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Abstract

The simplification of a complex system is a widely accepted way of its

modeling, the inevitable drawback of which is the ”resolution reduction”, i.e.,

the loss of information inherent to the real-world processes. In this thesis I

want to address the ”resolution reduction” issue for some well-elaborated sim-

plifications in systems biology. Broadly speaking, the current work is about

determining and justifying mathematically the criteria of eligibility of the sim-

plified frameworks.

The work presented in this thesis is aimed at studying how the theory

of differential inclusions can be applied to some open mathematical problems

stemming from biology. These problems are motivated by two basic simpli-

fication paradigms in systems biology at the micro level: the Boolean-like

formalism and the power-law formalism. The Boolean-like formalism is widely

used for describing gene regulatory networks. Roughly speaking, it consists

in replacing smooth, yet inconvenient, steep sigmoidal nonlinearities with step

functions. The power-law formalism assumes that unknown or numerically

obtained relationships within biochemical reaction networks can be described

by sums of power monomials. Note that both of these formalisms, in the form

we consider them in the present work, lead to piecewise models. These mod-

els based on discontinuous differential equations can be treated in a rigorous

mathematical way using the theory of differential inclusions, which was orig-

inally developed within theoretical and applied mathematics. Its application

to systems biology has not yet been completely developed.

For the Boolean-like formalism in gene regulatory networks (Paper I, Paper

II) we present a rigorous analysis of the simplified model based on differential

inclusions; a mathematical justification for the similarities between the ”real-

world” model (actually also representing a simplification of the real world

processes) and the simplified model.

For the power-law formalism in biochemical reaction networks we intro-

duce an algorithm for automated piecewise power-law approximations (Paper

III). The algorithm solves the important problem of automated partition in

piecewise models. We also obtain analytical results on the convergence and

well-posedness of the approximations generated by this algorithm (Paper IV).



In Paper V the study of differential inclusions is extended to its general-

ization - the theory of functional differential inclusions, which covers also the

models with delay effects. Delay effects are well-know phenomena in biological

processes, e.g., time delays in gene expression, but are often omitted in mod-

eling for the sake of simplicity. Here we focus mainly on analytical techniques

and prove some basic theoretical results.



Sammendrag

Forenkling av et komplekst system er utbredt og akseptert innen numerisk

modellering, tross den uunng̊aelige ulempen med reduksjon av oppløsning,

dvs. tap av informasjon iboende den virkelige verden. I denne avhandlingen

ønsker jeg å se p̊a problemstillingen ved reduksjon av oppløsning innenfor

noen godt utdypede forenklinger innen systembiologi. Dette arbeidet g̊ar ut

p̊a å fastsette og begrunne matematiske kriterier som ligger til grunne for

forenklede rammeverk.

Arbeidet som presenteres i denne avhandlingen har som mål å studere hvor-

dan teorien om differensial-inklusjoner kan anvendes i enkelte åpne matema-

tiske problem som stammer fra biologi. Disse problemene er motivert av to

grunnleggende forenklings-paradigmer i systembiologi p̊a mikroniv̊a: Boolean-

lignende formalisme og power-law formalisme. Boolean-lignende formalisme er

mye brukt for å beskrive gen-regulatoriske nettverk. Grovt sett best̊ar den i

å erstatte glatte, men upraktiske, bratte sigmoidale ulineariteter med trinn-

funksjoner. Power-law formalismen antar at ukjente eller numerisk oppn̊adde

relasjoner innen biokjemiske reaksjonsnettverk kan beskrives av en sum av

power- monomialer. Begge disse formalismene, i den form vi ser p̊a dem i

dette arbeidet, fører til stykkevise modeller. Disse modellene, basert p̊a ikke-

kontinuerlige differensiallikninger, kan behandles p̊a en rigorøs matematisk

måte ved å ta i bruk teorien om differensial-inklusjoner, som opprinnelig ble

utviklet innenfor teoretisk og anvendt matematikk. Denne teoriens anvendelse

inne system-biologi er ikke enda fullt utviklet.

For Boolean-formalismen i gen-regulatoriske nettverk (artikkel I og artikkel

II) presenteres en rigorøs analyse av den forenklede idealiserte modell; en

matematisk begrunnelse for likhetene mellom modellen av den reelle verden

(som ogs̊a representerer en forenkling av den virkelige prosessen) og modellen

av den idealiserte verden.

For power-law fornalismen innen biokjemiske reaksjonsnettverk introduseres

en algoritme for automatisert deling i stykkevise power-law tilnærminger (ar-

tikkel III). Algoritmen løser det viktige problemet med automatisert deling i

stykkevise modeller. Vi oppn̊adde ogs̊a analytiske resultat for konvergens og

velformulerhet av tilnærmingene generert av denne algoritmen (artikkel IV).



I artikkel V er studien av differensial-inklusjoner utvidet til en generaliser-

ing - teorien for funksjonelle differensial-inklusjoner - som ogs̊a dekker mod-

ellene med forsinkelseseffekter. Forsinkelseseffekter er et velkjent fenomen i

biologiske prosesser, for eksempel tidsforskyvning i gen-uttrykk, men blir ofte

neglisjert i modellering for enkelhets skyld. Her har vi hovedsakelig fokusert p̊a

analytiske teknikker og p̊a å bevise noen grunnelggende teoretiske resultat.
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Chapter 1

Introduction

1.1 Background

Systems biology is a rapidly developing branch of theoretical biology, and it has

already posed a lot of unsolved and difficult mathematical problems. The scope

of the present work is to study important mathematical questions stemming

from systems biology. This gives the research an explicit cross-disciplinary

character. However, the focus is mainly on solving open mathematical prob-

lems and applying new mathematical theories to the study of theoretical prop-

erties of complex biological systems. The present work is only partly about

what one calls mathematical modelling in biology. Rather, the emphasis is put

on mathematical justification of some practical modelling frameworks that al-

ready exist. I believe that our conclusions may give a better understanding of

why and when certain biological formalisms work, which should help systems

biologists to understand why a rigorous mathematical analysis can be useful.

In genetic and molecular biology it is widely accepted that no analysis is

possible without a considerable simplification of the underlying model. This

is just due to a huge amount of equations or parameters involved. The focus

of the work presented in this thesis is on the two known and well-elaborated

simplifications in systems biology: the formalism based on switched systems

with Boolean-like response functions and the power-law formalism (in this work

we address to the piecewise power-law formalism). These formalisms were

developed for simplifying and studying complex biological models at the micro

level: gene regulatory networks (GRNs) and biochemical reaction networks

(BRNs), respectively. The common feature of these formalisms is that both

of them lead to piecewise models, i.e. discontinuous right-hand sides of the

differential equations describing biological networks. The theory of differential

inclusions is able to deal with systems of discontinuous differential equations
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1. INTRODUCTION

in a rigorous mathematical way. When using functional differential inclusions,

the study can be generalized by incorporating delay effects into the models.

Using various approaches, including the theory of differential inclusions,

approximation theory, the theory of functional differential inclusions, the re-

search has focused on

• The theory of differential inclusions in the analysis of GRN systems (Pa-

per I, Paper II).

• Piecewise power-law models in BRNs and differential inclusions (Pa-

per III, Paper IV).

• Generalization of non-delay differential inclusions to functional differen-

tial inclusions (Paper V).

A more detailed outline of these top ics, including backgrounds and sum-

maries of the papers, can be found in Section 1.2, Section 1.3, and Section 1.4.

1.2 Switchings in Gene Regulatory Networks:

differential inclusions

1.2.1 Piecewise linear equations and steep sigmoid for-
malism

The regulation of gene expression is achieved through gene regulatory systems

structured by networks of interactions between DNA,RNA, proteins, and small

molecules.

There are several different frameworks used for modelling gene regula-

tory networks (reviewed by de Jong (16)). The simplest dynamical models

– Boolean network models – were used already in 1960’s by Kauffman (18).

The basic assumption is that a gene is either considered active (ON) or inactive

(OFF). However, these models have a descriptive character and cannot model

complex dynamical behavior. Being the most widespread formalism to model

dynamical systems in science, ordinary differential equations have been widely

used to analyze gene regulatory systems. The basic equation is given by

dxi

dt
= Fi(Z)−Gi(Z)xi, i = 1, ..., n, (1.1)

where the gene products regulate their own production by Boolean-like regula-

tory functions. The production and relative degradation rate functions Fi and

Gi depend on a vector Z = (Z1, ..., Zn) of steeply sloped threshold functions,

2



1.2 Switchings in Gene Regulatory Networks: differential inclusions

so-called sigmoids. The functions Fi and Gi are often algebraic equivalents of

Boolean functions. It is also assumed that Fi and Gi are affine functions in

each Zi = Zi(xi).

The system with sigmoids, which are genuinely nonlinear, can however

be too complicated to be studied theoretically and even numerically, as the

number of the system’s variables may be huge. To simplify the functional

form of the equations it is common to replace sigmoids with step functions,

which converts the original smooth system into a switched system with dis-

continuous right-hand sides. The main benefit is that, except for the threshold

hyperplanes, the resulting equations are of favourable linear form. The dis-

advantage is that the equations are not defined everywhere in phase space.

Recent works (14; 17) use an approach based on the Filippov theory (13) to

define the solutions on the threshold hyperplanes. This approach involves ex-

tending piecewise linear discontinuous differential equation to piecewise linear

differential inclusion. In addition to clarifying the definition of the vector field

and its solutions in the singular domains (domains, where at least one variable

has a threshold value), the differential inclusion approach enables the defini-

tion and computation of all the equilibria, including those that lie in singular

domains.

Alternatively, the functions Zi are continuous, but steep sigmoidal func-

tions. The resulting equations are then defined in the whole phase space. In

this steep sigmoid formalism singular stationary points were studied by means

of the implicit function theorem in (20; 21). To analyse the solution flow a

method based on singular perturbation analysis was introduced in (22). This

method is based on certain simplifying features in the limit when the sigmoids

approach step functions.

Both approaches have properties that facilitate analysis of the system under

study, including determining steady states, analysing stability and computing

trajectories.

However, there does not exist a systematic comparison of the two ap-

proaches. Paper I and Paper II are aimed to fill partly the gap between the

two approaches, which were developing independently. Besides, I want to look

at the Filippov approach a little bit more systematically, giving a detailed

mathematical justification of the technics used in the Filippov framework.

The behavior of the systems described by (1.1) can be easily character-

ized in the regular domains (domains, where none of the variables assumes

its threshold value). Developing approach within the Filippov framework for

analysing the behavior of the system in singular domains is the prime aim of

Paper I and Paper II.
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1. INTRODUCTION

1.2.2 Filippov solutions: stationary solutions and their
stability

Section 1.2.1 gives the background for Paper I. Paper II is a follow-up of

Paper I.

