
Irin
a S

h
lyko

va
Ph

ilo
so

ph
iae D

o
cto

r (PhD
) Th

esis 2010:53

N
o

rw
eg

ian
 U

n
iversity o

f Life S
cien

ces • U
n

iversitetet fo
r m

iljø
- o

g
 bio

viten
sk

ap 
D

epartm
en

t o
f M

ath
em

atical S
cien

ces an
d

 Tech
n

o
lo

g
y

Ph
ilo

so
ph

iae D
o

cto
r (P

hD
) Th

esis 2010:53

Alternative frameworks for analysis of gene 
regulatory networks with delay
Alternative rammeverk for analyse av genregulatoriske nettverk med 
tidsforsinkelse

Irina Shlykova

ISBN 978-82-575-0963-7 
ISSN 1503-1667

Norwegian University of Life Sciences
NO–1432 Ås, Norway
Phone +47 64 96 50 00
www.umb.no, e-mail: postmottak@umb.no



Alternative frameworks for analysis of gene
regulatory networks with delay

Alternative rammeverk for analyse av genregulatoriske
nettverk med tidsforsinkelse

Philosophiae Doctor (PhD) Thesis

Irina Shlykova

Department of Mathematical Sciences and Technology

Norwegian University of Life Sciences

Ås 2010

Thesis number 2010:53
ISSN 1503-1667

ISBN 978-82-575-0963-7



ii



Acknowledgements

The present thesis was carried out at the Department of Mathematical Sciences and Tech-
nology (IMT) at the Norwegian University of Life Sciences (UMB) from January 2007 to
December 2010. It was funded by the Norwegian State Educational Loan Fund, Center
for Integrative Genetics and the Norwegian University of Life Sciences.

It is difficult to overstate my gratitude to Prof. Arkadi Ponossov who has been my main
supervisor throughout the whole period of the study. He provided me with constant en-
couragement, important advice, good company and lots of good ideas. His enthusiasm,
immense knowledge and talent for explaining the most difficult mathematical problems
clearly and simply, have been of great value for me. I am very thankful not only for his
capable guidance in research but also for his help with many practical questions.

I would like to thank my co-supervisor Prof. Stig W. Omholt for interesting discussions
which have helped me better understand the biological background of the problems.

I am grateful to my co-supervisor in Russia Prof. Alexander Bulgakov for his time, de-
tailed and constructive comments during our work on Paper IV.

Thanks also to Prof. John Wyller for very interesting and useful course MATH310, for
being always friendly, for his help with teaching courses and in learning Norwegian.

I wish to extend my warmest thanks to all my past and current colleagues at IMT (UMB),
the Department of Algebra and Geometry (Tambov State University) and the Department
of Higher Mathematics (Tambov State Technical University) for their continued encour-
agement, good company, creative and friendly workplaces.

It is a great pleasure to thank all my Russian and international friends for never letting me
feel that I am away from my parents and country, and being my family here in Norway.
Anna M., Anna O. and Valeria T. are especially thanked for their continued care, attention,
moral support and entertainment.

I am forever indebted to my family for their understanding, endless patience and encour-
agement. Regardless the distance I always have felt that you were with me.

Finally, I would like to say to all of you that without you this study would not have been
completed and these four years would not have been so great.

Ås, November 2010

iii



iv



Summary

When trying to understand the role and functioning of a gene regulatory network (GRN),
the first step is to assemble components of the network and interactions between them.
It is important that models are kept simple but nevertheless capture the key processes of
the real system. There is a large body of theoretical and experimental results showing
that underlying processes of gene regulation, such as transcription and translation, do not
occur instantaneously. Therefore the delay effects are everywhere in GRNs, but they are
not always well-represented in mathematical models. The scope of the present work is
to incorporate delays into a well-established differential equation model for GRNs and to
apply alternative mathematical frameworks for analysis of the obtained delayed system.

Due to a huge amount of equations and parameters involved, it is widely accepted that
no analysis is possible without a considerable simplification of the underlying model.
The non-linear, switch-like character of many of interactions in gene expression has mo-
tivated the most common simplification, so-called Boolean-like formalism. To simplify
the model one uses the step functions and the corresponding limit system. It leads to the
subdivision of the phase space into regions at the boundary of which discontinuities may
occur. Using this simplification for analysis of delayed GRNs we face two main mathe-
matical challenges: to analyze the stability properties of steady states and to reconstruct
the limit trajectories in switching domains. Papers I and II of my thesis are addressed to
answer these two questions.

There is one more effect which is indisputably important for any reasonable model of
GRNs, namely an effect of stochasticity, which may be caused by uncertainty in data,
random fluctuations in the system, or simply due to a large number of interacting genes.
In Paper III we propose an analytic stochastic modeling approach, which incorporates
intrinsic noise effects directly into a well established deterministic models of GRNs with
and without delay, and study the dynamics of the resulting systems.

In Paper IV we suggest a method which covers very general Boolean genetic networks
with delay and thus opens for a more complete qualitative analysis of such networks. The
method extends the Filippov theory of differential inclusions to the case of multivalued
Volterra operators.

We believe that the proposed frameworks can provide good insights into deeper under-
standing of the complicated biological and chemical processes associated with genetic
regulation.
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Sammendrag

For å forstå rollen og funksjonene av et genregulatorisk nettverk (GRN) er det først og
fremst nødvendig å sette sammen komponentene av nettverket og å analysere samhan-
dlinger mellom dem. Det er viktig at modeller beholdes enkle, men samtidig gir et re-
alistisk bilde av nøkkelprosessene i det reelle systemet. Det finnes flere teoretiske og
eksperimentelle resultater som viser til at de genregulatoriske prosessene som transkrip-
sjon og translasjon ikke skjer simultant. Tidsforsinkelser er normalt i GRN, men de er
ikke representert i de fleste matematiske modeller. Hensikten med denne avhandlingen
er å inkorporere tidsforsinkelser inn i veletablerte differensialligning-modeller av GRN
og å benytte alternative rammeverk for analyse av de nyutviklede modellene med tids-
forsinkelse.

Grunnet mange ligninger og parametre involvert i systemet er det vanlig å forenkle den
underliggende modellen. Den ikke-lineære, sprangvise oppførselen av mange variabler i
gen uttrykk har motivert den mest utbredte forenklingen, såkalt Boolsk formalisme. For å
forenkle modellen bruker man i så fall trinnfunksjoner og det tilhørende grensesystemet.
Det fører til en oppdeling av faserommet i regulære områder, og ved grensene mellom
disse områdene kan diskontinuitet forekomme. Bruk av denne forenklingen for å analy-
sere tidsforsinket GRN medfører to matematiske utfordringer: å undersøke stabilitet til
likevektspunkter og å rekonstruere løsningskurver i singulære domener. Artikler I og II
av min avhandling har til hensikt å svare på disse to spørsmålene.

Spesielt viktig for en god GRN modell er stokastiske effekter. Disse stokastiske effektene
kan forekomme på grunn av usikkerhet i dataene, tilfeldige endringer i systemet eller av
den grunn at antall av gen interaksjoner er stort. I artikkel III setter vi opp en analytisk
stokastisk modell ved å inkorporere indre støy inn i veletablerte modeller av GRN med
og uten tidsforsinkelse samt å undersøke dynamikk til de resulterende systemene.

I artikkel IV foreslår vi en metode som dekker generelle Boolske genetiske nettverk med
tidsforsinkelse. Dette åpner for en mer komplett kvalitativ analyse av slike nettverk.
Metoden utvider Filippovs teori av differensialinklusjoner til multivaluerte Volterra op-
eratorer.

Vi mener at de foreslåtte rammeverkene vil kunne gi innsikt i en grundigere forståelse av
de kompliserte biologiske og kjemiske prosessene som beskriver gen regulering.
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Chapter 1

Introduction

1.1 Gene regulatory network

Gene regulatory network (GRN) consists of a set of genes, proteins, small molecules, and
their mutual regulatory interactions. The network is responsible for providing a cell in the
organism with the right amount of the proteins necessary for development of the embryo
or maintaining the life functions of the organism [10].

GRN would consist of one or more input signals, regulatory proteins that integrate these
signals, several target genes, and the mRNAs and proteins produced from those target
genes. The net effects are changes in cell phenotype and function. The regulatory network
can be viewed as on Fig. 1:

Fig. 1 (picture by courtesy of U.S. Department of Energy Genome Programs)

Regulation of gene expression by signals from outside and within the cell plays impor-
tant roles in many biological processes and can potentially occur at many stages in the
synthesis of proteins [13], that include

(1) Transcriptional control, (2) Posttranscriptional control, (3) Transport to the cytoplasm,
(4) Stability of the mRNA, (5) Translation control, and (6) Posttranslational modification
of the protein product (Fig. 2).
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Fig. 2

Most genes are regulated in the part at the transcriptional level, therefore gene networks
are concentrated on the control of transcription, i.e. how genes are up and down regulated
in response to signals [24].

1.2 Modeling gene regulatory network

When trying to understand the role and functioning of a GRN, the first step is to assem-
ble components of the network and interactions between them. Since development is a
dynamic process in which the expression of genes can constantly change, gene network
models need to have a dynamical aspect, i.e. they need to define a state variable for each
component, and study how this state changes by the interactions in the network. This state
variable can correspond to the concentration of mRNAs and proteins, or it can be a binary
value corresponding to the qualitative statement that a gene is expressed or not.

GRNs are often described verbally in combination with figures to illustrate complicated
interactions between network elements. There are different reasons for using mathemat-
ical models for describing and simulation of a given GRN. The most important is to
explain the behavior of the network, i.e. to uncover based principles how the system
functions under various conditions. Different behaviors of a network correspond to theo-
retical properties of the mathematical model, including number of steady states, different
types of attractors and transient behaviors and structural stability. Steady states of the
model correspond to potential cell type and oscillatory solutions to naturally cyclic cell
types. Mathematical stability of these attractors can usually be characterized by the sign
of higher derivatives at critical points, and correspond to biochemical stability of the con-
centration profile. There are of course numerous methods for studying models of GRNs,
however, models are often characterized by many variables, complex non-linear function
relations and numerous unknown parameters values. It may therefore be a very challeng-
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ing task to determine the theoretical properties of the model. Thus, there is need for new
or improved methods in order to handle these complex models.

1.2.1 Boolean networks

The simplest dynamic models - Boolean network models - were used as a model for
GRNs already in the 1960’s by Stuart Kauffman as [1], [8], [24]. In this approach each
gene is treated as having two discrete states, ON or OFF, and Boolean network is defined
as a network G(V, F ), where V = (x1, ..., xn) contains the binary expression levels of
genes 1, ..., n and F = (f1, ..., fn) is a set of Boolean functions fi(xi1 , ..., xik), one for
each gene [25]. In every time step, the expression levels xi are updated for every gene
simultaneously via the functions fi. As we have a discrete and bounded state space, the
number of possible states is finite (for n genes we have 2n possible states) and they always
end in an attractor, which can either consist of one single state (point attractor) or several
states, which were traversed in a certain order (cyclic attractor). Kauffman hypothesized
that attractors correspond to different cell types of an organism.

Boolean models distinctly simplify the examination of large sets of genes and are rela-
tively easy to implement. A disadvantage of the logical approach is that the models have
descriptive character and the abstraction of genes to ON/OFF switches makes it difficult
or impossible to include many of the details of cellular biology [10].

1.2.2 Networks derived from differential equations

Differential equations are one of the most important modeling formalisms in mathematical
biology, because they can model complex dynamic behavior like oscillations, cyclical
patterns, multistationarity and switch-like behavior [3]. So it was only a short step to use
them for modeling GRNs.

It is customary to describe GRNs by modeling the concentration changes of proteins, mR-
NAs and other molecules over time. An example of such differential equations approaches
is a model proposed by Mestl et al. [23]

ẋi = Fi(Z1, . . . , Zn)−Gi(Z1, . . . , Zn)xi, i = 1, . . . , n, (1.1)

where the functions Fi and Gi stand for the production and the relative degradation rate
of the product of gene i, respectively, and xi denotes the gene product concentration. The
threshold function Zi expresses the effect of the different transcription factors regulating
the expression of gene and can be given by steeply sloped sigmoid functions or step
function (Fig. 3).
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Fig. 3

1.2.3 Time delay models

The models described above do not take into account time delay effects, but to predict
actual dynamics, it may be necessary to consider that the various underlying processes
in gene networks, such as transcription, translation and transport, can take a time on the
order of hours. The protein synthesis starts with activation of the corresponding gene,
continues with mRNA-synthesis, transportation of the mRNA out of the cell nucleus,
and synthesis of the proteins [4], [20]. As it was observed in [14] there is an average
delay of around 10-20 min between the action of a transcription factor on the promoter
of a gene and the appearance of the corresponding mature mRNA in the cytoplasm. The
synthesis of a typical protein from mRNA takes around 1-3 min. An extreme example is
furnished by the human dystrophin gene, which requires 16 hours to be transcribed [29].
Therefore time-delay is essential in gene regulation and presents one of the critical factors
that should be considered in reconstruction of GRNs.

There are two basic types of mathematical approaches to describe GRNs with delays:
discrete and distributed [11], [15]. Mathematical models of the discrete delay approach
assume the same length of the time for movement of macromolecules from their place of
synthesis to the location where they exert an effect and can be described by the system
[30]

ẋi = f(xi(t), Z(xi(t− τ))), i = 1, . . . , n.

In the case of a distributed delay the derivative of a variable, which can be the concentra-
tion of a macromolecule, depends on an integral of a function of one or more variables
over a specified range of previous time. The system

ẋi = f(xi(t), Z(xdel
i )), i = 1, . . . , n,

is an example of GRN with distributed delay. In this case xdel
i =

∫ 0

−∞ xi(t− τ)Gi(xi(t−
τ))dτ and

∫ 0

−∞Gi(xi(t− τ))dτ = 1. The last equation expresses a normalization condi-
tion imposed for biological realism.

Guided by the fact that time delay may in many cases have a significant effect on the
dynamical properties of a model [16], [17], [26], [27] the greater part of my thesis is
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devoted to the gene networks with delay. We consider the GRNs with distributed delays
of the structure:

ẋi = Fi(Z1, . . . , Zn)−Gi(Z1, . . . , Zn)xi

Zi = Σ(yi, θi, qi)
yi(t) = (<ixi)(t), t ≥ 0, i = 1, . . . , n,

(1.2)

where the operators <i are bounded linear Volterra operators of the form

(<ixi)(t) =0cixi(t) +

∫ t

−∞
Ki(t− s)xi(s)ds, t ≥ 0, i = 1, . . . , n.

(see Paper I for more details).

In a "real-world" GRN a number of genes is rather large, so that a theoretical or a
computer-based analysis of such networks can be complicated. The most common sim-
plification, so-called Boolean-like formalism, consists in replacing the smooth response
functions Zi in Systems (1.1) and (1.2) by much simpler step functions (as qi → 0)

Zi =

{
0 if xi < θi

1 if xi > θi.

This leads to splitting the systems into a number of affine scalar systems. It is usually an
easy exercise to describe dynamics of their solutions explicitly at least in the non-delay
case. However, coupled together these simple systems can produce some complicated
effects, especially when trajectories approach the singular domains, where a switching
from one affine system to another occurs. There are two main challenges one faces when
using boolean functions. Firstly, one has to describe effects occurring in the vicinity of
thresholds, e.g. sliding modes or steady states belonging to the discontinuity sets of the
system. Secondly, one needs to define continuous solutions in the switching domains
and justify the translation from the simplified to the "real-world" model. The solution to
the first problem in the non-delay case can be found in [19], [23]. In our Paper I we do
stability analysis of stationary points which belong to the discontinuity sets of the system
and describe an algorithm of localizing stationary points in the presence of delays.

The second problem in the non-delay case was studied in [21] by applying singular per-
turbation analysis and combining of two motions Xn and Zn. The problem how the dy-
namics of the smooth gene networks with delays is related to the simplified dynamics
of the Boolean networks is studied in Paper II. We have shown that the solution for steep
sigmoids approaches the limit solution uniformly in any finite time interval (when the sig-
moids approach the step functions) by applying a modified algorithm of reducing delay
equations to ordinary differential equations (Paper I) and Tikhonov’s theory of singular
perturbed differential equations.

5



Paper I: A general framework for stability analysis of gene regulatory net-
works with delay

This paper offers a method of formalizing the analysis of asymptotic properties of so-
lutions to the system of the form (1.2) describing a GRN with distributed time-delays
and autoregulation [19], [21], [22], [23]. We consider a rather general situation with an
arbitrary number of delay variables. At first we describe a modified "linear chain trick"
method, which helps us to remove the delay from the model and converts the system into
a larger equivalent system of ordinary differential equations.

In the paper we assume that the dynamics of GRN are governed by the so-called "logoids"
or "tempered nonlinearities" [22], which are closed to the step function. A very important
advantage of the logoid nonlinearities is the localization principle. Roughly speaking we
may remove all regular variables in the stability analysis, because they do not influence
local properties of solutions around stationary points. On the other hand, this principle
helps us to simplify both notation and proofs.

It is easy to define stationary points for the system if Zi are all smooth (qi > 0). However,
in this case the stability analysis and computer simulations may be cumbersome and time-
consuming. To simplify the model, one uses the step functions and the corresponding limit
system. The latter becomes, however, discontinuous if at least one yi assumes its threshold
value. If a stationary point of the limit system does not belong to the discontinuity set, then
the analysis of the dynamics of the perturbed smooth systems is almost trivial. However
the situation is different, if a potential stationary point in the limit model belongs to the
discontinuity set, then corresponding dynamics may be subject to irregularities. We define
a stationary point of the limit system as a limit point for the sequence of stationary points
to the smooth system as qi → 0 and provide the sufficient condition for existence of
singular stationary points. Moreover, we show that the stability properties of the singular
stationary points of the initial system and the reduced by the localization principle system
are the same.

In the last section we provide the conditions that give asymptotic stability of singular
stationary points in the black wall (switching domain which is hit by the solutions from
either side). A part of the framework is based on asymptotic analysis of singularly per-
turbed matrices, where we apply Mathematica to be able to derive exact stability criteria.

Paper II: Singular perturbation analysis and gene regulatory networks
with delay

This work is a generalization of [21]. The main innovation is the inclusion of delay effects
into the system for gene regulatory networks. The paper is addressed to answer the second
question posed by the Boolean-like formalism, i.e. to define continuous solutions in the
switching domain and to provide a mathematical justification of the simplified analysis
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under the presence of delays.

We study System (1.2) assuming that all response functions Zi are given by Hill function
[21]. By applying the modified algorithm of reducing delay equations from Paper I we
replace the initial system with an equivalent system of ordinary differential equations. We
study the situations where exactly one of the variables yi (Sections 5 and 6) or arbitrary
many (Section 7) approach their threshold values. The emphasis is put on sliding modes
along one or more thresholds, which requires singular perturbation analysis. To define
the solution to the system in the switching domains we change the singular variables with
the corresponding response functions. Taking into account that the response functions are
the Hill functions, we get equations describing the solution’s behavior in the switching
domains. The main result of the paper Theorem 9 is presented in Section 7 and is based
on Tikhonov’s theorem. Theorem 9 provides sufficient conditions, which guarantee the
existence of solutions and ensure the fact that solutions of the smooth problem go to the
limit solution for delay problems. Moreover this theorem gives us theoretical grounds
for application of singular perturbation analysis to singular domains of higher order. The
case when few variables approach their thresholds is more complicated. At the same time
analysis of this situation can give us more information that can be of great importance for
obtaining the whole picture of the trajectories’ behavior. In Section 8 we introduce a delay
into a non-delay example from [21] and consider a singular domain of the second order.
We focus on comparison of delay and non-delay cases and observe how introducing the
delay influences the solutions’ behavior. The presented graphs of motion in fast and slow
times show a big difference between non-delay and delay cases.

1.2.4 Stochastic differential equations

Due to the uncertainty of biochemical reactions, extrinsic noise and fluctuations in the
environment there is an accelerating interest in the development of stochastic models and
simulation methods for describing the functions of intrinsic noise in GRNs. There is a
large body of theoretical and experimental works showing that noise plays a very impor-
tant role in gene regulation [5], [12], [18]. Therefore instead of taking a continuous and
deterministic approach, some authors have proposed to use discrete and stochastic models
of gene regulation. An example of discrete models is the master equation developed by
Gillespie [7]

∂

∂t
P (X1, X2, . . . , XN ; t) =

M∑
µ=1

[Bµ − αµP (X1, X2, . . . , XN ; t)].

The key element of this approach is the "distribution function" P (X1, X2, . . . , XN ; t) ≡
probability that there will be X1 molecules of type 1, X2 molecules of type 2, . . . and
XN molecules of type N in V at time t. Thus, the master equation is simply the time-
evolution equation for the probability function P (X1, X2, . . . , XN ; t), whereas the rate
equations (1.1) and (1.2) determine how the state of the system changes with time.
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The advantage of this kind of modeling is clear: one obtains a description of the dynamics
which grasp the global properties of the network and disregard the dynamics of individ-
ual genes which may be irrelevant, uncertain, not available or measured inaccurately.
However, using the master equation in modeling GRN has no links to the Boolean-like
formalism. Another feature of GRN which is hardly recognizable within the master equa-
tion paradigm is mentioned in [12]. On a larger time scale (or in other words, if the gene
activation times are small compared to the interaction times), stochastic effects are less
visible and even may level out, it means that continuous and deterministic models like
(1.1) or (1.2) actually provide a good and simpler approximation. The master equation
approach does not explain when and why the stochastic effects can level out. In Paper III
we try to incorporate stochastic effects directly to continuous and deterministic models of
GRN without using the master equations.

Paper III: Stochastically perturbed gene regulatory networks

In this paper we incorporate stochastic effects directly to continuous and deterministic
models by extending the right hand sides of Systems (1.1) and (1.2) with constant white
noises whose diffusion coefficients depend on the steepness parameters qi of the smooth
response functions, only. Although the non-delay system is a particular case of the de-
lay system, we have chosen to treat them separately. We have also chosen to study the
situation when exactly one variable approaches its threshold value at a time, i.e. we only
consider the case of singular domains of codimension 1 ("the walls"). In many cases it
may simply be regarded as a generic situation. We provide a detailed analysis of two main
cases that could occur in the limit: so-called "transparent wall", when the solutions just
travel through such a wall, and "black wall" which is hit by the solutions from either side.

We prove that in the limit (i. e. as qi → 0) the stochastic dynamics approaches uniformly
the deterministic dynamics of the corresponding piecewise linear systems. The main
challenge here is, exactly as in the case of Systems (1.1) and (1.2), to be able to deal with
the singularities that arise in the limit around discontinuities of the right hand sides. We
make use of an approach that goes back to Yu. Kabanov and Yu. Pergamentshchikov who
suggested a uniform version of the stochastic Tikhonov theorem in singular perturbation
analysis. As the theory of stochastic singular perturbation analysis for delay equations
does not exist, in the case of System (1.2) this technique is combined with a special
method of representing delay equations as larger system of ordinary differential equations
from Paper I.

The Kabanov-Pergamintshikov theorem gives us the uniform convergence of the entire
solution to its deterministic approximation in the case of transparent wall. In the case of
black walls the theorem only gives the convergence of the non-singular component of the
solution. The uniform convergence of the singular component is an open problem.

One of the rewards of using the new stochastic model, is a mathematical explanation of
why a deterministic model (with or without delay) provide a good approximation to a sto-
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chastic model in the case when the activation occurs much faster than the other processes.

1.2.5 Filippov’s approach

Another approach for modeling GRNs is based on Filippov’s theory of discontinuous
differential equations [6]. The main motivation for this approach is to suggest a method
which would cover very general discontinuous functional differential equations and in
particular, very general Boolean genetic models with delay. As it was mentioned before
delay effects are an important issue in genetic models. The approach suggested in Papers
I and II only covers very special types of delay, namely distributed delays where the
corresponding integral operators are finite dimensional. This analysis maybe suitable for
certain biological applications, but a simple case of constant delays is not covered by this
method. Another drawback of the analysis used in Papers I and II is that it treats the
asymptotic study of steady states and the reconstruction of the limit solutions separately,
because two different techniques are applied. For instance, it is not possible to conclude
from the results obtained in these papers whether the limit solutions tend to the limit
steady states.

A way to put together the asymptotic stability analysis and reconstruction of the limit tra-
jectories was suggested in [9]. This approach exploits the concepts of differential inclu-
sions and the Filippov solutions. Thus, a clear advantage of this approach is its more uni-
versal character and possibility to complete the asymptotic analysis around steady states
of the network. Yet, the Filippov approach also has its disadvantages. For instance, using
it one may obtain steady states that are not limits of the proper steady states coming from
the smooth model.

Paper IV: Functional differential inclusions generated by functional differ-
ential equations with discontinuities

Unlike Papers I and II the present paper follows the approach based on multivalued map-
pings. Yet, the classical Filippov theory treats only the non-delay case. As we are in-
terested in incorporating very general delays into a discontinuous system of differential
equations, we use the language of Volterra operators and functional differential equations
(see e.g. [2]). In order to implement the central idea of Filippov’s theory, we suggest a
formal procedure of obtaining a functional differential inclusion from a general discontin-
uous functional differential equation. This gives us a possibility to define an analogue of
a Filippov solution for discontinuous functional differential equations and finally to apply
the developed theory to gene regulatory networks with general delays.

We start with the particular case: families of functional differential equations that are
discontinuous in one parameter and show how such a family gives rise to a well-defined
functional differential inclusion. We study also basic properties of the resulting inclu-
sions such as local existence, uniqueness of (Filippov) solutions and their continuous

9



dependence on parameters (like the threshold value itself). We demonstrate as well how
the existence of global solutions can be obtained. The key property which enables us to
prove the announced results is the compactness of the constructed multivalued mappings
in the weak topology of the Lebesgue space Ln

1 .

In Section 3 we apply the obtained results to the scalar case of a gene regulatory network
with delay.

The next step is to generalize the developed theory to the case of simultaneous disconti-
nuity in several parameters. The central results of the paper are an analogue of Filippov’s
theory for general functional differential equations discontinuous in several parameters
(Section 4) and justification of the Boolean analysis of a gene regulatory network with a
general delay (Section 5).

10
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YURY NEPOMNYASHCHIKH, ANDREI SHINDIAPIN

Abstract. A method to study asymptotic properties of solutions to systems
of differential equations with distributed time-delays and Boolean-type non-

linearities (step functions) is offered. Such systems arise in many applications,

but this paper deals with specific examples of such systems coming from ge-
netic regulatory networks. A challenge is to analyze stable stationary points

which belong to the discontinuity set of the system (thresholds). The paper

describes an algorithm of localizing stationary points in the presence of delays
as well as stability analysis around such points. The basic technical tool con-

sists in replacing step functions by special smooth functions (“the tempered

nonlinearities”) and investigating the systems thus obtained.

1. Introduction

We study asymptotically stable steady states (stationary points) of the delay
system

ẋi = Fi(Z1, . . . , Zm)−Gi(Z1, . . . , Zm)xi

Zk = Σ(yi(k), θk, qk)

yi(t) = (<ixi)(t) (t ≥ 0), i = 1, . . . , n; k = 1, . . . ,m).
(1.1)

This system describes a gene regulatory network with autoregulation [6, 8, 9, 10, 11],
where changes in one or more genes happen slower than in the others, which causes
delay effects in some of the variables.

Let us now specify the main assumptions put on the entries in (1.1).
The functions Fi, Gi, which are affine in each Zk and satisfy

Fi(Z1, . . . , Zm) ≥ 0, Gi(Z1, . . . , Zm) > 0

for 0 ≤ Zk ≤ 1, k = 1, . . . ,m, stand for the production rate and the relative degra-
dation rate of the product of gene i, respectively, and xi denoting the gene product
concentration. The input variables yi endow System (1.1) with feedbacks which, in
general, are described by nonlinear Volterra (“delay”) operators <i depending on
the gene concentrations xi(t). The delay effects in the model arise from the time
required to complete transcription, translation and diffusion to the place of action
of a protein [3].

2000 Mathematics Subject Classification. 34K60, 92D10.

Key words and phrases. Gene regulation; delay equations; stability.
c©2008 Texas State University - San Marcos.

Submitted May 20, 2008. Published August 6, 2008.

1



2 I. SHLYKOVA, A. PONOSOV, Y. NEPOMNYASHCHIKH, A. SHINDIAPIN EJDE-2008/104

If <i is the identity operator, then xi = yi, and we obtain a non-delay variable.
Non-delay regulatory networks, where xi = yi for all i = 1, . . . , n in their general
form, i.e. where both production and degradation are regulated, were introduced
in [6].

Remark. Below we will use the notation νci, νKi, αi, νvi, where the indexes ν
and i indicate the number of an item and an equation, respectively.

In this paper we assume <i to be integral operators of the form

(<ixi)(t) =0cxi(t) +
∫ t

−∞
Ki(t− s)xi(s)ds, t ≥ 0, i = 1, . . . , n, (1.2)

where

Ki(u) =
p∑

ν=1

νci ·νKi(u) , (1.3)

νKi(u) =
αν

i · uν−1

(ν − 1)!
e−αiu (i = 1, . . . , n). (1.4)

The coefficients νci (ν = 0, . . . , p, i = 1, . . . , n) are real nonnegative numbers satis-
fying

p∑
ν=0

νci = 1

for any i = 1, . . . , n. It is also assumed that αi > 0 for all i = 1, . . . , n.

Example 1.1. Let

1K(u) = αe−αu, α > 0 (the weak generic delay kernel), (1.5)
2K(u) = α2 · ue−αu, α > 0 (the strong generic delay kernel). (1.6)

Kernels 1K(u) and 2K(u) (α = 0.7) are illustrated in Figure 1 and Figure 2, respec-
tively.
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Figure 1. Kernel 1K(u)

The function 1K(u) is strictly decreasing, while 2K(u) tends to zero for large
positive u and has maximum at time T = 1

α . If 2K(u) is sharper in the sense
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Figure 2. Kernel 2K(u)

that the region around T is narrower, then in the limit we can think of 2K(u) as
approximation the Dirac function δ(T − t), where∫ ∞

−∞
δ(T − t)f(t)dt = f(T ).

The “response functions” Zk express the effect of the different transcription
factors regulating the expression of the gene. Each Zk = Zk(yi(k)) (0 ≤ Zk ≤ 1 for
yi(k) ≥ 0) is a smooth function depending on exactly one input variable yi(k) and
on two other parameters: the threshold value θk and the steepness value qk ≥ 0. A
gene may have more than one, or no thresholds. This is expressed in the dependence
i = i(k). If different k correspond to the same i, then gene i(k) has more than one
threshold. If some i does not correspond to any k, then gene i(k) has no threshold.

In the vicinity of the threshold value θk the response function Zk is increasing
almost instantaneously from 0 to 1, i.e. gene i(k) becomes activated very quickly.
Thus, the response function is rather close to the step function that has the unit
jump at the threshold yi = θi. There are many ways to model response functions.
The simplest way is to use the unit step functions which are either “on”: Zi = 1,
or “of”: Zi = 0. It corresponds to qk = 0 (k = 1, . . . ,m) in the above notation.
In this case System (1.1) splits into a number of affine scalar delay systems, and
it is usually an easy exercise (see Section 2) to find all their solutions explicitly.
However, coupled together these simple systems can produce some complicated
effects, especially when a trajectory approaches the switching domains, where a
switching from one affine system to another occurs. Particularly sensitive is the
stability analysis of the stationary points which belong to these switching domains.
This may require the use of smooth approximations Zk(yi(k)) = Σ(yi(k), θk, qk)
(corresponding to the case qi > 0) of the step response functions.

In this paper we will use approximations which were introduced in [9] and which
are based on the so-called “tempered nonlinearities” or “logoids” (see the next
section). This concept simplifies significantly the stability analysis of the steady
states belonging to the discontinuity set of the system in the non-delay model [6],
[10]. As we will see, the logoid approach is also efficient in the delay case.

Let us stress that a “real-world” gene network is always smooth. A number
of genes may, however, be rather large, so that a theoretical or a computer-based
analysis of such networks can be complicated. That is why a simplified approach
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based on step response functions (“boolean nonlinearities”) is to be preferred. There
are two main challenges one faces when using boolean functions. Firstly, one has to
describe effects occurring in the vicinity of thresholds (e.g. sliding modes or steady
states belonging to the discontinuity set of the system). Secondly, one needs to
justify the transition from the simplified to the “real-world” model.

2. Response functions

In this section we describe the properties of general logoid functions and look at
some examples.

Let Z = Σ(y, θ, q) be any function defined for y ∈ R, θ > 0, 0 < q < q0 and
0 ≤ Z ≤ 1. The following assumptions describe the response functions:

Assumption 2.1. Σ(y, θ, q) is continuous in (y, q) ∈ R × (0, q0) for all θ > 0,
continuously differentiable w.r.t.(with respect to) y ∈ R for all θ > 0, 0 < q < q0,
and ∂

∂y Σ(y, θ, q) > 0 on the set {y ∈ R : 0 < Σ(y, θ, q) < 1} .

Assumption 2.2. Σ(y, θ, q) satisfies

Σ(θ, θ, q) = 0.5, Σ(0, θ, q) = 0, Σ(+∞, θ, q) = 1

for all θ > 0, 0 < q < q0.

Clearly, Assumptions 2.1-2.2 imply that Z = Σ(y, θ, q) is non-decreasing in y ∈ R
and strictly increasing in y on the set {y ∈ R : 0 < Σ(y, θ, q) < 1}. The inverse
function y = Σ−1(Z, θ, q) w.r.t. Z, θ and q being parameters, is defined for Z ∈
(0, 1), θ > 0, 0 < q < q0, where it is strictly increasing in Z and continuously
differentiable w.r.t. Z.

Assumption 2.3. For all θ > 0, ∂
∂Z Σ−1(Z, θ, q)→ 0 (q → 0) uniformly on compact

subsets of the interval Z ∈ (0, 1), and Σ−1(Z, θ, q) → θ (q → 0) pointwise for all
Z ∈ (0, 1) and θ > 0.

Assumption 2.4. For all θ > 0, the length of the interval [y1(q), y2(q)], where
y1(q) := sup{y ∈ R : Σ(y, θ, q) = 0} and y2(q) := inf{y ∈ R : Σ(y, θ, q) = 1}, tends
to 0 as q → 0.

Proposition 2.5. If Assumptions 2.1-2.3 are satisfied, then the function Z =
Σ(y, θ, q) has the following properties (see [12]):

(1) If q → 0, then Σ−1(Z, θ, q) → θ uniformly on all compact subsets of the
interval Z ∈ (0, 1) and every θ > 0;

(2) if q → 0, then Σ(y, θ, q) tends to 1 (∀y > θ), to 0 (∀y < θ), and to 0.5 (if
y = θ) for all θ > 0;

(3) for any sequence (yn, θ, qn) such as qn → 0 and Σ(yn, θ, qn)→ Z∗ for some
0 < Z∗ < 1 we have ∂Σ

∂y (yn, θ, qn)→ +∞.

Proof. Let q → 0. Take a compact subset A ⊂ (0, 1) and θ > 0. There exist Z1,
Z2 such as 0 < Z1 < Z2 < 1 and A ⊂ [Z1, Z2]. Therefore

∫ Z

Z1

∂
∂ζ Σ−1(ζ, θ, q)dζ →∫ Z

Z1
0dζ uniformly on Z ∈ [Z1, Z2]. Then (Σ−1(Z, θ, q) − Σ−1(Z1, θ, q)) → 0 uni-

formly on Z ∈ [Z1, Z2].
According to Assumption 2.3 Σ−1(Z1, θ, q) → θ. From two last statements we

obtain Σ−1(Z1, θ, q)→ θ uniformly on Z ∈ A. The Property 1 is proved.
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To prove the Property 2 let us first consider the case 0 < y < θ. Assume
that there exists qn → 0 such that Zn = Σ(y, θ, qn) ≥ δ > 0, Zn ∈ [δ, 0.5]. As y =
Σ−1(Zn, θ, qn) for all n, this contradicts the uniform convergence of Σ−1(Z, θ, q)→ θ
on the interval [δ, 0.5], as all Zn belong to it (see the Property 1). A similar
argument applies if y satisfies θ < y < 1. We obtained the Property 2.

Let Z∗ ∈ (0, 1), qn → 0. Consider the sequences (yn, θ, qn) (qn → 0) and
Zn = Σ(yn, θ, qn) → Z∗ for some 0 < Z∗ < 1. Then there exists a number N
such that for all n ≥ N Zn ∈ [Z∗ − ε, Z∗ + ε] ⊂ (0, 1). From Assumption 2.3 we
have ∂

∂Z Σ−1(Zn, θ, qn)→ 0 (n→∞) uniformly on compact subsets of the interval
Z ∈ (0, 1). The function Z = Σ(y, θ, q) is strictly increasing, thus invertible, so
that ∂Σ

∂y (yn, θ, qn)→ +∞. �

Here is an example of a function satisfying Assumptions 2.1-2.3.

Example 2.6. Let θ > 0, q > 0. The Hill function is

Σ(y, θ, q) :=

{
0 if y < 0

y1/q

y1/q+θ1/q if y ≥ 0.

However, the Hill function does not satisfy Assumption 2.4, as it never reaches
the value Z = 1. This assumption is fulfilled for the following logoid function.

Example 2.7 ([6, 8]). Let

Σ(y, θ, q) := L

(
0.5 +

y −max{θ, σ(q)}
2σ(q)

,
1
q

)
, (θ > 0, 0 < q < 1),

where

L(u, p) =


0 if u < 0
1 if u > 1

up

up+(1−u)p if 0 ≤ u ≤ 1

and σ(q)→ +0 if q → +0.

