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ABSTRACT 
Forest inventory has benefited from remote sensing for more than 80 years. Spectral 

information from aerial cameras has been the dominant data source during this period. 

However, over the past decade the use of three-dimensional data from airborne laser scanning 

(ALS) has substantially improved the accuracy of forest inventory, although there currently 

seems to be certain limitations for ALS in terms of providing tree species information, wall-

to-wall maps in large area inventory and multi-temporal acquisitions in forest monitoring. In 

all of these cases, spectral information may be complementary to three-dimensional 

information, and the combination of the two data sources may improve both forest inventory 

and monitoring. In this thesis, the potential for combining three-dimensional data from ALS 

and spectral information recorded by ALS (intensity), as well as multispectral aerial cameras 

and satellite sensors, was investigated. This thesis focuses on tree species identification, 

delineation of the subalpine zone and the quantifying effects of sensors and seasons in multi-

temporal acquisitions. Improvement in the accuracy of tree species identification was 

obtained in relation to both intensity and spectral information from aerial imagery. Aerial 

imagery seems to be a more stable spectral data source for tree species identification 

compared to intensity. A correct species identification for 85 – 90% of the dominant trees 

seems within reach. Moreover, it was revealed that both the three-dimensional and spectral 

information from ALS were affected by the sensor used and the season of data acquisition. At 

the moment, calibration with contemporary field measurements is needed for individual 

acquisitions. Estimates of individual tree height and stem diameter can be accurately derived 

for all multi-temporal acquisitions when calibrated with field data. Tree species identification 

was significantly better under leaf-off than leaf-on canopy conditions, but did not differ 

between sensors. Furthermore, a sample of three-dimensional data covering 8.4% of 

Hedmark County, Norway, was combined with full coverage Landsat imagery to help 

delineate the subalpine zone. The delineation of the subalpine zone boundaries was found to 

be accurate. Combining three-dimensional and spectral information may improve forest 

inventory and monitoring in many circumstances, although challenges and costs are increased 

by using multiple data sources and must be compared against the advantage of the higher 

information level obtained.  
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SAMMENDRAG 
I skogtaksering har man hatt nytte av fjernmålte data i over 80 år. Spektralinformasjon fra 

flybilder har vært den dominerende datakilden gjennom disse årene. De siste 10 årene har 

imidlertid tredimensjonale data fra flybåren laserscanning (FLS) vesentlig forbedret 

skogtakseringen. Sammenligning av FLS med andre metoder for fjernmåling har vist at FLS 

er den mest nøyaktige metoden for prediksjon av skoglig informasjon. FLS har likevel noen 

begrensinger, blant annet i forhold til å fremskaffe informasjon om treslag, gi heldekkende 

kart i regionale og nasjonale takseringer og i forhold til skogovervåkning som involverer 

multitemporale data. Der FLS har begrensinger kan spektral informasjon være komplementær 

til den tredimensjonale informasjonen. I denne avhandlingen undersøkes mulighetene for å 

kombinere tredimensjonal informasjon fra FLS med spektral informasjon fra FLS (intensitet), 

digitale flybårne kamera og satellitter. Avhandlingen fokuserer på treslagsidentifikasjon av 

enkelttrær, kartlegging av den subalpine sonen og på kvantifikasjon av effektene som følge 

av flygninger med ulike sensorer og til ulike årstider ved skogtakstasjon. Identifikasjonen av 

treslag basert på tredimensjonal data fra FLS ble forbedret med både spektrale data fra 

intensitet og fra flykamera. Flybilder ser ut til å være en mer stabil spektral datakilde enn 

intensitet. Korrekt identifikasjon av treslag for 85 – 90 % av de dominante trærne er innen 

rekkevidde. Videre ble det påvist forskjeller i både den tredimensjonale og spektrale 

informasjonen fra FLS mellom ulike flygninger med ulike sensorer og til ulike årstider. På 

det nåværende tidspunkt er både feltdata og FLS-data fra det samme tidsrommet nødvendig. 

Dette fordi predikert høyde og diameter på enkelttrær har god nøyaktighet når modellene er 

kalibrert mot feltdata uavhengig av sensor og årstid for flygning. Bruk av data fra flygninger 

som ble gjort da det ikke var lauv på trærne ga signifikant nøyaktigere treslagsklassifikasjon. 

I Hedmark ble tredimensjonal data som dekket 8.4 % av arealet, kombinert med fulldekkende 

spektral informasjon fra Landsat for å kartlegge den subalpine sonen. Grensene til den 

subalpine sonen ble med denne metoden nøyaktig estimert. Kombinering av tredimensjonal 

og spektral informasjon kan forbedre skogtaksering og skogovervåkningen under de fleste 

omstendigheter, men det er utfordringer og økte kostnader knyttet til å bruke kombinerte 

datakilder. Ulempene må vurderes opp mot fordelene ved økt tilgang på nøyaktig 

informasjon.  
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1. INTRODUCTION 
Knowledge about the state and development of forests is crucial for sustainable forest 

management and decision making at different spatial scales. Forest managers require 

information about individual trees, forest stands and the forest property. Information on forest 

biophysical properties such as volume, stem density, mean height and basal area distributed 

on tree species provide the basis for forest management planning. Public administration and 

policy makers need information about the forest resources on an administrative scale for the 

implementation, evaluation and development of forest policies. Administrative units could be 

the entire nation or regions within the nation. Today, reporting according to international 

conventions and agreements, particularly in relation to climate change, has increased the need 

for forest information on a national level.  

To obtain the required forest resource information a forest inventory is carried out, 

with the spatial scale of interest either being an individual tree, a stand, a region or an entire 

nation. Terrestrial surveys have and continue to be important in forest inventories. The first 

surveys utilized visual estimation of forest resources. During the 19th and beginning of the 

20th centuries objective measurements, the use of sampling techniques and developments in 

mathematical statistics increased the accuracy of forest inventories (Loetsch & Haller, 1964). 

In addition, progress in the field of forest inventory has benefited from the development in 

remote sensing, which started in Germany in the 1920s (Loetsch & Haller, 1964). The 

dominant remotely sensed data source over the ensuing 80 to 90 years has been aerial 

imagery, which provides both spectral information and information about the horizontal 

structure of the forests (Figure 1). Photo interpretation of aerial imagery has been utilized for 

stand delineation and derivation of certain forest attributes (Magnusson et al., 2007). As 

opposed to non-stereo aerial imagery, laser remote sensing has the capability to provide direct 

three-dimensional measurements of the forest canopy, including information about both the 

horizontal and vertical structure of forests. Over the past decade, the use of three-dimensional 

data from airborne laser scanning (ALS) in forest inventory has become operational (Næsset, 

2004). The three-dimensional measurements taken by ALS appear as a number of dense xyz 

coordinates (0.1 - < 10 m-2) referred to as a point cloud (Figure 1). Such three-dimensional 

information has significantly improved the efficiency of forest stand inventories (Eid et al., 

2004). Forest inventories supported by ALS is now the dominant method for obtaining forest 

resource information at the stand level within the Nordic countries, and is also becoming 

more and more used elsewhere. Furthermore, ALS is under development to support forest 
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inventories on the individual tree (Persson et al., 2002) and regional levels as well (Næsset et 

al., 2009). 

Figure 1 - Illustration of spectral information in natural colors acquired by an aerial digital camera (left) and 
three-dimensional information acquired using ALS (middle) from the same forested area. The right illustration 
shows the three-dimensional information from the same area in a side view. In the ALS illustrations, height (z) 

values are increasing from blue to red through green and yellow.  

Comparisons of ALS with other remote sensing methods such as RaDAR (RAdio 

Detection And Ranging) (Huang et al., 2009; Hyde et al., 2006; Hyde et al., 2007; Nelson et 

al., 2007) and optical sensors (Hyde et al., 2006; Hyyppä & Hyyppä, 1999; Lefsky et al., 

2001) have revealed that airborne laser is among the most capable remote sensing techniques 

in terms of accuracy for essential forest properties such as height, volume and biomass. 

RaDAR is also capable of capturing three-dimensional information, but faces the problem of 

saturation at certain biomass levels (20 - 250 Mg ha-1), which does not seem to be a problem 

when utilizing lasers (Balzter, 2001; Drake et al., 2002; Patenaude et al., 2005). Photo 

interpretation of stereo imagery also provides three-dimensional measurements, though the 

accuracy of important inventory properties is lower than when using ALS (Eid & Næsset, 

1998; Magnusson et al., 2007). As a result, when considering the accuracy of forest 

biophysical properties, ALS is the first choice in forest inventory and monitoring. Although 

ALS-based forest inventories provide high accuracies of forest biophysical properties, we 

face a few challenges when using ALS in relation to: 1) providing information about tree 

species, 2) providing wall-to-wall map products in large area forest inventories, and 3) in 

forest monitoring due to challenges with multi-temporal datasets.  

Information about tree species is an important parameter for forest inventories, 

although it is still not easily obtained from three-dimensional ALS data (McRoberts et al., 

2010). Since crown allometry, branches, leaf structure, etc. differ among species, the three-

dimensional point cloud obtained from ALS may have different characteristics for different 

tree species. One obvious example is the differences between spruce and birch. Spruce 
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crowns tend to be more conical while birch is more elliptical, whereas the branches and 

leaves of spruce and birch exhibit differences as well. Additionally, spectral information is 

known to offer species information (Brandtberg, 2002; Carleer & Wolff, 2004; Key et al., 

2001), especially the differences between coniferous and deciduous trees in near infrared 

wavelengths is well known. These two sources of information may be seen as complementary 

because three-dimensional data provide the structural characteristics and spectral data 

reflectance characteristics of tree species. Thus, combining three-dimensional and spectral 

information may improve tree species identification in comparison to only using three-

dimensional data.  

The use of airborne sensors for large area inventory is limited by the high acquisition 

costs. Hence, a strategy for using ALS in large area forest inventories is to sample the area 

using ALS and then utilize sampling theory to provide estimates for the biophysical 

properties of interests, e.g. utilize ALS as a strip sampling tool (Næsset et al., 2009). 

Therefore, no wall-to-wall map products can be presented which cover the entire area. In 

terms of medium spatial resolution satellite imagery, spectral information provides large area 

cover with appropriate spatial resolution at limited cost, which has relevance for many 

forestry applications (c.f. Cohen & Goward, 2004; Wulder, 1998). Utilizing such spectral 

information, together with ALS as a strip sampling tool, could provide additional information 

to large area inventories. The subalpine zone – the area between the forest and alpine 

vegetation communities – is an example of an area in which the demand for information is 

increasing. Substantial changes in the position and extent of the subalpine zone are expected 

as a result of a warmer climate. Today, low productivity or non-merchantable forests, such as 

those forests found in the subalpine zone, are not routinely subject to inventory programs in 

many countries. Combining remotely sensed three-dimensional and spectral information to 

map the subalpine zone is highly relevant because of the high field inventory costs in remote 

mountainous areas.  

So far, the utilization of ALS in forest monitoring is not very common. The primary 

reason for this is that monitoring is conducted at time intervals of 5 to 10 years, which 

corresponds to the period that ALS has thus far been used in forest inventory (Næsset, 2004). 

Consequently, ALS has yet to be developed for such tasks, though a few examples of forest 

monitoring using ALS over short time intervals does exist (e.g. Næsset & Gobakken, 2005; 

Solberg et al., 2006b; Yu et al., 2004; Yu et al., 2006). However, the analyses carried out in 

these studies might better be referred to as change detection, or change estimation, than 

monitoring. Forest monitoring, change detection or change estimation using multi-temporal 
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ALS data will without doubt be more common in the future. Even so, using multi-temporal 

ALS datasets remains a challenge, as the lifespan of ALS sensors is often less than four years. 

Monitoring programs often revisit areas after 5 to 10 years if no special events have occurred. 

In most cases, ALS data available for monitoring will therefore originate from different 

sensors. Technological developments in ALS sensors have advanced quite quickly, and 

sensor specifications and functionality are also rapidly changing. Over time, changes in 

sensors’ specifications and functionality may result in point clouds with highly different 

properties compared to previous campaigns. Moreover, seasonal differences, for example in 

relation to the phenology of trees, may also impact the properties of the point cloud. Such 

seasonal differences are well-known for influencing remotely sensed imagery (Jensen, 2000). 

The most extreme seasonal changes are those in the canopy conditions of deciduous trees 

between winter and summer (leaf-on/leaf-off). Systematical shifts in estimated properties 

caused by changing sensor properties or seasonal differences could exert an influence on 

conclusions inferred from multi-temporal observations by either under or overestimating the 

true changes, thereby alternatively making the changes undetectable. When both the three-

dimensional and spectral information are utilized multi-temporally, both sources of 

information must be evaluated based on differences between sensors and seasons. This area 

has been little covered in scientific literature, and it is necessary to quantify the differences in 

the point clouds between multi-temporal datasets, and how such differences influence forest 

inventory estimates, before ALS can be implemented in forest monitoring applications.  

In the three specific cases discussed above, in which three-dimensional data from 

ALS have limitations in forest inventory, the combination of ALS with spectral information 

may improve the capabilities, but also challenges, of such inventories. A combination of 

using different remote sensing sources is also referred to as data fusion, and is well-known in 

image remote sensing (Pohl & van Genderen, 1998). Expectations for the potential of 

combining ALS and spectral information were high 10 years ago, and were characterized as 

bringing airborne data acquisition to a new “revolutionary” level (Ackermann, 1999). In this 

thesis, I have investigated the potential for combining three-dimensional and spectral 

information in forest inventory and the resultant challenges from the use of such multi-

temporal information. The three-dimensional data used in the current thesis is the point cloud 

obtained from ALS. The spectral information tested comes from various sources, including 

the spectral information recorded by ALS for each three-dimensional coordinate. The 

monospectral signal recorded by ALS is referred to as the intensity, which is a measure of the 

energy recorded by the sensor from the backscattered signal. Aerial and satellite imagery are 
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two other sources of spectral information investigated. Such imagery is multispectral, 

meaning that reflectance is recorded for multiple electromagnetic wavelengths. Typically, 

reflectance values are recorded for the visible portion of light, e.g. red, green and blue, in 

addition to infrared reflectance in such multispectral sensors.  

The main objective of this thesis was to investigate the potential of combining 

remotely sensed three-dimensional and spectral information for forest inventory and 

monitoring purposes. In order to achieve this, the specific objectives of the thesis concentrate 

on: 1) individual tree species identification using three-dimensional and intensity information 

from ALS (Papers I, II & III), 2) combining three-dimensional measurements from ALS with 

digital multispectral aerial images for tree species identification (Paper III), 3) combining 

three-dimensional measurements from ALS and medium spatial resolution multispectral 

satellite images for providing a wall-to-wall map of the subalpine zone (Paper IV), and 4) 

studying the effects of different sensors and seasons on the ALS measurements, which is 

highly relevant for an assessment of how ALS data can best be used for forest monitoring 

purposes (Paper II and part of Paper III). Figure 2 illustrates the relationship between the 

specific objectives and individual papers of this thesis.  

 
Figure 2 – The relationship between the specific objectives, papers and data sources  

brought together in the current thesis 
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2. BACKGROUND 
2.1. Approaches for combining three-dimensional and spectral information 

The combining of various data sources is a strategy to improve the accuracy of remote 

sensing products. Different approaches for data fusion are described in the literature. 

Hutchinson (1982) presented approaches for combining map-based ancillary data (e.g. maps 

of geology, soils, vegetation or topography) and spectral satellite information. In addition, 

Pohl and van Genderen (1998) review various approaches for combining the imagery of 

different spatial, temporal and spectral resolutions. Many of the approaches described by 

Hutchinson (1982) and Pohl and van Genderen (1998) may be directly used when combining 

the three-dimensional information obtained from ALS with spectral information. Table 1 

summarizes these approaches in relation to the combining of three-dimensional and spectral 

information, and examples of the different approaches utilized in forest inventory are 

presented.  
Table 1 - Overview of approaches utilized for combining three-dimensional  

and spectral information in forest inventory 
 

Approach Description Example reference 
Information level  Process data source individually for 

information extraction. 
Koukoulas & Blackburn (2005) 

Model inclusion Three-dimensional and spectral data are both 
included in models, e.g. used for the 
prediction or classification of forest or tree 
properties. 

Hyde et al. (2006) 
Schreier et al. (1985) 

Extrapolation 
 

Relationships between three-dimensional 
estimates of forest properties and spectral 
derived variables are established and used to 
create predictions over an area larger than the 
extent of the ALS data.  

Hudak et al. (2002) 
Wulder & Seemann (2003)  

Stratification One data source is used to produce strata, e.g. 
for laser model development or area 
estimation in sample-based approaches.  

Næsset (2004) 
Nelson et al. (2004) 
 

Post-classification Biophysical forest properties are predicted 
using one data source. They are further 
distributed with the estimates from another 
data source, e.g. ALS estimated volume is 
distributed for tree species based on the 
species’ proportions obtained from spectral 
information. 

Packalén & Maltamo (2006) 

 

2.2. Three-dimensional information for forest inventory 

ALS is a remote sensing method operated from an aircraft based on LIght Detection And 

Ranging (LiDAR) technology. LiDAR is also known as laser altimetry and is operated from 
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multiple platforms, including aircrafts such as airplanes and helicopters. In addition, LiDAR 

systems operated on the ground are referred to as terrestrial LiDAR and those carried by 

satellites are known as spaceborne LiDAR. Moreover, various technical implementations 

using LiDAR exist and are used in forestry applications. 

LiDAR technology is an active method which means that it emits light. The light 

emitted by airborne LiDAR sensors is usually a short, 10 ns (3 m), infrared pulse (Baltsavias, 

1999). The main principle of LiDAR is ranging, with pulse ranging being the most common 

method used, although other methods also exist (Wehr & Lohr, 1999). In pulse ranging, the 

distance between the sensor and the target is determined by converting the elapsed time 

between emission and detection of a pulse by the sensor to a range by multiplying half the 

travel time with the speed of light (3 × 108 m s-1). Furthermore, the emitted pulse is 

georeferenced such that the position of the target can be determined. One such measurement 

will appear as an xyz coordinate in the laser point cloud (Figure 1). A single point 

represented by the x, y, z coordinates is referred to as an echo. With airborne sensors, the 

georeferencing of the emitted pulse is achieved by global navigation satellite systems (GNSS) 

and inertial navigation systems (INS).  

When the emitted pulse hits a surface it will cover a specific area, which is called the 

laser “footprint.” Based on a specific footprint size obtained with a system, the system can be 

classified as small footprint (< 1 m) and large footprint (> 5 m) LiDAR. The large footprint 

systems are research systems primarily developed to support satellite missions (Blair et al., 

1994; Blair et al., 1999). Small footprint sensors were originally developed for topographic 

mapping, which is still the most important application of small footprint LiDARs. LiDAR 

systems can be grouped into discrete return (DR) or full-waveform recording (FW) sensors. 

The information recorded by LiDARs differs between DR and FW sensors. DR sensors 

typically record one to four echoes or height measurements per emitted pulse based on the 

backscattered light. In contrast, FW sensors record the entire backscattered energy in narrow 

bins. FW systems typically record backscattered energy at a rate of 0.5–2 ns, which is 

equivalent to 15–60 cm vertical bins. The majority of large footprint systems are FW 

systems. Additionally, the first small footprint systems used in forestry were FW sensors 

(Aldred & Bonnor, 1985; Nilsson, 1996). Today, the majority of commercial ALS sensors 

available are small footprint DR sensors. Small footprint  FW systems were not commercially 

available until 2004 (Mallet & Bretar, 2009).  

Moreover, LiDARs may be grouped into profiling systems and scanning systems. A 

scanning system has a scanning device which distributes the emitted pulses in different 
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directions so that a corridor beneath the aircraft is covered. Overlapping parallel flight lines 

enable wall-to-wall mapping of an area. A profiling LiDAR only provides xyz data from a 

narrow strip directly underneath the aircraft, creating height profiles across the landscape. 

The first LiDARs developed were profiling systems. Nowadays, scanning systems dominate 

forest inventory. In the current thesis, the LiDAR technology and system used are small 

footprint discrete return airborne scanning sensors. 

To the best of my knowledge, the first published attempts to use airborne lasers to 

measure forests was conducted three decades ago by the Leningrad Scientific Research 

Institute of Forestry in the Soviet Union (Solodukhin et al., 1977). In the beginning of the 

1980s similar studies were conducted in North America (Aldred & Bonnor, 1985; Nelson et 

al., 1984). Forest properties such as tree height, biomass and stem volume were estimated 

highly accurately by airborne lasers (Aldred & Bonnor, 1985; Maclean & Krabill, 1986; 

Nelson et al., 1984; Nelson et al., 1988).  

 Forest inventory using ALS has been operational since 2002 (Næsset, 2004). The 

ALS-based forest inventory first implemented in Norway is referred to as the area-based 

method. The target for this method is to provide accurate estimates of biophysical properties 

on the stand level. The method uses a two stage approach in which stand delineation and pre-

stratification are obtained from photo interpretation of aerial images. Field measurements of 

forest properties from accurately georeferenced sample plots are related to three-dimensional 

measurements taken from exactly the same area, and prediction models are developed. The 

entire area of interest is gridded into gird cells that are the same size as the sample plots. The 

three-dimensional measurements inside each of these grid cells and prediction models 

developed are exploited to estimate the biophysical property of interest. The predicted values 

for all grid cells within a stand are then summarized to obtain stand values.  

Another concept is to base the inventory on the identification and characterization of 

individual trees in the inventory area of interest The potential of such individual tree methods 

has been demonstrated in a number of studies in which properties such as tree position, tree 

height and tree volume have been accurately predicted, at least as far as dominant trees are 

concerned (Maltamo et al., 2004; Persson et al., 2002; Solberg et al., 2006a). Individual tree 

methods are used operationally and have been commercially available from at least 2006 

(Johansson, 2007). However, a major problem for individual tree methods is that only 

dominant trees (or co-dominant) can be identified. Studies have shown that approximately 

50% of trees are indentified in heterogeneous forests and about 75% in more homogeneous 

forests (Persson et al., 2002; Solberg et al., 2006a). Another drawback is that this method 
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requires high pulse density ALS data, which thereby increases costs compared to the area-

based method. The advantages of individual tree methods is that less field data for calibration 

is required and that additional information about the forests can be gained, which otherwise 

may be hard to obtain in an economically feasible way (Hyyppä et al., 2008).  

Hybrid methods concerning a combination of area-based and individual tree-based 

methods also exist. The most frequently used hybrid inventory methods are based on 

measurements of individual tree properties using ALS and then aggregating this individual 

tree information over plots or stands (Breidenbach et al., 2010; Hyyppä et al., 2001; Popescu 

et al., 2002). More information-driven approaches, e.g. utilizing both methods to provide 

supplementary information or utilizing individual tree methods in specific stands of high 

economical value, are yet not common according to my understanding.  

For large area inventories covering counties, states or provinces, LiDAR may be used 

as a sampling tool. The first regional forest inventory with LiDAR was conducted in 

Delaware in the US (Nelson et al., 2003a). In the Delaware study, a profiling LiDAR was 

operated. Airborne profiling lasers have proven their capability in establishing regional 

estimates of biomass and carbon at both the state and provincial levels (Boudreau et al., 2008; 

Nelson et al., 2004). Such sampling-based applications utilizing data from ALS have recently 

been demonstrated along with the development of statistical estimators required to yield 

statistically sound estimates for the area in question (Andersen et al., 2009; Gregoire et al., 

2011; Ståhl et al., 2011). 

2.3. Monospectral information from ALS: intensity 

In addition to the three-dimensional information, most ALS systems record spectral 

information based on the backscattered laser signal (Wehr & Lohr, 1999). This spectral 

information is frequently referred to as intensity. For discrete return lasers, intensity often 

represents the peak amplitude of the returned pulse. However, sensor algorithms for both 

echo triggering and intensity recordings are proprietary to the sensor vendors, and accurate 

descriptions of the intensity recordings are normally not available. The intensity captured by 

current commercial LiDAR systems offers a radiometric resolution of 8-bit, 12-bit or 16-bit 

(Höfle & Pfeifer, 2007). The wavelength of the emitted pulse and the subsequent recorded 

wavelength is 1064 nm in most commercial LiDAR systems used for forestry applications. 

The main focus of LiDAR sensor vendors has been to provide accurate three-dimensional 

measurements for topographic mapping. Hence, the intensity recorded has been of little 

interest, although a decade ago researchers began to explore the possibilities of utilizing this 
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information for forest inventory purposes (Brandtberg et al., 2003; Holmgren & Persson, 

2004).  

The main reason for the limited use of intensity is that the intensity provided by ALS 

is noisy. The recorded intensity value is dependent on many factors, such as the range from 

sensor to target, incidence angle, atmospheric transmittance and transmitted power (Ahokas 

et al., 2006; Wagner et al., 2006). Calibration or normalization of the intensity to remove 

noise associated with some of these factors is suggested as being necessary to fully employ 

the potential of intensity data (Ahokas et al., 2006). Calibration methods based on both 

physical and more data-driven approaches are suggested (Ahokas et al., 2006; Coren & 

Sterzai, 2006; Höfle & Pfeifer, 2007). Of all the previously mentioned factors, normalization 

based on the range from the sensor to the target, known as range normalization, is the most 

mature. Methods to normalize intensity caused by sensors specific properties have been 

developed, e.g. normalization based on the Automatic Gain Control of Leica sensors 

(Korpela, 2008) and for the differences in intensity between scan directions in Optech 

Airborne Laser Terrain Mappers (ALTM) sensors, which is referred to as banding (Paper III).  

The use of intensity was demonstrated for discrimination between coniferous and 

deciduous trees as far back as 1985 (Schreier et al., 1985). Since the pioneering study by 

Schreier et al. (1985), the use of intensity has been little explored up until a few years ago 

(Hyyppä et al., 2008). Intensity has shown potential in forest inventory for improving 

biophysical properties following the area-based method (Hudak et al., 2006; Lim et al., 2003) 

and individual tree methods (Vauhkonen et al., 2010), both with raw and normalized 

intensities (Kim et al., 2009a; Korpela et al., 2010). The use of range normalized intensity 

provided more accurate predictions of biomass fractions (total aboveground, branches and 

foliage) than models utilizing three-dimensional information following the area-based 

method (Garcia et al., 2010). In addition, intensity was utilized to estimate live and dead 

biomass in mixed coniferous forests in the US, with the intensity being of vital importance 

for the estimation of dead biomass (Kim et al., 2009b). In a study by Hudak et al. (2006), the 

combination of three-dimensional and intensity variables had a higher accuracy than those 

methods only using three-dimensional variables when modeling basal area following the 

area-based method. Hudak et al. (2006) also reported that tree density was better estimated by 

only utilizing intensity, rather than three-dimensional variables. A large number of studies 

include both three-dimensional and intensity variables in tree species identification of 

individual trees (See Table 1, Paper III). Morsdorf et al. (2010) expanded the individual tree 

species identification approach and demonstrated the use of intensity and three-dimensional 
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information to discriminate between different vegetation strata in a multilayered forest. Plot 

level species proportions have been reported to be more accurate when estimated with 

intensity as opposed to three-dimensional data (Donoghue et al., 2007). Furthermore, 

intensity has be utilized for discerning age classes (Farid et al., 2006a; Farid et al., 2006b), in 

land-cover classification (Antonarakis et al., 2008; Brennan & Webster, 2006), in lichen 

classification (Korpela, 2008), in mire-type classification (Korpela et al., 2009) and in forest 

fractional cover models (Hopkinson & Chasmer, 2009).  

2.4. Spectral information from aerial imagery 

Aerial imagery was the first remote sensing technology utilized in forest inventory. Based on 

photo interpretation, various forest properties could be estimated. For a long time analog 

photographs were used in forest inventory. At the end of the last century aerial imagery 

became digital, thereby increasing the possibilities for the automated processing of such 

imagery without first digitizing them by scanning them. Operational forest inventory 

following the area-based method still benefits from stand delineation and pre-stratification 

obtained by means of photo interpretation. It has been suggested to obtain stand delineation 

from ALS or multispectral images by automated methods. However, the combination of laser 

derived canopy height models and aerial images does not seem to improve forest stand 

delineation in comparison to only using ALS data or aerial imagery (Mustonen et al., 2008). 

Although Mustonen et al. (2008) reported that three-dimensional information was highly 

usable for stand delineation, photo interpretation is still the dominant technique for stand 

delineation in area-based ALS inventories.  

Furthermore, aerial imagery has been a powerful tool in terms of obtaining species 

information. In Finland, the demand for species-specific information at the stand level has 

resulted in a large focus on developing the area-based method to provide such information. 

The inclusion of aerial imagery has been important since imagery is already needed for photo 

interpretation. Species-specific stand attributes such as volume, stem number, basal area, 

basal area median diameter, tree height and diameter distributions were predicted using 

variables derived from ALS and aerial imagery (Packalén & Maltamo, 2006, 2007, 2008). 

Direct inclusion of spectral variables was utilized in these studies. In an improved procedure 

for combining ALS and aerial imagery, the accuracy obtained was higher when compared to 

only using three-dimensional information from ALS (Packalén et al., 2009).  

Moreover, integration of airborne hyperspectral imagery and airborne LiDAR 

improved estimation of the basal area, above-ground biomass and quadratic stem diameter in 
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a northern temperate forest in US (Anderson et al., 2008). The increase in variation explained 

was 8-9% and errors were 5-8% lower than when using individual sensors.  

Utilizing multispectral imagery as stratification information in an ALS-based tree 

identification approach improved tree height, volume and biomass estimates for pine trees, 

though not for deciduous trees (Popescu & Wynne, 2004; Popescu et al., 2004). In another 

hybrid inventory system, multispectral image variables were directly used in the prediction of 

species-specific timber volume (Breidenbach et al., 2010). However, this study did not 

provide any comparisons with the use of three-dimensional data as the sole remote sensing 

data.  

Moreover, the accuracy of identification for Scots pine, Norway spruce and deciduous 

trees was improved by a combination of laser (both three-dimensional and intensity) and 

multispectral images acquired in summer and autumn. The improvements compared to only 

using laser were 5 and 8 percentage points for the summer and autumn acquisition, 

respectively (Holmgren et al., 2008). Other studies have reported improvements by 

combining three-dimensional and multispectral data in the identification of individual tree 

species without presenting direct comparisons (Heinzel et al., 2008; Persson et al., 2004).  

2.5. Spectral information from satellite imagery 

Spectral information from satellites has been available ever since the launch of the first 

Landsat satellite in 1972. The Landsat program has developed since then, and a total of six 

satellites have been delivering spectral information of the earth’s surface on a routinely and 

systematic basis. In addition to the Landsat program, a number of satellites have been 

launched and delivered information in a variety of spatial, spectral, radiometric and temporal 

resolutions. Satellite images are often classified after the spatial resolution of images by the 

Ground Sampling Distance (GSD). Satellite imagery with a GSD of less than 10 m is referred 

to as high spatial resolution (HSR) imagery. Medium spatial resolution satellite (MSR) 

imagery has a GSD of 10 – 100 m, whereas coarse spatial resolution (CSR) imagery has a 

GSD of 100s to 1000s of meters (Franklin & Wulder, 2002).  

HSR satellites are now able to deliver centimeter scale imagery, thus making such 

imagery more and more equal to imagery acquired from digital airborne sensors. As a result, 

HSR satellite imagery has nearly the same range of application as airborne imagery in forest 

inventory. For example, HSR satellite imagery can be utilized in individual tree inventory 

(Gougeon & Leckie, 2006; Wulder et al., 2004) to help support forest stand delineation 

(Wulder et al., 2008b) and facilitate estimation of biophysical forest properties (Mora et al., 
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2010a; Mora et al., 2010b). Although the availability of HSR satellite imagery has increased 

over the last few years, there are few examples of the combination of such information and 

laser data. The combination of three-dimensional ALS and spectral information from the 

QuickBird satellite was used to delineate stand boundaries and classify tree species within 

these stands. Both stand delineation and tree species identification were improved by 

combining the two data sources as compared to using either of them separately (Ke et al., 

2010). Additionally, the combination of spectral information from QuickBird and ALS 

improved the accuracy of canopy height estimates by 5.4 – 6.8% compared to only using 

laser variables (Hyde et al., 2006). Still, biomass prediction was not improved using 

additional variables derived from the QuickBird sensor (Hyde et al., 2006). Another 

suggested application is to update forest inventory data using a laser operated as a sampling 

tool and HSR imagery (Hilker et al., 2008).  

MSR satellite images have been important through the provision of data with 

sufficient spatial detail over large areas at low cost in order to meet a range of information 

needs (Cohen & Goward, 2004; Falkowski et al., 2009). The opening of the United States 

Geological Survey (USGS) Landsat archive to provide free data (Woodcock et al., 2008) has 

further accentuated the use of this data. Although MSR imagery is suggested to be 

inappropriate for supporting forest planning (Holmgren & Thuresson, 1998), a range of 

forestry applications is presented in the literature. To provide wall-to-wall maps of forest 

resources and obtaining forest statistics of small areas in national forest inventories, is among 

its more important applications (Tomppo et al., 2008). Furthermore, MSR imagery is the far 

most common satellite data used in combination with laser data for forest inventory. The 

combination of variables from Landsat and LiDAR yielded the most accurate estimates of 

canopy height and biomass in a North American study investigating multi-sensor synergy 

(Hyde et al., 2006). The improvements in canopy height estimation were 12.3 - 14.0% when 

compared to only using LiDAR, and the corresponding improvement for biomass was 1.4%. 

This accuracy was better than combining ALS data with either HSR QuickBird imagery, 

InSAR data or both (Hyde et al., 2006). By using the Advanced Land Imager (ALI) on board 

the Earth Observation 1 (EO-1) satellite, estimates of basal area and tree density were 

improved compared to only using LiDAR at 11.7% and 4.1%, respectively (Hudak et al., 

2006).  

Furthermore, various methods for predicting canopy height from laser and Landsat 

using extrapolation (c.f. Table 1) were presented by Hudak et al. (2002). Both aspatial 

(regression) and spatial (kriging, co-kriging) methods for prediction were tested, and an 
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integrated technique of ordinary co-kriging and ordinary least squares regression proved to be 

the best method for estimating and mapping canopy height. Hudak et al. (2002) also tested 

different sampling approaches which could be used, and concluded that a 250 m spacing of 

point samples was the best approach for the tested methods. Extrapolation using a LiDAR 

sample covering a small area and full coverage MSR spectral data are common. Wulder and 

Seemann (2003) extended laser estimates of height from a sample using a profiling large 

footprint LiDAR to a larger area using segmented Landsat imagery. The segmented Landsat 

imagery was created based on spatial and spectral variables. Based on empirical relationships 

between laser estimated canopy height and spectral values of segments, the canopy height 

was estimated for an entire landscape based on a laser sample covering 0.48% of the area. 