Paper I: Filippov solutions in the analysis of piecewise linear models
describing gene regulatory networks

To overcome the difficulty of describing the dynamics of the system (1.1) near

singular stationary points (belonging to the discontinuity set of the system)

we use the concept of Filippov solutions. It consists in replacing discontinuous

differential equations with differential inclusions. The concept of the Filippov

solution can be defined in three different ways (in (14) only one of the defini-

tions is used). But we prove that two of the definitions (where the right-hand

sides are convex though constructed in different ways) are in fact equivalent

in the case of the gene regulatory networks, while the third gives a different

inclusion with a non-convex right-hand side.

We study some basic properties of Filippov solutions of the systems in

question putting emphasis on global existence and continuous dependence on

parameters. In particular, these results can be used to justify similarities

between the ”real-world” model based on smooth interactions (sigmoids) and

the idealized model based on step-like interactions.

Uniqueness and non-uniqueness of Filippov solutions in the singular do-

mains was also among our interests. For instance, we show that the solution is

unique in so-called black walls (”attracting” singular domains of codimension

1), while white walls (”repelling” singular domains of codimension 1) usually

give rise to infinitely many Filippov solutions.

Stationary solutions are of special interest in this work. Here we compare

the two approaches mentioned in Section 1.2.1. Roughly speaking we show

that the main difference between them amounts to the difference between non-

equivalent definitions of the Filippov solutions. In the case of a non-convex

right-hand side we get stationary points in the sense of steep sigmoid frame-

work, while in the case of a convex right-hand side we obtain stationary points

in the sense of Filippov. Although the second approach gives more stationary

points than the first one, we show that the Filippov stationary points that are

limits of convergent sequences of stationary points of smooth systems (as the

steepness of sigmoids increases infinitely) are indeed the Fillipov stationary

solutions in the sense of definition with non-convex right-hand sides. We call

such stationary solutions Filippov stationary solutions in the narrow sense.

4



1.3 Piecewise power-law formalism in biochemical reaction
networks

Most of the results (valid actually for any finite dimension n) are illustrated

by 2-dimensional examples.

Paper II: Stability of the Filippov solutions in the analysis of piecewise linear
models describing gene regulatory networks

This is a follow-up of Paper I, where Filippov singular stationary solutions

were introduced without investigating their stability.

The aim of this work is to provide a stability analysis for GRN systems of

the form (1.1). We put emphasis on the Filippov approach and focus on the

singular domains, as the regular stationary points are know to be asymptot-

ically stable. Following our previous research (Paper I) we consider Filippov

stationary solutions in the narrow sense, which are in fact limits of the solu-

tions to smooth ”real-world” models. For the stability analysis of such points

we justify the reduction principle. This principle consists in reducing the di-

mension of the system to the singular variables only and investing the stability

of the homogeneous differential inclusion, generated by the latter reduced sys-

tem (the dimension is thus equal to the number of singular variables). The

study of the stability of homogeneous inclusions is well elaborated in (13).

Based on the proposed method we developed an algorithm able to investi-

gate the stability of any given SSP. The algorithm is based on the reduction

principle, i.e. restricting ourselves to the singular variables only and consists

simply in determining the signs of the parameters of the given equations. This

procedure seems to be numerically advantageous.

1.3 Piecewise power-law formalism in biochem-

ical reaction networks

1.3.1 Systems biology and power-law approximations

Power-law (PL) formalism is widely used in the hot research area of systems

biology related to mathematical modelling of biochemical reaction networks.

It is one of so-called canonical representations for the reaction rates, besides

other candidates such as Michaelis-Menten and Hill rate laws, their general-

izations, etc. PL approximations led to development of a Biochemical Systems

Theory framework with the two canonical models: S-system model and Gen-

eralized Mass Action (GMA) model. Mathematically, PL formalism consists

in representation of a dynamic system in terms of differential equations with

the right-hand sides being sums of products (monomials) of elementary power

5



1. INTRODUCTION

functions with arbitrary real exponents, both negative and positive. In the

simplest case, there are are only two terms representing production and degra-

dation. These systems are denoted S-systems and are given by

dxi

dt
= αi

n+m∏
j=1

x
gij

j − βi

n+m∏
j=1

x
hij

j = V +
i (x)− V −

i (x), i = 1, ..., n. (1.2)

Here xi is the concentration of the given chemical species, index i (i = 1, ..., n)

refers to dependent variables, while higher indices (n + 1, ..., n + m) refer to

independent variables. The non-negative influx and efflux V +
i and V −

i may

possibly consist of sums of other functions describing different contributions

to the production or degradation of xi (GMA model).

A good description of this theory is provided in (26). The exponents gij ∈ R
and hij ∈ R are called kinetic orders and describe the quantitative effect of xj

on the production or degradation of xi, respectively. The multipliers αi > 0

and βi > 0 are rate constants. This modelling approach has mainly been

applied in metabolic systems, but may also provide good description of gene

regulatory networks (24; 25).

Consider a power-law approximation of a given function V (x)

V (x) ≈ γ

n+m∏
j=1

x
fj

j . (1.3)

By introducing logarithmic transformation of the variables y = ln x and

taking the logarithm of both sides, the right-hand side of (1.3) can easily be

transformed to linearity. Coefficients of the linear expression, representing

the kinetic orders and the rate constant, can be interpreted as the first order

Taylor series approximation of the function V in log space. It is clear that

power-law functions based on this Taylor approximation are local representa-

tions. In (15) a least-squares minimization over an operating interval is used

to provide a way for defining the power-law approximation to rate laws V (x).

In general, even the model of an operating interval can have low accuracy if,

for example, saturation is present or the operating domain is too big. A piece-

wise power-law representation provides a logical extension to a single power

law over an operating domain. For univariate functions, it is relatively easy

to determine such representations. However, for multivariate functions, the

suitable determination of a piecewise power-law representation becomes diffi-

cult. Our goal (Paper III) is the following: given metabolic time series data

corresponding to an unknown, univariate or multivariate function, compute a

piecewise power-law representation that is suitable in a sense that it fits the

6



1.3 Piecewise power-law formalism in biochemical reaction
networks

data within an acceptable error while consisting of the smallest possible num-

ber of pieces. The problem of a piecewise power-law regression, as posed here,

is not straightforward, because, given a set of samples of a flux V, one has to

compute both a partitioning into regions in the input space and the behavior

of the unknown function V over each of them. Because of the mixed nature

of the problem, classical approximation techniques cannot be directly applied,

and it is instead necessary to develop a specific, customized method. The prin-

ciples of such a method were introduced a few years ago for linear systems,

where the regions in the space of variables are polyhedra and the behavior of

the function V in each region is approximated by a linear expression (7; 9).

1.3.2 Piecewise models: differential inclusions and con-
vergence of approximations

Section 1.3.1 gives the background for Paper III.

Paper III: Automated piecewise power-law modeling of biological systems

In Paper III we further develop an approximating algorithm for a piecewise

power-law regression over an input domain. The result of the algorithm is an

automated partitioning (optimal in some sense) of the input domain and the

approximation of the unknown function with power-law functions over each of

the sub-domains of partition.

Our algorithm is based essentially on the method developed in (7; 8; 9; 10;

11; 12) for a similar but simpler problem, where the regions in the space of

variables are polyhedra and the behavior of the function V in each region is

approximated by a linear expression. It is in fact a machine learning method

based on Artificial Neural Networks. For this method a free MatLab toolbox,

the Hybrid Identification Toolbox (HIT), has been developed.

In order to utilize the mentioned above method, we propose to perform the

logarithmic transformation, as in log space power-law functions become linear.

After we obtain a polyhedral partition in log space a classical regression based

on least squares minimization criterium can be implemented: either linear in

log space (giving a power-law representation back in cartesian coordinates) or

power-law in Caretesian space.

The results of the paper include testing of the proposed algorithm on artifi-

cial datasets, where data points are uniformly spread over operating intervals.

The Hill functions of one and two variables are used to generate the datasets.

Thus, the proposed algorithm resolves the main difficulty in reconstruct-

ing piecewise power-law representations, namely the simultaneous subdivision

7



1. INTRODUCTION

of the variable space and the optimized estimation of parameters within each

subdivision. Interestingly, this dual task is solved automatically and requires

only a few settings of operational parameters, which however is not a problem.

The number of sub-domains, S, can either be predetermined, increased sequen-

tially, or estimated with an adaptive algorithm (see discussion in (12)), and

the number of neighboring points for each local regression (parameter c) can

be tuned through cross-validation with a built-in option of the HIT software

in Matlab. Theoretically, the proposed software permits arbitrarily accurate

representations of univariate or multivariate processes. In reality, however, the

method is limited by the number of data points and their representation of the

manifold on which they lie.

By its nature, the proposed method usually leads to representations with

gaps or discontinuities at the boundaries between sub-domains. These dis-

continuities come in two types. First, the illustrative examples identify gaps

in the operating domain. These gaps are entirely due to the choice of a fast

pattern-recognition algorithm by the software and can be avoided with more

complex and much slower MatLab built-in solvers.

The second type of discontinuity results from the fact that the algorithm

does not require the power-law representations to be continuous on the bound-

aries of sub-domains. These discontinuities require more serious analysis. Note

that approximations are only an intermediate step in practical modelling, be-

ing involved in higher level models described by differential equations (e.g.

S-systems, GMA models). Thus, considered approximations generate piece-

wise models which require an advanced mathematical theory. For example,

there arise problems of describing steady states and analysing their stability

(thus linking Paper III and Paper IV to Paper II), optimization problems (i.e.

maximization of an objective functional on the trajectories of the given sys-

tems), and other problems of a higher level. How to interpret these problems

if the right hand sides of the equations are piecewise is not so clear, therefore

a new formalization, so called SC formalism (see Paper IV), is used in mod-

elling. This formalism provides an analytical resolution of the problems but is

in principle nonlinear even in log-log space.

The theory of differential inclusions is an alternative approach to address

this problem. In Paper III, Appendix we discuss means of addressing this

situation based on differential inclusions and Filippovs theory (13).

Characterization of the convergence of the approximating solutions is an

important problem for both the Filippov approach and the SC formalism. The

major difficulty of this characterization is the mean-square convergence of the

approximations in the piecewise power-law regression, which is distinct from

8



1.4 Functional differential inclusions

the standard uniform convergence used in the theory of differential equations

and inclusions. However, this is the topic of our next paper.

Paper IV: Convergence properties of piecewise power-law approximations to
kinetic processes in Systems Biology models

In this paper we address a problem of convergence of approximations ob-

tained from two versions of the piecewise power-law representation generated

by the algorithm from Paper III. Here we consider these two versions in more

details. The difference between them amounts to whether we use the least

squares minimization criteria for obtaining parameters in Cartesian or in Log

space, provided though that in both cases the partition of the input domain

is optimal in Log space. In Log space the criterium becomes simply a linear

regression with a guaranteed existence of the unique solution, though the error

structure of the problem is distorted because of the logarithmic transforma-

tion. As a partial remedy, it is therefore advantageous to apply a power-law

regression in Cartesian space, giving a better least squares error. We discuss

the advantages and drawbacks of the these two regressions and show that non-

linear regression problem is not always well-posed, as illustrated in one of our

examples.