The function Σ assumes the value Σ = 1 for all y ≥ θ+σ(q) and the value Σ = 0
for all y ≤ θ− σ(q), so that σ(q) is the distance from the threshold θ to the closest
values of y, where the response function Σ becomes 0 (to the left of θ) and 1 (to
its right). However, it should be noticed that by definition θ may assume arbitrary
positive values, so that σ(q) may formally be larger than θ for some q, eventually
becoming less that θ, because σ(q)→ 0 as q → 0.

It is straightforward to check Assumptions 2.1-2.3 as well. Let us for instance
verify the second part of Assumption 2.3. To do that, we keep fixed an arbitrary
Z ∈ (0, 1), put yq = Σ−1(Z, θ, q) and choose any ε > 0. Then there exists qε > 0
such that σ(q) < ε for 0 < q < qε. As 0 < Z = Σ(yq, θ, q) < 1 and Σ = 0 or 1 outside
(θ − σ(q), θ + σ(q)), the value yq must belong to the interval (θ − σ(q), θ + σ(q)).
Thus, |yq − θ| < ε for 0 < q < qε, which proves the pointwise convergence yq → θ
as q → 0.

The following proposition will be used in this paper.

Proposition 2.8. If Assumptions 2.1-2.4 are satisfied, then the function Σ(y, θ, q)
has the following properties:

(1) If y 6= θ, then Σ(y, θ, q) = 0 or 1 for sufficiently small q > 0;
(2) If y 6= θ, then ∂Σ

∂y (y, θ, q) = 0 for sufficiently small q > 0.
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Proof. According to Assumptions 2.2, 2.4, we have Σ(θ, θ, q) = 0.5 and |y1(q) −
y2(q)| → 0 as q → 0, where y1(q) := sup{y ∈ R : Σ(y, θ, q) = 0} and y2(q) :=
inf{y ∈ R : Σ(y, θ, q) = 1}. Then θ ∈ [y1(q), y2(q)]. Let y < θ and put δ = θ−y. For
sufficient small q we have y2(q)− y1(q) < δ. Therefore y < y1(q) and Σ(y, θ, q) = 0
for all y < θ. The proof of the Property 2 follows directly from the first part. �

Property 2 from Proposition 2.5 justifies the following notation for the step
function with threshold θ:

Z = Σ(y, θ, 0) :=


0 if y < θ

0.5 if y = θ

1 if y > θ.

In what follows we only use the tempered response functions (called logoids in
[9]); i.e., functions satisfying Assumptions 2.1-2.4. Thus, analysis based on the
more traditional Hill function is not the subject of the present paper. However,
some of the results below are still valid for the response functions, which satisfy
Assumptions 2.1-2.3, but not necessarily Assumption 2.4.

3. Obtaining a system of ordinary differential equations

A method to study System (1.1) is well-known in the literature, and it is usually
called ”the linear chain trick” (see e.g. [5]). However, a direct application of this
”trick” in its standard form is not suitable for our purposes, because we want any Zi

depend on yi, only. Modifying the linear chain trick we can remove this drawback
of the method.

In fact, the idea of how it can be done comes from the general method of rep-
resenting delay differential equations as systems of ordinary differential equations
using certain integral transforms (the so-called ”W -transforms”). Those are much
more general than the linear chain trick (see [7] for further details). Let us also
mention here the paper [2] which demonstrates how such W -transforms can be
applied to stability analysis of integro-differential equations. Finally, in [1] it is
shown how the W -transforms can be used in stability analysis without reducing
delay equations to ordinary differential equations.

The version of the linear chain trick used below was suggested in [11]. Here we
only provide the final formula for the case of one delay operator (1.2), which is
sufficient for our purposes. The formula follows from the general results proved in
[11], but they can also be checked by a straightforward calculation.

This section is divided into three parts. For a better understanding of the method
we first (Subsection 3.1) consider a scalar equation

ẋ(t) = F (Z)−G(Z)x(t)

Z = Σ(y, θ, q)

y(t) = (<x)(t), (t ≥ 0)
(3.1)

and a three-term delay operator

(<x)(t) = 0cx(t) +
∫ t

−∞
K(t− s)x(s)ds, t ≥ 0, (3.2)

where K(u) = 1c · 1K(u) + 2c · 2K(u), νc ≥ 0 (ν = 0, 1, 2), 0c + 1c + 2c = 1, where
t ≥ 0, and 1K(u), 2K(u) are defined by (1.5) and (1.6), respectively.
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The second part (Subsection 3.2) provides a reduction scheme for a rather general
delay equation.

Finally (Subsection 3.3), we use the second part to write down a system of
ordinary differential equations which is equivalent to the main system (1.1).
Subsection 3.1. In trying to replace the delay equation (3.1) with a system of
ordinary differential equations, let us introduce new variables:

1w(t) =
∫ t

−∞

1K(t− s)x(s)ds, 2w(t) =
∫ t

−∞

2K(t− s)x(s)ds, (3.3)

It is easy to see that 1ẇ = −α·1w+αx and 2ẇ = α·1w−α·2w. This is used in the
standard linear chain trick. Applying it we obtain Z = Σ(0cx+ 1c · 1w+ 2c · 2w, θ, q).
By this, the response function Z becomes a function of three variables, but we
wanted only one.

Therefore we will use the modified variables
1v = 0c x+ 1c · 1w + 2c · 2w, 2v = 2c · 1w (3.4)

(We remark that y =1v). Differentiating 2v we obtain

2̇v = 2c · 1ẇ = α(−2c · 1w + 2c · x) = −α ·2v + α · 2cx.

Similarly,
1v̇ = 0c ẋ+ 1c · 1ẇ + 2c · 2ẇ

= 0c (F (Z)−G(Z)x) + α(−1c · 1w + 1c x) + α(2c · 1w − 2c · 2w)

= 0c (F (Z)−G(Z)x) + α(−1c · 1w + 1c x) + α · 2c · 1w − α(1v − 0c x− 1c · 1w)

= 0c (F (Z)−G(Z)x) + αx(0c+ 1c)− α ·1v + α ·2v.

Thus, we arrive at the following system of ordinary differential equations:

ẋ = F (Z)−G(Z)x,
1v̇ = 0c (F (Z)−G(Z)x) + αx(0c+ 1c)− α ·1v + α ·2v,

2v̇ = α · 2c x− α ·2v,
(3.5)

where Z = Σ(y, θ, q). This system is equivalent to (3.1) in the following sense.
Assume that, (3.1) is also supplied with the initial condition

x(s) = ϕ(s), s < 0, (3.6)

where ϕ : (−∞, 0] is a bounded, continuous function.
Then, as shown above, the triple (x(t),1v(t),2v(t)), where 1v,2v are given by (3.4)

with 1w, 2w defined by (3.3), satisfies System (3.5) and the initial conditions:

x(0) = ϕ(0),

1v(0) = 0c ϕ(0) +
∫ 0

−∞
K(−s)ϕ(s)ds

= 0c ϕ(0) +
∫ 0

−∞
(1c α eαs − 2c α2 · s eαs)ϕ(s)ds,

2v(0) = 2c

∫ 0

−∞

1K(−s)ϕ(s)ds = α · 2c
∫ 0

−∞
eαsϕ(s)ds.

(3.7)
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Conversely, assume that x(s) = ϕ(s) (s < 0) for some bounded, continuous
function ϕ(s) and that the triple (x(t),1v(t),2v(t)) satisfies (3.5) and (3.7). We want
to check that x(t) is a solution to (3.1). It is sufficient to show that 1v(t) = (<x)(t).

We consider first the more difficult case 2c 6= 0. Going back to
1w =2v (2c)−1, 2w = (1v − 0c x− 1c · 1w)(2c)−1 (3.8)

and using (3.5) we easily obtain that 1ẇ = −α · 1w + αx, 2ẇ = −α · 2w + α · 1w.
The fundamental matrix W (t) of the corresponding homogeneous system, i.e. the

matrix-valued solution of the system with αx ≡ 0, satisfying W (0) =
(

1 0
0 1

)
, is

W (t) = e−αt

(
1 0
αt 1

)
.

Hence

1w(t) = e−αt · 1w(0) + α

∫ t

0

e−α(t−s)x(s)ds,

2w(t) = e−αt(αt · 1w(0) + 2w(0)) + α2

∫ t

0

(t− s)e−α(t−s)x(s)ds.

From (3.7) and (3.8) we also deduce

1w(0) = α

∫ 0

−∞
eαs · ϕ(s)ds, 2w(0) = −α2

∫ 0

−∞
seαs · ϕ(s)ds.

Evidently, this yields

1w(t) =
∫ 0

−∞

1K(t− s)ϕ(s)ds+
∫ t

0

1K(t− s)x(s)ds,

2w(t) =
∫ 0

−∞

2K(t− s)ϕ(s)ds+
∫ t

0

2K(t− s)x(s)ds,

so that 1v(t) = 0c x(t) + 1c · 1w(t) + 2c · 2w(t) = (<x)(t). In the case 2c = 0 (the weak
generic delay kernel) 1c > 0 since the system is supplied with delay effect. System
(3.5) then reads

ẋ = F (Z)−G(Z)x
1̇v = 0c (F (Z)−G(Z)x) + αx− α ·1v.

(3.9)

The initial conditions in this case become
x(0) = ϕ(0)

1v(0) = 0c ϕ(0) + 1cα

∫ 0

−∞
eαsϕ(s)ds

(3.10)

Consider 1w = (1v −0cx)(1c)−1 and using (3.5) we get 1ẇ = −α ·1w+ αx. Similarly
to the first case we have that 1v(t) = 0c x(t) + 1c · 1w(t) = (<x)(t), and we obtain
the result.

Remark 3.1. We can formally obtain (3.9), (3.10) from (3.5), (3.7) if we simply
put 2c = 0 in the system and in the initial conditions (3.7). Indeed, this will give
2v(t) ≡ 0 and hence (3.9) and (3.10). By this, 2c = 0 is a particular case of the
general situation.
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Remark 3.2. In Section 1 we observed that the assumption 1v(t) ≡ x(t) for all
t ≥ 0 corresponds to the non-delay case. It is easy to see that the ”tricked” system
(3.5) provides in this case two copies of the same non-delay equation.

Subsection 3.2. The second step consists in describing the modified linear chain
trick for a quite arbitrary nonlinear delay equation. To simplify the notation, this
step is performed for the scalar case, only.

The following scalar nonlinear delay differential equation is considered:

ẋ(t) = f(t, x(t), (<x)(t)), t > 0 (3.11)

with the initial condition
x(τ) = ϕ(τ), τ ≤ 0. (3.12)

The function f(·, ·, ·) : [0,∞)× R2 → R has three properties.

(C1) The function f(·, u, v) is measurable for any u, v ∈ R.
(C2) The function f(·, 0, 0) is bounded: |f(t, 0, 0)| ≤ C (t ≥ 0) for some constant

C.
(C3) The function f is Lipschitz: There exists a constant L such that

|f(t,1u,1v)− f(t,2u,2v)| ≤ L(|1u−2u|+ |1v −2v|) (3.13)

for all t ≥ 0, iu,iv ∈ R.

Note that these three conditions imply that |f(t, u, v)| ≤ L(|u| + |v|) + C for any
t ≥ 0 and u, v ∈ R.

The initial function ϕ is bounded and measurable. The integral operator < is
assumed to be

(<x)(t) =
∫ t

−∞
K(t− s)x(s)ds, t > 0, (3.14)

where

K(u) =
p∑

ν=1

νc ·νK(u) , (3.15)

νK(u) =
αν · uν−1

(ν − 1)!
e−αu. (3.16)

The coefficients νc are real numbers, and it is also assumed that α > 0.
Note that the operator (3.14) is a particular case of the operator (1.2) with

0c = 0. If the initial function is defined on a finite interval [−H, 0], then one can
put x(τ) = 0 for τ < −H.

The functions νK have the following properties:
νK(∞) = 0,

νK(0) = 0, (ν ≥ 2.)
1K(0) = α .

(3.17)

It is also straightforward to show that

d

du
νK(u) = α ·ν−1K(u)− α ·νK(u) (ν ≥ 2)

d

du
νK(u) = −α ·νK(u) (ν = 1).

(3.18)



10 I. SHLYKOVA, A. PONOSOV, Y. NEPOMNYASHCHIKH, A. SHINDIAPIN EJDE-2008/104

The classical linear chain trick (see e.g. [5]) rewritten in the vector form would give

νw(t) =
∫ t

−∞

νK(t− s)x(s)ds (ν = 1, 2, . . . , p) (3.19)

yields

(<x)(t) =
∫ t

−∞

p∑
ν=1

νc ·νK(t− s)x(s)ds =
p∑

ν=1

νc ·νw(t), (3.20)

so that

ẋ(t) = f(t, x(t),
p∑

ν=1

νc ·νw(t)) = f(t, x(t), lw(t)), (3.21)

where
l = (1c, 2c, . . . ,pc), (3.22)

the coefficients νc being identical with the coefficients in (3.15).
On the other hand, for ν ≥ 2 the functions νw satisfy

d

dt
νw(t) = α ·ν−1w(t)− α ·νw(t),

while for ν = 1 one has
1ẇ(t) = −α ·1w(t) + αx(t).

This gives the following system of ordinary differential equations:

ẇ(t) = Aw(t) + πx(t), t ≥ 0, (3.23)

where

A =


−α 0 0 . . . 0
α −α 0 . . . 0
0 α −α . . . 0
...

...
. . . . . .

...
0 0 . . . α −α

 and π =


α
0
...
0

 . (3.24)

Clearly, the system of ordinary differential equations (3.21), (3.23) is equivalent to
the delay differential equation (3.11), (3.14).

The initial condition (3.12) can be rewritten in terms of the new functions as
follows:

νw(0) =
∫ 0

−∞

νK(−τ)ϕ(τ)dτ = (−1)ν−1 αν

(ν − 1)!

∫ 0

−∞
τν−1 · eατϕ(τ)dτ, (3.25)

ν = 1, . . . , p. As before, x(0) = ϕ(0).
The initial conditions (3.25) can be represented in a vector form as well (see e.g.

[11]):

w(0) =
∫ 0

−∞
eA(−τ)πϕ(τ)dτ. (3.26)

As we already have mentioned, this classical version of the linear chain trick is
not directly suitable for gene regulatory networks as the regulatory functions Zi

depend only on one variable, while the ”trick” gives a sum of the form (3.20). That
is why we use a modification of the linear chain trick, which is a particular case of
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the general reduction scheme introduced in [7]. First of all, let us observe that the
solution to the auxiliary system (3.23) can be represented as follows:

w(t) = eAtw(0) +
∫ t

0

eA(t−s)πx(s)ds

= eAt

∫ 0

−∞
eA(−τ)πϕ(τ)dτ +

∫ t

0

eA(t−s)πx(s)ds

=
∫ t

−∞
eA(t−s)πx(s)ds,

(3.27)

as x(s) = ϕ(s) for s ≤ 0. Thus,

(<x)(t) =
∫ t

−∞

( p∑
ν=1

νc ·νw
)
ds = l

∫ t

−∞
eA(t−s)πx(s)ds. (3.28)

This formula is a starting point for a modification of the linear chain trick which is
used in this paper. Below we generalize (in a matrix form) the procedure described
in Subsection 3.1.

Let us put

1v =
p∑

ν=1

νc ·νw, νv =
p−ν+1∑

j=1

j+ν−1c ·jw (ν = 2, . . . , p).

Formally, the auxiliary system of the same form as in (3.23) is exploited. However,
the matrix A, the solution w(t), the functionals π and l will be changed to Ã = AT ,

v(t) =
∫ t

−∞
eÃ(t−s)π̃x(s)ds, (3.29)

π̃x = αx


1c
2c
...
pc

 (3.30)

and l̃ = (1, 0, . . . , 0, 0), respectively.
It is claimed, in other words, that System (3.11) with Condition (3.12) is equiv-

alent to the following system of ordinary differential equations:

ẋ(t) = f(t, x(t),1v(t))

v̇ = Ã · v + π̃x(t)
(3.31)

with the initial conditions x(0) = ϕ(0) and

v(0) =
∫ 0

−∞
eÃ(−τ)π̃ϕ(τ)dτ. (3.32)

Note that, unlike the right-hand side in the classical linear chain trick (see (3.21)),
the right-hand side in (3.31) depends only on two state variables: x and 1v. This is
crucial for applications which are of interest in this paper.

To prove (3.31), one needs to show that the representation (3.28) holds true if
A, π and l are replaced by Ã, π̃ and l̃, respectively. This is done by writing down
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the fundamental matrix of the corresponding homogeneous system:

Y (t) = e−αt



1 αt (αt)2

2! . . . (αt)p−1

(p−1)!

0 1 αt . . . (αt)p−2

(p−2)!

0 0 1 . . .
...

...
...

. . . . . . αt
0 0 . . . 0 1


. (3.33)

Then a direct calculation proves the result. A similar argument gives (3.32).

Remark 3.3. Assume that v(t) is a solution to v̇ = Ã · v + π̃x(t), A, π̃ are given
by (3.24) and (3.30), respectively. If now νc ≥ 0 for ν = 1, . . . p, νv(0) ≥ 0 for
ν = 1, . . . p, and x(t) ≥ 0 for all t ≥ 0, then νv(t) ≥ 0 for all t ≥ 0, ν = 1, . . . , p, as
well. It follows easily from the representation formula for the solution v(t) and the
formula (3.33) for the fundamental matrix.

Subsection 3.3. Finally, let us now go back to the general delay system (1.1). To
simplify the notation we will write Z for (Z1, . . . , Zm). Below we use the formulas
obtained in the second part of the section.

First of all let us observe that the delay operators are now slightly different
from those studied in the previous part of the section: one term is added, namely
0cixi. However, this is not a big problem: we will replace 1v by the input variable
y = 0c x +1v arriving, as we will see, at a slightly different system of ordinary
differential equations. Indeed, differentiating y gives

ẏ = 0c ẋ+1v̇ = 0cf(t, x, y)−α·1w+α·2w+α·1c x = 0cf(t, x, y)−αy+α·2w+αx(0c+1c).

For the sake of notations simplicity we still want y coincide with the first coordinate
1v of the vector instead of v, so that we actually assume that 1v =0 cx+ ”old”1v, so
that y =1 v.

For (1.1) this results in the following system of ordinary differential equations:

ẋi(t) = Fi(Z)−Gi(Z)xi(t)

v̇i(t) = Aivi(t) + Πi(xi(t)) t > 0

Zk = Σ(yi(k), θk, qk), yi =1vi (i = 1, . . . , n),

(3.34)

where

Ai =


−αi αi 0 . . . 0

0 −αi αi . . . 0
0 0 −αi . . . 0
...

...
. . . . . .

...
0 0 . . . 0 −αi

 , vi =


1vi
2vi

...
pvi

 , (3.35)

and
Πi(xi) := αixiπi + 0cifi(Z, xi) (3.36)

with

πi :=


0ci + 1ci

2ci
...

pci

 , fi(Z, xi) :=


Fi(Z)−Gi(Z)xi

0
...
0

 . (3.37)
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Recall that, according to the assumptions on System (1.1), Fi, Gi are real functions
which are affine in each Zk and which satisfy Fi ≥ 0, Gi ≥ δ > 0 for 0 ≤ Zk ≤ 1.

Note that the notation in (3.34) is chosen in such a way that the first coordinate
1vi always coincides with the i-th input variable yi. For the sake of simplicity the
notation 1vi in (3.34) will be kept in the sequel.

If we assume that Zk = const (i = 1, . . . n). Then System (3.34) becomes affine:

ẋi(t) = ψi − γixi(t)

v̇i(t) = Aivi(t) + Π̄i(xi(t)), t > 0, i = 1, . . . , n,
(3.38)

where yi =1vi, ψi ≥ 0, γi > 0, and

Π̄i(xi) := αixi


0ci + 1ci

2ci
...

pci

 + 0ci


ψi − γxi

0
...
0

 . (3.39)

4. Some definitions

In this section we give a summary of some general notation and definitions related
to geometric properties of System (3.34) in the limit case (qk = 0, k = 1, . . . ,m).
The notation and similar definitions in the non-delay case were introduced in the
paper [8]. According to the idea described in the previous section System (3.34)
replaces the delay system (1.1). The system of ordinary differential equations (3.34)
is more general than the system studied in [8] and may have different properties as
well. By this reason, some definitions from [8] have to be revised.

We start with the notation which we adopt from [8]. In what follows, it is
assumed that

• M := {1, . . . ,m}, J := {1, . . . , j}, N := {1, . . . , n}, n ≤ j, m ≤ j
(i. e. N ⊂ J,M ⊂ J);
• R := M − S for a given S ⊂M ;
• AB consists of all functions v : B → A;
• aR := (ar)r∈R (aR ∈ AR), aS := (as)s∈S (aS ∈ AS);

The following system of ordinary differential equations, generalizing System (1.1)
in the limit case (qk = 0, k = 1, . . . ,m), is used in this section

u̇(t) = Φ(Z, u(t)), t > 0, (4.1)

where u = (u1, . . . uj), Z = (Z1, . . . Zm), Zk = Σ(ui(k), θk, 0) for k ∈ M (i.e. Zk is
the unit step function with the threshold θk > 0), i(k) is a function from M to N .
The function Φj : [0, 1]M × RJ → RJ is continuously differentiable in Z ∈ [0, 1]M

for all u ∈ RJ and affine in each vector variable u ∈ RJ for all Z ∈ [0, 1]M .
These assumptions are e. g. fulfilled for System (3.34) where ui coincides with

xi for i ∈ N and with one of the auxiliary variables νvi (appropriately numbered)
for i ∈ J − N . In fact, it is the only example which is of interest in this paper.
However, System (4.1) is used to keep the notation under control.

The assumptions imposed on System (4.1) are needed for the following rea-
son: if one replaces the step functions Σ(ui(k), θk, 0) with the sigmoid functions
Σ(ui(k), θk, qk) (qk ∈ (0, q0)), satisfying Assumptions 2.1-2.4 from Section 2, then for
any u0 ∈ RJ there exists a unique (local) solution u(t) to (4.1) satisfying u(0) = u0.
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As qk > 0, the function Σ(ui(k), θk, qk) is smooth w.r.t. ui(k) for all k ∈M , so that
the unique solution does exist.

Assume again that all qk = 0. Then the right-hand side of System (4.1) can be
discontinuous, namely, if one or several ui(k) (i ∈ N) assume their threshold values
ui(k) = θk.

We associate a Boolean variable Bk to each Zk by Bk = 0 if ui(k) < θk and
Bk = 1 if ui(k) > θk.

Let Θ denote the set {u ∈ RJ : ∃k ∈ M : ui(k) = θk}. This set contains all
discontinuity points of the vector-function

f(Σ(ui(k), θk, 0)k∈M , (ui)i∈J)

and is equal to the space R minus a finite number of open, disjoint subsets of RJ .
Inside each of these subsets one has Zk = Bk, where Bk = 0 or Bk = 1 for all
k ∈M , so that System (4.1) becomes affine:

u̇(t) = Φ(B, u(t)) := ABu(t) + fB , t > 0, (4.2)

where B := (Bk)k∈M is a constant Boolean vector. The set of all Boolean vectors
B = (B1, . . . , Bm) (where Bk = 0 or 1) will be denoted by {0, 1}M .

Thus, if the initial value of a possible solution belongs to one of these subsets,
then the local existence and uniqueness result can be easily proved. The global
existence problem is, however, more complicated (see e. g. [8]). This problem is
not addressed here: global existence in the case of smooth response functions and
local existence outside the discontinuity set in the case of the step functions are
sufficient for our purposes.

System (4.1) is studied below under the assumption qk = 0, k ∈ M , so that
Zk = Σ(ui(k), θk, 0). Assume that ui(k) has thresholds θk, θl, such as θk, 6= θl if
k 6= l.

The next three definitions can be found in [8].

Definition 4.1. Given a Boolean vector B ∈ {0, 1}M , the set B(B), which consists
of all u ∈ RJ , where (Zk(ui(k)))k∈M = B, is called a regular domain (or a box).

Remark 4.2. If some variables ui have more than 1 threshold, then some Boolean
vectors can generate empty boxes. The necessary and sufficient condition for B(B)
to be non-empty reads as follows: i(k) = i(l) & θk > θl ⇒ Bk ≤ Bl. This is
because Σ(ui(k), θk, 0) ≤ Σ(ui(l), θl, 0).

Any box is an open subset of the space RJ , as Σ(θk, θk, 0) = 0.5 (according to
Assumption 2.2) excludes the value ui(k) = θk. Only the variables u1, . . . , un can
have (one or more) thresholds, the other have no threshold at all. In the system
(3.34), these variables correspond to those that are different from any yi (i ∈ N),
i.e. either to xi (if xi is ”delayed” and thus different from yi), or to one of the
auxiliary variables νvi with ν ≥ 2.

Definition 4.3. Given a subset S ⊂M,S 6= ∅ and a Boolean vector BR ∈ {0, 1}R,
where R = M − S, the set SD(θS , BR), which consists of all u ∈ RJ , where
Br = Zr(ui(r)) (r ∈ R) and ui(s) = θs s ∈ S, is called a singular domain.

Remark 4.4. Again, if some variables ui have more than 1 threshold, then some
subsets S can generate empty singular domains. The necessary and sufficient con-
ditions for SD(θS , BR) to be non-empty are as follows:
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(1) i(k) = i(l), k, l ∈ R, & θk > θl ⇒ Bk ≤ Bl,
(2) i(k) = i(l), k, l ∈ S ⇒ k = l (this is because any point can only belong to

one threshold for each variable ui),
(3) i(k) = i(l), k ∈ R, l ∈ S & θk > θl ⇒ Bk = 0,
(4) i(k) = i(l), k ∈ R, l ∈ S & θk < θl ⇒ Bk = 1.

Any SD(θS , BR) is an open subset of the linear manifold {uN : ui(s) = θs, s ∈ S}.
The boxes are separated by singular (switching) domains. A singular domain can
be described by its singular variables ui(s)(s ∈ S) which have threshold values in
SD and by its regular variables ui(r)(r ∈ R). The variables ui(r)(r ∈ R) never
obtain their threshold values in SD.

Definition 4.5. Given a number µ ∈M and a Boolean vector BR ∈ {0, 1}R, where
R = M\{µ}, the singular domain SD(θµ, BR) is called a wall.

In other words, a wall is a singular domain of codimention 1. It is always open
being also nonempty since i(k) 6= i(µ) for all k ∈M\{µ} (Remark 4.4).

Example 4.6. Consider variables u1 with the thresholds θ1, θ2 (θ1 < θ2) and u2

with the threshold θ3. The phase space is then the union of six boxes, seven walls
and two singular domains of codimension 2.

Let us consider boxes. For the first box we have u1 < θ1, u1 < θ2 and u2 >
θ3, the corresponding boolean vector is {0, 0, 1}. Similarly we obtain five other
boxes corresponding to the following boolean vectors {1, 0, 1}, {1, 1, 1}, {0, 0, 0},
{1, 0, 0}, {1, 1, 0}(see Figure 3). But for example the boolean vectors {0, 1, 0},
{0, 1, 1} generate empty boxes.

To describe walls between two adjacent boxes we should replace the only boolean
variable which is different for the two boxes. The wall between boxes B(1, 0, 1) and
B(1, 1, 1) is denoted by SD(1, θ2, 1). For this wall one has u1 > θ1, u1 = θ2
and u2 > θ3. In addition, we have the following walls SD(θ1, 0, 1), SD(0, 0, θ3),
SD(θ1, 0, 0), SD(1, 0, θ3), SD(1, θ2, 0) and SD(1, 1, θ3). The singular domains of
codimension 2 are the limit points for four boxes. They are u1 = θ1, u2 = θ3 and
u1 = θ2, u2 = θ3. But the subsets SD(θ1, 1, 1), SD(0, θ2, 0) generate empty singular
domains.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

u1

u 2

B(1,1,1)B(0,0,1) B(1,0,1)

B(1,1,0)B(0,0,0) B(1,0,0)

θ1=1 θ2=2

θ3=1

Figure 3.

System (4.1) can be regarded, at least in some situations, as a switching dy-
namical system. Inside any regular domain, it is an affine system of differential
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equations. Switching between domains can only occur if a trajectory hits a singu-
lar domain, usually a wall. But as it is demonstrated in [8], sliding modes can press
trajectories into singular domains of lower dimensions as well. It is also shown in
[8] that in such cases the dynamics cannot be described by a simple indication of
how the system switches between the regular domains.

In the non-delay case walls can be either attractive (”black”), expelling (“white”)
or “transparent” (see [9]). In the delay case, walls can also be of a mixed type. That
is why the properties of “blackness”, “whiteness” and “transparency” can now only
be described locally, i.e. without using the focal points as in the non-delay case
(see [8]).

Consider the wall SD(θµ, BR) which lies between the box B(B0), where Zµ = 0,
and the box B(B1), where Zµ = 1. This gives two different systems (4.2): for
B = B0 and B = B1, respectively. Let P be a point in a wall SD(θµ, BR) and
u(t, ν, P ) be the solution to (4.2) with B = Bν , which satisfies u(0, ν, P ) = P
(ν = 0, 1). Denote by u̇µ(0, Z, P ) component of number µ (which is orthogonal to
the wall θ = θµ) of the velocity vector u̇µ(t, Z, P ) at P for t = 0 (Z = 0 or 1).

Definition 4.7. A point P ∈ SD(θµ, BR) is called
• “black” if u̇µ(0, 1, P ) < 0 and u̇µ(0, 0, P ) > 0;
• “white” if u̇µ(0, 1, P ) > 0 and u̇µ(0, 0, P ) < 0;
• “transparent” if u̇µ(0, 1, P ) < 0 and u̇µ(0, 0, P ) < 0, or if u̇µ(0, 1, P ) > 0

and u̇µ(0, 0, P ) > 0.

Definition 4.8. We say that a wall SD(θµ, BR) is black (white, transparent) if
any point in it, except for a nowhere dense set, is black (white, transparent).

Exceptional points correspond to the trajectories that are not transversal to the
hyperplane uµ = θµ, i. e. where u̇µ = 0.

Clearly, at any transparent point the solution to (4.1) can be extended to some
neighborhood of this point. Thus, at transparent points System (4.1) can be char-
acterized as a switching dynamical system. However, at black points the system is
of a more complicated nature (see [8]).

5. Stationary points

We are studying the system of ordinary differential equations (3.34), which is
equivalent to the delay system (1.1). The definitions from the previous section are
now applied to (3.34) without further comments.

A very important advantage of the logoid nonlinearities, satisfying Assumptions
2.1-2.4, unlike more general sigmoid nonlinearities, satisfying Assumptions 2.1-2.3,
is the localization principle. Roughly speaking we may remove all regular variables
in the stability analysis, because they did not influence local properties of solutions
around stationary points. This principle is of particular importance for delay sys-
tems (which are non-local). On the other hand, the localization principle helps to
simplify both notation and proofs.

It is easy to define stationary points for this system if Zk = Σ(yi(k), θk, qk) are
all smooth (qk > 0). However, in this case the stability analysis and computer
simulations may be cumbersome and time-consuming. To simplify the model, one
uses the step functions Zk = Σ(yi(k), θk, 0) and the corresponding limit system.
The latter becomes, however, discontinuous if at least one yi assumes one of its
threshold values. If a stationary point of the limit system does not belong to the
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discontinuity set, then the analysis of the dynamics of the perturbed smooth systems
(qk > 0, k = 1, . . . ,m) is almost trivial (see below). If, however, a (well defined)
stationary point of the perturbed system approaches the discontinuity set of the
limit system, the corresponding dynamics may be subject to irregularities, and on
the other hand, an independent and verifiable definition of a (stable and unstable)
stationary point of the limit system should be given. The natural idea is to replace
the step functions Zk = Σ(yi(k), θk, 0)) with smooth functions Zk = Σ(yi(k), θk, qk)
(qk > 0, k = 1, . . . ,m), which leads to the following formal definition.

Definition 5.1. A point P̂ is called a stationary point for System (3.34) with
Zk = Σ(yi(k), θk, 0) (k ∈M) if for any set of functions Zk = Σ(yi(k), θk, qk) (k ∈M),
satisfying Assumptions 2.1-2.4 from Section 2, there exist a number ε > 0 and points
P (q), q = (q1, . . . , qm), qk ∈ (0, ε) (k ∈M) such that

• P (q) is a stationary point for System (3.34) with Zk = Σ(yi(k), θk, qk) (k ∈
M);

• P (q)→ P̂ as q → 0 (i.e. to the zero vector).

If the limit point P̂ does not belong to the discontinuity set of System (3.34),
i.e. if yi(k) 6= θk (k ∈ M), then P̂ simply becomes a conventional stationary point
for the limit system.

To see it, we assume that Z = B at P̂ for some Boolean vector B. Then the
coordinates of P̂ satisfy

Fi(B)−Gi(B)xi = 0 (i ∈ N)

Aivi + Πi(xi) = 0.
(5.1)

Here neither the delay operator <, nor the logoids Zk = Σ(yi(k), θk, qk) (k ∈ M ,
qk > 0), satisfying Assumptions 2.1-2.4 from Section 2, influence the position of the
stationary point.

Conversely, due to Assumption 2.4 we have that Zk = Bk at P̂ for sufficiently
small qk > 0 and any k ∈M . This is because P̂ lies at a positive distance from the
discontinuity set of the system. The smooth version of System (3.34) in the vicinity
of P̂ will just be equal to the limit system, so that P (q) = P̂ for sufficiently small
q.

Thus obtained P̂ is called regular stationary point (RSP) (see [4], [9]). It is also
easy to calculate this point (and by this also P (q)):

x̂i = Fi(B)G−1
i (B),

v̂i = −(Ai)−1Πi(x̂i) (i ∈ N)
(5.2)

(the matrix Ai is given by (3.35) therefore it’s invertible).
The situation is, however, different if P̂ belongs to the discontinuity set. Such

a P̂ is called singular stationary point (SSP)(see [4], [9]). In this case we can only
get rid of regular variables.

In quite a similar way, we can define the notion of a stable stationary point (see
e.g. [6]).

Definition 5.2. A stationary point P̂ for (3.34) with Zk = Σ(yi(k), θk, 0) (k ∈M) is
called asymptotically stable if for any set of functions Zk = Σ(yi(k), θk, qk) (k ∈M),
satisfying Assumptions 2.1-2.4 from Section 2, there exist a number ε > 0 and points
P (q), q = (q1, . . . , qm), qk ∈ (0, ε) (k ∈M) such that
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• P (q) is a asymptotically stable stationary point for System (3.34) with
Zk = Σ(yi(k), θk, qk) (k ∈M);
• P (q)→ P̂ as q → 0 (i.e. to the zero vector).

In what follows, a crucial role will be played by the Jacoby matrix ∂
∂ZS

FS(Z)−
∂

∂ZS
GS(Z)yi(S). The entry in the s-th row and the σ-th column of this matrix

amounts ∂
∂Zσ

Fi(s)(Z)− ∂
∂Zσ

Gi(s)(Z)yi(s). In other words,

JS(ZS , BR, yi(S)) =
∂

∂ZS
FS(ZS , BR)− ∂

∂ZS
GS(ZS , BR)yi(S)

=
[ ∂

∂Zσ
Fi(s)(ZS , BR)− ∂

∂Zσ
Gi(s)(ZS , BR)yi(s)

]
s,σ∈S

.

(5.3)

Using Remark 4.4 it is easy to see that if the singular domain SD(θS , BR) is not
empty, then this Jacoby matrix is an |S| × |S|-matrix.

Below we will use Proposition 7.4 from the paper [11]:

Proposition 5.3 ([11]). Given arbitrary i ∈ N, xi, yi ∈ R, the system

Aivi + αixiπi = 0
1vi = yi,

where Ai and πi are defined by (3.35) and (3.36), respectively, has a solution
1vi,

2vi, . . . ,
pvi if and only if xi = yi. In this case the solution is unique.

Theorem 5.4. Assume that for some S ⊂M the system of algebraic equations
Fi(S)(ZS , BR)−Gi(S)(ZS , BR)θi(S) = 0,

Fi(R)(ZS , BR)−Gi(R)(ZS , BR)yi(R) = 0
(5.4)

with the constraints
0 < Zs < 1 (s ∈ S)

Zr(yi(r)) = Br (r ∈ R)
(5.5)

has a solution ẐS := (Ẑs)s∈S, ŷi(R) := (ŷi(r))r∈R, which, in addition, satisfies

det JS(ẐS , BR, θS) 6= 0. (5.6)

Then there exists a stationary point P̂ ∈ SD(θS , BR) for System (3.34). This point
is independent of the choice of the delay operators <i given by (1.2).

Proof. The case of a box is formally included in the above theorem if we put S = ∅,
but this case was already studied at the beginning of the section. Thus, we may
restrict ourselves to the case of a singular domain. Let S be a nonempty subset of
the set M .

First of all, we explain how to calculate the coordinates of the point P̂ . We put
(1) x̂i(r) = ŷi(r), Zr(ŷi(r)) = Br (r ∈ R);
(2) x̂s = ŷs = θs (s ∈ S).

The auxiliary coordinates can be obtained from the system
Aivi + αix̂iπi = 0

1vi = ŷi.
(5.7)

This system satisfies the assumptions of Proposition 5.3, which gives a unique
solution v̂i to (5.7).
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By this it is also shown that P̂ belongs to the singular domain SD(θS , BR), this
domain is nonempty and therefore satisfies the conditions listed in Remark 4.4. Let
us also notice that according to this remark the mapping s 7→ i(s) is a bijection on
the set S. Renumbering we may always assume that i(s) = s for all s ∈ S ⊂ N .

In the sequel we write FS = (Fs)s∈S and GS = diag[Gs]s∈S , which is a diagonal
matrix. Similarly, FR = (Fi(r))r∈R and GR = diag[Gi(r)]r∈R (as variables yi can
have more than one thresholds, the mapping r 7→ i(r) is not necessarily bijective
on R, nor is r = i(r)).