The accuracy of the final model as expressed by the coefficient of variation (R2) and standard 

error (SE), was 0.67 and 3.3 m, respectively. Similarly, segmented Landsat imagery and a 

600 km transect of profiling laser from 1997 and 2002 were used to characterize various 

changes in a boreal forest at the image segment level, and both growth- and disturbance-

related changes were identified (Wulder et al., 2007b). Imagery from the Indian remote 

sensing satellite and the k-NN technique were used to extend canopy height predictions from 

laser to cover a larger area in Scotland, obtaining accuracies of 2 – 31% (RMSE) (McInerney 

et al., 2010). Moreover, MSR satellite imagery plays an important role in stratification in 

large area inventories in which lasers are used as sampling tools (Næsset et al., 2009; Nelson 

et al., 2003b; Nelson et al., 2004).  

Also, spectral information from CSR imagery and three-dimensional LiDAR data 

have been combined to provide global forest resource maps. Lefsky (2010) provided the first 

global map of canopy height using the Moderate Resolution Imaging Spectroradiometer 

(MODIS) and the Geoscience Laser Altimeter System (GLAS). In the study by Lefsky 

(2010), MODIS represented the full coverage of spectral information and GLAS provided 

three-dimensional data from worldwide samples, with a footprint of approximately 65 meters.  

3. MATERIALS 
3.1. Study areas 

Three study areas were used in the current thesis: 1) Østmarka forest reserve (18 km2), 2) the 

municipality of Aurskog-Høland (890 km2), and 3) the county of Hedmark (27,400 km2). All 

study areas were located in southeastern Norway (Figure 1), which is the main forestry area 

in Norway, with most of the forest under management. The dominant vegetation zone is the 

boreal forest (Olson et al., 2001). However, Østmarka forest reserve and Aurskog-Høland are 
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located at the northern border of a “temperate broadleaf and mixed forest” (Olson et al., 

2001). Hence, hardwood trees are found scattered throughout the landscape, particularly on 

southern facing slopes. In Hedmark, the boreal forest is diminishing at higher altitudes where 

alpine and tundra vegetation zones occupy the area. The annual precipitation in the area is 

between 400 – 700 mm year,1 with the highest levels on the coast as they start to decrease 

towards the interior (Moen, 1999). The average annual temperature is between -2 º and 5º C 

(Moen, 1999).  

 

 
 

Figure 2 - Map of the three study areas;  
Østmarka forest reserve, municipality of Aurskog-Høland and the county of Hedmark 

 

3.2. Field data 

Field data were collected at 28, 40 and 26 locations in Østmarka, Aurskog-Høland and 

Hedmark, respectively. In Østmarka and Aurskog-Høland, field data were collected to 

support analyses on the individual tree level. Therefore, tree positions and individual tree 
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properties were recorded. The field work in Østmarka was carried out during the summer of 

2003, while the field measurements in Aurskog-Høland were carried out during the autumn 

of 2007 and the winter of 2008. The sample plots were positioned with differential Global 

Navigation Satellite Systems (dGNSS), and the mean positional accuracy was approximately 

12 cm. The plot size was 1000 m2 for all plots except for four plots in Aurskog-Høland, 

which were 500 m2 in size. Tree positions were measured as polar coordinates from the plot 

center with a tape measure and compass in Østmarka, and with a total station in Aurskog-

Høland. Tree properties were recorded for 435 sample trees in Østmarka and 4,299 trees in 

Aurskog-Høland. The stem diameter and tree species were registered for all trees. In 

Østmarka, crown radii and tree heights were also measured.  

In Hedmark, the overall goal was to provide a wall-to-wall map of the subalpine zone. 

The boundaries of the subalpine zone (the forest and tree lines) were mapped at 26 

subjectively selected locations during the summer of 2008. At all locations, both the forest 

and tree lines were digitized using handheld GPS attached to a PDA, and ALS data were also 

acquired for all locations. For additional information and a description of the field data 

collection, see the individual papers. 

3.3. Remote sensing data  

Three-dimensional data were collected at all sites with ALS, using different Optech Airborne 

Laser Terrain Mappers (ALTM). The Optech ALTM sensors recorded spectral information 

by means of laser intensity in addition to the three-dimensional coordinates. Furthermore, 

spectral information was available by multispectral digital aerial images acquired in Aurskog-

Høland with Vexcel Ultracam D and Applanix Digital Sensor System sensors. Finally, 

spectral information by means of Landsat satellite imagery covering Hedmark was utilized 

for mapping of the subalpine zone. A list of the sensors and acquisition settings for the 

remote sensing data used in the current thesis appear in Table 2. 

4. METHODS 
The analysis and statistical methods used on individual tree crown segments and grid cells 

included exploratory data analysis, linear models and various parametric and non-parametric 

classification methods. Explorative data analysis was comprised of data visualization by 

means of probability density and box-and-whisker plots, while linear models included 

analysis of covariance models (ANCOVA), linear mixed effects models and general linear 

models.  Classification  methods  were  utilized in all  papers and consisted of heuristic
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classification, linear discriminant analysis (LDA), binomial logistic regression, support vector 

machines (SVM) and classification and regression trees (CART).  

In Papers I, II and III, information from intensity and aerial multispectral imagery was 

directly included in models for identifying species at an individual tree level. In Østmarka, 

raw intensity values were used because sufficient information to normalize the intensity 

values was lacking. In Aurskog-Høland, the intensities were normalized for two effects 

(range and banding). Furthermore, multispectral information was tied to the xyz coordinates 

from the first returns in Aurskog-Høland, utilizing the method described by Packalén et al. 

(2009). In the method by Packalén et al. (2009) multispectral information is transferred to xyz 

coordinates as attributes using the interior and exterior orientation parameters of the image 

sensor. In Østmarka and Aurskog-Høland, the laser echoes and spectral attributes were tied to 

individual trees. In Østmarka, field measurements of tree positions, crown radii and the 

assumption of circular crowns were used to tie echoes to individual trees. In Aurskog-

Høland, an individual tree crown segmentation algorithm was used to tie the echoes to trees 

(Ene et al., in review), and from the echoes tied to individual trees, features were derived 

from three-dimensional and spectral information (cf. Papers I, II, and III for details). In Paper 

I, we carried out an analysis of covariance (ANCOVA) to investigate the potential of 

different features within the classification. Furthermore, the classification accuracy of single 

features was tested using LDA. Based on the ANCOVA and LDA, we selected features from 

various groups and combined them into a final classification. In Paper III, classification 

accuracies of groups of features were tested using cross-validation in which feature selection 

and classification were combined. The classification methods used were LDA, SVM, as well 

as a special implementation of CART referred to as random forest (Breiman, 2001). In Paper 

II, three-dimensional and spectral features were combined to support tree species 

identification without subsequent feature selection. The classification method random forest 

producer utilized has a built-in feature selection procedure that makes other feature selection 

processes prior to classification unnecessary (Breiman, 2001). The classification accuracy 

was assessed using an error matrix and the proportion of correctly classified trees for single 

species (producer’s accuracy), in total (overall accuracy) and the kappa coefficient in all 

papers (Cohen, 1960; Story & Congalton, 1986).  

Paper II focused on the challenges using multi-temporal datasets. The differences in 

both intensity and three-dimensional information among three different ALS acquisitions 

were investigated. Comparisons between all three acquisitions in Østmarka (Table 2) were 

carried out using explorative data analysis and two-tailed t-tests. In addition, relationships 
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between the maximum height of laser echoes inside the crown delineations and field 

measured tree heights were modeled with a linear mixed model. The sample plot was used as 

a random effect in the model due to the hierarchical data structure. Relationships both with 

and without a fixed tree species effect were tested. For modeling the stem diameter, a model 

formulation consisting of the maximum laser height inside crown delineations and the crown 

width, as proposed by Hyyppä et al. (2001), was utilized. Also, a mixed modeling approach 

was used for the stem diameter, with the sample plot as a random effect. The stem diameter 

model was developed with and without tree species as a fixed effect. Differences in tree 

species identification obtained with the random forest algorithm were evaluated using 

Cohen’s kappa coefficient and its variance (Cohen, 1960). 

 In Paper IV, three-dimensional and spectral information were combined by means of 

extrapolation. This approach utilized proxies for the canopy cover of trees and shrubs derived 

from three-dimensional ALS data. The proxies were further used in a heuristic classification 

to classify areas based on international definitions of forest, other wooded land and other land 

by the United Nations Food and Agricultural Organizations (FAO, 2006) into three cover 

types: 1) forest, 2) subalpine zone and 3) alpine, using tree height and canopy coverage 

thresholds. A sensitivity analysis was conducted to test the impact of using thresholds other 

than the one implicitly given by the definitions in the heuristic classification. Moreover, a 

binomial logistic regression was established to model the relationship between the ALS 

derived cover types, Landsat imagery and spatial data. A binomial response variable, in 

which cover type forest was set equal to 1 and cover type alpine was set equal to 0, was 

established. The explanatory variables in the model comprise spectral variables derived from 

Landsat imagery and variables derived from a digital terrain model. This approach supported 

the extrapolation of ALS derived cover types to the entire area in the form of a probability 

surface. The density estimation of all cover types supported the development of alpha-cuts to 

separate the probability surface into hard classes, which is necessary for area estimation. The 

validation of the cover type classes in the ALS data was conducted with a image gradient 

approach (Pitas, 2000; Wulder et al., 2007a). The binomial logistic regression classification 

was validated with a test dataset, resulting in an error matrix (Cohen, 1960; Story & 

Congalton, 1986). 
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5. MAJOR FINDINGS 
5.1. Combining three-dimensional ALS data and intensity (Objective 1) 

Both the three-dimensional and intensity information from ALS were related to tree species. 

The accuracies obtained with three-dimensional, intensity and combined information appear 

in Table 3. Used for tree species identification, the three-dimensional information derived 

from ALS yielded overall accuracies (percentage of trees correctly classified) of 74 – 77% for 

dominant trees, depending on study area and classification method. The ALS intensity alone 

yielded slightly lower accuracies of 63 – 73%. The accuracy increased when combining 

intensity and three-dimensional data with 12 percentage points in Østmarka, but a slight 

decrease in accuracy was observed in Aurskog-Høland. The identification of species of 

“Small trees” (Table 3) was most successful when only using three-dimensional data, 

although a fairly low accuracy was obtained (65%). In Østmarka, classification accuracies 

between 87 to 93% were obtained for different acquisitions when combining three-

dimensional and spectral information from ALS. In specific cases such as under leaf-off 

canopy conditions, even higher accuracies could be obtained.  

Table 3 - Overall accuracies (percentage of trees correctly classified) obtained for tree species identification in 
Papers I, II and III using three-dimensional ALS data (Three-dimensional) and ALS intensity (Spectral), 

separate and combined (Combined).  
Paper Dataseta Three-dimensional Spectral Combined 
I Large trees 77 73 88.6 
I  Small trees 65 55 63.6 
II  ALTM 3100 leaf-off - - 97.1 - 98.1 
II ALTM 3100 leaf-on - - 86.9 - 90.1 
II ALTM 1233 leaf-on - - 90.0 - 93.4 
III ALTM 3100 leaf-on 73.9 – 76.5 63.2 – 70.8 72.0 – 75.8 

a See respective paper for details. 

5.2. Combining three-dimensional ALS data and digital aerial imagery (Objective 2) 

Adding spectral information from digital aerial images improved the overall classification 

accuracy by 8.4 – 14.7 percentage points compared to only using three-dimensional 

information (Table 4). The improvements using combined data instead of image data alone 

was 8.6 – 14.3 percentage points. This improvement was dependent on the image sensor and 

classification method used. The Applanix DSS camera flown together with the ALS sensor 

gave a classification accuracy of 88.6%, while using the Vexcel Ultracam resulted in a 

slightly lower accuracy of 87.0% when combined with three-dimensional ALS data. Utilizing 

both intensity and image data in combination with three-dimensional ALS data did not 

improve tree species identification further. 
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Table 4 - Overall accuracies (percentage of trees correctly classified) obtained for tree species identification in 
Paper III using three-dimensional ALS data (Three-dimensional) and digital aerial imagery (Spectral), both 

separate and combined (Combined)  

Paper Dataseta Three-dimensional Spectral Combined 
III Applanix 73.9 - 76.5 72.9 - 79.1 87.2 - 88.6 
III Vexcel 73.9 - 76.5 70.9 - 75.7 84.3 - 87.0 
III ALSb  - - 72.0 - 75.8 
III Applanix + ALSb - - 84.7 - 88.3 
III Vexcel + ALSb - - 82.3 - 85.6 

a See respective paper for details. 
b Both three-dimensional and spectral data from ALS. See Table 3 above for details.  
 

5.3. Combining three-dimensional ALS data and MSR satellite images (Objective 3) 

The subalpine zone delineation derived from ALS proxies by a heuristic classification was 

found to be accurate using an image gradient technique for validation and a sensitivity 

analysis of the selected thresholds. An underestimation of tree height of approximately 0.5 m 

and a species effect on canopy coverage were identified. In the binomial logistic regression 

developed, the variables included in the final model were elevation, slope, latitude, 

normalized difference vegetation index (NDVI) and brightness from the tassel-cap 

transformation. The use of estimated probability density functions provided alpha-cuts to 

separate the probability surface into a hard classification of cover types. The overall accuracy 

of the hard classification was 69%. The total area covered by the subalpine zone in Hedmark 

was estimated to be 3660 km2, which represents 14% of the total area. 

5.4. Effects on the multi-temporal ALS acquisitions (Objective 4) 

The distributions of intensity and three-dimensional information provided by ALS differed 

between sensors and canopy conditions. More specifically, the laser height distributions for 

deciduous trees shifted towards the ground for the leaf-off acquisition of single and last (last 

echoes of many) echoes compared to the leaf-on acquisition. However, the first echoes (first 

echoes of many) was slightly higher for deciduous trees under the leaf-off canopy conditions. 

The three-dimensional measurements of evergreen coniferous trees (spruce) did not differ 

between the two acquisitions with the same sensor. However, different sensors produced 

significantly different height distributions and metrics in almost all cases. 

The differences in raw intensity between canopy conditions were most pronounced in 

the first echoes, in which the intensity distribution was extremely skewed towards lower 

values under leaf-off compared to leaf-on canopy conditions. Even the intensity distributions 

of single and last echoes were affected by canopy conditions. Nonetheless, the intensity 

obtained using the same sensor under leaf-off and leaf-on conditions did not differ for spruce 
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trees. The intensity distributions acquired with different sensors diverged significantly. We 

observed a difference in the shape of the intensity distribution between the two sensors, 

particularly for deciduous trees. For deciduous trees, lower intensities were obtained with the 

ALTM 1233 sensor in comparison to the ALTM 3100 sensor. 

Differences in the accuracy of estimated individual tree properties were minor among 

all three acquisitions when the models were calibrated with field measurements. However, 

the intercept of tree height models varied between all acquisitions, thereby suggesting that 

individual tree height models must be calibrated with field data to maintain accuracy. The 

parameters of stem diameter models did not differ significantly among the three acquisitions. 

Furthermore, the accuracy of tree species classification differ between sensors. Yet, a leaf-off 

acquisition of ALS data improved the identification of coniferous and deciduous trees by 8 

percentage points.  

The intensity is noisy and should be calibrated. In Aurskog-Høland, range 

normalization and banding normalization were both carried out. It was revealed that intensity 

normalization improved tree species identification by 5 – 11 percentage points compared to 

only using raw intensities. By comparison, range normalization was better than banding 

normalization, when used in the identification of tree species. 

6. DISCUSSION 
6.1. Tree species identification (Objective 1 and 2) 

Three-dimensional information is better in terms of classification accuracy than intensity in 

the current thesis, and similar results have been reported in other studies under leaf-on 

canopy conditions (Brandtberg et al., 2003; Holmgren & Persson, 2004; Reitberger et al., 

2008). Nevertheless, there are also several studies in which contradictory results have been 

reported. Under leaf-off conditions, intensity has been reported to contribute more than three-

dimensional information in helping to identify coniferous and deciduous trees (Reitberger et 

al., 2008). Moreover, Korpela et al. (2010) reported that only intensity features were 

important for identifying boreal tree species in Finland. Consequently, a clear suggestion if 

either intensity or three-dimensional information is better is difficult to give. Today, the 

majority of ALS sensors provide intensity recordings. Thus, if intensity is delivered the 

opportunity to utilize both intensity and three-dimensional measurements is present. 

Furthermore, if intensity is to be utilized in tree species identification, the results from the 

current thesis, and other studies (Gatziolis, 2009; Korpela et al., 2010), indicates that the 

intensity should be normalized.  
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The current research revealed that combining intensity and three-dimensional 

information improved classification accuracy under certain circumstances. When considering 

the dominant trees in Østmarka and Aurskog-Høland, the increase in overall accuracy 

compared to only using three-dimensional data was 12 percentage points in Østmarka, 

whereas in Aurskog-Høland the overall accuracy decreased by 1 percentage point. In other 

studies, increases in overall accuracies up to approximately 10% have been reported 

(Brandtberg et al., 2003; Holmgren & Persson, 2004). Reitberger et al. (2008) obtained a 

large increase in accuracy by combining three-dimensional information and intensity under 

leaf-off, but not leaf-on conditions, though studies in which the intensity did not improve 

classification accuracy have also been reported (e.g. Moffiet et al., 2005). The classification 

accuracy obtained in tree species identification with normalized intensity from two different 

sensors differed by 10 percentage points in a Finnish study (Korpela et al., 2010). Hence, 

there are problems in providing stable improvements by intensity in classification accuracies 

across study areas and acquisition. Future research in the area of tree species identification 

using intensity should focus on the differences in accuracy obtained in different study areas 

and with different acquisitions to obtain more knowledge of factors affecting intensity and 

their normalization. The stability of classification accuracy under otherwise similar 

conditions is a key requirement for the operational use of intensity in forest inventory.  

Spectral information from aerial imagery improved tree species classification 

accuracy in the current study by 9 – 13 and 11 – 15 percentage points, respectively, using the 

Vexcel Ultracam and the Applanix DSS the camera. Similar improvements of 5 and 8 

percentage points were obtained using summer and autumn imagery from a Zeiss/Intergraph 

Digital Mapping Camera in a Swedish study (Holmgren et al., 2008). The study by Holmgren 

et al. (2008) is the only other study in addition to this thesis which has reported separate 

accuracies for ALS, aerial imagery, and both combined, on the individual tree level. Studies 

reporting improvement in species identification based on the inclusion of spectral information 

other than on the individual tree level have been made (e.g Jones et al., 2010; Packalén et al., 

2009). The results from the current thesis indicate that aerial imagery is a more stable spectral 

information source than intensity for improving tree species identification. Aerial imagery is 

often available in most practical inventories because imagery is also used for stand 

delineation in most cases.  

Extending the use of hyperspectral data is a highly interesting option as well. 

Hyperspectral data consist of many narrow and contiguous spectral bands (Shippert, 2004). 

The increased detail of the electromagnetic spectrum may provide information beyond what 
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is possible to obtain with multispectral imagery (Shippert, 2004). Additionally, refinement 

might also be possible using multispectral images. One possibility for refinement using 

multispectral images could be to only select the 10% brightest pixels inside each crown 

segment for use in species identification (Persson et al., 2004). Moreover, the viewing 

geometry of aerial imagery sensors should be better incorporated. Depending on the overlaps 

between images in the acquisition, a tree may be viewed from a number of various angles. 

Thus, the spectral response will differ depending on the viewing geometry. In extending the 

work of this thesis, these effects should be better accounted for.  

One of the objectives in Paper I was to test different features and their suitability for 

species identification. It was revealed that a majority of the features derived comprised 

relevant information for species identification. In Paper II, we used the non-parametric 

random forest algorithm, which has an internal feature selection process. A comparison of the 

two strategies demonstrated that non-parametric techniques with no feature selection strategy 

yielded similar accuracies compared to using linear discrimination analysis with feature 

selection as in Paper I (Ørka et al., 2009). For this reason, a modified version of the feature 

selection strategy in Paper I was implemented in Paper III. There is the potential to further 

test different classification strategies (c.f. Ørka et al., 2009). Such studies must incorporate a 

range of different ALS acquisitions and study areas to provide general results.  

Practical implementation of the approach used in Papers I, II and III is straightforward 

in relation to individual tree inventory. A number of sample trees with known species are 

necessary for model calibration. To gather detailed information on individual trees in the field 

is expensive, and there are some studies testing the effect on the accuracy of reducing the 

sample sizes (Korpela et al., 2010). However, the number of samples trees needed in an 

individual tree inventory is not yet clear. One option for obtaining inexpensive samples for 

calibration of species classification models is to use photo interpretation. Independent on how 

the sample data are gathered they would result in a calibrated classification model being used 

to assign a class to each segment. An alternative to extensive field measurement could be to 

utilize unsupervised classification methods which would not need field data for calibration 

(Ørka et al., 2009; Reitberger et al., 2008). The problem with this, however, is that 

unsupervised methods may not achieve the same classification accuracies (Ørka et al., 2009). 

Furthermore, the use of prior information from an area-based inventory might aid in the 

identification of individual tree species.  

The possibility of more than one tree from different species in a segment is not 

accounted for using the method presented in the current thesis. One alternative to account for 
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more than one tree species per segment is to use a soft classifier, which instead of assigning a 

specific tree species to a specific segment assigns the probability that a specific segment 

belongs to a specific tree species. Another possibility is to use methods which assign “doubt” 

to segments for which there is a high degree of uncertainty with regard to which tree species 

it belongs to (Ripley, 1996). Improvements in the crown delineation algorithms, to reduce the 

number of segments with more than one tree, will also facilitate individual tree species 

identification.   

Further practical issues in implementing the approach include the time of ALS 

acquisition and handling of trees not identified by the segmentation process. First, trees not 

identified by a segmentation algorithm must be classified by other means than individual tree 

classification. This is also relevant for suppressed or short trees (e.g. Table 3, “Small trees”) 

which are difficult to classify by means of individual tree species classification. To identify 

the species of such trees the area-based method should be used supplementary to individual 

tree methods to provide e.g. the number of trees within different species. Second, in the 

current study the highest overall accuracy was achieved under leaf-off conditions, which was 

8 percentage points higher than under leaf-on conditions. Other studies comparing leaf-on 

and leaf-off acquisitions for identification of coniferous and deciduous trees have reported 11 

– 16 percentage points higher accuracies under leaf-off canopy conditions (Heurich, 2006; 

Reitberger et al., 2008). Consequently, the leaf-off period seems attractive for ALS 

acquisition when identification of coniferous and deciduous tree species is needed.  

The current research has documented that the direct inclusion of three-dimensional 

and spectral information in tree-species identification of dominant trees provides overall 

accuracies along the order of 87 - 98%. Similarly, applying three-dimensional data alone 

provides overall accuracies for dominant trees of between 75 to 80%. Hence, spectral data 

provides a complementary source of information, and in combination with three-dimensional 

data, it seems to improve tree species identification. In any case, the use of intensity seems to 

be both promising and problematic, while at the moment aerial imagery seems to be a more 

stable spectral information source for tree species identification. The aerial imagery that was 

acquired simultaneously with the ALS data provided the highest accuracy in the current 

thesis. Consequently, multiple sensors carried on the same airborne platform should be 

considered in order to achieve a high accuracy for the lowest possible cost.  
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6.2. Large area inventory extrapolation (Objective 3) 

In the current thesis, ALS and MSR satellite imagery were combined to support delineation 

of the subalpine zone. Extrapolation is an increasingly attractive method when used to 

combine high resolution and coarser resolution remotely sensed data sources. In Paper IV, 

extrapolation is utilized in remote mountainous areas with low biomass and little available 

information. The proposed method of combining ALS and MSR satellite imagery succeeded 

in mapping the subalpine zone in Hedmark, and provided new information for the area and 

extent of the subalpine zone. This example demonstrates that a combination of ALS operated 

as a strip sampling tool and spectral information can be utilized to derive additional spatial 

information in large area forest inventories without increasing field measurement costs. 

Similar approaches using LiDAR and extrapolation with a range of different satellite sources 

have been presented in other studies (see Section 2.5).  

 The interest for information about the subalpine zone is increasing. In a global meta-

analysis by Harsch et al. (2009), half of the studied tree lines had advanced over the course of 

the last century. The approach presented here offers an improved capacity to map and 

monitor the entire area covered by forests and trees. The subalpine zone represents a part of 

the forest-tundra ecotone that covers large areas of the northern hemisphere. The projected 

change in the climate with global warming will exert a considerable impact on the extent and 

location of the ecotone (ACIA, 2004). Thus, approaches to support monitoring like the 

current is needed. Furthermore, studies of climate change may be aided by the ability to map 

and monitor the subalpine zone over large areas and not only at specific sites. This is 

desirable since the impact of climate change will likely be different among regions (Dalen & 

Hofgaard, 2005). In addition, changes found over time will be important for describing the 

change processes and the rates of transition among cover types.  

The proposed approach for delineating the subalpine zone was implemented without 

field calibration. A heuristic classification of ALS data based on derived proxies of tree 

height and canopy cover was used to delineate the cover types: forest, subalpine zone and 

alpine areas. However, not using field calibration increases the risk of systematic errors. 

Validation of the approach, together with a sensitivity analysis, indicated a small systematic 

shift in laser height measurements, though not in canopy coverage. The systematic 

underestimation of tree height with lasers is well-known in the research community. Næsset 

(2009a) reported individual tree height underestimations in the subalpine zone in the range of 

0.35 – 1.47 m in another subalpine zone area in Norway. In the study by Næsset (2009a), 

both sensors and tree species influenced individual tree height measurements. In the current 
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thesis, species composition was also found to be a source of systematic errors in the subalpine 

zone delineation using ALS. Canopy coverage at a spruce site was systematically 

underestimated. Hopkinson and Chasmer (2009) have suggested that some calibration of 

canopy cover proxies might be necessary. Despite the aforementioned problems, the 

proposed approach seems to be an attractive alternative for providing information about the 

subalpine zone when also taking into consideration the low implementation costs. The 

calibration of ALS cover type classification with field measurements could increase the 

accuracy of ALS delineation, but will also significantly increase costs.  

In the current thesis, the accuracy obtained for classification with the binomial logistic 

regression model and alpha-cuts was within the range of expected accuracies in satellite 

image classification (Wilkinson, 2005). This study attempted to map the transition zone. 

Transitions are challenging in remote sensing because they are a mix of the two adjacent 

vegetation communities (Foody, 1996; Hill et al., 2007). In light of the high mixing that was 

present, the obtained accuracy was considered to be acceptable (Wilkinson, 2005). The 

ability of the presented method to calibrate the alpha-cuts with the ALS-derived cover type 

classes is attractive and extends previous alpha-cut methods used to characterize the 

subalpine zone (Hill et al., 2007; Ranson et al., 2004). The alpha-cut calibration was made 

possible by means of the heuristic classification of three-dimensional data. The possibility to 

use the proposed approach to produce both a probability map and hard classes increases its 

applicability. Hard classes derived using alpha-cuts are needed to estimate the area and extent 

of the subalpine zone. Furthermore, the presented probability map is more suitable for 

monitoring future changes in the subalpine zone than a map with hard classes (Foody, 2001). 

The Landsat satellite is highly suitable for the presented approach in terms of both 

accessibility and spatial resolution. However, a major challenge for utilizing optical satellite 

imagery is the limited temporal resolution. A low temporal resolution will reduce the 

availability of cloud free imagery, which is a problem in many forest areas. For example, the 

Landsat satellite only provided five images at a specific scene location in Hedmark with less 

than 10% cloud coverage in the growing seasons from 1987 to 2010. Hence, when extending 

the proposed approach to monitoring, the availability of imagery will be a critical factor. 

About five other existing satellite programs will provide spectral information similar to that 

of Landsat does today (Wulder et al., 2008a). These optical satellites will increase the 

chances of cloud free images in a monitoring context due to increased temporal resolution. 

Future, optical space missions are planned, and alternatives to Landsat include Landsat Data 

Continuity Mission (LDCM), Advanced Visible and Near-Infrared Radiometer (AVINIR-2) 

Synopsis

29



 

 

and the Sentinels (Wulder et al., 2008a). The possibility of RaDAR sensors to increase the 

availability of full-coverage data by acquiring imagery of areas with 100% cloud cover 

makes such information interesting as a full coverage source for use in the presented 

approach. 

In the current thesis, only airborne lasers were utilized. In large area inventories the 

use of spaceborne LiDAR is attractive, particularly in combination with spectral information 

similar to the approach presented. Unfortunately, the availability of spaceborne LiDAR 

sensors is limited. The National Aeronautics and Space Administration’s (NASA) ICESat-1 

satellite that was operational from 2003 to 2009 provided samples (footprints) from all over 

the world that were suitable for forest inventory (Boudreau et al., 2008), also in combination 

with spectral information (Duncanson et al., 2010). NASA has planed another spaceborne 

LiDAR mission called ICESat-2. The benefits from ICESat-2 in forest inventory and 

monitoring will be limited due to the sensor properties (Nelson et al., 2010). Moreover, 

NASA’s proposed satellite mission DESDynI was planned to include a spaceborne LiDAR 

sensor operated in sampling mode and a full coverage RaDAR sensor, though the mission 

was cancelled in February 2011. The LiDAR onboard the DESDynI would have been 

superior in the assessment of vegetation for large areas (Nelson et al., 2010). 

In the near future, no spaceborne LiDARs suitable for forest inventory and monitoring 

applications are planned to be launched. Because of this, methods such as the one presented 

here that combine ALS from sample locations and full coverage satellite data will be useful 

in future large area inventories for providing wall-to-wall map products.  

6.3. Issues related to utilization of ALS in forest monitoring (Objective 4) 

In the current thesis, no monitoring applications were implemented or tested. However, some 

essential aspects of using multi-temporal datasets were addressed by empirical analyses. The 

effects of sensors and seasons (canopy conditions) on the three-dimensional measurements of 

ALS were reported in earlier studies (Hopkinson, 2007; Næsset, 2005; Næsset, 2009b). This 

thesis complements previous work on sensors and seasonal effects by investigating the effects 

on individual trees, as well as the intensity.  

Seasonal effects, e.g. leaf-on and leaf-off canopy conditions, are important for forest 

monitoring (Yu et al., 2006), but also for operational forest inventory (Næsset, 2005). In 

monitoring, changing canopy conditions might interfere with change estimates (Yu et al., 

2006). In operational inventory, leaf-off acquisition of ALS data has been tested to improve 

the estimates of biophysical properties in mixed forests, and the accuracy was unaffected or 
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slightly improved using leaf-off data (Næsset, 2005). In the current thesis, the effects of 

canopy conditions on the last (last echoes of many) and single echoes were most pronounced. 

The large influence on last echoes was also reported on plot level by Næsset (2005). The 

minor impact on the height distributions of first echoes (first echoes of many) identified in 

Paper II is related to the shift in proportions between first and single echoes. The number of 

single echoes was 20% lower under leaf-off compared to leaf-on canopy conditions. Thus, 

more first than single echoes were recorded under leaf-on conditions, when the amount of 

biological matter is higher in the tree crowns. This shift in echo proportions led to higher 

height values of first echoes under leaf-off conditions. Furthermore, the effect of canopy 

conditions on intensity was notable. All echo categories were affected, especially the first 

echoes, which had lower values under leaf-off conditions. The lower intensity values of first 

echoes also contributed to the high accuracies obtained for tree species identification under 

leaf-off conditions. The effects on the intensity may be attributed to phenomena which result 

from the shift in proportions between first and single echoes. The intensities of first echoes 

are higher under leaf-on conditions when the amount of biomass in the crown is high and 

most of the emitted energy is reflected immediately, which results in a “strong return” with 

high intensity. Under leaf-off conditions, the amount of biomass in the tree crowns is lower, 

thereby allowing more energy to penetrate further into the crown, resulting in a “weak return” 

with low intensity. In addition, the reflectance and structure of branches and other tree parts 

will influence the intensity. Both the current thesis and the study by Næsset (2005) analyzed 

the effects in the change from leaf-off to leaf-on canopy conditions. However, both studies 

only considered the extreme seasonal effects in canopy conditions (leaf-off vs. leaf-on). In 

this thesis, the October 2003 flight may have been affected by changes in canopy conditions 

due to senescence. Such within seasonal effects on the intensity and three-dimensional 

information of ALS are not yet quantified, and remain a topic for future research. 

The use of different sensors impacts the three-dimensional recordings of ALS 

(Chasmer et al., 2006; Hopkinson, 2007; Næsset, 2005, 2009a). In the current thesis, the 

effects of using different sensors on the obtained point cloud were quantified on individual 

trees. For that reason, it was possible to study the effects of different sensors on the point 

clouds of various tree species. It was revealed that there were species-specific effects from 

the sensors. One combination of echo categories (first of many and single echoes) did 

produce nearly equal metrics for spruce trees with different sensors, but not for deciduous 

trees. Moreover, the current thesis also points out that there are challenges related to using 

different ALS sensors for individual tree change estimation, e.g. in growth analysis. Still, it 
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should be mentioned that the point clouds were stable between acquisitions for spruce trees 

when identical sensors were used. It has been reported in other studies that the effects of 

different study areas are small when sensors and acquisition settings are identical (Næsset et 

al., 2005; Næsset, 2007). Therefore, if the same sensor and acquisition settings are used in 

forest monitoring, change estimation using ALS might be possible without field calibration.  

The effects of sensors and seasons did not considerably affect the accuracies of tree 

height and stem diameter when using models calibrated with field data in the current study. 

However, one exception was the high accuracies for tree species identification under leaf-off 

conditions. Similarly, it has been reported that field data calibration provided similar results 

independent of canopy conditions and sensors in area-based inventory (Næsset, 2005; Næsset 

& Gobakken, 2008; Næsset, 2009b). Approaches using laser proxies are attractive in order to 

reduce field measurement costs (e.g. Paper IV). Alternatively, field measurement costs may 

be reduced by the reuse of models developed in previous projects (Næsset, 2007; Næsset, 

2009b). The rapid technological development of laser sensors seen over the past few decades 

is likely to continue in the future. Thus, it seems to be unrealistic at the present time that 

monitoring can achieve the same accuracies when not calibrated with field data. Future 

research should focus on quantifying the loss in accuracy when reducing the amount of field 

data for model calibration. The sampling design should be further addressed in terms of plot 

sizes, plot numbers and location of plots (pre-stratification) (e.g. Gobakken & Næsset, 2008; 

Hawbaker et al., 2009).  