Further we study the most important case of the mean square (L2) con-

vergence in the most general setting, while the uniform convergence is proven

in a special case of scalar functions. Uniform convergence is important if one

wants to incorporate the Filippov method in the analysis of models obtained

by piecewise approximation. It is well-known (see e. g. the monograph (13)

or the appendix in the Paper III) that the the convergence of so called ”Filip-

pov solutions” is only guaranteed if the the approximating functions converge

uniformly.

We also discuss advantages and drawbacks of piecewise power-law represen-

tations from the theoretical and practical point of view. When speaking of how

to use piecewise approximations in modelling, the emphasis is put on the so-

called SC representation which has a strong biological motivation. Illustrative

examples are an essential part of the paper.

1.4 Functional differential inclusions

1.4.1 Volterra functional differential inclusions

The piecewise approach used in the Section 1.2 is built mathematically on the

notion of differential inclusion. The efficiency of this method for differential

9



1. INTRODUCTION

inclusions without delays is studied in Paper I and Paper II. However in the

delay case, when a model in some complex way depends on the past (for exam-

ple integral dependence), the Filippov theory is not applicable. In particular,

this is relevant for an inclusion with nonconvex right-hand side. Note, that

in Paper I we introduced three different definitions of an inclusion and the

one with a nonconvex right-hand side is of special interest for the real-world

models.

An appropriate mathematical tool to investigate phenomena with delays

is provided by the theory of functional-differential equations. Thus, Paper V

is aimed to describe the most general class of functional differential inclusions

that have some basic properties (existence of the solution, its continuation,

asymptotic properties of approximate solutions, etc.). This class of functional

differential inclusions can serve as the theoretical basis for the future theory of

both piecewise models in GRNs (Paper I, Paper II) and piecewise power-law

models in BRNs (Paper III, Paper IV). However the practical application of

the main results of Paper V is beyond the scope of this thesis and will be a

matter of the future research.

The background for Paper V can be summarized as follows.

We consider functional differential inclusions with Volterra-Tikhonov (or

simply Volterra) type multivalued mappings. Inclusions with Volterra operator

are sometimes called inclusions with after-effect or inclusions with delay.

Consider the initial value problem for a functional differential inclusion

with a Volterra multivalued mapping. Let us assume that this mapping is not

necessarily decomposable in Ln
1 [a, b]. Some mathematical models can naturally

be described by such an inclusion. For instance, so do certain mathematical

models of sophisticated multicomponent systems of automatic control, where,

due to the failure of some devices, objects are controlled by different control

laws (different right-hand sides). The control of an object must be guaranteed

in spite of the fact that failures (switchings from one control law to another)

may take place any time. Therefore, the mathematical models should treat all

available trajectories (states) corresponding to all switchings. The so-called

generalized solutions make up the set of all such trajectories.

However, some recent studies (3; 4; 5; 6) confirm once again V.M. Ti-

khomirov’s conjecture that decomposability is the specific feature of the space

Ln
1 [a, b] and plays the same role as the concept of convexity in Banach spaces.

If a multi-valued mapping is not necessarily decomposable, then the methods

known for multi-valued mappings cannot be applied even to the solvability
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1.4 Functional differential inclusions

problem. Furthermore, in this case the equality between the set of quasi-

solutions of the inclusion and the solution set of the inclusion with the de-

composable hull of the right-hand side fails. This equality for the ordinary

differential inclusions was proved by T. Wazewski (see (27)). As a result, we

have that fundamental properties of the solution sets (the density principle

and ”bang-bang” principle) do not hold any more (see (1; 2; 19)).

The concept of a generalized solution (solution of the inclusion with the

decomposable hull in the right-hand side) should therefore be introduced and

its properties should be studied.

1.4.2 Generalized solutions of functional differential in-
clusions

Section 1.4.1 gives the background for Paper V.

Paper V: Generalized solutions of functional differential inclusions

In Paper V we consider the initial value problem for a functional differ-

ential inclusion with a Volterra multivalued mapping that is not necessarily

decomposable in Ln
1 [a, b]. First, we introduce the concept of the decomposable

hull of a set in Ln
1 [a, b]. The notion of decomposability was introduced by

Rockafellar (23) in 1968 and since then decomposable sets became a main tool

in nonconvex analysis. They are in a sense a substitute of convexity and many

properties of convex sets have counterparts for decomposable sets.

We construct the decomposable hull and the closed decomposable hull of

the right-hand sides of the inclusions and study the topological properties of

these sets. Using some of these properties we obtain Huasdorff continuity

(Hausdorf lower semicontinuity, Hausdorff upper semicontinuity) conditions

for the closed decomposable hull of the multivalued mapping.

Next, using the notion of the closed decomposable hull, we introduce the

concept of a general solution of a functional differential inclusion with a Volterra

multivalued mapping. We have proved that standard results on local existence

and continuation of a generalized solution remain true. We study the topolog-

ical properties of generalized solutions. In particular, we obtained estimates

for closeness of generalized solutions to a given absolutely continuous function.

These estimates allow us, by means of trial-and-error method, to determine an

approximate solution as well as to provide estimates for its accuracy. Besides

we have proved that the set of generalized quasisolutions coincides with the

solution set of the convexified inclusion. This implies the density principle for

11



1. INTRODUCTION

the generalized solutions, i.e. that the set of all generalized solutions is dense

in the solution set of the convexified inclusion.

Finally, we consider generalized approximate solutions (generalized δ-solutions)

and their asymptotic properties. In the present paper we introduce various

definitions of generalized approximate solutions of a functional differential in-

clusion. The main difference of our definitions from the one given in (13)

is that the values of a multi-valued mapping are not convexified. Therefore,

the topological properties of the sets of generalized approximate solutions are

studied and the stability criterium for the generalized approximate solutions

(based on the density principle) is proved.
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Abstract

We study some properties of piecewise-linear differential systems describing gene regula-

tory networks, where the dynamics are governed by sigmoid-type nonlinearities which are

close to or coincide with the step functions. To overcome the difficulty of describing the

dynamics of the system near singular stationary points (belonging to the discontinuity set

of the system) we use the concept of Filippov solutions. It consists in replacing discontinu-

ous differential equations with differential inclusions. The global existence and some other

basic properties of the Filippov solutions such as continuous dependence on parameters

are studied. We also study the uniqueness and non-uniqueness of the Fillipov solutions

in singular domains. The concept of Filippov stationary point is extensively exploited

in the paper. We compare two ways of defining the singular stationary points: one is

based on the Fillipov theory and the other consists in replacing step functions with steep

sigmoids and investigating the smooth systems thus obtained. The results are illustrated

by a number of examples.

Keywords: gene regulatory networks, sigmoid-type functions, differential inclusions,

Filippov solutions, singular stationary points
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1. Introduction

An important feature of genetic networks as well as of many other complex biological

systems is the presence of thresholds causing switch-like interactions between genes. Such

interactions can be described by the so-called ”sigmoids”, smooth monotone functions

assuming the values between 0 and 1 and rapidly increasing around the threshold. The

resulting nonlinear system can however be too complicated to be studied theoretically

and even numerically, as the number of the system’s variables may be huge. To simplify

the functional form of the equations it is common to replace sigmoids with step functions,

which converts the original smooth system into a switching system with discontinuous

right-hand sides. Such a replacement can only be considered admissible if the dynamics

of the ”idealized” (i.e. switching) systems do mimic the dynamics of the original smooth

system. In [1] and [2] it is observed that in many cases the qualitative behavior of the

IThis document is a collaborative effort.
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solutions does not change under such replacements. This analysis was continued in papers

[3, 4, 5, 6, 7], where a special emphasis was put on the behavior of solutions around

steady states (equilibrium concentrations) lying close to one or more threshold values.

Such states are of interest as they represent homeostatic states in the model. However,

if we use the idealized model based on discontinuous right-hand sides, we should first be

able to define the very notion of the homeostatic states (which in the limit may end up

in the discontinuity set) and to describe an efficient way to identify such states without

any additional information from the smooth system.

Basically, there are two ways of solving this problem. The first one is based on the

implicit function theorem and goes back to papers [5, 6]. Another approach utilizes

the concept of differential inclusions and the so-called ”Filippov solutions” [8, 9]. Both

approaches have their advantages and disadvantages. For instance, in the second approach

we may obtain steady states that are not limits of the proper steady states coming from

the smooth model. On the other hand, the results obtained in the framework of the first

approach can be too restrictive. However, as far as we know in the available literature

there is no attempt to compare these two approaches from the mathematical point of

view.

The present paper is aimed to fill partly the gap between the two approaches, which

were developing independently. Singular stationary points were studied by means of the

implicit function theorem in [5, 6] (1994,1998). To analyse the solution flow a method

based on singular perturbation analysis was introduced in [4] (2005). At the same time

an alternative approach (based on the Filippov framework) capable of dealing with both

of these problems was suggested in [8, 9] (2002,2004). The possibility to study both

the stationary properties and the dynamical behavior of discontinuous systems is a big

advantage of the latter approach. However to the best of our knowledge there does not

exist a complete mathematical comparison between the two approaches. Another objective

of this paper is to give a detailed mathematical justification of the method based on the

Filippov framework.

Below we want to look at the Filippov approach a little bit more systematically starting

with the very concept of the Filippov solution which can be defined in three different ways

(in [8] only one of the definitions is used). This is done in Section 3. We prove that two

of the definitions (where the right-hand sides are convex though constructed in different

ways) are in fact equivalent in the case of the gene regulatory networks, while the third

provides a different inclusion with a non-convex right-hand side, thus giving a different

set of stationary solutions. However, it is the latter definition that covers the homeostatic

states in the model, while the first two may produce stationary solutions of quite a different

nature (see a more detailed description of these solutions below).

Then we study some basic properties of Filippov solutions of the systems in question

putting emphasis on global existence and continuous dependence on parameters. In par-

ticular, these results can be used to justify similarities between the ”real-world” model

based on smooth interactions (sigmoids) and the idealized model based on step-like inter-

actions. This is done in Section 4.

In Section 5 we study the uniqueness and non-uniqueness of Filippov solutions in the

singular domains (i. e. in the set of discontinuity points of the right-hand side). For
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instance, we show that the solution is unique in black and transparent walls (see e.g. [4]),

while white walls usually give rise to infinitely many Filippov solutions. Walls are segments

of switching hyperplanes of codimension 1. Walls could be of three types: black (attract

trajectories), white (repel trajectories), or transparent (are passed by trajectories).

