity was not
useful for tree species identification. In some studies only intensity features were selected by
the selection procedures while other studies did not benefit from intensity at all, like the
current one. The reasons for the highly variable results obtained with ALS intensity are most
likely related to sensor properties and acquisition parameters.

In the current study, the banding effect, which is a source of intensity variation that is
sensor specific and not previously described in literature, was addressed. Knowledge of
variations in intensity values is important to fully understand the processes behind the
recorded intensity values. However, such information is not always available from the sensor
vendors. It is likely that the banding effect will be different between different sensors and
even may change over time for the same instrument due to sensor maintenance and upgrades
(E. Nesset, pers. comm.). Settings specific to individual data acquisitions, such as pulse
repetition frequency and flying altitude may also play a role. In some acquisitions the effect
may therefore be minor while in other campaigns larger effects of banding may occur. The
banding normalization used in the current study is adapted from image processing (histogram
matching) and is well documented and known in the remote sensing community, but is
probably not optimal. Furthermore, the normalization of the banding effect was less
pronounced in the current study probably due to averaging of intensity values from different
scan directions inside tree crowns when computing features. The banding effect would likely
be more pronounced if a raster representation of intensity with a pixel size less than the point

spacing or separate echoes was utilized. Hence, further research should be carried out to
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quantify effects - and to improve calibration of the banding effect. Normalization using
brightness targets might provide knowledge to support better calibration of the banding effect
and other intensity effects not yet documented in the literature.

Moftiet et al. (2005) reported systematic variations in the intensity values in the flight
direction. They suggested that sensor and acquisition settings, like different flying altitudes
and variation in the transmitted power were major factors causing variation. Furthermore,
large differences in accuracy were obtained with Optech and Leica sensors in a Finnish study
were sample trees and methods otherwise were equal (Korpela et al., 2010b). The
observations by Moffiet et al. (2005) and Korpela et al. (2010b) together with the description
of sensor specific effects in the current study and in other studies (Korpela, 2008) strongly
indicate that sensor and acquisition settings are important for the utility of intensity
information. Practical applications require robust and accurate classification methods which
not seem to be the case in current tree species identification procedures based on intensity
information. Supplementary sensor information or improving the sensors capabilities to
record intensity or related information (e.g. transmitted power per pulse) may be a key for
better utilization of the intensity information recorded in addition to the ALS echo

coordinates.

4.3. Improvement using multispectral images

The accuracy obtained with only structural features derived from ALS might not be sufficient
for many applications and improvements can be obtained by applying spectral information.
The obtained classification accuracies using the Vexcel images were only slightly lower than
applying the ALS structural information alone (benchmark). Using only the Applanix images
the accuracy was slightly better than the ALS benchmark. Thus, ALS data and multispectral
imagery equally well separate tree species in the current study. Consequently, ALS data will
be the first choice in forest inventory because of the better accuracy for e.g. timber volume
and tree height (e.g. Hyyppd & Hyypp4d, 1999) without any reduction of species identification
accuracy compared to multispectral imagery.

Inclusion of multispectral image features in addition to ALS data improved the tree
species classification accuracies. Combining ALS and Applanix data acquired simultaneously
during the same flight mission provided the highest accuracies. The Vexcel data were
acquired the year before the field inventory, furthermore the data have a higher GSD and the
data were pansharpened before delivery. The pansharpening process altered the image values

and might be one of the reasons for the lower accuracy of the classification based on Vexcel
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imagery. The high GSD in multispectral bands of the Vexcel sensor compared to the
Applanix sensor, i.e., 84 vs. 12 cm, was likely another reason for the lower accuracies
obtained using the Vexcel sensor. A higher GSD of the Vexcel imagery results in averaging
of image values over a larger area making the variation between trees less apparent.
However, high flying altitudes are necessary to keep data acquisition costs low, which
requires higher GSDs as one of the consequences. Simultaneous acquisitions of ALS and
image data will add restrictions on the acquisition parameters and the costs will increase
compared to acquiring ALS data only. For instance, an acquisition of imagery will require
specific weather conditions and sun angles and thus the possible acquisition time will be
narrowed compare to only flying with an ALS sensor which even might be flown at night
time.

Combining aerial spectral information and ALS data has improved tree species
classification in other studies (Hill & Thomson, 2005; Holmgren et al., 2008; Jones et al.,
2010). The current study together with the study of Holmgren et al. (2008) are the only two
studies combing ALS and multispectral images to identify species of individual trees and
report combined and separate accuracies for the two remote sensing sources. Holmgren et al.
(2008) reported increase in accuracies of 0.11 in the kappa values and 8 percentage points in
overall accuracy. The improvements in overall accuracy are similar to the current study.
However, the improvement in kappa was higher in the current study, mainly because of the
better identification of deciduous trees when utilizing the spectral information in addition to

ALS information.

4.4. Other aspects of the study

The major problem in the current study was to distinguish the deciduous trees from conifer
trees. A similar challenge was also reported from a boreal forest site in Finland (Korpela et
al., 2010b). In the current study, all FGs, and in particular the intensity features, resulted in
low accuracies for deciduous trees. However, spruce and birch trees have been separated
quite successfully in previous studies using intensity features (@Orka et al., 2009a). Both in the
current study and in the study by Orka et al. (2009a) the deciduous trees appear in conifer
dominated stands. The sample plots in the current study are more spatially distributed and the
sample of deciduous trees is smaller. Although we tried to account for the smaller sample of
deciduous trees in the classification the unbalanced species distribution was likely the cause
for the low accuracies of the minority class. However, separating the dominating species

(spruce and pine) was successfully conducted and producer accuracies near 90% were
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obtained. The producer’s accuracies of deciduous were higher and better balanced for LDA
than for the two other classification methods tested.