The idea of the proof (suggested in [11]) can be described as follows. First of
all, we replace the step functions Zs = Σ(ys, θs, 0) by the smooth sigmoid functions
Σ(ys, θs, qs), qs > 0. Then, using the inverse sigmoid functions, we arrive at a
system of functional equations w.r.t. Zs which is resolved by the implicit function
theorem. This gives the values of Zs depending on the vector parameter q =
qs (qs ≥ 0). Then we restore, step by step, the other variables, namely y(q), x(q)
and finally, νvi(q). All of them depend continuously on the parameter q. Letting qs
go to zero gives SSP in the wall SD(θS , BR).

To implement this idea we rewrite the stationarity conditions for the variables
yS in the matrix form. It gives

FS(ZS , BR)−GS(ZS , BR)yS = 0, (5.8)

which is an equation in RS . Originally, i. e. in (5.4), it was assumed that yS = θS .
If the step functions are replaced by smooth sigmoid functions, then this equality
may be violated. However, we may assume without loss of generality that the
regular variables satisfy ZR = BR for sufficiently small q (see Assumption 2.4).

Let ZS = Σ(yS , θS , q) := (Σ(ys, θs, qs))s∈S , where qs > 0. Due to Assump-
tion 2.1 from Section 2 the inverse function yS = Σ−1(ZS , θS , q) is continuously
differentiable with respect to Zs ∈ (0, 1), s ∈ S. Putting it into (5.8) produces

FS(ZS , BR)−GS(ZS , BR)Σ−1(ZS , θS , q) = 0. (5.9)

The Jacoby matrix of the left-hand side with respect to ZS is equal to
∂

∂ZS
FS(ZS , BR)− ∂

∂ZS

(
GS(ZS , BR)

)
Σ−1(ZS , θS , q)

−GS(ZS , BR)
∂

∂ZS

(
Σ−1(ZS , θS , q)

)
.

(5.10)

According to Assumptions 2.1-2.2 from Section 2 and assumptions on F,G listed in
Introduction, this is a continuous function w.r.t. (ZS , q), if 0 < Zs < 1, 0 < qs < q0.
We let now q go to zero (i.e. to the zero-vector) and observe that for any Zs,
0 < Zs < 1, s ∈ S the last Jacoby matrix in (5.10) goes to the zero matrix in view
of Assumption 2.3 from Section 2, while Σ−1(ZS , θS , q) → θS due to Proposition
2.5 part(1). In both cases the convergence is uniform on compact subsets of the set
{ZS : 0 < Zs < 1, s ∈ S}. Thus, the Jacoby matrix becomes

∂

∂ZS
FS(ZS , BR)− ∂

∂ZS
GS(ZS , BR)θS (5.11)

in the limit. The uniform convergence of the Jacoby matrix (on compact subsets
of the set {ZS : 0 < Zs < 1, s ∈ S}) as qs → 0 implies that the left-hand side
of Equation (5.9) is, in fact, continuous in (ZS , q) and continuously differentiable
w.r.t. ZS on the set 0 < Zs < 1, 0 ≤ qs < q0 (s ∈ S). Remember that the
solution ẐS of System (5.4) satisfies the constraints 0 < Zs < 1, too. Moreover,
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at ZS = ẐS , q = 0 and according to (5.3), the matrix, given by (5.11), is equal
to JS(ẐS , BR, θS). This matrix is invertible by (5.6). This allows for using the
implicit function theorem yielding a continuous (in q) vector function ZS(q), where
0 ≤ qs < ε for all s ∈ S and some ε > 0. This function satisfies 0 < Ẑs < 1 for all
s ∈ S.

Now, put

xs(q) = ys(q) = Σ−1(ZS(q), θs, qs) (s ∈ S)

xi(r)(q) = yi(r)(q) = Fi(r)(ZS(q), BR)G−1
i(r)(ZS(q), BR) (r ∈ R)

(5.12)

and for an arbitrary i ∈ N consider the following system for the auxiliary variables
vi:

Aivi + Πixi(q) = 0
1vi = yi(q),

(5.13)

where
Πi(xi(q)) := αixi(q)πi + 0cifi(ZS(q), BR, xi(q))

and

fi(ZS(q), BR, xi(q)) = (Fi(ZS(q), BR)−Gi(ZS(q), BR)xi(q), 0, . . . 0)T .

By construction, Fi(ZS(q), BR)−Gi(ZS(q), BR)xi(q) = 0 for all i ∈ N , so that

Aivi + αixi(q)πi = 0
1vi = yi(q).

(5.14)

Applying again Proposition 5.3 gives the only solution vi(q) to (5.14).
By this, all the coordinates of the stationary point P (q) for qs > 0, s ∈ S are

calculated. Let now q → 0. It is already shown that ZS(q) → ẐS . Using again
Proposition 2.5 part(1) gives

ŷS := lim
q→0

ys(q) = lim
q→0

Σ−1(ZS(q), θS , q) = θS .

This and (5.12) justify also the equalities

x̂S := lim
q→0

xS(q) = lim
q→0

yS(q) = θS ,

ŷi(R) := lim
q→0

yi(R)(q) = lim
q→0

xi(R)(q) := x̂i(R).

Finally, vi(q) → v̂i which solves Equation (5.7), where x̂i = ŷi for all i ∈ N . By
this, it is shown that the point P̂ , constructed at the very beginning of the proof, is
the limit point for P (q), q → 0, the latter being stationary points for System (3.34)
with Zs = Σ(ys, θs, qs) (qs > 0, s ∈ S). The proof is complete. �

Let Γ be a parameter space for System (5.4)-(5.5); i.e., Γ is the set of all poly-
nomial coefficients Fi, Gi and thresholds θi such that

(1) Fi > 0, Gi > 0 for 0 < Zk < 1 and θk > 0 (k ∈M),
(2) θi > 0.
The functions Fi, Gi are continuous in Zk and θk. Therefore, if the number of

parameters equals p, then Γ is an open subset of the space Rp.
Consider the subset ΓS ⊂ Γ (S is a fixed subset of M , BR is a fixed Boolean

vector, corresponding to the singular domain SD(θS , BR)), such that there exists
at least one solution to System (5.4)-(5.5). By Γ0

S ⊂ ΓS we denote the set where
det JS(ẐS , BR, θS) = 0.
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Theorem 5.5. If SD(θS , BR) 6= ∅, then ΓS − Γ0
S is an open and dense subset of

ΓS.

Proof. First let us prove that ΓS − Γ0
S is open in ΓS . Suppose we have (5.6) for

some γ0 ∈ ΓS . Take γ ∈ ΓS to be sufficiently close to γ0.
Using the implicit function theorem for the first equation of System (5.4), we

observe that for any γ, which is sufficiently close to γ0, the equation is solvable in
the vicinity of ẐS . Moreover, the condition (5.6) and the first condition in (5.5) are
fulfilled. Let us denote this solution by ẐS(γ). Using the second equation in (5.4)
we obtain ŷi(R)(γ) from the formula

ŷi(r)(γ) =
Fi(r)(ẐS(γ), BR)

Gi(r)(ẐS(γ), BR)
.

The function ŷi(r)(γ) is continuous in γ (we can use a smaller neighborhood of γ0

if needed), therefore the second condition in (5.5) is fulfilled also. Thus, ΓS − Γ0
S

is open in ΓS .
Now we will show that ΓS−Γ0

S is dense in ΓS . Let γ1 ∈ ΓS , ẐS be the correspond-
ing solution of the first equation of System (5.4). Suppose that the condition (5.6)
is not fulfilled for ẐS and that there exists a vicinity O of γ1 such that det JS = 0
for any γ ∈ O and for any solution of System (5.4)-(5.5).

Put ξs = Zs − Ẑs (s ∈ S). It follows from Remark 4.4 that SD(θS , BR) 6= 0, so
that i is an bijective function on S. It can be assumed that i(s) = s for all s ∈ S
and S = {1, . . . , |S|}. Then the system

fs(ξs) = Fs(ξs, BR)−Gs(ξs, BR)θi(s) = 0

has a zero solution ξ̂s (s ∈ S). The first member of equation is an affine polynomial
in ξ̂s (s ∈ S), i.e.

fs(ξ1, . . . , ξ|S|) = a1sξ1 + a2sξ2 + · · ·+ assξs +
∑
p≥2

As1...sp
ξs1 . . . ξsp

.

Obviously, det JS(0, BR, θS) = det(aij)i,j∈S = 0.
Consider the perturbed coefficients aij + εij (εij 6= 0). In this case, ξ̂s = 0

is still a solution with the Jacoby matrix JS,ε(0, BR, θS) = (aij + εij)i,j∈S . We
assumed before that det JS,ε = 0 for any sufficiently small εij (i, j ∈ S). However,
it is well-known that in each neighborhood of a singular n× n-matrix there exists
a nonsingular matrix. This contradiction proves the theorem. �

Remark 5.6. Condition (5.6) guarantees the uniqueness of the solution (ẐS , ŷi(R))
in its vicinity.

In a similar way, we define the notion of a stable stationary point (see e.g. [6]).

Remark 5.7. The coordinates x̂i, ŷi, νv̂i (i ∈ N, ν = 1, . . . , p) of the stationary
point P̂ for System (3.34) with Zi = Σ(yi, θi, 0) (i ∈ N) satisfy

(1) x̂i(r) = ŷi(r), Zr(ŷi(r)) = Br (r ∈ R);
(2) x̂s = ŷs = θs (s ∈ S);
(3) Aiv̂i + αiπix̂i = 0 (i ∈ N).
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Example 5.8. Consider the delay equation

ẋ = 2− 2Z − x
Z = Σ(y, 1, q)

y(t) =0cx(t) +1c

∫ t

−∞

1K(t− s)x(s)ds.

Assume that 0c ≥ 0, 0c +1c = 1, q ≥ 0, Σ(y, 1, q) is the logoid function, given in
Example 2.7, and 1K(u) is the weak generic delay kernel given by (1.5).

Using the non-delay representation (3.34), we obtain the system:

ẋ = 2− 2Z − x
1v̇ =0c (2− 2Z − x) + αx− α ·1v

Z = Σ(y, 1, q).

Let us apply Theorem 5.4 to this system. Solving the equation 2 − 2Z − 1 = 0,
corresponding to (5.4), we obtain ẐS = 0.5, where we also have det JS = −2 6= 0.
Thus, the point P̂ (1, 1) is SSP.

The coordinates of points P (q)(xk, yk) can be found from the system

2− 2
(0.5 + yk−1

2δ(qk) )
1

qk

(0.5 + yk−1
2δ(qk) )

1
qk + (0.5− yk−1

2δ(qk) )
1

qk

− yk = 0,

xk = yk,

where qk ∈ (0, ε) (k ∈ M). Assume that δ(qk) = qk. The relation between qk and
yk is shown in Figure 4.

0 0.05 0.1 0.15 0.2
0.98

0.985

0.99

0.995

1

1.005

q

y

Figure 4.

Example 5.9. Consider the system

ẋ1 = Z1 − Z1Z2 − γ1x1

ẋ2 = 1− Z1Z2 − γ2x2

y1 = x1

y2 =
∫ t

−∞

1K(t− s)x2(s)ds,
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where γ1, γ2, are positive parameters, Zi = Σ(xi, θi, q), (q ≥ 0), (i = 1, 2) are logoid
functions, given in Example 2.7. Assume that the thresholds θ1 = θ2 = 1 and the
parameters γ1 = 0.6, γ2 = 0.9.

The model has four walls SD(1, θ2), SD(θ1, 1), SD(θ1, 0) and SD(0, θ2). Let us
apply Theorem 5.4 to this system. For the first wall SD(1, θ2) System (5.4) will be

F2(Z2, 1)−G2(Z2, 1)θ2 = 0

F1(Z2, 1)−G1(Z2, 1)ŷ1 = 0,

or
1− Ẑ2 − 0.9 θ2 = 0

1− Ẑ2 − 0.6 ŷ1 = 0.

The solution ŷ1 = 1.5, Ẑ2 = 0.1 satisfies the constraints (5.5).
For SD(θ1, 1) System (5.4) becomes

1− Ẑ1 − 0.9 ŷ2 = 0

1− Ẑ1 − 0.6 θ1 = 0,

but the solution ŷ2 = 0.6, Ẑ1 = 0.4 does not belong to this wall. The same conclu-
sion holds for the singular domains SD(θ1, 0) and SD(0, θ2).

The Jacoby determinant (5.3) for the wall SD(1, θ2) will be

det J2(Ẑ2, θ2) = det
( ∂

∂Z2
F2(Z2, 1)− ∂

∂Z2
G2(Z2, 1)y2

)
= −1 6= 0.

This means that, the system has one stationary point P̂ ∈ SD(1, θ2) for q = 0 (and
thus stationary points for small q > 0) with the coordinates x1 = y1 = 1.5, x2 =
y2 = 1.

6. Stability analysis and the localization principle

We study System (1.1) with the delay operator (1.2). According to our method,
System (1.1) is replaced with System (3.34), which includes more variables. We
should therefore justify that stability properties of (1.1) and (3.34) are the same.

We start with the formal definition of stability (instability) using the delay equa-
tion (3.11) and System (3.31). Equation (3.11) and System (3.31) are generaliza-
tions of (1.1) and (3.34), respectively.

Assume that x(t) = 0 is a solution of Equation (3.11) for t ≥ 0. Obviously,
x(t) = 0, v(t) = 0 will be a zero solution of System (3.31) for t ≥ 0.

Definition 6.1. The zero solution of (3.11) is called exponentially stable if there
exist M > 0, κ > 0, δ > 0 such that

|x(t)| ≤Me−κt sup
τ≤0
|ϕ(τ)| (t > 0) (6.1)

for any measurable function ϕ(τ), τ ≤ 0, which is the initial function for x(t) (see
(3.11)) satisfying the estimate

sup
τ≤0
|ϕ(τ)| < δ.
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Definition 6.2. The zero solution of (3.31) is called exponentially stable if there
exist M > 0, κ > 0, δ > 0 such that

|x(t)|+ |v(t)| ≤Me−κt(|x(0)|+ |v(0)|) (t > 0) (6.2)

where |x(0)| < δ, |v(0)| < δ.

Definition 6.3. The zero solution of (3.11) is stable if for any ε > 0 there exists
δ > 0 such that

sup
t>0
|x(t)| < ε (6.3)

as soon as

sup
τ≤0
|ϕ(τ)| < δ,

where ϕ(τ) is the initial function for x(t) .

Definition 6.4. The zero solution of (3.31) is stable if for any ε > 0 there exists
δ > 0 such that

|x(t)|+ |v(t)| < ε (6.4)

as soon as |x(0)| < δ, |v(0)| < δ.

Theorem 6.5. Suppose that x(t) = 0 is a solution of Equation (3.11), where f
satisfies the conditions (C1)-(C3) from Subsection 3.2 and < is given by (3.14)-
(3.16). Then the exponential stability (instability) of x(t) = 0 is equivalent to the
exponential stability (instability) of the zero solution of System (3.31), where A, π̃
are given by (3.24) and (3.30), respectively.

Proof. First we consider the case of exponential stability. Assume that the solution
(x(t), v(t)) of (3.31) satisfies (6.2). The matrix A is stable (Reλ ≤−κ1 for all
eigenvalues of the matrix A, (κ1 > 0)). Then we have

‖eAt‖ ≤ Ne−κ1t (t ≥ 0). (6.5)

Put δ1 = δκ1
‖π̃‖N , where δ > 0, such as we have (6.2) while |x(0)| < δ, |v(0)| < δ. If

sup
τ≤0
|ϕ(τ)| ≤ δ1,

then (3.31) gives

|x(t)| ≤ |x(t)|+ |v(t)| ≤Me−κt(|x(0)|+ |v(0)|)

≤Me−κt(|ϕ(0)|+ N‖π̃‖
κ1

sup
τ≤0
|ϕ(τ)|)

= M̄e−κt sup
τ≤0
|ϕ(τ)|,

since x(0) = ϕ(0), |x(0)| < δ, |v(0)| < δ and

|v(0)| ≤ N‖π̃‖
κ1

sup
τ≤0
|ϕ(0)|.

Therefore, the solution x(t) of (3.31) satisfies (6.1).
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Now assume that we have the estimate (6.1) for the solution x(t). Using (3.29)
we obtain

|x(t)|+ |v(t)|

≤Me−κt sup
τ≤0
|ϕ(τ)|+ |eAT tv(0)|+

∣∣ ∫ t

0

eAT (t−s)π̃x(s)ds
∣∣

≤Me−κt sup
τ≤0
|ϕ(τ)|+Ne−κ1t|v(0)|+

∫ t

0

e−κ1(t−s)‖π̃‖Me−κsds · sup
τ≤0
|ϕ(τ)|

≤Me−κt sup
τ≤0
|ϕ(τ)|+ ‖π̃‖M

|κ− κ1|
|e−κ1t − e−κt| sup

τ≤0
|ϕ(τ)|+Ne−κ1t|v(0)|.

(we may assume that κ 6= κ1, otherwise we can use a smaller κ1). Taking κ̄ =
min{κ, κ1} > 0 we arrive at

|x(t)|+ |v(t)| ≤ M̄e−κ̄t sup
τ≤0
|ϕ(τ)|+Ne−κ1t|v(0)|.

The last estimate holds for any ϕ which gives the solution x(t) of Equation (3.11).
However, another ϕ may give the same solution x(t), t ≥ 0. Let us use this fact.

Equation (3.11) and System (3.31) are equivalent. Thus, ϕ1(τ) and ϕ2(τ) give
the same solution x(t) of Equation (3.11) if and only if ϕ1(0) = ϕ2(0) (= x(0)) and∫∞
0
eÃτϕ1(−τ)dτ =

∫∞
0
eÃτϕ2(−τ)dτ (= v(0)), as the pair (x(0), v(0)) completely

determines the solution of System (3.31).
Let ϕ(τ) is equal to a constant vector ϕ0 on the interval (−∞, 0) and ϕ(0) = x(0).

Also assume that ϕ0 satisfies the equation

v(0) =
∫ ∞

0

eÃτ π̃ϕ0dτ = Āπ̃ϕ0,

where Ā =
∫∞
0
eÃτdτ .

According to (3.32), all eigenvalues of the matrix A are equal to
∫∞
0
e−αtdt =

1
α 6= 0. Thus, Ā is an invertible matrix. Let π̃] be a left inverse matrix to π̃.
Assume that ϕ0 = π]Ā−1v(0), so that

sup
s≤0
|ϕ(s)| = max{|ϕ0|; |x(0)|}

≤ max{‖π]‖ · ‖Ā−1‖ · |v(0)|; |x(0)|}
≤ c1(|v(0)|+ |x(0)|).

Substituting ϕ just defined we obtain

|x(t)|+ |v(t)| ≤ M̄e−κ̄tc1(|v(0)|+ |x(0)|) +Ne−κt|v(0)|
≤M2e

−κ̄t(|v(0)|+ |x(0)|), t ≥ 0

for sufficiently small |v(0)| and |x(0)|. This gives the estimate (6.2).
Continuing the proof of the theorem we look now at the property of instability. If

the zero solution x(t) of System (3.11) is unstable then, obviously, the zero solution
of System (3.31) is unstable as well, since x(t) is part of this solution.

Assume that the zero solution of System (3.31) is unstable. Suppose that this
solution is stable in the first component, i.e. the relation (6.3) is satisfied. From
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(3.29) and (6.5) we obtain

|v(t)| ≤ Ne−κt|v(0)|+
∫ t

0

Ne−κ1(t−s)‖π̃‖εds

≤ Ne−κt|v(0)|+ ε‖π̃‖N
κ1

(1− e−κ1t)

< Ne−κt|v(0)|+ ε‖π̃‖N
κ1

for
sup
τ≤0
|ϕ(τ)| < δ.

Letting ε1 > 0 be fixed, let us choose ε such that ε‖π̃‖N
κ1

< ε1
2 and construct δ

such that the estimate (6.3) holds for this ε. Moreover, assume that δ < ε
2N . Now

for any v(0) and x(0), satisfying |x(0)| < δ and |v(0)| < δ, we get |v(t)| < ε1 for
all t > 0. It means that the zero solution is stable in both components. This
contradiction completes the proof. �

Let us now formulate a stability result for System (1.1) with Zk given by the
logoid function (k = 1, . . . ,m). Let S ⊂ M and BR be fixed. We are looking for
SSP in the singular domain SD(S,BR). Assume that the conditions of Theorem
5.4 are fulfilled, i.e. there exists an isolated stationary point P̂ ∈ SD(S,BR).

Consider the reduced system
ẋs = Fs(Zs)−Gs(Zs)xs

Zs = Σ(ys, θs, qs)

ys(t) = (<sxs)(t), (s ∈ S),
(6.6)

where Fs(Zs) = Fi(s)(Zs, BR), Gs(Zs) = Gi(s)(Zs, BR).

Theorem 6.6 (localization principle). Suppose that the conditions of Theorem 5.4
are fulfilled. Then System (6.6) has an isolated stationary point P̂. The point P̂ is
asymptotically stable (unstable) if and only if P̂ is asymptotically stable (unstable)
for System (1.1).

Proof. We use Theorem 5.4, where we put S = N , R = ∅, i(s) = s, Ẑs = Ẑs and
obtain a condition of existence of SSP for System (6.6). According to Theorem 6.5,
it is equivalent to study stability properties of this point for System (1.1) and for
System (3.34).

According to Proposition 7.4 from the paper [11] , we have that x̂i = ŷi for a sta-
tionary point. Therefore, xi(q) is close to yi(q) for a small q. Then Σ(yi(r), θr, qr) =
Br for all r ∈ R and System (3.34) becomes quasi-triangular:

ξ̇ = A(ξ),

η̇ = B(ξ, η),
(6.7)

where ξ = (xS , vS)T , η = (xi(R), vi(R))T ,

A(ξ) = (FS(ZS , BR)−GS(ZS , BR)xS ;ASvS + ΠS(xS))T ,

B(ξ, η) = (Fi(R)(ZS , BR)−Gi(R)(ZS , BR)xi(R);Ai(R)vi(R) + Πi(R)(xi(R)))T .

Clearly, the first equation coincides with System (6.6). Assume that the stationary
point P̂ for (6.6) is asymptotically stable. According to Theorem 5.4 the stationary
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point P̂ of System (6.7) is P̂ = (P̂, Q̂), where Q̂ is a coordinate vector corresponding
to η.

Since System (6.6) is asymptotically stable and the matrix A is differentiable,
the zero solution of the linearized equation is asymptotically stable, as well. Let
us linearize the whole System (6.7) around the stationary point P̂ . Clearly, the
Jacoby matrix there will be quasi-triangular. This implies that it is sufficient to
check stability properties of the second quasi-diagonal matrix. It is, however, easy
to see that this matrix coincides with the stable matrix Ai(R) given by (3.35).

Thus, the whole matrix A is stable too, so that the solution P̂ of System (6.7) is
asymptotically stable, i.e. the stationary solution of System (1.1) is asymptotically
stable, as well (in fact, exponential stable).

If the stationary solution of (6.6) is unstable then the stationary solution of (6.7)
is unstable a fortiori. �

Example 6.7. Consider the system from Example 5.8. The reduced system in the
wall SD(1, θ2) will be

ẋ1 = 1− Z2 − 0.6x1,

ẋ2 = 1− Z2 − 0.9x2,

y2 =
∫ t

−∞

1K(t− s)x2(s)ds.

Using Theorem 5.4 to find a stationary point, we obtain the following system:

1− Ẑ2 − 0.9 θ2 = 0

1− Ẑ2 − 0.6 ŷ1 = 0.

Solving this system, we get the same solution ŷ1 = 1.5, Ẑ2 = 0.1 as in Example 5.8.

Remark 6.8. The reduced system for System (3.34) is given by
ẋs(t) = Fs(Zs)−Gs(Zs)xs(t)

v̇s(t) = Asvs(t) + Πs(xs(t)), t > 0

Zs = Σ(ys, θs, qs), ys =1vs ,

(6.8)

where xs = xi(s), vs = vi(s), Fs(Zs) = Fi(s)(Zs, BR), Gs(Zs) = Gi(s)(Zs, BR)
(i = 1, . . . , n, s = 1, . . . , σ, σ = |S|).

Notice that this reduced system is equal to the reduced system (6.6). Then the
Jacoby matrix for System (6.6) will be

J :=


XX XV1 XV2 XV3 . . . XVσ

V1X V1V1 V1V2 V1V3 . . . V1Vσ

V3X V3V1 V3V2 V3V3 . . . V3Vσ

...
...

...
...

...
...

VσX VσV1 VσV2 VσV3 . . . VσVσ

 , (6.9)

where

XX :=


−g1 0 0 . . . 0

0 −g2 0 . . . 0
0 0 −g3 . . . 0
...

...
...

...
...

0 0 0 0 . . . −gσ

 ,
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VjVj :=


−αj +0cjJj αj 0 . . . 0

0 −αj αj . . . 0
0 0 −αj . . . 0
...

...
...

...
...

0 0 0 0 . . . −αj

 ,

VjVk = ∅ if j 6= k (j, k = 1, . . . , σ),

XV1 :=


J1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 0

 , XV2 :=


0 0 0 . . . 0
0 J2 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 0

 , . . . ,

XVσ :=


0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . Jσ

 , V1X :=


a1 0 0 . . . 0

α1
2c1 0 0 . . . 0

α1
3c1 0 0 . . . 0
...

...
...

...
...

α1
pc1 0 0 0 . . . 0

 ,

V2X :=


0 a2 0 . . . 0
0 α2

2c2 0 . . . 0
0 α2

3c2 0 . . . 0
...

...
...

...
...

0 α2
pc2 0 0 . . . 0

 , . . . , VσX :=


0 0 0 . . . aσ

0 0 0 . . . ασ
2cσ

0 0 0 . . . ασ
3cσ

...
...

...
...

...
0 0 0 0 . . . ασ

pcσ

 ,

Js = ( ∂
∂Zs

Fs(Zs)−xs
∂

∂Zs
Gs(Zs))∂Zs

∂ys
, as = αs(0cs +1cs)−Gs(Zs)0cs, gs = Gs(Zs),

(s = 1, . . . , σ, σ = |S|).

7. Stability analysis of SSP in the black wall

In Section 4 we mentioned that the system can have 3 types singular domains
(white, black and transparent). In this section we study a stable singular points
therefore we will focus only on stationary points in the black wall.

In the non-delay case any regular stationary point is always asymptotically stable
as soon as it exists. This is due to the assumptions Gi > 0. Stability of the matrix
JS(ZS , BR, θS) (see (5.3)) provides, then, asymptotic stability of singular stationary
points (see e.g. [10] for delays).

Including delays leads to more involved stability conditions. We study here
Equation (3.1)

ẋ(t) = F (Z)−G(Z)x(t)

Z = Σ(y, θ, q)

y(t) = (<x)(t) (t ≥ 0)

with the delay operator given by (3.2)

(<x)(t) = 0cx(t) +
∫ t

−∞
K(t− s)x(s)ds, t ≥ 0,

where K(u) = 1c · 1K(u) + 2c · 2K(u), νc ≥ 0 (ν = 0, 1, 2), 0c+ 1c+ 2c = 1.
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According to the localization principle presented in the previous section the
stability analysis below is, in fact, valid for an arbitrary number of genes xi, where
only one gene x becomes activated (i.e. y assumes its threshold value) at any time.
Applying the generalized linear chain trick, we arrive at System (3.5)

ẋ = F (Z)−G(Z)x
1v̇ = 0c (F (Z)−G(Z)x) + αx(0c+ 1c)− α ·1v + α ·2v

2v̇ = α · 2c x− α ·2v,
where Z = Σ(y, θ, q). The equivalence of Systems (3.1) and (3.5) is a particular
case of equivalence of Systems (1.1) and (3.34) (or, in general, Systems (3.11) and
(3.34)).We first present two theorems.

Theorem 7.1. Let 0c > 0 in (3.2) and let the equation

F (Z)−G(Z)θ = 0 (7.1)

have a solution 0Z satisfying 0 <0Z < 1.
Then the point P̂ (0x,0(1v),0(2v)), where 0x =0(1v) = θ, 0(2v) = 2c θ, will be asymp-

totically stable if D < 0, and unstable if D > 0, where

D = F ′(Z)−G′(Z)θ (7.2)

is independent of Z (as both F and G are affine).

Proof. In the course of the proof we keep fixed an arbitrary logoid function Z =
Σ(y, θ, q), q > 0, satisfying Assumptions 2.1-2.4. Let P (q)(x(q),1v(q),2v(q)) be the
corresponding approximating stationary points from Definition 5.2, which converge
to P̂ as q → 0. (Below y(q) replaces 1v(q) to simplify the notation.) Then

Z(q) := Σ(y(q), θ, q)→ Σ(0y, θ, 0) := Ẑ

due to Assumption 2.1. As P (q) is a stationary point for (3.1) with Z = Σ(y, θ, q)
for sufficiently small q > 0, we have F (Z(q))−G(Z(q))x(q) = 0. Letting q → +0,
we obtain the equality F (Ẑ) − G(Ẑ)θ = 0. From the assumptions of the theorem
it follows, however, that F (0Z) − G(0Z)θ = 0. As the functions F (Z) and G(Z)
are affine in Z, the function F (Z)−G(Z)θ is affine as well and, moreover, it is not
constant because detD 6= 0. This implies that Ẑ =0Z. In particular,

Z(q) = Σ(y(q), θ, q)→0Z (q → 0). (7.3)

According to Definition 5.2, we have to look at the Jacoby matrix J(q) of the
smooth system (3.1) with Z = Σ(y, θ, q), q > 0, evaluated at the stationary point
P (q). Evidently,

J(q) :=

 −g(q) D(q)d(q) 0
α(0c+ 1c)− 0cg(q) −α+ 0cD(q)d(q) α

α 2c 0 −α

 , (7.4)

where we, to simplify the notation, put

g(q) := G(Z(q)), D(q) := F ′(Z(q))−G′(Z(q))x(q), d(q) :=
∂Σ
∂y

(y(q), θ, q).

(7.5)
Clearly,

g(q)→ G(0Z), D(q)→ D, d(q)→ +∞ (7.6)
as q → 0.



30 I. SHLYKOVA, A. PONOSOV, Y. NEPOMNYASHCHIKH, A. SHINDIAPIN EJDE-2008/104

The challenge is to study spectral properties of the matrix J(q) as q → 0. This
is done in the paper [12]. The final result says that if D < 0, then the matrix J(q)
is stable for small positive q, and if D > 0, then the matrix J(q) is unstable for
small positive q. This completes the proof of the theorem. �

Theorem 7.2. Let 0c = 0 in (3.2) and let the equation (7.1) have a solution 0Z
satisfying 0 <0Z < 1.

Then the point P̂ (0x,0(1v),0(2v)), where 0x =0 (1v) = θ, 0(2v) = 2c θ, has the
following properties

(1) If D > 0, then P̂ is unstable.
(2) If D < 0, 1c = 0, then P̂ is unstable.
(3) If D < 0, 1c 6= 0 and G(0Z) < α(1c)−1(1− 2 1c), then P̂ is unstable.
(4) If D < 0, 1c 6= 0 and G(0Z) > α(1c)−1(1 − 2 1c), then P̂ is asymptotically

stable spiral point.
Here D is again given by (7.2).

Proof. Setting 0c = 0 in (7.4) produces

J(q) =

−g(q) D(q)d(q) 0
α · 1c −α α
α · 2c 0 −α

 , (7.7)

which has no limit as q → 0.
The asymptotical analysis of the matrix J(q) yields the following (see [12]): if

D < 0, 1c 6= 0 and α(1c)−1(1 − 2 1c) < G(0Z), then the matrix J(q) is stable for
small positive q. If one of the above inequalities changes, then the matrix J(q) is
unstable for small positive q. This gives the result described in the theorem. �

The two theorems are used to study System (1.1), where < is given by (3.2).

Corollary 7.3. Assume that 0c > 0 in (3.2) and that for some finite sequence Bi

(i = 2, . . . n) consisting of 0 or 1 the system

F1(Z1, BR)−G1(Z1, BR)θ1 = 0
0 < Z1 < 1

Σ(xi, θ1, 0) = Bi (i ≥ 2)
(7.8)

has a solution 0Z1, 0xi (i ≥ 2).
Then the point P̂ = (0x1, . . . ,

0xn,
0(1v),0(2v)), where 0x1 =0(1v) = θ1 and 0(2v) =

2c θ1, is an asymptotically stable SSP for System (3.34) with Zi = Σ(yi, θi, 0) (i =
1, . . . , n) if D̄ < 0. If D̄ > 0, then SSP P̂ is unstable. D̄ is given by

D̄ =
∂

∂Z1
F1(Z1, BR)− ∂

∂Z1
G1(Z1, BR).

Corollary 7.4. Assume that 0c = 0 in (3.2) and that for some finite sequence Bi

(i = 2, . . . n) consisting of 0 or 1 the system (7.8) has a solution 0Z1, 0xi (i ≥ 2).
Then the point P̂ = (0x1, . . . ,

0xn,
0(1v),0 (2v)), where 0x1 =0(1v) = θ1 and 0(2v) =

2c θ1 is an unstable SSP for System (3.34) with Zi = Σ(yi, θi, 0) (i = 1, . . . , n) in
the following cases:

(1) If D̄ > 0.
(2) If D̄ < 0, 1c = 0.
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(3) If D̄ < 0, 1c 6= 0 and G(0Z1) < α(1c)−1(1− 2 1c).

If D̄ < 0, 1c 6= 0 and G(0Z1) > α(1c)−1(1− 2 1c), then P̂ is an asymptotically stable
SSP.

The proof of Corollaries 7.3 and 7.4 is followed from Theorems 6.6, 7.1 and 7.2.
Let consider now a more general case. We study System (3.1) with the delay

operator

(<x)(t) =0cx(t) +
∫ t

−∞
K(t− s)x(s)ds, t ≥ 0, (7.9)

where

K(u) =
n∑

ν=1

νc ·νK(u) , (7.10)

νK(u) =
αν · uν−1

(ν − 1)!
e−αu . (7.11)

The coefficients νc (ν = 0, . . . , n) are real nonnegative numbers satisfying∑n
ν=0

νc = 1. It is also assumed that α > 0 . Let us put

νw(t) =
∫ t

−∞

νK(t− s)x(s)ds, (7.12)

where t ≥ 0.
Below we summarize the ideas we presented in Section 3. Let us put

1v =0cx+
n∑

ν=1

νc ·νw, νv =
n−ν+1∑

j=1

j+ν−1c ·jw (ν = 2, . . . , n). (7.13)

In particular, nv =nc ·1w. Then

ẋ(t) = F (Z)−G(Z)x(t)

v̇(t) = Av(t) + Π(x(t)), t > 0

Z = Σ(y, θ, q), y =1v,

(7.14)

where

A =


−α α 0 . . . 0
0 −α α . . . 0
0 0 −α . . . 0
...

...
. . . . . .

...
0 0 . . . 0 −α

 ,v =


1v
2v
...

nv

 , (7.15)

and
Π(x) := αxπ +0c f(Z, x) (7.16)

with

π =


0c+1c

2c
...

nc

 , f(Z, x) :=


F (Z)−G(Z)x

0
...
0

 . (7.17)
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In this case we get the system of ordinary differential equations:

ẋ = F (Z)−G(Z)x
1v̇ =0c (F (Z)−G(Z)x) + αx(0c+1c)− α ·1v + α ·2v

2v̇ = α ·2cx− α ·2v + α ·3v
3v̇ = α ·3cx− α ·3v + α ·4v,

. . .

n−1v̇ = α ·n−1c x− α ·n−1v + α ·nv,
nv̇ = α ·ncx− α ·nv,

(7.18)

where Z = Σ(y, θ, q). In this case,
∑n

k=0
kc = 1. This system is equivalent to (3.1).

Consider the Jacoby matrix of System (7.18) to study the asymptotical stability
of System (3.1). The (n+ 1)× (n+ 1) Jacoby matrix of the system (7.18) reads

J(q) :=



−g(q) D(q)d(q) 0 0 0 . . . 0 0
α(0c+1c)−0cg(q) −α+0cD(q)d(q) α 0 0 . . . 0 0

α ·2c 0 −α α 0 . . . 0 0
α ·3c 0 0 −α α . . . 0 0

...
...

...
...

...
. . .

...
...

α ·n−1c 0 0 0 0 . . . −α α
α ·nc 0 0 0 0 . . . 0 −α


,

(7.19)
where g(q), D(q), d(q) are given by (7.5).

Let us introduce the property (AS):

(∃ε > 0) (∀q ∈ (0, ε)), J(q) is stable .

For study this property we will use the Routh-Hurwitz condition.

Proposition 7.5. Let the equation (7.1) have a solution 0Z satisfying 0 <0Z < 1
and D 6= 0. Then the point P̂ (0x, 0(1v), . . . ,0(nv)), where 0x =0 (1v) = θ, 0(iv) =
(1 −

∑i−1
k=0

kc)θ, (i = 2, . . . , n) is SSP for System (3.1) with operator < given by
(7.9)-(7.12). The point P̂ is stable if and only if the property (AS) is true.

The Routh-Hurwitz condition. Let

P (λ) = λn+1 +A1λ
n +A2λ

n−1 + . . . Anλ+An+1 (7.20)

be the characteristic polynomial of the matrix J(q) given by (7.19) multiplied by
(−1)n+1, i.e. (−1)n+1 det(J(q)− λI). Let

R(q) :=



A1 1 0 0 0 . . . 0 0 0 0 0
A3 A2 A1 0 0 . . . 0 0 0 0 0
A5 A4 A3 A2 A1 . . . 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 . . . An+1 An An−1 An−2 An−3

0 0 0 0 0 . . . 0 0 An−3 An−2 An−1

0 0 0 0 0 . . . 0 0 0 0 An+1


(7.21)
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be its Hurwitz matrix. A necessary and sufficient condition for J(q) to be stable is
that all principle leading minors of this matrix are strictly positive, i.e.