Stationary solutions are discussed in Section 6. Here we compare the two approaches

mentioned above. Roughly speaking we show that the main difference between them

amounts to the difference between non-equivalent definitions of the Filippov solutions. In

the case of a non-convex right-hand side we get stationary points in the sense of [4], while

in the case of a convex right-hand side we obtain stationary points in the sense of [8].

Although the second approach gives more stationary points than the first one, we show

that the Filippov stationary points that are limits of convergent sequences of stationary

points of smooth systems (as the steepness of sigmoids increases infinitely) are indeed the

Fillipov solutions in the sense of definition with non-convex right-hand sides. In Section 6

we also introduce some examples of stationary points in the sense of [8], which at the

same time are not stationary points in the sense of [4].

In real world models each variable can have several thresholds. But in the present

paper we are interested only in local properties of the solutions. In this case we can

assume without loss of generality that every variable has only one threshold. We admit

this simplification throughout the whole paper for the sake of simplicity and convenience

of notation. However all the results remain true for the models with multiple thresholds.

This concerns also the theorem on global existence of a Filippov solution (see Theorem 2,

Section 4), where a global solution can be obtained by simply gluing together local solu-

tions.

2. Description of the mathematical framework

Consider a system of n genes with the gene product concentration xj. The gene prod-

ucts regulate their own production by Boolean-like regulatory functions. Mestl et al. [3]

studied the following model of system of differential equations with switch-like nonlinear-

ities

ẋj = fj(x, Z) = Fj(Z)−Gj(Z)xj, j = 1, ..., n, (1)

where x ∈ Xn = Rn
+, Z is an n-dimensional vector of switching functions Zi(xi) : R →

[0, 1], i = 1, ..., n, the production rate function Fj ≥ 0 and the relative degradation rate

Gj > 0 are multilinear polynomials, i.e. affine functions with respect to each Zi.

Remark 1. An affine (sometimes called also linear) function has the form aZi + b. Ac-

cording to our assumption, which seems to be sufficient for gene regulatory networks (see

[2, 5]), both F and G are affine in this sense with respect to each Zi. ¤

For q > 0 Zi = Σ(xi, θi, qi) is a sigmoid function, qi is a steepness parameter, and

θi is the threshold. Suppose that qi = q for any i = 1, 2, ..., n. Sigmoids are smooth

monotone functions assuming the values between 0 and 1 and rapidly increasing around

the threshold. As q → 0, then Σ(xi, θi, q) approaches the unit step or the shifted Heaviside

function with the threshold θi.
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If q = 0, then Fj,Gj are piecewise constant positive functions whose values change, as

the variables xj cross the thresholds xj = θj.

From mathematical point of view, (1) in the limit (q = 0) becomes a differential system

with discontinuous right-hand sides. One of our goals in this work is to show that the

concept of Filippov solutions (see [10], Chapter 2 §4) can clarify the study of such systems,

in particular the behavior in the threshold planes and their intersections.

In the vector notation (1) rewrites as

ẋ = f(x, Z) = F (Z)−G(Z)x, (2)

where x ∈ Xn = Rn
+, F = (F1, . . . , Fn) and G = diag (G1, . . . , Gn) (the diagonal matrix

with the entries Gj).

In the case of step functions the function f is piecewise linear in Rn
+ and Zi =

Σ(xi, θi, 0) is given by

Σ(xi, θi, 0) =

{
0 if xi < θi,

1 if xi > θi.
(3)

Without loss of generality we may put Zi = Σ(θi, θi, 0) = 1/2.

According to the assumptions on functions F and G we have that

0 ≤ Fj(Z) ≤ F j, 0 < σj ≤ Gj(Z) ≤ Gj, Zi ∈ [0, 1], i, j = 1, ..., n, (4)

where F j, Gj, σj are constants. Therefore the dynamical properties of models of the form

(2) can be analyzed in the n-dimensional phase space box Ω = Ω1× . . .×Ωn, where every

Ωj, 1 ≤ j ≤ n, is defined as

Ωj = {xj ∈ R+ | 0 ≤ xj ≤ maxj}. (5)

maxj is a parameter denoting a maximum concentration for the protein. It will be shown

in Section 4 that if we choose

maxj > F j/σj,

then trajectories starting inside Ω will remain in it and trajectories starting outside the

space box Ω will eventually enter it.

The threshold hyperplanes xj = θj divide Ω into 2n open, rectangular domains called

boxes or regular domains. Thus, B is a box if there is no j such that xj = θi, i.e none of

the variables assumes the threshold value. A segment of a hyperplane of codimension k

separating two adjacent boxes is customarily called a singular domain (or a wall in the

case of codimension 1). B is a singular domain if for at least one j, 1 ≤ j ≤ n, it holds

that xj = θj.

A more precise definition of boxes and singular domains were given in [4]. Let N =

{1, . . . , n}. Let R be an ordered subset of N, and S the ordered complement N \R, such

that R ∪ S = N and R ∩ S = ∅. The symbols R and S stand for regular and singular

corrdinates, respectively. For example yS stands for an |S|-dimensional vector (|S| is the

number of elements in S) consisting of singular coordinates of an n-dimensional vector y.

Similar for yR.

A box is an open domain in Xn where all Bj have specified values.
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Definition 1. Let a Boolean vector B = [B1, . . . , Bn] be given. To B is associated the

box B(B) = {x ∈ Xn | Z(x) = B}.

BR is a Boolean vector of length |R| (|R| is the number of elements in R) consisting

of regular coordinates of B.

Definition 2. Let S 6= ∅ and BR be given. If S ⊂ N, then a singular domain is given by

SD(S,BR) = {x ∈ Xn | xS = θS, ZR(x) = BR}. The order (codimension) of SD(S, BR)

is the number σ = |S| of elements in S.

For example, in 4-dimensional space SD({1, 3}, [01]) = {x ∈ X4 | x1 = θ1, x3 =

θ3, x2 < θ2 , x4 > θ4 }, S = {1, 3}, R = {2, 4}, BR = [01] (Z2(x2) = 0, Z4(x4) = 1 )

The behavior of systems described by (2) can be easily characterized in the regular

domains. See Appendix A for the details. It what follows we focus on singular domains

only.

Singular domains of codimension 1, customarily called walls, can be of three kinds:

• If trajectories travel through the wall, then the wall is transparent.

• If trajectories hit the wall from either side, then the wall is black.

• It trajectories depart from the wall on both sides, then the wall is white.

Example 1. Consider the following system

ẋ1 = k1 (Z1Z2 + (1− Z1)(1− Z2))− γ1x1,

ẋ2 = k2(1− Z1)− γ2x2.
(6)

This is a special case of (2).
x

2

x
1

θ
2

θ
1

Figure 1. The qualitative flow of (6) in the boxes for q = 0 and for small

q. The parameter values are k1 = k1 = 1, θ1 = θ2 = 1, γ1 = γ2 = 1/2. The

wall SD({1}, 0) is black, the wall SD({1}, 1) is white, the two others walls:

SD({2}, 0) and SD({2}, 1) are transparent. ¤
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In the case when a wall W is black, there is no indication of how a solution can be

continued. Near the wall solutions are approaching it from both sides as t increases, and

none of them can leave W . A solution which passes through a point of the wall W at

t = t0 will therefore remain in W for t > t0 until it reaches the boundary of W . If W is

white, then a solution which passes through a point of the wall W at t = t0 may either

go off W into one of the adjacent boxes separated by W or remain in W for t > t0. In

the latter case the solution may go off W at any moment. In white walls the motion is

therefore unstable. A more complex behavior can occur in an intersection of two or more

threshold hyperplanes, and a solution can be singular in this case also.

Point attractors can also exist in black walls or in an intersection of threshold hyper-

planes, even though the equations are not defined there. Such a stable point is called a

singular stationary point, abbreviated SSP [11].

3. The concept of Filippov solutions

To provide the existence and the possibility for solutions to be continued in both

black and white walls, it is necessary to define the right-hand side of system (2) at these

points of discontinuity. A way to achieve this is to exploit the definitions suggested by

A.F. Filippov in [10].

Most of the known definitions of solution may be presented as follows. For each point x

a set F(x) in n-dimensional space is specified. If at the point x a function f is continuous,

the set F(x) consists of one point which coincides with the value of the function f at this

point. If x is a discontinuity point of the function f, the set F(x) is given in some other

way. A Filippov solution of the equation (2) is called a solution of the differential inclusion

ẋ ∈ F(x), (7)

that is, an absolutely continuous vector-valued function x(t) defined on an interval I for

which ẋ(t) ∈ F(x(t)) almost everywhere on I.

Below we adjust the definitions from [10] to the case of the switching system (2) using

the notation from Section 2.

Definition 3. [[10], Chapter 2, §4, 2, definition a)] Let SD(S, BR) be a singular domain.

For any Boolean vector BS corresponding to one of the regular domains adjacent to

SD(S,BR) and any x ∈ SD(S, BR) put P (BS, x) = (p1, ..., pn),

pi = Fi(BS, BR)−Gi(BS, BR)xi, i = 1, ..., n. (8)

For each x ∈ SD(S,BR) we put

F(x) = co{P (BS, x) | BS ∈ {0, 1}S},

i.e. P (BS, x) stands for the values of the function F (Z)−G(Z)x, where ZR ≡ BR is fixed

and ZS ≡ BS runs through the set {0, 1}S. The number of such points P (BS, x) is 2|S|.
A Filippov solution of the equation (2) is a solution of the inclusion (7) with F(x) so

constructed.
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At continuity points of the function f the set F(x) consists of one point f(x), and the

Filippov solution satisfies equation (2) in the usual sense. Therefore inside regular domains

Filippov solutions coincide with solutions to ordinary differential equations (ODE).

If the point x ∈ SD(S, BR) lies on the boundaries of cross-section of two or several

regular domains (boxes) B(BS, BR) (the number of such boxes k = 2|S|), the set F(x) is

a segment, a convex polygon, or a polyhedron with vertices P j(BS, x), j = 1, ..., k, whose

coordinates pj
i (BS, x),i = 1, ..., n, are given by (8).

All the points P j(x), j = 1, . . . , k, are contained in F(x), but it is not necessary that

all of them be vertices. In other words F(x) = co{P 1, . . . , P k}.
Such a construction of the set F(x) is used in [8]. Consider another and more general

definition.

Definition 4. [[10], Chapter 2, §4, 2, definition c)] Consider the system (2). For each

discontinuity point x ∈ SD(S, BR) let Zj(x) ≡ [0, 1], j ∈ S, and ZS(x) ≡ [0, 1]|S| =

[0, 1] × [0, 1] × ... × [0, 1]. At the points where Zj(x) is continuous the set Zj(x),j ∈ S,

consists only of one point Zj(x) ∈ {0, 1}. Let

F1(x) = {F (ZS, BR)−G(ZS, BR)x} (9)

be the set of all values of the function f(x, ZS, ZR = BR), where x and BR are fixed and

Zj,j ∈ S, independently run over the sets Zj,j ∈ S, respectively. Filippov solutions of the

differential equation (2) are defined as solutions of the differential inclusion

ẋ ∈ F2(x),

where F2(x) = coF1(x).