Different classification methods were used in the current study. The conclusions for
all methods were similar. The highest classification accuracy was obtained with SVM. Both
SVM and RF perform better than LDA in most cases. However, LDA was better for the
different ALS structural FGs (Table 3). Furthermore, SVM and RF are attractive because
they have the possibility to perform accurately without feature selection (@Orka et al., 2009b).

5. Conclusions

The current study presents promising result for combining ALS and multispectral images for
individual tree species identification. In addition, normalization of ALS intensity improved
the classification accuracy, and we suggest that the normalization of intensity should be
carried out when utilizing such information. However, intensity did not improve the accuracy
beyond the levels obtained using only ALS structural information or ALS combined with

aerial images.
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Abstract

The subalpine zone or ecotone is the transition between the forest and alpine vegetation
communities. Substantial changes in position and extent of the subalpine zone are expected as
a result of a warmer climate. In Norway, as in many other nations, low productivity or non-
merchantable forests, like the subalpine zone, are not routinely subject to inventory programs.
The awareness of the expected changes and the interest in full carbon accounting at the
national level has dictated a need for data capture in these mountainous areas. Specifically,
quantifying the area covered by the subalpine zone, including a capacity to characterize
changes in ecotone location over time, are required to obtain reliable inventory estimates of
biomass and carbon stocks. The capacity to characterize the ecotone is also desired to enable
monitoring of the changes in the zone boundaries over time providing information on change
rates and change processes. We propose an approach for integrating strip samples of Light
Detection and Ranging (LiDAR) data with Landsat imagery to delineate the subalpine zone.
In the current study the subalpine zone was defined according to international definitions
based on tree heights and canopy cover to provide the basis for reporting according to
established international standards. The three-dimensional measurements of forest structure
obtained from LiDAR enable a heuristic delineation of the subalpine zone. The method was
implemented using 53 laser sample strips in Hedmark County, Norway, and validated with
field measurements at 26 locations. The subalpine zone boundaries were found to be
accurately derived when validating using an image gradient technique. Furthermore, binomial
logistic regression and alpha-cuts were used to upscale the LiDAR classes to the entire
county area (27 400 km?) using satellite images supported with information derived from a
digital terrain model. The products included a hard classification needed for inventory
stratification and a probability surface suitable for monitoring changes in the extent and

location of the subalpine zone.

Keywords: Subalpine zone; Forest-tundra ecotone; LiDAR; Airborne laser scanning; Satellite

data; Landsat; Canopy coverage; Logistic regression; Regional forest inventory.



Paper 1V

1. Introduction

Forest- and tree lines are expected to advance as a result of a warmer climate (Dalen &
Hofgaard, 2005; Harsch et al., 2009), with changes in human use and activities in mountain
areas also expected to affect the alpine forest- and tree lines. For instance, the presence of
grazing animals been shown to force the tree line below its climatic constraints indicating that
diminished grazing would result in advancing forest- and tree-lines (Cairns & Moen, 2004;
Hofgaard, 1997). We are also mindful that the effect of land use change on forest- and tree
lines may override the responses of climate change on the vegetation in the subalpine zone
(Hofgaard, 1997).

The subalpine zone is defined as the transition between the forest and alpine
vegetation communities (Kimmins, 1997). Transitions between two different vegetation
communities are referred to as ecotones (Clements, 1905). The forest-tundra ecotone is also
often understood as analogous to the subalpine zone, with various definitions and terms for
this ecotone in usage (c.f. Callaghan et al., 2002; Love, 1970). However, there is a common
understanding that the subalpine zone is limited downwards by the forest line and upwards by
the tree line (Kimmins, 1997). Forest- and tree lines are often defined according to tree height
(h), tree density (N) and/or canopy coverage (C). The definitions applied in the current study
were selected to provide results consistent with the needs in international reporting. The
definitions of “forest” and “other wooded land” by the United Nations Food and Agricultural
Organization (FAQO) was applied for the forest line (C > 10 % of trees with # > 5 m) and the
tree line (C > 10 % of trees and shrubs with 2 > 0.5 m or C > 5 % of trees with 2 > 5 m),
respectively (FAO, 2006).

In a recent meta-analysis it was shown that half of the tree lines included in a global
study had advanced during the last century, while only 1% of the studies indicated recession
(Harsch et al., 2009). Although advance in tree lines is expected at many sites worldwide,
tree line dynamics might follow different patterns at a regional level, e.g. along a mountain
range (Dalen & Hofgaard, 2005). Different regional tree line dynamics are linked to
differences in environmental and anthropogenic factors at specific locations, including
historic land use, soil, temperature, and variability in precipitation — even over short
distances. Small study sites provide important knowledge in the dynamics of the subalpine
zone (e.g. Dalen & Hofgaard, 2005). However, a complete mapping of the subalpine zone is
needed to fully understand these local and regional differences. Such maps can be combined
with information on grazing pressure to analyze which of the confounding effects, reduced

grazing or climate change, impact the subalpine most.
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The expected changes in the subalpine zone have increased the demand for
information and monitoring. Changes in the subalpine zone will have an influence on the
forest as well as the related alpine areas, biodiversity, landscape characteristics, biomass, and
carbon pools. Countries that have ratified the Kyoto protocol are also committed to report
land use change attributable to deforestation, aforestation and reforestation (UNFCCC, 2008).
Consequently, there is an urgent need for an updated complete national mapping of the
subalpine zone and monitoring of the future development. Specially, the interest in full
carbon accounting required inventories and monitoring of low biomass areas as the subalpine
zone.