∆k > 0, k = 1, 2, . . . , n+ 1 (7.22)

Remark 7.6. It is well-known that Ak is a sum Ck
n of all principle leading minors

of order k of the matrix J(q) multiplied by (−1)k. In particular, A1 = − tr J(q),
An+1 = (−1)n+1 det J(q).

For example, for n = 1,

R(q) =
(
A1 1
0 A2

)
=

(
− tr J(q) 1

0 det J(q)

)
,

∆1 = − tr J(q), ∆2 = A1A2 = − tr J(q) · det J(q).

Thus, condition (7.22) becomes the well-known criterion of stability for a two di-
mensional matrix : trJ(q) < 0, det J(q) > 0.

Theorem 7.7. D < 0 is necessary for (AS). In particular, if D > 0 then P̂ is
unstable.

Proof. According to the Routh-Hurwitz condition, if the matrix J(q) is stable then
∆1 = A1 > 0. By calculation we get

A1(q) = − tr J(q) = g(q)−0c · det J(q)d(q) + nα.

From this formula and the condition (7.5) we obtain

sgn(A1(q)) = − sgn(det J(q)) = − sgn(D)

for all small q > 0. Therefore, ∆1 > 0 if and only if D < 0 for all small q > 0. �

For n, k = 0, 1, 2, . . . we put

Ck
n =

n!
k!(n− k)!

if k ≤ n; Ck
n = 0 if k > n.

Lemma 7.8. The coefficients of the characteristic polynomial P (λ) for the equation
(7.20) will be

Ak = Ck
nα

k + Ck−1
n αk−1g(q)− αk−1d(q) detJ(q)

k∑
j=1

Ck−j
n+1−j ·

j−1c, (7.23)

k = 1, 2, . . . , n+ 1; in particular,

A1 = nα+ g(q)− d(q) detJ(q)0c,

A2 = C2
nα

2 + nαg(q)− αd(q) det J(q)(n ·0c+1c),

An+1 = αng(q)− αnd(q) detJ(q)
n∑

j=0

jc = αn g(q)− αn d(q) detJ(q).

The proof of the above lemma is performed by direct calculation of P (λ) =
det(λI − J(q)). It is omitted.

Assume that the operator in System (3.1) is given by

(<x)(t) =0cx(t) +
∫ t

−∞
K(t− s)x(s)ds, t ≥ 0,

where K(u) =
∑n

ν=1
νc ·νK(u),

∑n
ν=0

νc = 1, (ν = 0, . . . , n).
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The analytical formulas for n = 2, 3, 4, 5 can be obtained with the help of Math-
ematica. The results for the case n = 2 are shown in Theorems 7.1 and 7.2.

For n = 3 the Jacoby matrix is

J(q) :=


−g(q) D(q)d(q) 0 0

α(0c+1c)−0cg(q) −α+0cD(q)d(q) α 0
α ·2c 0 −α α
α ·3c 0 0 −α

 , (7.24)

where g(q), D(q), d(q) are given by (7.5).

Proposition 7.9. If
(1) 0c > 0, D < 0 and 9 0c2 +1c (2 1c+2c) +0c (9 1c+ 3 2c− 1) > 0 or
(2) 0c = 0, D < 0 and α(1c−2c) +1c G(0Z) > 0,

then the point P̂ is asymptotically stable.

For n = 4 the Jacoby matrix

J(q) :=


−G(0Z) D(q)d(q) 0 0 0

α(0c+1c)−0cg(q) −α+0cD(q)d(q) α 0 0
α ·2c 0 −α α 0
α ·3c 0 0 −α α
α ·4c 0 0 0 −α

 , (7.25)

where g(q), D(q), d(q) are given by (7.5).

Proposition 7.10. If
(1) 0c > 0, D < 0, 20 0c2 +1c (3 1c +2c) +0c (15 1c + 2 2c −3c) > 0 and 80 0c3 +

8 0c2 (15 1c + 6 2c + 2 3c − 2) +1c (9 1c2 +2c (2 2c +3c) +1c (9 2c + 3 3c − 1)) +
0c (57 1c2 + 4 2c2 −3c2 + 4 1c (10 2c+ 3 3c− 2)) > 0 or

(2) 0c = 0, D < 0, α(1c−2c) +1cG(0Z) > 0 and
9 1c2 +2c (2 2c+3c) +1c (9 2c+ 3 3c− 1) > 0,

then the point P̂ is asymptotically stable.

For n = 5

J(q) :=


−G(0Z) D(q)d(q) 0 0 0 0

α(0c+1c)−0cg(q) −α+0cD(q)d(q) α 0 0 0
α ·2c 0 −α α 0 0
α ·3c 0 0 −α α 0
α ·4c 0 0 0 −α α
α ·5c 0 0 0 0 −α

 , (7.26)

where g(q), D(q), d(q) are given by (7.5).

Proposition 7.11. If
(1) 0c > 0, D < 0, 40 0c2+1c (4 1c+2c)+0c (24 1c+2 2c−3c) > 0, 275 0c3+0c (139 1c2+

(2 2c−3c)(3 2c+3c)+1c (64 2c−23c−10 4c+1))+1c (20 1c2+ 2c(3 2c+3c)+1c (15 2c+
2 3c−4c))+5 0c2 (66 1c+13 2c−4 3c−5 4c+1) > 0 and 1375 0c4 +50 0c2 (55 1c+
23 2c+ 93c+ 3 4c− 7) +0c2 (2015 1c2 + 225 2c2 + 30 3c− 45 3c2 − 1 + 5 2c (13 3c−
2 4c−6)+10 4c−70 3c 4c−25 4c2 +10 1c (157 2c+57 3c+18 4c−35))+1c (80 1c3 +
8 1c2 (15 2c + 6 3c + 2 4c − 2) +2c (9 2c2 +3c (2 3c +4c) +2c (9 3c + 3 4c − 1 )) +
1c (57 2c2 + 4 3c2 −4c2 + 4 2c (10 3c + 3 4c − 2))) +0 c (656 1c3 + 2 1c2 (374 2c +
140 3c + 47 4c − 64) + (2 2c −3 c)(9 2c2 +3c (2 3c +4c) +2 c (9 3c + 3 4c − 1)) +1
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c (231 2c2 +2c (123 3c+ 34 4c− 36) + 2 (4 3c− 4 3c2 +4c− 11 3c 4c− 5 4c2))) > 0
or

(2) 0c = 0, D < 0, α(1c−2c)+1cG(0Z) > 0, 20 1c2+2c (3 2c+3c)+1c (15 2c+2 3c−4c) >
0 and 80 1c3 + 8 1c2 (15 2c+ 6 3c+ 2 4c− 2) +2c(9 2c2 +3c (2 3c+4c) +2c (9 3c+
3 4c− 1)) +1c (57 2c2 + 4 3c2 −4c2 + 4 2c (10 3c+ 3 4c− 2)) > 0, G(0Z) > 0,

then the point P̂ is asymptotically stable.
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The problem of how the dynamics of the smooth gene networks is related to the simplified
dynamics of the Boolean networks is studied. The emphasis is put on the gene regulatory
networks with delay. Asymptotic analysis which is applied in the paper goes back to
Tikhonov’s theory of singular perturbed differential equations and a modified algorithm
of reducing delay equations to ordinary differential equations. A number of illustrative
examples complements the theory which is offered in the paper.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A gene regulatory network is a part of the interaction system of genes and proteins. The network is responsible for
providing a cell in the organism with the right amount of the proteins necessary for development of the embryo or
maintaining life functions of the organism. All these processes take place under varying internal and external conditions.
When trying to understand the role and functioning of the gene regulatory network, the first step is to assemble the
components of the network and the interactions between them.
There are different ways of modeling the gene regulatory network. The simplest dynamic models – Boolean network

models – were used already in the 1960’s by Stuart Kauffman (see e.g. the review article [1]). In a Boolean approach, a
binary description takes only the genetic activity into account; i.e. gene ‘‘on’’ ≡ 1 and gene ‘‘off’’ ≡ 0. These models
have a descriptive character and cannot model complex dynamic behavior. Differential equations allow for a more detailed
description of network dynamics by explicitly modeling the concentration changes of molecules over time. The basic
equations for the differential equations models are:

dxi
dt
= Fi(Z)− Gi(Z)xi, i = 1, . . . , n. (1)

The production and relative degradation rate functions Fi and Gi depend on a vector Z of steeply sloped threshold functions.
Themost popular and simple approach of the threshold functions is similar to the Boolean network approach. The threshold
functions Zi, i = 1, . . . , n are approximated by step functions. Regarding the thresholds in the state space, Eq. (1) changes
into a piecewise linear system. The dynamics of the obtained system can be described very easily between such thresholds,
but not in the switching domains. This approximation leads to the following problems:
(1) to analyze stationary points of the system and
(2) to define continuous solutions at discontinuity points.

∗ Corresponding author. Tel.: +47 94 12 70 46; fax: +47 64 96 54 01.
E-mail addresses: irinsh@umb.no (I. Shlykova), arkadi@umb.no (A. Ponosov).

0362-546X/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2010.01.016
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The solution to the first problem in the non-delay case can be found in [2,3] (see also references therein). The delay case is
extensively studied in [4]. The second problem in the non-delay case was studied in [5] by applying singular perturbation
analysis and combining two motions Xn and Zn. It was shown that the solution for steep sigmoids approaches the limit
solution uniformly, in any finite time interval (when the sigmoids approach the step functions). But the model proposed
in [5] does not take into account a time delay in cellular systems. However, analysis of real gene expression data shows
a considerable number of time-delayed interactions suggesting that time delay is essential in gene regulation. Therefore,
time-delay may have a great effect on the dynamics of the system and presents one of the critical factors that should be
considered in the reconstruction of gene regulatory networks.
The present work is a generalization of [5]. The inclusion of delay effects into the system for gene regulatory network

leads to unexpected and interesting results. The goal of this paper is to formalize the singular perturbation analysis for the
case of systems with delay and to obtain an analog of Tikhonov’s theorem giving sufficient conditions for determining the
limit system for the delay case.
To explain the approach let us consider Eq. (1). Assume that Z = (Z1, . . . , Zn), where any Zi is the Hill function given by

Zi = Σ(xi, θi, qi) =


x1/qii

x1/qii + θ
1/qi
i

if xi ≥ 0

0 if xi < 0
(2)

with the steepness parameter qi > 0 and the threshold value θi > 0, i = 1, . . . , n. Suppose that qi = q for any i = 1, . . . , n
and let q go to 0. Then each Zi, i = 1, . . . , n approaches the step function and the right-hand side of Eq. (1) becomes
discontinuous. The threshold lines xi = θi divide the plane into regions, called regular domains or boxes. Inside each regular
domain Zi are equal to 0 or 1 and the differential equation describing themotion inside the domain is linear, so that it can be
easily solved. In switching domains, called singular domains or walls, the system is not defined. To find solutions we apply
the singular perturbation analysis to (1) in any of singular domains.
Assume that x1 = θ1 and consider the corresponding singular domain {x1 = θ1, xi 6= θi, i = 2, . . . , n}. The variable x1 is

singular, that is the right-hand side of (1) is discontinuous at x1 = θ1 and q = 0. To obtain an equation describing themotion
in this domain we substitute this variable by Z1. This simple transformation is a starting point for singular perturbation
analysis. Z1 is assumed to be the Hill function given by (2), so that we get

x1 = Σ−1(Z1, θ1, q) = θ1

(
Z1
1− Z1

)q
and

dx1
dZ1
= θ1q

(
Z1
1− Z1

)q−1 1
(1− Z1)2

=
qx1

Z1(1− Z1)
. (3)

Note that if q→ 0, then x1 → θ1.
From (3) we obtain

dZ1
dx1
=
Z1(1− Z1)
qx1

and Eq. (1) is transformed to

qŻ1 =
Z1(1− Z1)

Σ−1(Z1, θ1, q)
(F1(Z)− G1(Z)Σ−1(Z1, θ1, q)),

ẋi = Fi(Z)− Gi(Z)xi, i = 2, . . . , n
(4)

where q > 0. This equation describes trajectories around the singular domain. In terms of singular perturbation analysis
Eq. (4) with the corresponding initial conditions is called the full initial value problem.
The stretching transformation τ = t/q takes the full initial value problem into the boundary layer system

Z ′1 =
Z1(1− Z1)

Σ−1(Z1, θ1, q)
(F1(Z)− G1(Z)Σ−1(Z1, θ1, q)),

x′i = q(Fi(Z)− Gi(Z)xi), i = 2, . . . , n,
(5)

where prime denotes differentiation with respect to τ .
By letting q → 0 in (5) we get the following system which describes the limit solution in the singular domain in slow

time τ

Z ′1 =
Z1(1− Z1)

θ
(F1(Z)− G1(Z)θ),

x′i = 0, i = 2, . . . , n.
(6)



3788 I. Shlykova, A. Ponosov / Nonlinear Analysis 72 (2010) 3786–3812

To apply Tikhonov’s theorem we let q go to 0 in (4). It gives us the system

Z1(1− Z1)
θ1

(F1(Z1, BR)− G1(Z1, BR)θ1) = 0,

ẋi = Fi(Z1, BR)− Gi(Z1, BR)xi, i = 2, . . . , n,

whereBR = (B2, . . . , Bn) is a correspondingBoolean vector (see Section4 formoredetails). The last equation canbe explicitly
solved and gives us the limit solution of Eq. (4) in the singular domain. Notice that the system must be provided with
sufficient conditions for using Tikhonov’s theorem (see Theorem 14, Appendix B).
Assume now that two variables x1 and x2 are singular. Then similarly to the case described above we get the system

Z ′1 =
Z1(1− Z1)

θ1
(F1(Z)− G1(Z)θ1),

Z ′2 =
Z2(1− Z2)

θ2
(F2(Z)− G2(Z)θ2)

describing the behavior of trajectories in the singular domain {x1 = θ1, x2 = θ2} for the slow time τ . Combining the
trajectories’ motions expressed in the regular and singular variables gives us the whole picture of solutions’ behavior.
The paper is organized in the following way. In Section 2 we formulate the main problem and point out the assumptions.

For studying the delay case we use a modified linear chain trick method (Section 3). This method helps us to remove the
delays from the model and obtain an equivalent system of ordinary differential equations. Section 4 contains a summary of
definitions and notation related to geometrical properties of the system used in the paper. In Sections 5 and 6 we consider
two particular cases of singular perturbation analysis for a scalar equation and for walls, respectively. The main result of the
paper Theorem 9 is presented in Section 7 and is based on Tikhonov’s theoremwhich can be found in Appendix B. Sufficient
conditions, which guarantee the existence of solutions and ensure the fact that solutions of the smooth problem go to the
limit solution for delay problems, are given in Sections 5–7 for scalar equations, walls and for general cases, respectively. For
a better understanding of the problem, we discuss the example from [5] in Appendix A in detail. In Section 8 we introduce
the delay effect into this example and study how it influences the trajectories’ behavior. The presented graphs of motion in
X2 and Z2 show a big difference between non-delay and delay cases.

2. Problem formulation

We study the delay system

ẋi(t) = Fi(Z1, . . . , Zm)− Gi(Z1, . . . , Zm)xi(t)

Zk = Σ(yi(k), θk, qk)

yi(t) = (<ixi)(t), t ≥ 0, i = 1, . . . , n, k = 1, . . . ,m.

(7)

This system describes a gene regulatory network with autoregulation [2–7], where changes in one or more genes happen
slower than in the others, which causes delay effects in some of the variables.
The functions Fi, Gi are affine in each Zk and satisfy

Fi(Z1, . . . , Zm) ≥ 0, Gi(Z1, . . . , Zm) > 0

for 0 ≤ Zk ≤ 1, k = 1, . . . ,m. Fi and Gi stand for the production rate and the relative degradation rate of the product of
gene i, respectively, and xi(t) denotes the gene product concentration. The input variables yi endow Eqs. (7) with feedbacks
which, in general, are described by nonlinear Volterra (‘‘delay’’) operators<i depending on the gene concentration xi(t). The
delay effects in the model arise from the time required to complete transcription, translation and diffusion to the place of
action of a protein [8].
If <i is the identity operator, then xi = yi and xi is a non-delay variable. Non-delay regulatory networks, where xi = yi

for all i = 1, . . . , n in their general form (i.e. where both production and degradation are regulated) were introduced
in [2].
As in [4] we assume<i to be integral operators of the form

(<ixi)(t) = 0cxi(t)+
∫ t

−∞

Ki(t − s)xi(s)ds, t ≥ 0, i = 1, . . . , n, (8)

where

Ki(u) =
p∑
ν=1

νciν Ki(u),

νKi(u) =
ανi u

ν−1

(ν − 1)!
e−αiu, i = 1, . . . , n, p = 1, . . . , n.
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Fig. 1. The Hill function for q = 0.1, 0.05, 0.001 and θ = 0.5.

The coefficients νci (ν = 0, . . . , p, i = 1, . . . , n) are real nonnegative numbers satisfying
p∑
ν=0

νci = 1

for any i = 1, . . . , n. It is also assumed that αi > 0 for all i = 1, . . . , n.
The ‘‘response functions’’ Zk express the effect of the different transcription factors regulating the expression of the gene.

Each Zk = Zk(yi(k)), 0 ≤ Zk ≤ 1 for yi(k) ≥ 0 is a smooth function depending on exactly one input variable yi(k) and on
two other parameters; i.e. the threshold value θk and the steepness value qk > 0. If qk = 0 then Zk becomes the unit step
function. A gene may have an arbitrary number of thresholds. This is expressed in the dependence i = i(k). If different k
correspond to the same i, then gene i(k) has more than one threshold. If some i does not correspond to any k, then gene i(k)
has no threshold.
Below is an example of the response function (the so-called Hill function) which is used in this paper. In fact, the main

results admit more general response functions, for example those axiomatized in the paper [5]. However, we will restrict
ourselves, as domany peoplewho deal withmodeling of gene regulatory network, only to the case of the Hill functionwhich
gives a good fit to the experimental measurements of reaction rates [9].
Let θ > 0, q > 0. The Hill function (Fig. 1) is given by

Σ(y, θ, q) :=


0 if y < 0
y1/q

y1/q + θ1/q
if y ≥ 0.

(9)

The Hill function satisfies the following properties (see [10]):

(1) Σ(y, θ, q) is continuous in (y, q) ∈ R × (0, 1) for all θ > 0, continuously differentiable with respect to y > 0 for all
θ > 0, 0 < q < 1, and ∂

∂yΣ(y, θ, q) > 0 on the set {y > 0 : 0 < Σ(y, θ, q) < 1};
(2) Σ(y, θ, q) satisfies

Σ(θ, θ, q) = 0.5, Σ(0, θ, q) = 0, Σ(+∞, θ, q) = 1

for all θ > 0, 0 < q < 1;
(3) For all θ > 0, ∂

∂ZΣ
−1(Z, θ, q)→ 0 uniformly on compact subsets of the interval Z ∈ (0, 1) as q→ 0;

(4) If q→ 0, thenΣ−1(Z, θ, q)→ θ uniformly on all compact subsets of the interval Z ∈ (0, 1) and for every θ > 0;
(5) If q→ 0, thenΣ(y, θ, q) tends to 1 (∀y > θ), to 0 (∀y < θ) and is equal to 0.5 (if y = θ ) for all θ > 0;
(6) For any sequence (yn, θ, qn) such as qn → 0 andΣ(yn, θ, qn)→ Z∗ for some0 < Z∗ < 1wehave ∂Σ

∂y (yn, θ, qn)→+∞.

3. The modified linear chain trick

A method to study (7) with the operator<i given by (8), being well-known in the literature, is usually called ‘‘the linear
chain trick’’ (LCT) [11]. However, a direct application of LCT in its standard form is not suitable for our purposes, because we
want Zi to depend on yi, only. A modification of LCT is described in [4].
In fact, our modified linear chain trick is a particular case of the so-called ‘‘W -transform’’, which is widely used in the

theory of functional differential equations [12,13].



3790 I. Shlykova, A. Ponosov / Nonlinear Analysis 72 (2010) 3786–3812

Consider Eq. (7) with the operator<i given by (8). Assume that this system is equipped with the initial conditions

xi(τ ) = ϕi(τ ), τ < 0, i = 1, . . . , n, (10)

where ϕi(τ ) are bounded and measurable. The application of the modified linear chain trick method helps us to remove the
delay from the system and obtain an equivalent system of ordinary differential equations. We use the vector substitution
(which is a version ofW -substitution)

vi(t) = αi

∫ t

−∞

Yi(t − s)πixi(s)ds+ 0cixie1, i = 1, . . . , n, (11)

where

vi =


1vi
2vi
...
pvi

 , πi =


1ci
2ci
...
pci

 , e1 =


1
0
...
0


and

Yi(t) = e−αit



1 αit
(αit)2

2!
. . .

(αit)p−1

(p− 1)!

0 1 αit . . .
(αit)p−2

(p− 2)!

0 0 1 . . .
...

...
...

. . .
. . . αit

0 0 . . . 0 1


is a fundamental matrix of the system ẏ = Aiywith

Ai =


−αi αi 0 . . . 0
0 −αi αi . . . 0
0 0 −αi . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 −αi

 .
Then we obtain that Eq. (7) is equivalent to the following system of ordinary differential equations [4]

ẋi(t) = Fi(Z1, . . . , Zm)− Gi(Z1, . . . , Zm)xi(t)

v̇i(t) = Aivi(t)+Πi(xi(t)), t > 0

Zk = Σ(yi(k), θk, qk), yi = 1vi, i = 1, . . . , n,

(12)

where

Πi(xi(t)) := αixi(t)πi + 0cifi(Z, xi(t))

with

πi :=


0ci + 1ci
2ci
...
pci

 , fi(Z, xi(t)) :=


Fi(Z)− Gi(Z)xi(t)

0
...
0


and Ai, vi defined above.
Nowwe look at the initial conditions (10), which should be rewritten in terms of the newvariables. Using the substitution

(11) we obtain

xi(0) = ϕi(0),

vi(0) =
∫ 0

−∞

Yi(−τ)πiϕi(τ )dτ + 0ciϕi(0)e1.
(13)

In [4] it is shown that the initial delay problem (7), (10) is equivalent to the initial value problem of ordinary differential
equations (12) and (13).
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Remark 1. Note that instead of the vector substitution (11) we can use the new modified variables

1vi =
0cixi +

p∑
ν=1

νci νwi and νvi =

p−ν+1∑
j=1

j+ν−1c i jwi, ν = 2, . . . , p,

where

νwi(t) =
∫ t

−∞

νKi(t − s)xi(s)ds, ν = 1, . . . , p, i = 1, . . . , n.

4. Regular and singular domains

In this section we give a summary of some general notation and definitions related to geometric properties of system
(12) in the limit case qk = 0, k = 1, . . . ,m.
We start with the notation which we adopt from [5]. In what follows, it is assumed that

• J := {1, . . . , j}, M := {1, . . . ,m}, N := {1, . . . , n}, m ≤ j, n ≤ j, i.e.M ⊂ J, N ⊂ J;
• R := M − S for a given S ⊂ M;
• Y X consists of all functions v : X → Y ; X and Y are arbitrary sets;
• yR := (yr)r∈R, yR ∈ Y R, yS := (ys)s∈S, yS ∈ Y S .

The following system of ordinary differential equations, generalizing system (12) in the limit case qk = 0, k = 1, . . . ,m, is
used in this section

u̇(t) = Ψ (Z, u(t)), t > 0, (14)

where u = (u1, . . . , uj), Ψ = (Ψ1, . . . ,Ψj), Z = (Z1, . . . , Zm), Zk = Σ(ui(k), θk, 0) for k ∈ M , i.e. Zk is the unit step function
with the threshold θk > 0, i(k) is a function fromM to N . The functionΨj : [0, 1]M ×RJ → RJ is continuously differentiable
in Z ∈ [0, 1]M for all u ∈ RJ and affine in each vector variable u ∈ RJ for all Z ∈ [0, 1]M .
Remind that all qk = 0. Then the right-hand side of (14) can be discontinuous, namely, if one or several ui(k), k ∈ M

assume their threshold values ui(k) = θk.
We associate a Boolean variable Bk to each Zk by Bk = 0 if ui(k) < θk and Bk = 1 if ui(k) > θk.
LetΘ denote the set {u ∈ RJ : ∃k ∈ M : ui(k) = θk}. This set contains all discontinuity points of the vector-function

Ψ (Σ(ui(k), θk, 0)k∈M , (ui)i∈J)

and is equal to the spaceRminus a finite number of open, disjoint subsets ofRJ . Inside each of these subsets one has Zk = Bk,
where Bk = 0 or Bk = 1 for all k ∈ M , so that Eq. (14) becomes affine

u̇(t) = Ψ (B, u(t)) := A(B)u(t)+ f (B), t > 0, (15)

where B = (Bk)k∈M is a constant Boolean vector, A(B) is a constant matrix and f (B) is a constant vector corresponding to the
box B. The set of all Boolean vectors B = (B1, . . . , Bm), where Bk = 0 or 1, will be denoted by {0, 1}M .

Definition 2. The setB(B), which consists of all u ∈ RJ , where (Zk(ui(k)))k∈M = B, is called a regular domain or a box.
The set SD(θS, BR), which consists of all u ∈ RJ , where Zr(ui(r)) = Br , r ∈ R and ui(s) = θs, s ∈ S (S 6= ∅) is called a

singular domain.
The singular domain SD(θµ, BR), where a number µ ∈ M , R = M \ {µ} is called a wall.

Consider the wall SD(θµ, BR) which lies between the box B(B0), where Zµ = 0, and the box B(B1), where Zµ = 1. This
gives two different systems (15) for B = B0 and B = B1, respectively. Let P be a point in a wall SD(θµ, BR) and u(t, ν, P) be
the solution to (15) with B = Bν , which satisfies u(t0, ν, P) = P , ν = 0, 1. Denote by u̇µ(t0, Z, P) component of number µ
(which is orthogonal to the wall SD(θµ, BR)) of the velocity vector u̇µ(t, Z, P) at P for t = t0, Z = 0 or 1.

Definition 3. A point P ∈ SD(θµ, BR) is called

‘‘black’’ if u̇µ(t0, 1, P) < 0 and u̇µ(t0, 0, P) > 0;
‘‘white’’ if u̇µ(t0, 1, P) > 0 and u̇µ(t0, 0, P) < 0;

‘‘transparent ’’ if u̇µ(t0, 1, P) < 0 and u̇µ(t0, 0, P) < 0, or if u̇µ(t0, 1, P) > 0 and u̇µ(t0, 0, P) > 0.

We say that a wall SD(θµ, BR) is black (white, transparent) if any point in it, except for a nowhere dense set, is black
(white, transparent).
In the non-delay case walls can be either attractive (‘‘black’’), expelling (‘‘white’’) or ‘‘transparent’’ (see [6]). In the delay

case, walls can also be of a mixed type.
In what follows, the variables ui will be specified as either xi, yi or vi.
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5. Singular perturbation analysis for a scalar equation

We consider a scalar equation, which is a particular case of Eqs. (7)

ẋ(t) = F(Z)− G(Z)x(t)

Z = Σ(y, θ, q)

y(t) = (<x)(t), t ≥ 0

(16)

with the initial condition

x(t0, q) = x0(q),

where the functions F(Z) ≥ 0, G(Z) > 0 for Z ∈ [0, 1] are affine;Σ(y, θ, q) is the Hill function if q > 0 and the step function
if q = 0. The integral operator is given by

(<x)(t) = 0cx(t)+
∫ t

−∞

K(t − s)x(s)ds, t ≥ 0, (17)

where

K(u) =
p∑
ν=1

νc νK(u),

νK(u) =
αν uν−1

(ν − 1)!
e−αu.

The coefficients νc are real nonnegative numbers satisfyingΣpν=0
νc = 1. Finally, it is also assumed that α > 0.

Example 4 ([11]).
1K(u) = αe−αu, α > 0 is the weak generic delay kernel, (18)
2K(u) = α2 ue−αu, α > 0 is the strong generic delay kernel.

If 0c = 1 in (17), then x = y and Eq. (16) does not contain a delay. Then x = y = Σ−1(Z, θ, q) for q > 0.
In order to let q go to 0 we replace x (which causes a jump in Z when x crosses the threshold value x = θ ) with

Z = Σ(x, θ, q) and apply the singular perturbation analysis. The procedure is similar to the method described in the
Introduction.
Since Z is assumed to be the Hill function, then replacing xwith Z gives us

qŻ =
Z(1− Z)

Σ−1(Z, θ, q)
(F(Z)− G(Z)Σ−1(Z, θ, q)) (19)

with the initial condition Z(t0, q) = Z0(q), where we assume that the convergence of the initial values x(t0, q) for Eq. (16)
implies the convergence of Z(t0, q) as q→ 0.
By letting q→ 0 we get

Z(1− Z)
θ

(F(Z)− G(Z)θ) = 0. (20)

The equation F(Z)− G(Z)θ = 0 is affine therefore it has a unique solution Ẑ .
If Ẑ 6∈ [0, 1], then exactly one of the other solutions Z = 0 or Z = 1 is a stable stationary point for (20). In this case

F(1) − G(1)θ and F(0) − G(0)θ have the same sign and x = θ is transparent (Definition 3). Geometrically it means that
solutions cross the threshold value (Figs. 2a,b, 3a,b). This case is not interesting for us now, since it does not require the
singular perturbation analysis.
If Ẑ ∈ (0, 1) and Ẑ is unstable, then Z = 0 and Z = 1 are both stable and the wall is white.
Finally, if the solution Ẑ ∈ (0, 1) is stable. It means that F(1)− G(1)θ < 0 and F(0)− G(0)θ > 0, then x = θ is black or

attractive (Figs. 2c, 3c) and the solution Ẑ becomes an asymptotically stable point for the associated problem

Z̃ ′ =
Z̃(1− Z̃)

θ
(F(Z̃)− G(Z̃)θ)

with the attractor basin (0, 1), where Z̃ ′ = dZ̃
dτ , τ =

t
q . Thus, by Tikhonov’s theorem (Theorem 14, Appendix B) the solution

Z(t, q) of (19) with Z(0, q) ∈ (0, 1)will tend to Ẑ uniformly on any [σ , T ] (σ > 0).
Now we study the delay case in more detail. We assume that 0c < 1; i.e. at least one νc 6= 0, ν = 1, . . . , p. Therefore,

x 6= y.
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Using the modified linear chain trick [4] we get that Eq. (16) is equivalent to the system

ẋ = F(Z)− G(Z)x

ẏ = −αy+ α 2v + αx(0c + 1c)+ 0c(F(Z)− G(Z)x)

v̇− = A−v− +Π−(x)

Z = Σ(y, θ, q), y = 1v,

(21)

where

v− =


2v
3v
...
pv

 , A− =


−α α . . . 0

0 −α . . . 0
...

. . .
. . .

...

0 . . . 0 −α


︸ ︷︷ ︸

p−1

and Π− =


2c
3c
...
pc



with the initial values

x(t0, q) = x0(q)

y(t0, q) = y0(q)

v−(t0, q) = v0(q).

(22)

Eqs. (21) are a particular case of (12).
Since Z is assumed to be the Hill function, then replacing ywith Z gives us

ẋ = F(Z)− G(Z)x

qŻ =
Z(1− Z)

Σ−1(Z, θ, q)
[−αΣ−1(Z, θ, q)+ α 2v + αx(0c + 1c)+ 0c(F(Z)− G(Z)x)]

v̇− = A−v− +Π−(x), q > 0

(23)

with the initial values

x(t0, q) = x0(q)

v−(t0, q) = v0(q)

Z(t0, q) = Z0(q),



3794 I. Shlykova, A. Ponosov / Nonlinear Analysis 72 (2010) 3786–3812

where we assume that the convergence of the initial values (22) implies the convergence of Z(t0, q) as q→ 0. To be able to
apply Tikhonov’s theorem (see Appendix B) we let q→ 0 (the conditions of the theorem are verified below).
Then (23) takes on the following form

ẋ = F(Z)− G(Z)x

0 =
Z(1− Z)

θ
[−αθ + α 2v + αx(0c + 1c)+ 0c(F(Z)− G(Z)x)]

v̇− = A−v− +Π−(x).

(24)

Consider the equation

0 =
Z(1− Z)

θ
[−αθ + α 2v + αx(0c + 1c)+ 0c(F(Z)− G(Z)x)],

which defines a stationary solution Ẑ .
Unlike the non-delay case, different points in the wall can have different properties depending on the choice of x and

v− in (21). Denoting Φd(Z, x, 2v) = −αθ + α 2v + αx(0c + 1c) + 0c(F(Z) − G(Z)x) we have the following conditions of
blackness of the point (x, θ, v−)

Φd(1, x, 2v) < 0,

Φd(0, x, 2v) > 0.

This system gives us the unique solution Ẑ ∈ (0, 1) (case c), which is asymptotically stable for the associated problem

Z̃ ′ =
Z̃(1− Z̃)

θ
Φd(Z̃, x, 2v).

The solution (x(t, q), Z(t, q), v−(t, q)) of (23) tends to the solution (x(t, 0), Z(t, 0), v−(t, 0)) of (24) in the following sense

x(t, q)→ x(t, 0) and v−(t, q)→ v−(t, 0) uniformly on [0, T ] as q→ 0,
Z(t, q)→ Ẑ = Ẑ(x(t, 0), v−(t, 0)) uniformly on all [σ , T ] (σ > 0) as q→ 0, where Ẑ is a unique solution of (24).

Example 5. Consider the delay equation

ẋ = 2− 2Z − x,
Z = Σ(y, 1, q), (25)

y(t) = 0cx(t)+ 1c
∫ t

−∞

1K(t − s)x(s)ds.

Assume that 0c ≥ 0, 0c + 1c = 1, q > 0, Σ(y, 1, q) is the Hill function given by (9) and 1K(u) is the weak generic delay
kernel given by (18). Applying the modified linear chain trick to (25) gives us the equivalent system of ordinary differential
equations

ẋ = 2− 2Z − x

ẏ = αx− αy+ 0c(2− 2Z − x),

Z = Σ(y, 1, q).

(26)

The trajectories of (26) for α = 0.1, q = 0.01 and 0c = 1 (non-delay case), 0c = 0.2, 0c = 0 (delay is present) are shown in
Figs. 4–6, respectively.

Description of Figs. 4–6.
This example illustrates how the type of the wall y = θ = 1 depends on the coefficient 0c . The wall y = 1 is black in the

non-delay case and it does not change its character in the vicinity of (1, 1) when we add the delay effect into the system.
However, in this case the wall y = 1 changes its type from black to transparent at x = 1± 0c(α − 0c)−1 (see Definition 3).
If 0c = 0, then the wall is transparent. Notice that the stationary point (1, 1) is always black (attractive).
The sliding modes can arise only along a black wall or a black part of a wall. Therefore the case 0c = 0, when the wall is

transparent does not require the singular perturbation analysis.
Let us now apply the singular perturbation analysis for the case illustrated in Fig. 5. Consider the system

ẋ = 2− 2Z − x

ẏ = 0.4− 0.4Z − 0.1x− 0.1y,
(27)
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Fig. 4. The trajectories of (26) for α = 0.1, q = 0.01 and 0c = 1.
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Fig. 6. The trajectories of (26) for α = 0.1, q = 0.01 and 0c = 0.

which is a particular case of (26) for 0c = 0.2, α = 0.1 and defines smooth solutions for q > 0. Assume that Eq. (27) is
equipped with the initial conditions

x(t0, q) = 2, y(t0, q) = y0(q) > 0.

The first initial condition x(t0, q) = 2 guarantees the fact that solutions hit the wall y = 1 in its black part.
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The variable y is singular, Z is the Hill function, therefore the changing of variables gives us

ẋ = 2− 2Z − x

qŻ =
Z(1− Z)

Σ−1(Z, 1, q)
(0.4− 0.4Z − 0.1x− 0.1Σ−1(Z, 1, q))

(28)

with the initial conditions

x(t0, q) = 2, Z(t0, q) = Z0(q), 0 < Z0(q) < 1,

where it is assumed that we have the convergence of the Z variable as q→ 0.
Let q→ 0. Then y(t, q) reaches the value y = 1 for infinitesimal time and we get the system

ẋ = 2− 2Z − x

Z(1− Z)(0.3− 0.4Z − 0.1x) = 0
(29)

under the initial conditions

x(t0, 0) = 2.

The solution of the second equation Ẑ = 0.25 is an asymptotically stable, uniformly with respect to x, solution of the
associated problem

Z̃ ′ = Z̃(1− Z̃)(0.3− 0.4Z̃ − 0.1x) (30)

with the attractor basin (0, 1), and the limit solution of (27) will be given by

ẋ = 1.5− x, x(t0, 0) = 2.

The smooth solutions of (27) approach this limit solution. Fig. 5 does not show clearly the dynamics in the wall y = 1, but
we can get it by using the analytical expression for the limit solution.