There exists one more definition.

Definition 5. [[10], Chapter 2, §4, 2, definition b)] Filippov solutions of the differential

equation (2) can be defined as solutions of the differential inclusion

ẋ ∈ F1(x),

where F1(x) is from Definition 4. In what follows, such solutions will be called Filippov

solutions in the narrow sense.

Motion along a singular domain W of codimension k, 1 ≤ k ≤ m, may only occur with

the velocity

ẋ ∈ K(x), (10)

where K(x) is the intersection of the set F(x) (or F1(x), F2(x)) with the (n − k)-

dimensional hyperplane containing W .

If the function f in (2) is nonlinear in variables Z1, . . . , Zn, then the set K(x) consists

of more than one point and the velocity along W is not determined in a unique way.
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x

a

b

c

W

B1

B2

fB2

fB1

Figure 2. A sketchy view of the three possible definitions for the right-hand

side of (7). B1, B2 stand for the two regular domains separated by the singular

domain W and associated to Boolean vectors B1, B2. fB1 and fB2 stand for

the values of the function f(x, Z), where Z = B1 and Z = B2, respectively.

Any Filippov solution in the sense of Definition 3 is a Filippov solution in the sense

of Definition 4 (in Figure 2 the set F is the chord ac, F1 is the arc abc, and F2 is the

cross-hatched segment). The converse does not hold in general, but still holds if f in (2)

is linear in Z1, . . . , Zn (see [10], Chapter 2 §4 2). In our case we assume that F and G

are affine functions with respect to each of the components Zj, i.e. f admits nonlinear

terms such as Z1Z2, but does not admit terms such as Z2
1 . Thus, the equivalence of the

two definitions does not follow from the above result. However, it is possible to show that

in this case both definitions are equivalent as well.

Remark 2. Since we show later in this chapter that F(x) = F2(x), solutions in the sense

of Definition 3 and Definition 4 will be both called Filippov solutions. ¤

Example 2.

ẋ1 = Z1 − x1,

ẋ2 = Z2 − x2

ẋ3 = Z1Z2 − Z3x3

(11)

We assume that θ1 = 1, θ2 = 1, θ3 = 1/2 and consider the point (1, 1, 1) located in the

singular domain SD(1, 2, [1]) = {x1 = θ1, x2 = θ2, x3 > θ3} of codimension 2.
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0

x
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x
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Figure 3. The surface represents the set F1(x) for the system (11) con-

structed at the point x = (1, 1, 1). The set F2(x) = coF1(x) coincides with

the set F(x) = co{f1 = (−1,−1,−1), f2 = (0,−1,−1), f3 = (−1, 0,−1), f4 =

(0, 0, 0)}. Both of them (the set F2 and F) are the pyramid with the vertices

at f1, f2, f3, f4. ¤

Let us prove the following general fact.

Lemma 1. Let g : Rm → Rn,g = g(Z), Z ∈ Zm ≡ [0, 1]m, be an affine function with
respect to each variable Zi, i = 1, ..., m. Let B be a Boolean vector of dimension m. The
set of all such vectors we denote by Bm. Then

co g(Zm) = co g(Bm). (12)

Proof. The proof is by induction over the dimension m.

If m = 1, then g(Z) = AZ + B, A,B ∈ Rn. This function is linear and the proof is

trivial.

Suppose now that (12) holds for m = k − 1, i.e. for any affine (with respect to each

variable) function g : Rk−1 → Rn the equality (12) is satisfied.

Then for Z1 = 0 and Z1 = 1, by the inductive assumption, we have

co g(0,Zk−1) = co g(0,Bk−1) ⊂ co g(Bk),

co g(1,Zk−1) = co g(1,Bk−1) ⊂ co g(Bk).

Let us prove now that for any Z0 ∈ Zk g(Z0) ∈ co g(Bk). Let Z0 = (Z0
1 , ..., Z

0
k). Since g is

an affine function with respect to Z1, we have

g(Z1, Z2, ..., Zk) = Z1g1(Z2, ..., Zk) + g2(Z2, ..., Zk).

Therefore since

g(1, Z0
2 , ..., Z

0
k) = g1(Z

0
2 , ..., Z

0
k) + g2(Z

0
2 , ..., Z

0
k),

g(0, Z0
2 , ..., Z

0
k) = g2(Z

0
2 , ..., Z

0
k),

we have

g(Z0
1 , Z

0
2 , ..., Z

0
k) = Z0

1g1(Z
0
2 , ..., Z

0
k) + g2(Z

0
2 , ..., Z

0
k) =

Z0
1g(1, Z0

2 , ..., Z
0
k) + (1− Z0

1)g(0, Z0
2 , ..., Z

0
k).

Since 0 ≤ Z0
1 ≤ 1 and g(0, Z0

2 , ..., Z
0
k), g(1, Z0

2 , ..., Z
0
k) ∈ co g(Bk), we see that g(Z0

1 , Z
0
2 , ..., Z

0
k) ∈

co g(Bk) as well. This means that g(Zk) ⊂ co g(Bk) and consequently co g(Zk) ⊂ co g(Bk).

The opposite inclusion is obvious since Bk ⊂ Zk.

Hence co g(Zk) = co g(Bk) and the proof is complete. ¤

Theorem 1. Let F and G in (2) be affine functions with respect to the variables Z1, . . . , Zn.
Then Definition 3 and Definition 4 are equivalent, i.e. F(x) = F2(x).

Proof. It follows from Lemma 1 applied to any singular domain SD(S,BR) and from

the equality g(ZS) = f(ZS, BR)−G(ZS, BR)θS. ¤
9



Remark 3. Note that if m > 1 in Lemma 1, then it is not always true that g(convex set)=convex set.

Indeed, in Example 2 the set g(Z2) = F1 (the surface in Figure 4) is non-convex. ¤

The following example shows that the presence of nonlinear terms such as Z2
1 may

lead to F(x) 6= F2(x) (F(x) ⊂ F2(x)).

Example 3.
ẋ1 = 0.5Z1 + Z2 + 0.5Z2

1 − x1,

ẋ2 = Z2
2 − x2.

(13)

We assume that θ1 = 1 and θ2 = 1.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

x
1

x 2

F1

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

x
1

x 2

F

Figure 4. For the system (13) the sets F1(x) and F(x) constructed at the

point x = (θ1, θ2). The set F2(x) = coF1(x) does not coincide with the set

F(x) = co{f1 = (−1,−1), f2 = (0,−1), f3 = (1, 0), f4 = (0, 0)}. ¤

4. The existence and properties of Filippov solutions

Consider the initial value problem for the differential inclusion

ẋ ∈ F(x), x(t0) = x0. (14)

with the right-hand side F from Definition 3.

Let us recall some basic notations. For two compact nonempty subsets A,B of a

metric space put β(A,B) = sup
a∈A

ρ(a,B). The function α(A,B) = max{β(A,B), β(B,A)}
is a metric and is called the Hausdorff metric. A function F(x) is called β-continuous

(or Hausdorff upper semicontinuous) at x if β(F(x′),F(x)) → 0 as x′ → x. A function

F(x) is called β-continuous (or Hausdorff upper semicontinuous) on a domain Ω if it is

β-continuous (or Hausdorff upper semicontinuous) at each point of this domain.

Definition 6. A vector function y(t) is called a δ-solution (approximate solution within

accuracy δ) of the inclusion (14) with β-continuous F(x) if y is absolutely continuous and

almost everywhere

ẏ(t) ∈ Fδ(y(t)), Fδ(y) ≡ [coF(yδ)]δ.

Here we denote by M δ the closed δ-neighborhood of M and by F(yδ) the union of the

sets F(y1) for all y1 ∈ yδ.
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Let Ω be the closed bonded domain given by (5). According to [10] we say that a

multivalued function F satisfies the basic conditions in Ω if for any x ∈ Ω the set F is

nonempty, bounded, closed, convex and the function F is β-continuous.

Since the multivalued function F(x) in (14) satisfies basic conditions in Ω, the following

theorem holds.

Theorem 2. Consider (14) under assumptions on functions F and G listed in Section 2.
Then

A. At least one Filippov solution of (14) passes through any internal point (t0, x
0) of

the domain Ω.

B. Let x(t) = (x1(t), ..., xn(t)) be a Filippov solution of (14). If xi(t0) = x0
i > 0 for all

i = 1, ..., n, then xi(t) > 0, for all t ≥ t0, i = 1, ..., n. If in addition x0
i ≤ F i/σi,i =

1, ..., n, (F i, σi are the constants from inequalities (4)), then xi(t) ≤ F i/σi for all
t ≥ t0, i = 1, ..., n. Such a Filippov solution is defined for all t ≥ t0.

C. All the Filippov solutions are uniformly continuous on any finite time interval a ≤
t ≤ b.

D. The limit of a uniformly convergent sequence of Filippov solutions (or δk-solutions,
where δk → 0), a ≤ t ≤ b, is a Filippov solution as well.

E. For a ≤ t ≤ b consider all the Filippov solutions with a given initial condition
x(t0) = x0 (or with all possible initial conditions x0 ∈ A, A is a given compact set).
The set of points belonging to the graphs of these Filippov solutions (the segment
of the Filippov solution funnel) is bounded and closed. The set of these Filippov
solutions is compact in C[a, b].

F. If A in Proposition E is a connected compact set, then the solution set is connected in
C[a, b]. The section of the solution funnel by any plane t = t1 ∈ [a, b] is a connected
compact set.

Proof. The function F in (14) is β-continuous (see Lemma 3 in [10], Chapter 2 §6).

Therefore, due to the construction of the set F in Definition 3, the function F satisfies the

basic conditions. The existence of a local Filippov solution then follows from Theorem 1

and 2 in [10], Chapter 2 §7. The assertions C–F of the theorem also hold due to [10],

Chapter 2 §7.4.

Let us prove now the assertion B. First let us note that if a Filippov solution xi(t),

i = 1, ..., n, of the problem (14) is non negative for some t, then for these t

−Gixi(t) ≤ ẋi(t) ≤ F i − σixi(t). (15)

This is obvious for regular domains (see (4)). Let us show the validity of (15) for a singular

domain W . Motion along W may only occur with the velocity ẋ ∈ K(x) (see (10)). Any

element ẋ of K(x) has the form

ẋ = α1(x)P 1 + α2(x)P 2 + ... + αk(x)P k, (16)

where the vectors αj(x),j = 1, ..., k (k is the number of the boxes), are such that
k∑

j=1

αj
i (x) =

1,i = 1, ..., n. Points P j are determined in Definition 3 and are given by P j = βj − Γjx,

11



where Γj = diag (γj
1, . . . , γ

j
n) (the diagonal matrix with the entries γj

i ),j = 1, ..., k. Here

βj, γj are constant vectors inside each box. Hence (16) transforms to

ẋ =
k∑

j=1

αj(x)βj −
k∑

j=1

αj(x)Γjx,

Since 0 ≤ βj
i ≤ F i, σi ≤ γj

i ≤ Gi, and xi(t) ≥ 0, we have, due to
k∑

j=1

αj
i (x) = 1, the

validity of (15).