National inventories and monitoring systems have typically not included the subalpine
zone, as the focus has traditionally been on productive forests with resource management
aims. Furthermore, it is also expensive to establish and measure field plots in remote
mountainous areas. The lack of information on the area and the extent of the subalpine zone
results in an inability to monitor the any changes in this ecotone. National forest inventories
are under pressure to develop protocols to incorporate the need for inventory and monitoring
of the subalpine zone.

Remote sensing offers possibilities for mapping and monitoring of large areas.
Especially, medium resolution optical satellite images (ground sample distance of 10 — 30
meters) have been important through the provision of data with sufficient spatial detail over
large areas at low costs to meet a range of information needs (Cohen & Goward, 2004;
Falkowski et al., 2009). The opening of the United States Geological Survey (USGS) Landsat
archive to provide data for free (Woodcock et al., 2008) has further accentuated the utility of
this data. Combining medium resolution satellite images and other spatial data (e.g. elevation,
solar radiation, climate, soil) improve the accuracy of the remote sensing analysis (Franklin,
1995; Rogan & Miller, 2007). A drawback of medium resolution satellite images is that the
spatial resolution (30 m) often results in a mixture of within pixel vegetation conditions,
reducing the capacity to classify beyond broad vegetation types over heterogeneous areas
(Wulder, 1998). High spatial resolution remote sensing techniques, including imagery from
satellite and airborne platforms and Light Detection and Ranging (LiDAR), provide detailed
information about forests and individual trees. However, high acquisition costs make such
data unsuitable for large area wall-to-wall monitoring. To overcome this, high-resolution
remote sensing techniques may be applied to sample remote areas with either images
(Falkowski et al., 2009) or LiDAR (Nesset et al., 2009) rather than seeking a full areal

coverage. Comparisons of high spatial resolution image and LiDAR remote sensing have
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shown that LiDAR is among the most promising remote sensing techniques in terms of
accuracy of height, volume, and biomass of forested areas (e.g. Hyde et al., 2006; Hyyppéd &
Hyyppd, 1999; Lefsky et al., 2001). By combining data from medium resolution satellite
images and samples of high spatial resolution LiDAR data the strengths of both sources can
be integrated. LIDAR data acquired in sampling mode provide detailed information on
specific locations suitable for extrapolation or model calibration. Furthermore, satellite and
other spatial data supported can be deployed to provide full coverage of the region of interest,
to provide modeling and extrapolation options, and to support stratification.

The basis for the current study is a framework were a large area inventory is
conducted using airborne scanning LiDAR operated in a strip sampling mode (Nzasset et al.,
2009). The main objective of the current research was to develop a method combining
samples of LIDAR with full coverage optical satellite data to identify the subalpine zone over
a large region. The result should increase the information about the area and location of the
subalpine zone without increasing inventory cost. The specific objectives were to:

1) Identify the subalpine zone using a heuristic classification based on the direct
measurements provided LiDAR.
2) Model and map the subalpine zone through integration of LiDAR, satellite and

elevation data to represent the entire study area of interest.

2. Background

2.1. LiDAR remote sensing

LiDAR provides three dimensional point measurements (x,y,z — coordinates) of the
landscape. In the subalpine zone, LiDAR has shown potential for detecting small trees
(Naesset & Nelson, 2007; Nasset, 2009a) and the forest line has also been detected (Rees,
2007). Neesset & Nelson (2007) found that 91 % of trees taller than 1 m had positive height
measurements by LiDAR, which could aid the detection of small trees in the subalpine zone.
Rees (2007) identified the forest area by extracting LiDAR echoes representing 2 m tall trees
with a spacing lower than 10 m between trees. Parameters used to define the forest- and tree
lines like tree height, tree density, and canopy cover are accurately estimated from LiDAR
data (See table 1). LiDAR is an attractive data source for identifying forest- and tree lines as

direct measures, rather than solely empirical, relationships may be formed.
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2.2. Satellite remote sensing

To identify the subalpine zone we propose to create a two class mask that separates the area
of interest. Spectral information from satellite images is an important source to produce such
class based masks for large areas. For example, a single Landsat scene may provide a basis
for separation of forested and non-forested areas (McRoberts, 2006). Studies have shown that
Landsat data are sensitive to the changes in surface and vegetation structure in the forest-
tundra ecotone in Central Siberia (Ranson et al., 2004). Furthermore, Hill et al. (2007) used
images from another multispectral satellite sensor (SPOT 5 HRQG) to represent the alpine
ecotone in Central Europe. However, limitations in accuracy obtain with satellite images
alone have motivated the combination of spectral data from satellites and other spatial data
layers (Franklin, 1995; Rogan & Miller, 2007; Wulder et al., 2006). Using spatial data layers
alone to create masks are an option used in national forest inventories to create forest- and
mire masks (Tomppo et al., 2008). However, spatial data layers have often limitations in
coverage and are often not up to date in remote mountainous areas. Hence, for mapping the
subalpine zone spatial data layers alone will often be insufficient. One source of information
frequently available in remote areas is digital terrain models (DTMs). There are a number of
variables than can be derived from DTMs, including slope, aspect, solar radiation, curvature,
and different indices which may relate to the presence of the subalpine zone. For example, in
a recent study in a forest-tundra ecotone in tropical Andes different topographic variables
were used to predict the probability of forest (Bader & Ruijten, 2008). Table 2 summarizes
the use of spatial and spectral data and the different methods for combining such data layers
to create class based masks.