6. Singular perturbation analysis for walls

In this section and Section 7we do not refer to the delay system (7) assuming that we already have the equivalent system
of ordinary differential equation (12) obtained by applying the modified linear chain trick method from Section 3 to (7).
In this section we study the situation where exactly one of the variables yi, i = 1, . . . , n in (12) approaches one of its

threshold values θk, while the others stay away from their thresholds. Renumbering we can always assume that the singular
variable is y1 with the threshold value θ1. The other variables are then ‘‘regular’’. In the limit (i.e. as q̄→ 0̄) we obtain that
y1 = θ1 and Zk(yk) = 1 or 0 for k ≥ 2.
First of all, we rewrite system (12) in the form

ẋi = Fi(Z1, . . . , Zm)− Gi(Z1, . . . , Zm)xi
1v̇i = −αi

1vi + αi
2vi + αixi(0ci + 1ci)+ 0ci(Fi(Z1, . . . , Zm)− Gi(Z1, . . . , Zm)xi)

2v̇i = −αi
2vi + αi

3vi + αixi 2ci
3v̇i = −αi

3vi + αi
4vi + αixi 3ci

. . .

pv̇i = −αi
pvi + αixipci

Zk = Σ(yi(k), θk, qk), yi = 1vi, i = 1, . . . , n, k = 1, . . . ,m.

Assume that (12) is equipped with the initial conditions

x(t0, q̄) = x0(q̄), v(t0, q̄) = v0(q̄) (31)

and consider the wall

SD(θ1, BR) = {(x, v) : {y1 = θ1}, Zk(yk) = Bk, k ≥ 2}, (32)

where x = (x1, . . . , xn), v = (v1, . . . , vn), Bk is a Boolean variable associating to each Zk by Bk = 0 if yk < θk and Bk = 1 if
yk > θk. The wallW can contain different parts: attractive (i.e. black), expelling (i.e. white) or transparent. Assume thatW
is a black part of the wall and the limit initial point belongs toW ; i.e.

(x0(q̄), v0(q̄))→ (x0(0̄), v0(0̄)) ∈ W , q̄ = (q1, . . . , qm)

as q̄→ 0̄. In particular, y01(0̄) =
1v01(0̄) = θ1.
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Wewant to find the conditions when the solutions of the smooth problem (12), (31) uniformly converge to the solution
of the limit system for q̄ = 0̄. To do this we will use the singular perturbation analysis.
Consider the wallW given by (32) with the singular variable y1. If the singular variable y1 has no delay then y1 = x1 and

we consider the equation ẋ1 = F1(Z1, . . . , Zm)− G1(Z1, . . . , Zm)x1. Denote

Φro(Z1, ZR, x1, q̄) = F1(Z1, ZR)− G1(Z1, ZR)x1

and

Φso(Z1, ZR, q̄) = F1(Z1, ZR)− G1(Z1, ZR)Σ
−1(Z1, θ1, q1),

where ZR = (Z2, . . . , Zm), q̄ = (q1, . . . , qm).
If the singular variable is delayed, then we have that y1 = 1v1 and work with the equation

1v̇1 = −α1
1v1 + α1

2v1 + α1x1(0c1 + 1c1)+ 0c1(F1(Z1, . . . , Zm)− G1(Z1, . . . , Zm)x1).

Denote

Φrd(Z1, ZR, x1,
1v1,

2v1, q̄) = −α1 1v1 + α1 2v1 + α1x1(0c1 + 1c1)+ 0c1(F1(Z1, ZR)− G1(Z1, ZR)x1)

and

Φsd(Z1, ZR, x1,
2v1, q̄) = −α1Σ−1(Z1, θ1, q1)+ α1 2v1 + α1x1(0c1 + 1c1)+ 0c1(F1(Z1, ZR)− G1(Z1, ZR)x1),

where ZR = (Z2, . . . , Zm), q̄ = (q1, . . . , qm). We use these complicated notations forΦrd andΦ
s
d because it will allow us later

on to unify the analysis for both delay and non-delay cases.
According to the singular perturbation analysis described in the Introduction, we replace y1 with Z1. Since Zk are assumed

to be the Hill functions, the equation for y1 will be replaced with

q1Ż1 =
Z1(1− Z1)

Σ−1(Z1, θ1, q1)
Φso(Z1, ZR, q̄)

or

q1Ż1 =
Z1(1− Z1)

Σ−1(Z1, θ1, q1)
Φsd(Z1, ZR, x1,

2v1, q̄)

in the non-delay and delay cases, respectively. Then the equation of motion inW will be given by either
(1) if the singular variable y1 has no delay

q1Ż1 =
Z1(1− Z1)

Σ−1(Z1, θ1, q1)
(F1(Z1, ZR)− G1(Z1, ZR)Σ−1(Z1, θ1, q1))

ẋj = Fj(Z1, ZR)− Gj(Z1, ZR)xj,
1v̇i = −αi

1vi + αi
2vi + αixi(0ci + 1ci)+ 0ci(Fi(Z1, ZR)− Gi(Z1, ZR)xi)

2v̇i = −αi
2vi + αi

3vi + αixi 2ci
3v̇i = −αi

3vi + αi
4vi + αixi 3ci

...

pv̇i = −αi
pvi + αixi pci,

i = 1, . . . , n, j = 2, . . . , n

or
(2) if y1 is ‘‘delayed’’

q1Ż1 =
Z1(1− Z1)

Σ−1(Z1, θ1, q1)
(−α1Σ

−1(Z1, θ1, q1)+ α12v1 + α1x1(0c1 + 1c1)+ 0c1(F1(Z1, ZR)− G1(Z1, ZR)x1))

ẋi = Fi(Z1, ZR)− Gi(Z1, ZR)xi,
1v̇j = −αj

1vj + αj
2vj + αjxj(0cj + 1cj)+ 0cj(Fj(Z1, ZR)− Gj(Z1, ZR)xj)

2v̇i = −αi
2vi + αi

3vi + αixi 2ci
3v̇i = −αi

3vi + αi
4vi + αixi 3ci

...

pv̇i = −αi
pvi + αixi pci, i = 1, . . . , n, j = 2, . . . , n.
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For convenience we rewrite the systems as

q1Ż1 =
Z1(1− Z1)

Σ−1(Z1, θ1, q1)
Φ(q̄)

ẋ1 = Φ̄(q̄)

ẋi = Fi(Z1, ZR)− Gi(Z1, ZR)xi
1v̇i = −αi

1vi + αi
2vi + αixi(0ci + 1ci)+ 0ci(Fi(Z1, ZR)− Gi(Z1, ZR)xi)

v̇−i (t) = A
−

i v
−

i + αixiΠ
−

i (xi), i = 2, . . . , n,

(33)

where

A−i =


−αi αi . . . 0
0 −αi . . . 0
...

. . .
. . .

...
0 . . . 0 −αi


︸ ︷︷ ︸

p−1

, v−i =


2vi
3vi
...
pvi

 and Π−i =


2ci
3ci
...
pci

 . (34)

Remark that for the non-delay case

x1 = 1v1, Φ(q̄) = Φso(Z1, ZR, q̄), Φ̄(q̄) = Φrd(Z1, ZR, x1,
1v1,

2v1, q̄).

In the delay case

Φ(q̄) = Φsd(Z1, ZR, x1,
2v1, q̄), Φ̄(q̄) = Φro(Z1, ZR, x1, q̄).

Consider Eq. (33) with the initial conditions

x(t0, q̄) = xr1(t0, q̄) = x
0(q̄)

v(t0, q̄) = vr2(t0, q̄) = v
0(q̄)

Z1(t0, q1) = Z0(q1).

(35)

Assume that the convergence of the initial values in (31) implies the convergence of the Z1 variable in (35) as q1 → 0.
In (35) r1 = 2, . . . , n and r2 = 1, . . . , n if the singular variable does not have a delay. If the singular variable is

delayed, then r1 = 1, . . . , n and vr2 = (v1,R, v2, . . . , vn), vi (i ≥ 2) are as before in (34), v1,R = (2v1,
3v1, . . . ,

pv1) and
Z1(q1) = Σ(y1, θ1, q1).
Let q̄ go to 0̄ and consider the corresponding reduced system for Eqs. (33)

Z1(1− Z1)
θ1

Φ(0̄) = 0

ẋ1 = Φ̄(0̄)

ẋi = Fi(Z1, BR)− Gi(Z1, BR)xi
1v̇i = −αi

1vi + αi
2vi + αixi(0ci + 1ci)+ 0ci(Fi(Z1, BR)− Gi(Z1, BR)xi)

v̇−i (t) = A
−

i v
−

i + αixiΠ
−

i (xi), i = 2, . . . , n,

(36)

where BR = (B2, . . . , Bm), A−i , v
−

i andΠ
−

i are given by (34) and with the initial conditions

x(t0, 0̄) = x0(0̄), v(t0, 0̄) = v0(0̄),

where it is assumed that

x0(0̄) = lim
q̄→0̄
x0(q̄)

v0(0̄) = lim
q̄→0̄

v0(q̄)

(x0(0̄), v0(0̄)) ∈ W .

Remark that for the non-delay case

Φ(0̄) = Φso(Z1, BR, 0̄) = F1(Z1, BR)− G1(Z1, BR)θ1
Φ̄(0̄) = Φrd(Z1, BR, x1,

1v1,
2v1, 0̄) = −α1 1v1 + α1 2v1 + α1x1(0c1 + 1c1)+ 0c1(F1(Z1, BR)− G1(Z1, BR)x1)
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and in the delay case
Φ(0̄) = Φsd(Z1, BR, x1,

2v1, 0̄) = −α1 θ1 + α1 2v1 + α1x1(0c1 + 1c1)+ 0c1(F1(Z1, BR)− G1(Z1, BR)x1),

Φ̄(0̄) = Φro(Z1, BR, x1, 0̄) = F1(Z1, BR)− G1(Z1, BR)x1.
Since the sliding modes can arise only along the black part of the wall we need to find the conditions which provide this.

To this end, we work with the equation for the singular variable.
If the singular variable has no delay, then x1 = θ1 and according to Definition 3, the conditions of blackness are given by

Φso(1, BR, 0̄) < 0

Φso(0, BR, 0̄) > 0

or

F1(1, BR)− G1(1, BR)θ1 < 0

F1(0, BR)− G1(0, BR)θ1 > 0.
(37)

If the singular variable is delayed, then we have that 1v1 = θ1 and the conditions of blackness will be given by

Φsd(1, BR, x1,
2v1, 0̄) < 0

Φsd(0, BR, x1,
2v1, 0̄) > 0

or

−α1 θ1 + α1
2v1 + α1x1(0c1 + 1c1)+ 0c1(F1(1, BR)− G1(1, BR)x1) < 0

−α1 θ1 + α1
2v1 + α1x1(0c1 + 1c1)+ 0c1(F1(0, BR)− G1(0, BR)x1) > 0.

(38)

Clearly, if 0c1 = 0 then Φsd(Z1, BR, x1,
2v1, 0̄) does not change the sign. Therefore the necessary condition for a wall to be

black is 0c1 6= 0.
Consider Eq. (36) and denote by Ẑ1, 0 < Ẑ1 < 1 a unique solution of the equation
Φ(0̄) = 0.

Remark that if Φ(0̄) = Φso(Z1, BR, 0̄), then Ẑ1 = const and if Φ(0̄) = Φsd(Z1, BR, x1,
2v1, 0̄), then Ẑ1 is a function of x1 and

2v1, in the non-delay and delay cases, respectively.

Theorem 6. Assume that the condition (38) or the condition (37) is satisfied for 0c1 < 0 (the delayed case) and 0c1 = 0 (the
non-delay case), respectively. Then there exists T0 > t0 such that

lim
q̄→0̄
x(t, q̄) = x(t, 0̄),

lim
q̄→0̄

v(t, q̄) = v(t, 0̄), t ∈ [t0, T0],
(39)

the convergence is uniform in t ∈ [t0, T0], where x(t, q̄), v(t, q̄) are solutions of (33) and x(t, 0̄), v(t, 0̄) are a limit solution and
satisfy the system

ẋ1 = Φ̄(0̄)

ẋi = Fi(Ẑ1, BR)− Gi(Ẑ1, BR)xi
1v̇i = −αi

1vi + αi
2vi + αixi(0ci + 1ci)+ 0ci(Fi(Ẑ1, BR)− Gi(Ẑ1, BR)xi)

v̇−i (t) = A
−

i v
−

i + αixiΠ
−

i (xi), i = 2, . . . , n

(40)

with the initial conditions (35) and A−i , v
−

i ,Π
−

i given by (34).
Moreover, we have

lim
q1→0

Z1(t, q1) = Ẑ1, σ ≤ t ≤ T0,

the convergence is uniform on any [σ , T0], σ > t0.

Proof. To prove the theorem we need to show that Tikhonov’s theorem (see Appendix B) can be applied to the system for
Φ(0̄) = Φso(Z1, BR, 0̄) (non-delay case) andΦ(0̄) = Φ

s
d(Z1, BR, x1,

2v1, 0̄) (the case when the delay is present).
Let us look at the more difficult case Φ(0̄) = Φsd(Z1, BR, x1,

2v1, 0̄). For the proof we have to check the following
conditions:
(1) Isolated root condition.
The first equation of (36) has an isolated root Ẑ1 with respect to Z1.
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Fig. 7. The trajectories of (42) for q = 0.01, 0c = 1.

(2) Associated problem. Lyapunov stability condition.
For the associated problem

Z̃ ′1 =
Z̃1(1− Z̃1)

θ1
Φsd(Z̃1, BR, x1,

2v1, 0̄), (41)

where Z̃ ′1 =
∂ Z̃1
∂τ
, τ = t

q is the stretching transformation, the root Ẑ1 is an equilibrium point. Moreover, this point is
asymptotically stable in the sense of Lyapunov, uniformly in (x1, 2v1) ∈ K , where K is any compact subset of a setM ⊂ R2
of all solutions (x1, 2v1) of Eq. (38).
(3) The domain of attraction condition.
The initial values should belong to the domain of attraction of the root Ẑ1.
Let us now check that these assumptions are satisfied.
The condition (1) is ensured by (38) and linearity ofΦsd(Z1, BR, x1,

2v1, 0̄) in the first variable. Moreover, 0 < Ẑ1 < 1.
Let us look at the condition (2). The function Φsd(Z1, BR, x1,

2v1, 0̄) is linear in Z1 (see assumptions on Fi, Gi) therefore,
as in (1) for any (x1, 2v1) there exists a unique solution Ẑ1(x1, 2v1), 0 < Ẑ1(x1, 2v1) < 1 satisfying the equation
Φsd(Z1, BR, x1,

2v1, 0̄) = 0. According to (38), the derivative of function Φsd changes from minus to plus at Ẑ1, therefore
the solution is an asymptotically stable stationary point of the problem (41) in the Lyapunov sense. Moreover, the solution
Ẑ1(x1, 2v1) is uniformly stable in (x1, 2v1) ∈ K ⊂ M . The conditions 1 and 2 are thus satisfied.
For t = t0 and q̄ = 0̄ we have (x0(0̄), v0(0̄)) ∈ W therefore (x01(0̄),

2v01(0̄)) ∈ M . Solving the equation
Φsd(Z1, BR, x

0
1(0̄),

2v01(0̄), 0̄) = 0 we see again that Z1 belongs to the domain of attraction, as soon as (x
0
1(0̄), v

0
1(0̄)) ∈ M .

Therefore the conditions (1) –(3) are verified andwe can apply Tikhonov’s theorem to any interval [t0, T0], where (x1, 2v1) ∈
K .
The proof forΦso(Z1, BR, 0̄) is similar. The theorem is proved.

Theorem 6 gives us an opportunity to extend the solution along a black part of a wall. Moreover this extension is unique
and satisfies (40). Also, according to the formulas (39), we get the convergence of smooth solutions to the limit solutions as
q̄→ 0̄.

Example 7. Consider the system

ẋ1 = Z1 + Z2 − 2Z1Z2 − 0.6x1
ẋ2 = 1− Z1Z2 − 0.9x2
Zi = Σ(yi, 1, qi), i = 1, 2

y1 = x1

y2(t) = 0cx2(t)+ 1c
∫ t

−∞

1K(t − s)x2(s)ds.

(42)

Assume that 0c ≥ 0, 0c + 1c = 1, qi ≥ 0,Σ(yi, 1, qi), i = 1, 2 is the Hill function given by (9) and 1K(u) is the weak generic
delay kernel given by (18).
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Fig. 8. The trajectories of (42) for q = 0.01, 0c = 0.2, x02 = 0.4.
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Fig. 9. The trajectories of (42) for q = 0.01, 0c = 0.2, x02 = 5.

The trajectories of (42) are shown in Figs. 8–10 for the corresponding values of parameters, where the left graphs display
the general behavior of trajectories of (42), and the right graphs describe parts of the wall SD(θ2, 1) : {x1 > θ1, y2 = θ2}
that are of interest for us. Fig. 7 illustrates the non-delay case.

Description of Figs. 7–10
Fig. 7 illustrates the non-delay case, the wall SD(θ2, 1) is black. With adding the delay effect the situation changes.

According to the conditions of blackness (38), we get the system

−α2 + α2x2 + 0c(−0.9x2) < 0

−α2 + α2x2 + 0c(1− 0.9x2) > 0.

Assume that α2 = 0.1, 0c = 0.2. Then we get that only the part −1.25 < x2 < 1.25 of the wall is black and the rest is
transparent. So if a trajectory hits the wall in the black part (as in Fig. 8), then a solution does not leave this wall and goes
to a stationary point. If a trajectory hits the wall in the transparent part (as in Fig. 9), then it crosses the wall a finite many
times until it approaches the black part. Afterwards the behavior of the solution is the same as in the previous case. The case
c0 = 0 is shown in Fig. 10, the wall SD(θ2, 1) is always transparent, independently of x2.
The sliding modes can arise only along a black wall or a black part of a wall. Therefore the case 0c = 0, when the wall is

transparent, does not require the singular perturbation analysis.
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Fig. 10. The trajectories of (42) for q = 0.01, 0c = 0, x02 = 0.4.

Let us apply the singular perturbation analysis in the case illustrated in Fig. 8. Consider the system

ẋ1 = Z1 + Z2 − 2Z1Z2 − 0.6x1
ẋ2 = 1− Z1Z2 − 0.9x2
ẏ2 = −0.1y2 + 0.1x2 + 0.2(1− Z1Z2 − 0.9x2)

(43)

which defines smooth solutions for 0c = 0.2, α = 0.1 and q > 0 (Fig. 8). Assume that Eq. (43) is equipped with the initial
conditions

x1(t0, q) = x01(q), x2(t0, q) = 0.4, y2(t0, q) = y02(q) > 0.

These conditions guarantee the fact that solutions hit the wall in its black part.

Consider the wall SD(θ2, 1), the variable y2 is singular. Change of variables in (43) gives us

ẋ1 = Z1 + Z2 − 2Z1Z2 − 0.6x1
ẋ2 = 1− Z1Z2 − 0.9x2

q2Ż2 =
Z2(1− Z2)

Σ−1(Z2, θ2, q2)
(−0.1Σ−1(Z2, θ2, q2)+ 0.1x2 + 0.2(1− Z1Z2 − 0.9x2))

(44)

with the initial conditions

x1(t0, q) = x01(q), x2(t0, q) = 0.4, Z2(t0, q) = Z02 (q), 0 < Z02 (q) < 1,

where we assume that the convergence of the Z2 variable as q→ 0 is the case.
Let q→ 0. Then y2(t, q) reaches the value y2 = θ2 after infinitesimal time and we get the system

ẋ1 = 1− Z2 − 0.6x1
ẋ2 = 1− Z2 − 0.9x2
Z2(1− Z2)

θ2
(−0.1θ2 + 0.1x2 + 0.2(1− Z2 − 0.9x2)) = 0

(45)

with the initial condition

x1(t0, 0) = x01(0), x2(t0, 0) = 0.4, y2(t0, 0) = θ2.

The solution of the third equation in (45) Ẑ2 = 0.34 is an asymptotically stable, uniformly in x2, solution of the associated
problem

Z̃ ′2 =
Z̃2(1− Z̃2)

θ
(−0.1θ2 + 0.1x2 + 0.2(1− Z̃2 − 0.9x2))
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with the attractor basin (0, 1). By the direct substitution Ẑ2 = 0.34 in (44) we obtain that the limit solution of (43) in the
wall is given by

ẋ1 = 0.66− 0.6x1
ẋ2 = 0.66− 0.9x2
y2 = θ2, x1(t0, 0) = x01(0), x2(t0, 0) = 0.4.

The smooth solutions of (43) approach this limit solution.

7. Singular perturbation analysis, the general case

In this section we treat the case of arbitrarily many singular variables letting the variables ys, s ∈ S approach their
threshold values θk. Renumbering we can gassume that the singular variables are the first |S| variables y1, . . . , y|S|. The
other |R| variables are regular. Assume that the steepness parameters qs, s ∈ S are equal for all singular variables (this is
essential for singular perturbation analysis; see e.g. [5]); i.e. qs = q for all s ∈ S and qr , r ∈ R can be different. Denote
q̄ = (qS, qR).
Consider system (12) equipped with the initial conditions

x(t0, q̄) = x0(q̄), v(t0, q̄) = v0(q̄). (46)

We want to find conditions under which the solutions of the problem (12), (46) with qi > 0, i ∈ M uniformly converge to
the solution of the limit system for q̄ = 0̄. To do this we use the singular perturbation analysis.
Denote

Φro(ZS, ZR, xr , q̄) = Fr(ZS, ZR)− Gr(ZS, ZR)xr ,

Φso(ZS, ZR, q̄) = Fs(ZS, ZR)− Gs(ZS, ZR)Σ
−1(Zs, θs, qs)

and

Φrd(ZS, ZR, xr ,
1vr ,

2vr , q̄) = −αr 1vr + αr 2vr + αrxr(0cr + 1cr)+ 0cr(Fr(ZS, ZR)− Gr(ZS, ZR)xr),

Φsd(ZS, ZR, xs,
2vs, q̄) = −αsΣ−1(Zs, θs, qs)+ αs 2vs + αsxs(0cs + 1cs)+ 0cs(Fs(ZS, ZR)− Gs(ZS, ZR)xs).

Consider the singular domain SD(θS, BR). The equation of the motion in SD(θS, BR)will be given by

qsŻs =
Zs(1− Zs)

Σ−1(Zs, θs, qs)
Φ(q̄)

ẋr = Φ̄o(q̄)
1v̇r = Φ̄d(q̄)

v̇−i (t) = A
−

i v
−

i + αixiΠ
−

i (xi), i = 2, . . . , n, s ∈ S, r ∈ R,

(47)

where

A−i =


−αi αi . . . 0
0 −αi . . . 0
...

. . .
. . .

...
0 . . . 0 −αi


︸ ︷︷ ︸

p−1

, v−i =


2vi
3vi
...
pvi

 and Π−i =


2ci
3ci
...
pci

 . (48)

Note that
(1) if all singular variables y1, . . . , y|S| are without delay, then

Φ(q̄) = Φso(ZS, ZR, q̄), s = 1, . . . , |S|,

Φ̄o(q̄) = Φro(ZS, ZR, xr , q̄), r = |S| + 1, . . . , n,

Φ̄d(q̄) = Φrd(ZS, ZR, xr ,
1vr ,

2vr , q̄), r = 1, . . . , n.

(2) if all singular variables y1, . . . , y|S| are delayed, then

Φ(q̄) = Φsd(ZS, ZR, xs,
2vs, q̄), s = 1, . . . , |S|,

Φ̄o(q̄) = Φro(ZS, ZR, xr , q̄), r = 1, . . . , n,

Φ̄d(q̄) = Φrd(ZS, ZR, xr ,
1vr ,

2vr , q̄), r = |S| + 1, . . . , n.
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(3) if y1, . . . , yc , c < |S| do not have delays and yc+1, . . . , y|S| are delayed, then

Φ(q̄) =

{
Φso(ZS, ZR, q̄) if s = 1, . . . , c

Φsd(ZS, ZR, xs,
2vs, q̄) if s = c + 1, . . . , |S|,

Φ̄o(q̄) = Φro(ZS, ZR, xr , q̄), r = c + 1, . . . , n,

Φ̄d(q̄) = Φrd(ZS, ZR, xr ,
1vr ,

2vr , q̄), r = 1, . . . , c; |S| + 1, . . . , n.
Consider Eq. (47) with the initial conditions

x(t0, q̄) = xr1(t0, q̄) = x
0(q̄),

v(t0, q̄) = vr2(t0, q̄) = v
0(q̄),

ZS(t0, q̄) = Z0(q̄).

(49)

Assume that the convergence of the initial values in (46) implies the convergence of the ZS variable in (49) as q̄ → 0̄ and
remark that
in the case (1) r1 = |S| + 1, . . . , n and r2 = 1, .., n;
in the case (2) r1 = 1, . . . , n; vr2 = (v1,R, v2, . . . , vn), vi, i ≥ 2 are the same as in (48), v1,R = (

|S|+1v1, . . . ,
pv1);

in the case (3) r1 = c + 1, . . . , n; vr2 = (v1,R, v2, . . . , vn), vi, i ≥ 2 are the same as in (48),
v1,R = (

1v1, . . . ,
cv1,

|S|+1v1, . . . ,
pv1).

The corresponding reduced system for q̄ = 0̄ is

Zs(1− Zs)
θs

Φ(0̄) = 0

ẋr = Φ̄o(0̄)
1v̇r = Φ̄d(0̄)

v̇−i (t) = A
−

i v
−

i + αixiΠ
−

i (xi) i = 2, . . . , n, s ∈ S, r ∈ R,

(50)

where A−i , v
−

i andΠ
−

i are given by (48) and with the initial conditions

x(t0, 0̄) = x0(0̄), v(t0, 0̄) = v0(0̄). (51)

Remark that
(1) if all singular variables y1, . . . , y|S| are without delay, then

Φ(0̄) = Φso(ZS, BR, 0̄) = Fs(ZS, BR)− Gs(ZS, BR)θs, s = 1, . . . , |S|,

Φ̄o(0̄) = Φro(ZS, BR, xr , 0̄) = Fr(ZS, BR)− Gr(ZS, BR)xr , r = |S| + 1, . . . , n,

Φ̄d(0̄) = Φrd(ZS, BR, xr ,
1vr ,

2vr , 0̄)
= −αr

1vr + αr
2vr + αrxr(0cr + 1cr)+ 0cr(Fr(ZS, BR)− Gr(ZS, BR)xr), r = 1, . . . , n,

BR = (B|S|+1, . . . , Bn).
(2) if all singular variables y1, . . . , y|S| are delayed, then

Φ(0̄) = Φsd(ZS, BR, xs,
2vs, 0̄) = −αsθs + αs 2vs + αsxs(0cs + 1cs)+ 0cs(Fs(ZS, BR)− Gs(ZS, BR)xs), s = 1, . . . , |S|,

Φ̄o(0̄) = Φro(ZS, BR, xr , 0̄) = Fr(ZS, BR)− Gr(ZS, BR)xr , r = 1, . . . , n,

Φ̄d(0̄) = Φrd(ZS, BR, xr ,
1vr ,

2vr , 0̄)
= −αr

1vr + αr
2vr + αrxr(0cr + 1cr)+ 0cr(Fr(ZS, BR)− Gr(ZS, BR)xr), r = |S| + 1, . . . , n,

BR = (B|S|+1, . . . , Bn).
(3) if y1, . . . , yc , c < |S| do not have delays and yc+1, . . . , y|S| are delayed, then

Φ(0̄) =

{
Φso(ZS, BR, 0̄) if s = 1, . . . , c

Φsd(ZS, BR, xs,
2vs, 0̄) if s = c + 1, . . . , |S|,

where
Φso(ZS, BR, 0̄) = Fs(ZS, BR)− Gs(ZS, BR)θs, s = 1, . . . , c,

Φsd(ZS, BR, xs,
2vs, 0̄) = −αsθs + αs 2vs + αsxs(0cs + 1cs)+ 0cs(Fs(ZS, BR)− Gs(ZS, BR)xs), s = c + 1, . . . , |S|,

Φ̄o(0̄) = Φro(ZS, BR, xr , 0̄) = Fr(ZS, BR)− Gr(ZS, BR)xr , r = c + 1, . . . , n,

Φ̄d(0̄) = Φrd(ZS, BR, xr ,
1vr ,

2vr , 0̄) = −αr 1vr + αr 2vr + αrxr(0cr + 1cr)+ 0cr(Fr(ZS, BR)− Gr(ZS, BR)xr),
r = 1, . . . , c, |S| + 1, . . . , n, BR = (B|S|+1, . . . , Bn).
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Assumption 8. Assume that

lim
q̄→0̄
x0(q̄) = x0(0̄)

lim
q̄→0̄

v0(q̄) = v0(0̄)

and (x0(0̄), v0(0̄)) ∈ SD(θS, BR).

Consider (50) and denote by ẐS , 0 < Ẑs < 1, s ∈ S a unique solution of the equation

Φ(0̄) = 0.

Recall thatΦ(0̄) depends on the following set of parameters

{Z1, . . . , Z|S|} in the case (1),
{Z1, . . . , Z|S|, x1, . . . , x|S|, 2v1, . . . , 2v|S|} in the case (2) and
{Z1, . . . , Z|S|, xc+1, . . . , x|S|, 2vc+1, . . . , 2v|S|} in the case (3).

Denote by So = {1, . . . , c} and Sd = {c+1, . . . , |S|}. Thenwe get thatΦ(0̄) = Φ(ZS, 0̄),Φ(0̄) = Φ(ZS, xSo , xSd ,
2vSo ,

2vSd , 0̄)
andΦ(0̄) = Φ(ZS, xSd ,

2vSd , 0̄) for (1), (2) and (3) cases, respectively.

Theorem 9. Let Assumption 8 be fulfilled. Assume that there exists a point P̂(ẐS, x̂Sd ,
2v̂Sd) ∈ (0, 1)

|S|
× R2(|S|−c), where the

Jacobi matrix with respect to Z̃S for the associated problem

Z̃ ′s =
Z̃s(1− Z̃s)

θs
Φ(0̄), s ∈ S (52)

is stable; i.e. Re λi < 0 for all eigenvalues λi of the Jacobi matrix.
Then there exists T0 > t0 and open bounded subsets V1 ∈ (0, 1)|S| and V2 ∈ R2(|S|−c), P̂ ∈ V1 × V2, for which the following

statements are true

lim
q̄→0̄
x(t, q̄) = x(t, 0̄),

lim
q̄→0̄

v(t, q̄) = v(t, 0̄), t ∈ [t0, T0],

the convergence is uniform in t ∈ [t0, T0], provided that the additional assumptions are put on the initial data Z0(q̄) ∈ V1 for
0 < qi < δ and (x0Sd(q̄), v

0
Sd
(q̄)) ∈ [V2], where [V2] is the closure of V2.

The limit solution x(t, 0̄), v(t, 0̄) satisfies the system

ẋr = Φ̄o(0̄)
1v̇r = Φ̄d(0̄)

v̇−i (t) = A
−

i v
−

i + αixiΠ
−

i (xi), i = 2, . . . , n, r ∈ R

with the initial conditions (51) and A−i , v
−

i ,Π
−

i given by (48).
Moreover, we have

lim
qs→0

Zs(t, qs) = Ẑs, σ ≤ t ≤ T0, s ∈ S,

the convergence is uniform on any [σ , T0], σ > t0.

Remark 10. If in Theorem 9 c = |S| (c = 0) then we get the case when all singular variables are non-delayed (case 1)
(delayed (case 2)), respectively.

Proof of Theorem 9. To simplify the notation we put µ = (xSd ,
2vSd) ∈ R2(|S|−c) and µ̂ = (x̂Sd ,

2v̂Sd). Let us first construct
the set V2. As it is known, at the point P̂ we have a stable derivative Ĵ (the Jacobi matrix), and then the implicit function
theorem yields a closed neighborhood [V2], where V2 is an open and bounded subset of R2(|S|−c) containing µ̂, and a
continuous function ẐµS ,µ ∈ [V2] such that P

µ
= P(ẐµS , µ) is an isolated stationary point of (52) that satisfies P(Ẑ

µ̂

S , µ̂) = P̂ .
Moreover, Lyapunov’s lemma (Theorem 8.7.2, [14]) states the matrix equation ĴTV + V Ĵ = −I , where I is the identity

matrix, has a positive definite matrix solution V . Denoting by J(Z̃S, µ) the Jacobi matrix at a point P(Z̃S, µ) ∈ (0, 1)|S| ×
R2(|S|−c) observe that the symmetric matrix −(JT (Z̃S, µ)V + VJ(Z̃S, µ)) will still be positive definite in the vicinity of P̂ .
Without loss of generality we may assume that this is satisfied for any µ ∈ [V2] and any Z̃S ∈ [V1], where V1 is some open
and bounded neighborhood of ẐS containing Ẑ

µ

S , µ ∈ [V2].
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Now we are ready to check the three assumptions of Tikhonov’s theorem.
(1) Isolated root condition.
For any µ ∈ [V2] the stationary point P(Ẑ

µ

S , µ) is isolated by the construction.
(2) Associated problem. Lyapunov stability condition.
Consider the quadratic Lyapunov function Lµ(Z̃S) = (Z̃S − Ẑ

µ

S )
TV (Z̃S − Ẑ

µ

S ). As the Jacobi matrix J(Z̃S, µ) is stable for
Z̃S ∈ [V1], µ ∈ [V2] due to Lyapunov’s lemma mentioned above, then the derivative of Lµ along solutions of (52) satisfies

d
dt
Lµ(Z̃S) ≤ −m|Z̃S |2, Z̃S ∈ [V1] (53)

for some m > 0 which is independent of µ ∈ [V2] (because Lµ(Z̃S) is continuous in (Z̃S, µ) ∈ [V1] × [V2], [V1] × [V2] is
compact). This gives the uniform asymptotic stability of Z̃µS with respect to µ ∈ [V2].
(3) The domain of attraction condition.
We simply observe that as (53) is satisfied for all Z̃S ∈ [V1], then LaSalle’s principle (Theorem A.2, [15]) guarantees that

[V1] belongs to the domain of attraction of Z̃
µ

S .
Finally, we observe that, according to our assumptions on convergence of the initial values (49), all the conditions of

Tikhonov’s theorem are verified, and the proof of Theorem 9 is completed.

8. Examples

In Sections 6–8 we give a mathematical justification of the simplified analysis of the system describing gene regulatory
networks with delay. We study the situations where exactly one of the variables yi (i = 1, . . . , n) (Sections 5 and 6) or
arbitrary many variables yi (i = 1, . . . , |S|) approach their threshold values. Examples 5 and 7 illustrate the case where
exactly one variable is singular and we apply the singular perturbation analysis to the domain of the first order. Following
the logic of the paper we now want to look at the solutions’ behavior in the singular domain of the order greater than 1.
Theorem 9 gives us the theoretical grounds for application of singular perturbation analysis to singular domains of higher
order. The casewhen fewvariables approach their thresholds ismore complicated. At the same time, analysis of this situation
can give us more information that can be of great importance for obtaining the whole picture of the trajectories’ behavior.
For a better understanding we suggest the reader to start with a non-delay example from [5] presented in Appendix A. In

this section we introduce delay into this example and consider a singular domain of the second order. All technical details
are omitted; we focus on comparison of delay and non-delay cases and observe how introducing the delay influences the
solutions’ behavior.
Let us start with the case when the variable x1 is delayed. Consider the system

ẋ1 = Z1 + Z2 − 2Z1Z2 − γ1x1
ẋ2 = 1− Z1Z2 − γ2x2
Zi = Σ(yi, θi, qi), i = 1, 2

y1(t) = 0cx1(t)+ 1c
∫ t

−∞

1K(t − s)x1(s)ds.

Assume that γ1 = 0.6, γ2 = 0.9, Zi = Σ(yi, θi, qi), i = 1, 2 is the Hill function given by (9), the threshold values θ1 = θ2 = 1
and 0c > 0, 0c + 1c = 1, qi ≥ 0, i = 1, 2, 1K(u) is the weak generic delay kernel given by (18).
To remove the delay from the system we apply the modified linear chain trick and get the equivalent system

ẋ1 = Z1 + Z2 − 2Z1Z2 − 0.6x1
ẏ1 = −αy1 + αx1 + 0c(Z1 + Z2 − 2Z1Z2 − 0.6x1)

ẋ2 = 1− Z1Z2 − 0.9x2
x2 = y2.

(54)

Assume that α = 0.1, 0c = 0.2 and q1 = q2 = q. Images of some trajectories of Eq. (54) for q = 0.01 with the initial values
x01 = 0.1 and x

0
1 = 10 are shown in Figs. 11a and 12a, respectively. We look only at the Y1 X2 plane; it is more convenient

for a future comparison of the delay and non-delay cases.
Consider the singular domain of the second order; i.e. the point (θ1, θ2) of intersection of the threshold lines. Letting

q→ 0 we get that the equations of motion in Z2 are

Z ′1 =
Z1(1− Z1)

θ1
(−αθ1 + αx1 + 0c(Z1 + Z2 − 2Z1Z2 − 0.6x1))

Z ′2 =
Z2(1− Z2)

θ2
(1− Z1Z2 − 0.9θ2)

(55)

with the same parameters’ values as in (54).
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Fig. 11. The trajectories of (54) for q = 0.01, x01 = 0.1 (a) and of (55) for q = 0.01, x
0
1 = 0.1 (b).
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Fig. 12. The trajectories of (54) for q = 0.01, x01 = 10 (a) and of (55) for q = 0, x
0
1 = 10 (b).

Figs. 11b and 12b show the trajectories of (55) in Z2 plane for x01 = 0.1 and x
0
1 = 10, respectively.