Let us show now that if we choose xi(t0) = x0
i > 0 for all i = 1, ..., n, then xi(t)

satisfying (14) satisfies xi(t) > 0 for all t ≥ t0, i = 1, ..., n. Assume the converse. Then

there exists m ∈ {1, ..., n} and t∗ < ∞ such that xm(t∗) = 0. Let t∗ be the first moment

of time when xm(t) becomes zero, i.e. xm(t∗) = 0 but xm(t) > 0 for all t0 ≤ t < t∗.
Obviously t∗ > t0 due to the continuity of x(t). Any Filippov solution of the problem (14)

has the form

xm(t) = x0
m +

t∫

t0

gm(x(s))ds, m ∈ {1, ..., n}, (17)

where gm ∈ {f ∈ L1[t0, t] : f(s) ∈ Fm(x(s)) for a. e. s ∈ [t0, t]}. Since for t ∈ [t0, t
∗]

xm(t) > 0, we have, due to (15),

xm(t∗) = x0
m +

t∗∫

t0

gm(x(s))ds ≥ x0
m +

t∗∫

t0

(−Gmxm)ds.

By the theorem on integral inequalities, xm(t) ≥ xm(t), t ∈ [t0, t
∗], where xm(t) =

x0
me−Gm(t−t0) > 0 is the solution of the problem

ẋm(t) = −Gmxm(t), xm(t0) = x0
m.

Hence xm(t∗) > 0. This contradicts to the choice of t∗. Therefore xi(t) ≥ 0, i = 1, ..., n,

for all t ≥ t0.

Let us show now that if we choose xi(t0) = x0
i ≤ F i/σi and x0

i > 0, i = 1, ..., n, then

xi(t) satisfying (14) also satisfies xi(t) ≤ F i/σi for all t ≥ t0. In a similar way, since

xi(t) ≥ 0 and due to (15),(17), we have

xi(t) = x0
i +

t∫

t0

gi(x(s))ds ≤ x0
i +

t∫

t0

(F i − σixi(s))ds.

Due to the theorem on integral inequalities we obtain xi(t) ≤ xi(t), where xi(t) ≥ 0 is the

solution of the following initial value problem

ẋi(t) = F i − σixi(t), xi(t0) = x0
i . (18)

The solution of (18) is given by

xi(t) = F i/σi + (x0
i − F i/σi)e

−σi(t−t0).

12



We denote t− t0 = ∆t > 0 and since x0
i ≤ F i/σi, we have

xi(t) = F i/σi + (x0
i − F i/σi)e

−σi∆t ≤ F i/σi.

Therefore xi(t) ≤ xi(t) ≤ F i/σi for all t ≥ t0 and we have the global existence of a

Filippov solution in positive direction.

The proof of the theorem is complete. ¤

Remark 4. If a trajectory starts in Ω (defined in Section 2), it will remain inside, while

trajectories starting outside will eventually enter Ω. For x0
i ≤ F i/σi this follows from the

theorem. If x0
i > F i/σi, then xi(t) ≤ F i/σi + (x0

i − F i/σi)e
−σi∆t. Since the right-hand

side of the latest inequality goes to F i/σi as t → ∞, we have that x(t) ≤ F i/σi + ε for

any ε < 0 and t > t∗(ε). ¤

Below we adjust some theorems from [10] (Chapter 2 §8) on dependence of a Fillipov

solution on initial data and on the right-hand side of the equation to the case of switching

system (14).

Let a multivalued function F be defined in a certain ε0-neighborhood D0 of the set D

and let F∗ be defined in the set D. Then for 0 < δ
√

2 < ε0 the set F(xδ) is well-defined.

This set is the union of the sets F(x1) for all x1 ∈ xδ. We say that dD(F∗,F) ≤ δ if and

only if for all x ∈ D

F∗(x) ∈ [coF(xδ)]δ.

Theorem 3. [[10], Chapter 2 §8, Theorem 1] For a ≤ t ≤ b and x0 ∈ Ω consider all the
Filippov solutions of the problem (14). Let F , F∗ be the multivalued functions describing
two different right-hand sides of (14). Then for any ε > 0 there exists δ > 0 such that for
any x∗0 and F∗(x) satisfying the following conditions

|x∗0 − x0| ≤ δ, dΩ(F∗,F) ≤ δ,

every Filippov solution of the problem

ẋ∗ ∈ F∗(x∗), x∗(t∗0) = x∗0, (19)

exists for a ≤ t ≤ b and its deviation from some Filippov solution of the problem (14)
does not exceed ε. ¤

This means that every Filippov solution x∗(t) of the problem (19) either exists on

[a, b], or may be extended to the entire segment [a, b], and there exists a Filippov solution

x(t) of the problem (14) such that

max
a≤t≤b

|x∗(t)− x(t)| ≤ ε.

Let f(x) and f ∗(x) be piecewise continuous in domain Ω vector functions defined in

Section 2. We say that d0(f ∗, f) ≤ δ if and only if for each continuity point x of the

function f ∗ there exists a continuity point x′ of the function f such that

|x′ − x| ≤ δ, |f(x′)− f ∗(x)| ≤ δ. (20)

Notice that from (20) it does not necessarily follow that the deviation of the values of

the functions f and f ∗ in discontinuity sets does not exceed δ.
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Theorem 4. [[10], Chapter 2 §8, Theorem 2] For a ≤ t ≤ b and x0 ∈ Ω consider all
the Filippov solutions of the problem (14). Let f, f ∗ be functions describing two different
right-hand sides of the equation (2). Suppose also that f, f ∗ correspond to multivalued
functions F , F∗, respectively. Then for any ε > 0 there exists δ > 0 such that for any x∗0
and f ∗(x) satisfying the following conditions

|x∗0 − x0| ≤ δ, d0(f ∗, f) ≤ δ,

every Filippov solution of the problem

ẋ∗ ∈ F∗(x∗), x∗(t∗0) = x∗0,

exists for a ≤ t ≤ b and its deviation from some Filippov solution of the problem (14)
does not exceed ε. ¤

The next corollary provides a more explicit version of Theorem 4. It asserts that

solutions of the perturbed problem (14) approach solutions of the original problem (14) for

sufficiently small perturbations of the initial value, the threshold value, and the functions

F and G in (2).

Corollary 1. For a ≤ t ≤ b and x0 ∈ Ω consider all the Filippov solutions of the problem
(14). Let F (Z),G(Z),F ∗(Z),G∗(Z), where Zi = Σ(xi, θi, 0),i = 1, ..., n, be the functions
on two different right-hand sides of the equation (2) satisfying the properties listed in
Section 2. Suppose also that F and F∗ are the multivalued functions from Definition 3
corresponding to F (Z),G(Z) and F ∗(Z∗),G∗(Z∗), respectively, where Z∗

i = Σ(xi, θ
∗
i , 0),i =

1, ..., n. Then for any ε > 0 there exists δ > 0 such that for any x∗0, θ∗, F ∗(Z), and G∗(Z)
satisfying the following conditions

|x∗0 − x0| ≤ δ, |θ − θ∗| ≤ δ1 ≤ δ,

max
Z∈{0,1}n

|F ∗(Z)− F (Z)| ≤ δ2 ≤ δ, max
Z∈{0,1}n

|G∗(Z)−G(Z)| ≤ δ3 ≤ δ (21)

every Filippov solution of the problem

ẋ∗ ∈ F∗(x∗), x∗(t∗0) = x∗0,

exists for a ≤ t ≤ b and its deviation from some Filippov solution of the problem (14)
does not exceed ε.

Proof. By Theorem 4, all we need is to show that d0(f ∗, f) ≤ δ, where f(x, Z) =

F (Z)−G(Z)x, f ∗(x, Z∗) = F ∗(Z∗)−G∗(Z∗)x.

Let xi 6= θ∗i ,i = 1, ..., n, be a continuity point of the function f ∗i (xi, Z
∗
i ) = F ∗

i (Z∗
i ) −

G∗
i (Z

∗
i )xi. We can assume without loss of generality that θi ≤ θ∗i . Due to the definition

of the function Z (see (3)), there exists x′i /∈ [θi, θ
∗
i ] such that |x′i − xi| ≤ δ1 ≤ δ and

Zi(x
′
i) = Z∗

i (xi) = Ẑi ∈ {0, 1}. Obviously, this x′i is a continuity point of the function

fi. Consider |fi(x
′
i, Zi(x

′
i))− f ∗i (xi, Z

∗
i (xi))| ≤ |Fi(Ẑi)−F ∗

i (Ẑi)|+ |Gi(Ẑi)x
′
i−G∗

i (Ẑi)xi| ≤
δ + |G(Ẑi)x

′
i−G∗

i (Ẑi)x
′
i|+ |G∗

i (Ẑi)x
′
i−G∗

i (Ẑi)xi|. By (21), (5), (4) and due to |x′−x| ≤ δ,

we obtain

|fi(x
′
i, Zi(x

′
i))− f ∗i (xi, Z

∗
i (xi))| ≤ δ + δ max +Gδ.
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If we choose δ1, δ2, δ3 sufficiently small, then the latter inequality implies d0(f ∗, f) ≤ δ,

and the proof is complete. ¤
Finally, we prove that solutions of the smooth system (2) (including sigmoids rather

than step functions) approach a certain Filippov solution as the steepness parameter q

goes to 0.

Corollary 2. For x0 ∈ Ω consider all the Filippov solutions of the problem (14) for
a ≤ t ≤ b. Let f ∗ = f(x, Z∗) = F (Z∗)−G(Z∗)x be the vector function on the right-hand
side of the equation (2) with a steep sigmoid Z∗

i = Σ(xi, θi, q),i = 1, ..., n, q > 0. Then for
any ε > 0 there exists δ > 0 such that for any x∗0, q satisfying the following conditions

|x∗0 − x0| ≤ δ, q ≤ δ,

every solution of the problem

ẋ∗ = f ∗(x∗), x∗(t∗0) = x∗0

exists for a ≤ t ≤ b and its deviation from some Filippov solution of the problem (14)
does not exceed ε.