The intensity is noisy and often undocumented. Despite these problems, identification 

of tree species was improved by 10% in Østmarka using raw intensities. Additionally, 

normalization of the intensity by the sensor-to-target range improved tree species 

identification by 8 percentage points, while sensor-specific intensity normalization improved 

tree species identification slightly. Even so, stability for the results in tree species 

identification seems to be a problem (cf. Section 6.1). These problems will also be a 

challenge in forest monitoring or change estimation. Different sensors may produce different 

intensity values. Furthermore, it is likely that some sensors have the possibility to adjust 

sensor settings, which in turn will affect the intensities recorded. In Østmarka, the intensity 

values recorded on the sample plots ranged from 1 – 170 (numerical values in Paper I 

represented by 1/10). Similarly, the range in intensity values for sample plots in Aurskog-

Høland was 1 to 95. In both studies, the ALTM 3100 was flown with approximate the same 

settings. Weather conditions and the wetness of the surface will influence the intensity 

recordings. Hence, in terms of calibrated intensity values and accuracies of forest biophysical 
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properties, stable deliverables obtained from intensity should be achieved before a 

widespread utilization of intensity can be expected.  

Paper IV was motivated by the anticipated changes in the tree line due to climate 

change and the need for information on the rate of these changes. However, only an approach 

to support monitoring was developed. Forest monitoring studies combining three-dimensional 

and spectral data are rare. Nevertheless, one example utilizing profiling LiDAR and 

segmented Landsat satellite imagery exists (Wulder et al., 2007b), and inventory updates 

have been conducted with a combination of three-dimensional and spectral information 

(Hilker et al., 2008; Wulder & Seemann, 2003). The majority of studies utilizing ALS for 

estimating changes over short time spans have only utilized three-dimensional information 

(Næsset & Gobakken, 2005; Solberg et al., 2006b; Yu et al., 2004; Yu et al., 2006). A 

combination of three-dimensional and spectral information in forest monitoring and change 

estimation studies should be investigated based on the promising results of combining such 

information in forest inventory. Future research should also include testing of the proposed 

procedure for delineating the subalpine zone based on multi-temporal remote sensing datasets 

and field observations.  

7. CONCLUSIONS 
This thesis points at the potential for improvements in forest inventory and monitoring on two 

different spatial scales by combining remotely sensed three-dimensional and spectral 

information. First, combining three-dimensional and spectral information improved the 

accuracy of individual tree species identification in the thesis. Nonetheless, stable 

classification accuracies were not obtained using intensity and more research is needed to 

fully understand the potential and limitations of the intensity. Until that time comes, the use 

of aerial imagery seems to be the best spectral information source available which is suitable 

for tree species identification in combination with three-dimensional information. Second, the 

presented method for combining three-dimensional information and medium resolution 

satellite images seems suitable for mapping the current state and monitoring future changes in 

the extent and location of the subalpine zone on a regional scale. In forest monitoring, 

contemporary field and ALS campaigns seem to be needed to keep the accuracies at 

acceptable levels. Large differences between measurements conducted by various ALS 

sensors and under different canopy conditions necessitate field calibration. To summarize, 

combining three-dimensional and spectral information may improve forest inventory and 

monitoring, although the challenges and costs will be increased by using multiple data 
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sources and must therefore be compared against the advantage of the higher information level 

obtained. Furthermore, the use of combined three-dimensional and spectral information in 

forest inventory and monitoring will probably increase in the future due to the increasing 

availability of aircraft carrying multiple sensors, as well as improvements in using a 

combination of more than one remote sensing source, as reported in the current thesis and 

other studies.  
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The objective of this study was to identify candidate features derived from airborne laser scanner (ALS) data
suitable to discriminate between coniferous and deciduous tree species. Both features related to structure
and intensity were considered. The study was conducted on 197 Norway spruce and 180 birch trees (leaves
on conditions) in a boreal forest reserve in Norway. The ALS sensor used was capable of recording multiple
echoes. The point density was 6.6 m−2. Laser echoes located within the vertical projection of the tree crowns,
which were assumed to be circular and defined according to field measurements, were attributed to three
categories: “first echoes of many”, “single echoes”, or “last echoes of many echoes”. They were denoted FIRST,
SINGLE, and LAST, respectively. In tree species classification using ALS data features should be independent of
tree heights. We found that many features were dependent on tree height and that this dependency
influenced selection of candidate features. When we accounted for this dependency, it was revealed that
FIRST and SINGLE echoes were located higher and LAST echoes lower in the birch crowns than in spruce
crowns. The intensity features of the FIRST echoes differed more between species than corresponding
features of the other echo categories. For the FIRST echoes the intensity values tended to be higher for birch
than spruce. When using the various features for species classification, maximum overall classification
accuracies of 77% and 73% were obtained for structural and intensity features, respectively. Combining
candidate features related to structure and intensity resulted in an overall classification accuracy of 88%.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, high resolution sampling density airborne laser
scanning (ALS) has become readily available, providing x, y, z point
datasets with 5–20 height measurements per square meter. Such data
are useful for terrain, vegetation, and forest mapping. From these
dense point clouds, individual trees can be identified by means of
various segmentation procedures. These procedures extract the
outline of the tree crowns. Individual tree segmentation is often
done by using an ALS-derived canopy height model (e.g. Hyyppä et al.,
2001; Persson et al., 2002; Solberg et al., 2006), but also other
methods are used, like for example clustering (Morsdorf et al., 2004).
When the outline of a tree crown is defined, laser echoes inside the
segment can be tied to the tree and information about the tree such as
stem position, height, and stem diameter can be derived (e.g. Persson
et al., 2002; Solberg et al., 2006). This high resolution tree information
can form a basis for forest planning by aggregating information to
management units (Hyyppä et al., 2001).

Tree species is another parameter that may be derived from laser
echoes inside individual tree segments. Species classification on a

individual tree level using ALS-derived features has been accom-
plished in boreal forest in Scandinavia (Holmgren et al., 2008;
Holmgren & Persson, 2004; Liang et al., 2007), in mixed coniferous
and deciduous forest in central Europe (Heurich, 2006; Reitberger
et al., 2008), in deciduous forest in western Virginia (Brandtberg,
2007; Brandtberg et al., 2003), and in sub-tropical forest in Queens-
land, Australia (Moffiet et al., 2005). Individual tree species informa-
tion could also be found using high spatial resolution images (e.g.
Brandtberg, 2002; Carleer & Wolff, 2004; Key et al., 2001; Olofsson
et al., 2006). However, acquisition of both ALS data and imagery will
increase inventory costs. Furthermore, because ALS provides more
accurate estimates of biomass and height compared to image remote
sensing methods (Hyde et al., 2006; Hyyppä & Hyyppä, 1999), the
possibilities of utilize ALS data also to discriminate between tree
species are of interest in order to control data acquisition cost.

Structural features of the tree crowns can be derived from ALS
height measurements and such features might be considered for tree
species classification. The basic idea behind using structural features
for tree species classification is that different species have different
crown properties such as crown shape, reflectivity, and location of
biomass. For example, crown shapes for spruce trees tend to be
conical, whereas more spherical or rounded shapes are found for
deciduous trees. Deciduous trees also tend to allocate more biomass
higher in the crown. The structural differences of tree crowns will
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influence on the recorded laser echoes. When a laser echo is recorded,
the elapsed time between emission and receipt of a significant
amount of returned energy is converted to range. Since the position
and orientation of the platform are known by Global Navigation
Satellite Systems (GNSS) and Inertial Navigation System (INS), the
position of the target can be calculated. To trigger a laser echo from a
tree crown or any other surface, the properties of the surface hit by the
laser pulse is of importance. One example is the high rate of success in
detecting power lines. A power line covers just a small portion of a
laser footprint, but is still detectable in an ALS dataset because of the
high reflectivity of power lines. On the other hand, a tree crown
surface represented by branches and leaves often covering the entire
laser footprint has lower reflectivity and a different structure. The
laser pulse will therefore tend to penetrate into the canopy before a
significant echo is recorded by the sensor (Gaveau & Hill, 2003). Thus,
different crown properties affect the distribution of laser echoes
within and on the surface of the tree crowns. This may lead to distinct
echo height distributions for separate species. Therefore, it might be
useful for automated species classification based on ALS data to
identify which structural features derived from the echo height
distribution that are most suited to distinguish species.

In addition to the spatial coordinates of laser echoes, most ALS
systems measure the intensity of the backscattered laser signal (Wehr
& Lohr, 1999). For pulse lasers, intensity often represents the peak
amplitude of the returned pulse. It is expected that this value could
assist species classification. Already in 1985, Schreier et al. (1985)
demonstrated classification of individual trees into conifers and
broadleaves partly based on airborne laser intensity. Since then the
use of laser intensity has been little explored. This is mainly because
of lack of methods for radiometric calibration of intensity values
(Kaasalainen et al., 2005). However, recently some authors have
tested intensity features for tree species classification (Brandtberg,
2007; Brandtberg et al., 2003; Holmgren et al., 2008; Holmgren &
Persson, 2004; Moffiet et al., 2005; Reitberger et al., 2008) and for
discerning age classes (Farid et al., 2006a,b) as well as land-cover
classes (Brennan & Webster, 2006) where deciduous and coniferous
forest were treated as separate classes. Despite the lack of
calibration methods, intensity features derived from ALS data may
improve classification (e.g. Brandtberg et al., 2003; Holmgren et al.,
2008). As methods for calibration of the intensity mature, the
usefulness of intensity used for individual tree species classification
may increase.

In species classification, features derived from the laser height
distribution, such as the mean height of the laser echoes, could be
used directly in the classification algorithm (e.g. Brennan & Webster,
2006) or as a scaled feature, for example normalized with tree height
(Holmgren & Persson, 2004). In individual tree classification,
independence of tree height is important, especially in forests
where tree height distributions differ between species. To ensure
this independence features should be scaled. Brandtberg (2007)
normalized the 3D point cloud using estimated tree height to ensure
independence. Holmgren and Persson (2004) used relative height
features, i.e., laser height features divided by the laser estimated
height, to separate Norway spruce and Scots pine. It should be noted,
however, that it has so far not been tested if scaling methods really
produce independence of tree height. Robust scaling may be
important for practical applications covering large areas. In large
forested landscapes, species-specific height distributions will vary in
the landscape according to soil properties, management history, and a
number of other factors. Hence, selection of robust and unbiased
classification features is important.

The aim of this study was to identify candidate ALS-derived features
suitable for classification of spruce and birch. In order to reach our aim,
we (1) conducted an analysis of differences in (1a) structural- and
(1b) intensity features between spruce and birch trees, and (2) tested
the classification performance of candidate features.

2. Materials and methods

2.1. Study area

The study area is located in the southwestern corner of Østmarka
forest reserve. The forest reserve is located a few kilometers outside
Oslo in southeastern Norway (59°50′N, 11°02′E, 190–370 masl). The
size of the forest reserve is about 1800 ha. No logging or other
silvicultural treatments has been carried out since the 1940s. Today
the forest appears with large within stand variation in ages and sizes
of trees. The forest is dominated by Norway spruce (Picea abies (L.)
Karst.) and is partly multilayered. Deciduous trees are found scattered
in the landscape. Birch (Betula spp.) and aspen (Poplus tremula L.) are
the most commonly occurring deciduous species. An adjacent area
outside the reserve was also included to cover managed forest in
younger and intermediate age classes in the study.

2.2. Field data

During summer 2003, 20 circular field plots (0.1 ha) in the reserve
and eight plots just outside the reserve were established. The plots
were subjectively selected. The plots inside the reserve were selected
according to three criteria, i.e., (1) they should be spruce-dominated,
(2) have multiple canopy layers, and (3) be located on gentle terrain
slopes. These field data were also used in studies by Solberg et al.
(2006) and Bollandsås and Næsset (2007). The plots outside the
reserve were selected to cover productive forest in young and
intermediate age classes.

On each sample plot, we callipered diameter at breast height
(DBH) of all trees with DBH ≥3 cm and recorded polar coordinates of
each tree from the plot center. The polar coordinates of the trees were
determined using tape measure and a compass. The compass had a
foresight and was attached to a tripod to reduce pointing errors. In
addition a local correction of the deviation betweenmagnetic and true
north were applied. Plot center coordinates were determined using
differential Global Navigation Satellite Systems (GNSS) by means of
Global Positioning System (GPS) and Global Navigation Satellite
System (GLONASS). Random errors reported from the post-processing
combined with empirical experience reported by Næsset (2001)
indicated an average error of 10 cm for the planimetric coordinates of
the plot centers. For further details about the GNSS setup and post-
processing, see Solberg et al. (2006) and Bollandsås and Næsset
(2007).

Selection of sample trees on each plot was performed in three
steps, i.e., (1) four sample trees where systematically selected being
the first non-suppressed coniferous trees found going clockwise
around the plot after passing each cardinal direction. (2) The second
step was to select four coniferous trees among all social status classes,
being the next tree to each of the first sample trees according to
increasing azimuth from plot center, and (3) the last step was to
sample all deciduous trees on the plot. In addition, we subjectively
selected some deciduous trees outside, but close to the plot. The last
step was accomplished to get a better balance between number of
selected coniferous and deciduous trees. The tree with the longest
distance to plot center was located 26.8 m from the center.

Tree height, height to crown base, and crown radius were
measured on the sample trees. Crown radius was calculated as the
average of radii measured in the four cardinal directions. Tree height
was measured using a Vertex III hypsometer. A summary of
characteristics of field measured spruce and birch trees appear in
Table 1.

2.3. Airborne laser scanner data

ALS data used in this study were acquired 18 June 2005 under leaf-
on conditions with the Optech ALTM 3100 sensor. The sensor operated
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with a laser pulse repetition rate of 100 kHz and a scanning frequency
of 70 Hz. In total, eleven individual flight lines were flown to cover the
field plots. Individual strips overlapped with about 15%. Average flight
speed was 75 ms−1 at a mean altitude of 750 m a.g.l. The maximum
scan angle of 20° yielded a swath width of about 260 m. Pulses
transmitted at half scan angles that exceed 8° were excluded from the
final dataset in order to eliminate erroneous edge points as ALS
sensors with oscillating mirrors have less accurate determination of z
and across track coordinates at the scan edge. These errors occur
because of the difficulty of modeling the rapid deceleration and
acceleration that occur when the mirror is turning. Hence, the total
scan angle used was 16°. The beam divergence was 0.28 mrad which
yielded an average footprint size of about 21 cm. The average point
spacing was 0.37 m by 0.54 mwhich gave an average point density of
5.09 m−2. The recorded mean point density inside the tree segments
of the studied treeswas 6.6m−2 and the standard deviationwas 3.2m−2.
Point density variation is partly caused by overlapping flight lines.
Using ALS data from overlapping flight lines are frequently used in
operational forest inventory and is probably the only way to obtain
species information over large areas in a “wall-to-wall”context.
However, since the ALS is a sample device, the higher point density
will only lead to a more precise determination of laser-derived
features.

Initial processing of the data was accomplished by the contractor
(Blom Geomatics, Norway). Planimetric coordinates (x and y) and
ellipsoidal height values were computed for all echoes. One of the
flight lines was flown perpendicular to the other flight lines and used
in matching and correction for systematic errors between swaths.
Ground points were found and classified using the progressive
Triangular Irregular Network (TIN) densification algorithm (Axelsson,
1999) of the Terrascan software (Terrasolid Ltd., 2004). A TIN was
created from the planimetric coordinates and corresponding heights
of the laser echoes classified as ground points. The ellipsoidal height
accuracy of the TIN model was expected to be around 20–30 cm (e.g.
Hodgson & Bresnahan, 2004; Kraus & Pfeifer, 1998; Reutebuch et al.,
2003). The heights above the ground surface were calculated for all
echoes by subtracting the respective TIN heights from all echoes
recorded.

Older ALS systems (e.g. Optech ALTM 1210) typically record two
echoes for each pulse, i.e., first and last echoes. The ALTM 3100
sensor used in this study is capable of recording up to four echoes per
pulse. To separate different echoes acquired by such a system there
has to be a certain time interval between the echoes. This time
interval is known as the vertical resolution (Baltsavias, 1999). The
vertical resolution for the sensor used in this study varies between
2.1 m for the two first echoes to 3.8 m for the other echoes. If four
echoes are detected by the ALTM 3100 sensor, they are labeled as
“first echo of many”, “second echo”, “third echo”, and “last echo of
many”. If there are three echoes, they are labeled “first echo of
many”, “second echo”, and “last echo of many”. Furthermore, if two
echoes are recorded they are labeled “first echo of many” and “last
echo of many”. Finally, if only one echo is recorded it is labeled as a
“single echo”. “Single echoes” are registered if the distance between

the first echo and the last echo is less than 2.1 m or if it is not enough
energy to trigger a second echo.

In this study, ALS data were delivered by the contractor as two
datasets to be as close to the structure of the data provided by the
ALTM 1210 sensor as possible, i.e., with “first echoes of many” plus
“single echoes” as one dataset and “last echoes of many” plus “single
echoes” as a second dataset. The use of two echoes, i.e., first and last, is
common in operational ALS-assisted forest inventories in Norway
(Næsset, 2004a). However, in this particular study, we split the two
datasets based on spatial coordinates of the echoes into three different
datasets containing the individual echo categories, i.e., (1) “first
echoes of many”, (2) ”single echoes”, and (3) “last echoes of many”.
The echo categories were denoted as “FIRST”, “SINGLE”, and “LAST”,
respectively. These three echo categories were used in the analysis.
The relations between echoes of the same pulse have been outlined as
important information to separate tree species (Brandtberg, 2007)
and have been tested in tree species classification (Holmgren &
Persson, 2004). However, given the structure of the data delivery in
the present study, it was not possible to reconstruct the original data
structure and tie the different echoes of each pulse to each other. Each
echo category was therefore treated separately.

The intensity values used in this study were the uncalibrated
intensity as recorded by the sensor. The intensity data recorded by ALS
are noisy and will vary with target and sensor properties. Several
studies have explained this noise by varying reflectivity with different
directions of different target surfaces (Song et al., 2002;Wotruba et al.,
2005). Hence, intensity of a target as measured by ALS will change
with the scan angle of the emitted pulse (Kaasalainen et al., 2005).
This could be adjusted for, but we did not have sufficient information
to apply such a radiometric correction of the raw intensity values.

2.4. Computation of features of individual tree segments

In the present study, we did not use any crown delineation
algorithm to identify the individual tree segments. Instead, we
computed the crown radius for each tree as the mean of the field

Fig. 1. Example of crown map (plot #14) showing the heterogeneous structure of the
forest which lead to a number of overlapping crowns. The crown shapes are draped
above a canopy surface model interpolated from laser echoes.

Table 1
Summary of field measurements of trees.

Tree species Characteristic n Mean Std Min Max

Norway spruce Tree height (m) 209 17.6 8.6 1.8 33.8
Stem diameter (cm) 209 23.7 12.9 1.7 51.0
Crown radius (m) 209 1.5 0.6 0.5 2.9
Crown base height (m) 209 4.2 3.7 0.0 16.1

Birch Tree height (m) 203 12.1 6.4 1.6 29.1
Stem diameter (cm) 203 14.1 9.2 2.1 39.5
Crown radius (m) 203 1.4 0.7 0.3 4.2
Crown base height (m) 194 5.8 4.4 0.0 18.9
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measured radii in the four cardinal directions and this quantity was
used to buffer the field-measured stem position producing circular
crown outlines (Fig. 1).

After having generated the circular tree segments, each laser echo
was assigned to its corresponding tree crown. For trees with
overlapping crowns, echoes in the overlapping zone were assigned
to the tallest tree. Since laser measurements always will under-
estimate true tree height (Gaveau & Hill, 2003), echoes with higher z-
value than the actual field-measured tree height were deleted. This
correct for errors caused by erroneous positions and the assumption of
circular crowns.

In area-based forest inventory where the ALS-related metrics are
derived from the laser height distribution of a plot or certain target
area (cf. Næsset, 2002), laser echoes between the ground surface (the
TIN surface) and a threshold of, say, 2 m, are often considered as
echoes from stones or under-vegetation and thus not included in
analyses of the canopy (Næsset, 2002; Næsset & Bjerknes, 2001). A
Ground Threshold Value (GTV) of 2 m is in accordance with the work
by Nilsson (1996). In forestry, parameters like diameter, age, and basal
area are most commonly registered at breast height, i.e., the point of
the stem located 1.3 m above ground. We argue that breast height
should be used as the GTV in individual tree assessment based on ALS
data for consistency, unless there are specific reasons not to, for
example when a priori knowledge of the height of the under-
vegetation exist (Holmgren, 2004). In the multi-layered forest in our
study area we also wanted to keep as much information as possible
about the small trees. Hence, in the present work we used breast
height (1.3 m) as the GTV.

For each tree segment, we used the point cloud to calculate four
groups of structural features, i.e., (1) Normalized Height Features
(NHF), (2) Canopy Penetration Depth (CPD), (3) Other Height
Features (OHF), and (4) Crown Density Features (CDF). We also
used one group of intensity features, i.e., Laser Intensity Features
(LIF). From the echo height distribution we computed maximum
(HMAX), mean (HMEAN), and height percentiles at 10% intervals
(H10, H20, …., H80, H90) for each segment. These features were
scaled to produce NHF and CPD (Eqs. (1)–(2)) described in Section
2.5. We selected the H10, H50, and H90 percentiles for further
analysis. In addition we computed Other Height Features (OHF)
including kurtosis (HKURT) and skewness (HSKEW) of the laser
height distributions. Furthermore, standard deviation (HSTD), scaled
according to Eq. (1), and coefficient of variation (HCV) for the laser
height values were calculated in the OHF group. The features were
calculated from all echoes above the GTV and for separate echo
categories, i.e., FIRST, SINGLE and LAST.

Crown density features (CDF) were calculated in accordance with
canopy density calculation in area-based forest inventory (Næsset,
2004c). The crown was divided into vertical crown layers by dividing
field-measured tree height minus the GTV value (1.3 m) into 10 layers
of equal height. Crown density was calculated for each echo category
as the proportion of echoes above layer number 0 (NGTV), 1, …, 9, to
total number of echoes in that category for each tree, and these
densities were denoted as D0, D1,…, D9. D1, D5, and D9 were selected
for further analysis.

Laser intensity features (LIF) derived for each individual tree were
maximum intensity (IMAX), mean intensity (IMEAN), median
intensity (IMEDIAN), kurtosis (IKURT), skewness (ISKEW), standard
deviation (ISTD), and coefficient of variation (ICV) for echoes above
GTV for the separate echo categories.

2.5. Scaling of laser height features

As stated above, two different scaling methods were applied in
order to ensure independence of tree height and to utilize laser height
features (i.e., HMAX, HMEAN, H10, H20, .…, H90, HSTD) in species
classification. In our study, two scaling approaches were used, i.e.,

(1) normalized with tree height to produce NHF (Eq. (1)) and (2)
transformed to CPD using tree height (Eq. (2)):

NHF =
LHF
h

ð1Þ

where

NHF laser-derived height feature normalized with field-measured
tree height,

h field-measured tree height,
LHF laser-derived height feature, i.e., HMAX, HMEAN, H10, H20,

…., H90, HSTD.

CPD = h − LHF ð2Þ

where

CPD laser-derived height feature scaled to crown penetration
depth,

h field-measured tree height,
LHF laser-derived height feature, i.e. HMAX, HMEAN, H10, H20,

…., H90.

2.6. Tree height and laser echo categories

The forest in the Østmarka forest reserve is heterogeneous with
complicated structure and a number of overlapping tree crowns
(Fig. 1). The spatial distribution and size of the trees will influence on
the number of echoes returned from inside a tree segment. In
addition, not all the field-measured trees will have echoes of all
categories. For short trees, FIRST and LAST echoes in particular will be
limited in number because of the limited vertical resolution of the ALS
sensor. In order to calculate all the defined variables for a tree, at least
three echoes above GTV in each echo category are needed. This
requirement reduced the number of trees subject to analysis
significantly. We therefore analyzed two separate datasets, i.e.,
(1) one containing trees hit by at least three echoes of each category
above GTV and (2) one with those trees not satisfying the criteria of
the first dataset, but with at least three SINGLE echoes above GTV for
each tree. The first dataset comprised 201 trees and was labeled Large
Trees because it on average contained higher trees (Table 2) than the
Small Trees dataset of 176 trees. The field-measured tree height
distributions of each species for the two tree categories are displayed
in Fig. 2. For the two datasets, we computed and reported the
proportions of echoes in the different echo categories (FIRST, SINGLE,
LAST) as observed in the sample trees above and below GTV (Table 3).
The proportions of echoes were computed relative to the sum of FIRST
and SINGLE echoes. This information is interesting in evaluating the
split into tree categories and to assist evaluation of crown density
features.

Table 2
Summary of number of trees and heights in the two tree categories used in the analysis.

Tree
categories

Tree
species

n Tree height (m)

Mean Std Min Max

Small Trees Spruce 78 9.6 5.5 2.6 27.8
Birch 98 8.5 4.5 2.4 24.0

Large Trees Spruce 119 23.8 4.2 12.0 33.8
Birch 82 17.6 4.3 9.2 29.1
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2.7. Analysis of differences between tree species

Generally, a laser feature can be used for species classification if it
differs significantly between species (e.g. Brandtberg et al., 2003;
Holmgren & Persson, 2004). Instead of only analyzing differences in
mean values using t-tests or analysis of variance we incorporated tree
heights into our analysis. Hence, we computed a linear regression
model including tree species and field-measured tree height as
covariates and the specific laser features as the response variable. Tree
species was included as a dummy variable. Such analyses are often
refereed to as analysis of covariance (ANCOVA). The full model
(Eq. (5)) was estimated with ordinary least square regression using
the R stats package (R Development Core Team, 2007). In addition,
simpler models were estimated by removing one (Eq. (4)) or two
(Eq. (3)) of the latter terms of the full model (Eq. (5)). All together
three different models were estimated:

LF = β0 + β1SP ð3Þ

LF = β0 + β1SP + β2h ð4Þ

LF = β0 + β1SP + β2h + β3h⁎SP ð5Þ

where

LF laser-derived feature, i.e., all features in the five feature
groups (NHF, CPD, OHF, CDF, LIF),

h field-measured tree height,
SP dummy variable for tree species. SP=1 if spruce and SP=

−1 if birch.

The “best” model of the three estimated, was selected using F
statistics, also known as the partial F-test. Simpler models, i.e., fewer
parameters estimated, were selected if they did not have signifi-
cantly (p≤0.05) lower explanatory power than more complex
models. The F statistics was computed with the anova-function of
the R stat package (R Development Core Team, 2007) and it was
computed by dividing the difference in model residual sum of
squares by the ratio of model residual sum of squares by degrees of

freedom for the more complex model (Eq. (6)). In the complex
model, one parameter more than in the simple model is estimated.

F =
RSS1 − RSS2
RSS2 =DF2

ð6Þ

where

RSS1 residual sum of squares of simpler model, e.g. Eq. (4),
RSS2 residual sum of squares of complex model, e.g. Eq. (5),
DF2 degrees of freedom of complex model, e.g. Eq. (5).

If the best model selected based on Eq. (6) was the full model
(Eq. (5)) the estimated β0 is the intercept, β1 is the change in intercept
for species (plus for spruce and minus for birch), β2 is the estimated
slope for tree height, andβ3 is the change in slope for tree species (plus
for spruce and minus for birch). The significance of the model terms
(SP, h, h⁎SP) was tested using an F-test. The null hypothesis tested was
that the betas (β1, β2, β3)were equal to zerowhen all other termswere
included in model, i.e., using adjusted sum of squares — also called
Type III-test. In order to compare variance explained for different
features, we compute single term coefficients of variation using
adjusted sum of square for the single term divided by the sum of single
term sum of squares plus residual sum of squares, i.e.,

η2effect =
SSeffect
SStotal

× 100 ð7Þ

where

ηeffect2 eta-squared for effect, i.e. tree species (SP), tree height (h)
or interaction (h⁎SP),

SSeffect adjusted sum of squares for single model terms, i.e. tree
species (SP), tree height (h) or interaction (h⁎SP),

SStotal adjusted sum of squares for all model terms i.e. tree species
(SP), tree height (h) or interaction (h⁎SP), and the error
term.

In variance analysis such measures are often referred to as the
correlation ratio or eta-squared (ηeffect2 ) (Kline, 2004). Eta-squared
will sum to 100 for all model terms. However, the sum of eta-squared
(ηeffect2 ) for all terms is different from the coefficient of determination
(R2) although both are measures of explained variability. The reason
for this difference is that in computation of η2 adjusted sum of square
is used and in computation of R2 sequential sum of square is used. We
used eta-squared for the tree species term (ηSP2 ), or as referred to in
this study, the proportion of variability explained by tree species, to
identify candidate features. Candidate features should have a high
proportion of variability explained by tree species (ηSP2 ) and explained
variability should be higher for tree species than by other model
terms.

In order to test classification performance of candidate features
(objective 2), classification was carried out using Linear Discriminant

Table 3
Proportion (%) of echoes relative to the sum of FIRST and SINGLE echoes for the two tree
categories (Large Trees and Small Trees) split on tree species and above and below ground
threshold value (GTV=1.3 m).

Tree species Echo
category

Large Trees Small Trees

HN=GTV HbGTV HN=GTV HbGTV

Norway spruce FIRST 35 0 12 0
SINGLE 62 3 81 7
LAST 21 20 5 10

Birch FIRST 41 0 25 0
SINGLE 52 7 65 10
LAST 18 26 2 26

Fig. 2. Histogram of tree height distribution in the two datasets labeled Small Trees and
Large Trees. The dataset Large Trees contains trees hit by at least tree pulses with all
echo categories and the dataset Small Trees contains the remaining trees with at least
tree pulses with echoes of the SINGLE category.
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Analysis (LDA). The estimation was conducted using the lda-function
of the R package MASS (Venables & Ripley, 2002) using equal prior
probabilities and full cross validation. From the resulting error matrix,
accuracy was computed for each tree species and for the overall
classification. Classification was carried out for single candidate
features. Features with low overall accuracy were removed from the
set of candidate features. Finally, classification was carried out for the
combination of the “best” candidate feature in each feature group and
for separate echo categories.

In addition to the analysis described above, we also visualized the
distribution of normalized laser heights and the raw intensity values
by density plots. The plots will identify differences in the height and
intensity distributions between species. Density estimation is a
method used to estimate probability density functions from sample
data. Density estimates are very useful in exploration and presenta-
tion of data (Silverman, 1986). In this study, we used the kernel
estimator to estimate the density function. The density function was
computed with the R stats package (R Development Core Team, 2007)
using a Gaussian kernel and bandwidth selection using the Silver-
man's “rule-of-thumb” (Venables & Ripley, 2002). The kernel density
plots will produce a better visualization of the height- and intensity
distributions than histograms, but interpretation will be the same.

3. Results

The results of the analysis of covariance (ANCOVA) (Eqs. (3)–(5))
and model selection procedure (Eq. (6)) are summarized in Table 4.
The analysis revealed that many of the computed laser features

differed significantly between tree species. In 52 of 72 estimated
models, tree species was a significant (pb0.05) explanatory variable of
the specific laser feature analyzed. However, selected models also
demonstrated that analyzed laser features were influenced by tree
height. For the 72 laser features tested, 41 models included the
covariate (tree height). Among these 41 models, 13 also included the
interaction term. Comparing proportion of variability explained by
tree species (ηSP2 ) in the selected model and the simple one-way
ANOVA model (Eq. (3)) illustrates that tree height would influence
selection of candidate variables if we did not considered tree height as
a covariate (Fig. 3).

3.1. Differences in structural features between tree species (Objective 1a)

The height distributions of laser echoes for different species, echo
categories, and tree height categories (Large Trees and Small Trees)
are visualized in Fig. 4. The normalized laser height features (NHF)
computed from FIRST and SINGLE echoes for birch trees were larger
than for spruce trees (Table 4). Conversely, NHF computed from LAST
echoes were smaller for birch trees than for spruce trees. The highest
proportion of variability explained (ηSP2 ) obtained for tree species from
NHF was 11% for Large Trees and 17% for Small Trees. However, a
similar or higher proportion of the variation was explained by tree
height. Moreover, we also carried out the ANCOVA with height
features scaled as crown penetration depth (CPD) (Eq. (2)). CPD from
FIRST and SINGLE echoes were significantly deeper for spruce
compared to birch (Table 4). In the CPD group, only features not
influence by tree height, i.e., CPD computed from SINGLE echoes and

Table 4
Summary of analysis of covariance (ANCOVA)a.