There are many statistical approaches for creating masks from spatial data layers
supported by sample plot data. Table 3 summarize assumptions for different parametric and
non-parametric methods and gives references to use in remote sensing to create masks. In the
case of separating a transition from forest to alpine both parametric logistic regression and
non-parametric regression trees have potential to include variables derived for example from
DTMs without any assumptions related to the distribution of the variables. Ecotones, like the
subalpine zone, are best represented by soft classifiers which provide a probability surface
(Foody, 1996). Probability surfaces are possible to obtain from regression trees. However,
binomial logistic regression directly provides a probability measure. Binomial logistic
regression is widely used in the remote sensing community to create class-based masks (e.g.

Waulder et al., 2006).
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4. Materials and methods

4.1. Study area

The study area, Hedmark County, is located in southeast Norway (Fig. 1). The total land area
of Hedmark is approximately 27 400 km”. The county is covered by boreal and alpine
vegetation zones with a slightly continental climate (Moen, 1999). Elevations range from 120

to 2180 m asl.
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Fig. 1. Study area and field locations.
4.2. Field data

During summer 2008 the forest- and tree lines were mapped in field at 26 locations (Fig. 1) in
Hedmark County. Locations were selected subjectively based on the following criteria:
placed in the LiIDAR sample transects, availability of ortophotos, accessible for field work,
and spatially well distributed over the county. The subalpine zone was manually digitized by
applying common practices following the forest- and tree lines in the field. Digitizing was
conducted with a simple Bluetooth GPS receiver (Holux M-1000) connected to a Personal
Data Assistant with a Geographical Information System. As shown in Fig. 2, the forest
structure and type of forest varies between the field locations. The total length of forest lines

digitized in field was 38.6 km and the length of the tree lines was 42.3 km.
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Fig.2. Three different sites with ground photo and orthophotos with tree line and forest line (black lines). Sites
from left; Heimrabben — Lichen-pine forest, Danseren — Vaccinium-spruce forest (birch at tree line), and
Bjernsjoklettan — Lichen-birch forest.

4.3. LiDAR data

LiDAR data were acquired during summer 2006 with the Optech ALTM 3100 laser scanner.
Detailed parameters and settings for the acquisitions and sensors appear in Table 4. Parallel
flight lines were flown in east-west direction with a distance between adjacent flight lines of
6 km. The total length of all flight lines was more than 4500 km and the LiDAR dataset
consist of a sample of 8.4 % of the study area. The initial processing of the data was
accomplished by the contractor (Blom Geomatics, Norway). Planimetric coordinates (x and
y) and ellipsoidal height values were computed for all echoes. For each acquisition, ground
returns were determined using the Terrascan software (Terrasolid Ltd., 2004) and a
triangulated irregular network (TIN) was created from the echoes classified as ground
returns. Heights above the ground surface were calculated for all echoes by subtracting the

respective TIN heights from the height values of all echoes recorded.
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Table 4. Sensors and acquisition settings

Parameters

Platform PA31 Piper Navajo
Sensor ALTM 3100
Mean flying altitude AGL (m) 800

Pulse repetition frequency (kHz) 100

Scan frequency (Hz) 55

Half scan angle (deg.) 17

Mean flying speed (ms™) ca. 75

Mean pulse density (m?) 2.7°

Beam divergence (mrad) 0.26
Footprint diameter (cm) 21°

*Computed after Baltsavias (1999) based on mean acquisition settings.

4.4. Landsat data

Four different Landsat 5 TM images were obtained from USGS to covering the study area.
The scenes used were path 197 row 18 and 16 acquired on 3 June 2007 and path 198 row 18
and 17 acquired on 10 June 2007. The images were georeferenced using 1:5000 maps and
orthorectified using a DTM with 25 m spatial resolution. The images were resampled to the
size of the DTM during orthorectification. Furthermore, the orthorectified images were
converted to top of atmospheric reflectance (TOA) by the procedure developed by Han et al.
(2007). The TOA corrections account for differences in viewing geometry and sensor.
However, variations in absolute atmospheric conditions between images were not corrected.
The TOA corrected images were mosaiced together. The RMS of all four images was less
than 1/3 pixel. From the TOA corrected Landsat mosaic the normalized difference vegetation
index (NDVI) and the brightness, greenness and wetness from the tassel cap transformation

were derived and used (Crist & Kauth, 1986; Huang et al., 2002; Kauth & Thomas, 1976).