Proof. Due to Theorem 3, it is sufficient to show that dΩ(f ∗,F) ≤ δ. Let x̃ ∈ Ω be

such that x̃i 6= θi,i = 1, ..., n. Then Fi(x̃) = fi(x̃i, Z(x̃i)), where fi is a vector function

defined by (2). Due to the properties of a sigmoid function Z∗ (it approaches the step

function as q → 0), Z∗
i (x̃i) → Zi(x̃i) as q → 0. Therefore, by continuity of the functions

F and G, Fi(Z
∗
i (x̃i)) → Fi(Zi(x̃i)) and Gi(Z

∗
i (x̃i)) → Gi(Zi(x̃i)) as q → 0. Then for a

sufficiently small q we have |f ∗i (x̃i)− fi(x̃i)| ≤ |Fi(Z
∗
i (x̃i))−Fi(Zi(x̃i))|+ |Gi(Z

∗
i (x̃i))x̃i−

Gi(Zi(x̃i))x̃i| ≤ δ. Therefore f ∗i (x̃i) = fi(x̃i, Z
∗
i ) ⊂ (fi(x̃i, Zi))

δ ≡ (Fi(x̃i))
δ ⊂ [coFi(x̃

δ
i )]

δ,

i.e. dΩ(f ∗i ,Fi) ≤ δ provided x̃i 6= θi.

Suppose now that xi = θi,i ∈ S. Due to the properties of a sigmoid function Z∗,
Z∗

i (θi) → 1/2 as q → 0. By construction of the set Fi, fi(θi, 1/2) ∈ Fi(θi). Due to the

continuity of fi with respect to Zi, f ∗i (θi) = fi(θi, Z
∗
i (θi)) → fi(θi, 1/2) as q → 0. Hence

for a sufficiently small q ρ(f ∗i (θi),Fi(θi)) ≤ δ. Therefore f ∗i (θi) ⊂ (Fi(θi))
δ ⊂ [coFi(θ

δ
i )]

δ,

i.e. dΩ(f ∗i ,Fi) ≤ δ for xi = θi. ¤

5. The uniqueness and non-uniqueness of Filippov solutions in singular do-

mains

We consider the Filippov solutions. In regular domains we have the uniqueness (both

right and left) of a Filippov solution due to the continuity of df/dx.

The theorems below follow directly from [10], Chapter 2 §10.

Theorem 5. If a Filippov solution hits a transparent wall at some point, then this solution
travels through this wall into the adjacent box. This solution is unique at least until it hits
another singular domain.

Consider an arbitrary transparent wall xi = θi. It is a singular domain SD({i}, BR)

of codimension 1. Let B1, B2 be the two adjacent boxes separated by this wall and

corresponding to xi > θi and xi < θi, respectively. Let B1, B2 be the corresponding

Boolean vectors.
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Within the box B1 the motion is given by

ẋj = Fj(B
1)−Gj(B

1)xj = f 1
j (xj), j = 1, ..., n, (22)

and within the box B2

ẋj = Fj(B
2)−Gj(B

2)xj = f 2
j (xj), j = 1, ..., n, (23)

where Fj, Gj reduce to some constants within each of the two boxes.

The Filippov solution x(t) starting at x0 = x(t0) inside the box B1 is described by

xj(t) = Φ1
j + (x0

j − Φ1
j) exp [−Gj(B

1)(t− t0)],

where Φ1
j = Fj(B

1)/Gj(B
1). If it hits the transparent wall xi = θi at some finite t∗ > t0,

then this solution travels through this wall into the box B2 and its motion is described by

xj(t) = Φ2
j + (x∗j − Φ2

j) exp [−Gj(B
2)(t− t∗)],

where Φ2
j = Fj(B

2)/Gj(B
2), x∗ = x(t∗). This solution is unique.

Theorem 6. Each point of a black wall is hit by exactly one Filippov solution coming
from one of the boxes separated by this wall and by exactly one Filippov solution coming
from the adjacent box. Any solution starting in a black wall is unique at least until it hits
an intersection of walls.

We will now determine the velocity of the motion along a black wall and show the

non-uniqueness of Filippov solutions in white walls.

Remark 5. [Chapter 2 §4.2 a) in [10]] In the case of the black wall xi = θi Filippov

solutions do not leave the wall. They will stay in this wall at least for a while until they

hit another wall and will satisfy, due to [10], the equation ẋj = f 0
j (xj),j = 1, ..., n,j 6= i,

where

f 0
j = αf 1

j + (1− α)f 2
j , α =

f 2
i

f 2
i − f 1

i

, 0 ≤ α ≤ 1. (24)

Here f 1
j , f 2

j , j = 1, ..., n, are defined by (22), (23), respectively. For the black wall xi = θi

separating the boxes B1, B2 α is given by

α =
Fi(B

2)−Gi(B
2)θi

Fi(B2)− Fi(B1)− (Gi(B2)−Gi(B1))θi

. (25)

¤

Remark 6. Situation with white walls is different. Let us show that there we have

infinitely many Filippov solutions.

Consider equation

ẋ = F (Z)−G(Z)x (26)

on the interval t ∈ [0, T ]. We assume that x1 = θ1 is the white wall, ZR = BR. This is the

case if F1(0, BR) − G1(0, BR)θ1 < 0 and F1(1, BR) − G1(1, BR)θ1 > 0 or, in other words,

there exists Z∗
1 ∈ (0, 1) such that

F1(Z
∗
1 , BR)−G1(Z

∗
1 , BR)θ1 = 0. (27)
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Let us find all the Filippov solutions of the inclusion

ẋ ∈ F(x) (28)

with the initial condition x(0) = x0 = (θ1, x2, ..., xn), xi 6= θi, i = 2, ..., n. The right-hand

side F is determined in Definition 3, Zi = Σ(xi, θi, 0).

We start with the coordinate x1. Due to x1(0) = θ1, we have for t = 0

ẋ1(0) ∈ F(x(0)) = co{F1(0, BR)−G1(0, BR)θ1; F1(1, BR)−G1(1, BR)θ1}. (29)

Since F1,G1 are affine functions with respect to Z1, (29) can be rewritten as

ẋ1(0) ∈ F(θ1) = {F1(Z1, BR)−G1(Z1, BR)θ1 | 0 ≤ Z1 ≤ 1}.

Due to (27), 0 ∈ F(θ1). Therefore it might happen that ẋ1(t) = 0 for some t ≥ 0. Let

α = inf{t ≥ 0 : ẋ1(t) 6= 0}. Then for any t ∈ [0, α)ẋ1(t) = 0, i.e. x1(t) = θ1 for all

t ∈ [0, α). Due to the continuity of the Filippov solution, x1(t) = θ1 for all t ∈ [0, α].

Let t0 be such that t0 > α and ẋ1(t0) 6= 0. Let, for example, ẋ1(t0) > 0. Without loss of

generality we can assume that ẋ1(t) > 0 for all α < t ≤ t0. Then x1(t) > θ1 for α < t ≤ t0
and hence

ẋ1(t) = F1(1, BR)−G1(1, BR)x1 for α < t ≤ t0.

Therefore any Filippov solution has the form

x1(t) =

{
θ1, 0 ≤ t ≤ α,
F1(1,BR)
G1(1,BR)

+ (θ1 − F1(1,BR)
G1(1,BR)

)e−G(1,BR)(t−α), α < t ≤ t0.
(30)

The similar formula is valid for ẋ1(t0) < 0

x1(t) =

{
θ1, 0 ≤ t ≤ α,
F1(0,BR)
G1(0,BR)

+ (θ1 − F1(0,BR)
G1(0,BR)

)e−G(0,BR)(t−α), α < t ≤ t0.
(31)
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Figure 5. The sketchy view of a Filippov solution in both cases.

Since α may be chosen arbitrarily on the interval [0, T ], we have infinitely many Fil-

ippov solutions (at least for the first coordinate).

Now we add one more coordinate, say x2.

ẋ2(t) ∈ F(x(t)) = co{F2(0, BR)−G2(0, BR)x2(t); F2(1, BR)−G2(1, BR)x2(t)},
17



where x2(0) 6= θ2 and x1(t) = θ1.

Or

ẋ2(t) ∈ F(x(t)) = {F2(Z1, BR)−G2(Z1, BR)x2(t) | 0 ≤ Z1 ≤ 1}, (32)

where x1(t) = θ1 and x2(t)−θ2 does not change the sign (which holds at least in a vicinity

of t = 0). The problem (32) has at least one Filippov solution in a vicinity of t = 0. The

same applies to the coordinates x3, x4, etc.

Thus, there exist infinitely many α > 0 such that (30)(or (31)) and (32) represent the

Filippov solutions of (26) for i = 1 and i ≥ 2 respectively. In fact, there are no other

Filippov solutions close to the white wall, due to the argument just presented. ¤

Summarizing, we have the uniqueness of a Filippov solution in black and transparent

walls and non-uniqueness in white walls.

Example 4. Consider the following example from [4].

ẋ1 = Z1 + Z2 − 2Z1Z2 − γ1x1,

ẋ2 = 1− Z1Z2 − γ2x2.
(33)
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Figure 6. Some trajectories of (33) for the steep model with q = 0.01. Para-

meter values: γ1 = 0.6, γ2 = 0.9, θ1 = θ2 = 1.

This model has two black walls SD(1, [1]) (x1 = θ1, x2 > θ2) and SD(2, [1]) (x2 = θ2,

x1 > θ1). The single point x1 = θ1,x2 = θ2 is the singular domain SD(1, 2) of codimension

2.

Any Filippov solution that starts inside the box B([11]) and hits one of these black

walls stays there and, due to Theorem 6, is unique unless it reaches the intesection of the

walls.

In the wall SD(1, [1]), by Remark 5, the equations of motion are given by

x1(t) = θ1

x2(t) = 2/3 + (x0
2 − 2/3)e−0.9(t−t0).

Since x2(t) → 2/3 < θ2, any Filippov solution that hits the black wall SD(1, [1])

remains in this wall, is unique (unless it reaches the intersection of the walls) and converges

to the point x1 = θ1,x2 = θ2.

18



Similarly, for the black wall SD(2, [1]) we have

x1(t) = 3/2 + (x0
1 − 3/2)e−0.6(t−t0),

x2 = θ2.

Thus, any Filippov solution that hits the black wall SD(2, [1]) remains in this wall, is

unique and converges to the point x1 = 3/2, x2 = θ2.

Consider now the intersection of these black walls, i.e. the point x1 = θ1,x2 = θ2. We

will show that a Filippov solution that passes through this point is not unique.

First notice that {(x0
1, x

0
2) |x0

1 ≥ θ1, x
0
2 ≥ (x0

1)
3/2} (the area above the dotted line inside

one of the boxes in Figure 6) is the set of all initial conditions such that the Filippov

solution starting at these points at t0 = 0 reaches the point (θ1, θ2) at some t∗ > t0. The

point (θ1, θ2) is also reached in a finite time by any Filippov solution coming from the box

{x1 < θ1, x2 > θ2}.
Then, by the definition of a Filippov solution, for t > t∗ the Filippov solution ”splits”

into two parts, i.e. either it stays forever an the point (1, 1), or stays at (1, 1) for an

arbitrary yet a finite period of time and then converges along the black wall SD(2, [1]) to

the point (3/2, 1). Since the Filippov solution may stay at (1, 1) for any arbitrary period

of time, we have infinitely many Filippov solutions. In Figure 6 the area in the box B([11])

above the dotted line represents the initial conditions for such non-unique solutions. ¤

6. Stationary points

In this section we will compare two approaches to identify stationary points to (2):

one is based on the method from [4] and another utilizes the Filippov method [10].