Laser featureb Large Trees Small Trees

FIRST SINGLE LAST SINGLE

SP h h⁎SP SP h h⁎SP SP h h⁎SP SP h h⁎SP

HMAX (NHF) −4 ⁎⁎ +3 ⁎ −3 ⁎ +3 ⁎ +0 ns +13 ⁎⁎⁎ −6 ⁎⁎ +8 ⁎⁎⁎

HMEAN (NHF) −6 ⁎⁎⁎ +6 ⁎⁎⁎ +3 ⁎⁎ −11 ⁎⁎⁎ +11 ⁎⁎⁎ +7 ⁎⁎⁎ +15 ⁎⁎⁎ −17 ⁎⁎⁎ +15 ⁎⁎⁎

H10 (NHF) −7 ⁎⁎⁎ +3 ⁎ +4 ⁎⁎ −5 ⁎⁎⁎ +8 ⁎⁎⁎ +5 ⁎⁎⁎ +7 ⁎⁎⁎ −12 ⁎⁎⁎ +11 ⁎⁎⁎

H50 (NHF) −5 ⁎⁎⁎ +5 ⁎⁎ +3 ⁎⁎ −9 ⁎⁎⁎ +7 ⁎⁎⁎ +6 ⁎⁎⁎ +13 ⁎⁎⁎ −17 ⁎⁎⁎ +17 ⁎⁎⁎

H90 (NHF) −2 ⁎ +4 ⁎⁎ −9 ⁎⁎⁎ +6 ⁎⁎⁎ +1 ns +10 ⁎⁎⁎ −9 ⁎⁎⁎ +9 ⁎⁎⁎ +2 ⁎

HMAX (CPD) +11 ⁎⁎⁎ +4 ⁎⁎ +1 ns +3 ⁎ +2 ⁎

HMEAN (CPD) +6 ⁎⁎⁎ +9 ⁎⁎⁎ −3 ⁎⁎ +26 ⁎⁎⁎ +1 ns +25 ⁎⁎⁎ −2 ⁎⁎ +9 ⁎⁎⁎ +31 ⁎⁎⁎

H10 (CPD) +5 ⁎⁎⁎ +11 ⁎⁎⁎ −3 ⁎⁎ +16 ⁎⁎⁎ +2 ⁎ +31 ⁎⁎⁎ −3 ⁎⁎ +5 ⁎⁎⁎ +37 ⁎⁎⁎

H50 (CPD) +5 ⁎⁎⁎ +5 ⁎⁎⁎ −3 ⁎⁎ +19 ⁎⁎⁎ +1 ns +17 ⁎⁎⁎ −3 ⁎⁎ +11 ⁎⁎⁎ +25 ⁎⁎⁎

H90 (CPD) +2 ⁎ +3 ⁎ +18 ⁎⁎⁎ −1 ns +4 ⁎⁎ +6 ⁎⁎⁎ +8 ⁎⁎⁎

HSD (NHF) +10 ⁎⁎⁎ −1 ns −7 ⁎⁎⁎ +0 ns −9 ⁎⁎⁎ +2 ns −0 ns −2 ⁎ +7 ⁎⁎⁎ −5 ⁎⁎

HCV +11 ⁎⁎⁎ −2 ⁎ −8 ⁎⁎⁎ +1 ns −9 ⁎⁎⁎ −6 ⁎⁎⁎ −3 ⁎⁎ +11 ⁎⁎⁎ −7 ⁎⁎⁎

HKURT −13 ⁎⁎⁎ +2 ⁎ −14 ⁎⁎⁎ −0 ns +3 ⁎ −1 ns
HSKEW +7 ⁎⁎⁎ −2 ⁎ +18 ⁎⁎⁎ −4 ⁎⁎ −3 ⁎ +2 ns −7 ⁎⁎⁎

D1 +1 ns +12 ⁎⁎⁎ +11 ⁎⁎⁎ +1 ns +16 ⁎⁎⁎

D5 −10 ⁎⁎⁎ +7 ⁎⁎⁎ +6 ⁎⁎⁎ +0 ns +5 ⁎⁎ +13 ⁎⁎⁎ +5 ⁎⁎⁎ −2 ⁎ +27 ⁎⁎⁎

D9 +1 ns −20 ⁎⁎⁎ +6 ⁎⁎⁎ +17 ⁎⁎⁎ −7 ⁎⁎⁎ +19 ⁎⁎⁎

IMAX −19 ⁎⁎⁎ −3 ⁎ +1 ns +2 ns +2 ns −4 ⁎

IMEAN −18 ⁎⁎⁎ −1 ns +19 ⁎⁎⁎ −6 ⁎⁎⁎ +2 ns +0 ns −5 ⁎⁎

IMEDIAN −14 ⁎⁎⁎ −1 ns +18 ⁎⁎⁎ −6 ⁎⁎⁎ +2 ns +0 ns −5 ⁎⁎

ISD −8 ⁎⁎⁎ −3 ⁎ +3 ⁎ −0 ns +6 ⁎⁎

ICV +2 ns −2 ns +2 ns +0 ns +5 ⁎⁎

IKURT −4 ⁎⁎ +1 ns −5 ⁎⁎⁎ +3 ⁎ +4 ⁎⁎ +1 ns −5 ⁎⁎

ISKEW +2 ⁎ −2 ⁎ −11 ⁎⁎⁎ +5 ⁎⁎⁎ +0 ns

The sign of the regression coefficientsc variability explained by (ηeffect2 ) model terms, and the significant leveld of the term for selected models are displayed for different tree height
categories, echo categories, and model terms, i.e., tree species (SP), tree height (h), and the interaction term (h⁎SP). Model terms with higher variability explained (ηeffect2 ) than 10
appear in bold.

a The displayed models are the best ones (i.e. Eq. (3), Eq. (4), or Eq. (5)) selected according to Eq. (6).
b HMAX=maximumheightof laser height distribution;HMEAN=meanheightof laser height distribution;H10,H50, andH90=10, 50, and 90 percentiles of laser height distribution;

HSD=standarddeviationof laserheightdistribution;HCV=coefficient of variationof laserheightdistribution;HKURT=kurtosis of laserheightdistribution;HSKEW=skewness of laser
height distribution. Abbreviations in parenthesis refer to scaling method, i.e. normalized height features (NHF) (Eq. (1)) or canopy penetration depth (CPD) (Eq. (2)). D1, D5, and D9=
crown densities corresponding to proportions of laser echoes above layer # 1, 5, and 9, see text for further details; IMAX=maximumvalue of laser intensity distribution.; IMEAN=mean
value of laser intensity distribution.; IMEDIAN=medianvalueof laser intensity distribution.; ISD=standard deviation of laser intensity distribution.; ICV=coefficient of variationof laser
intensity distribution.; IKURT = kurtosis of laser intensity distribution.; ISKEW= skewness of laser intensity distribution.

c Plus (+)for species (SP) and interaction (h⁎SP) represent higher values for spruce compared to birch. Plus (+) for tree height (h) represent increasing values with increasing tree height.
d Level of significance: ns = not significant (N0.05); ⁎b0.05; ⁎⁎b0.01; ⁎⁎⁎b0.001.
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HMAX from FIRST echoes, had potential for tree species classification.
The Small Trees category was highly influenced by tree height both
within NHF and CPD.

The effect of the two different scaling methods is illustrated with
proportion of variability explained by the tree species term (ηSP2 ) in

percentile (H10–H90) models (Fig. 5). The proportion of variability
explained for percentiles derived from SINGLE echoes scaled to crown
penetration depth (CPD) were on average 11% higher than the
corresponding relative heights (NHF).

The normalized standard deviation (HSTD) and coefficient of
variation (HCV) differed between the two species for FIRSTechoes and
FIRST and LAST echoes, respectively, in the Large Trees category
(Table 4). For Small Trees, both HSTD and HCV differed between
species. However, both features were always dependent on tree height
in the Small Tree category. HCV was found to be as good as HSTD or
better in terms of proportion of variability explained by the models.
The analysis also revealed that HSTD and HCV in general were lower
for birch trees for all echo categories.

Skewness (HSKEW) and kurtosis (HKURT) were found to have
potential for tree species classification for the Large Trees category
when computed from FIRST and SINGLE echoes (Table 4). Skewness
and kurtosis for the FIRST and SINGLE echoes indicated that the
distribution was more skewed, sharp, and a bit more shifted upwards
for birch than for spruce (Table 4 and Fig. 4).

The differences in crown density between tree species were most
pronounced for features computed from LAST echoes (Table 4, Fig. 6).
For FIRST echoes, the largest differences were found in the
intermediate parts and for SINGLE echoes the largest differences
were found in the lower and upper part of the crown. Small Trees
crown density features were highly influenced by tree height and
were only statistically significant in the upper parts of the tree crown.
Furthermore, it was also found that tree heights significantly
influenced the values of most crown density features also for the
Large Trees category.

3.2. Differences in intensity features between species (Objective 1b)

The estimated distributions of uncalibrated intensity for the two
species for each echo category and for the two tree categories are
plotted in Fig. 7. The main difference in the intensity distributions was
between the echo categories. SINGLE echoes had higher intensities
compared to FIRST and LAST echoes. Both FIRST and LAST echoes had
approximately half the mean intensity values compared to SINGLE
echoes, i.e., 56 and 41%, respectively. There was no clear difference

Fig. 4. Normalized laser height distributions, estimated as kernel density, for different
tree species and echo categories for both tree categories. The Small Trees dataset is only
represented by SINGLE echoes.

Fig. 5. Proportion of variability explained by tree species (ηSP2 ) for different percentiles
(H10–H90) and scaling methods, i.e., normalized height features (NHF) (Eq. (1)) and
crown penetration depth features (CPD) (Eq. (2)), displayed for echo- and tree
categories.

Fig. 3. Proportion of variability explained by tree species (ηSP2 ) for different laser features
in ANOVAmodel (Eq. (3)) compared to in selected ANCOVAmodel (Eqs. (3)–(5)). Laser
features in the upper left of the plot have lower explained variability of tree species
when tree height is introduced as covariate. Laser features in the lower right of the plot
will explain more of the difference between tree species when the covariate is
introduced. Laser features at the 1:1 line are features where the ANOVAmodel (Eq. (3))
is selected as the one with the significantly highest variability explained.
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between tree species in the density plots (Fig. 7). The ANCOVA
(Table 4) revealed that laser intensity features were higher for birch
trees than for spruce with exception of the LAST echoes where the
opposite effect was observed. The largest proportions of variability
explainedwere in intensity features from FIRST echoes (IMAX, IMEAN,
IMEDIAN) and LAST echoes (IMEAN, IMEDIAN). Furthermore, features
derived from the LAST echoes were significantly related to tree height.
For Small Trees, none of the computed intensity features, except from
IKURT, differed between the two species (Table 4).

3.3. Classification performance of candidate features (Objective 2)

The overall classification accuracies of the three features with
highest proportion of variability explained by tree species (ηSP2 ) in the
five feature groups (NHF, CPD, OHM, CDF, and LIF) are presented in
Table 5. Laser features with proportions of variability explained by tree
species (ηSP2 ) higher than 10 and where a greater proportion of
variability was explained by tree species than by other model terms
are presented in italics. Features presented in bold were considered as
candidate features. In addition to meeting the criteria for proportion
of variability explained by tree species (ηSP2 ), the candidate features
had high (N67%) overall classification accuracies.

Combining the candidate features with highest proportions of
variability explained by tree species (ηSP2 ) in each feature group and
echo category increased the overall accuracy obtained for the Large
Trees category. The combination of candidate features yielded an
overall accuracy of 88% for Large Trees and 64% for Small Trees
(Table 6).

4. Discussion and conclusions

4.1. Materials and methods

In this study, the main focus was on identifying candidate laser-
derived features suitable for discriminating between coniferous

Fig. 7. Laser intensity distributions, estimated as kernel density, for different tree species
and echo categories for both tree categories. The Small Trees dataset is only represented
by SINGLE echoes.

Fig. 6. Proportion of variability explained by tree species (ηSP2 ) for different crown
density features (D1–D9), echo- and tree categories. Crown densities are computed as
the number of echoes of an echo category above a given vertical layer as a proportion of
total number of echoes of that specific category, see text for further details.

Table 5
The three featuresa within tree categories, echo categories, and feature groupsa with the
highest proportion of explained variability (ηSP2 ) for tree species in ANCOVA model.

Feature
groupsb

Large Trees Small Trees

FIRST SINGLE LAST SINGLE

NHF H10(59) HMEAN(60) HMEAN (74) HMEAN(64)
HMEAN(58) H50(61) H50(74) H50(64)
H50(55) H90(61) H10(70) H10(62)

CPD HMAX (61) HMEAN(75) H10(58) H50(66)
HMEAN(71) H50(74) H50(28) HMEAN(65)
H50(72) H90(69) HMEAN(52) H90(64)

OHF HKURT(70) HSKEW(70) HCV(69) HCV(65)
HCV(57) HKURT(72) HSKEW(66) HSD(63)
HSD(55) HCV(55) HSD(53) HSKEW(56)

CDF D5 (58) D9(67) D9(67) D9(58)
D1(61) D1(70) D5(77) D5(52)
D9(54) D5(60) D1(65) D1(55)

LIF IMAX(73) ISD(55) IMEAN(67) IKURT(51)
IMEAN(70) IMAX(58) IMEDIAN(66) IMEDIAN(55)
IMEDIAN(66) ISKEW(59) ISKEW(65) IMEAN(53)

Overall accuracy of classification for single features is shown in parenthesis. Italic letters
indicate that variability explained by tree species (ηSP2 ) is greater than 10 and no other
model term has higher explained variability (ηh2,ηh ⁎SP

2 ). Bold letters indicate candidate
features having both high ηSP2 for tree species and high overall accuracy.

a Symbols explained in Table 4.
b NHF = normalized height features, CPD = crown penetration depth, OHF = other

height features, CDF = crown density features, and LIF = laser intensity features.

Table 6
Classification performance for a combination of features selected.

Tree
categories

Features selecteda Classification accuracy (%)

FIRST SINGLE LAST Spruce Birch Overall

Large
Trees

HKURT
IMAX

HMEAN(CPD)
HSKEW
D9

HCV
D9
IMEAN

93.3 81.7 88.6

Small
Trees

HMEAN(NHF)
HCV

57.7 68.4 63.6

The features are selected from the candidate features (Table 5) having the highest (ηSP2 )
in each feature groupb, echo category, and tree category.
aSymbols explained in Table 4.
bNHF = normalized height features, CPD = crown penetration depth, OHF = other
height features, CDF = crown density features, and LIF = laser intensity features.
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(spruce) and deciduous (birch) species. The study area is located in a
forest reserve, and the tree height distributions observed in such a
forest are likely to be different from those found in a managed forest.
However, we found the data suitable for this study because datasets
with large variation in tree size and spatial distribution of trees may
provide a better basis for selecting robust laser features for species
classification compared to less complex forests.

A possible source of error in the analyses are related the matching
of field and laser data. The quality of this matching is dependent on
the accuracy of the field measured tree coordinates and the
assumption of circular crowns. However, the assumption of circular
crown outlines as measured and reconstructed from field data will
probably be more accurate than an outline produced by a segmenta-
tion algorithm in a relatively complex forest like the current.
Moreover, tilting stems will offset the tree top positions relative to
the measured positions registered in breast height using compass and
measure tape. All these positional errors and errors in determining the
true crown outlinemay cause commission of echoes from neighboring
trees and omission of echoes from the tree in question. If there are
between species commission and omission errors, they will tend to
even out the differences in echo distributions between species. Since
spruce is the most frequently occurring species in the study area, it is
likely that echo distributions of birch trees will bemore similar to echo
distributions of spruce trees. Hence, computed features will be more
similar between species. Therefore, identified candidate features
probably are robust features not affected by these commission and
omission errors.

4.2. General remarks on laser features and tree height scaling

This study has demonstrated that there are significant differences
in many laser-derived features between spruce and birch. Therefore,
many laser features may contribute to an improved tree species
classification of individual trees based on ALS data. From the different
types of features considered, i.e., normalized height features, canopy
penetration features, crown density features, and uncalibrated laser
intensity features, we identified laser features suitable to discriminate
between the two species (Table 5). In the identification of features
both echo category and tree size category were important. A specific
type of feature may work well for species discrimination when it is
computed for a certain echo category, but provide little or no useful
information when computed from other echo categories. The
identified candidate features varied also highly between tree
categories (Large Trees and Small Trees).

We also found that many laser-derived features are affected by tree
height. The relationship between laser derived features and tree
height may also be linked to other properties which are related to tree
height, e.g. size and shape (i.e. allometry) and the interior structure of
the tree crown. Thus, changes in laser features with increasing tree
heights will occur for both laser height features and laser crown
density features, but to a smaller degree for laser intensity features.
Therefore, discriminating between species based on structural
properties derived from ALS data may be challenging in a forest
where different species have different height distributions. A priori
knowledge of forest structure and variation in species may therefore
be important. Laser height features used must be scaled, trees
stratified into height classes, or tree heights must be included in a
classification algorithm. The two simple scaling methods applied in
this study, i.e., normalization with tree heights and canopy penetra-
tion depth, failed to provide independence of tree height in most
cases. Selected candidate features for Large Trees were only selected
from crown penetration depth scaling. From the normalized height
features often used in individual tree species classification no features
was selected for the Large Tree category. However, if we had based our
selection on the ANOVA model, such features might have been
selected (Fig. 3). The overall accuracy of normalized HMEAN

computed from LAST echoes was 74% (Table 5) and were among the
highest in this study. However, the proportion of variability explained
was 7% for tree species (ηSP2 ) and 15% for tree height (ηh2) (Table 4).

4.3. Structural features

The main differences between spruce and birch in general are the
rounder (spherical) crowns of birch compared to the more conical
crowns of spruce. In addition, the higher crown base height and
allocation of biomass higher up in the crowns are typical for many
deciduous tree species. These two differences were also expressed in
the laser-derived features, see illustration in Fig. 8. First, the values of
laser features computed from FIRST and SINGLE echoes revealed that
echoes from these categories were reflected higher in birch trees than
in spruce trees. The plausible explanation for this is the differences in
crown shape between the species. It is also likely that other crown
structural characteristic influenced on the echo distributions, such as
crown density, leaf area, and leaf orientation (Gaveau & Hill, 2003).
Secondly, the higher proportion of LAST echoes in the crown of spruce
treesmay be explained by the relatively lower crown base of spruce. In
addition to having lower crown base, spruce trees also have a larger
proportion of the crown located at a lower level in the tree. Both the
differences in crown base height and crown biomass distribution will
tend to allowmore LASTechoes to penetrate belowGTV for birch trees
instead of being recorded in the canopy.

The 1–2 cm long needles of spruce in comparison to the ca 5–6×
5 cm plane birch leaves is another obvious difference that influences
the crown structure. ALS data are influenced by the vertical
distribution of biomass/leaf area (Coops et al., 2007; Magnussen &
Boudewyn, 1998). Hence, the higher number of echoes in the upper
crown of birch trees may also be attributed to denser and more
compact tree crowns of this species. This effect is also expressed by the
smaller variation in height of laser echoes in birch trees described by
standard deviation and coefficient of variation. Especially SINGLE
echoes were located at a point relatively higher up in birch crowns
compared to spruce trees (Fig. 4). However, spruce had a higher
portion of SINGLE echoes than birch (Table 3). This may be attributed

Fig. 8. Echoes of different categories plotted for two individual trees of spruce and birch.
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to the fact that for spruce trees more echoes are located at a point
where no additional echoes will be recorded, i.e., near the stemwhere
no further penetration can be expected. In addition, the reflectivity
properties of canopy elements, i.e., foliage, bark, and stem, will
influence the distribution of laser echoes. In the wavelengths typically
used by ALS sensors birch has higher reflectivity than spruce (Kuusk,
A. pers comm.). Hence, FIRST and SINGLE echoes will tend to be
recorded higher in the crown for birch trees.

In the Small Trees category only SINGLE echoes were observed.
The main reason for this is probably the limited vertical resolution
(2.1 m) of the laser sensor used. Another factor which will influence
on the probability of reflecting three echoes or more of each category
from an individual tree, which is the criteria for Large Trees, is the
tree crown diameter. Hence, number of echoes will be low in the
Small Trees category as a result of the limited vertical resolution and
small crown diameters. Our analysis showed that SINGLE echoes were
found higher in birch trees than spruce trees. This pattern coincides
with what we found for the Large Trees category. In addition, it is
important to notice the higher impact of tree height on laser height
features computed from the Small Trees category. The large impact of
tree height in this tree category resulted in quite few selected
candidate features and made the selection of candidate features less
convincing.

4.4. Intensity features

Among the intensity features, we found that the uncalibrated
intensities from the FIRST echoes were the only ones that carried
information useful for species discrimination. It seems that the
uncalibrated intensities of FIRST echoes mostly are functions of the
canopy reflectance of trees. Reflection from birch tends to be higher
than for spruce for all canopy elements, i.e., stem, branches and leaf/
needles, in the wavelength used by the current sensor (1064 nm)
(Kuusk, A. pers comm.). The FIRST echoes are also likely to be less
influenced by the biomass than subsequent echoes. The intensity of
the LAST echo will be influenced by reflection and absorption higher
up in the crown, and thus a higher intensity of e.g. the FIRST echo will
tend to result in a lower intensity of LAST echoes, as we observed in
this study. However, Reitberger et al. (2008) found that the mean
intensity of laser echoes inside a tree produced higher classification
accuracies than mean intensity of the upper 10% of the crown, but
they did not distinguish between echo categories. A high proportion
of reflections from the top of a tree will most likely be SINGLE echoes
and hence the intensity will be higher and less different between
species.

The advantage of intensity features computed from FIRST echoes is
that they are independent of tree heights, at least for Large Trees,
whichwe found not to be the case for themajority of the other derived
features. We expected that intensity of SINGLE echoes of the Small
Trees would be quite similar to FIRST echoes of the Large Trees, i.e.,
that the intensity primarily would be a function of species reflectivity.
However, we found that intensity features were of little value for
classification of spruce and birch when tree heights were b5–10 m.
The difficulties of distinguishing between young conifers and young
broadleaves were also reported by Schreier et al. (1985).

A large variability was inherent in the uncalibrated intensity values
we used, and just a small portion of this variability seemed to be
attributed to differences between species. Radiometric calibration of
ALS intensities is not yet common practices in classification studies
because of lack of appropriate methods (Boyd & Hill, 2007;
Kaasalainen et al., 2005). Factors such as variable scan angle and
flying altitude, atmospheric attenuation, and lack of stability of
emitted pulse energy introduce noise to the recorded intensities.
Using radiometric calibrated intensities instead of the raw intensities
may yield less noise in the computed intensity features. Hence,

radiometric calibrated intensities features may be more suited to
distinguish between tree species.

4.5. Selected candidate features

We found that normalized height features were of little value in
classification of larger trees, opposed to other studies. For example,
Brandtberg et al. (2003) found that the normalized maximum height
from first echoes had the highest overall tree species classification
accuracy in a deciduous forest in eastern USA. In a Swedish study
(Holmgren & Persson, 2004), the 90 percentile calculated for all
echoes within the crown produced the lowest overall accuracy of
features selected. Normalized percentiles tended to produce a very
low accuracy using waveform data under leaf-on conditions in
Germany (Reitberger et al., 2008), but was the group with second
highest overall accuracy in another study conducted in the same area
(Heurich, 2006). The new scaling method proposed in the present
study, i.e., the canopy penetration depth scaling, is promising as a
method to scale laser height features.

The other height features included variability features such as
standard deviation (HSTD) and coefficient of variation (HCV) and
features describing the shape of the distribution, i.e., kurtosis
(HKURT) and skewness (HSKEW). HCV was selected as a candidate
feature from the LAST echoes for Large Trees and from the Small Trees
category. It should also be noted that HCV always was higher ranked
than HSTD. Holmgren and Persson (2004) selected normalized
standard deviation from all laser echoes within the tree crown as a
candidate feature and overall accuracywas in the lower end compared
to other features in the study. Also in a German study the standard
deviations produce the lowest overall accuracies of features consid-
ered (Heurich, 2006). Our results indicate that the coefficient of
variation should be used rater than the normalized standard
deviation. In the study by Brandtberg et al. (2003), both standard
deviation and kurtosis were selected as candidate features from the
first echoes. In our study, kurtosis from FIRST and SINGLE echoes are
recommended as features in addition to skewness for SINGLE echoes.
The descriptions which kurtosis and skewness provide of the laser
height distribution seem to be important in tree species classification.

Crown density features from the intermediate and upper part of
the crown for LAST echoes and in the upper and lower part of the
crown for SINGLE echoes are suggested as candidate variables in the
present study. In a study from Germany, CDFs computed from a dual
recording sensor provided the highest overall tree species classifica-
tion accuracy under leaf-on conditions (Heurich, 2006). However,
CDFs derived from waveform data in the same study area did not
perform as well (Reitberger et al., 2008). In other studies, measures of
crown density have been defined as proportion of echoes traveling
below GTV (Moffiet et al., 2005) or as the proportion of echoes found
above crown base to the total number of echoes (Holmgren & Persson,
2004). In both these latter studies, such features were shown to be of
great importance in species classification. Also in our study density
features contributed significantly to the separation of spruce and birch
when computed from appropriate echo categories.

The three laser intensity features expressing the largest difference
between species were suggested as candidate features in our study.
These were the maximum intensity (IMAX), mean intensity (IMEAN)
of FIRST echoes, and the mean intensity (IMEAN) of LAST echoes.
Mean intensity and standard deviation of intensity computed for all
echoes were among the three best features in a Swedish study
(Holmgren & Persson, 2004). In another Swedish study, mean
intensity was incorporated as the third classification feature (Holmg-
ren et al., 2008). However, Moffiet et al. (2005) found that raw
intensity features did not contribute to species classification in their
study. In a study in North America, three of the six best features were
derived from the intensity distribution of first echoes (Brandtberg
et al., 2003). Reitberger et al. (2008) found mean intensity of the tree
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useful in classification of coniferous and deciduous trees — both as a
single feature and in combination with one or two other features.

4.6. Classification performance

In spite of the complex forest in the current study, the obtained
classification accuracy of 88% for Large Trees is promising. In the
current study, the sample trees were not segmented, but delineated
on the basis of field measurements. Segmentation will most likely
reduce the number of detected sub-dominant trees (Solberg et al.,
2006) compared to the number of trees of these categories that were
included in the current study. Thus, an increased classification
accuracy would be expected if the trees were detected by a
segmentation algorithm since less trees are detected and since these
trees on average will have more laser echoes than the sub-dominant
trees of this study. In other studies dealing with discrimination
between coniferous and deciduous trees overall accuracies are at the
same level as found in our study. Reitberger et al. (2008) obtain an
overall accuracy of 85% classifying deciduous and coniferous trees
whereas Holmgren et al. (2008) obtained an overall accuracy of 88%
when classifying spruce, pine, and birch. Under leaf-off conditions
Liang et al. (2007) achieve an overall accuracy of 90% when separating
coniferous (spruce and pine) and deciduous (birch) trees. In another
study conducted in the Østmarka forest reserve in which only inten-
sity features were considered, an accuracy of 74% was achieved when
classifying into three different categories, i.e., spruce, birch, and aspen
trees (Ørka et al., 2007).

The overall classification accuracy for Small Trees was low (65%).
Hence, classification of small individual trees may be a challenging
task. The number of trees in the Small Trees category found by an
segmentation algorithm will be low, since these trees likely are sub-
dominant or suppressed (Solberg et al., 2006). In forest inventory tree
species distribution for Small Trees may be classified using an area-
based approach as an alternative to the individual tree classification.
An area-based approachwill have a higher number of echoes available
to compute features from the echo distributions. Therefore, features
will be more stable and may be more suitable for separating
coniferous and deciduous tree species.

In addition to being influenced by crown characteristics, echo
distributions are also affected by the laser acquisition parameter
settings or sensor specific settings like e.g. pulse repetition
frequency, beam divergence, and flying altitude (Chasmer et al.,
2006; Goodwin et al., 2006; Hopkinson, 2007; Næsset, 2004b;
Næsset, 2009). Thus, the selection of suitable features for tree species
classification may be influenced by the ALS sensors and acquisition
parameters used.

To conclude, promising classification results for spruce and birch
were obtained using identified candidate ALS-derived structural- and
intensity features. These candidate features included intensity
features and different structural features derived from different echo
categories. The echo category (FIRST, SINGLE, or LAST) is important in
whether the feature is selected as a candidate feature or not. Further
research should include validation of the suggested candidate
variables on independent datasets, testing features from subsequent
echoes of the same pulse, and assessment of radiometrically calibrated
intensities.
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The objectives of this study were to quantify and analyze differences in laser height and laser intensity
distributions of individual trees obtained from airborne laser scanner (ALS) data for different canopy
conditions (leaf-on vs. leaf-off) and sensors. It was also assessed howestimated tree height, stemdiameter, and
tree specieswere influenced by these differences. The studywas based on412 trees fromaboreal forest reserve
in Norway. Three different ALS acquisitions were carried out. Leaf-on and leaf-off data were acquired with the
Optech ALTM3100 sensor, and an additional leaf-on dataset was acquired using the Optech ALTM1233 sensor.
Laser echoes located within the vertical projection of the tree crowns were attributed to different echo
categories (“first echoes of many”, “single echoes”, “last echoes of many”) and analyzed. Themost pronounced
changes in laser height distribution from leaf-on to leaf-off were found for the echo categories denoted as
“single” and “last echoes of many” where the distributions were shifted towards the ground under leaf-off
conditions. The most pronounced change in the intensity distribution was found for “first echoes of many”
where the distribution was extremely skewed towards the lower values under leaf-off conditions compared to
leaf-on. Furthermore, the echo height and intensity distributions obtained for the two different sensors also
differed significantly. Individual tree properties were estimated fairly accurately in all acquisitions with RMSE
ranging from0.76 to 0.84 m for tree height and from3.10 to 3.17 cm for stemdiameter. Itwas revealed that tree
species was an importantmodel term in both and tree height and stem diametermodels. A significantly higher
overall accuracy of tree species classification was obtained using the leaf-off acquisition (90 vs. 98%) whereas
classification accuracy did not differ much between sensors (90 vs. 93%).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Over the past decade airborne laser scanning (ALS) has contrib-
uted significantly to improved efficiency of forest inventories (Eid
et al., 2004; Næsset, 2007). Comparisons of ALS with other remote
sensing methods like radar and optical sensors have shown that ALS
is among the most promising remote sensing techniques in terms of
accuracy of essential forest parameters such as height, volume, and
biomass (Hyde et al., 2006; Hyde et al., 2007; Hyyppä &Hyyppä, 1999;
Magnusson, 2006). Today, ALS is used operationally in stand based
forest inventory where the products are biophysical characteristics
like mean height and timber volume presented at the stand level
(e.g. Næsset, 2007; Næsset et al., 2004). However, the first operational
inventories in landscapes with a size of up to 2000 km2 where
individual trees derived from high-density ALS data are the primary
units of interest, are now about to be completed. In both procedures,
i.e., area-based methods and individual tree methods, biophysical
parameters of interest such as canopy/tree height and volume are

estimated from statistical measures derived from the laser echo
distributions, in particular the laser height distribution, but also the
laser intensity distribution is considered (e.g. Lim et al., 2003).

The echo distributions derived from ALS measurements are sensor
dependent. Sensor and acquisition parameters like flying altitude,
footprint size, pulse repetition frequency, beam divergence, and
scan angle have been tested and found to influence the echo height
distribution (Chasmer et al., 2006;Goodwin et al., 2006;Holmgrenet al.,
2003; Hopkinson, 2007; Næsset, 2004b; Næsset, 2009; Næsset et al.,
2005; Yu et al., 2004). The sensor effects on echo distributions are of
concern in several areas of application in forest inventory. First, the
sensor effects are of interest when developing ALSmethods for regional
biomass-, carbon-, and forest health inventory and monitoring (Næsset
& Nelson, 2007; Næsset et al., 2009; Solberg et al., 2006b). Examples of
such inventories are the national forest inventory programs found in
many countries. The inventory cycle in such programs is usually 5–
10 years. The typical life time of commercial laser sensors is less
than 4 years. Hence, the time period between repeated inventories is
most likely longer than the life time of a sensor and two subsequent
acquisitions will thus be conducted with different sensors. For regional
and national systems for forest monitoring and carbon reporting
compatibility between sensors over time is essential (Næsset et al.,
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2009; Nelson et al., 2003; Nelson et al., 2004). Systematical shifts
in estimated properties caused by changing sensor properties could
influence on conclusions inferred frommulti-temporal observations by
either overestimating the true changes ormaking changesundetectable.
Second, sensor-specific effects are important in operational forest in-
ventory at a more local scale. An expensive part of such inventories is
the field survey conducted to collect local plot data for estimation of
relationships between metrics derived from the ALS data and
biophysical properties of interest. If estimated models of biophysical
properties could be based on already existing field plotswith associated
ALS metrics derived from previous acquisitions in nearby areas the
costs of the inventories could be reduced. It has been demonstrated that
laser data from two different areas, acquired with the same sensor, can
be handled together by common regression models without loss in
accuracy of the estimated stand level biophysical properties (Næsset,
2007). Hence, stability in laser echo distributions, model parameters,
and predicted values across different sensors are important when
considering ALS and ground data to be combined across different areas
(Næsset, 2007; Næsset et al., 2005).

Another concern in forest inventory is the time of data acquisition.
Appropriate acquisition periods are commonly separated into two
distinct times of the year, i.e., (1)when the deciduous trees have leaves
(leaf-on) and (2) the dormant period of deciduous trees (leaf-off). It is
commonpractice to acquire ALS data for operational forest inventories
under leaf-on conditions, but in some areas leaf-off conditions are
preferred. One reason for avoiding the leaf-off period is the much
more narrow time window of having leaf-off conditions and bare
ground (without snow) at northern latitudes combined with the risk
of snowfall. However, there may be several reasons why leaf-off
acquisitions may be considered as an alternative season for forest
inventory ALS acquisitions. First, under leaf-off conditions a larger
amount of pulses will be capable of penetrating through the canopy
and be reflected off the ground in deciduous forest. Higher proportions
of ground echoeswill givemore accurate digital terrainmodels (DTM).
ALS acquisitions for regions or even for entire nations are sometimes
performed under leaf-off conditions to optimize the accuracy of the
DTMs (Liang et al., 2007). Hence, forest inventories may take
advantage of laser data collected for DTM generation to reduce the
overall inventory costs. Second, leaf-off data may help in reducing
the influence of the so-called “hardwood problem” in ALS assisted
forest inventories (Nelson et al., 2007). The “hardwood problem”

refers to the poorer laser based estimates of biomass sometimes found
inmixed (Næsset, 2005) and deciduous (Nelson et al., 2004) forests as
compared to pure coniferous forest. Næsset (2005) studied this
problem in an area-based inventory of a mixed forest under leaf-on
and leaf-off conditions. It was revealed that utilizing the leaf-off
laser data slightly improved estimates of mean height, basal area, and
timber volume compared to utilization of the leaf-on data. Further-
more, at the individual tree level, species classification have been
tested and found to be promising under leaf-off conditions. In a
comparative classification study of coniferous and deciduous trees
using waveform data the overall accuracy was 85% under leaf-on
condition and 96% under leaf-off condition (Reitberger et al., 2008).
Species classification can be a strategy for reducing the impact of
the “hardwood problem”. Thus, there are multiple reasons why leaf-
off acquisitions may be considered as an alternative to leaf-on
acquisitions; (1) cost sharing of leaf-off ALS data acquired for DTM
production, (2) the slightly more accurate results likely to be obtained
in area-based forest inventory of certain forest types, and (3) the
promising results of tree species classification obtained for individual
trees. Hence, knowledge and understanding of the differences
between echo distributions obtained under leaf-on and leaf-off canopy
conditions are needed.

In the current study, we compared the differences in echo
distributions (height and intensity) of individual trees obtained
under different canopy conditions andwith different sensors. Analyses

of individual trees will give us better understanding of echo distri-
butions derived from ALS data. A specific advantage of studying
individual trees is that the different tree species can be analyzed
independent of each other. Tree species produce different echo
distributions which may provide significant differences in derived
metrics (Ørka et al., 2009). Tree species is clearly an important factor in
the analysis of effects of canopy conditionswhere only deciduous trees
will be affected by the changes form leaf-off to leaf-on conditions.
Likewise, the emitted pulses from different sensors may interact
differently with different tree species creating a species specific
sensor effect. In the current study, we addressed the species specific
effects of different sensors and canopy conditions by analyzing the
echo distributions of individual trees.

To the very best of our knowledge, studies of the effects of sensor and
canopy conditions on echo distributions and biophysical properties
have until now focused on the area-based approach and have mostly
been conducted at the plot level (Hopkinson, 2007; Næsset, 2005;
Næsset, 2009). As individual tree inventory now becomes operational,
effects of different sensors and canopy conditions on prediction of
biophysical properties of individual trees will be important as well. A
proposed advantage with individual tree inventory is that a smaller
amount of reference data will be needed for model calibration (Hyyppä
et al., 2008). Stability of model parameters and predictions using
different sensors will support the idea of using a small number of
reference trees in individual tree inventory. It will also support the idea
of reusing models across nearby areas flown with different sensors and
contribute to lower inventory costs. Higher accuracy obtainedwith data
acquired under leaf-off conditions would favor this time period for
acquisition of ALS data for forest inventory. Therefore it is important
to assess how different canopy conditions and sensors affect model
parameters and predicted values of important individual tree properties
likely to be a part of such inventories. In this study, we considered tree
height, stemdiameter, and tree species as themost important properties
to be derived using the individual treemethod (c.f. Holmgren& Persson,
2004; Hyyppä et al., 2001; Ørka et al., 2009; Persson et al., 2002).