4.5. Digital elevation data

Digital elevation data were supplied by the Norwegian Mapping Authority as a DTM with
25m spatial resolution. From the DTM, elevation, slope, solar radiation and curvature were
derived and utilized. Slope was computed for each raster cell in the DTM using the average
maximum technique on a fitted plane to a 3 x 3 cell neighborhood (Burrough & McDonell,
1998). Global solar radiation in watt hours per square meter (WH m™) was computed using
the DTM in accordance with Fu and Rich (1999). Curvature describe the shape of the terrain
and was computed in a 3 x 3 cell neighborhood (Moore et al., 1991; Zeverbergen & Thorne,
1987). In addition, the location (latitude and longitude) of the pixels was used in the

modeling.
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4.6. Procedure for delineate the subalpine zone

Fig. 3 outlines the proposed procedure for obtaining the full coverage map of the subalpine
zone. The flow chart introduces the input data described above. During Step 1, the procedure
identifies cover types- forest, alpine and subalpine areas in the LIDAR data, using a heuristic
classification. Step 2 describes the use of LiDAR-, satellite- and spatial data layers to produce
a map showing the probability of forest. Furthermore, alpha-cuts were identified to produce a
map with hard classes i.e. the cover types- forest, alpine and subalpine. At last, the accuracy
of both the LiDAR derived classes and the full coverage class map produced was assessed.
The two steps of the procedure and the accuracy assessment are described in further detail

below.

{ Field LiDAR [ Landsat J DTM

DATA

Heuristic

classification
{height & canopy cover)

Step 1
Step 2

(NDVI + Tassel Cap) TR (Latitude, Longditude)

" J O
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(Forest, alpine, subalpine zone)
[ Y-variables } Model

- N\
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Probability map
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e T

] —

Validation Validation
(See: Fig. 4) ] [ Test-set J (error matrix)
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Fig. 3. Flow chart describing input data, analysis and accuracy assessment.

4.6.1. Identify the subalpine zone using LiDAR data (Step 1)

A heuristic classification procedure for automatically assigning an area to a cover type was
developed. The point cloud obtained from LiDAR sensors can be viewed as a sample of the
forest canopy where each echo (x, y, z — point) is a sample point. Classifying the point

according to presence or absence of canopy makes the point cloud a sample of a binomial
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distribution (canopy vs. not canopy). Hence, the canopy cover can be computed as the
number of echoes in the canopy over the total number of echoes:

=" (1)
where C is canopy cover, N, is number of first returns in canopy, and », is total number of
first returns. Similar approaches have frequently been used (c.f. Hopkinson & Chasmer,
2009). Canopy hits were defined based on a height threshold. One height threshold was used
for defining tree canopy (H7.s) and one threshold was used for defining shrubs and trees
(HT sppub+1rees)- The height thresholds were used to separate canopy returns (N,) in Eq. 1. The
canopy thresholds were set in accordance with the heights in the FAO definitions (H7ees = 5
m and HTuup+mees = 0.5 m). Hence, canopy cover for trees (Cyees) Was computed as the
number of first returns above 5 m divided by the total number of first returns. Canopy cover
for trees and shrubs (Cynupimees) Was computed as the number of first returns above 0.5 m
divided by the total number of first returns. Then the classes, i.e., forest, alpine or subalpine

zone, were assigned according to this pseudo code:

if( Cirees > CT1)
class = forest
else
f(Crrees™> CT5 01 Coprupirees > CT1)
class = subalpine zone
else

class = alpine

where CT; and CT, represent the two different canopy cover thresholds. The canopy cover
thresholds used to assign classes were C7; = 0.10 and C7>= 0.05 which correspond to the

canopy coverage values in the FAO definitions of forest and other wooded land.

4.6.2. Model and map the subalpine zone using full coverage data (Step 2)
To predict the cover type based on the Landsat and other data with full areal coverage, a
binomial logistic regression was estimated (Eq. 2). The spectral indices (NDVI, brightness,

wetness, and greenness), elevation, slope, solar radiation, curvature, and location variables
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(latitude and longitude) were candidate variables in the estimation. The initial model

including all candidate variables was of the form:

n(FOREST) \ _
log (m) = Bo+ Pixyit .. + PrX )

where mroresT) 1s the probability of a pixels being forest, Bo, B1 - Pk are fixed parameters and
X - X; are the variables used. Variable selection was conducted using a manual backward
elimination process. In addition, highly correlated variables were removed to avoid co-
linearity. The reference data included plots of size 625m’, equal to pixel size, laid out every
3" km along the LiDAR transects. Reference data were pre-stratified according to the
potential subalpine zone area using the DTM. Only areas between 675 and 1150 m asl were
included in the analysis. A total of 534 reference plots, where the LiDAR derived cover type
was forest or alpine, were used in the binomial logistic regression. The fit of the final model
was evaluated with Naglekerkes R* (Nagelkerke, 1991), the deviance test and the Hosmer-
Lemeshows goodness-of-fit test (Hosmer et al., 1997).

The final binomial logistic regression model was used to predict a probability surface
in the potential subalpine area in Hedmark. The probability surface represents the probability
of an area, a pixel, being forest. Even though ecotones are best represented by a probability
surfaces a hard classification is often needed when presenting thematic maps of the subalpine
zone or when information will be used in international reporting (Hill et al., 2007). Hill et al.
(2007) tested two approaches to present the probability surface as a thematic map using
alpha-cuts. In the current study we used the probability of forest for the reference plots,
estimated by the binomial logistic regression model and probability density functions to
identify alpha-cuts. Separate density functions were estimated for the three cover types
(forest, alpine and subalpine) using a Gaussian kernel and bandwidth of 0.05 (R Development
Core Team, 2009). Then the alpha-cuts were set for the upper and lower boundaries where
the subalpine zone according to the density functions had a higher density than forest and

alpine areas.