Description of Figs. 11 and 12.
Depending on the initial value x01, system (55) has two interior stationary points (if 0 < x

0
1 < 4) or does not have interior

stationary points at all (if x01 > 4).
If the initial value x01 = 0.1 (Fig. 11), then the behavior of trajectories in X2 and Z2 planes is similar to the non-delay case

(see Appendix A).
If x01 = 10 (Fig. 12), then we get new results. Let us concentrate on the main differences. The walls SD(θ1, 0) and

SD(θ1, 1) did change their types and are transparent now. Note that the wall SD(θ1, 0) is white if −5 < x01 < 5 and
otherwise it’s transparent.SD(θ2, 1) is still black, but there are no stable stationary points belonging to thewall. This implies
that the point (1, 1) of intersection of threshold lines is a unique attractive point. Any trajectory inX2 approaches it by sliding
along the black wall SD(θ2, 1) or by crossing one of the transparent walls SD(θ1, 0), SD(θ1, 1) or SD(θ2, 0) depending on
a starting point.
Assume now the delay effect in the second variable x2. Then we get the system

ẋ1 = Z1 + Z2 − 2Z1Z2 − 0.6x1
ẋ2 = 1− Z1Z2 − 0.9x2
ẏ2 = −αy2 + αx2 + 0c(1− Z1Z2 − 0.9x2)

x1 = y1

(56)

with the same parameters’ values as in (54).
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Fig. 13. The trajectories of (56) for q = 0.01, x02 = 0.05 (a) and of (57) for q = 0, x
0
2 = 0.05 (b).
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Fig. 14. The trajectories of (56) for q = 0.01, x02 = 0.7 (a) and of (57) for q = 0, x
0
2 = 0.7 (b).

When q→ 0 the equations of motion in Z2 are

Z ′1 =
Z1(1− Z1)

θ1
(Z1 + Z2 − 2Z1Z2 − 0.6θ1)

Z ′2 =
Z2(1− Z2)

θ2
(−αθ2 + αx2 + 0c(1− Z1Z2 − 0.9x2)).

(57)

Figs. 13a, 14a, 15a, and 13b, 14b, 15b show the trajectories of Eqs. (56) and (57) in X2 (X1Y2) and Z2 planes, respectively,
with the different initial values for x02.

Description of Figs. 13–15.
If the initial value 0.25 < x02 < 1.25, then system (57) has two interior stationary points. Otherwise there are no such

points at all.
Consider the case x02 = 0.05 (Fig. 13). All walls are of the same type as in the non-delay case. But there are no stable

stationary points in the black wall SD(θ2, 1). Moreover, the point with the coordinates x1 = θ1, y2 = 1.16 belonging to the
black wall SD(θ1, 1) is a stable point. Therefore all trajectories in the X2 plane approach this point.
The case x02 = 0.7 (Fig. 14) is similar to the non-delay case (Appendix A).
If the initial value x02 = 10 (Fig. 15), then the wall SD(θ2, 1) becomes transparent and trajectories cross this wall. Note

that SD(θ2, 1) is transparent for x02 > 1.25 and black for x
0
2 < 1.25. Due to this fact, after the intersection the trajectories’

behavior changes (as a result of a new starting point), the wall becomes attractive, trajectories approach the wall and slide
along to the point (1, 1). The wall SD(θ1, 1) is still black but does not contain a stable point; therefore the intersection of
the threshold lines is a unique stable point and all trajectories approach it.
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Fig. 15. The trajectories of (56) for q = 0.01, x02 = 10 (a) and of (57) for q = 0, x
0
2 = 10 (b).

The analysis of the examples shows that it is not sufficient to obtain information only from the Z2 or X2 planes. To get
the whole picture of trajectories’ behavior we have to analyze both planes.

9. Conclusion

Themain result of the paper provides a mathematical justification of the simplified analysis of gene regulatory networks
in the presence of delays. The emphasis is put on sliding modes along one or more thresholds, which requires singular
perturbation analysis. We know that the dynamics of the genes can only be understood if one combines the dynamics in
two time scales: slow and fast. We study the cases where the input variables are delayed, not delayed, and combinations
thereof. We discover some effects which one does not observe in the non-delay case. The theoretical studies are supplied
with numerous examples illustrating different kinds of genes’ dynamics.
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Appendix A

Let us consider the system of two genes x1 and x2 studied in [5]

ẋ1 = Z1 + Z2 − 2Z1Z2 − γ1x1,

ẋ2 = 1− Z1Z2 − γ2x2,
(58)

where γ1 = 0.6, γ2 = 0.9 are the relative degradation rates. Thus, only the production terms are regulated by the switching
functions Zi = Σ(xi, θi, qi) (i = 1, 2), which are assumed to be the Hill-functions given by (9). Suppose that the threshold
values are θ1 = θ2 = 1 (dotted lines in Fig. 16a) and q1 = q2 = q ≥ 0.
This model has two black walls SD(θ1, 1) = {x1 = θ1, x2 > θ2} and SD(θ2, 1) = {x1 > θ1, x2 = θ2}, one white wall

SD(θ1, 0) = {x1 = θ1, x2 < θ2} and the wall SD(θ2, 0) = {x1 < θ1, x2 = θ2} is transparent. Some trajectories of Eq. (58)
for q = 0.01 are shown in Fig. 16a.
When q→ 0 the equations of motion in the singular domain Z2 (the point of intersection of threshold lines) are

Z ′1 =
Z1(1− Z1)

θ1
(Z1 + Z2 − 2Z1Z2 − γ1θ1),

Z ′2 =
Z2(1− Z2)

θ2
(1− Z1Z2 − γ2θ2).

(59)

Fig. 16b shows the heteroclinic trajectories; i.e. images of trajectories in X2, in Z2 with the same parameter values as in
Fig. 16a, but for q = 0.
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Fig. 16. The trajectories of (58) for q = 0.01 (a) and of (59) for q = 0 (b).

Description of Fig. 16.
Now we would like to compare the motions in X2 and Z2 to get a whole picture of trajectories’ behavior for Eq. (58).

Notice that the walls SD(θ1, 1), SD(θ1, 0), SD(θ2, 1) and SD(θ2, 0) in X2 correspond to the upper horizontal edge, the
lower horizontal edge, the right vertical edge and the left vertical edge in Z2, respectively.
Eq. (59) has two interior stationary points (1/(4+

√
6), (4+

√
6)/10) and (1/(4−

√
6), (4−

√
6)/10), three stationary

points belonging to the edges (1, 0.1); (0.6, 0) and (0.4, 1). Moreover, all four vertices are stationary points as well. But only
two of them (1/(4+

√
6), (4+

√
6)/10) and (1, 0.1) (marked by an asterisk in Fig. 16b) are stable. Depending on the starting

point, a trajectory inZ2 approaches one of these stable points. The unstable point (1/(4−
√
6), (4−

√
6)/10) between them

plays a dividing role. In X2 this point characterizes a separatrix in the boxB(1, 1).
The stable point (1, 0.1) inZ2means that thewall SD(θ2, 1) inX2 is black. Moreover, this shows that there exists a stable

stationary point. An additional analysis of this wall in the X2 plane gives coordinates of this point. For the limit case q = 0
it is the point x1 = 1.5, x2 = θ2 = 1 marked by an asterisk in Fig. 16a. For the case q = 0.01 the stable point marked by a
circle approaches the horizontal black wall. The interior and stable (in Z2) point (1/(4+

√
6), (4+

√
6)/10) indicates that

the point (1, 1) of intersection of the two threshold lines is stable in X2.
The point (0.4, 1) is not stable in Z2, but it is stable in the edge {Z2 = 1}, that means that the wall SD(θ1, 1) in the X2

plane is black. We cannot say anything about the existence of stable points in this wall by looking only at the Z2 plane. We
need to return toX2. In this case an additional stability analysis of the wall does not give any stable point. To summarize the
what is stated above, let us look at the X2 plane and consider any trajectory starting in the box B(1, 1). Depending on the
initial point, the trajectory hits the horizontal black wall and approaches the stable stationary point in this wall or hits the
vertical black wall and slides along this wall towards to the point (1, 1). In both cases the trajectory stops and never leaves
the point which is reached.
Let us now go back to theZ2 plane and consider the other stationary points. The point (0. 6, 0) is unstable (also in the edge

{Z2 = 0}), it means that the wall SD(θ1, 0) inX2 is white and all trajectories are repulsed from this wall towards SD(θ2, 0)
or SD(θ2, 1) depending on a starting point of a trajectory. Finally consider the edge {Z1 = 0}. There are no stationary points
except for the vertices in this wall. The point (0, 0) is unstable and (0, 1) is stable in this wall. It indicates that the wall
SD(θ2, 0) in X2 is transparent and trajectories cross it from the boxB(0, 0) towards the boxB(0, 1).

Appendix B

Let us consider the initial value problem

ε
dz
dt
= F(z, y)

dy
dt
= f (z, y), 0 ≤ t ≤ T ,

(60)

z(0, ε) = z0, y(0, ε) = y0. (61)

Here ε > 0, z and y are vector functions of arbitrary dimensionsM andm, respectively.We assume that the functions F(z, y)
and f (z, y) are continuous together with their derivatives with respect to z and y in some domain G. Denote by z(t, ε) and
y(t, ε) the solution of (60), (61).
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Setting ε = 0, we obtain

0 = F(z̄, ȳ)
dȳ
dt
= f (z̄, ȳ).

(62)

We will call (62) the reduced system. The initial condition for this system is

ȳ(0) = y0. (63)

Denote by z̄(t, ε) and ȳ(t, ε) the solution of (62), (63).
Let us formulate the conditions for the passage limit.

Assumption 11 (Isolated Root Condition). Let the equation F(z̄, ȳ) = 0 have an isolated root with respect to z̄ : z̄(ȳ) =
ϕ(ȳ), ȳ ∈ K (K is some compact set) and suppose the problem (62), (63) has a unique solution corresponding to this root.

Assumption 12 (Associated Problem. Lyapunov Stability Condition). Let the stationary point of the associated system

dz̃
dτ
= F(z̃, y), τ ≥ 0 (64)

be asymptotically stable in the sense of Lyapunov, uniformly in y ∈ D as τ →∞.

There might exist several roots of the equation F(z̄, ȳ) = 0 that satisfy Assumption 12. To make the final choice of the root,
consider the associated system (64) for the initial parameters y = y0

dz̃
dτ
= F(z̃, y0) (65)

with the initial condition

z̃(0) = z0. (66)

Assumption 13 (The Domain of Attraction). Let the solution z̃(τ ) of the problem (65), (66) exist for τ ≥ 0 and tend to the
stationary point ϕ(y0) as τ →∞.

Theorem 14 (Tikhonov’s Theorem [16]). Under Assumptions 11–13 and for a sufficiently small ε, the problem (60), (61) has a
unique solution z(t, ε), y(t, ε) such that the following limiting equalities hold

lim
ε→0
y(t, ε) = ȳ(t) for 0 ≤ t ≤ T

lim
ε→0
z(t, ε) = z̄(t) for 0 < δ ≤ t ≤ T

(the convergence is uniform for any δ > 0).

Remark 15 ([17]). The result of Theorem 14 holds true for systems of the form

ε
dz
dt
= F(z, y, ε)

dy
dt
= f (z, y, ε),

where F(z, y, ε), f (z, y, ε) are continuous in all variables and F(z̃, y0), f (z, y) are replaced by F(z̃, y0, 0), f (z, y, 0),
respectively.
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Abstract

We propose an analytic stochastic modeling approach which incorporates intrinsic
noise effects directly into a well established continuous and deterministic formalism
for describing gene regulatory networks characterized by steep gene regulatory func-
tions. The stochastic effects are assumed to take the form of constant white noises
whose diffusion coefficients solely depend on the steepness parameters of the smooth
regulatory functions. The basic technical tool consists in replacing the smooth func-
tions by much simpler step functions. The dynamics of the resulting piecewise linear
system can then be described explicitly between the thresholds. The singularities
that arise around discontinuities are handled by use of a uniform version of the
stochastic Tikhonov theorem in singular perturbation analysis suggested by Yu.
Kabanov and Yu. Pergamentshchikov.

Key words: stochastic differential equations, delay effect, singular perturbation
analysis, gene regulation
MSC: 60H10, 60H30, 34K50

1 Introduction

The development of gene regulatory network (GRN) models of the form

ẋi(t) = Fi(Z)−Gi(Z)xi(t), i = 1, . . . , n. (1)

where the production and relative degradation rate functions Fi and Gi depend
on a vector Z of steeply sloped response functions (or gene regulatory func-
tions) Zi, has been motivated by the empirical fact that steep dose-response

Preprint submitted to Elsevier 19 October 2010



relationships seem to be an ubiquitous feature of GRNs [1]-[3]. A further mo-
tivation has been that this structure makes it possible to obtain analytical
insights on the behaviour of GRNs that are beyond reach with a standard
ordinary differential equation description (see e.g. [1]-[3]). To get a more an-
alytically tractable mathematical structure, one normally replace the smooth
response functions Zi by step functions and obtain a piecewise linear system.
The dynamics of such system can be described explicitly between the thresh-
olds (also called singular or switching domains). Inside the singular domains
one can use singular perturbation analysis to define continuous extensions of
solutions which are close to the solutions of (1) provided that the response
functions are close to the step functions (see [1] for more details).

Guided by the fact that time delays out of necessity is a characteristic of real
GRNs [4], [5], the effects of introducing delays into (1) were extensively studied
by [6] and [7] by use of the system:

ẋi(t) = Fi(Z)−Gi(Z)xi(t)

Zi = Σ(yi, θi, qi)

yi(t) = (<ixi)(t), t ≥ 0, i = 1, . . . , n,

(2)

where the operators <i are bounded linear Volterra operators of the form

(<ixi)(t) =0cixi(t) +
∫ t

−∞
Ki(t− s)xi(s)ds, t ≥ 0, i = 1, . . . , n.

(for more details see Section 4). A similar simplification procedure is imple-
mented in the case of the delay system (2), where in addition the modified
linear chain trick is invoked to convert the delay system into a larger system
of ordinary differential equations (see [6], [7]). This framework allows an an-
alytical assessment of when the dynamics of a network model is sensitive to
time delays and when it is not.

Because GRNs have been shown to be inherently stochastic [8], [9], [10], a
natural further extension is to introduce stochasticity into (1) and (2) to pro-
vide an analytical framework for assessing under which conditions a stochastic
description needs to be invoked to properly describe the dynamics of systems
with and without delays.

Here we show that it is indeed possible to incorporate stochastic effects directly
into these equation structures. We do this by adding to the right hand sides of
Systems (1) and (2) constant white noises whose diffusion coefficients depend
on the steepness parameters qi of the smooth response functions, only. We
prove that in the limit (i. e. as qi → 0) the stochastic dynamics approaches
uniformly the deterministic dynamics of the corresponding piecewise linear,
deterministic systems. The main challenge here is, exactly as in the case of
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Systems (1) and (2), to be able to deal with the singularities that arise in
the limit around discontinuities of the right hand sides. We make use of an
approach that goes back to Yu. Kabanov and Yu. Pergamentshchikov who
suggested a uniform version of the stochastic Tikhonov theorem in singular
perturbation analysis. In the case of System (2) this technique is combined
with the modified linear chain trick, exactly as in the deterministic case.

One outcome of this new formalism is that it provides an analytical expla-
nation of why a deterministic model (with or without delay) provide a good
approximation to a stochastic model in the case when the activation occurs
much faster than the other processes.

Although System (1) is a particular case of System (2), we have chosen to
treat them separately. Detailed proofs are offered in the non-delay case, as
this explains the main ideas and techniques in a more refined way and with-
out additional, and sometimes cumbersome, notation which is necessary to
formalize the delay model. Because the delay case is very similar to the non-
delay one we only outline the needed adjustments of the proofs. We have
also chosen to study the situation when exactly one variable approaches its
threshold value at a time, i.e. we only consider the case of singular domains of
codimension 1 (”the walls”). A general case of codimension greater that 1 is
not considered in this paper, partly because we did not want to overload the
paper with too many technicalities, partly because in many cases it does not
represent a severe restriction.

The paper is organized as follows: In Section 2 we formulate the main problem
in the non-delay case and list major assumptions applied to the right hand
sides of the system. Section 3 provides a detailed analysis of two main cases
that could occur in the limit. In the first case we get the so-called ”transparent
wall” in the limit. The solutions just travels through such a wall, and the
challenge is to study convergence of the solutions in a vicinity of it. The second
case gives us the so-called ”black wall” which are hit by the solutions from
either side. To be able to reconstruct the behavior of the limit solutions along
the black wall we need to apply a certain change of variables and the stochastic
Tikhonov theorem. In Section 4 we introduce stochastically perturbed GRN
with delay and give a short overview of the modified linear chain trick to
be applied in Section 5. Section 5 relies heavily on the technique developed in
Section 3. We again consider the case of transparent and black walls and justify
the convergence of solutions in the delay case by exploiting the stochastic
Tikhonov theorem. In Appendix A we formulate some known results from
the theory of stochastic differential equations that may ease the reading of
the paper, while Appendix B contains the version of the stochastic Tikhonov
theorem, which is due to Yu. Kabanov and Yu. Pergamentshchikov.
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2 Formulation of the problem in the non-delay case

Consider the system

ẋi = Fi(Z1, . . . , Zn)−Gi(Z1, . . . , Zn)xi + σi(qi)Ḃi

Zi = Σ(xi, θi, qi), qi ≥ 0, i = 1, . . . , n
(3)

with the initial conditions
x(t0, q̄) = x0(q̄). (4)

Here B = (B1, . . . ,Bn) represents the n-dimensional Brownian motion, and
σ = (σ1, . . . , σn) is a vector of small parameters. The functions Fi and Gi

stand for the production rate and the relative degradation rate of the product
of gene i, respectively, and xi denotes the gene product concentration. The
functions Fi, Gi are affine in each Zi and satisfy

Fi(Z1, . . . , Zn) ≥ 0, Gi(Z1, . . . , Zn) > 0

for 0 ≤ Zi ≤ 1, i = 1, . . . , n. The response functions Zi express the effect of
the different transcription factors regulating the expression of the gene. Each
Zi = Σi(xi, θi, qi) is a smooth function depending on exactly one input variable
xi and on two other parameters, i.e. the threshold value θi and the steepness
value qi > 0. In this paper we restrict ourselves, as do many people who deal
with modeling of GRN, to the case when Zi = Σi(xi, θi, qi) are assumed to be
the Hill functions given by

Σi(xi, θi, qi) :=





0 if xi < 0

x
1/qi
i

x
1/qi
i +θ

1/qi
i

if xi ≥ 0
(5)

for qi > 0. If qi = 0 then Zi become unit step functions (Fig.1).

{

step

function

GENE ONGENE OFF

Hill

function

threshold

domain

x

Z

i

i

èi
0

1

Fig. 1

For qi > 0, i = 1, . . . , n, the functions Fi(Z1, . . . , Zn) − Gi(Z1, . . . , Zn)xi and
σi(qi) in the right hand side of System (3) are smooth, therefore locally Lip-
schitz. Since all response functions Zi are bounded (0 ≤ Zi ≤ 1) then |Fi| ≤ Mi
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and 0 < δ ≤ Gi ≤ Mi. The functions xi are not bounded therefore the right
hand side of System (3) grows linearly. Thus, by the existence and uniqueness
theorem for stochastic differential equations (see Appendix A) there exists a
unique solution for (3) for qi > 0, i = 1, . . . , n.

When qi go to 0, i = 1, . . . , n all threshold functions Zi tend to the step
functions. Assume that σi(qi) → 0 as qi → 0. Thus, regarding the thresholds
in the state space, System (3) changes into a deterministic piecewise linear
system. The dynamics of the obtained system can be described very easily
between such thresholds, but not in the singular domains. To define solutions
in the singular domains in the deterministic case E. Plahte and S. Kjøglum
made use of the singular perturbation analysis in each of the domains (see
[1]). It was shown that the solution for steep sigmoids (qi > 0) approaches
the limit solution (qi = 0) uniformly, in any finite time interval (when the
sigmoids approach the step functions). Our main goal is to show that this is
also the case for System (3), i.e. the convergence of the stochastically perturbed
solutions with qi > 0 to the limit solution with qi = 0. We restrict ourselves
to the case where only one of the variables approaches its threshold. The case
where several variables approach their respective thresholds will be studied
elsewhere.

3 Analysis in the non-delay case

Let qi → 0, i = 1, . . . , n, and consider the situation where exactly one of the
variables xi in (3) approaches its threshold value θi, while the others stay away
from their thresholds. Renumbering we can always assume that the singular
variable is x1 with the threshold value θ1. The other variables are then per
definition regular ([6]). In the limit, i.e. as qi → 0, i = 1, . . . , n, we obtain that
x1 = θ1 and Zi(xi) = 1 or 0 for i = 2, . . . , n. Denote this singular domain as

SD(θ1, BR) = {(x1, . . . , xn) : x1 = θ1, Zi(xi) = Bi, i ≥ 2},

where Bi is a corresponding Boolean vector associated to each Zi by Bi = 0
if xi < θi and Bi = 1 if xi > θi.

We consider below two kinds of walls: the transparent ones, when the trajec-
tories travel through them, and the black ones, when the trajectories hit them
from either side. Third case of white (repelling) walls [1] requires no additional
analysis in the stochastic setting.
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3.1 The case of transparent walls

We assume that

A1 The singular domain SD(θ1, BR) is transparent such that F1(0, BR) −
G1(0, BR)θ1 and F1(1, BR)−G1(1, BR)θ1 have the same sign.

For the sake of simplicity, we consider below the situation when both these
expressions are negative, what means that trajectories go from the regular
domain R(1, BR) = {(x1, . . . , xn) : x1 > θ1, Zi(xi) = Bi, i ≥ 2} to the
regular domain R(0, BR) = {(x1, . . . , xn) : x1 < θ1, Zi(xi) = Bi, i ≥ 2}.
Assume that the limit initial point x0(0̄) ∈ R(1, BR).

Denote by x(t, q̄) = (x1(t, q̄), . . . , xn(t, q̄)), q̄ = (q1, . . . , qn) the solution of the
stochastically perturbed system (3) and by x(t, 0̄) = (x1(t, 0̄), . . . , xn(t, 0̄)) the
solution of the limit system

ẋi = Fi(1, BR)−Gi(1, BR)xi if x(t, 0̄) ∈ R(1, BR)

ẋi = Fi(0, BR)−Gi(0, BR)xi if x(t, 0̄) ∈ R(0, BR)
(6)

on the interval [t0, T ]. Here 0̄ is the null-vector.

Theorem 1 Under Assumption A1

lim
q̄→0̄

E sup
[t0,T ]

|x(t, q̄)− x(t, 0̄)|2 = 0.

Proof.

Assume that the solution x(t, 0̄) crosses the singular domain SD(θ1, BR) at
the time t1, i.e. x1(t1, 0) > θ1 for t < t1 and x1(t1, 0) < θ1 for t > t1. Take any
σ > 0 and let us first compare the solutions x(t, q̄) and x(t, 0̄) on the intervals
[t0, t1 − σ] and [t1 + σ, T ].

Denote δ1 = min
t0≤t≤t1−σ

|x1(t, 0) − θ1| and δr = min
t0≤t≤t1−σ

|xr(t, 0) − θr|, r =

2, . . . , n. Since t = t1 is the instant when the solution x(t, 0̄) crosses SD(θ1, BR)
for the first time, then δ1 > 0. The coordinates xr(t, 0̄) do not leave the regular
domain corresponding to BR. Therefore δr > 0. By properties of the Hill
function it is easy to check that Z1(x1, θ1, q1) → 0 uniformly on 0 ≤ x1 ≤ θ1−δ1

and Zr(xr, θr, qr) → 0 uniformly on |xr − θr| ≥ δr, r = 2, . . . , n. Therefore the
right hand sides of System (3) converge to Fi(0, BR)−Gi(0, BR)xi as qi → 0,
i = 1, . . . , n. Moreover, the partial derivatives with respect to all xi converge
uniformly in the domain {0 ≤ x1 ≤ θ1−δ1, |xr−θr| ≥ δr, r = 2, . . . , n}. Thus,
by the theorem on the continuous dependence of the solutions of stochastic
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differential equations [14], the solutions x(t, q̄) of the problem (3), (4) converge
to the limit solution x(t, 0̄), which satisfies the second equation of (6) with the
same initial conditions, in the following sense

lim
q̄→0̄

E sup
[t0,t1−σ]

|x(t, q̄)− x(t, 0̄)|2 = 0. (7)

In a similar way it can be shown that

lim
q̄→0̄

E sup
[t1+σ,T ]

|x(t, q̄)− x(t, 0̄)|2 = 0. (8)

The right hand side of the limit system becomes discontinuous when the so-
lution x(t, 0̄) hits the threshold line x1 = θ1. Therefore in a vicinity of the
point t = t1 the theorem on the continuous dependence of the solutions of
stochastic differential equations can not be applied. Moreover, the derivatives
of the right hand side of (3) go to infinity as q̄ → 0̄. Thus, the vicinity of t = t1
requires an additional analysis. We need to prove that

E sup
|t−t1|≤σ

|x(t, q̄)− x(t, 0̄)|2 = 0.

It is sufficient to show the convergence in each of the coordinates xi, i =
1, . . . , n. To do this let us estimate the following difference

E sup
|t−t1|≤σ

|xi(t, qi)− xi(t, 0)|2 = E sup
|t−t1|≤σ

|
t∫

t0

([Fi(Zi(xi(s, qi)))− Fi(0, BR)]−

[Gi(Zi(xi(s, qi)))xi(s, qi)−Gi(0, BR)xi(s, 0)])ds +
t∫

t0

σi(qi)dBi(s)|2 ≤

2 E sup
|t−t1|≤σ

|
t1−σ∫
t0

([Fi(Zi(xi(s, qi)))− Fi(0, BR)]− [Gi(Zi(xi(s, qi)))xi(s, qi)−
(9)

Gi(0, BR)xi(s, 0)])ds +
t1−σ∫
t0

σi(qi)dBi(s)|2 + 2 E sup
|t−t1|≤σ

|
t∫

t1−σ
([Fi(Zi(xi(s, qi)))−

Fi(0, BR)]− [Gi(Zi(xi(s, qi)))xi(s, qi)−Gi(0, BR)xi(s, 0)])ds+

t∫
t1−σ

σi(qi)dBi(s)|2 = 2I1 + 2I2

We have proved before the convergence of solutions on the interval [t0, t1−σ].
Therefore I1 → 0 as qi → 0, i = 1, . . . , n. Now we want to show that

I2 = E sup
|t−t1|≤σ

|
t∫

t1−σ
([Fi(Zi(xi(s, qi)))− Fi(0, BR)]− [Gi(Zi(xi(s, qi)))xi(s, qi)−
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Gi(0, BR)xi(s, 0)])ds +
t∫

t1−σ
σi(qi)dBi(s)|2 is bounded.

By the linear growth in xi(s, qi) and xi(s, 0) there exist positive constants C1

and C2 such that

I2 ≤ E sup
|t−t1|≤σ

t∫
t1−σ

[C1 + C2(|xi(s, qi)|2 + |xi(s, 0)|2)]ds+

E sup
|t−t1|≤σ

(
t∫

t1−σ
σi(qi)dBi(s))

2 ≤ by Doob’s inequality and Itô isometry

≤ E sup
|t−t1|≤σ

t∫
t1−σ

[C1 + C2(|xi(s, qi)|2 + |xi(s, 0)|2)]ds + 4
t1+σ∫
t1−σ

σ2
i (qi)ds.

From the existence and uniqueness theorem for stochastic differential equa-
tions (see [11]) we know that the solutions of System (3) satisfy

E




t1+σ∫

t1−σ

|xi(t, qi)|2dt


 ≤ L1.

Let us now show that xi(t, 0), i = 1, . . . , n, are bounded on [t1 − σ, t1 + σ].
From (6) we have

|ẋi(t, 0)| ≤ Fi(0, BR) if t ∈ [t1 − σ, t1],

|ẋi(t, 0)| ≤ Fi(1, BR) if t ∈ [t1, t1 + σ].

By Lagrange’s mean value theorem

|xi(t, 0)| ≤ |ẋi(c1, 0)|σ + |xi(t1 − σ, 0)| for t1 − σ ≤ t < t1, c1 ∈ [t1 − σ, t] and

|xi(t, 0)| ≤ |ẋi(c2, 0)|σ + |xi(t1 + σ, 0)| for t1 ≤ t < t1 + σ, c2 ∈ [t, t1 + σ].

Therefore

|xi(t, 0)| ≤ max{Fi(0, BR), Fi(1, BR)}σ + max{|xi(t1 − σ, 0)|, |xi(t1 + σ, 0)|}
≤ L2σ + L3

and
I2 ≤ (C1 + C2L1 + L2σ + L3 + 4 max

i
σ2

i (qi))2σ.

Let us now go back to the formula (9). Assume that ε > 0 is given. For this
ε choose σ > 0 such that I2 < ε/2 and q∗ > 0 such that I1 < ε/2 for all
0 < qi < q∗. Then

E sup
|t−t1|≤σ

|xi(t, qi)− xi(t, 0)|2 < ε for 0 < qi < q∗.
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From (7), (8) it follows that there exists 0 < q∗∗ < q∗ such that

E sup
|t− t1| > σ

t ∈ [t0, T ]

|xi(t, qi)− xi(t, 0)|2 < ε for 0 < qi < q∗∗.

The last two estimations give

E sup
t∈[t0,T ]

|xi(t, qi)− xi(t, 0)|2 < ε for 0 < qi < q∗∗.

The theorem is proved.

3.2 The case of black walls and singular perturbation analysis

For a further simplification of the notation we want to distinguish the sin-
gular variable from the regular variables. Throughout this subsection we use
the lower index 1 in all notations corresponding to the singular variable, i.e.
x1, F1, G1, Z1, θ1, q1, B1, σ1 and the lower index R for the vectors, corre-
sponding to the regular variables, while its components we specify with the
lower index r. In our case xR = (x2, . . . , xn)T , FR = (F2, . . . , Fn), GR is a
diagonal (n − 1) × (n − 1) matrix with the diagonal elements G2, . . . , Gn,
ZR = (Z2, . . . , Zn), θR = (θ2, . . . , θn), qR = (q2, . . . , qn), BR = (B2, . . . ,Bn)T ,
σR(qR) = (σ2(q2), . . . , σn(qn)).

Using this new notation System (3) can be rewritten as

ẋ1 = F1(Z1, ZR)−G1(Z1, ZR)x1 + σ1(q1)Ḃ1

ẋR = FR(Z1, ZR)−GR(Z1, ZR)xR + σR(qR)ḂR

(10)

with the initial conditions

(x1(t0), xR(t0)) ∈ SD(θ1, BR), i.e.

x1(t0) = θ1, xR(t0) = x0
R, where Zi(x

0
R) = BR.

To obtain an equation describing the motion in the singular domain SD(θ, BR)
we substitute the singular variable x1 by Z1. This simple transformation is a
starting point for the singular perturbation analysis.

Below we calculate dZ1 using the Itô formula. For the sake of simplification of
notation we skip the lower index 1. Z is assumed to be the Hill function given
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by (5), so that we get

x = Σ−1(Z, θ, q) = θ
(

Z

1− Z

)q

.

In the deterministic case

dZ

dt
=

dZ

dx

dx

dt
and dZ =

Z(1− Z)

qx
dx.

In the stochastic case we use Itô’s formula

df(X) = f ′(X)dX +
f ′′(X)

2!
(dX)2. (11)

Then we get

dZ = dΣ(x, θ, q) = Σ′(x, θ, q)dx +
1

2
Σ′′(x, θ, q)(dx)2

where

Σ′(x, θ, q) =
Z(1− Z)

qΣ−1(Z, θ, q)
,

Σ′′(x, θ, q) =

(
Z(1− Z)

qΣ−1(Z, θ, q)

)′
=

Z(1− Z)(1− 2Z − q)

q2(Σ−1(Z, θ, q))2
,

dx = (F (Z,ZR)−G(Z, ZR)x)dt + σ(q)dB,

(dx)2 = ((F (Z, ZR)−G(Z,ZR)x)dt + σ(q)dB)2 = ((F (Z,ZR)−G(Z, ZR)x)2·
(dt)2 + 2((F (Z, ZR)−G(Z,ZR)x)σ(t)dtdB + σ2(t)(dB)2 = σ2(q)dt,

since

(dt)2 = 0 since (4t)2 ∼ o(4t),

dtdB = 0 since 4t4B ≈ (4t)3/2 ∼ o(4t),

(dB)2 = dt since (4B)2 ≈ 4t (see [11]).

Then System (10) takes the form

q1Ż1 =
Z1(1− Z1)

Σ−1(Z1, θ1, q1)
[F1(Z1, ZR)−G1(Z1, ZR)Σ−1(Z1, θ1, q1)+

1− 2Z1 − q1

2q1Σ−1(Z1, θ1, q1)
σ2

1(q1)] +
Z1(1− Z1)

Σ−1(Z1, θ1, q1)
σ1(q1)Ḃ1,

ẋR = FR(Z1, ZR)−GR(Z1, ZR)xR + σR(qR)ḂR, qi ≥ 0, i = 1, . . . , n

(12)

with the initial conditions

xR(t0) = x0
R,

Z(t0) = 0.5
(13)
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(since Z = Σ(θ, θ, q) = 0.5 for q > 0).

We assume that:

A2 The singular domain SD(θ1, BR) is black such that





F1(1, BR)−G1(1, BR)θ1 < 0

F1(0, BR)−G1(0, BR)θ1 > 0.
(14)

A3 The diffusion coefficient σ1(q1) satisfies

σ1(q1) = o




√√√√
∣∣∣∣∣

q1

ln q1

∣∣∣∣∣


 as q1 → 0

and all diffusion coefficients of the regular variables

σi(qi) → 0 as qi → 0, i ∈ R.

Let us now verify for the problem (12)-(13) the assumptions in the stochastic
Tikhonov theorem listed in Appendix B.

Verification of B1.

First let us prove the continuity of right hand side of Systems (12) in (q1, Z1, xR),
q1 ∈ [0, q′], q′ < 1, Z1 ∈ [0, 1], xr ∈ [0,∞), r ∈ R. Obviously it is continuous
in all xr everywhere.

To show the continuity in two other variables we start with the term
Z1(1− Z1)

Σ−1(Z1, θ1, q1)
. If Z1 ∈ (0, 1) then only the point q1 → 0 is a problematic

point. But in this case Σ−1(Z1, θ1, q1) → θ1 > 0 and we get the continuity at
this point.

If Z1 = 0 (Z1 = 1), then Σ−1(Z1, θ1, q1) → −∞ (+∞) by definition and
Z1(1− Z1)

Σ−1(Z1, θ1, q1)
→ 0. Therefore

Z1(1− Z1)

Σ−1(Z1, θ1, q1)
is continuous on [0, 1] × [0, q′],

q′ < 1.

The next term is
Z1(Z1 − 1)(1− 2Z1 − q1)

q1[Σ−1(Z1, θ1, q1)]2
σ2

1(q1).

Since
σ2

1(q1)| ln(q1)|
q1

→ 0 (by A3) and | ln(q1)| → ∞ as q1 → 0 then σ2
1(q1) =

o

(
q1

| ln(q1)|

)
and

σ2
1(q1)

q1

→ 0 as q1 → 0.

11



[Σ−1(Z1, θ1, q1)]
2 =

[
θ1

(
Z1

1− Z1

)q1
]2

= θ2
1

(
Z1

1− Z1

)2q1

= Σ−1(Z1, θ
2
1, 2q1).

Therefore
Z1(Z1 − 1)

[Σ−1(Z1, θ1, q1)]2
=

Z1(Z1 − 1)

Σ−1(Z1, θ2
1, 2q1)

is continuous on [0, 1]×[0, q′/2],

q′ < 1.

Evidently the terms (1 − q1 − 2Z1), (F1(Z1, ZR) − G1(Z1, ZR)Σ−1(Z1, θ1, q1))
and the right hand side of equations corresponding to the slow variables are
continuous in all variables (q1, Z1, xR). The continuity is proved.

We have shown before the linear growth and locally Lipschitz conditions in
(Z1, xR) of RHS of System (3). By similar arguments we obtain that RHS of
System (12) satisfies these conditions.

Verification of B2.

By the assumptions all diffusion coefficients σ1(q1) and σR(qR) go to 0 as
q1 → 0 and qR → 0̄. The wall SD(θ1, BR) is assumed to be black then the
equation

Z1(1− Z1)

θ1

(F1(Z1, BR)−G1(Z1, BR)θ1) = 0

has the solution Z1 = Ẑ1 ∈ (0, 1) satisfying B2.

Verification of B3.

Since in the limit all noises disappeared, we have the same associated problem
as in the deterministic case

Z̃ ′
1 =

Z̃1(1− Z̃1)

θ1

(F1(Z̃1, BR)−G1(Z̃1, BR)θ1), (15)

where Z̃ ′
1 = dZ̃1

dτ
, τ = t/q is the stretching transformation. Denote the right

hand side by A(0, Z̃1). Since Z̃1 is the one variable in this equation we can
rewrite it as following:

A(0, Z̃1) =
Z̃1(1− Z̃1)

θ1

(M Z̃1 + N).

The wall SD(θ1, BR) is assumed to be black then according to (14) the equi-
librium point Ẑ1 is a stable point for (15).

From (14) we get N > 0, M + N < 0 and M < 0, therefore

AZ̃1
(0, Ẑ1) =

Ẑ1(1− Ẑ1)

θ1

M < 0.

12



We take kN =
Ẑ1(1− Ẑ1)

θ1

M , then

u?AZ̃1
(0, Ẑ1)u ≤ −kN |u|2 ∀u ∈ Rn.

Verification of B4.

The attraction domain of the root Ẑ1 for the equation
Z1(1− Z1)

θ1

(F1(Z1, BR)−
G1(Z1, BR)θ1) = 0 is the open interval (0, 1) and the initial value Z0

1(0) belongs
to this interval.

We have proved the following:

Theorem 2 Under Assumptions A2, A3

P − lim
qR→0̄

sup
0≤t≤T

|xR(t, qR)− xR(t, 0̄)| → 0

P − lim
q1→0

sup
δ≤t≤T

|Z1(x1, θ1, q1)− Ẑ1| → 0 0 < δ ≤ T,

where xR(t, q) is a stochastically perturbed solution of (12); xR(t, 0) is the limit
solution satisfied the system

ẋR = FR(Ẑ1, BR)−GR(Ẑ1, BR)xR

with the initial conditions xR(t0) = x0
R.