The objectives of the present study were to quantify and analyze
differences of (1) leaf-off vs. leaf-on conditions and (2) acquisitions
with two different sensors on (a) the laser height echo distributions
and (b) the laser intensity echo distributions of ALS point cloud data.
The differences were analyzed for separate echo categories and tree
species. Furthermore, (3) we assessed how these changes in canopy
conditions and change of sensors influenced on the accuracy and
model parameters for three individual tree properties derived from
ALS data, i.e., (a) tree height, (b) stem diameter, and (c) tree species.

2. Material and methods

2.1. Study area

The study area is located in Østmarka forest reserve (59˚50´N,
11˚02´E, 14 190–370 masl) in southeastern Norway. The forest reserve
is about 1800 ha in size. This forest has developed without logging
and silvicultural treatments since the 1940s. Today, the forest in the
reserve is size diverse and it is partly multilayered. The dominating
tree species are Norway spruce (Picea abies (L.) Karst.) and Scots
pine (Pinus silvestris L.). Deciduous trees are found scattered in the
landscape. Birch (Betula ssp.) and aspen (Poplus tremula) are the most
commonly occurring deciduous species. Data from an adjacent area
outside the reserve was also used to include younger forest in the
study. This particular forest area is actively managed.

2.2. Field data

Field data collection was carried out on 28 field plots of 0.1 ha
size during summer 2003. The 20 plots inside the reserve were laid
out subjectively to comprise spruce dominated sites (Bollandsås &
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Næsset, 2007; Solberg et al., 2006a). The locations of plots outside the
forest reserve were selected to cover productive forest in young and
intermediate age classes. The plot center coordinates were deter-
mined with differential Global Navigation Satellite System (dGNSS)
measurements (c.f. Bollandsås & Næsset, 2007; Solberg et al., 2006a).
The average accuracy of the plot coordinates was 10 cm (Bollandsås
& Næsset, 2007). On each sample plot the polar coordinates and
diameter in breast height (dbh) were measured for all trees with
dbh N3 cm. Tree species and crown radius in four cardinal directions
was also recorded. Sample trees were selected in two steps. First, eight
trees were selected by including the first dominant or co-dominant
tree in each cardinal direction and the nearest tree to each of these.
Second, all deciduous trees on the plot and a few deciduous trees just
outside the plot were selected as sample trees. On all sample trees
tree height was measured. The tree heights and stem diameters of the
435 sample trees are summarized in Fig. 1. The sample tree dataset
contained 209 spruce trees, 203 birch trees, and 23 aspen trees.

2.3. Laser scanner data

Airborne laser scanner data were acquired during three different
laser campaigns, i.e., (1) in October 2003 under leaf-on canopy
conditions using the Optech ALTM 1233 instrument (Bollandsås &
Næsset, 2007; Solberg et al., 2006a). This acquisition was denoted as
ALTM 1233-on. The Optech ALTM 3100 instrument was used for the
two last acquisitions, i.e., (2) in April 2005 under leaf-off conditions,
denoted as ALTM 3100-off, and (3) in June 2005 under leaf-on
conditions (Ørka et al., 2009), denoted as ALTM 3100-on. The flight
specifications in the two acquisitions with the ALTM 3100 instrument
usedwhen comparing canopy conditionswere identical. However, the
specifications used for the ALTM 1233-on acquisition differed from
those of the two ALTM 3100 acquisitions. An overview of the sensor
settings and other acquisition parameters is displayed in Table 1. The
acquisition parameters were decided from a goal of having a pulse

density of about 5 m−2. The pulse density goal was achieved with
as low cost as possible, given the capacity of the instruments (i.e.
both sensors were flown with the highest possible pulse repletion
frequency) and the spatial distributions of the sample plots.

The initial processing of the data was accomplished by the con-
tractor (Blom Geomatics, Norway). Planimetric coordinates (x and y)
and ellipsoidal height values were computed for all echoes. For each
acquisition, ground returns were found using the Terrascan software
(Terrasolid Ltd, 2004) and a triangulated irregular network (TIN) was
created from the echoes classified as ground returns. Heights above the

Fig. 1. Box-and-whisker plot of tree height and stem diameter for sample trees analyzed in the study. The first and third quartiles define the box, the median is showed as the
horizontal line dividing the box, and the whisker defines the range of the data.

Table 1
Technical specifications of the three airborne laser data acquisitions used in the study.

Acquisition

ALTM 1233-on ALTM 3100-off ALTM 3100-on

Date of acquisition 9 October 2003 17 April 2005 18 June 2005
Canopy conditions Leaf-on Leaf-off Leaf-on
Platform Huges 500

helicopter
Piper PA31-310 Piper PA31-310

Sensor Optech
ALTM 1233

Optech
ALTM 3100

Optech
ALTM 3100

Pulse width (ns) 11 16 16
Pulse energy (μJ) 84 66 66
Peak power (kW) 7.6 4.1 4.1
Wavelength (nm) 1064 1064 1064
Mean flying altitude
AGL (m)

600 750 750

Pulse repetition frequency
(kHz)

33 100 100

Scanner frequency (Hz) 50 70 70
Half scan angle (deg.) 11 10 10
Flying speed (ms−1) 35 75 75
Swath width (m) 230 264 264
Mean pulse density (m−2) 5.0 5.09 5.09
Beam divergence (mrad) 0.30 0.26 0.26
Footprint diameter (cm) 18 21 21
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ground surface were calculated for all echoes by subtracting the
respective TIN heights from the height values of all echoes recorded.

In this study, the uncalibrated intensity values recorded by the
sensors were analyzed. The intensity values recorded by most laser
systems are noisy for several reasons. For example, variations in
recording settings such as the amplitude of the returned signal and
flying altitude together with varying incident angles, variable emitted
energy, and changing atmospheric conditionsmake the intensity values
difficult to interpret. Calibration of intensity to remove noise and make
intensity measurements independent of acquisition parameters
is important for increased utilization of intensity measures (Höfle &
Pfeifer, 2007; Kaasalainen et al., 2005). However, in the current study
we did not have sufficient information to perform such corrections of
the intensity values.

ALTM 1233 always records two echoes for each emitted pulse, i.e.,
a first and a last echo. The sensor has two separate receivers, one
recording the first echo and one the last echo. When ALS data from the
ALTM1233areused inmulti-temporal studies it is necessary to calibrate
recorded heights of the two receivers to avoid systematic shifts in the
surface heights (Næsset, 2005; Næsset & Gobakken, 2005; Solberg et al.,
2006b). In the current study, we calibrated the echoes using a parking
space outside the study area as calibration surface. Five circular plots
with 1 m radius where selected subjectively inside the parking area.
Within each plot, we recorded the height values of all first and last
echoes. The average difference in height values between the two echo
categories was −5 cm. Hence, 5 cm was added to the height values of
all the first echoes of the ALTM 1233-on acquisition. Both the first
and last echo categories acquired by ALTM1233were used in this study.
For convenience, we labeled them FIRST and LAST, respectively.

The Optech ALTM 3100 sensor records multiple echoes. The sensor
is capable of recording up to four echoes. All echoes are recorded with
the same receiver. The actual number of echoes recorded will depend
on the amount of energy needed to trigger a return, the triggering
algorithm, and the minimum time differences between two echoes,
i.e., the minimum vertical distance required to separate the echoes.
The vertical distances for the particular ALTM 3100 instrument and
acquisitions used in this study are stated by the contractor (Blom
Geomatics, Norway) to vary from 2.1 m for the two first returns to
3.8 m for the other returns. The number of echoes recorded by the
ALTM 3100 sensor can also be one. If only one echo is recorded for an
emitted pulse it is labeled as a “single echo”. If more than one echo is
recorded, the first echo is labeled “first echo of many”. The subsequent
echoes (second and third echoes) are referred to as intermediate
echoes dependent of how many echoes that are recorded. The last
echo recorded is always labeled as “last echo of many”, even if there
are only two echoes. In this study, we analyzed “first echoes of many”,
“single echoes”, and “last echoes of many” from the ALTM 3100
sensor. For simplicity they are labeled FIRST, SINGLE, and LAST,
respectively. The intermediate echoes were not provided by the
contractor and thus not analyzed in the current study.

The ALTM 1233 and ALTM 3100 sensors differ conceptually in the
way echoes are recorded. In particular, the FIRST and LAST echo
categories of the ALTM 3100 acquisitions differ from the respective
FIRST and LAST echo categories acquired by ALTM 1233. However,
combining FIRST and SINGLE echoes of the ALTM 3100 is in principle
equal to the FIRST echoes of the ALTM 1233 (Næsset, 2009). The
combinationof LAST+SINGLEechoesof ALTM3100mayalsobe viewed
as identical to LAST echoes of ALTM 1233, but is not. LAST+SINGLE
echoes of ALTM3100will differ fromLASTechoes of ALTM1233because
of the vertical separation of at least 2.1 m for LAST echoes in ALTM 3100
compared to a vertical separation of zero in the ALTM 1233 (Næsset,
2009). In the subsequent analysis where we compared data collected
by the two sensors, we compared aggregates of FIRST+SINGLE and
LAST+SINGLE of ALTM 3100 with FIRST and LAST echoes, respectively,
of ALTM 1233. The proportion of echoes of different echo categories to
the total number of pulses is displayed in Table 2.

2.4. Extraction of individual tree segments

In this study we did not use any algorithm for automatic tree
segmentation to delineate individual tree crowns. Instead field
measurements were used to delineate the crown segments. For each
tree, we used the field-measured tree position and a fixed crown
radius to produce a circular crown segment. The crown radius was
determined as the mean of the measured radii in the four cardinal
directions. Echoes inside the defined crown segments were assigned
to the corresponding tree. The forest in the reserve is multilayered and
in many cases our method produced overlapping crown segments.
This will never be the case when using canopy surface models and
watershed, pouring, or other similar algorithms in automatic tree
segmentation. We handled the problem of overlapping crowns in a
similar way as many automatic segmentation algorithms, i.e., by
assigning the echoes of the overlapping regions to the tallest tree.

The heterogeneous structure of the study area may cause echoes
from higher neighboring trees to be assigned to lower trees. Such
assignment errors may be due to erroneous tree positions and the
assumption of circular crowns. To correct for such errors we removed
echoes with higher z-values than actual field-measured tree height plus
a random error component representing a 95% confidence band. This
confidence band was defined as 1.96 times the standard deviation
associatedwith random errors of (1) the DTM, (2) the laser system, and
(3) field measurement of tree height. It is important to be conservative
and allow such random errors to be inherent in the data. Otherwise
the removal of seemingly erroneously allocated laser echoes could have
led to too optimistic results. The random error of a DTM in a typically
forested areawasanticipated tobe30 cm(Reutebuchet al., 2003),while
random errors of the laser system and the field measurements were
set to 20 cm(Baltsavias, 1999) and to 5%of the tree height (h) (Daamen,
1980; Eriksson, 1970), respectively. Hence, the echoes removed were
echoes higher than a threshold (T), defined as:

T = h + 1:96T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:302 + 0:202 + hT 0:05ð Þ2

q
ð1Þ

In the analysis, we only included trees hit by at least one pulse in
each of the three acquisitions, i.e., trees which had at least one FIRST
or SINGLE echo. Thus, the dataset we analyzed comprised 412 trees,
i.e., 203 spruce trees, 187 birch trees, and 22 aspen trees.

Table 2
Proportion of echoes to total number of pulses (“Total”), proportion of echoes above
GTV=1.3 m to total number of pulses (“Canopy”), and proportion of pulses below
GTV=1.3 m to total number of pulses (“Ground”) for different echo categories. The
total number of pulses is defined as the sum of FIRST and SINGLE echoes for themultiple
echo recording sensor (ALTM 3100) and as the number of FIRST echoes for the ALTM
1233 sensor.

Acquisition and echo category Proportions of echoes (%)

Total Canopyb Ground2

FIRSTa

ALTM 3100-on 36 36 0
ALTM 3100-off 57 57 0
ALTM 1233-on 100 93 7

SINGLE
ALTM 3100-on 64 58 6
ALTM 3100-off 43 35 8
ALTM 1233-on – – –

LAST
ALTM 3100-on 37 16 21
ALTM 3100-off 53 21 32
ALTM 1233-on 102 73 29

a First echoes of many for ALTM 3100-on and ALTM 3100-off. First echoes for ALTM
1233-on.

b Canopy and ground are separated with the ground threshold value (GTV) of 1.3 m.
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2.5. Analyzing effects of canopy conditions and different sensors on laser
echo height- and intensity distributions (objectives 1 and 2)

The differences between the leaf-on and leaf-off acquisitions and
the differences between the two sensors were analyzed using a visual
approach to assess the differences between the echo distributions. The
visual approach was to compute the probability density function for
both height and intensity for different echo categories, tree species,
and acquisitions. The distributions were estimated with a Gaussian
kernel and bandwidth selection using “Silverman's rule of thumb”
(R Development Core Team, 2008; Venables & Ripley, 2002).

In addition to the visual approach we computed the first four
moments of the distributions (mean, variance, kurtosis, and skew-
ness) and themaximum value to compare statistical differences of the
echo distributions. The maximum value was included because of its
importance in individual tree methods, especially for the tree height
estimation. The moments and maximum values were computed for
separate echo categories for both the height and intensity distribu-
tions for all echoes higher than 1.3 m above ground. In order to
compare differences between ALTM 3100-on and ALTM 1233-on
we also computed moments and maximum values of the combined
echo categories, i.e., FIRST+SINGLE and LAST+SINGLE. Thus, to
address the sensor effects and the effects of canopy conditions on the
echo distributions, pair-wise differences were computed between
the respective moments and maximum values of the ALTM 3100-on
and ALTM 1233-on acquisitions and the ALTM 3100-on and ALTM
3100-off acquisitions. Furthermore, two-tailed t-tests were applied
to test the significance of the differences. Finally, 95% confidence
intervals of the differences were computed.

2.6. Analyzing effects of canopy conditions and different sensors on
individual tree properties (objective 3)

2.6.1. Tree height
In the current study we used the maximum height of laser echoes

inside individual tree crown segments to establish relationships tofield-
measured tree height. The maximum laser echoes were derived from
the FIRST echoes of the ALTM 1233 sensor and from the combination of
the echo categories FIRST+SINGLE echoes of the ALTM 3100 sensor.
Regression analysis was applied to relate laser derived maximum laser
heights and field-measured tree heights. Separate regressions models
were established for each of the three acquisitions. Because of the
hierarchical structure inherent in the data, where trees were measured
within sample plots, amixedmodeling approachwas applied (Eq. (2a)).
We also estimated models including a term accounting for tree
species to enable testing of effects of tree species (Eq. (2b)). The two
tree height models (Eqs. (2a) and (2b)) were estimated according to

hij = β0 + bi + β1 hlmaxij

� �
+ εij ð2aÞ

and

hij = β0 + bi + β1 hlmax ij

� �
+ β2 sbij

� �
+ β3 saij

� �
+ εij ð2bÞ

where hij is height (m) of tree j on plot imeasured in field, hlmaxij is the
maximumlaser height (m)of the corresponding tree,β0 andβ1 arefixed
parameters, bi is the random intercept for plot i (bi~N(0, σb

2)), and εij is
the error for tree j on plot i (εij~N(0, σε

2)). In Eq. (2b), β2 and β3 are fixed
parameters, sbij and saij aredummyvariables indicating if the tree is birch
or aspen, respectively. A value of 1 was assigned to sbij if tree species
was birch. Otherwise sbijwas set to 0. Correspondingly, a value of 1 was
assigned to saij if tree species was aspen. Otherwise saij was set to 0.

All linear mixed models were estimated with the R package
nlme (Pinheiro et al., 2008). Approximate 95% confidence intervals
were computed for the model parameters to examine if estimated

parameters differed between acquisitions. These confidence intervals
for the β's were compared to see if parameters differ significantly
between different acquisitions. We tested if there were species spe-
cific differences between estimated values (using Eq. (2a)) obtained
from acquisitions with different canopy conditions (ALTM 3100-on
vs. ALTM 3100-off) and different sensors (ALTM 3100-on vs. ALTM
1233-on). Two-tailed t-tests were applied to assess if the difference
between values estimated by Eq. (2a) for separate species and
acquisitions were significantly different in the statistical sense.
Furthermore, we tested if models that included tree species
(Eq. (2b)) were better than models without the tree species term
(Eq. (2a)). The model comparisons were carried out with the
likelihood ratio test for fixed-effects parameters (Pinheiro & Bates,
2000; West et al., 2007). Model comparisons were carried out with
the anova.lme – function of the R package nlme (Pinheiro et al., 2008).

2.6.2. Stem diameter
Stem diameters of individual trees segmented from ALS data are

usually estimated from tree height and crown width. Crown width is
often computed as the diameter of a circle having the same area as
the individual tree segment. Since we did not apply automatic tree
segmentation, the crown widths used in the current study were those
derived from the field measurements. In the comparison of different
canopy conditions and sensors, it is therefore implicitly assumed that
the size of the crown segments would be stable across acquisitions.
Different model specifications of the relationship between stem
diameter and the covariates, i.e., maximum laser height and crown
width, have been proposed (e.g. Heurich, 2006; Hyyppä et al., 2001;
Persson et al., 2002). Based on preliminary studies we chose the
model proposed by Hyyppä et al. (2001). The models were estimated
as mixed models including a random term for the intercept on plot
level. Hence, our basic model included maximum laser height and
field-measured crown width (Eq. (3a)). In addition we estimated a
model also including a tree species term (Eq. (3b)). The two stem
diameter models (Eqs. (3a) and (3b)) were estimated according to

dij = β0 + b1 + β1 hlmax ij

� �
+ β2 cwij

� �
+ εij ð3aÞ

and

dij = β0 + bi + β1 hlmax ij

� �
+ β2 cwij

� �
+ β3 sbij

� �
+ β4 saij

� �
+ εij

ð3bÞ

where dij is diameter (cm) of tree j on plot imeasured in field, hlmaxij is
themaximumlaser height (m) and cwij is crownwidth (m) of the same
tree, β0, β1 and β2 are fixed parameters, bi is the random intercept for
plot i (bi~N(0,σb

2)), and εij is the error for tree j on plot i (εij~N(0,σε
2)). In

Eq. (3b), β3 and β4 are fixed parameters, sbij and saij are dummy
variables indicating if the tree is birch or aspen respectively. A value of
1 was assigned to sbij if tree species was birch. Otherwise sbijwas set to
0. Correspondingly, a value of 1 was assigned to saij if tree species was
aspen. Otherwise saij was set to 0. Model estimations and evaluations
were carried out as for tree height (See Section 2.6.1).

2.6.3. Tree species
In this study, we only considered classification of trees into two

species categories, i.e., spruce and deciduous trees (birch and aspen).
Wepooled the twodeciduous species into one class because of the small
number of aspen trees available in the dataset, but also because ordinary
inventory practice in Norway does not discriminate between different
deciduous species. The first step in individual tree species classification
with ALS data is usually to perform a feature selection that aims at
selecting features which differ significantly between tree species and
then subsequently include these features in a classification algorithm
(Brandtberg et al., 2003; Holmgren & Persson, 2004; Holmgren et al.,
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Fig. 2. Leaf-on and leaf-off echo height distributions. Distributions are computed as kernel density under leaf-on (solid line) and leaf-off (dashed line) conditions for different tree
species and echo categories.

Fig. 3. Leaf-on and leaf-off echo intensity distributions. Distributions are computed as kernel density under leaf-on (solid line) and leaf-off (dashed line) conditions for different tree
species and echo categories.
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2008). In the current study we used a classification algorithm with
a built in feature selection technique. We used the random forest
algorithm proposed by Breiman (2001). The random forest algorithm
has several advantages with respect to the current comparison of
different ALS acquisitions in tree species classification. The random
forest algorithm (1) handles large numbers of input features, (2) it
computes an error matrix based on an internal validation process,
and (3) it computes a measure of the importance of the features in
the classification, measured as the mean decrease in the Gini-index
(Breiman, 2001; Liaw & Wiener, 2002). Hence, both classification
accuracies and variable selection can be derived directly and be
compared for the three acquisitions. The classification was carried out
with the R package randomForest (Liaw & Wiener, 2002).

The features used in the classification were ALS derived features
from the height and intensity distributions. For each echo category
of all acquisitions we computed height-, density-, and intensity
features. Features were computed for all echoes higher than 1.3 m

above ground. This height, also known as the breast height, was used
as the ground threshold value (GTV). Height features computed
were the maximum laser height (Hmax), the mean laser height
(Hmean), coefficient of variation (Hcv), skewness (Hskew), and
kurtiosis (Hkurt). In addition, we computed the 10, 20,…., 80, 90
height percentiles (H10, H20,…, H80, H90). The Hmax, Hmean, and
the percentiles (H10–H90) were normalized in two ways. First, by
dividing the respective height features with estimated tree height
obtained using Eq. (2a), producing “normalized height features”
(NHF), and second, by subtracting the value of the respective
height features from estimated tree height obtained using Eq. (2a),
producing “crown penetration features” (CPF). Hcv, Hkurt, and Hskew
were used directly without normalization and labeled as “other
height features” (OHF). The “density features” (DF) were calculated as
canopy densities in accordance with Næsset (2004a). The crown was
divided into vertical crown height bins by dividing field-measured
tree height minus the GTV value (1.3 m) into 10 vertical bins of equal

Fig. 4. Differences in height and intensity metrics between leaf-on and leaf-off canopy conditions. Mean differences (dots) and 95% confidence intervals (vertical lines) for the
maximum value and the first four moments of the distributions (i.e., mean, variance (var), kurtiosis (kurt), and skewness (skew)) for different echo categories and tree species.
Significant differences (pb0.05) according to two-tailed t-tests are indicated by filled dots.
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height. For each echo category, tree level crown density features were
calculated as the number of echoes above bin number 0 (NGTV), 1,…,
9 as proportions of total number of echoes and denoted as D0, D1,….,
D9. The “intensity features” (IF) computed were maximum (Imax),
mean (Imean), coefficient of variation (Icv), skewness (Iskew), and
kurtiosis (Ikurt).

The classification performance was assessed using an error matrix
(Congalton, 1991). From the internal random forest classification
an error matrix was established and overall accuracy, producer's
accuracy, and the kappa-coefficient (Cohen, 1960) were computed.
The classification was performed for all 412 trees for each of the
three acquisitions. However, if an insufficient number of echoes were
returned from a tree, not all of the laser metrics could be calculated
and with lack of information the tree could not be classified. To
be able to compute all laser features we needed at least tree echoes
in all echo categories. Thus, to achieve a reasonable comparison we
established a subset of trees (n=211) which had all features
computed in all echo categories. Hence, classification performance
was assessed and compared on the same set of trees for all three
acquisitions, in addition to the full dataset. To test if one of the
datasets among the three acquisitions differed significantly we
tested if the kappa-coefficients differed significantly by computing
the Z-statistics:

z =
κ1−κ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σκ1 + σκ2

p ð4Þ

where κ1 and κ2 are the kappa-coefficients for the two classifications to
be compared, σκ1 and σκ2 are their respective variances and Z~N(0,1)
(c.f. Cohen, 1960).

3. Results

3.1. Effects of canopy conditions on laser echo height and intensity
distributions (objective 1)

The estimated distributions for height and intensity appear in
Figs. 2, 3, respectively. The mean differences and confidence intervals
of the mean differences for maximum values and the four moments
appear in Fig. 4.

The largest discrepancies in the height distributions between leaf-
off and leaf-on canopy conditions occurred for deciduous trees in
the LAST and SINGLE echo categories (Figs. 2, 4). Under leaf-off
conditions, a larger portion of LAST echoes tended to come from the
ground surface. In addition, the peak of the height distributions
of SINGLE echoes was shifted from the upper part of the canopy
under leaf-on conditions towards the ground level. There were no
differences in the echo distributions computed from coniferous
(evergreen) trees, i.e., the spruce trees (Figs. 2, 4). Maximum and
mean laser heights were lower for aspen trees under leaf-off
conditions. However, for birch trees FIRST echoes were significantly
higher under leaf-off conditions (Fig. 4).

For the intensity values the largest discrepancies between data
acquired under different canopy conditions occurred for deciduous
trees in the FIRST echo category (Figs. 3, 4). For deciduous trees,
the intensity distributions of FIRST echoes were extremely skewed to
the lower values under leaf-off conditions compared to leaf-on
conditions. All intensity metrics computed from FIRST echoes differed
significantly between acquisitions for deciduous trees (Fig. 4). As
opposed to the patterns of the FIRST echoes, the distributions of LAST
echoeswere less skewed under leaf-off conditions for deciduous trees.
LAST echoes had higher intensity values under leaf-off conditions

Fig. 5. Echo height distributions for different sensors. Distributions are computed as kernel density from the ALTM 3100-on (solid line) and ALTM 1233-on (dashed line) sensors for
different tree species and echo categories. Echo categories presented for ALTM 1233-on are FIRST (1233F) and LAST echoes (1233L). The ALTM 3100-on echo categories FIRST
(3100F), LAST (3100L), FIRST+SINGLE (3100F+S), and LAST+SINGLE (3100L+S) are displayed in black and SINGLE echoes (3100S) are displayed in gray.

1452 H.O. Ørka et al. / Remote Sensing of Environment 114 (2010) 1445–1461

Paper II



compared to leaf-on conditions (Fig. 4). For SINGLE echoes, maximum
intensity and mean intensity were significantly lower under leaf-off
conditions. For spruce trees there were no differences between the
recorded intensity distributions (Figs. 3, 4).

3.2. Effects of different sensors on laser echo height and intensity
distributions (objective 2)

The estimated distributions for height and intensity for the
different sensors are displayed in Figs. 5, 6, respectively. The mean
differences and confidence intervals of the mean differences for
maximum values and the moments appear in Fig. 7.

Only few of the compared moments which we derived from the
distributions did not differ significantly between the two sensors
(Fig. 7). The visual inspection indicated that FIRST echoes of ALTM
1233-onweremost similar to FIRST+SINGLE echoes of ALTM3100-on
and correspondingly LAST echoes were most similar to LAST+SINGLE
echoes (Fig. 5). However, moments computed indicated that echo
distributions differ for all echo categories except for the combination
of FIRST+SINGLE and LAST+SINGLE for spruce trees (Fig. 7).

The intensity distributions differed between the two sensors
irrespective of how the echo categories of the ALTM 3100-on were
combined (Fig. 7). Fig. 6 indicates that the LAST echoes produced
the most similar intensity distributions of the two sensors. In Fig. 6 a
species specific difference between sensors can be observed. For
spruce, the shapes of the intensity distributions of FIRST echoes
were almost identical for the two sensors. For deciduous trees, FIRST
echoes were more skewed towards lower intensity values for the
ALTM 1233-on than with ALTM 3100-on.

3.3. Effects of canopy conditions and different sensors on individual tree
properties (objective 3)

3.3.1. Tree height
The estimated parameters, confidence intervals, coefficients of

determination, and RMSE of estimated acquisition-specific models
of tree height (Eqs. (2a) and (2b)) appear in Table 3. The smallest
RMSE for tree height was obtained for the ALTM 3100-on acquisition
(Table 3).

Comparison of models without a tree species term developed
under leaf-on and leaf-off conditions revealed that the intercept was
58 cmhigher under leaf-off conditions and that the confidence interval
of the estimated slope overlapped (Table 3). The estimated height
values obtained with Eq. (2a) for the acquisitions with different
canopy conditions differ significantly between spruce (p=0.008) and
aspen (pb0.001), but not for birch (p=0.228). Spruce trees had on
average 10 cm higher estimated height values under leaf-off condi-
tions as compared to leaf-on conditions, whereas aspen had almost
55 cm lower estimates under leaf-off conditions. Themodels including
a tree species term (Eq. (2b)) improved the tree height model for the
ALTM 3100-on (pb0.001) as well as the ALTM 3100-off (p=0.036)
acquisition.

The estimated intercept in models developed for the two acquisi-
tions with different sensors were 66 cm higher with the ALTM 1233-
on. The confidence interval of the intercepts and slopes did not overlap
for the two models (Table 3). The estimated tree heights obtained
from Eq. (2a) developed for the acquisitions with different sensors
(ALTM 3100-on vs. ALTM1233-on) differed significantly for birch and
spruce. Birch trees had 13 cm lower estimated values using ALTM
3100-on (pb0.001) and spruce trees had 11 cm higher values using

Fig. 6. Echo intensity distributions for different sensors. Distributions are computed as kernel density from the ALTM 3100-on (solid line) and ALTM 1233-on (dashed line) sensors
for different tree species and echo categories. Echo categories presented for ALTM 1233-on are FIRST (1233F) and LAST echoes (1233L). The ALTM 3100-on echo categories FIRST
(3100F), LAST (3100L), FIRST+SINGLE (3100F+S), and LAST+SINGLE (3100L+S) are displayed in black and SINGLE echoes (3100S) are displayed in gray.
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ALTM3100-on (p=0.027) compared to ALTM1233-on. Therewere no
differences for aspen trees in estimated values using the two sensors
(p=0.510). The variability explained by the models including the
tree species term (Eq. (2b)) was significantly higher (pb0.001) for
both acquisitions.

3.3.2. Stem diameter
The estimated parameters, confidence intervals, coefficients of

determination, and RMSE of estimated acquisition-specific models
for stem diameter (Eqs. (3a) and (3b)) are displayed in Table 4. The
smallest overall RMSE for stem diameter was obtained with models
including the tree species term (Eq. (3b)) using data fromALTM 1233-
on. The smallest RMSE for models estimated according to Eq. (3a) was
obtained utilizing data from the ALTM 3100-off acquisition (Table 4).
For all three acquisitions the estimated model parameters had
overlapping confidence intervals for both model forms (Table 4).

The estimated values obtained with models (Eq. (3a)) calibrated
for different canopy conditions differed for spruce and aspen. Spruce
had 0.13 cm (p=0.014) higher estimated values for leaf-off condi-
tions as compared to leaf-on conditions whereas aspen had 0.66 cm
(pb0.001) lower estimated values for leaf-off conditions. There were
no differences in the estimated values of birch trees (p=0.233).
Models which included a tree species term had significantly higher
explanatory power for both canopy conditions (pb0.001).

The differences between the estimated values for stem diameter
obtained for the two sensors (ALTM 3100-on vs. ALTM 1233-on)
differed for two of the species. We found that spruce had 0.16 cm
higher estimated values (p=0.023) whereas birch had 0.17 cm lower
estimated values (pb0.001) with the ALTM 3100-on compared to
ALTM1233-on. There were no differences in the estimated values of
aspen trees (p=0.728) between sensors. Including a tree species term
improved the stem diameter models for both sensors (pb0.0001).

Fig. 7. Differences in height and intensity metrics between ALTM 3100-on and ALTM 1233-on. Mean differences (dots) and a 95% confidence intervals (vertical lines) for the
maximum value and the first four moments of the distributions (i.e. mean, variance (var), kurtiosis (kurt), and skewness (skew)) for different species and for different comparisons
of echo categories. Echo categories presented for ALTM 1233-on are FIRST (1233-FIRST) and LAST echoes (1233-LAST). For ALTM 3100-on the echo categories FIRST (F), SINGLE (S),
LAST (L), FIRST+SINGLE (F+S) and LAST+SINGLE (L+S) are displayed. Significant differences (pb0.05) according to two-tailed t-tests are indicated by filled dots.
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3.3.3. Tree species
The overall classification accuracy ranged from 86.9 to 98.1% and

kappa values ranged from 0.74 to 0.96 (Table 5). The class accuracy
was 89.4–99.2% for spruce and 82.4–96.7% for deciduous trees
(Table 5). The highest accuracy was obtained using the leaf-off
dataset. The accuracy obtained using the ALTM 3100-off dataset was
significantly higher than using the ALTM 3100-on (pb0.001) and
ALTM1233-on (pb0.001) datasets. The accuracy of the classification
obtain with the ATLM 1233-on dataset did not differ significantly
from that obtain with the ALTM 3100-on dataset (p=0.215).

The number of trees classified is reduced when missing values
occur. Treeswithmissing values in computed features are not classified.
Of the total number of trees (n=435), 89% of the trees were correctly
classified using data from the ALTM 1233-on acquisition, compared to
55% and 60% using the ALTM 3100-on and ALTM 3100-off, respectively.
When analyzing the three different ALS datasets with exactly the
same subsets of trees (n=212), the classification accuracies improved

slightly. However, the same patterns persist in the results as when
analyzing all trees (Table 5).

The feature importance, measured as the mean decrease in the
Gini-index, for the classification of spruce and deciduous trees
(n=212) using data from the three acquisitions is displayed in
Fig. 8. Higher values of feature importance mean that the feature is
more essential, than features with lower values, in the classification.
Fig. 8 indicates that there were only minor differences in important
features between the two different sensors. The normalized height
features and density features from LAST echoes and intensity features
from FIRST and LAST echoes were important classification features for
both sensors under leaf-on conditions. Furthermore, crown penetra-
tion features (CPF) features from SINGLE echoes were important
in the classification for the ALTM 3100-on acquisition. Important
features in the leaf-off classification were CPF for FIRST and SINGLE
echoes, density features computed from SINGLE echoes, and intensity
from both FIRST and SINGLE echoes (Fig. 8).

Table 3
Estimated parameters, approximate 95% confidence intervals for parameters in parenthesis, coefficient of determination (R2), and root mean square error (RMSE) for regression
models of tree height for different laser acquisitions and model equations.a

Acquisition

ALTM 3100-on ALTM 3100-off ALTM 1233-on

Model equationa 2a 2b 2a 2b 2a 2b
Intercept (β0) 0.21

(−0.02 to 0.43)
0.46
(0.21 to 0.71)

0.79
(0.57 to 1.02)

0.95
(0.69 to 1.21)

0.87
(0.66 to 1.06)

1.29
(1.04 to 1.54)

β1 1.00
(0.98 to 1.00)

0.99
(0.98 to 1.00)

0.98
(0.96 to 0.99)

0.97
(0.96 to 0.98)

0.97
(0.96 to 0.98)

0.97
(0.95 to 0.98)

β2 – −0.35
(−0.51 to −0.18)

– −0.19
(−0.37 to −0.01)

– −0.61
(−0.78 to −0.42)

β3 – −0.48
(−0.83 to −0.12)

– 0.22
(−0.16 to 0.60)

– −0.48
(−0.87 to −0.09)

σb 0.19
(0.10 to 0.38)

0.18
(0.08 to 0.35)

0.18
(0.09 to 0.35)

0.18
(0.09 to 0.35)

0.09
(0.01 to 0.86)

0.14
(0.05 to 0.41)

σε 0.79
(0.73 to 0.85)

0.77
(0.71 to 0.83)

0.84
(0.78 to 0.90)

0.83
(0.78 to 0.89)

0.90
(0.84 to 0.97)

0.86
(0.80 to 0.92)

R2 0.990 0.991 0.989 0.989 0.987 0.989
RMSE 0.78 0.76 0.83 0.82 0.90 0.84
RMSE (spruce) 0.75 0.74 0.79 0.79 0.91 0.85
RMSE (birch) 0.77 0.75 0.82 0.81 0.88 0.82
RMSE (aspen) 0.99 0.94 1.13 1.10 1.00 0.96

a Model equations are with or without tree species term, i.e., Eqs. (2a) and (2b), respectively.