4.6.3. Accuracy assessment
The accuracy of the LIDAR derived cover type classes was validated with the field measured
forest- and tree lines. At the 26 field locations three cover type classes (forest, alpine,

subalpine zone) were determined (Fig. 4a). The cover type map (Fig. 4A) was validated
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against the field measured tree- and forest lines separately. In the accuracy assessment an
image gradient based method was utilized (Pitas, 2000; Wulder et al., 2007). In the LiDAR
cover type map either forest or alpine was subset. Hence, the two classes were treated
separately (Fig. 4B). Furthermore, the rate of change in a local neighborhood was computed

for both cover types separately as the gradient:

|Vf(x;JJ)| = \/ [f(x+ 1:)’) _f(x»}’)]z + [f(x:JJ"' 1) _f(x;}")]z (3)

where |Vf(x,y)| is the gradient and x and y are row and column in the raster file created at
each location. The computed image gradient (Eq. 3, Fig. 4C) was combined with information
about the distance to the field measured line (Fig 4D). Furthermore, image gradient values for
different pixel distances from the field measured lines were averaged over all field locations.
The largest values indicate the strongest gradient or highest rate of change in classes between
pixels.

In order to evaluate the use of canopy coverage thresholds and height thresholds in the
heuristic classification of LiDAR data a sensitivity analysis of these thresholds was
conducted. Hence, different height thresholds (H7jees = 2 — 10 m and HT gppup+srees = 0.25 — 1
m) and canopy coverage thresholds (C7; = 0.055 — 0.20 and CT, = 0.005 — 0.15) were tested.
The mean gradient value at the forest- and tree line, respectively were recorded for every
combination of height and canopy cover thresholds. In addition the number of pixels from the
peak of the image gradient to the field measured line was evaluated for both the forest- and
tree line.

The logistic regression model and the alpha-cut were validated using a test dataset
which covered the plots located = 1 km in the east — west direction of the calibration plots.
The test dataset plots were classified according to Step 1 (Section 4.6.1). The classification
accuracy of the binomial logistic regression model and alpha-cuts was validated both for the

calibration and the test datasets.
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Fig. 4. Illustration of the accuracy assessment of the heuristic cover type classification from LiDAR (See section
4.9). A is the cover type classification. The forest and alpine cover types are treated separately through the
subsequent steps (B) and the image gradient (Eq. 3) are computed (C). The gradient values (C) are combined
with the distance to the field measured line (D) to produce average gradient values at different distances from
field measured lines.
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5. Results

5.1. Accuracy of heuristic LIDAR cover type classification

The predicted forest- and tree lines showed a good correspondence with the field measured
lines (Fig 5). The average image gradient values peak at the location of field measured lines.
Consequently, the heuristic classification of the LIDAR data shifts most frequently between
pixels near the field measured lines. The high gradient values below the field measured forest
line reflect the patchiness of the forest near the forest line (Fig. 5). In the subalpine zone and
in the alpine area the gradient values are low. Hence, the vegetation above the forest line
appears more homogeneous as classified by LiDAR data. A visual inspection of all the field
locations indicated that four forest lines (15.4 %) and two tree lines (7.7 %) did not have a
satisfactory accuracy. Examples from three of the 26 field locations illustrating accuracy and
errors of the heuristic LIDAR cover type classification appear in Fig. 6.

The sensitivity analysis presented in Fig. 7 demonstrates that the accuracy in pixels
obtained was indifferent to the selection of height and canopy cover thresholds. The offset
was within plus or minus one pixel (50 m) for many combinations of height- and canopy
cover thresholds. However, the selected height and canopy thresholds corresponding to the
FAO definitions were close to having the highest average image gradient values as illustrated
in the contour plots in Fig. 7. Higher values could be obtained by reducing the height
threshold by 0.5 m. Minor changes in the canopy coverage thresholds, e.g. by 0.01 units, did

not affect the accuracy at all.

Forest line Tree line
L L
Subalpine zone : Alpine

0.30
L

Forest : Subalpine zone

Relative image gradient
0.10 0.15 0.20 0.25
I I
Relative image gradient
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0.10
1

0.05
1

0.05
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0.00
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Fig. 5. Results of the accuracy assessment of the heuristic cover type classification from LiDAR. The average
image gradient values (Eq. 3) for different distances from the field measured forest- (left) and tree lines (right).

The field measured forest- and tree lines appear as vertical dotted lines.
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Fig. 7. Results of the sensitivity analysis were different height (x axis) and canopy thresholds (y axis) are used in
the heuristic LIDAR classification of cover types (forest, subalpine zone and alpine). The contours represent
average image gradient values (Eq. 3) at the field measured forest (left) and tree lines (right). The distance from
the highest image gradient value (Eq. 3) to field measured forest- and tree lines are represented by the number of
pixels offset in gray scale from 1 to 7. The dashed lines represent the values initially used in the current study.