Let us consider how we can determine the interval of convergence [0, T ]. We
know that xR(t, qR) → xR(t, 0̄) as qR → 0̄ as long as xR(t, 0̄) is a solution of
the equation

ẋR = FR(Ẑ1, ZR)−GR(Ẑ1, ZR)xR.

In other words it holds as long as the solution xR(t, 0̄) belongs to the singular
domain SD(θ,BR). Therefore we need to find the time T when the solution
leaves the domain. The following example shows how to do this.

Example 1 Consider the system

ẋ1 = Z1 + Z2 − 2Z1Z2 − 0.6x1

ẋ2 = 1− Z1Z2 − 0.9x2,

where Zi = Σ(xi, 1, q), i = 1, 2 are the Hill functions, under the initial condi-
tions

x1(0, q) = x0
1(q), x2(0, q) = x0

2(q).
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Consider the singular domain SD(θ1, 1) = {(x1, x2) : x1 = θ1, x2 > 1} which
is black. Assume that the limit initial point (x0

1(0), x0
2(0)) belongs to it. To

determine the solution in SD(θ1, 1) we change the singular variable x1 with
Z1. It gives us

qŻ1 = Z1(1−Z1)
Σ−1(Z1,1,q)

(Z1 + Z2 − 2Z1Z2 − 0.6Σ−1(Z1, 1, q))

ẋ2 = 1− Z1Z2 − 0.9x2

Z2 = Σ(x2, 1, q).

Let q → 0. Then Z2 → 1, Σ−1(Z1, 1, q) → 1 and we get the system

0 = Z1(1−Z1)
1

(1− Z1 − 0.6)

ẋ2 = 1− Z1 − 0.9x2,

which describes the limit solution in SD(θ1, 1). The solution x2(t, 0) belongs
to this singular domain as long as x2(t, 0) ≥ 1. From the first equation Ẑ =
0.4 ∈ (0, 1) is a stable point. Therefore the equation

ẋ2 = 0.6− 0.9x2

x2(0, 0) > 1, x2(T, 0) = 1
(16)

describes the interval of convergence. From (16) we get that T = 1
0.9

ln(3x0
2(0)−

2), the interval depends on the initial value x0
2(0).

4 Formulation of the problem in the delay case

We study the delay system

ẋi(t) = Fi(Z1, . . . , Zn)−Gi(Z1, . . . , Zn)xi(t) + σi(qi)Ḃi

Zi = Σ(yi, θi, qi)

yi(t) = (<ixi)(t), t ≥ 0, i = 1, . . . , n.

(17)

This system describes a GRN with autoregulation [1], [2], where changes in
one or more genes happen slower than in the others, which causes delay effects
in some of the variables.

We assume that the components of this delay system, that were present in
the non-delay case, have the same properties. Unlike the non-delay system the
input variables yi endow System (17) with time-lags. In general, these variables
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are described by nonlinear Volterra (”delay”) operators <i depending on the
gene concentration xi(t).

If <i is the identity operator, then xi = yi and xi is a non-delay variable.

As in [6] we assume <i to be integral operators of the form

(<ixi)(t) =0cixi(t) +
∫ t

−∞
Ki(t− s)xi(s)ds, t ≥ 0, i = 1, . . . , n,

where

Ki(u) =
∑p

ν=1
νci

νKi(u) ,

νKi(u) = (αi)
ν uν−1

(ν−1)!
e−αiu, i = 1, . . . , n, p = 1, . . . , n.

The coefficients νci are real nonnegative numbers satisfying

p∑

ν=0

νci = 1.

It is also assumed that αi > 0.

To study System (17) we first want to remove the delay from the system. To
do this we apply the modified linear chain trick method, which is described in
[6]. The main idea is to introduce the new modified variables

1vi =0 cixi +
p∑

ν=1

νci
νwi and νvi =

p−ν+1∑

j=1

j+ν−1ci
jwi,

where

νwi(t) =
∫ t

−∞
νKi(t− s)xi(s)ds, ν = 1, . . . , p, i = 1, . . . , n.

Then we obtain that System (17) is equivalent to the following non-delay
system

ẋi = Fi(Z1, . . . , Zn)−Gi(Z1, . . . , Zn)xi + σi(qi)Ḃi

1v̇i = −αi
1vi + αi

2vi + αixi(
0ci +1ci) +0ci(Fi(Z1, . . . , Zn)−Gi(Z1, . . . , Zn)xi+

σi(qi)Ḃi)

2v̇i = −αi
2vi + αi

3vi + αixi
2ci

. . .

pv̇i = −αi
pvi + αixi

pci

Zi = Σ(yi, θi, qi), yi =1vi, i = 1, . . . , n.

(18)
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By the same arguments as in the non-delay case, for qi > 0, i = 1, . . . , n,
the right hand side of System (18) satisfies the linear growth and local Lip-
schitz conditions, therefore by Theorem 5 (Appendix A) there exists a unique
solution for (18) for qi > 0, i = 1, . . . , n.

If qi go to 0, i = 1, . . . , n, then all threshold functions Zi are replaced with the
step functions. The system thus obtained becomes solvable in any its domain of
continuity, but the main problem in this case is to put the solutions together.
The paper [7] suggests a framework of how to apply singular perturbation
analysis to genetic models with delay and how to trace the solutions in the
discontinuity sets of the right-hand sides of the simplified systems. But all
analysis was done only for the deterministic case. The case of stochastically
perturbed genetic models with delay has not been studied before. Our goal is
to give a justification of the passage to the limit from the original complex
stochastic model (18) to the simplified solvable model in the presence of delay.
As in the non-delay case we consider the situation of exactly one singular
variable.

5 Analysis in the delay case

Let qi → 0, i = 1, . . . , n and consider the situation where exactly one of the
variables in (18) approaches its threshold value. Moreover we suppose that
this singular variable is delayed. Renumbering we can always assume that the
singular variable is 1v1 = y1 with the threshold value θ1. Then in the limit, i.e.
as qi → 0 we obtain that 1v1 = θ1 and Zi(yi) = 1 or 0 for i = 2, . . . , n. Denote
this singular domain as

SD(θ1, BR) = {(x, v) :1v1 = θ1, Zi(yi) = Bi, i = 2, . . . , n},

where x = (x1, . . . , xn), v = (v1, . . . , vn) with vi = (1vi, . . . ,
pvi), and Bi is a

corresponding Boolean vector, i = 1, . . . , n.

In the non-delay case walls can be either black (attractive), white (expelling)
or transparent. In the delay case walls can also be of a mixed type (see [7]).
We consider two cases: SD(θ1, BR) is a transparent wall (a transparent part of
the wall) and a black wall (a black part of the wall) in Subsections 5.1 and 5.2,
respectively. The third case of white walls does not require additional analysis
in the stochastic setting, therefore it is not of interest to us.

5.1 Transparent walls

We assume that
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A4 The singular domain SD(θ1, BR) is transparent such that

−α1 θ1 + α1
2v1 + α1x1(

0c1 +1c1) +0c1(F1(0, BR)−G1(0, BR)x1)

and

−α1 θ1 + α1
2v1 + α1x1(

0c1 +1c1) +0c1(F1(1, BR)−G1(1, BR)x1)

have the same sign.

For the sake of simplicity, we consider below the situation when both these
expressions are negative, what means that trajectories go from the regular
domain R(1, BR) = {(x, v) :1 v1 > θ1, Zi(yi) = Bi, i ≥ 2} to the regular
domain R(0, BR) = {(x, v) :1 v1 < θ1, Zi(yi) = Bi, i ≥ 2}. Assume that
the limit initial point (x0, v0) ∈ R(1, BR), where x0 = (x1(t0), . . . , xn(t0)),
v0 = (v1(t0), . . . , vn(t0)) with vi(t0) = (1vi(t0), . . . ,

pvi(t0)), i = 1, . . . , n.

Denote by x(t, q̄) = (x1(t, q̄), . . . , xn(t, q̄)), v(t, q̄) = (v1(t, q̄), . . . , vn(t, q̄)), q̄ =
(q1, . . . , qn), the solution of the stochastically perturbed system (18) and by
x(t, 0̄) = (x1(t, 0̄), . . . , xn(t, 0̄)), v(t, 0̄) = (v1(t, 0̄), . . . , vn(t, 0̄)) the solution of
the limit system given by





ẋi = Fi(1, BR)−Gi(1, BR)xi

1v̇i = −αi
1vi + αi

2vi + αixi(
0ci +1ci) +0ci(Fi(1, BR)−Gi(1, BR)xi)

2v̇i = −αi
2vi + αi

3vi + αixi
2ci

. . .

pv̇i = −αi
pvi + αixi

pci

if (x(t, 0̄), v(t, 0̄)) ∈ R(1, BR)

and



ẋi = Fi(0, BR)−Gi(0, BR)xi

1v̇i = −αi
1vi + αi

2vi + αixi(
0ci +1ci) +0ci(Fi(0, BR)−Gi(0, BR)xi)

2v̇i = −αi
2vi + αi

3vi + αixi
2ci

. . .

pv̇i = −αi
pvi + αixi

pci

(19)

if (x(t, 0̄), v(t, 0̄)) ∈ R(0, BR), i = 1, . . . , n, on the interval [t0, T ].
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Theorem 3 Under Assumption A4

lim
q̄→0̄

E sup
[t0,T ]

|x(t, q̄)− x(t, 0̄)|2 = 0

lim
q̄→0̄

E sup
[t0,T ]

|v(t, q̄)− v(t, 0̄)|2 = 0.

Proof.

The proof is similar to the proof in the non-delay case therefore we omit
a good many details. Assume that the solution (x(t, 0̄), v(t, 0̄)) crosses the
singular domain SD(θ1, BR) at the time t1, i.e. 1v1(t1, 0̄) > θ1 for t < t1 and
1v1(t1, 0̄) < θ1 for t > t1. Take any σ > 0. On the intervals [t0, t1 − σ] and
[t1 + σ, T ] the xi and jvi components of the stochastically perturbed solutions
of (18) converge to the corresponding components of the limit solution given
by (19) by the same arguments as in the non-delay case, i.e. we have

E sup
|t− t1| > σ

t ∈ [t0, T ]

|xi(t, q̄)− xi(t, 0̄)|2 < ε,

E sup
|t− t1| > σ

t ∈ [t0, T ]

|jvi(t, q̄)−jvi(t, 0̄)|2 < ε,
(20)

where i, j = 1, . . . , n.

Now we look what happens in a vicinity of the point t1. The difference for the
xi components, i = 1, . . . , n, is the same as in the non-delay case. Therefore
there exists q̃ > 0 such that

E sup
|t−t1|≤σ

|xi(t, q̄)− xi(t, 0̄)|2 < ε for 0 < qi < q̃, i = 1, . . . , n. (21)

Since jvi(t, q̄), i = 1, . . . , n, j = 2, . . . , n, does not depend on any of Zi therefore
|jvi(t, q̄)−jvi(t, 0̄)| = 0 and

E sup
|t−t1|≤σ

|jvi(t, q̄)−j vi(t, 0̄)|2 = 0, i = 1, . . . , n, j = 2, . . . , n. (22)

At last we look at the 1vi components, i = 1, . . . , n.

|1vi(t, q̄)−1vi(t, 0̄)| =0 ci|xi(t, q̄)− xi(t, 0̄)|,

where 0 ≤0ci ≤ 1. Therefore there exists q∗∗ such that

E sup
|t−t1|≤σ

|1vi(t, q̄)−1vi(t, 0̄)|2 < ε for 0 < qi < q∗∗, i = 1, . . . , n. (23)
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Estimations (20)-(23) prove the theorem.

5.2 Black walls and singular perturbation analysis

Consider System (18) equipped with the initial conditions

x(t0) = x0, v(t0) = v0, (x0, v0) ∈ SD(θ1, BR),

where x = (x1, . . . , xn), v = (v1, . . . , vn) with vi = (1vi, . . . ,
pvi), i = 1, . . . , n.

We assume that:

A5 SD(θ1, BR) is black (or a black part of the wall) such that




−α1 θ1 + α1

2v1 + α1x1(
0c1 +1c1) +0c1(F1(1, BR)−G1(1, BR)x1) < 0

−α1 θ1 + α1
2v1 + α1x1(

0c1 +1c1) +0c1(F1(0, BR)−G1(0, BR)x1) > 0,
(24)

where 0c1 6= 0.

Assume also that the diffusion coefficients σ1(q1) and σi(qi), i = 2, . . . , n satisfy
the assumption A3.

According to the singular perturbation analysis we replace 1v1 with Z1. Using
the formula (11) to calculate dZ1, we get the following system describing the
trajectories’ behavior in SD(θ1, BR)

q1Ż1 =
Z1(1− Z1)

Σ−1(Z1, θ1, q1)
(−α1Σ

−1(Z1, θ1, q1) + α1
2v1 + α1x1(

0c1 +1c1)+

0c1(F1(Z1, ZR)−G1(Z1, ZR)x1) +
Z1(1− Z1)(1− 2Z1 − q1)

2q1(Σ−1(Z1, θ1, q1))2
0c2

1 σ2
1(q1)+

Z1(1− Z1)

Σ−1(Z1, θ1, q1)
0c1σ1(q1)Ḃ1

ẋi = Fi(Z1, ZR)−Gi(Z1, ZR)xi + σi(qi)Ḃi

1v̇j = −αj
1vj + αj

2vj + αjxj(
0cj +1cj) +0cj(Fj(Z1, ZR)−Gj(Z1, ZR)xj)+

0cjσj(qj)Ḃj

2v̇i = −αi
2vi + αi

3vi + αixi
2ci

3v̇i = −αi
3vi + αi

4vi + αixi
3ci

...

pv̇i = −αi
pvi + αixi

pci, i = 1, . . . , n, j = 2, . . . , n.

(25)
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with the initial conditions

x(t0) = x0, Z(t0) = 0.5

V (t0) = V 0,
(26)

where x = (x1, . . . , xn), V = (v1,R, v2, . . . , vn) with v1,R = (2v1,
3v1, . . . ,

pv1),
vj = (1vj, . . . ,

pvj), j = 2, . . . , n.

Now we need to show that under the assumptions A3 - A5 all conditions of the
stochastic Tikhonov theorem listed in Appendix B are fulfilled for the problem
(25)-(26).

Verification of B1.

The proof of the facts that the right hand side of (25) is continuous in Z1, qi,
xi and pvi and satisfies the linear growth and locally Lipschitz conditions in xi

and pvi is similar to the non-delay case.

Verification of B2.

By the assumption the diffusion coefficient σ1(q1) goes to 0 as q1 → 0. Then
we get that the first equation in (25) takes the form

Z1(1− Z1)

θ1

[−α1θ1+α1
2v1+α1x1(

0c1+
1c1)+

0c1(F1(Z1, BR)−G1(Z1, BR)x1] = 0.

The function in the square brackets is linear in Z1, moreover the wall
SD(θ1, BR) is assumed to be black. Therefore this equation has the solution

Ẑ1 = Ẑ1(x1,
2v1) ∈ (0, 1) satisfying B2.

Verification of B3.

Since in the limit all noises disappeared, we have the same associated problem
as in the deterministic case

Z̃ ′
1 =

Z̃1(1− Z̃1)

θ1

[−α1θ1+α1
2v1+α1x1(

0c1+
1c1)+

0c1(F1(Z̃1, BR)−G1(Z̃1, BR)x1],

where Z̃ ′
1 = ∂Z1/∂τ , τ = t/q1 is the stretching transformation.

The Lyapunov stability of the solution of the associated problem follows from
the linearity of the function in the square brackets and the condition of black-
ness (24).

Verification of B4.

For t = 0 and q̄ = 0̄ we have (x0(0̄), v0(0̄)) ∈ SD(θ1, BR) therefore

20



(x0
1(0̄),2v0

1(0̄)) ∈ M , where M ⊂ R2 is a set of all solutions (x1,
2v1) of Sys-

tem (24). Solving the equation

−α1θ1 + α1
2v1 + α1x1(

0c1 +1c1) +0c1(F1(Z̃1, BR)−G1(Z̃1, BR)x1 = 0

we see that Z1 belongs to the domain of attraction, as soon as (x0(0̄), v0(0̄)) ∈
SD(θ1, BR).

Therefore the following theorem is fulfilled.

Theorem 4 Under Assumptions A3,A5

P − lim
q̄→0̄

sup
0≤t≤T

|x(t, q̄)− x(t, 0̄)| → 0

P − lim
q̄→0̄

sup
0≤t≤T

|v(t, q̄)− v(t, 0̄)| → 0

P − lim
q1→0

sup
δ≤t≤T

|Z1(y1, θ1, q1)− Ẑ| → 0, 0 < δ ≤ T,

where x(t, q̄), v(t, q̄) is a stochastically perturbed solutions of (25) and x(t, 0̄),
v(t, 0̄) is a limit solution satisfied the system

ẋi = Fi(Ẑ1, BR)−Gi(Ẑ1, BR)xi

1v̇j = −αj
1vj + αj

2vj + αjxj(
0cj +1cj) +0cj(Fj(Ẑ1, BR)−Gj(Ẑ1, BR)xj)

2v̇i = −αi
2vi + αi

3vi + αixi
2ci

3v̇i = −αi
3vi + αi

4vi + αixi
3ci

...

pv̇i = −αi
pvi + αixi

pci, i = 1, . . . , n, j = 2, . . . , n.

with the initial conditions (26).

6 Appendix A

Let us briefly review the basic definitions and notations of probability theory
and stochastic equations [11], [12], which are used in this paper.

Definition 1 Let Bt(ω) be n-dimensional Brownian motion. Then we define

Ft = F (n)
t to be the σ-algebra generated by the random variables Bs(·), s ≤ t.

In other words, Ft is the smallest σ-algebra containing all sets of the form

{ω;Bt1(ω) ∈ F1, . . . ,Btk(ω) ∈ Fk},
where tj ≤ t and Fj ⊂ Rn are Borel sets, j ≤ k, k = 1, 2, . . ..
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Definition 2 A real valued function X : Ω → R is said to be F-measurable if

{ω : X(ω) ≤ a} ∈ F ∀a ∈ R.

Definition 3 Let {Ft}t≥0 be an increasing family of σ-algebras of subsets of
Ω. A process g(t, ω) : [0,∞) × Ω → Rn is called Ft-adapted if for each t ≥ 0
the function ω → g(t, ω) is Ft-measurable.

Definition 4 Let V = V(S, T ) be a class of functions f(t, ω) : [0,∞)× Ω →
Rn such that

• (t, ω) → f(t, ω) is B × F-measurable, where B denotes the Borel σ-algebra
on [0,∞),

• f(t, ω) is Ft-adapted,

• E

[
T∫
S
|f(t, ω)|2dt

]
< ∞.

For the function f ∈ V we define the Itô integral by

I[f ](ω) =

T∫

S

f(t, ω)dBt(ω).

Definition 5 A filtration (on (Ω,F)) is a family M = {Mt}t≥0 of σ-algebras
Mt ⊂ F such that 0 ≤ s < t ⇒Ms ⊂Mt.

Let (Ω,F , P ) be a complete probability space with the Brownian motion
B(t) = (B1, . . . ,Bm)T , t ≥ 0, and a filtration {Ft}t≥0. Let x0 be an Ft0-
measurable Rn-valued random variables such that E|x0|2 < ∞. Let f : Rn ×
[t0, T ] → Rn and g : Rn × [t0, T ] → Rn×m be both Borel measurable.

Consider the n-dimensional stochastic differential equation of Itô type

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t) on t0 ≤ t ≤ T (27)

with the initial value x(t0) = x0. This equation is equivalent to the following
stochastic integral equation

x(t) = x0 +

t∫

t0

f(x(s), s)ds +

t∫

t0

g(x(s), s)dB(s) on t0 ≤ t ≤ T. (28)

Definition 6 An Rn-valued stochastic process {x(t)}t0≤t≤T is called a solution
of (28) if it has the following properties:

• x(t) is continuous and Ft-adapted,
• f(x(t), t) ∈ L1([t0, T ];Rn) and {g(x(t), t)} ∈ L2([t0, T ];Rn×n),

where Lp([a, b];Rn) is the family of Rn-valued Ft-adapted processes {h(t)}a≤t≤b
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such that
b∫
a
|h(t)|pdt < ∞ a.s.,

• System (27) holds for every t ∈ [t0, T ] with probability 1.

Definition 7 We say that the function h : [0, T ] × E1 → E2, where E1, E2

are Euclidian spaces, satisfies the linear growth and local Lipschitz conditions
in x if:

• there is a constant L such that

|h(t, x)| ≤ L(1 + |x|) ∀t ∈ [0, T ], x ∈ E1,

• for any N > 0 there is a constant LN such that

|h(t, x1)− h(t, x2)| ≤ LN |x1 − x2| ∀t ∈ [0, T ], xi ∈ E1, |xi| ≤ N.

Theorem 5 [12] Assume that the functions f(x(t), t), g(x(t), t) satisfy the
linear growth and local Lipschitz conditions in (x, t). Then there exists a unique
solution x(t) to System (28) in M2([t0, T ];Rn), where M2([a, b];Rn) is the

family of processes {h(t)}a≤t≤b in L2([a, b];Rn) such that E
b∫
a
|h(t)|2dt < ∞.

7 Appendix B

Consider in Rk × Rn the system of stochastic differential equations

dx(t, q) = a(q, x(t, q), y(t, q)) + b(q, x(t, q), y(t, q))dBx(t), x(0) = x0,

qdy(t, q) = A(q, x(t, q), y(t, q)) + B(q, x(t, q), y(t, q))dBy(t), y(0) = y0,

where Bx(t), By(t) are independent Brownian motions, B(q, x(t, q), y(t, q)) =
σ(q)B0(q, x(t, q), y(t, q)), x0 and y0 are constants.

Definition 8 Let X and Xk, k ≥ 1, be Rn-valued random variables.
If for every ε > 0, P{ω : |Xk(ω) − X(ω)| > ε} → 0 as k → ∞, then Xk is
said to converge to X stochastically or in probability, i.e.

P − lim
k→∞

‖Xk(ω)−X(ω)‖ = 0.

We introduce the following assumptions:

B1 The functions a, A, b and B0 are continuous in all variables (q, x, y) and
satisfy the linear growth and local Lipschitz conditions in (x, y).
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B2 Isolated root condition.

There is a function ϕ : Rk → Rn satisfying the linear growth and local Lip-
schitz conditions in x such that

A(0, x, ϕ(x)) = 0, ∀x ∈ Rk.

B3 Associated problem. Lyapunov stability condition.

The derivative Ay exists, it is a continuous function on the set Rk × Rn and
for any N > 0 there exists a constant kN > 0 such that for every x ∈ Rk with
|x| ≤ N

z?Ay(0, x, ϕ(x))z ≤ −kN |z|2 ∀z ∈ Rn.

B4 The domain of attraction.

The solution of the problem

ỹ′τ = A(0, x0, ỹτ ), ỹ0 = y0,

tends to ϕ(x0) as τ → ∞: lim
τ→∞ ỹτ = ϕ(x0), where τ = t/q is the stretching

transformation.

Assumption B4 means that the initial value y0 belongs to the domain of in-
fluence of the root ϕ(x0) of the equation A(0, x0, y) = 0.

B5 The function

σ(q) = o




√√√√
∣∣∣∣∣

q

ln q

∣∣∣∣∣


 as q → 0.

Theorem 6 [13] Under Assumptions B1-B5

P − lim
q→0

‖x(t, q)− x(t, 0)‖ = 0 t ∈ [0, T ],

P − lim
q→0

‖y(t, q)− y(t, 0)‖ = 0 t ∈ [δ, T ],

where 0 < δ ≤ T .
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Abstract

Given a functional differential equation with a discontinuity, a construction of its
extension in the shape of a functional differential inclusion is offered. This con-
struction can be regarded as a generalization of the famous Filippov approach to
study ordinary differential equations with discontinuities. Some basic properties of
the solutions of the introduced functional differential inclusions are studied. The
developed approach is applied to analysis of gene regulatory networks with general
delays.

Key words: multivalued operators, Filippov’s theory, delay, gene regulatory
networks
MSC: 34K09, 45D05, 46N60

1 Introduction

The theory of differential and integral inclusions is a popular and well-developed
branch of modern mathematics [1]-[5]. It is well-known that one of the ways
of obtaining differential inclusions is Filippov’s theory of discontinuous differ-
ential equations [1]. This approach is widely used in many applications. One
of the recent examples is the Boolean analysis of gene regulatory networks
[6]-[8].
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On the other hand, it is well-known too that delay effects are an important
issue in genetic models. In the papers [9], [10] a way of incorporating delays
into the Boolean analysis of gene regulatory networks is suggested, this ap-
proach is based on the studies of singular perturbations (Tikhonov’s theory).
However, it only covers very special types of delays, namely distributed delays
where the corresponding integral operators are finite dimensional, i. e. their
kernel are finite sums of special functions. The reason for that is a special tech-
nique suggested in these papers, which is based upon a special substitution
(a modified linear chain trick) converting a given delay equation to a system
of ordinary differential equations. This analysis may be suitable for certain
biological applications, yet a simple case of a constant delay is not covered by
this method.

The aim of the present paper is two-fold. On one hand, we suggest an analogue
of Filippov’s theory for functional differential equations, on the other, we show
how this analogue can be applied to gene regulatory networks. We stress that
our method covers very general discontinuous functional differential equations
and in particular, very general Boolean genetic models with delay.

As gene networks serve as the main motivation for our approach, let us look
at their mathematical aspects in more detail.

An important feature of gene regulatory networks is the presence of thresh-
olds causing switch-like interactions between genes. Such interactions can be
described by smooth monotone functions rapidly increasing in a vicinity of
their thresholds. The resulting smooth nonlinear system can however be too
complicated to be studied theoretically and even numerically, as the resulting
system may contain thousands of variables. To simplify the functional form
of the equations it is common to represent interactions by the step functions,
which gives a system of differential equations with discontinuous right-hand
sides. Such a representation can only be considered mathematically rigorous
if the dynamics of the simplified system is closed to the dynamics of the origi-
nal smooth system. Some important justification results in the non-delay case
are obtained in the papers [11], [12], [13], [14], where the emphasis is put on
stability of the steady states and reconstruction of the trajectories in the dis-
continuity set of the network. A biological motivation for these studies can be
also found in these papers.

However, a drawback of the analysis just mentioned is that it treats the as-
ymptotic study of steady states and the reconstruction of the limit solutions
separately, because two different techniques are applied. For instance, it is not
possible to conclude from the results obtained in these papers whether the
limit solutions tend to the limit steady states.

A way to put together the asymptotic stability analysis and reconstruction of
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the limit trajectories was suggested in [7]. This approach exploits the concepts
of differential inclusions and the Filippov solutions.

Certainly, this second approach also has its disadvantages. For instance, using
it one may obtain steady states that are not limits of the proper steady states
coming from the smooth model. Yet, a clear advantage of this approach is its
more universal character and possibility to complete the asymptotic analysis
around steady states of the network.

Unlike the papers [9] and [10] based on the first approach, the present paper
follows the second approach, i. e. the one based on multivalued mappings.
Yet, the classical Filippov theory treats only the non-delay case. As we are
interested in incorporating very general delays into a discontinuous system
of differential equations, we use the language of Volterra operators and func-
tional differential equations (see e.g. [15]). In order to implement the central
idea of Filippov’s theory, we suggest a formal procedure of obtaining a func-
tional differential inclusion from a general discontinuous functional differential
equation. This gives us a possibility to define an analogue of a Filippov so-
lution for discontinuous functional differential equations and finally to apply
the developed theory to gene regulatory networks with general delays.

The paper is organized as follows.

In Section 2 we study families of functional differential inclusions that are
discontinuous in one parameter. In the gene network setting this means that
only one gene concentration approaches its threshold value (the case of a wall
- see [9]). We show how such a family gives rise to a well-defined functional
differential inclusion. We study also basic properties of the resulting inclusions
such as local existence, uniqueness of (Filippov) solutions and their continuous
dependence on parameters (like the threshold value itself). We demonstrate
as well how the existence of global solutions can be obtained.

The key property which enables us to prove the announced results is the
compactness of the constructed multivalued mappings in the weak topology
of the Lebesgue space Ln

1 .

In Section 3 we apply the results of the previous section to the case of one
singular variable in a gene regulatory network with delay. At the beginning of
this section a short yet comprehensive overview of the relevant terminology is
offered.

In Section 4 we generalize the central results of Section 2 to the case of simul-
taneous discontinuity in several parameters. This section contains the main
results of the paper related to its first aim - development of an analogue of
Filippov’s theory for general functional differential equations. But as we show,
this general case can in fact be deduced from the special case studied in Sec-
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tion 2. In particular, we do not need to repeat the whole analysis developed
in Section 2 with all its technicalities.

Finally, the case of arbitrary many singular variables in a gene regulatory
network with general delays is treated in Section 5. This section contains the
central results of the paper related to its second aim, i. e. a justification of the
Boolean analysis of a gene regulatory network with a general delay.

2 Operators discontinuous in one parameter

Throughout the paper we use the following notation. The space Rn consists
of all n–dimensional column vectors and the norm | · | in this space is kept
fixed. For a normed space X with the norm ‖ · ‖X, let BX[x, δ] be the closed
ball in the space X with the center at x ∈ X and of radius δ > 0. We denote
by Cn[a, b] the space of continuous functions x : [a, b] → Rn with the norm
‖x‖Cn[a,b] = max{|x(t)| : t ∈ [a, b]}, Ln

1 (U) the space of all integrable functions
x : U → Rn and K an arbitrary metric space. For n = 1 we will write C[a, b]
and L1[a, b]. For U ⊂ X we denote by Ω(U) the set of all nonempty convex
subsets of U . We say that a set Φ ⊂ Ln

1 [a, b] is dominated by an integrable
function if there exists a function ϕΦ ∈ L1[a, b] such that for each x ∈ Φ and
almost all t ∈ [a, b] one has |x(t)| 6 ϕΦ(t).

Definition 1 A mapping P̃ : Cn[a, b] → Ω(Ln
1 [a, b]) is called a (multivalued)

Volterra operator (see[15]), if for any a < τ ≤ b the equality x = y on [a, τ ]
implies P̃ (x)|τ = P̃ (y)|τ , where P̃ (z)|τ is the set of all functions from P̃ (z)
restricted to [a, τ ].

As a particular case, we obtain the standard definition of a single-valued
Volterra operator P : Cn[a, b] → Ln

1 [a, b].

In this paper we study the functional differential equation

ẋ = P (q, x, λ), (1)

where the single-valued operator P satisfies Property A which is described in
the next definition.

Definition 2 We say that a continuous mapping

P : (0, 1]× Cn[a, b]×K→ Ln
1 [a, b]

has Property A if this mapping satisfies the following conditions:

1) for any bounded sets U ⊂ Cn[a, b] and E ⊂ K the image P ((0, 1]× U ×E)
is dominated by an integrable function,
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2) for any q ∈ (0, 1] and λ ∈ K the operator P (q, ·, λ) is Volterra.

Notice that if the mapping P (·, ·, ·) has Property A then the operator P (·, ·, ·)
is not necessarily defined or continuous for q = 0. For such an operator P (·, ·, ·)
we construct a multi-valued mapping which is defined for q = 0 and which is
closed in the space Ln

1 [a, b] equipped with the weak topology.

We define a multivalued mapping P̃ (0, ·, ·) : Cn[a, b]×K→ Ω(Ln
1 [a, b]), which

extends the single-valued mapping P , by putting

P̃ (0, x, λ) =
⋂

δ∈(0,1]

coP ((0, δ]×BCn[a,b][x, δ]×BK[λ, δ]). (2)

Lemma 1 The mapping P̃ (0, ·, ·) : Cn[a, b]×K→ Ω(Ln
1 [a, b]) given by (2) is

closed and compact in the weak topology of Ln
1 [a, b].

Proof.

Assume that xi → x in Cn[a, b], λi → λ in K as i → ∞ and zi → z, zi ∈
P̃ (0, xi, λi) weakly in Ln

1 [a, b] as i → ∞. Let us show that z ∈ P̃ (0, x, λ).
Assume that for some δ ∈ (0, 1] and q ∈ (0, δ) there exists a number i0 such
that BCn[a,b][xi, q] ⊂ BCn[a,b][x, δ] and BK[λi, q] ⊂ BK[λ, δ] for i ≥ i0. Then

P ((0, q]×BCn[a,b][xi, q]×BK[λi, q]) ⊂ P ((0, δ]×BCn[a,b][x, δ]×BK[λ, δ])

and therefore

coP ((0, q]×BCn[a,b][xi, q]×BK[λi, q]) ⊂ coP ((0, δ]×BCn[a,b][x, δ]×BK[λ, δ]) (3)

for each i ≥ i0.

From the definition of P̃ (0, ·, ·), it follows that P̃ (0, xi, λi) ⊂ coP ((0, q] ×
BCn[a,b][xi, q]×BK[λi, q]). Using this and (3) we get

zi ∈ coP ((0, δ]×BCn[a,b][x, δ]×BK[λ, δ])

for each i ≥ i0.

Since the set coP ((0, δ]×BCn[a,b][x, δ]×BK[λ, δ]) is closed in the weak topology
of the space Ln

1 [a, b] we obtain that z ∈ coP ((0, δ] × BCn[a,b][x, δ] × BK[λ, δ]).

We see that the latter relation holds for all δ ∈ (0, 1], so that z ∈ P̃ (0, x, λ).

From the definition of the mapping P̃ (0, ·, ·) and Property A of the operator
P , it follows that for any bounded sets U ⊂ Cn[a, b] and E ⊂ K the im-
age P̃ (0, U, E) is dominated by an integrable function. Therefore P̃ (0, ·, ·) is
compact in the weak topology of Ln

1 [a, b]. The proof is complete.
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Below we let (BCn[a,b][x, δ])|τ denote the set of the restrictions (to the interval
[0, τ ]) of all functions from BCn[a,b][x, δ], where τ ∈ (a, b). In other words,
for each τ ∈ (a, b) the set (BCn[a,b][x, δ])|τ is the closed ball in the space
Cn[a, τ ] with the center x|τ and the radius δ. Here x|τ is the restriction of x to
[a, τ ]. Evidently, if P (·, ·, ·) is a (single-valued) Volterra operator in the second
variable, then the mapping P̃ (0, ·, ·) is a (multivalued) Volterra operator as
well.

In what follows we consider the following initial value problem for the func-
tional differential inclusion (1) depending on a parameter λ ∈ K

ẋ ∈ P̃ (0, x, λ), x(a) = x0. (4)

For any τ ∈ (a, b] we define a continuous mapping Vτ : Cn[a, τ ] → Cn[a, b] by

(Vτx) =





x(t) if t ∈ [a, τ ]

x(τ) if t ∈ (τ, b].
(5)

Definition 3 We say that an absolutely continuous function x:[a, τ ] → Rn is
a solution of the problem (4) on the interval [a, τ ], if x satisfies the inclusion
ẋ ∈ (P̃ (0, Vτx, λ))|τ and the initial condition x(a) = x0, where the continuous
mapping Vτ : Cn[a, τ ] → Cn[a, b] given by (5).

A function x : [a, c) → Rn which is absolutely continuous on every interval
[a, τ ] ⊂ [a, c), c ∈ (a, b], is called a solution of the problem (4) on the interval
[a, c) if for each τ ∈ (a, c) the restriction of x to [a, τ ] is a solution of the
problem (4) on the interval [a, τ ].

A solution x : [a, c) → Rn of the problem (4) on the interval [a, c) is said to
be nonextendable if there is no solution y of the problem (4) on any larger
interval [a, τ ] (here τ ∈ (c, b] if c < b and τ = b if c = b) such that x(t) = y(t)
for each t ∈ [a, c).

Remark 1 The above defined solution of the functional differential inclusion
(4) can be called a Filippov solution of the discontinuous functional differential
equation (1). A similar terminology is widely used in the theory of differential
equations with discontinuous right hand sides.

Let mappings Λ : Ln
1 [a, b] → Cn[a, b] and Φ(0, ·, ·) : Cn[a, b]×K→ Ω(Cn[a, b])

be given by

(Λz)(t) =

t∫

a

z(s)ds, t ∈ [a, b], Φ(0, x, λ) = x0 + ΛP̃ (0, x, λ). (6)
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For each τ ∈ (a, b] let us define the operator Φτ (0, ·, ·) : Cn[a, τ ] × K →
Ω(Cn[a, τ ]) by

Φτ (0, x, λ) = (Φ(0, Vτx, λ))|τ , (7)

where the continuous operator Vτ : Cn[a, τ ] → Cn[a, b] and the mapping
Φ(0, ·, ·) : Cn[a, b]×K→ Ω(Cn[a, b]) are given by (5) and (6), respectively.

Lemma 2 For each τ ∈ (a, b] the mapping Φτ (0, ·, ·) given by the formula (7)
satisfies the following conditions:

1) Φτ (0, ·, ·) : Cn[a, b]×K→ Ω(Cn[a, τ ]) is a compact and closed operator,

2) for each λ ∈ K, τ, ν ∈ (a, b] (τ < ν) and for any x ∈ Cn[a, τ ], y ∈ Cn[a, ν]
satisfying x = y|τ , we have Φτ (0, x, λ) = (Φν(0, y, λ))|τ .