Table 4
Estimated parameters, approximate 95% confidence intervals for parameters in parenthesis, coefficient of determination (R2), and root mean square error (RMSE) for regression
models of stem diameter for different laser acquisitions and model equations.a

Acquisition

ALTM 3100-on ALTM 3100-off ALTM 1233-on

Model equationa 3a 3b 3a 3b 3a 3b
Intercept (β0) −7.08

(−8.85 to −5.30)
−4.76
(−6.41 to −3.11)

−6.56
(−8.29 to −4.82)

−4.34
(−5.97 to −2.71)

−6.17
(−7.91 to −4.43)

−4.08
(−5.70 to −2.45)

β1 1.41
(1.31 to 1.50)

1.24
(1.15 to 1.33)

1.39
(1.30 to 1.48)

1.24
(1.15 to 1.33)

1.38
(1.28 to 1.47)

1.23
(1.14 to 1.32)

β2 1.73
(1.43 to 2.11)

2.37
(1.98 to 2.76)

1.75
(1.37 to 2.12)

2.29
(1.90 to 2.68)

1.71
(1.33 to 2.10)

2.37
(1.98 to 2.75)

β3 – −3.68
(−4.46 to −2.90)

– −3.43
(−4.21 to −2.66)

– −4.03
(−4.78 to −3.27)

β4 – −2.15
(−3.84 to −0.47)

– −1.19
(−2.86 to −0.49)

– −2.25
(−3.91 to −0.59)

σb 2.74
(1.89 to 4.00)

2.36
(1.60 to 3.47)

2.77
(1.91 to 4.02)

2.42
(1.65 to 3.54)

2.69
(1.83 to 3.95)

2.45
(1.67 to 3.60)

σε 3.59
(3.34 to 3.86)

3.28
(3.05 to 3.53)

3.50
(3.25 to 3.76)

3.23
(3.00 to 3.47)

3.62
(3.37 to 3.89)

3.22
(2.99 to 3.46)

R2 0.919 0.933 0.923 0.935 0.918 0.936
RMSE 3.47 3.17 3.38 3.11 3.50 3.10
RMSE (spruce) 3.35 3.02 3.23 2.95 3.44 2.97
RMSE (birch) 3.15 2.79 3.07 2.74 3.17 2.72
RMSE (aspen) 6.13 6.15 6.17 6.13 5.96 6.01

a Model equations are with or without tree species term, i.e., Eqs. (3a) and (3b), respectively.
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4. Discussion and conclusions

The major findings of this study regarding the three specific
research objectives indicated that:

1. Effects of canopy conditions on laser echo height and intensity
distributions (objective 1):

a. For deciduous trees, the echo height distributions derived from
the LAST and SINGLE echo categories were significantly affected
by changes in canopy conditions. The distributions were shifted
downwards under leaf-off conditions. The height distribution
of the FIRST echo category was little affected by the change in
canopy conditions.

b. For deciduous trees, the echo intensity distribution of the FIRST
echoes was most affected by canopy conditions, but even the
echo categories SINGLE and LAST were affected. The distribu-
tion of FIRST echoes of deciduous trees was skewed to lower
intensity values under leaf-off compared to leaf-on conditions.
The intensity distributions of spruce trees were not affected by
canopy conditions.

2. Effects of different sensors on laser echo height and intensity
distributions (objective 2):

a. The echo height distributions differed significantly between the
sensors, except for those derived for spruce trees where the
combined echo categories of ALTM 3100-on (FIRST+SINGLE
and LAST+SINGLE) did not differ from the corresponding
echoes categories of ALTM 1233-on (FIRST and LAST).

b. The echo intensity distributions differed significantly between
sensors. A difference in the shape of the intensity distributions
of FIRST echoes for deciduous trees was found. The ALTM 1233-
on distributions were more skewed to lower values compared
to the intensity distributions obtained with ALTM 3100-on
which were more Gaussian shaped.

3. Effects of canopy conditions and different sensors on individual
tree properties (objective 3):

a. Estimates of individual tree heights had lowest RMSE when
they were based on the ALTM 3100-on dataset. In most cases
the parameter estimates differed between acquisitions.

b. Individual stem diameter estimates had lowest RMSE when
they were based on the ALTM 3100-off data and included a tree
species term (Eq. (3b)). Among the models without a tree
species term (Eq. (3a)) the ALTM 1233-on data provided
the lowest RMSE. However, model parameters did not differ
significantly between the acquisitions using a fixed crown
width for all acquisitions.

c. Tree species was a significant term in both the tree height and
the stem diameter models. By not including tree species as a
model term, the estimated values of tree height and stem
diameter became significantly different for separate tree species.

d. Leaf-off ALS data was superior to leaf-on data in discriminating
between spruce and deciduous trees. There was no significant
difference in classification accuracy obtained using the two
different sensors.

4.1. Material and methods

A possible source of error in the analyses is related to the matching
of field and laser data. Possible errors in tree coordinates, crown
width, and the assumptions of circular crowns and tying echoes in the
overlapping zone between crowns to the tallest tree could affect the
quality of this matching. Inaccuracies in the positioning of the trees
and in tree crown will introduce errors of commission (inclusion
of echoes not belonging to the tree) as well as errors of omission
(exclusion of echoes belonging to the tree). Birch and aspen trees are
found scattered among trees of the dominating conifer species
(spruce) in the forest reserve. Thus, commission and omission errors
will lead to smaller differences in laser features between tree species.
In addition, the assignment of echoes to the tallest tree when there
is an overlap between tree crows might potentially introduce errors.
If we instead had used a segmentation algorithm the number of trees
would have been reduced and the proportion of dominating-/co-
dominating trees had increased in the dataset (Solberg et al., 2006a).
Using other assumptions, e.g. discarding the overlapping area, would
also have introduced errors in the data. A visual control of the circular
crown segments with the laser data provided no evidence that
positional errors or errors introduced by the assumptions influenced
the results of this study. Hence, we believe the current matching of
echoes and trees was appropriate for the study and that the potential
errors caused by the chosen method of matching field and laser data
are negligible.

The current study used the raw uncalibrated intensity values.
The use of intensity values calibrated with range from sensor to target
is preferable. The most common calibration of intensity is range nor-
malization (e.g. Ahokas et al., 2006; Donoghue et al., 2007; Korpela
et al., 2009). Intensity calibration was not possible in the current
study because of a lack of information. The use of raw intensities will
introduce noise to the intensity metrics calculated for individual
trees. Hence, differences between canopy conditions and sensors
will be less pronounced. The two ALTM 3100 datasets were acquired
at the same flying altitude and almost identical geographical location
of the flight lines which minimized the impact of different ranges on
intensity metrics calculated for individual trees. The utilization of
raw intensities vs. calibrated intensities of the ALTM 3100 sensor has
been tested for tree species classification (Korpela et al., in review).
The accuracy of classification of spruce, birch, and pine improved only
marginally from 73% to 75% by performing range normalization on
ALTM 3100 data.

4.2. Effects of canopy conditions on laser echo height and intensity
distributions (objective 1)

Studies comparing leaf-on and leaf-off echo distributions are
rare. To the very best of our knowledge, the study by Næsset (2005)
concerning a mixed conifer–deciduous forest is the only one
addressing the influence of canopy conditions on canopy height
distributions derived from ALS data. The study by Næsset (2005) was
performed using a dual recording sensor (Optech ALTM 1210) and the
comparisonwas conducted on sample plot level. Næsset (2005) found
that last echoes were more affected by canopy conditions (leaf-on vs.
leaf-off) than first echoes. In the current study the high influence
on LAST echoes was confirmed (Figs. 2, 4). A more open canopy will

Table 5
Result of classification of spruce and deciduous trees for the three acquisitions (Table 1).
Producer's accuracy for the individual tree species (spruce, birch, and aspen), overall
accuracy (overall), kappa-coefficient (kappa), and the number of trees classified (n).
Also a subset of 212 trees was analyzed separately, denoted as comparable trees.a

Classification accuracy n

Spruce Deciduous Overall Kappab

All trees
ALTM 3100-on 90.1 83.2 86.9 0.74a 260
ALTM 3100-off 97.8 96.1 97.1 0.94b 241
ALTM 1233-on 89.4 90.6 90.0 0.80a 390

Comparable trees1

ALTM 3100-on 95.9 82.4 90.1 0.79a 212
ALTM 3100-off 99.2 96.7 98.1 0.96b 212
ALTM 1233-on 95.0 91.2 93.4 0.86a 212

aTrees hit by at least three echoes of each echo category in all three acquisitions, i.e., all
metrics could be computed.
bDifferent letters in superscript indicate significant differences (pb0.05) in kappa-
coefficient between the three acquisitions.
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allow more echoes to penetrate to the ground and shift the LAST echo
distribution towards the ground.

In the current study we also found that the height distribution of
the SINGLE echo category was highly affected by the canopy
conditions (Figs. 2, 4) whereas the influence on the FIRST echoes
was only minor (Figs. 2, 4). The effect of canopy conditions on the
SINGLE and FIRST echo categories are closely related. First, the
proportions of echoes in the FIRST and SINGLE echo categories tend to
shift between acquisitions performed under leaf-off and leaf-on
canopy conditions. The number of SINGLE echoes was 20% lower
under leaf-off conditions compared to leaf-on conditions (Table 2).
Hence, the proportion of pulses that result in two or more echoes was
greater under leaf-off conditions. The reason is the lower density of
the canopy when there are no leaves on the trees. The less amount of
biological matter in the higher parts of the tree crown under leaf-off
result in that a larger portion of the energy of the emitted pulse will
travel to lower levels of the crown making the probability of a second
or even multiple echoes higher. On the other hand, under leaf-on
conditions more return signals will have a short duration and the
amplitude of the signals will be high which result in SINGLE echoes.
This shift in the proportions of FIRST (multiple returns) and SINGLE
echoes will influence on the height distributions directly. In the
current study, maximum laser heights of FIRST echoes were higher in
birch trees under leaf-off compared to under leaf-on conditions. It is
known that SINGLE echoes tend to be higher than FIRST echoes under
leaf-on conditions (Næsset, 2009; Ørka et al., 2009). Thus, targets that
result in SINGLE echoes under leaf-on and FIRST echoes under leaf-off
will shift the echo distribution of FIRST echoes upwards and SINGLE
echoes downwards. Consequently, canopy conditions have little
influence on the maximum height obtained for the individual trees.
At the plot level stability of maximum height under different canopy
conditions are reported by Næsset (2005) and the current study on
individual trees verify this result.

The effects of the change from a permeable surface of small
branches to a densely foliated crown were also observed in the
intensity distributions (Fig. 3). FIRST echoes under leaf-off conditions
had much lower intensity values than under leaf-on conditions for
deciduous trees. The lower intensity of FIRST echoes under leaf-off
conditions compared to leaf-on is a result of the longer duration and
lower amplitude of the backscattered energy under leaf-off. Lower
reflectivity of bark and branches compared to leaves at the
wavelength used by the laser (1064 nm) will also result in decreasing
intensity values under leaf-off conditions.

4.3. Effects of different sensors on laser echo height and intensity
distributions (objective 2)

Potential differences between echo distributions obtained with
different ALS sensors are well illustrated and known in the laser
community (Chasmer et al., 2006; Hopkinson, 2007; Næsset, 2005;
Næsset, 2009). While previous studies have focused on plot or stand
level, the present work addressed individual trees. The two sensors
that we compared represent sensors commercially available with a
two year time span. Thus, differences between these two sensors
illustrate effects one must be prepared to handle and account for in
forest monitoring.

The ALTM 3100 sensor used in the current study had higher pulse
repetition frequency (100 vs. 33 kHz), lower pulse energy (66 vs.
84 μJ), lower peak power (4.1 vs. 7.6), and larger footprint (21 vs.
18 cm) than the ALTM 1233. Because the specific algorithms used
to record echoes of proprietary ALS instruments in most cases are
unknown to the user and scientific communities, there are uncertain-
ties related to the amount of energy required to trigger an echo.
Different triggering algorithms are shown to produce highly different
z-values (Wagner et al., 2004). Hence, drawing conclusions on the
direction of the shifts in z-values base on available sensor information

will be speculative since not all information is known. In the current
study we observe that the combinations of FIRST+SINGLE and
LAST+SINGLE, and for SINGLE echoes had higher echo distribu-
tions for the ALTM 3100-on compared to ALTM 1233-on (Fig. 7).
The FIRST and LAST echoes had lower values with the ALTM 3100
sensor compared to the same echo categories recorded with ALTM
1233, while SINGLE echoes was higher than the FIRST echoes. The
higher values of SINGLE echoes have also been reported previously
at the plot level comparing the same sensors as used in the current
study (Næsset, 2009). The likely reason for the higher SINGLE echoes
is that they are returned from an area within the tree crown with
high density of biological material, i.e., near or at the stem of the tree
which for regularly shaped coniferous tree crowns normally will be
close to the top of the tree. In areas with more biological material a
larger amount of the backscatter will be reflected from the top of the
canopy and only minor energy is reflected from lower canopy layers,
resulting in SINGLE echoes. FIRST echoes may be returned from areas
with lower density of biological material, e.g. the perimeter of the
tree crown. However, using the ALTM 1233 sensor the SINGLE and
FIRST echoes will always be recorded as a FIRST echo.

In the current study the echo distributions obtained from the two
different sensors provided significant differentmoments andmaximum
values. There was one exception for spruce trees where FIRST and LAST
echoes from ALTM 1233-on did not differ from the combinations of
FIRST+SINGLE and LAST+SINGLE, respectively, of ALTM 3100-on.
Therewas one growing season between the two ALS acquisitionswhich
may confoundwith the sensor effects.Differentheight growthof spruce,
birch, and aspen trees could affect the results. However, the intensity
distributions were also highly influenced for deciduous trees (Fig. 6).
Growth of trees should not necessarily influence on the intensity
distributions. Hence, the difference in the backscattered signal due the
more energy reaching the target with the ALTM 1233 sensor is themost
likely reason for the observed differences in computed height metrics.

The raw uncalibrated intensities used in the current study indicated
highly different shapes of the intensity distributions between the two
sensors. Especially, the highly skewed distribution of FIRST echoes for
deciduous trees obtainedwith the ALTM1233-on acquisition compared
to the more Gaussian distribution obtained with the ALTM 3100-on
should be noticed. The distribution obtained with ALTM1233-on was
very similar to the distribution of FIRST echoes of the ALTM 3100-off
dataset. One explanation may be the phenology of the deciduous
trees. In the autumn flight (ALTM 1233-on) the observed intensity
distribution is more similar to leaf-off conditions (ALTM 3100-off)
than leaf-on conditions in June (ALTM 3100-on). The foliage mass is
decreasing during the summer and early autumn as chlorophyll and
water are removed from the foliage, also defoliationwill start already in
late summer. This loss of leaf-mass will provide a signal more like the
leaf-off case.

Calibration of ALS intensities is an important issue (Kaasalainen
et al., 2007). Calibration of intensities obtained by ALS may increase
the befit of intensity measurements in forest inventory. Simple range
corrections have been applied successfully (Korpela et al., in review;
Ahokas et al., 2006; Donoghue et al., 2007). However, the two
conceptually different intensity distributions obtained from the two
sensors for FIRST echoes indicates that calibration of intensities must
incorporate sensor settings. A correction of intensities only by the
range from the sensor to target will most likely be insufficient.

4.4. Effects of canopy conditions and different sensors on individual tree
properties (objective 3)

4.4.1. Tree height
The most accurate estimates of individual tree height were based

on data from the ALTM 3100-on acquisition. The lower RMSEs of tree
height in the leaf-on case compared to the leaf-off case may be
explained by the denser canopy under leaf-on conditions. A leaf-on
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canopy will provide a better representation of the tree top with less
noise inherent in the maximum height measured by ALS compared to
leaf-off conditions. Furthermore, the lower RMSEs of tree height with
the ALTM 3100-on compared to the ALTM 1233-on are explained by
the sensor settings. The ALTM 3100 sensor was operated at a higher
pulse repetition frequency and with lower pulse energy than the
ALTM 1233 sensor. It has been shown that such sensor properties tend
to decrease the penetration into tall tree canopies (Chasmer et al.,
2006). Hence, less noise will be inherited in themaximum laser height
with the ALTM 3100-on compared to ALTM 1233-on.

The obtained RMSEs for the different tree height models were in
the range from 0.78 to 0.90 m with R2 above 0.98 for all acquisitions,
which are similar to results from other studies. Persson et al. (2002)
obtained an RMSE of 0.63 m and an R2 of 0.98 in a spruce and pine
forest. In a study conducted in a similar type of forest as in the current,
R2 values of 0.92 and 0.93 were obtained for models excluding
and including a tree species term, respectively (Maltamo et al., 2004).
Furthermore, in the current study, the parameter estimates for
maximum laser height in the tree height regression models were
always less than one, indicating that the laser underestimated tree
height of tall trees more than short trees. The most likely reason for
the smaller underestimation of short trees is the larger influence of
taller neighboring trees providing erroneousmeasurements. Maltamo
et al. (2004) also obtained slope values below one, but in contrast to
the current study their confidence interval for the slope included the
value one, indicating that the slope coefficient was not significantly
different from one in the statistical sense.

The results of the current study indicated that field calibrated tree
heightmodels should include tree species as an explanatory variable to
provide comparative results over time. For all the three acquisitions,
models that included the tree species term had significantly higher
explanatory power than models not including the tree species as a
variable. The estimated values differed for different tree species when
the models did not include a tree species term. Thus, a systematic
species specific error will be introduced if tree species is not a model
term.

The idea of reusing model equations established with previously
and already existing field plots and acquisitions is relevant and
interesting. The current study revealed that all model parameters, i.e.,
intercept, slope, and species specific adjustment of the intercept
differed between the models developed for the specific sensors.
Therefore, this study suggests that models cannot be reused across
sensors without losing accuracy. The most explicit differences are in
the intercepts of the models.

4.4.2. Stem diameter
The estimated parameters for models calibrated with different

acquisitions did not differ significantly. The number of models that
has been proposed for estimation of stem diameter of individual trees
from ALS data is large and we only tested one of these previously
proposed models in the current study (Hyyppä et al., 2001). Other
models may yield different results. Preliminary analysis revealed
that published models estimating stem diameter from ALS data
produce highly different estimates of stem diameter. We believe that
more research is needed to find models performing equally well – if
possible – on different sites and under different forest conditions.

Differences in RMSEs for stem diameter was only 0.06–0.09 cm
for different canopy conditions and 0.03–0.07 cm for the different
sensors. In addition, none of the estimated parameters differed
between acquisitions. Hence, the effects of acquisitions on the stem
diameter estimation seem to be minor and a common model may be
established. An important constrain — and thus a limitation in the
current study was the use of field-measured crown width rather than
using crown width derived from the ALS data. Different acquisitions
may result in different estimates of crown width when obtained from

an automatic tree segmentation based on the ALS data, which in turn
may alter the model parameters.

The RMSEs for stem diameter varied between 3.1 and 3.5 cm,
corresponding to 15–17% of the average stem diameter. The R2 values
were 0.93 and 0.92 for models with and without tree species,
respectively. Persson et al. (2002) obtained an RMSE value of 3.8 cm
or 10% of the average stem diameter in a boreal conifer forest in
Sweden. They reported an R2 value of 0.83. In a pine forest in Texas,
Popescu (2007) obtained an RMSE of 4.9 cm (18% of the average
stem diameter), with an R2 value of 0.87, Hence, the accuracy in this
study seems to be fairly similar to results obtained in other studies.

Models with a tree species term were significantly better in all
three acquisitions. When not including a tree species term in the
model, significant differences in estimated values for separate species
were found. We suggest that tree species should be included in
models for stem diameter based on ALS data.

4.4.3. Tree species
Most of the studies dealing with the ALS data acquired under leaf-

off conditions at the individual tree level have been on species
classification (Brandtberg, 2007; Brandtberg et al., 2003; Liang et al.,
2007; Reitberger et al., 2008). In our study the leaf-off classification
performance was better in terms of classification accuracy than the
leaf-on classification. Reitberger et al. (2008) also performed a
comparison of conifer and deciduous tree species classification
under leaf-off and leaf-on canopy conditions with a waveform laser
in Germany. In that study the overall accuracy was 96% under leaf-off
conditions and 85% under leaf-on conditions. In the same area Heurich
(2006) got the highest accuracy under leaf-off canopy conditions, i.e.,
97% overall accuracy whereas the best overall accuracy under leaf-on
acquisitionwas 81%. In our studywe obtained classification accuracies
of 98 and 90% under leaf-off and leaf-on canopy conditions,
respectively. Thus, it seems to be a common and consistent finding
that higher classification accuracies can be obtained during the leaf-
off season when using ALS for species classification.

In the current study, the Z-statistics of the kappa-coefficients
revealed that there were no significant differences between the
classifications obtained with the two sensors. The class accuracies
tended to be slightly more uniformwith the ALTM 1233-on compared
to ALTM 3100-on. In another study sensor differences were found in
the classification accuracy obtainedwith Optech ALTM 3100 and Leica
ALS 50-II (Korpela et al., in review).

The important classification features derived from the random
forest classification are quite similar in the two leaf-on acquisitions in
the current study. This result indicates that there may be a set of
features that may be generally applicable in tree species classification
across different acquisitions. The important classification features
common for the two acquisitions seemed to be normalized heights
from LAST echoes, density features from LAST echoes and intensity
features from FIRST and LAST echoes. However, another study
conducted in the same area indicated that feature selection was
influenced by species specific tree height distributions (Ørka et al.,
2009). The ranking of features by the GINI-index in random forest
does not account for different tree height distributions for different
species in the study area (Fig. 1). Hence, the features selected by
random forest are influenced by the differences in height distributions
of the spruce and deciduous trees and the important classification
features should be validated in other studies.

4.5. Concluding remarks

To conclude, echo distributions and derivedmetrics differ between
sensors. However, differences in accuracy of individual tree properties
are minor between sensors when the models were calibrated with
field measurements. Field measurements for model calibration are
important in individual tree inventories by ALS.Moreover, tree species
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should be included in as amodel term in tree height and stemdiameter
models. Differences in estimated model parameters were found for
models calibrated on data from different sensors, the most affected
parameter was the intercept in tree height models.

Different echo categories were affected differently by canopy
conditions. Accuracy in estimates for tree height or stem diameter
was minor between acquisitions with different canopy conditions.
However, significantly more accurate tree species discrimination was
obtained during the leaf-off conditions. The classification accuracies
were in the order of 10 percentage points higher in overall accuracy.
Hence, ALS based individual tree inventory could benefit from
the leaf-off acquisitions without losing accuracy of tree height and
stem diameter estimations, and at the same time obtain higher
accuracy of tree species detection. Since tree species also are iden-
tified to be important in tree height and stem diameter models, the
total accuracy of the inventory may be improved even more under
leaf-off acquisition.
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Abstract 

The objective of the current study was to investigate the effects of using spectral data in 

addition to structural three-dimensional airborne laser scanning (ALS) data for tree species 

identification. Spectral information from the ALS intensity and two different types of 

multispectral images were tested. The classification accuracy was assessed using 1520 

segmented trees (52% spruce trees, 40% pine trees, and 8% deciduous trees). Both Applanix 

DSS images acquired simultaneously as the ALS-data and Vexcel Ultracam D images 

acquired on a separate flight mission were used. Intensity was normalized using the range 

from sensor to the target (range normalization). In addition, a source of variation in intensity 

known as banding is described, together with a normalization procedure for diminishing this 

effect. When only intensity data was used, normalization of intensities increased the overall 

classification accuracy for tree species with 5 - 11%. The range normalization was more 

beneficial than banding normalization. ALS structural information alone provided overall 

classification accuracies of 74 - 77%. Adding normalized intensity information to the 

structural information did not improve the classification. The accuracies obtained using only 

multispectral imagery (71 - 79%) were on the same level as using ALS structural 

information. However, combined use of ALS structural information and multispectral 

imagery from the Applanix sensor and the Vexcel Ultracam D sensor provided overall 

accuracies of 87 - 89% and 84 - 87%, respectively. 

 

Keywords: Airborne laser scanning; Multispectral images; Intensity; Intensity normalization, 

Range normalization; Banding; Tree species identification;   
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1. Introduction 
Airborne laser scanning (ALS) is superior compared to other remote sensing techniques, like 

RaDAR and optical imagery, to estimate important biophysical properties of forests such as 

tree height, stem volume and biomass (Hyde et al., 2006; Hyyppä & Hyyppä, 1999). 

However, information about tree species is also an essential parameter of forest inventories 

and in recent years research on tree species identification utilizing ALS data has increased 

(Heinzel & Koch, 2011; Korpela et al., 2010b; Ørka et al., 2009a; Suratno et al., 2009). 

Nevertheless, providing species information represents a challenge in the utilization of ALS 

in forest inventories.  

There are two main approaches in ALS aided forest inventory; (1) area-based 

inventory and (2) individual tree inventory. Although during the last few years individual tree 

inventory has become commercially available, the area-based inventory (Næsset, 2002) is 

still dominating the operational forest inventories using ALS, mainly because of lower cost 

and maturity of the approach compared to individual tree approaches. Estimation of species 

specific volumes following an area-based approach is documented e.g. by Packalén et al. 

(2009). However, studies based on the individual trees approach has dominated the research 

on tree species identification (Hyyppä et al., 2008). An advantage of individual tree 

approaches over area-based approaches is that separate tree species may be considered 

instead of only species mixtures. Individual tree analyses result in detailed knowledge of the 

laser pulse - tree interactions regarding specific species (Ørka et al., 2009a). Knowledge from 

individual tree studies can furthermore be implemented in area-based projects or contribute to 

the maturation of individual tree inventories.  

The procedure of individual tree species identification includes steps of object 

segmentation, feature computation, and object classification. First, individual tree crowns are 

delineated from ALS data using an object segmentation process (e.g. Persson et al., 2002; 

Solberg et al., 2006). Then, several classification features are computed from the ALS echoes 

within the tree crown segments. Features considered are statistical measures derived from the 

height- or intensity distribution of laser echoes (e.g. Holmgren & Persson, 2004; Korpela et 

al., 2010b; Ørka et al., 2009a), parameters of fitted surfaces (Holmgren & Persson, 2004) and 

laser estimated crown base height (Holmgren et al., 2008). Recently, three-dimensional 

textural features derived from alpha-shapes have also been utilized (Vauhkonen et al., 2009). 

Finally, species are assigned to crown segments according to a supervised or unsupervised 
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classifier. Linear discriminant analysis (LDA) is frequently used for individual tree species 

classification, but other parametric and non-parametric methods are applied (Table 1).  

The average classification accuracy obtained in tree species identification studies 

(table 1) is approximately 83%. The errors obtained in tree species identification would 

further affect the accuracy of other forest estimates through species specific models, e.g. for 

stem diameter and stem volume (Korpela & Tokola, 2006). Many applications require higher 

tree species classification accuracies than those obtain using ALS. Hence, improvements of 

ALS tree species identification are desired. Acquisition of ALS data in the dormant period of 

deciduous trees seems to be one option to improve individual tree species identification. 

Studies comparing leaf-off and leaf-on data reported 8 - 16 percentage points increase in the 

overall classification accuracy (Heurich, 2006; Ørka et al., 2010; Reitberger et al., 2008). 

However, the leaf-off period is often limited because of short time periods where trees do not 

have leaves and the ground is snow-free, at least at high latitudes. Consequently, other means 

to improve tree species identification should be considered.  

The majority of the studies have used spectral information in terms of the raw ALS 

intensities (Table 1). The intensity measures provided by ALS sensors are noisy and are 

dependent on many factors. Thus, it has been suggested that intensity normalization is 

necessary (Ahokas et al., 2006; Korpela et al., 2010b). Factors affecting the intensity are 

amongst others range from sensor to target, incidence angles, atmospheric transmittance, and 

transmitted power (Ahokas et al., 2006). Of the previous mentioned factors normalization 

based on range from the sensor to the target - range normalization - is the most important. 

The backscattering from different incidence angles are dependent on the target and thus it is 

difficult to calibrate intensity based on this factor. Atmospheric transmittance is often omitted 

and can be assumed to be constant during a given acquisition. This assumption also applies to 

the transmitted power from the sensor. Transmitted power varies between sensors and with 

acquisition setting such as flying altitude and pulse repetition frequency. A few studies have 

reported that range normalized intensity has improved tree species identification (Gatziolis, 

2009; Korpela et al., 2010b). However, additional studies comparing raw and range 

normalized intensities are needed to confirm these results. 

Different ALS sensors are known to produce different height- and intensity values 

over the same target due to differences in e.g. emitted energy, pulse repetition frequency, and 

other factors (Næsset, 2009; Ørka et al., 2010). Ørka et al (2010) found different intensity 

distributions between the two Optech sensors studied and suggested that intensity 

normalization should incorporate sensor settings. Korpela et al. (2010b) normalized intensity 
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recordings from the Leica ALS 50 sensor by applying a sensor specific normalization 

equation. They normalized the intensity using both the range and the automatic gain control 

value (AGC) recorded by the Leica sensor. The normalized intensity provided by the Leica 

sensor based on range and AGC outperformed the range normalized intensity recorded by the 

Optech sensor in classification of tree species, with a difference in overall accuracy of 5.0 - 

9.1 percentage points. Different sampling rates and footprint sizes, in addition to campaign 

dependent intensity recordings were suggested as explanations for these differences (Korpela 

et al., 2010b). 

The AGC-effect on intensity is unique to Leica sensors. Another effect on intensity 

which is unique for Optech ALTM sensors is referred to as banding. Banding is caused by 

differences in intensity between scan directions of the oscillating mirror (Fig. 1). In the 

American Society for Photogrammetry and Remote Sensing (ASPRS) LASer (LAS) file 

format specification (ASPRS, 2009) the differences between scan directions of the mirror are 

stored in the “Scan Direction Flag” item. The Scan Direction Flag has a bit value of 1 for a 

positive scan direction, and a bit value of 0 for a negative scan direction. A positive scan 

direction is defined as a scan moving from the left to the right side of the in-track direction 

(negative scan direction is the opposite). Banding will result in different intensity 

distributions for the two scanning directions.  Hence, more  noise is  present in the data  when 

 

 
Fig. 1. A subset of an ALS flightline illustrates the banding effect, i.e., the differences in intensities between 

scan directions. The images to the left display the intensities of first returns with a positive scan direction (top) 
and negative scan direction (bottom). The images are equalized for better interpretability. The respective 

estimated probability density functions (pdf) of the raw intensities (Iraw) in the displayed area appear to the right. 
In the images the banding effect appears as brighter areas in the lower image compare to the image above (see 

arrows). 
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the effect of banding is not taken into account. Furthermore, calibration methods for the 

banding effect and comparisons of uncalibrated and calibrated data are needed.  

Combination of ALS and multispectral images are another frequently suggested 

technique to improve accuracy of individual tree species identification (Heinzel et al., 2008; 

Korpela et al., 2010b; Persson et al., 2004). Holmgren et al. (2008) combined ALS data and 

multispectral images for individual tree identification. They obtained improvements in the 

order of 5 - 8 percentage points in overall classification accuracy compared to only utilizing 

ALS data. Furthermore, combining ALS and imagery data for stand delineation and species 

classification produced more accurate results than using each of these data sources separately 

(Ke et al., 2010). The main drawback by adding images to the inventory protocol is higher 

acquisition costs since ALS and image data usually are acquired in separate flight missions. 

However, acquiring ALS and image data simultaneously from the same platform is possible 

and an attractive option to reduce costs.  

The main objective of the current research was to investigate the effects of using 

spectral data in addition to structural three-dimensional airborne laser scanning data for tree 

species identification. Spectral information from the ALS intensity and two different types of 

multispectral images were tested. The specific objectives were to assess effects of using 

1. range normalized intensity, 

2. normalization of the sensor specific banding effect, 

3. inclusion of color infrared images (red, green, infrared) from the Applanix 

DSS sensor acquired from the same platform as the ALS data, and 

4. inclusion of multispectral images (red, green, blue, infrared) from Vexcel 

Ultracam D sensor acquired on a separate flight. 

 

2. Materials and methods  

2.1. Study area 

The study area is located in the municipality of Aurskog-Høland, southeastern Norway, 40 

km east of Oslo (59°50�N, 11°40�E, 120-390 m a.s.l.) (Fig. 2). Aurskog-Høland is dominated 

by forests, agricultural areas and lakes. About tree quarter of the total land area, which is 890 

km2, is managed productive forest dominated by Scots pine (50%), Norway spruce (35%) and 

deciduous tree species (15%). 
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Fig. 2. Map of the study area, location of the sample plots, and ALS data cover. Inset map shows extent 

rectangle with black outline of the large map. 

2.2. Field measurements 

During the fall of 2007 and winter of 2008 field data was collected on 40 circular sample 

plots (Fig. 2). Half of the sample plots were located in spruce dominated stands and the other 

half in pine dominated stands. Furthermore, 30 of the plots were located in mature forest. The 

remaining 10 plots were located in young productive forest. The plots located in mature and 

young productive stands were equally distributed in spruce and pine dominated stands. The 

size of the plots was 1000 m2. However, for four plots in young forest where the stem 

densities were very high and the field work exceeded one day per plot the plot size was 

reduced to 500 m2.  

On each sample plot, tree species, diameter at breast height (DBH) and the tree 

coordinates were recorded for all trees with DBH � 5 cm. Totally 4299 trees were recorded 

on the 40 sample plots. The trees were distributed on 52% spruce, 34% pine and 14% 

deciduous trees. The position of the trees was determined by measuring the azimuth and 

distance from the plot center to the tree with a total station (Topcon Sokkia SET5F). Plot 

center coordinates were determined using differential Global Navigation Satellite Systems 

(GNSS) (Topcon Legacy E+). Random errors reported from the post-processing indicated an 

average error of 12 cm for the planimetric coordinates of the plot centers. The field data is 

further described by Breidenbach et al. (2010) and Maltamo et al. (2010). 
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2.3. Remote sensing data 

ALS data were acquired on 12 June 2006 under leaf-on conditions using the Optech ALTM 

3100 EA sensor. The ALS sensor was mounted on a Piper Navajo fixed-wing aircraft flown 

at approximately 800 m above ground with an average flying speed of 75 ms-1. The sensor 

was operated with a pulse repetition frequency of 100 kHz and a scan rate of 70 Hz. The 

maximum scan angle was ± 5° and the beam divergence was 0.3 mrad. The sensor and 

acquisition settings resulted in an approximate pulse density of 7.2 m-2 and a footprint size of 

25 cm. Five parallel flight lines spaced at approximate 8.7 km were flown across the 

municipality in east - west direction to cover the 40 field plots (Fig. 2).  