5.2. Accuracy of subalpine mask

The selected variables and fit statistics for the estimated binomial logistic regression model
are presented in Table 5. The two Landsat variables greenness and NDVI were highly
correlated (r = 0.85). During the modeling NDVI was selected because of better models
obtained compared to using greenness. We included both NDVI and brightness because of
the significant contribution of both indices to the model. The elevation and slope variables
derived from the digital terrain model were strong explanatory variables. However, neither
the solar radiation nor the curvature provided additional information. Wetness and longitude
were significant variables in the model following a backward elimination procedure
(0.05>p>0.01). However, the variables were removed to get a simpler model without an
essential reduction in Akaike information criterion (AIC). The Hosmer and Lemeshow
statistics (Hosmer et al., 1997) indicated that the final model fitted the data sufficient well (p
= 0.40). The proportion of variation explained by the model expressed by Nagelkerke’s R*
was 0.73.

Alpha-cuts were selected according to the probability density functions estimated for
the three cover type classes (Fig. 8). The crossing of the subalpine and alpine density
functions in Fig. 8 resulted in a lower alpha-cut of 0.16 and the crossing of forest and
subalpine resulted in an upper alpha-cut of 0.79. Hence, pixels having a probability of forest

between 0.16 and 0.79 were classified as subalpine zone. The selected alpha-cuts resulted in
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an overall classification accuracy of 68.8 % and a kappa value of 0.52. The error matrix for
the calibration and the test data sets appear in Table 6.

Predicting the probabilities for every pixel in the county and assign classes to the
pixels based on the estimated alpha-cut values resulted in a map of the subalpine zone in

Hedmark with a total area of 3660 km?, representing 14% of the land area in Hedmark.

Table 5. Parameters and fit statistics for the logistic regression model.

Coefficient Estimate Z p-value
Intercept 4.088e+00 2.56 0.010
NDVI 1.783e+01 8.60 0.000
Brightness -1.997e+01 -6.38 0.000
Elevation -1.038e-02 -5.93 0.000
Slope 1.040e-01 3.33 0.001
Latitude 1.305e-05 3.54 0.000
Model fit:

Hosmer-Lemeshow goodness of fit" -0.85 0.397
Deviance test 1

"Hosmer-Lemeshow goodness of fit (Hosmer et al., 1997)
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Fig. 8.The probability density functions for forest, alpine and subalpine zones used to set alpha-cuts. The
resulting alpha-cuts are displayed as vertical lines.
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Table 6. Error matrix and accuracy measures of the class map created using logistic regression and alpha-cuts.

References
Subalpine User
Forest zone Alpine Sum accuracy

Calibration dataset:
Forest 126 19 5 150 84.0
Subalpine zone 61 68 81 210 324
Alpine 7 22 254 283 89.8
Sum 194 109 340 643
Producer accuracy 64.9 62.4 74.7
Overall accuracy 69.7
Kappa 0.53
Test dataset:
Forest 274 115 7 396 69.2
Subalpine zone 55 133 47 235 56.6
Alpine 25 161 495 681 72.7
Sum 354 409 549 1312
Producer accuracy 77.4 32.5 90.2 0
Overall accuracy 68.8
Kappa 0.52

6. Discussion
In this study, the subalpine zone in Hedmark County, Norway was successfully mapped. The
method presented benefited from utilizing high spatial resolution LiDAR data sampled for
parts of the county. A heuristic classification of the LiDAR data enabled an accurate
depiction of the subalpine zone over a large geographical area without calibration based on
field measurements. The information derived from LiDAR data was combined with Landsat
and elevation data to produce full coverage maps of the subalpine zone. Collecting expensive
field data from remote mountainous areas is not needed using this method. The current study
demonstrate that a national forest inventory utilizing scanning LiDAR operated as a strip
sampling tool (Nesset et al., 2009) may exploit the LiDAR data and additional remote
sensing data to derive the area of the subalpine zone without increasing field inventory costs.
An improved capacity for the national forest inventory to capture the entire forested
area, rather than limited to managed forest areas at lower altitudes, is increasingly desired and
may be aided by the approach presented here. The ability to portray transitional areas
enhances our ability to monitor and report on carbon stocks and change and to ensure that all
relevant forested areas are included. Studies of climate change may also be aided by the
ability to map the subalpine zone over large areas. Hence, changes in the subalpine zone can
be monitored over vast areas and not only at specific sites. Changes found over time will be

important for describing the change processes and the rates of transition among cover types.
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LiDAR measures both tree height and canopy cover precisely (Table 1). The current
study utilized tree heights and canopy cover derived directly from LiDAR data. However,
these variables are only proxies for the real values. A LiDAR pulse will always penetrate into
the canopy before an echo is trigged (Gaveau & Hill, 2003; Orka et al., 2010). In previous
studies, canopy cover has often been derived for measurements above a certain height
threshold often equal to the height where reference data were collected with e.g. hemispheric
camera (e.g. Riano et al., 2004). The current study used height thresholds of 0.5 and 5 m,
which is in accordance with international forest definitions. The sensitivity analysis
preformed in the current study confirmed the penetration of LiDAR echoes into the canopy.
The accuracy of both forest- and tree lines would have been slightly improved in the heuristic
LiDAR cover type classification with height threshold values approximate 0.5 meter lower
than those used. Changing the canopy coverage thresholds in the sensitivity analysis did not
increase the accuracy of the heuristic classification.