Proof. Let τ ∈ (a, b], xi → x in Cn[a, b] and λi → λ in K as i → ∞.
Assume that yi → y, yi ∈ Φτ (0, xi, λi) in Cn[a, τ ] as i →∞. We want to show
that y ∈ Φτ (0, x, λ). Let hi ∈ P̃ (0, Vτxi, λi) be such that yi(t) = x0 + (Λhi)(t),
i ∈ N, for each t ∈ [a, τ ]. The sequence hi, i ∈ N, is dominated by an integrable
function, so that there exists h ∈ Ln

1 [a, b] such that hi → h weakly in Ln
1 [a, b]

as i → ∞ and yi = x0 + (Λhi)|τ → x0 + (Λh)|τ = y in Cn[a, b] as i → ∞.
Then, according to Lemma 1, we have that h ∈ P̃ (0, Vτx, λ) and therefore
y ∈ Φτ (0, x, λ).

From Lemma 1 we obtain that the operator Φτ (0, ·, ·) is compact. The second
condition follows from the definition of the mappings Φτ (0, ·, ·), τ ∈ (a, b], and
the fact that the mapping P̃ (0, ·, ·) is Volterra in the second variable. Lemma
is proved.

From (7) it follows that the solutions of the inclusion

x ∈ Φτ (0, x, λ)

coincide with the solutions of the problem (4) on the interval [a, τ ]. From this
and the results of the paper [15] we directly deduce the following theorems.

Theorem 1 There exists τ ∈ (a, b] such that the solution of the problem (4)
is defined on the interval [a, τ ].

Theorem 2 The solution x : [a, c) → Rn of the problem (4) admits an exten-
sion to a larger interval if and only if lim

t→c−0
|x(t)| < ∞.

Corollary 1 The solution x : [a, c) → Rn of the problem (4) is a nonextend-
able solution if and only if lim

t→c−0
|x(t)| = ∞.

Theorem 3 If y is the solution of the problem (4) on the interval [a, τ ], τ ∈
(a, b), then there exists a nonextendable solution x of (4) defined on [a, c),
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c ∈ (τ, b] or on [a, b] such that x(t) = y(t) for each t ∈ [a, τ ].

Let H(x0, λ, τ), λ ∈ K be the set of all local solutions of the problem (4) on
[a, τ ], τ ∈ (a, b]. We say that H(x0, λ, τ) is a priori bounded if there exists a
number r > 0 such that for each τ ∈ (a, b] there is no solution y ∈ H(x0, λ, τ)
such that ‖y‖Cn[a,τ ] > r.

Theorems 1–3 yield the following result.

Theorem 4 Let the set of all local solutions of the problem (4) be a priori
bounded. Then H(x0, λ, τ) 6= ∅ for each τ ∈ (a, b] and there exists a number
r > 0 such that the inequality ‖y‖Cn[a,τ ] ≤ r holds for all τ ∈ (a, b], y ∈
H(x0, λ, τ), λ ∈ K.

Theorem 5 If λi → λ in K as i →∞ and xi → x, xi ∈ H(x0, λi, τ), τ ∈ (a, b]
in Cn[a, τ ] then x ∈ H(x0, λ, τ).

Proof.

Assume that hi ∈ P̃ (0, Vτxi, λi), i ∈ N, satisfy the equality xi(t) = x0+(Λhi)(t)
for each t ∈ [a, τ ]. The sequence hi, i ∈ N, is dominated by an integrable
function, therefore there exists h ∈ Ln

1 [a, b] such that hi → h weakly in Ln
1 [a, b]

as i → ∞. From Lemma2 it follows that h ∈ P̃ (0, Vτx, λ). If Λhi → Λh in
Cn[a, b] as i → ∞, then x(t) = x0 + (Λh)(t) for all t ∈ [a, τ ]. Therefore
x ∈ H(x0, λ, τ). The proof is complete.

Corollary 2 For each τ ∈ (a, b] the set H(x0, λ, τ) is closed in Cn[a, τ ].

Definition 4 A mapping M from an ordered set D into an ordered set P such
that for any a, b ∈ D, a ≤ b we have M(a) ≤ M(b), is called monotone.

Below | · | stands for the operator x(·) → |x(·)| from Cn[a, b] to Cn
+[a, b].

Lemma 3 Let M : [0, 1] × C1
+[a, b] × K → L1

+[a, b] be a continuous mapping
satisfying the following conditions:

1) for any κ ∈ [0, 1], λ ∈ K the operator M(κ, ·, λ) is Volterra and monotone,

2) for any κ ∈ (0, 1], t ∈ (a, b] , x ∈ Cn[a, b] and λ ∈ K

‖P (κ, x, λ)‖Ln
1 [a,t] ≤ ‖M(κ, |x|, λ)‖L1[a,t]. (8)

Then for any t ∈ (a, b], x ∈ Cn[a, b], λ ∈ K and y ∈ P̃ (0, x, λ) we have

‖y‖Ln
1 [a,t] ≤ ‖M(0, |x|, λ)‖L1[a,t],

where the mapping P̃ (0, ·, ·) : Cn[a, b]×K→ Ω(Ln
1 [a, b]) is given by (2).
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Proof.

Let t ∈ (a, b], x ∈ Cn[a, b], λ ∈ K be fixed. Taking δ ∈ (0, 1], we assume
that P (κ, w, σ) ∈ P ((0, δ] × BCn[a,b][x, δ] × BK[λ, δ]). Using that M(κ, ·, λ) is
monotone and applying the inequality (8) we obtain

‖P (κ, w, σ)‖Ln
1 [a,t] ≤ ‖M(κ, |x|+ δ, σ)‖L1[a,t]. (9)

Let w ∈ coP ((0, δ] × BCn[a,b][x, δ] × BK[λ, δ]). Then there exist νi ≥ 0, κi ∈
(0, δ], wi ∈ BCn[a,b][x, δ], σi ∈ BK[λ, δ], i = 1, 2, . . . ,m, such that

m∑
i=1

νi = 1 and

w =
m∑

i=1
νiP (λi, wi, σi). According to the inequality (9) we have

‖w‖Ln
1 [a,t] ≤

m∑

i=1

νi‖M(κi, |x|+ q, σi)‖L1[a,t]. (10)

Denote

O(δ, x, λ) = co{‖M(κ, |x|+ δ, σ)‖L1
1[a,t] : κ ∈ [0, δ], σ ∈ BK[λ, δ]} (11)

and

‖O(δ, x, λ)‖ = max
r∈O(δ,x,λ)

r. (12)

From (10), (11), (12) it follows that

‖w‖Ln
1 [a,t] ≤ ‖O(δ, x, λ)‖ (13)

for all w ∈ coP ((0, δ] × BCn[a,b][x, δ] × BK[λ, δ]). Using (11), (12) and the
continuity of the operator M(·, ·, λ) we get

lim
δ→+0

‖O(δ, x, λ)‖ = ‖M(0, |x|, λ)‖L1[a,t]. (14)

Now let y ∈ P̃ (0, x, λ). From the definition of P̃ (·, ·, ·) it follows that y ∈
coP ((0, δ] × BCn[a,b][x, δ] × BK[λ, δ]) for all δ ∈ (0, 1]. From (13) we obtain
‖y‖Ln

1 [a,t]‖ ≤ ‖O(δ, x, λ)‖ for all δ ∈ (0, 1]. Letting δ → +0 in the last inequality
and using (14), we obtain the result.

Definition 5 We say that a continuous mapping P : (0, 1]× Cn[a, b]×K →
Ln

1 [a, b] has Property B if this mapping has Property A and there exists a
continuous mapping M : [0, 1]× C1

+[a, b]×K→ L1
+[a, b] satisfying conditions

1), 2) of Lemma 3, and the problem

ẏ = M(0, y, λ), y(a) = |x0|, λ ∈ K (15)

has an upper solution, where x0 is the initial value in the problem (4).
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Theorem 6 Let a continuous mapping P : (0, 1]×Cn[a, b]×K→ Ln
1 [a, b] have

Property B. Then for every solution of the problem (4) we have |x(t)| ≤ ξ(t)
for each t ∈ [a, b], where ξ(·) is the upper solution to (15).

Proof.

Let an operator Θ : Ln
1 [a, b] → D1[a, b] be given by

(Θz)(t) = |x0|+
t∫

a

|z(s)|ds.

Let x be the solution to (4). From Lemma 3 it follows that

‖ẋ‖Ln
1 [a,t] ≤ ‖M(0, |x|, λ)‖L1[a,t] (16)

for all t ∈ (a, b]. We have that |x(t)| ≤ (Θẋ)(t) for all t ∈ [a, b]. Using this, the
inequality (16) and the assumption that the operator M(·, ·, ·) is monotone in
the second variable, we obtain

(Θẋ)(t) ≤ |x0|+
t∫

a

M(0, Θẋ, λ)(s)ds (17)

for all t ∈ [a, b]. Denote

(Θẋ)(t) ≤ |x0|+
t∫

a

M(0, Θẋ, λ)(s)ds. (18)

From (17) we see that
(Θẋ)(t) ≤ v(t) (19)

for all t ∈ [a, b]. Differentiating (18) we get

v̇(t) = M(0, Θẋ, λ)(t).

Using (19) and the assumption that the operator M(·, ·, ·) is monotone in the
second variable we obtain

v̇(t) ≤ M(0, v, x)(t), v(a) = |x0|.

Applying the theorem on differential inequalities for monotone operators, we
get |x(t)| ≤ ξ(t) for all t ∈ [a, b] (see [15]).

From Theorems 4 and 5, we obtain the following corollary.

Corollary 3 Let the mapping P : (0, 1]×Cn[a, b]×K→ Ln
1 [a, b] have Property

B. Then for all τ ∈ (a, b] we have that H(x0, λ, τ) 6= 0 and any solution
x ∈ H(x0, λ, τ) admits an extension to the entire interval [a, b].
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3 Gene regulatory networks with delay, the scalar case

Let us apply the developed theory to analysis of gene regulatory networks
with general delays. The latter is given by

ẋ1 = F1(Z1, Z2, . . . , Zn)−G1(Z1, Z2, . . . , Zn)x1

ẋ2 = F2(Z1, Z2, . . . , Zn)−G2(Z1, Z2, . . . , Zn)x2

. . .

ẋn = Fn(Z1, Z2, . . . , Zn)−Gn(Z1, Z2, . . . , Zn)xn

Zi =
∑

(yi, θi, qi)

yi(t) = (R̃ixi)(t), t ∈ (−∞, b], i = 1, 2, . . . n

(20)

with the initial conditions

xi(s) = ϕi(s), s ≤ a, i = 1, 2, . . . , n, (21)

where xi denotes the gene product concentration and the functions Fi and Gi

stand for the production and relative degradation rate of the product of the
gene i, respectively. The input variable yi is described by nonlinear Volterra
(delay) operator and endows the system with time-lags. Assume that System
(20) satisfies the following assumptions.

Assumption 1 Fi, Gi are affine functions in each Zi and satisfy

Fi(Z1, Z2, . . . , Zn) ≥ 0, Gi(Z1, Z2, . . . , Zn) ≥ δ > 0

for 0 ≤ Zi ≤ 1.

Assumption 2 The continuous operator R̃i : C(−∞, b] → C[a, b] can be
rewritten in the following way

(R̃ix)(t) = ψi(t) + (Rix)(t), (22)

where ψi ∈ C[a, b] and Ri : C[a, b] → C[a, b] is a linear, bounded and Volterra
operator.

Assumption 3 Each Zi = Σ(yi, θi, qi) is continuous in (yi, qi) ∈ C[a, b] ×
(0, 1) for any θi ∈ R, continuously differentiable w.r.t. yi ∈ C[a, b] for all
(θi, qi) ∈ R × (0, 1), and ∂

∂yi
Σ(yi, θi, qi) > 0 on the set {yi ∈ C[a, b] : 0 <

Σ(yi, θi, qi) < 1}.

Assumption 4 Each Zi = Σ(yi, θi, qi) satisfies

Σ(θi, θi, qi) = 0.5, Σ(0, θi, qi) = 0, Σ(+∞, θi, qi) = 1
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for all (θi, qi) ∈ R× (0, 1).

Assumption 5 ∂
∂Zi

Σ−1(Zi, θi, qi) → 0 uniformly on any compact subset of

the interval (0, 1) as qi → 0 for all θi ∈ R, and Σ−1(Zi, θi, qi) → θi pointwise
as qi → 0 for all Zi ∈ (0, 1) and θi ∈ R.

In a ”real-world” gene regulatory network a number of genes is rather large, so
that a theoretical or a computer-based analysis of such networks can be com-
plicated. The most common simplification consists in replacing the smooth
response functions Zi with much simpler step functions obtained when qi → 0.
This operation splits the system into a number of affine scalar delay systems.
It is usually not difficult to describe the dynamics of each of these systems
explicitly. However, coupled together these systems can produce some compli-
cated effects, especially when trajectories approach a domain where a switch-
ing from one system to another occurs. It may be quite a challenge to describe
the behavior of the solutions in a vicinity of such switching (usually called
”singular”) domains.

We continue with some definitions and notation related to geometrical proper-
ties of the gene network studied in this paper. We associate a Boolean variable
Bi to each Zi(yi) by Bi = 0 if yi < θi and Bi = 1 if yi > θi.

Definition 6

The set B(B), which consists of all x ∈ Cn[a, b], where Zi = Bi for all i =
1, . . . , n, is called a regular domain or a box.

The set SD(θS, BR), which consists of all x ∈ Cn[a, b], where yi = θi for i ∈ S,
i.e. i = 1, . . . s, and Zi(yi) = Bi for i ∈ R, i.e. i = s, . . . , n, s < n, is called a
singular domain.

Singular domains of codimension 1 (”walls”) can be classified into three groups,
depending on a behavior of solutions in their vicinity:

• attractive or ”black” walls, the trajectories hit them from either side;
• repelling or ”white” walls, the trajectories depart from them on both sides;
• transparent walls, the trajectories travel through them.

Let us give the mathematical description of these types of singular domains.
Consider the singular domain SD(θµ, BR) of codimension 1 (i.e. a wall) which
lies between the box B(B0), where Zµ = 0, and the box B(B1), where Zµ = 1.
This gives two different systems for B0 and B1. Let P be a point in the singular
domain SD(θµ, BR) and u(t, ν, P ) be the solution with B = Bν , which satisfies
u(t0, ν, P ) = P , ν = 0, 1. Denote by u̇µ(t0, Z, P ) component of number µ
(which is orthogonal to SD(θµ, BR)) of the velocity vector u̇µ(t, Z, P ) at P for
t = t0, Z = 0 or 1.
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Definition 7 A point P ∈ SD(θµ, BR) is called

• ”black” if u̇µ(t0, 1, P ) < 0 and u̇µ(t0, 0, P ) > 0;
• ”white” if u̇µ(t0, 1, P ) > 0 and u̇µ(t0, 0, P ) < 0;
• ”transparent” if u̇µ(t0, 1, P ) < 0 and u̇µ(t0, 0, P ) < 0, or if u̇µ(t0, 1, P ) > 0

and u̇µ(t0, 0, P ) > 0.

We say that a part of a wall SD(θµ, BR) is black (white, transparent) if any
point in it, except for a nowhere dense set, is black (white, transparent). In
the non delay case walls are either black, white or transparent [11]. In the
delay case, they can also be of a mixed type [9].

Returning to the problem (20)-(21) let us consider the case, when exactly one
of the variables yi approaches its threshold value θi, while the others stay away
from their thresholds. The general case when all variables may approach their
respective thresholds will be studied later in Section 5. Renumbering we can
always assume that the singular variable is y1 with the threshold value θ1.
Denote this singular domain by SD(θ1, BR). In the limit, i.e. as all qi → 0,
we obtain that y1 = θ1 and Zi(yi) = Bi, i ≥ 2, where Bi is a corresponding
Boolean vector. The system describing trajectories’ behavior in SD(θ1, BR)
then will be given by

ẋ = F (Z1, BR)−G(Z1, BR)x

Z1 = Σ(y1, θ1, q1)

y1(t) = (Rx1)(t), t ∈ [−∞, b),

(23)

where x = col(x1, x2, . . . , xn), F (Z1, BR) = col(F1(Z1, BR), F2(Z1, BR), . . . ,
Fn(Z1, BR)) and G(Z1, BR) is a diagonal n× n-matrix with the diagonal ele-
ments G1(Z1, BR), G2(Z1, BR), . . . , Gn(Z1, BR).

The right hand side of (23) is discontinuous at the point q1 = 0. Now we
want to apply the theory developed in the previous section for describing
solutions of (23) in the singular domain SD(θ1, BR). For this end we introduce
a parameterized mapping Γθ1,q1 depending on θ1, q1 and given by

Γθ1,q1(x,Rx1, t) = F (Rx1, θ1, q1, t)−G(Rx1, θ1, q1, t)x.

Then the problem (20)-(21) can be rewritten as

ẋ(t) = Γθ1,q1(x,Rx1, t).

Let us introduce the superposition (Nemytskii) operator Nθ1,q1 : Cn[a, b] ×
C[a, b] → Cn[a, b] by setting

Nθ1,q1(x,Rx1)(t) = Γθ1,q1(x,Rx1, t)
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and define the operator P : (0, 1]× Cn[a, b]× R→ Cn[a, b] by

P (q1, x, θ1) ≡ Nθ1,q1(x,Rx1). (24)

The next step is to construct a multivalued operator P̃ (0, x, θ1) : Cn[a, b]×K→
Ω(Ln

1 [a, b]), which is defined in (2) in its most general shape, for the case of
our specific problem.

For the sake of simplicity we assume below that the threshold value θ1 is fixed,
i.e. the operators P (q1, x) : (0, 1]×Cn[a, b] → Cn[a, b] and P̃ (0, x) : Cn[a, b] →
Ω(Ln

1 [a, b]) do not depend on this parameter.

Theorem 7 If the singular variable y1 never approaches its threshold value
θ1, i.e. the solution never crosses the singular domain SD(θ1, BR). Then the
operator P̃ (0, x) is a single valued operator given by either

P̃ (0, x) = F (0, BR)−G(0, BR)x if y1 < θ1

or
P̃ (0, x) = F (1, BR)−G(1, BR)x if y1 > θ1.

If the singular variable y1 approaches its threshold value at the time t∗ and
leaves it at once, i.e. y1 = θ1 only for t = t∗ (what means that the point
(x1(t

∗), x2(t
∗), . . . , xn(t∗)) is transparent). Then the operator P̃ (0, x) is a single-

valued operator defined by either

P̃ (0, x) =





F (0, BR)−G(0, BR)x for t ≤ t∗

F (1, BR)−G(1, BR)x for t > t∗

or

P̃ (0, x) =





F (1, BR)−G(1, BR)x for t ≤ t∗

F (0, BR)−G(0, BR)x for t > t∗.

If the singular variable y1 approaches its threshold value at the time t∗ and
never leaves, i.e. y1 = θ1 for t ≥ t∗ (what means that the point (x1(t

∗), x2(t
∗), . . . , xn(t∗))

is black). Then the operator P̃ (0, x) is a multivalued operator defined by either

P̃ (0, x) =





F (0, BR)−G(0, BR)x for t < t∗

co{F (Z1, BR)−G(Z1, BR)x| 0 ≤ Z1 ≤ 1} for t ≥ t∗

or

P̃ (0, x) =





F (1, BR)−G(1, BR)x for t < t∗

co{F (Z1, BR)−G(Z1, BR)x| 0 ≤ Z1 ≤ 1} for t ≥ t∗.
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Proof.

The first two cases are obvious. We assume now that




y1 < θ1 for t < t∗

y1 = θ1 for t ≥ t∗,

i.e. y1 approaches θ1 from the left at the time t∗.

Since y1 < θ1 for t < t∗, then Z1 = 0 and P̃ (0, x) is a single-valued operator
given by

P̃ (0, x) = F (0, BR)−G(0, BR)x for t < t∗.

Now we want to construct P̃ (0, x) for t ≥ t∗. By the formula (2)

P̃ (0, x) =
⋂

δ∈(0,1]

coP ((0, δ]×BCn[a,b][x, δ]).

Choose any δ ∈ (0, 1] and for this δ take q1 ∈ (0, δ] and X = (X1, . . . , Xn) ∈
{BCn[a,b][x, δ] : |X1(t)− x1(t)| < δ, . . . , |Xn(t)− xn(t)| < δ} for t ≤ t∗.

Substituting X into (24), we get

P (q1, X) = Nq1(X,RX1) = F (Z1(y1(X1)), BR)−G(Z1(y1(X1)), BR)X,

where Z1(y1(X1)) = Z1(RX1, θ1, q1).

Since y1 approaches its threshold value θ1 at the time t∗ and never leaves this
point, then |y1(X1)− θ1| < σ for all t ≤ t∗. Now we want to find the range of
the function Z1 = Σ(y1(X1), θ1, q1) while y1(X1) and q1 vary over the intervals
(θ1−σ, θ1 +σ) and (0, δ], respectively. Let us look at the particular case when

the response function is the Hill function given by Z1 = Σ(y1, θ1, q1) =
y

q1
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Fig. 1.

Z1 = Σ(y1, θ1, q1) = y
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1 +θ
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1

is the Hill function, θ1 = 0.5 and q1 = 0.1, 0.05, 0.001.
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Fig. 1 illustrates how the range of the Hill function changes in the vicinity
of the threshold as the steepness parameter gets closer to 0. Therefore for
y1 ∈ (θ1 − σ, θ1 + σ) and q1 ∈ (0, 1] the range of Z1 is the whole interval
[0, 1]. Assumptions 3-5 put on Z1 allow us to conclude that Z1 ∈ [0, 1] for any
response function Z1 satisfied these assumptions. Thus,

P̃ (0, x) =
⋂

δ∈(0,1]

coP ((0, δ]×BCn[a,b][x, δ]) = co{F (Z1, BR)−G(Z1, BR)x| 0 ≤ Z1 ≤ 1}

for t ≥ t∗.

The proof for the case 



y1 > θ1 for t < t∗

y1 = θ1 for t ≥ t∗.

is similar. The theorem is proved.

Remark 2 The time t∗ in Theorem 7 can be found explicitly for any specified
x1(t) from the equation y1(x1(t

∗)) = θ1.

Remark 3 The mapping P (q1, x) : (0, 1]× Cn[a, b] → Cn[a, b] satisfies Prop-
erties A and B.

Remark 4 For any solution of the problem

ẋ ∈ P̃ (0, x), x(a) = ϕ(a),

with P̃ (0, x) constructed in Theorem 7, we have that |x(t)| ≤ ξ∗(t), where ξ∗(·)
is an upper solution of the problem

ẏ = C1 + C2y, y(a) = |ϕ(a)|.

C1 and C2 are upper bounds of |F (Z1, BR)| and ‖G(Z1, BR)‖, respectively.

We do not provide a proof of the statements in Remarks 3, 4 in this section.
We will prove these results in Section 4 under more general assumptions.

4 Operators discontinuous in several parameters

All properties formulated in Section 2 for the mapping P : (0, 1] × Cn[a, b] ×
K → Ln

1 [a, b], also hold for an operator, which is discontinuous w.r.t. several
parameters, i.e. for an operator defined on (0, 1]× (0, 1]× . . .× (0, 1]︸ ︷︷ ︸

m

×Cn[a, b]×

K.We write Pm : (0, 1]× (0, 1]× . . .× (0, 1]×Cn[a, b]×K→ Ln
1 [a, b] for such

an operator.
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Below we show that the limit operator P̃m(0̄, ·, ·) : Cn[a, b]×K→ Ω(Ln
1 [a, b])

constructed from Pm(·, ·, ·) is independent of the way the parameters approach
0. In other words, we prove that for any x ∈ Cn[a, b] and λ ∈ K

⋂

δ∈(0,1]

coPm((0, δ]× . . .× (0, δ]×BCn[a,b][x, δ]×BK[λ, δ]) = (25)

⋂

δ1,...,δm,δx,δλ∈(0,1]

coPm((0, δ1]× . . .× (0, δm]×BCn[a,b][x, δx]×BK(λ, δλ]).

Let A1 and A2 be the left and right hand side of (25), respectively. First of all
we show that A1 ⊂ A2. Let δ1, . . . , δm, δx, δλ ∈ (0, 1] and δ < min{δ1, . . . , δm, δx, δλ}.
Then we have

Pm((0, δ]× . . .× (0, δ]×BCn[a,b][x, δ]×BK[λ, δ]) ⊂
Pm((0, δ1]× . . .× (0, δm]×BCn[a,b][x, δx]×BK[λ, δλ]).

Therefore

coPm((0, δ]× . . .× (0, δ]×BCn[a,b][x, δ]×BK[λ, δ]) ⊂
coP ((0, δ1]× . . .× (0, δm]×BCn[a,b][x, δx]×BK(λ, δλ]).

(26)

From the definition of the set A1, it follows that

A1 ⊂ coPm((0, δ]× . . .× (0, δ]×BCn[a,b][x, δ]×BK[λ, δ]).

Therefore for any δ1, . . . , δm, δx, δλ ∈ (0, 1] from (26) we get that

A1 ⊂ coPm((0, δ1]× . . .× (0, δm]×BCn[a,b][x, δx]×BK(λ, δλ])

so that A1 ⊂ A2.

Now let us show that A2 ⊂ A1. Pick δ ∈ (0, 1] and choose δ1, . . . , δm, δx, δλ ∈
(0, 1] such that max{δ1, . . . , δm, δx, δλ} < δ. For the selected δ1, . . . , δm, δx, δλ

we have the inclusion

coPm((0, δ1]× . . .× (0, δm]×BCn[a,b][x, δx]×BK(λ, δλ]) ⊂
coPm((0, δ]× . . .× (0, δ]×BCn[a,b][x, δ]×BK[λ, δ]).

(27)

Since

A2 ⊂ coPm((0, δ1]× . . .× (0, δm]×BCn[a,b][x, δx]×BK(λ, δλ]),

then from (27) we get that

A2 ⊂ coPm((0, δ]× . . .× (0, δ]×BCn[a,b][x, δ]×BK[λ, δ])

17



for each δ ∈ (0, 1]. Therefore A2 ⊂ A1, and we obtain the equality (25).

Due to the above discussion we can define the mapping P̃m(0̄, ·, ·) : Cn[a, b]×
K→ Ω(Ln

1 [a, b]) by setting

P̃m(0̄, x, λ) =
⋂

δ∈(0,1]

coPm((0, δ]m ×BCn[a,b][x, δ]×BK[λ, δ]) (28)

and the mappings

Φm(0̄, ·, ·) : Cn[a, b]×K→ Ω(Cn[a, b])

Φm
τ (0̄, ·, ·) : Cn[a, τ ]×K→ Ω(Cn[a, τ ]), τ ∈ (a, b],

by

Φm(0̄, x, λ) = x0 + ΛP̃m(0̄, x, λ)

Φm
τ (0̄, x, λ) = (Φ(0̄, Vτx, λ))|τ .

The initial value problem for the limit functional differential inclusion in this
case is defined as

ẋ ∈ P̃m(0̄, x, λ), x(a) = x0. (29)

Lemma 3, which gives the estimates for solutions of the initial value problem
to the limit functional differential inclusion, can be formulated in the following
way.

Lemma 4 Let there exist a continuous mapping Mm : [0, 1]m×C1
+[a, b]×K→

L1
+[a, b] satisfying the conditions:

1) for each vector κ ∈ [0, 1]m, λ ∈ K the operator M(κ, ·, ·) is Volterra and
monotone,

2) for all κ ∈ [0, 1]m, t ∈ (a, b], x ∈ Cn[a, b], λ ∈ K

‖ Pm(κ, x, λ) ‖Ln
1 [a,t]≤‖ Mm(κ, |x|, λ) ‖L1[a,t] .

Then
‖ y ‖Ln

1 [a,t]≤‖ Mm(0̄, |x|, λ) ‖L1[a,t]

for any t ∈ (a, b], x ∈ Cn[a, b], λ ∈ K, y ∈ P̃m(0̄, x, λ), where P̃m(0̄, ·, ·) :
Cn[a, b]×K→ Ω(Ln

1 [a, b]) is given by (28).

Let us formulate Properties A∗ and B∗ for the mapping Pm : (0, 1]m×Cn[a, b]×
K→ Ln

1 [a, b] using Definitions 2 and 5 from Section 2.

Definition 8 We say that a continuous mapping

Pm : (0, 1]m × Cn[a, b]×K→ Ln
1 [a, b]
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has Property A∗ if this mapping satisfies the following conditions:

1) for all bounded sets U ⊂ Cn[a, b] and E ⊂ K the image Pm((0, 1]m×U×E)
is dominated by an integrable function,

2) for any κ ∈ (0, 1]m, λ ∈ K the operator Pm(κ, ·, λ) is Volterra.

Definition 9 We say that a continuous mapping Pm : (0, 1]m×Cn[a, b]×K→
Ln

1 [a, b] has Property B∗ if this mapping has Property A∗ and there exists a
continuous mapping Mm : [0, 1]m×C1

+[a, b]×K→ L1
+[a, b] satisfying conditions

1), 2) of Lemma 4, and the problem

ẏ = Mm(0̄, y, λ), y(a) = |x0|, λ ∈ K (30)

has an upper solution, where x0 is the initial condition of the problem (29).

Theorem 8 Let a continuous mapping Pm : (0, 1]m ×Cn[a, b]×K→ Ln
1 [a, b]

have Property B∗. Then for any solution of the problem (29) we have that
|x(t)| ≤ ξ∗(t) for any t ∈ [a, b], where ξ∗(·) is the upper solution of the problem
(30).

5 Gene regulatory networks with delay, the case of a general di-
mension

This section is a generalization of the main theoretical results obtained in
Section 3. The central results of this section serve as a rigorous justification
of the analysis of gene regulatory networks with general delays.

We again consider the problem (20)-(21) under Assumptions 1-5. Unlike Sec-
tion 3 we assume now that all variables yi may approach their respective
threshold values θi, i = 1, 2, . . . , n.

First of all we want to rewrite the problem in a way which is more convenient
for our analysis. To this end, we put

θ = col(θ1, θ2, . . . , θn),

y = col(y1, y2, . . . , yn),

q = (q1, q2, . . . , qn) ∈ (0, 1]n.
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Then

Zi(yi, θi, qi, t) =
∑

(yi + ψi(t), θi, qi),

Fi(y, θ, q, t) = Fi(Z1(y1, θ1, q1, t), Z2(y2, θ2, q2, t), . . . , Zn(yn, θn, qn, t)),

Gi(y, θ, q, t) = Gi(Z1(y1, θ1, q1, t), Z2(y2, θ2, q2, t), . . . , Zn(yn, θn, qn, t)), i = 1, 2, . . . , n.

Let us also introduce a parameterized mapping Γθ,q : Rn×Rn → Rn depending
on θ, q and given by

Γθ,q(x, y, t) = F (y, θ, q, t)−G(y, θ, q, t)x, (31)

where x = col(x1, x2, . . . , xn), F (y, θ, q, t) = col(F1(y, θ, q, t), F2(y, θ, q, t), . . .,
Fn(y, θ, q, t)) and G(y, θ, q, t) is n× n-matrix given by

G(y, θ, q, t) =




G1(y, θ, q, t) 0 . . . 0

0 G2(y, θ, q, t) . . . 0
...

...
. . .

...

0 0 . . . Gn(y, θ, q, t)




.

Let R : Cn[a, b] → Cn[a, b] be a linear, bounded and Volterra operator given
by

(Rx)(t) = col((R1x1)(t), (R2x2)(t), . . . , (Rnxn)(t)), (32)

where Ri : C[a, b] → C[a, b], i = 1, 2, . . . , n, are linear, bounded and Volterra
operators given by (22).

Then the problem (20)-(21) can be rewritten as

ẋ(t) = Γθ,q(x(t), (Rx)(t), t). (33)

We stress, that according to the above assumptions the right hand side of
Equation (33) is, in general, discontinuous in q̄ ∈ (0, 1]n at the point 0̄ ∈ Rn.

Following the notation from Section 4 we now construct a mapping P n :
(0, 1]n × Cn[a, b] × Rn → Cn[a, b] using the right hand side of (33). Then we
prove its right hand side Properties A∗ and B∗ and define the limit functional
differential inclusion (29).

Let us define the superposition (Nemytskii) operatorNθ,q : Cn[a, b]×Cn[a, b] →
Cn[a, b] by setting

Nθ,q(x, y)(t) = Γθ,q(x(t), y(t), t),

where the function Γθ,q : Rn × Rn → Rn is given by (31).
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According to Assumption 2, the functions
∑

(yi + ψi(t), θi, qi) are continuous.
Therefore Γθ,q(x, y, t) is continuous in all variables (x, y, t, θ, q).

Hence, the continuous Nemytskii operator Nθ,q : Cn[a, b]× Cn[a, b] → Cn[a, b]
continuously depends on a vector (q, θ) ∈ (0, 1]n × Rn.

Let an operator P n : (0, 1]n × Cn[a, b]× Rn → Cn[a, b] be given by

P n(q, x, θ) ≡ Nθ,q(x,Rx).

Then the initial value problem for the limit functional differential inclusion
takes on the following view

ẋ ∈ P̃ n(0̄, x, θ) (34)

under the initial condition

x(s) = ϕ(s), s ≤ a, (35)

where the mapping P̃ n(0̄, ·, ·) : Cn[a, b]× Rn → Ω(Ln
1 [a, b]) is given by

P̃ n(0̄, x, θ) =
⋂

δ∈(0,1]

coP n((0, δ]n ×BCn[a,b][x, δ]×BK[θ, δ]). (36)

In Section 4 we proved the following property of the limit operator.

Theorem 9 The limit operator P̃ n(0̄, ·, ·) given by (36) does not depend on
the way parameters approach 0.

Let us show that the operator P n(q, x, θ) ≡ Nθ,q(x,Rx) satisfies Properties
A∗ and B∗.

Since the linear bounded operator R : Cn[a, b] → Cn[a, b] given by (32) is
Volterra, the mapping P n(·, ·, ·) is continuous and P n(q, ·, θ) is Volterra for
any (q, θ) ∈ (0, 1]n × Rn.

We prove now that P n(·, ·, ·) satisfies the first condition of Definition 8. Ac-
cording to (31), for each (q, x, y, θ, t) ∈ (0, 1]n×Rn×Rn×Rn× [a, b] we have
that

|Γθ,q(x, y, t)| ≤ |F (y, θ, q, t)|+ ‖ G(y, θ, q, t) ‖ ·|x|, (37)

where | · | is the norm in the space Rn and ‖ G(y, θ, q, t) ‖ is the correspond-
ing matrix norm. From Assumption 1 it follows that Fi(Z1, Z2, . . . , Zn) are
bounded. It means that there exists a number C1 ≥ 0 such that

|F (y, θ, q, t)| ≤ C1 (38)

for any (q, x, y, θ, t) ∈ (0, 1]n × Rn × Rn × Rn × [a, b].
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Similarly, there exists a number C2 > 0 such that

‖ G(y, θ, q, t) ‖≤ C2 (39)

for any (q, x, y, θ, t) ∈ (0, 1]n × Rn × Rn × Rn × [a, b].

From (37), (38), (39) we deduce that

|Γθ,q(x, y, t)| ≤ C1 + C2|x| (40)

for any (q, x, y, θ, t) ∈ (0, 1]n × Rn × Rn × Rn × [a, b].

From the inequality (40) it follows that for any bounded U ⊂ Cn[a, b] there
exists a constant ϕU ≥ 0 such that

|Nθ,q(x,Rx)(t)| ≤ ϕU

for all t ∈ [a, b].

Thus, we proved that the mapping P n(·, ·, ·) given by (5) has Property A∗.

According to (40), the operator M : C1
+[a, b] → L1

+[a, b] given by

(Mx)(t) = C1 + C2x(t)

satisfies the conditions 1), 2) of Lemma 4 formulated for the mapping P n(·, ·, ·).
Since the problem

ẏ = C1 + C2y, y(a) = |ϕ(a)|,
where ϕ(a) = col(ϕ1(a), ϕ2(a), . . . , ϕn(a)), ϕi(a), i = 1, 2, . . . , n are values of
the initial function (21) at the point a, has a unique solution, then the mapping
P n : (0, 1]n × Cn[a, b]× Rn → Cn[a, b] has Property B∗.

By this we have proved the following result:

Theorem 10 Let a continuous mapping P n : (0, 1]n×Cn[a, b]×Rn → Ln
1 [a, b]

have Property B∗. Then for any solution of the problem (34)-(35) for any
t ∈ [a, b] we have that |x(t)| ≤ ξ∗(t), where ξ∗(·) is an upper solution of the
problem

ẏ = C1 + C2y, y(a) = |ϕ(a)|.

Theorem 10 gives us the global existence of the solution of the problem (20)-
(21) on the interval [a,∞).

The theorem below is an analog of Theorem 7. We consider the case when all
singular variables yi, i = 1, . . . , n, approach their respective threshold values
θi, i = 1, . . . , n, at the time t∗ and stay in the switching domain SD(θS, BR)
for all t > t∗. For the sake of simplicity we assume that the threshold values
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θi are fixed, i.e. the operators P n(q̄, x) : (0, 1]n × Cn[a, b] → Cn[a, b] and
P̃ n(0̄, x) : Cn[a, b] → Ω(Ln

1 [a, b]) do not depend on these parameters.

Theorem 11 If yi = θi, i = 1, . . . , n, for t ≥ t∗ (what means that the point
is black). Then the operator P̃ n(0̄, x) is a multivalued operator defined by

P̃ n(0̄, x) = co{F (ZS, BR)−G(ZS, BR)x| 0 ≤ Zs ≤ 1, s ∈ S} for t ≥ t∗.

Depending on the trajectories’ behavior before the time t = t∗ we construct the
operator P̃ n(0̄, x) for t < t∗ similarly to the ways described in Theorem 7.

Remark 5 The above analysis covers of course the case when only a part of
the variables approach their respective threshold. In this case, the limit operator
will be single-valued with respect to these variables.
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