The ALS data were delivered on the proprietary Optech comprehensive file format 

from the contractor (Blom Geomatics, Norway). The data contained all echoes recorded. The 

ALTM 3100 EA is capable of recording from one and up to four echoes for each emitted 

pulse. Ground echoes were identified with the proprietary algorithm of Terrascan (Terrasolid 

Ltd., 2004) following the principles of Axelsson (1999; 2000). From the echoes identified as 

ground a triangular irregular network (TIN) was created. The ground elevation underneath all 

echoes was computed from the TIN by linear interpolation. The relative height above ground 

(dz) was computed for every echo by subtracting the ground elevation from the recorded echo 

height. Additional parameters extracted from the comprehensive file format for every echo 

were the calibrated range from the sensor to the target and the intensity, which is a 12 bit 

integer indicating the amplitude of the returned signal. Furthermore, the scan direction flag as 

specified by the LAS file format (ASPRS, 2009) was created using the scan angle and time 

stamp registered for all pulses in the comprehensive file format.  

The raw recorded intensities (Iraw) recorded by the ALTM sensor were range 

normalized. The range normalization was performed as:  

 

 
(1)

 

where Iran is the range normalized intensities, R is the range from sensor to target, and Rref is 

the reference range. The value for parameter a was set to 2 (Ahokas et al., 2006; Korpela et 

al., 2010a). Furthermore, Iraw and Iran were normalized for the sensor specific banding effect 

and named Iraw.ban and Iran.ban, respectively. Normalization was carried out using a standard 

histogram matching technique (Ricards & Jia, 2006). The intensities in the negative scan 
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direction were altered to match the histogram of intensities in the positive scan direction such 

that the banding effect was normalized (Fig. 3).  

 
Fig. 3. Estimated probability density functions (pdf) for intensity values of negative and positive scan directions 

before and after normalization of the banding effect. The individual graphical plots show pdfs for raw intensities 

(Iraw), range normalized intensities (Iran), and for Iraw and Iran normalized for the banding effect (Iraw.ban, Iran.ban). 

 

A digital camera, Applanix Digital Sensor System 322 (referred to as Applanix), was 

carried on the same plane as the ALS sensor and Applanix images were acquired 

simultaneously with ALS data. The Applanix sensor is a medium-format digital frame 

camera with only one charge-coupled device. The sensor can be fully integrated with various 

ALS systems. The camera provides 22.2 megapixel (5436×4092) images in either color (VIS) 
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or color infrared (CIR). The physical pixel size was 9 μm. In the current study the camera 

was operated with a 60 mm lens and in CIR mode. Thus, the red, green and infrared bands 

with a ground sampling distance (GSD) of 12.0 cm were acquired. The overlap between the 

images in the along track direction was approximately 50%. Raw images together with 

orientation parameters were provided by the contractor.  

A separate acquisition of aerial images was conducted on 28 and 29 June 2005 with a 

Vexcel UltraCam D (referred to as Vexcel). The Vexcel sensor is a large format digital aerial 

camera capable of acquiring both panchromatic and four multispectral bands (red, green, 

blue, and infrared). The camera provides 86.3 megapixel (7500×11500) images with a pixel 

size of 9 μm in the panchromatic band, while the multispectral sensor has a resolution of 8.8 

megapixels (2400×3680) with a pixel size of 28.125 μm. The Vexcel images were acquired at 

a flight altitude of approximately 3100 m above ground with an average flying speed of 80 

ms-1. The focal length of both panchromatic and multispectral lenses was 101.4 mm. The 

GSD achieved was therefore 27.5 cm and 84.0 cm in panchromatic and multispectral bands, 

respectively. The delivery from the contractor included raw pansharpened images with a 

resolution of 7500×11500 and orientation parameters. 

Pixel values from the Applanix and the Vexcel digital images were linked separately 

to the ALS data following the method described by Packalen et al. (2009). By using a rotation 

matrix, the x, y, and z coordinates of each laser echo were converted to a pixel position in the 

aerial images. Furthermore, the digital numbers from all multispectral bands were added to 

the respective laser echo in the original scale. If the laser echo position occurred on multiple 

images, the mean image value of all overlapping images was computed for all bands before 

adding the values to the respective laser echo. The average number of images per laser echo 

were 1.96 (SD=0.27) and 3.64 (SD=1.56) for the Applanix and Vexcel camera, respectively. 

The ability to locate the laser echoes in the image pixels was made possible through the 

GNSS and inertial navigation systems providing interior and exterior orientation parameters. 

Pixel values were only assigned to those laser echoes which best represent the canopy 

surface, i.e., first returns (first of many and single echoes). All other subsequent echoes will 

penetrate into the canopy and image values were not assigned to these echoes.  

2.4. Individual tree crown delineation 

Individual tree crown delineation was performed using an adaptive segmentation method 

based on a Poisson forest stand model (Ene et al., in review). The algorithm utilizes the 

average stem density per plot for optimizing the canopy height model smoothing. The stem 
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density was obtained using the area-based approach (Næsset, 2004) and trees were assumed 

to be randomly located within plots. Furthermore, the tree crowns were extracted using a 

marker-based watershed algorithm. The algorithm identified 1957 crown segments containing 

at least one field measured tree. In the current study 50.3% of the segments contained only 

one tree, 24.1% two trees, and 25.6% contained three or more trees. Of the 4299 field 

measured trees 4050 were covered by one of the tree crown segments identified by the 

algorithm. For further details about the individual tree crown delineation the reader is referred 

to Ene et al. (in review).  

2.5. Feature computation  

In classification terminology a feature is defined as a measurement on an object, so an object 

may have several features measured, but only one class assigned to it (Ripley, 1996). In the 

current study structural and intensity features were derived from the ALS data. In addition 

image features were derived from Vexcel data and Applanix imagery data. The structural, 

intensity, and image features utilized for tree species identification in the current study appear 

in Table 2. Features were computed for all first returns (first of many and single echoes) 

higher than 1.3 m above the ground surface.  

Structural features were derived from the distribution of ALS echo heights (dz). The 

structural features derived were grouped into four feature groups (FGs) (Table 2). The four 

FGs were “relative height” (Hrel) (c.f. Ørka et al., 2009a), “canopy penetration depth” (Hcpd) 

(c.f. Ørka et al., 2009a), canopy density (DF) (c.f. Næsset, 2004), and echo proportions (EP) 

(c.f. Holmgren et al., 2008; Moffiet et al., 2005). Hrel and Hcpd consist of mean, kurtosis, 

skewness, coefficient of variation, and percentiles (10th, 30th, 50th, 70th and 90th) derived from 

the echo height distribution and normalized with the 95th percentile of the distribution 

according to Ørka et al. (2009a). Canopy density was computed by dividing the 95th height 

percentile minus 1.3 m into 10 vertical layers of equal height. For each layer, tree level 

canopy densities were calculated as the number of echoes above layer number 1, 3, 5, 7, and 

9 as proportions of total number of echoes, respectively. EP was defined as the proportion of 

echoes in the four different echo categories; single, first of many, intermediate, and last of 

many to the number of first returns (first of many and single echoes). The four FGs (Hrel, 

Hcpd, DF, and EP) were tested separately and in different combinations. The combination of 

structural FGs which achieved the highest tree species classification accuracy was used as the 

ALS benchmark. Furthermore, effects of including intensity and image derived features were 

compared to the ALS benchmark.  
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Four intensity FGs were created. The FGs were created from the different intensity 

distributions; Iraw, Iran, Iraw.ban, and Iran.ban. From the intensity distributions the maximum, 

mean, kurtosis, skewness, coefficient of variation, and percentiles (10th, 30th, 50th, 70th and 

90th) were derived for each segment. Furthermore, “canopy layer means” were computed as 

the mean intensity value of echoes in each canopy layer (Table 2). Canopy layers were 

defined as described for canopy density. The classification accuracy obtained with the 

intensity FGs were compared separately and combined with the ALS benchmark.  

From the three Applanix bands and the four Vexcel bands maximum, mean, kurtosis, 

skewness, coefficient of variation, and percentiles (10th, 30th, 50th, 70th and 90th) were derived 

for each segment together with “canopy layer means” from the original values, relative band 

values (Breidenbach et al., 2010), and band ratios (Packalén et al., 2009). The image features 

were combined into one Applanix FG named DSS and a Vexcel FG, named VEX. The two 

image FGs were combined with the ALS benchmark to test improvement in tree species 

classification accuracy. 
Table 2. Structural, intensity, and image features computed to support tree species classification. Structural 

features are derived from the ALS height distribution. Intensity features are computed from the ALS raw and 
normalized intensity distributions. Image features are computed from each band in the imaging sensors used and 

for raw values, relative values, and band ratios. The features are organized into feature groups Hrel, Hcpd, Iraw, 
Iran, Iraw.ban, Iran.ban, DSS, and VEX 

 
 Structural (dz)  Intensity (i)  Image (bands) 
Features Hrel

a Hcpd
b EP DF  Iraw Iran Iraw.ban Iran.ban  DSS VEX 

Maximum value      X X X X  X X 
Mean value X X    X X X X  X X 
10th percentile X X    X X X X  X X 
30th percentile X X    X X X X  X X 
50th percentile X X    X X X X  X X 
70th percentile X X    X X X X  X X 
90th percentile  X X    X X X X  X X 
Coefficient of variation X X    X X X X  X X 
Skewness X X    X X X X  X X 
Kurtosis X X    X X X X  X X 
Prop. of first echoes   X          
Prop. of single echoes   X          
Prop. of last echoes   X          
Prop. of intermediate echoes   X          
Canopy density Layer 1    X         
Canopy density Layer 3    X         
Canopy density Layer 5    X         
Canopy density Layer 7    X         
Canopy density Layer 9    X         
Canopy layer mean 1      X X X X  X X 
Canopy layer mean 3      X X X X  X X 
Canopy layer mean 5      X X X X  X X 
Canopy layer mean 7      X X X X  X X 
Canopy layer mean 9      X X X X  X X 
a Features represented with bold X are scaled relative to the maximum laser height Hrel (c.f. Ørka et al., 2009a). 
b Features represented with bold X are scaled to canopy penetration depth (Hcpd) by subtracting the feature value 
from the maximum laser height (c.f. Ørka et al., 2009a). 
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2.6. Classification and accuracy assessment 

From the 1957 available crown segments we only used a subset of 1520 where all field 

measured trees inside the crown segment belong to the same species. The subset of 1520 trees 

consisted of 783, 622, and 115 spruce, pine and deciduous trees, respectively.  

Previous studies of tree species identification utilized different classification methods 

(Table 1). There have been some attempts to test different classification methods (Heinzel et 

al., 2010; Korpela et al., 2010b; Ørka et al., 2009b). In the current study we utilized linear 

discriminant analysis (LDA), random forest (RF) classification, and support vector machines 

(SVM). LDA is the most frequently used method in individual tree classification studies 

(Table 1). We used the LDA implementation in the R-package MASS for the classification 

(Venables & Ripley, 2002). RF is an extension of classification and regression trees 

(Breiman, 2001). RF has shown good results in comparative classification studies on 

individual trees (Korpela et al., 2010b; Ørka et al., 2009b). RF classification was conducted 

using the R-package randomForest (Liaw & Wiener, 2002). SVM has not been extensively 

used in individual tree species classification. However, the benchmark which RF is compared 

against, is often SVM (Liaw & Wiener, 2002; Pal, 2005). SVM classification was conducted 

using the e1071 package in R (Dimitriadou et al., 2008) using a radial kernel function.  

The distribution of tree species in the study area was unbalanced. The deciduous class 

appeared less frequently than the conifer classes since sample plots were located in either 

spruce or pine dominated stands. We applied a strategy to equally well estimate the accuracy 

of the minority class as the two majority classes. We used equal prior probabilities in LDA, a 

balanced RF procedure (Chen et al., 2004), and weights in SVM. Using this strategy the 

producer’s accuracies obtained would be more uniform and we avoided high omission errors 

of the minority class.  

The number of features derived was high (Table 2). Feature selection was therefore 

applied to reduce the number of features used in the classification. In previous tree species 

identification studies feature selection based on the analysis of group differences, like t-tests 

(Holmgren & Persson, 2004), analysis of variance (ANOVA) (Brandtberg et al., 2003), and 

analysis of covariance (ANCOVA) (Ørka et al., 2009a) have been popular. We used a similar 

approach utilizing analysis of variance (ANOVA) and correlation analysis. First, F-values for 

the differences of features between species were computed. Features which not differed 

significantly at the 0.05 level were omitted. Then, the remained features were ordered from 

high F-values to low F-values and the feature providing the highest F-value was included in 
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the set of selected features. Furthermore, subsequent features were added to the set if they did 

not correlate (r < 0.50) with features already included.  

In many studies leave-one-tree-out cross validation has been used for assessing the 

performance of classification algorithms (Korpela et al., 2010b; Suratno et al., 2009). Thus, 

spatially adjacent trees could be calibration and validation trees. To get reliable accuracy 

estimates, leave-one-sample-plot-out cross validation was used in the current study. 

According to Hastie et al. (2009) cross validation should include the feature selection step. 

The leave-one-sample-plot-out cross validation carried out in the current study ensured that 

both feature selection and accuracy assessment were spatially independent of the validation 

trees. The accuracy indices used were the proportion of correctly classified trees for single 

species (producer’s accuracy), the total (overall accuracy) and the kappa coefficient (�) 

(Cohen, 1960; Story & Congalton, 1986). 

3. Results 

3.1. Benchmark classification using structural features 

The accuracies of the structural FGs and combination of these appear in Table 3. The FGs 

Hrel and Hcpd contained little information about tree species in the current study. The 

maximum kappa value obtained for Hrel and Hcpd was 0.27. A somewhat higher accuracy was 

achieved when utilizing canopy density features (DF) (� = 0.30 - 0.34). However, echo 

proportions (EP) were the structural FG that achieved the highest accuracy (� = 0.52 - 0.57). 

Combing the DF and EP further improved the accuracy (� = 0.57 - 0.60). Adding additional 

structural FGs generally did not improve the classification. Hence, EP and DF were selected 

for the ALS benchmark. The overall accuracy obtained utilizing the ALS benchmark was 74 - 

77%. The producer’s accuracies obtained were 80 - 86%, 72 - 76%, and 31 - 36% for spruce, 

pine, and deciduous trees, respectively. The features selected in all 40 cross validation 

iterations were the DF from the highest and lowest layers, together with the proportions of 

last and proportion of intermediate echoes. The proportions of first and single echoes were 

selected in about half of the cross validation iterations and the middle DF was selected in one 

of the iterations. 

3.2. Effects of intensity normalization 

The accuracies of individual intensity FGs and combination of the best intensity FG with the 

ALS benchmark appear in Table 4. The accuracy obtained using only raw intensity was on 

the same level as using canopy density (� = 0.32 - 0.34). Range normalization of the intensity 

(Eq. 1) resulted in an increase in the kappa value with 0.09 - 0.17. The correction of sensor 
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specific banding effect did not improve the classification for raw intensities and provided 

only a marginal increase of the kappa values for range normalized intensities using LDA and 

SVM. Combining the ALS benchmark and normalized (range and banding) intensity FG 

further improved the classification, by increasing the kappa value with 0.08 – 0.11 comparing 

to using only raw intensity. Compared to ALS benchmark, the increase in accuracy of the 

combination of the ALS benchmark and normalized intensity was minor. Including intensity 

resulted in improving the kappa coefficient with 0.01 when the SVM classifier was used, and 

lower accuracies were obtained using the two other classifiers when structural and intensity 

information were combined. The intensity features selected using Iran.ban FG were kurtosis, 

90th percentile, and the coefficient of variation in all the 40 iterations of the cross validation. 
Table 3. The producer’s accuracy for the different species groups (Spruce, Pine and Deciduous), overall 

accuracies (Overall), and the kappa coefficient (�) of different structural feature groups and combinations of 
these. Accuracies are presented for the different classification methods used: Linear discriminant analysis 

(LDA), random forest (RF), and support vector machines (SVM). 

Feature groupsa Spruce Pine Deciduous Overall � 
LDA 

Hrel  55.6 46.6 63.5 52.5 0.27 
Hcpd 57.6 26.4 60.9 45.1 0.15 
DF  67.4 55.3 41.7 60.5 0.34 
EP 86.3 67.7 14.8 73.3 0.54 
EP+DF  85.8 72.3 35.7 76.5 0.60 
EP+DF+Hrel  86.7 66.1 35.7 74.4 0.57 
EP+DF+Hcpd 85.2 73.5 38.3 76.8 0.61 
EP+DF+Hrel+Hcpd 54.9 45.5 57.4 51.2 0.24 

RF 
Hrel  56.2 51.9 43.5 53.5 0.25 
Hcpd 50.1 48.6 37.4 48.5 0.17 
DF  61.2 57.1 30.4 57.2 0.30 
EP 82.2 65.1 27.8 71.1 0.52 
EP+DF  82.0 76.2 31.3 75.8 0.59 
EP+DF+Hrel  84.8 76.7 29.6 77.3 0.61 
EP+DF+Hcpd 84.3 73.8 31.3 76.0 0.59 
EP+DF+Hrel+Hcpd 54.9 52.1 40.0 52.6 0.24 

SVM 
Hrel  51.6 48.7 63.5 51.3 0.25 
Hcpd 45.6 47.6 56.5 47.2 0.20 
DF  63.2 60.8 37.4 60.3 0.34 
EP 82.1 74.4 27.0 74.8 0.57 
EP+DF  80.2 73.5 33.9 73.9 0.57 
EP+DF+Hrel  79.2 74.6 32.2 73.8 0.56 
EP+DF+Hcpd 81.1 71.7 32.2 73.6 0.56 
EP+DF+Hrel+Hcpd 51.0 46.8 58.3 49.8 0.23 
aFeature groups used, see section 2.5. for detailed description. Hrel is relative height, Hcpd is canopy penetration 
depth, DF is canopy density, and EP is echo proportions.  
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Table 4. The producer’s accuracy for the different species groups (Spruce, Pine and Deciduous), overall 
accuracies (Overall), the kappa coefficient (�) of individual intensity feature groups, and combination of the best 

with the ALS benchmark. Accuracies are presented for the different classification methods used: Linear 
discriminant analysis (LDA), random forest (RF), and support vector machines (SVM). 

Feature groupsa Spruce Pine Deciduous Overall � 
LDA 

Iraw 50.6 74.6 13.0 57.6 0.32 
Iran 62.8 72.3 13.0 63.0 0.41 
Iraw.ban 49.7 74.3 10.4 56.8 0.31 
Iran.ban 60.3 75.7 14.8 63.2 0.42 
EP+DF+Iran.ban 77.8 72.7 29.6 72.0 0.53 

RF 
Iraw 58.0 68.3 14.8 58.9 0.31 
Iran 72.5 77.7 19.1 70.6 0.50 
Iraw.ban 56.4 65.9 17.4 57.4 0.29 
Iran.ban 72.5 76.5 20.9 70.3 0.49 
EP+DF+Iran.ban 78.5 80.7 18.3 74.9 0.57 

SVM 
Iraw 57.0 71.7 20.0 0.60 0.34 
Iran 73.2 74.1 23.5 0.70 0.48 
Iraw.ban 54.8 70.7 18.3 0.59 0.31 
Iran.ban 74.3 75.2 22.6 0.71 0.49 
EP+DF+Iran.ban 78.8 81.5 24.3 0.76 0.58 
aFeature groups used, see section 2.5. for detailed description. Iraw is features derived from the raw intensity, Iran 
is features derived from the range normalized intensities Iraw.ban and Iran.ban are the Iraw and Iran normalized for the 
banding effect, DF is canopy density, and EP is echo proportions.  

3.3. Effects of multispectral images 

The accuracies obtained using only the image FGs and combination of these with ALS are 

presented in Table 5. Slightly higher accuracies were obtained using the Applanix data (� = 

0.55 - 0.64) compared to Vexcel data (� = 0.52 - 0.57). However, the results were similar to 

the ALS benchmark. Combining image data with the ALS benchmark increased the 

classification accuracies and kappa values of 0.78 - 0.80 and 0.72 - 0.77 were obtained using 

the Applanix and Vexcel cameras, respectively. Utilizing normalized intensity in addition did 

not improve the classification any further. The highest accuracy was obtained using the echo 

proportions (EP), canopy density (DF), and Applanix data (DSS). The overall accuracies 

obtained for the classification were 87 - 89% and the producer’s accuracies were 87 - 90%, 

89 - 92%, and 59 - 79% for spruce, pine, and deciduous trees, respectively. Using the Vexcel 

camera (VEX) an overall accuracy of 84 - 87% was obtained. Producer’s accuracies were 85 - 

89% for spruce, 87 - 90% for pine, and 58 - 70% for deciduous when combining features 

from the ALS benchmark and Vexcel camera.  
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Table 5. The producer’s accuracy for the different species (Spruce, Pine and Deciduous), overall accuracies 
(Overall), the kappa coefficient (�) of individual image feature groups, and combined with the ALS benchmark 
and the best intensity feature groups. Accuracies are presented for the different classification methods used: 
Linear discriminant analysis (LDA), random forest (RF), and support vector machines (SVM).  

Feature groupsa Spruce Pine Deciduous Overall � 
LDA 

DSS 66.4 81.7 69.6 72.9 0.55 
VEX 62.1 82.8 67.0 70.9 0.52 
EP+DF+DSS 87.1 88.7 79.1 87.2 0.78 
EP+DF+VEX 85.3 87.1 69.6 84.9 0.74 
EP+DF+Iran.ban+DSS 84.7 88.4 65.2 84.7 0.74 
EP+DF+Iran.ban+VEX  81.9 86.5 62.6 82.3 0.70 

RF 
DSS 73.7 82.8 64.3 76.7 0.60 
VEX 76.0 80.7 46.1 75.7 0.57 
EP+DF+DSS 87.6 90.0 69.6 87.2 0.78 
EP+DF+VEX 86.2 87.1 55.7 84.3 0.72 
EP+DF+Iran.ban+DSS 86.2 90.2 63.5 86.1 0.76 
EP+DF+Iran.ban+VEX  83.3 88.1 47.0 82.5 0.69 

SVM 
DSS 75.9 86.5 61.7 79.1 0.64 
VEX 69.3 84.1 55.7 74.3 0.56 
EP+DF+DSS 90.0 92.1 59.1 88.6 0.80 
EP+DF+VEX 88.9 89.9 58.3 87.0 0.77 
EP+DF+Iran.ban+DSS 90.0 92.3 54.8 88.3 0.79 
EP+DF+Iran.ban+VEX  87.4 88.7 56.5 85.6 0.75 
aFeature groups used, see section 2.5. for detailed description. DSS is features derived from the Applanix sensor, 
VEX is features derived from the Vexcel Ultracam sensor, Iran.ban is the range and banding normalized 
intensity, DF is canopy density, and EP is echo proportions.  

4. Discussion 
4.1. Classification using structural features 

Moderate classification accuracies were obtained utilizing structural information derived 

from ALS data. The intensity is still only an optional item in the LAS file format (ASPRS, 

2009). Hence, it may not be available in operational surveys where data are delivered 

according to the LAS file format specification. However, applying only structural features, 

overall accuracies of 74 - 77% were obtained in the current study when classifying the three 

tree species groups commonly used in operational forest management inventories in Nordic 

countries (Table 3). In two other Nordic studies accuracies of 88 - 92% were obtained only 

using structural features (Holmgren & Persson, 2004; Vauhkonen et al., 2009). In these 

studies accuracies were 11 to 18 percentage points higher compared to the results obtained in 

the current study. The differences may be attributed to the more heterogeneous forest in the 

current study area or the different sensors used. Both the study by Holmgren and Persson 

(2004) and the study by Vauhkonen et al. (2009) used a Topeye ALS sensor. Vauhkonen et 
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al. (2009) used only dominant trees visible in the images where no branches overlapped with 

neighboring trees. The structure of the forest in the current study area is more diverse and 

represents practical challenges.  

The normalized height features did not improve the species classification. Similar 

results are found in other studies in boreal forests (Korpela et al., 2010b; Ørka et al., 2009a; 

Ørka et al., 2010). However, in a Swedish study site the 90th percentile computed from all 

echoes within the crown produced the highest overall accuracy (Holmgren & Persson, 2004). 

Although the normalized height features carried some useful information in the current study 

and also in the study of Holmgren and Persson (2004), such features seem to be of minimal 

practical use in applications covering large areas. Moffiet et al. (2005) found a density related 

feature to be useful in tree species identification. Based on the study by Moffiet et al. (2005), 

some other studies on species identification (Ørka et al., 2009a; Ørka et al., 2010), and the 

results obtained in the current study, it is indicated that density features better describe the 

structural differences between boreal tree species than the normalized height features.  

Features derived from different echo categories may be important in species 

identification (Ørka et al., 2009a). However, the use of separate echo categories limits the 

number of trees where all features can be computed and consequently, the number of trees 

which can be classified (Ørka et al., 2010). In the current study the information suggested to 

be inherent in different echo categories was incorporated using echo proportions. The echo 

proportions contributed significantly to the higher accuracies using structural information, 

which coincides well with previous findings from boreal forests (Holmgren et al., 2008). In 

the current study the echo proportions of last and intermediate echoes were most important. 

Proportions of single and last echoes was important for separating spruce, pine and deciduous 

trees in the study by Holmgren et al. (2008). Ørka et al. (2009a) found that the density of last 

echoes was important for separating spruce and birch trees because of the higher proportions 

of last echoes in the lower crown of spruce trees. The importance of the echo proportions in 

the current study was probably also due to differences in crown allometry and crown 

permeability for the different tree species.  

4.2. Improvement using normalized ALS intensity  

The current study has two main findings regarding utilization of normalized intensity. First, 

intensity normalization improved accuracy of species classification when only intensity 

features were used. Normalization based on range from sensor to target was the most 

important in terms of improving the classification accuracy. However, also correction of the 
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banding effect improved the classification slightly. Korpela et al. (2010b) found 

improvements of 0.03 – 0.04 in the kappa coefficient and 2 - 3 % in overall classification 

accuracy when conducting range normalization of intensity collected by the Optech ALTM 

3100 sensor. Hence, the effect of intensity normalization was greater in the current study 

compared to the study by Korpela et al. (2010b). Consequently, range normalization of 

intensity seems to be a useful preprocessing step when intensity features are used for tree 

species identification and probably in other applications where intensity is utilized.  

The second major finding regarding intensity was the lack of improvement in 

accuracy when combining intensity features with other ALS and/or image features. In another 

study in a boreal forest only intensity features were selected and all structural features were 

omitted in the feature selection carried out before classification (Korpela et al., 2010b). 

Furthermore, Vauhkonen et al (2009) found that combination of intensity features and other 

ALS features increased the accuracy when classifying spruce, pine, and deciduous trees in 

Finland. From Queensland, Australia Moffiet et al. (2005) reported that the intensity was not 

useful for tree species identification. In some studies only intensity features were selected by 

the selection procedures while other studies did not benefit from intensity at all, like the 

current one. The reasons for the highly variable results obtained with ALS intensity are most 

likely related to sensor properties and acquisition parameters.  

In the current study, the banding effect, which is a source of intensity variation that is 

sensor specific and not previously described in literature, was addressed. Knowledge of 

variations in intensity values is important to fully understand the processes behind the 

recorded intensity values. However, such information is not always available from the sensor 

vendors. It is likely that the banding effect will be different between different sensors and 

even may change over time for the same instrument due to sensor maintenance and upgrades 

(E. Næsset, pers. comm.). Settings specific to individual data acquisitions, such as pulse 

repetition frequency and flying altitude may also play a role. In some acquisitions the effect 

may therefore be minor while in other campaigns larger effects of banding may occur. The 

banding normalization used in the current study is adapted from image processing (histogram 

matching) and is well documented and known in the remote sensing community, but is 

probably not optimal. Furthermore, the normalization of the banding effect was less 

pronounced in the current study probably due to averaging of intensity values from different 

scan directions inside tree crowns when computing features. The banding effect would likely 

be more pronounced if a raster representation of intensity with a pixel size less than the point 

spacing or separate echoes was utilized. Hence, further research should be carried out to 
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quantify effects - and to improve calibration of the banding effect. Normalization using 

brightness targets might provide knowledge to support better calibration of the banding effect 

and other intensity effects not yet documented in the literature.  

Moffiet et al. (2005) reported systematic variations in the intensity values in the flight 

direction. They suggested that sensor and acquisition settings, like different flying altitudes 

and variation in the transmitted power were major factors causing variation. Furthermore, 

large differences in accuracy were obtained with Optech and Leica sensors in a Finnish study 

were sample trees and methods otherwise were equal (Korpela et al., 2010b). The 

observations by Moffiet et al. (2005) and Korpela et al. (2010b) together with the description 

of sensor specific effects in the current study and in other studies (Korpela, 2008) strongly 

indicate that sensor and acquisition settings are important for the utility of intensity 

information. Practical applications require robust and accurate classification methods which 

not seem to be the case in current tree species identification procedures based on intensity 

information. Supplementary sensor information or improving the sensors capabilities to 

record intensity or related information (e.g. transmitted power per pulse) may be a key for 

better utilization of the intensity information recorded in addition to the ALS echo 

coordinates.  

4.3. Improvement using multispectral images 

The accuracy obtained with only structural features derived from ALS might not be sufficient 

for many applications and improvements can be obtained by applying spectral information. 

The obtained classification accuracies using the Vexcel images were only slightly lower than 

applying the ALS structural information alone (benchmark). Using only the Applanix images 

the accuracy was slightly better than the ALS benchmark. Thus, ALS data and multispectral 

imagery equally well separate tree species in the current study. Consequently, ALS data will 

be the first choice in forest inventory because of the better accuracy for e.g. timber volume 

and tree height (e.g. Hyyppä & Hyyppä, 1999) without any reduction of species identification 

accuracy compared to multispectral imagery. 

Inclusion of multispectral image features in addition to ALS data improved the tree 

species classification accuracies. Combining ALS and Applanix data acquired simultaneously 

during the same flight mission provided the highest accuracies. The Vexcel data were 

acquired the year before the field inventory, furthermore the data have a higher GSD and the 

data were pansharpened before delivery. The pansharpening process altered the image values 

and might be one of the reasons for the lower accuracy of the classification based on Vexcel 
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imagery. The high GSD in multispectral bands of the Vexcel sensor compared to the 

Applanix sensor, i.e., 84 vs. 12 cm, was likely another reason for the lower accuracies 

obtained using the Vexcel sensor. A higher GSD of the Vexcel imagery results in averaging 

of image values over a larger area making the variation between trees less apparent. 

However, high flying altitudes are necessary to keep data acquisition costs low, which 

requires higher GSDs as one of the consequences. Simultaneous acquisitions of ALS and 

image data will add restrictions on the acquisition parameters and the costs will increase 

compared to acquiring ALS data only. For instance, an acquisition of imagery will require 

specific weather conditions and sun angles and thus the possible acquisition time will be 

narrowed compare to only flying with an ALS sensor which even might be flown at night 

time.  

Combining aerial spectral information and ALS data has improved tree species 

classification in other studies (Hill & Thomson, 2005; Holmgren et al., 2008; Jones et al., 

2010). The current study together with the study of Holmgren et al. (2008) are the only two 

studies combing ALS and multispectral images to identify species of individual trees and 

report combined and separate accuracies for the two remote sensing sources. Holmgren et al. 

(2008) reported increase in accuracies of 0.11 in the kappa values and 8 percentage points in 

overall accuracy. The improvements in overall accuracy are similar to the current study. 

However, the improvement in kappa was higher in the current study, mainly because of the 

better identification of deciduous trees when utilizing the spectral information in addition to 

ALS information. 

4.4. Other aspects of the study  

The major problem in the current study was to distinguish the deciduous trees from conifer 

trees. A similar challenge was also reported from a boreal forest site in Finland (Korpela et 

al., 2010b). In the current study, all FGs, and in particular the intensity features, resulted in 

low accuracies for deciduous trees. However, spruce and birch trees have been separated 

quite successfully in previous studies using intensity features (Ørka et al., 2009a). Both in the 

current study and in the study by Ørka et al. (2009a) the deciduous trees appear in conifer 

dominated stands. The sample plots in the current study are more spatially distributed and the 

sample of deciduous trees is smaller. Although we tried to account for the smaller sample of 

deciduous trees in the classification the unbalanced species distribution was likely the cause 

for the low accuracies of the minority class. However, separating the dominating species 

(spruce and pine) was successfully conducted and producer accuracies near 90% were 
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obtained. The producer’s accuracies of deciduous were higher and better balanced for LDA 

than for the two other classification methods tested.  

Different classification methods were used in the current study. The conclusions for 

all methods were similar. The highest classification accuracy was obtained with SVM. Both 

SVM and RF perform better than LDA in most cases. However, LDA was better for the 

different ALS structural FGs (Table 3). Furthermore, SVM and RF are attractive because 

they have the possibility to perform accurately without feature selection (Ørka et al., 2009b).  

5. Conclusions 
The current study presents promising result for combining ALS and multispectral images for 

individual tree species identification. In addition, normalization of ALS intensity improved 

the classification accuracy, and we suggest that the normalization of intensity should be 

carried out when utilizing such information. However, intensity did not improve the accuracy 

beyond the levels obtained using only ALS structural information or ALS combined with 

aerial images. 
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Abstract 

The subalpine zone or ecotone is the transition between the forest and alpine vegetation 

communities. Substantial changes in position and extent of the subalpine zone are expected as 

a result of a warmer climate. In Norway, as in many other nations, low productivity or non-

merchantable forests, like the subalpine zone, are not routinely subject to inventory programs. 

The awareness of the expected changes and the interest in full carbon accounting at the 

national level has dictated a need for data capture in these mountainous areas. Specifically, 

quantifying the area covered by the subalpine zone, including a capacity to characterize 

changes in ecotone location over time, are required to obtain reliable inventory estimates of 

biomass and carbon stocks. The capacity to characterize the ecotone is also desired to enable 

monitoring of the changes in the zone boundaries over time providing information on change 

rates and change processes. We propose an approach for integrating strip samples of Light 

Detection and Ranging (LiDAR) data with Landsat imagery to delineate the subalpine zone. 