Different LiDAR sensors and acquisition settings are known to affect the
measurements of forest canopies (Naesset, 2005; Orka et al., 2010). Hence, flying with a
different sensor, a different pulse repetition frequency or flying at higher altitudes will affect
the penetration into the canopy (Chasmer et al., 2006; Nesset, 2009b; Orka et al., 2010). The
distance an emitted LiIDAR pulse has to penetrate into the canopy before an echo is recorded
will affect the LiDAR proxies used for tree height and canopy cover directly. Tree height
underestimation compared to true tree height was in the range of 0.35 — 1.47 m in another
subalpine area in Norway (Nesset, 2009a). The underestimation in the study by Nasset
(2009a) was affected by sensor and acquisition settings together with tree species and the
terrain model. Differences in measurements obtained with different sensors and acquisitions
usually necessitate field data for properly calibration of models. In the current study focus
was on large area inventory and on areas with low economical value where no alternative
methods are currently available. Thus, the need for an accurate calibration was judged to be
less relevant. Hence, using information directly derived from the LiDAR data will add value
to the current inventory without increasing costs. However, proper calibration with
information from field plots would undoubtedly increased the accuracy, but also costs.

When mapping the forest- and tree lines in the field the uppermost line was followed.
Hence, there could be areas with lower density of trees or lower tree heights below the
mapped areas. In Fig. 6, the site at Litbutjenn illustrates such a case. In the south there are
areas matching the criteria of the subalpine zone about 100 meters after an open/alpine area.

When following the tree line to the north the tree density slightly decreased and thus an error
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was made when mapping the tree line in field. At the Danseren site, only minor errors were
introduced by following the forest line. The third location in Fig. 6, Tittelsjeen, the LIDAR
derived forest line was affected by the species composition at the location. The tree species
will influence the LIDAR measurements (Nesset, 2009a; Orka et al., 2009). At Tittelsjon, the
tree line is abrupt and formed by birch and was well delineated with the classification of
LiDAR data. The forest line is diffuse and comprised of spruce trees. The spruce trees have a
conical form and hence the canopy cover at base is much greater than the canopy coverage at
5 m. LiDAR will therefore underestimate canopy coverage significantly at that spruce
dominated site.

The binomial logistic regression model developed included five variables important
for characterizing the subalpine zone in Hedmark. Two Landsat derived variables were used
in the model, NDVI and brightness. The two variables describe different vegetation (NDVI)
and non-vegetation (brightness) properties. The probability of forest increase when NDVI
increase and brightness decrease. For the DTM derived attributes, altitude and slope were
important. Higher altitudes reduce the probability of forest and steeper slopes increase the
probability for forest. Even though solar radiation and topographic position illustrated by
curvature ought to be important for tree growth, these variables were not statistically
significant. In tropical Andes, altitude, aspect and a compound topographic index was
significant when estimating the probability of forest (Bader & Ruijten, 2008). The only
common variable with the current study and the study by Bader and Ruijten (2008) was
altitude, which indicates the importance of altitude as an overall driving factor for forest- and
tree lines.

The accuracy obtained for classification with the binomial logistic regression model
and alpha-cuts was within the range of expected accuracies in satellite image classification
(Wilkinson, 2005). The current study tried to mask out a transition that has a high degree of
mixing with the two classes forming the transition (Table 6). In light of the high mixing that
occurred, the obtained accuracy was considered acceptable for area estimation and
monitoring transitions over large areas.

In the current study, only the alpine transition zones were registered. However, the
heuristic classification of LiDAR data did not distinguish between forest-alpine transitions
and other forest — non-forest transitions inside the potential area for the subalpine zone.
Hence, the areas below the forest zone will include other transitions zones and also non-
forested areas (Fig. 5). Transitions occurring in the forest may consist of mountain peat lands

or transitions related to change in nutrient level, e.g. from deep soils to bare rock. Hence,

24



Paper 1V

enhancement which including land cover classification could be implemented to improve the
separation of these transitions.

The remote sensing products produced in the current study are important in
monitoring areas in the subalpine zone. Maps of changes in the subalpine zone over time can
be combined with information about human activity and grazing by animals etc. to separate
the response of climate change on the tree lines from effects of land use change. As pointed
out by Hill et al. (2007), hard classifications of ecotones are often needed for map products.
Hill et al. (2007) used two different approaches to produce alpha-cuts used to divide the
subalpine zone into classes. In the current study a new method for dividing the probability
surface into hard classes was presented. As opposed to the methods presented by Hill et al.
(2007), our method uses information about ecotone derived using LiDAR to produce these
alpha-cuts. The proposed method produces a hard classification from which an estimate of
the area of the subalpine zone can be derived. The method described also has a probability
surface as one of its products. Probability surfaces or results from soft classifiers are more
robust in monitoring and change detection in transition zones (Foody, 2001). In the alpine
environment, it has been reported that diffuse tree lines are more likely to have advanced than
krumholz and abrupt tree lines (Harsch et al., 2009). Therefore, monitoring of the subalpine
zone is best done by using the probability map, but the classified map provide area estimates
and a tool for estimating the biomass using LiDAR-assisted inventory procedure such as

those proposed by e.g. Nasset et al. (2009).

7. Conclusions

The procedure proposed in the current study will be suitable for mapping current state and
monitoring future changes in the subalpine zone at a regional scale. The method for
delineating subalpine using samples of LiDAR data is simple, heuristic and straightforward.
The use of logistic regression and alpha-cut provide both a hard classification usable for map
products and area estimation and a probability surface suitable for monitoring purposes. The
method can also be extended to other types of transition between forest and non-forest. If
detailed monitoring is requested, for example monitoring of regeneration, growth, and
mortality of single trees, then methods utilizing field calibration based on a statistically sound

sample of ground data are indeed required.
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