In the current study the subalpine zone was defined according to international definitions 

based on tree heights and canopy cover to provide the basis for reporting according to 

established international standards. The three-dimensional measurements of forest structure 

obtained from LiDAR enable a heuristic delineation of the subalpine zone. The method was 

implemented using 53 laser sample strips in Hedmark County, Norway, and validated with 

field measurements at 26 locations. The subalpine zone boundaries were found to be 

accurately derived when validating using an image gradient technique. Furthermore, binomial 

logistic regression and alpha-cuts were used to upscale the LiDAR classes to the entire 

county area (27 400 km2) using satellite images supported with information derived from a 

digital terrain model. The products included a hard classification needed for inventory 

stratification and a probability surface suitable for monitoring changes in the extent and 

location of the subalpine zone. 

 

Keywords: Subalpine zone; Forest-tundra ecotone; LiDAR; Airborne laser scanning; Satellite 

data; Landsat; Canopy coverage; Logistic regression; Regional forest inventory. 
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1. Introduction 

Forest- and tree lines are expected to advance as a result of a warmer climate (Dalen & 

Hofgaard, 2005; Harsch et al., 2009), with changes in human use and activities in mountain 

areas also expected to affect the alpine forest- and tree lines. For instance, the presence of 

grazing animals been shown to force the tree line below its climatic constraints indicating that 

diminished grazing would result in advancing forest- and tree-lines (Cairns & Moen, 2004; 

Hofgaard, 1997). We are also mindful that the effect of land use change on forest- and tree 

lines may override the responses of climate change on the vegetation in the subalpine zone 

(Hofgaard, 1997).  

The subalpine zone is defined as the transition between the forest and alpine 

vegetation communities (Kimmins, 1997). Transitions between two different vegetation 

communities are referred to as ecotones (Clements, 1905). The forest-tundra ecotone is also 

often understood as analogous to the subalpine zone, with various definitions and terms for 

this ecotone in usage (c.f. Callaghan et al., 2002; Löve, 1970). However, there is a common 

understanding that the subalpine zone is limited downwards by the forest line and upwards by 

the tree line (Kimmins, 1997). Forest- and tree lines are often defined according to tree height 

(h), tree density (N) and/or canopy coverage (C). The definitions applied in the current study 

were selected to provide results consistent with the needs in international reporting. The 

definitions of “forest” and “other wooded land” by the United Nations Food and Agricultural 

Organization (FAO) was applied for the forest line (C > 10 % of trees with h > 5 m) and the 

tree line (C > 10 % of trees and shrubs with h > 0.5 m or C > 5 % of trees with h > 5 m), 

respectively (FAO, 2006). 

In a recent meta-analysis it was shown that half of the tree lines included in a global 

study had advanced during the last century, while only 1% of the studies indicated recession 

(Harsch et al., 2009). Although advance in tree lines is expected at many sites worldwide, 

tree line dynamics might follow different patterns at a regional level, e.g. along a mountain 

range (Dalen & Hofgaard, 2005). Different regional tree line dynamics are linked to 

differences in environmental and anthropogenic factors at specific locations, including 

historic land use, soil, temperature, and variability in precipitation – even over short 

distances. Small study sites provide important knowledge in the dynamics of the subalpine 

zone (e.g. Dalen & Hofgaard, 2005). However, a complete mapping of the subalpine zone is 

needed to fully understand these local and regional differences. Such maps can be combined 

with information on grazing pressure to analyze which of the confounding effects, reduced 

grazing or climate change, impact the subalpine most.  
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The expected changes in the subalpine zone have increased the demand for 

information and monitoring. Changes in the subalpine zone will have an influence on the 

forest as well as the related alpine areas, biodiversity, landscape characteristics, biomass, and 

carbon pools. Countries that have ratified the Kyoto protocol are also committed to report 

land use change attributable to deforestation, aforestation and reforestation (UNFCCC, 2008). 

Consequently, there is an urgent need for an updated complete national mapping of the 

subalpine zone and monitoring of the future development. Specially, the interest in full 

carbon accounting required inventories and monitoring of low biomass areas as the subalpine 

zone.  

National inventories and monitoring systems have typically not included the subalpine 

zone, as the focus has traditionally been on productive forests with resource management 

aims. Furthermore, it is also expensive to establish and measure field plots in remote 

mountainous areas. The lack of information on the area and the extent of the subalpine zone 

results in an inability to monitor the any changes in this ecotone. National forest inventories 

are under pressure to develop protocols to incorporate the need for inventory and monitoring 

of the subalpine zone. 

Remote sensing offers possibilities for mapping and monitoring of large areas. 

Especially, medium resolution optical satellite images (ground sample distance of 10 – 30 

meters) have been important through the provision of data with sufficient spatial detail over 

large areas at low costs to meet a range of information needs (Cohen & Goward, 2004; 

Falkowski et al., 2009). The opening of the United States Geological Survey (USGS) Landsat 

archive to provide data for free (Woodcock et al., 2008) has further accentuated the utility of 

this data. Combining medium resolution satellite images and other spatial data (e.g. elevation, 

solar radiation, climate, soil) improve the accuracy of the remote sensing analysis (Franklin, 

1995; Rogan & Miller, 2007). A drawback of medium resolution satellite images is that the 

spatial resolution (30 m) often results in a mixture of within pixel vegetation conditions, 

reducing the capacity to classify beyond broad vegetation types over heterogeneous areas 

(Wulder, 1998). High spatial resolution remote sensing techniques, including imagery from 

satellite and airborne platforms and Light Detection and Ranging (LiDAR), provide detailed 

information about forests and individual trees. However, high acquisition costs make such 

data unsuitable for large area wall-to-wall monitoring. To overcome this, high-resolution 

remote sensing techniques may be applied to sample remote areas with either images 

(Falkowski et al., 2009) or LiDAR (Næsset et al., 2009) rather than seeking a full areal 

coverage. Comparisons of high spatial resolution image and LiDAR remote sensing have 
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shown that LiDAR is among the most promising remote sensing techniques in terms of 

accuracy of height, volume, and biomass of forested areas (e.g. Hyde et al., 2006; Hyyppä & 

Hyyppä, 1999; Lefsky et al., 2001). By combining data from medium resolution satellite 

images and samples of high spatial resolution LiDAR data the strengths of both sources can 

be integrated. LiDAR data acquired in sampling mode provide detailed information on 

specific locations suitable for extrapolation or model calibration. Furthermore, satellite and 

other spatial data supported can be deployed to provide full coverage of the region of interest, 

to provide modeling and extrapolation options, and to support stratification.  

The basis for the current study is a framework were a large area inventory is 

conducted using airborne scanning LiDAR operated in a strip sampling mode (Næsset et al., 

2009). The main objective of the current research was to develop a method combining 

samples of LiDAR with full coverage optical satellite data to identify the subalpine zone over 

a large region. The result should increase the information about the area and location of the 

subalpine zone without increasing inventory cost. The specific objectives were to: 

1) Identify the subalpine zone using a heuristic classification based on the direct 

measurements provided LiDAR. 

2) Model and map the subalpine zone through integration of LiDAR, satellite and 

elevation data to represent the entire study area of interest.  

 

2. Background 

2.1. LiDAR remote sensing 

LiDAR provides three dimensional point measurements (x,y,z – coordinates) of the 

landscape. In the subalpine zone, LiDAR has shown potential for detecting small trees 

(Næsset & Nelson, 2007; Næsset, 2009a) and the forest line has also been detected (Rees, 

2007). Næsset & Nelson (2007) found that 91 % of trees taller than 1 m had positive height 

measurements by LiDAR, which could aid the detection of small trees in the subalpine zone. 

Rees (2007) identified the forest area by extracting LiDAR echoes representing 2 m tall trees 

with a spacing lower than 10 m between trees. Parameters used to define the forest- and tree 

lines like tree height, tree density, and canopy cover are accurately estimated from LiDAR 

data (See table 1). LiDAR is an attractive data source for identifying forest- and tree lines as 

direct measures, rather than solely empirical, relationships may be formed.  
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2.2. Satellite remote sensing 

To identify the subalpine zone we propose to create a two class mask that separates the area 

of interest. Spectral information from satellite images is an important source to produce such 

class based masks for large areas. For example, a single Landsat scene may provide a basis 

for separation of forested and non-forested areas (McRoberts, 2006). Studies have shown that 

Landsat data are sensitive to the changes in surface and vegetation structure in the forest-

tundra ecotone in Central Siberia (Ranson et al., 2004). Furthermore, Hill et al. (2007) used 

images from another multispectral satellite sensor (SPOT 5 HRG) to represent the alpine 

ecotone in Central Europe. However, limitations in accuracy obtain with satellite images 

alone have motivated the combination of spectral data from satellites and other spatial data 

layers (Franklin, 1995; Rogan & Miller, 2007; Wulder et al., 2006). Using spatial data layers 

alone to create masks are an option used in national forest inventories to create forest- and 

mire masks (Tomppo et al., 2008). However, spatial data layers have often limitations in 

coverage and are often not up to date in remote mountainous areas. Hence, for mapping the 

subalpine zone spatial data layers alone will often be insufficient. One source of information 

frequently available in remote areas is digital terrain models (DTMs). There are a number of 

variables than can be derived from DTMs, including slope, aspect, solar radiation, curvature, 

and different indices which may relate to the presence of the subalpine zone. For example, in 

a recent study in a forest-tundra ecotone in tropical Andes different topographic variables 

were used to predict the probability of forest (Bader & Ruijten, 2008). Table 2 summarizes 

the use of spatial and spectral data and the different methods for combining such data layers 

to create class based masks.  

There are many statistical approaches for creating masks from spatial data layers 

supported by sample plot data. Table 3 summarize assumptions for different parametric and 

non-parametric methods and gives references to use in remote sensing to create masks. In the 

case of separating a transition from forest to alpine both parametric logistic regression and 

non-parametric regression trees have potential to include variables derived for example from 

DTMs without any assumptions related to the distribution of the variables. Ecotones, like the 

subalpine zone, are best represented by soft classifiers which provide a probability surface 

(Foody, 1996). Probability surfaces are possible to obtain from regression trees. However, 

binomial logistic regression directly provides a probability measure. Binomial logistic 

regression is widely used in the remote sensing community to create class-based masks (e.g. 

Wulder et al., 2006).  
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4. Materials and methods 

4.1. Study area  

The study area, Hedmark County, is located in southeast Norway (Fig. 1). The total land area 

of Hedmark is approximately 27 400 km2. The county is covered by boreal and alpine 

vegetation zones with a slightly continental climate (Moen, 1999). Elevations range from 120 

to 2180 m asl. 

 
Fig. 1. Study area and field locations. 

 

4.2. Field data  

During summer 2008 the forest- and tree lines were mapped in field at 26 locations (Fig. 1) in 

Hedmark County. Locations were selected subjectively based on the following criteria: 

placed in the LiDAR sample transects, availability of ortophotos, accessible for field work, 

and spatially well distributed over the county. The subalpine zone was manually digitized by 

applying common practices following the forest- and tree lines in the field. Digitizing was 

conducted with a simple Bluetooth GPS receiver (Holux M-1000) connected to a Personal 

Data Assistant with a Geographical Information System. As shown in Fig. 2, the forest 

structure and type of forest varies between the field locations. The total length of forest lines 

digitized in field was 38.6 km and the length of the tree lines was 42.3 km.  
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Fig.2. Three different sites with ground photo and orthophotos with tree line and forest line (black lines). Sites 

from left; Heimrabben – Lichen-pine forest, Danseren – Vaccinium-spruce forest (birch at tree line), and 
Bjørnsjøklettan – Lichen-birch forest. 

 

4.3. LiDAR data 

LiDAR data were acquired during summer 2006 with the Optech ALTM 3100 laser scanner. 

Detailed parameters and settings for the acquisitions and sensors appear in Table 4. Parallel 

flight lines were flown in east-west direction with a distance between adjacent flight lines of 

6 km. The total length of all flight lines was more than 4500 km and the LiDAR dataset 

consist of a sample of 8.4 % of the study area. The initial processing of the data was 

accomplished by the contractor (Blom Geomatics, Norway). Planimetric coordinates (x and 

y) and ellipsoidal height values were computed for all echoes. For each acquisition, ground 

returns were determined using the Terrascan software (Terrasolid Ltd., 2004) and a 

triangulated irregular network (TIN) was created from the echoes classified as ground 

returns. Heights above the ground surface were calculated for all echoes by subtracting the 

respective TIN heights from the height values of all echoes recorded.  
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Table 4. Sensors and acquisition settings 

Parameters  
Platform  PA31 Piper Navajo 
Sensor ALTM 3100 
Mean flying altitude AGL (m) 800 
Pulse repetition frequency (kHz) 100 
Scan frequency (Hz) 55 
Half scan angle (deg.) 17 
Mean flying speed (ms-1) ca. 75 
Mean pulse density (m-2) 2.7 a 
Beam divergence (mrad) 0.26 
Footprint diameter (cm) 21a 
aComputed after Baltsavias (1999) based on mean acquisition settings.  

 

4.4. Landsat data  

Four different Landsat 5 TM images were obtained from USGS to covering the study area. 

The scenes used were path 197 row 18 and 16 acquired on 3 June 2007 and path 198 row 18 

and 17 acquired on 10 June 2007. The images were georeferenced using 1:5000 maps and 

orthorectified using a DTM with 25 m spatial resolution. The images were resampled to the 

size of the DTM during orthorectification. Furthermore, the orthorectified images were 

converted to top of atmospheric reflectance (TOA) by the procedure developed by Han et al. 

(2007). The TOA corrections account for differences in viewing geometry and sensor. 

However, variations in absolute atmospheric conditions between images were not corrected. 

The TOA corrected images were mosaiced together. The RMS of all four images was less 

than 1/3 pixel. From the TOA corrected Landsat mosaic the normalized difference vegetation 

index (NDVI) and the brightness, greenness and wetness from the tassel cap transformation 

were derived and used (Crist & Kauth, 1986; Huang et al., 2002; Kauth & Thomas, 1976).  

 

4.5. Digital elevation data 

Digital elevation data were supplied by the Norwegian Mapping Authority as a DTM with 

25m spatial resolution. From the DTM, elevation, slope, solar radiation and curvature were 

derived and utilized. Slope was computed for each raster cell in the DTM using the average 

maximum technique on a fitted plane to a 3 × 3 cell neighborhood (Burrough & McDonell, 

1998). Global solar radiation in watt hours per square meter (WH m-2) was computed using 

the DTM in accordance with Fu and Rich (1999). Curvature describe the shape of the terrain 

and was computed in a 3 × 3 cell neighborhood (Moore et al., 1991; Zeverbergen & Thorne, 

1987). In addition, the location (latitude and longitude) of the pixels was used in the 

modeling.  
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4.6. Procedure for delineate the subalpine zone 

Fig. 3 outlines the proposed procedure for obtaining the full coverage map of the subalpine 

zone. The flow chart introduces the input data described above. During Step 1, the procedure 

identifies cover types- forest, alpine and subalpine areas in the LiDAR data, using a heuristic 

classification. Step 2 describes the use of LiDAR-, satellite- and spatial data layers to produce 

a map showing the probability of forest. Furthermore, alpha-cuts were identified to produce a 

map with hard classes i.e. the cover types- forest, alpine and subalpine. At last, the accuracy 

of both the LiDAR derived classes and the full coverage class map produced was assessed. 

The two steps of the procedure and the accuracy assessment are described in further detail 

below.  

 

 
Fig. 3. Flow chart describing input data, analysis and accuracy assessment. 

 

4.6.1. Identify the subalpine zone using LiDAR data (Step 1) 

A heuristic classification procedure for automatically assigning an area to a cover type was 

developed. The point cloud obtained from LiDAR sensors can be viewed as a sample of the 

forest canopy where each echo (x, y, z – point) is a sample point. Classifying the point 

according to presence or absence of canopy makes the point cloud a sample of a binomial 
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distribution (canopy vs. not canopy). Hence, the canopy cover can be computed as the 

number of echoes in the canopy over the total number of echoes: 
 

 (1)

 

where C is canopy cover, Nc is number of first returns in canopy, and Nt is total number of 

first returns. Similar approaches have frequently been used (c.f. Hopkinson & Chasmer, 

2009). Canopy hits were defined based on a height threshold. One height threshold was used 

for defining tree canopy (HTtrees) and one threshold was used for defining shrubs and trees 

(HTshrub+trees). The height thresholds were used to separate canopy returns (Nc) in Eq. 1. The 

canopy thresholds were set in accordance with the heights in the FAO definitions (HTtrees = 5 

m and HTshrub+trees = 0.5 m). Hence, canopy cover for trees (Ctrees) was computed as the 

number of first returns above 5 m divided by the total number of first returns. Canopy cover 

for trees and shrubs (Cshrub+trees) was computed as the number of first returns above 0.5 m 

divided by the total number of first returns. Then the classes, i.e., forest, alpine or subalpine 

zone, were assigned according to this pseudo code:  

 

if(Ctrees > CT1)  

class = forest 

else  

if(Ctrees > CT2 or Cshrub+trees > CT1)  

class = subalpine zone 

else 

class = alpine 

 

where CT1 and CT2 represent the two different canopy cover thresholds. The canopy cover 

thresholds used to assign classes were CT1 = 0.10 and CT2= 0.05 which correspond to the 

canopy coverage values in the FAO definitions of forest and other wooded land.  

 

4.6.2. Model and map the subalpine zone using full coverage data (Step 2) 

To predict the cover type based on the Landsat and other data with full areal coverage, a 

binomial logistic regression was estimated (Eq. 2). The spectral indices (NDVI, brightness, 

wetness, and greenness), elevation, slope, solar radiation, curvature, and location variables 
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(latitude and longitude) were candidate variables in the estimation. The initial model 

including all candidate variables was of the form: 
 

(2)

 

where �(FOREST) is the probability of a pixels being forest, �0, �1 - �k are fixed parameters and 

x1 - xk are the variables used. Variable selection was conducted using a manual backward 

elimination process. In addition, highly correlated variables were removed to avoid co-

linearity. The reference data included plots of size 625m2, equal to pixel size, laid out every 

3rd km along the LiDAR transects. Reference data were pre-stratified according to the 

potential subalpine zone area using the DTM. Only areas between 675 and 1150 m asl were 

included in the analysis. A total of 534 reference plots, where the LiDAR derived cover type 

was forest or alpine, were used in the binomial logistic regression. The fit of the final model 

was evaluated with Naglekerkes R2 (Nagelkerke, 1991), the deviance test and the Hosmer-

Lemeshows goodness-of-fit test (Hosmer et al., 1997). 

The final binomial logistic regression model was used to predict a probability surface 

in the potential subalpine area in Hedmark. The probability surface represents the probability 

of an area, a pixel, being forest. Even though ecotones are best represented by a probability 

surfaces a hard classification is often needed when presenting thematic maps of the subalpine 

zone or when information will be used in international reporting (Hill et al., 2007). Hill et al. 

(2007) tested two approaches to present the probability surface as a thematic map using 

alpha-cuts. In the current study we used the probability of forest for the reference plots, 

estimated by the binomial logistic regression model and probability density functions to 

identify alpha-cuts. Separate density functions were estimated for the three cover types 

(forest, alpine and subalpine) using a Gaussian kernel and bandwidth of 0.05 (R Development 

Core Team, 2009). Then the alpha-cuts were set for the upper and lower boundaries where 

the subalpine zone according to the density functions had a higher density than forest and 

alpine areas. 

 

4.6.3. Accuracy assessment 

The accuracy of the LiDAR derived cover type classes was validated with the field measured 

forest- and tree lines. At the 26 field locations three cover type classes (forest, alpine, 

subalpine zone) were determined (Fig. 4a). The cover type map (Fig. 4A) was validated 
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against the field measured tree- and forest lines separately. In the accuracy assessment an 

image gradient based method was utilized (Pitas, 2000; Wulder et al., 2007). In the LiDAR 

cover type map either forest or alpine was subset. Hence, the two classes were treated 

separately (Fig. 4B). Furthermore, the rate of change in a local neighborhood was computed 

for both cover types separately as the gradient: 
 

 (3)

 

where ������ �	� is the gradient and x and y are row and column in the raster file created at 

each location. The computed image gradient (Eq. 3, Fig. 4C) was combined with information 

about the distance to the field measured line (Fig 4D). Furthermore, image gradient values for 

different pixel distances from the field measured lines were averaged over all field locations. 

The largest values indicate the strongest gradient or highest rate of change in classes between 

pixels.  

In order to evaluate the use of canopy coverage thresholds and height thresholds in the 

heuristic classification of LiDAR data a sensitivity analysis of these thresholds was 

conducted. Hence, different height thresholds (HTtrees = 2 – 10 m and HTshrub+trees = 0.25 – 1 

m) and canopy coverage thresholds (CT1 = 0.055 – 0.20 and CT2 = 0.005 – 0.15) were tested. 

The mean gradient value at the forest- and tree line, respectively were recorded for every 

combination of height and canopy cover thresholds. In addition the number of pixels from the 

peak of the image gradient to the field measured line was evaluated for both the forest- and 

tree line.  

The logistic regression model and the alpha-cut were validated using a test dataset 

which covered the plots located ± 1 km in the east – west direction of the calibration plots. 

The test dataset plots were classified according to Step 1 (Section 4.6.1). The classification 

accuracy of the binomial logistic regression model and alpha-cuts was validated both for the 

calibration and the test datasets. 
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Fig. 4. Illustration of the accuracy assessment of the heuristic cover type classification from LiDAR (See section 

4.9). A is the cover type classification. The forest and alpine cover types are treated separately through the 
subsequent steps (B) and the image gradient (Eq. 3) are computed (C). The gradient values (C) are combined 
with the distance to the field measured line (D) to produce average gradient values at different distances from 

field measured lines. 
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5. Results 

5.1. Accuracy of heuristic LiDAR cover type classification 

The predicted forest- and tree lines showed a good correspondence with the field measured 

lines (Fig 5). The average image gradient values peak at the location of field measured lines. 

Consequently, the heuristic classification of the LiDAR data shifts most frequently between 

pixels near the field measured lines. The high gradient values below the field measured forest 

line reflect the patchiness of the forest near the forest line (Fig. 5). In the subalpine zone and 

in the alpine area the gradient values are low. Hence, the vegetation above the forest line 

appears more homogeneous as classified by LiDAR data. A visual inspection of all the field 

locations indicated that four forest lines (15.4 %) and two tree lines (7.7 %) did not have a 

satisfactory accuracy. Examples from three of the 26 field locations illustrating accuracy and 

errors of the heuristic LiDAR cover type classification appear in Fig. 6.  

The sensitivity analysis presented in Fig. 7 demonstrates that the accuracy in pixels 

obtained was indifferent to the selection of height and canopy cover thresholds. The offset 

was within plus or minus one pixel (50 m) for many combinations of height- and canopy 

cover thresholds. However, the selected height and canopy thresholds corresponding to the 

FAO definitions were close to having the highest average image gradient values as illustrated 

in the contour plots in Fig. 7. Higher values could be obtained by reducing the height 

threshold by 0.5 m. Minor changes in the canopy coverage thresholds, e.g. by 0.01 units, did 

not affect the accuracy at all.  

 
Fig. 5. Results of the accuracy assessment of the heuristic cover type classification from LiDAR. The average 

image gradient values (Eq. 3) for different distances from the field measured forest- (left) and tree lines (right). 

The field measured forest- and tree lines appear as vertical dotted lines. 
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Fig. 7. Results of the sensitivity analysis were different height (x axis) and canopy thresholds (y axis) are used in 

the heuristic LiDAR classification of cover types (forest, subalpine zone and alpine). The contours represent 
average image gradient values (Eq. 3) at the field measured forest (left) and tree lines (right). The distance from 
the highest image gradient value (Eq. 3) to field measured forest- and tree lines are represented by the number of 

pixels offset in gray scale from 1 to 7. The dashed lines represent the values initially used in the current study. 
 

5.2. Accuracy of subalpine mask 

The selected variables and fit statistics for the estimated binomial logistic regression model 

are presented in Table 5. The two Landsat variables greenness and NDVI were highly 

correlated (r = 0.85). During the modeling NDVI was selected because of better models 

obtained compared to using greenness. We included both NDVI and brightness because of 

the significant contribution of both indices to the model. The elevation and slope variables 

derived from the digital terrain model were strong explanatory variables. However, neither 

the solar radiation nor the curvature provided additional information. Wetness and longitude 

were significant variables in the model following a backward elimination procedure 

(0.05>p>0.01). However, the variables were removed to get a simpler model without an 

essential reduction in Akaike information criterion (AIC). The Hosmer and Lemeshow 

statistics (Hosmer et al., 1997) indicated that the final model fitted the data sufficient well (p 

= 0.40). The proportion of variation explained by the model expressed by Nagelkerke’s R2 

was 0.73.  

 Alpha-cuts were selected according to the probability density functions estimated for 

the three cover type classes (Fig. 8). The crossing of the subalpine and alpine density 

functions in Fig. 8 resulted in a lower alpha-cut of 0.16 and the crossing of forest and 

subalpine resulted in an upper alpha-cut of 0.79. Hence, pixels having a probability of forest 

between 0.16 and 0.79 were classified as subalpine zone. The selected alpha-cuts resulted in 
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an overall classification accuracy of 68.8 % and a kappa value of 0.52. The error matrix for 

the calibration and the test data sets appear in Table 6.  

 Predicting the probabilities for every pixel in the county and assign classes to the 

pixels based on the estimated alpha-cut values resulted in a map of the subalpine zone in 

Hedmark with a total area of 3660 km2, representing 14% of the land area in Hedmark.  

 
Table 5. Parameters and fit statistics for the logistic regression model. 

Coefficient  Estimate  Z  p-value  
Intercept  4.088e+00 2.56  0.010 
NDVI  1.783e+01  8.60  0.000 
Brightness  -1.997e+01  -6.38  0.000 
Elevation  -1.038e-02  -5.93  0.000 
Slope   1.040e-01  3.33  0.001 
Latitude   1.305e-05  3.54  0.000 
    
Model fit:    
Hosmer-Lemeshow goodness of fita  -0.85  0.397 
Deviance test   1 
aHosmer-Lemeshow goodness of fit (Hosmer et al., 1997) 
 

 
Fig. 8.The probability density functions for forest, alpine and subalpine zones used to set alpha-cuts. The 

resulting alpha-cuts are displayed as vertical lines. 
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Table 6. Error matrix and accuracy measures of the class map created using logistic regression and alpha-cuts. 
 References  

 Forest 
Subalpine 

zone Alpine Sum 
User 

accuracy
Calibration dataset:     
Forest 126 19 5 150 84.0
Subalpine zone 61 68 81 210 32.4
Alpine 7 22 254 283 89.8
Sum 194 109 340 643 
Producer accuracy 64.9 62.4 74.7  
Overall accuracy     69.7
Kappa     0.53
     
Test dataset:     
Forest 274 115 7 396 69.2
Subalpine zone 55 133 47 235 56.6
Alpine 25 161 495 681 72.7
Sum 354 409 549 1312 
Producer accuracy 77.4 32.5 90.2 0 
Overall accuracy     68.8
Kappa     0.52
 

6. Discussion 

In this study, the subalpine zone in Hedmark County, Norway was successfully mapped. The 

method presented benefited from utilizing high spatial resolution LiDAR data sampled for 

parts of the county. A heuristic classification of the LiDAR data enabled an accurate 

depiction of the subalpine zone over a large geographical area without calibration based on 

field measurements. The information derived from LiDAR data was combined with Landsat 

and elevation data to produce full coverage maps of the subalpine zone. Collecting expensive 

field data from remote mountainous areas is not needed using this method. The current study 

demonstrate that a national forest inventory utilizing scanning LiDAR operated as a strip 

sampling tool (Næsset et al., 2009) may exploit the LiDAR data and additional remote 

sensing data to derive the area of the subalpine zone without increasing field inventory costs.  

An improved capacity for the national forest inventory to capture the entire forested 

area, rather than limited to managed forest areas at lower altitudes, is increasingly desired and 

may be aided by the approach presented here. The ability to portray transitional areas 

enhances our ability to monitor and report on carbon stocks and change and to ensure that all 

relevant forested areas are included. Studies of climate change may also be aided by the 

ability to map the subalpine zone over large areas. Hence, changes in the subalpine zone can 

be monitored over vast areas and not only at specific sites. Changes found over time will be 

important for describing the change processes and the rates of transition among cover types. 
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LiDAR measures both tree height and canopy cover precisely (Table 1). The current 

study utilized tree heights and canopy cover derived directly from LiDAR data. However, 

these variables are only proxies for the real values. A LiDAR pulse will always penetrate into 

the canopy before an echo is trigged (Gaveau & Hill, 2003; Ørka et al., 2010). In previous 

studies, canopy cover has often been derived for measurements above a certain height 

threshold often equal to the height where reference data were collected with e.g. hemispheric 

camera (e.g. Riano et al., 2004). The current study used height thresholds of 0.5 and 5 m, 

which is in accordance with international forest definitions. The sensitivity analysis 

preformed in the current study confirmed the penetration of LiDAR echoes into the canopy. 

The accuracy of both forest- and tree lines would have been slightly improved in the heuristic 

LiDAR cover type classification with height threshold values approximate 0.5 meter lower 

than those used. Changing the canopy coverage thresholds in the sensitivity analysis did not 

increase the accuracy of the heuristic classification.  

 Different LiDAR sensors and acquisition settings are known to affect the 

measurements of forest canopies (Næsset, 2005; Ørka et al., 2010). Hence, flying with a 

different sensor, a different pulse repetition frequency or flying at higher altitudes will affect 

the penetration into the canopy (Chasmer et al., 2006; Næsset, 2009b; Ørka et al., 2010). The 

distance an emitted LiDAR pulse has to penetrate into the canopy before an echo is recorded 

will affect the LiDAR proxies used for tree height and canopy cover directly. Tree height 

underestimation compared to true tree height was in the range of 0.35 – 1.47 m in another 

subalpine area in Norway (Næsset, 2009a). The underestimation in the study by Næsset 

(2009a) was affected by sensor and acquisition settings together with tree species and the 

terrain model. Differences in measurements obtained with different sensors and acquisitions 

usually necessitate field data for properly calibration of models. In the current study focus 

was on large area inventory and on areas with low economical value where no alternative 

methods are currently available. Thus, the need for an accurate calibration was judged to be 

less relevant. Hence, using information directly derived from the LiDAR data will add value 

to the current inventory without increasing costs. However, proper calibration with 

information from field plots would undoubtedly increased the accuracy, but also costs. 

When mapping the forest- and tree lines in the field the uppermost line was followed. 

Hence, there could be areas with lower density of trees or lower tree heights below the 

mapped areas. In Fig. 6, the site at Litbutjønn illustrates such a case. In the south there are 

areas matching the criteria of the subalpine zone about 100 meters after an open/alpine area. 

When following the tree line to the north the tree density slightly decreased and thus an error 
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was made when mapping the tree line in field. At the Danseren site, only minor errors were 

introduced by following the forest line. The third location in Fig. 6, Tittelsjøen, the LiDAR 

derived forest line was affected by the species composition at the location. The tree species 

will influence the LiDAR measurements (Næsset, 2009a; Ørka et al., 2009). At Tittelsjøn, the 

tree line is abrupt and formed by birch and was well delineated with the classification of 

LiDAR data. The forest line is diffuse and comprised of spruce trees. The spruce trees have a 

conical form and hence the canopy cover at base is much greater than the canopy coverage at 

5 m. LiDAR will therefore underestimate canopy coverage significantly at that spruce 

dominated site. 

The binomial logistic regression model developed included five variables important 

for characterizing the subalpine zone in Hedmark. Two Landsat derived variables were used 

in the model, NDVI and brightness. The two variables describe different vegetation (NDVI) 

and non-vegetation (brightness) properties. The probability of forest increase when NDVI 

increase and brightness decrease. For the DTM derived attributes, altitude and slope were 

important. Higher altitudes reduce the probability of forest and steeper slopes increase the 

probability for forest. Even though solar radiation and topographic position illustrated by 

curvature ought to be important for tree growth, these variables were not statistically 

significant. In tropical Andes, altitude, aspect and a compound topographic index was 

significant when estimating the probability of forest (Bader & Ruijten, 2008). The only 

common variable with the current study and the study by Bader and Ruijten (2008) was 

altitude, which indicates the importance of altitude as an overall driving factor for forest- and 

tree lines.  

The accuracy obtained for classification with the binomial logistic regression model 

and alpha-cuts was within the range of expected accuracies in satellite image classification 

(Wilkinson, 2005). The current study tried to mask out a transition that has a high degree of 

mixing with the two classes forming the transition (Table 6). In light of the high mixing that 

occurred, the obtained accuracy was considered acceptable for area estimation and 

monitoring transitions over large areas.  

In the current study, only the alpine transition zones were registered. However, the 

heuristic classification of LiDAR data did not distinguish between forest-alpine transitions 

and other forest – non-forest transitions inside the potential area for the subalpine zone. 

Hence, the areas below the forest zone will include other transitions zones and also non-

forested areas (Fig. 5). Transitions occurring in the forest may consist of mountain peat lands 

or transitions related to change in nutrient level, e.g. from deep soils to bare rock. Hence, 
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enhancement which including land cover classification could be implemented to improve the 

separation of these transitions.  

The remote sensing products produced in the current study are important in 

monitoring areas in the subalpine zone. Maps of changes in the subalpine zone over time can 

be combined with information about human activity and grazing by animals etc. to separate 

the response of climate change on the tree lines from effects of land use change. As pointed 

out by Hill et al. (2007), hard classifications of ecotones are often needed for map products. 

Hill et al. (2007) used two different approaches to produce alpha-cuts used to divide the 

subalpine zone into classes. In the current study a new method for dividing the probability 

surface into hard classes was presented. As opposed to the methods presented by Hill et al. 

(2007), our method uses information about ecotone derived using LiDAR to produce these 

alpha-cuts. The proposed method produces a hard classification from which an estimate of 

the area of the subalpine zone can be derived. The method described also has a probability 

surface as one of its products. Probability surfaces or results from soft classifiers are more 

robust in monitoring and change detection in transition zones (Foody, 2001). In the alpine 

environment, it has been reported that diffuse tree lines are more likely to have advanced than 

krumholz and abrupt tree lines (Harsch et al., 2009). Therefore, monitoring of the subalpine 

zone is best done by using the probability map, but the classified map provide area estimates 

and a tool for estimating the biomass using LiDAR-assisted inventory procedure such as 

those proposed by e.g. Næsset et al. (2009). 

 

7. Conclusions 

The procedure proposed in the current study will be suitable for mapping current state and 

monitoring future changes in the subalpine zone at a regional scale. The method for 

delineating subalpine using samples of LiDAR data is simple, heuristic and straightforward. 

The use of logistic regression and alpha-cut provide both a hard classification usable for map 

products and area estimation and a probability surface suitable for monitoring purposes. The 

method can also be extended to other types of transition between forest and non-forest. If 

detailed monitoring is requested, for example monitoring of regeneration, growth, and 

mortality of single trees, then methods utilizing field calibration based on a statistically sound 

sample of ground data are indeed required.  
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