We will show that the main difference between these approaches amounts to the dif-

ference between non-equivalent definitions of the Filippov solutions. In the case of a

non-convex right-hand side (the set F1(x), Definition 5) we get stationary points in the

sense of [4], while in the case of a convex right-hand side (the set F(x), Definition 3) we

obtain stationary points in the sense of [8]. Although the second approach gives more

stationary points than the first one, we will show (Theorems 9) that the Filippov station-

ary points that are limits of convergent sequences of stationary points of smooth systems

(q → 0) are indeed the Fillipov solutions in the sense of definition with non-convex right-

hand sides, i.e. Filippov solutions in the narrow sense. We also introduce Example 5 of

stationary points in the sense of [8], which at the same time are not stationary points in

the sense of [4].

Definition 7. A point x0 is called a Filippov stationary point of (2) if 0 ∈ F(x0), where

F(x) is from Definition 3.

Remark 7. If 0 ∈ F1(x
0), where F1(x) is from Definition 4, then we will call x0 a

Filippov stationary point in the narrow sense. As we show below, the difference between

non-equivalent definitions of the Filippov solution represents the two approaches: one

based on [4] (Filippov solutions in the narrow sense) and another based on [8] (Filippov

solutions). ¤
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If x0 is located inside a regular domain B determined by a Boolean vector B, then

F(x0) = F (B) − G(B)x0 and we have the definition of a conventional stationary point.

The position of such regular stationary points (RSPs [14]) is given by Φi = Fi(B)/Gi(B)

(i.e. by the focal points [13]), i = 1, ..., n. All RSPs are asymptotically stable. In the

sequel we consider singular stationary points (SSPs), only.

The following definition gives a formal description of SSP in the sense of [4].

Definition 8. A point x0 ∈ SD(θS, BR) is called a singular stationary point (SSP) for the

system (2), Zs = Σ(xs, θs, 0)(s ∈ S), if for any set of steep sigmoid functions Σ(xs, θs, q)

(s ∈ S) there exist a number ε > 0 and points xq, where q ∈ (0, ε), such that

• The point xq is a stationary point for the system (2) with Zs = Σ(xs, θs, q) (s ∈ S);

• xq → x0 as q → +0 (s ∈ S).

Due to Theorem 4 in [4], this is the case if

A) det(∂fS/∂ZS) 6= 0 and

B) There exists 0 < Z∗
S < 1, where Z∗

S is obtained from the system

0 = FS(Z∗
S, BR)−GS(Z∗

S, BR)θS,

0 = FR(Z∗
S, BR)−GR(Z∗

S, BR)x0
R.

This means that a soulution in the sense of [4] is actually a Filippov solution in the

narrow case.

The condition A) guarantees, by the implicit function theorem, the existence of sta-

tionary solutions for small q > 0 and the condition B) indicates that x0 ∈ SD(θS, BR) is

indeed a stationary point of the simplified equations with step functions.

For the more detailed explanation of such solutions we refer the reader to [4]. Briefly,

gene regulatory equations with steep but not infinitely steep sigmoids are considered. The

method introduced was based on certain simplifying features in the limit when sigmoids

approach step function (this is not the same as replacing sigmoids with step functions)

and singular perturbation technics were used to analyse the behavior near the thresholds.

We will show below (Theorem 9) that a Filippov stationary solution x∗ satisfying

0 ∈ F(x∗)\F1(x
∗), i.e. a Filippov stationary solution that is not a Filippov stationary

solution in the narrow sense, is not covered by Definition 8. To give an illustration

of what can happen to such a stationary solution for small q > 0 let us consider the

following example.

Example 5. Consider the system

ẋ1 = 1.65− Z1 + 2Z2 − 2Z1Z2 − γ1x1,

ẋ2 = 2.25 + Z1 − Z2 − Z1Z2 − γ2x2.
(34)
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Figure 7. Some trajectories of (34) for the steep model with q = 0.01. Para-

meter values: γ1 = 1.5, γ2 = 2.5, θ1 = θ2 = 1.

According to Section 5, the Filippov solution in the black wall SD(1, [1]) = {x1 =

θ1, x2 > θ2} has the form

x1 = θ1

x2 = 0.5 + (x0
2 − 0.5)e−2.5(t−t0).

We see that x2(t) → 0.5 as t →∞. In the black wall SD(2, [1]) = {x2 = θ2, x1 > θ1} the

Filippov solution is given by

x1 = 13/30 + (x0
1 − 13/30)e−1.5(t−t0)

x2 = θ2

and therefore x1(t) → 13/30 as t →∞. In the black wall SD(1, [0]) = {x1 = θ1, x2 < θ2}
the Filippov solution has the form

x1 = θ1

x2 = 0.96 + (x0
2 − 0.96)e−2.5(t−t0).

Therefore x2(t) → 0.96 as t →∞.

It can be easily checked that 0 ∈ F(x0), where x0 = (1, 1). Here

F(x0) = co{P 00(x0), P 01(x0), P 10(x0), P 11(x0)},

where P 00(x0) =

(
1.65− 1.5x0

1

2.25− 2.5x0
2

)
, P 01(x0) =

(
3.65− 1.5x0

1

1.25− 2.5x0
2

)
, P 10(x0) =

(
0.65− 1.5x0

1

3.25− 2.5x0
2

)
,

P 11(x0) =

(
0.65− 1.5x0

1

1.25− 2.5x0
2

)
.

Thus (1, 1) is a Filippov stationary point of the system (34). Another Filippov sta-

tionary point is (1, 0.96)

The Filippov stationary point (1, 1) cannot be obtained using the method described

in [4] because stationarity conditions here

1.65− Z1 + 2Z2 − 2Z1Z2 − 1.5 = 0,

2.25 + Z1 − Z2 − Z1Z2 − 2.5 = 0
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do not give real solutions (the condition B) is not fulfilled). Indeed, for x0 = (1, 1)

0 ∈ F(x0) but 0 /∈ F1(x
0)
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Figure 8. For the system (34) the set F1 constructed at the point (θ1, θ2) does

not coincide with the set F = coF1. Here we have 0 /∈ F1(x
0) and 0 ∈ F(x0).

The behavior of the Filippov solution near the point (1, 1) is as follows. A trajectory

hitting one of the black walls x1 = θ1, x2 > θ2 or x2 = θ2, x1 > θ1 will reach the point

(θ1, θ2) after a finite period of time and then it may either stay at this point forever, or stay

there for any arbitrary yet finite period of time and then converge along SD(1, [0]) to the

other Filippov stationary point (1, 0.96). Again we have the non-uniqueness of Filippov

solutions. Numerical analysis for the considered above system (34) illustrates the behavior

of solutions of steep sigmoid model for small q > 0 near the Filippov stationary points x0

satisfying 0 ∈ F(x0)\F1(x
0).
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Figure 9. The behavior of some trajectories of the system (34) near the Fil-

ippov stationary point (1, 1), steepness parameter q = 0.0001.

Since (1, 1) is not a stationary point in the narrow sense, this point cannot be a limit

of stationary points of steep sigmoid systems. Solutions of steep model then turn about

this point and then converge towards the SSP x1 = (1, 0.96) located in the black wall

SD(1, [0]) and satisfying 0 ∈ F1(x
1). ¤

Theorem 7. Any SSP of (2) obtained by the method from [4] is a Filippov stationary
point.
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Proof. Since xq(t) = xq is the solution of ẋq = F (Z) − G(Z)xq = 0 with the steep

sigmoid Zi = Σ(xq
i , θi, q),q > 0, we have, due to Corollary 2, that this solution converges

uniformly on any interval to a certain Filippov solution of the inclusion ẋ ∈ F(x). On the

other hand xq → x0 as q → 0 and hence x0 is a Filippov solution of ẋ ∈ F(x) on any

interval and therefore for all x. Since x0 is a constant, 0 ∈ F(x0) and x0 is a Filippov

stationary point of (2). ¤
The converse does not hold in general, but still holds for black and white walls. We

consider only black walls bellow, as SSP in white walls are never stable and are therefore

of low interest.

Theorem 8. Any Filippov stationary point of system (2) located in a black wall is a SSP
in the sense of [4].

Proof. Let x0 ∈ SD(s,BR), s ∈ S, be a Filippov stationary point. Without loss of

generality we may assume that x0 ∈ SD(1, BR), and let SD(1, BR) be a black wall.

Since F and G are affine functions with respect to Z1, we have that F(x) = F1(x),

where the sets F ,F1 are given in Definition 3, Definition 4. Due to the uniqueness of

a Filippov solution in a black wall, there exists Z∗
1 ∈ (0, 1) such that for the Filippov

stationary solution x0 we have

0 = F1(Z
∗
1 , BR)−G1(Z

∗
1 , BR)θ1,

0 = FR(Z∗
1 , BR)−GR(Z∗

1 , BR)x0
R.

Let
∂F1

∂Z1

− ∂G1

∂Z1

θ1 6= 0.

This inequality holds for a black wall. Then, by [4], there exists xq (for sufficiently small

q) such that

0 = F1(Z1, BR)−G1(Z1, BR)xq
1,

0 = FR(Z1, BR)−GR(Z1, BR)xq
R

and xq → x0 as q → 0. We have the definition of a stationary solution in the sense of [4].

¤
Below we compare the two classes of stationary solutions to (2): the stationary solu-

tions in the sense of [4] and the Filippov stationary solutions in the narrow sense.

Theorem 9. For the system (2) consider a Filippov stationary point x∗. Suppose, more-
over, that x∗ is a stationary point of (2) in the sense of [4]. Then x∗ is in fact a Filippov
stationary solution in the narrow sense.

Proof. We assume that x∗i is a Filippov stationary point that is a limit of stationary

points for small q > 0, i = 1, ..., n, i.e. there exists a sequence xq → x∗ as q → 0, such

that F (Zq)− G(Zq)xq = 0. Here Zq = (Zq
1 , ..., Z

q
n), Zq

i = Σ(xq
i , θi, q). Due to 0 ≤ Zq

i ≤ 1

and the properties of a sigmoid function, we may assume without loss of generality (for

example considering subsequences qk if required) that Zqk
i → Z∗

i ∈ [0, 1] (i = 1, ..., n)

as qk → 0 (for any sequence qk → 0). Due to the continuity of F and G, we obtain

F (Z∗)−G(Z∗)x∗ = 0. Since 0 ≤ Z∗
i ≤ 1, we have that x∗ is indeed a Filippov solution in

the sense that 0 ∈ F1(x
∗), where F1 is defined by (9) (see Definition 4). ¤

The following examples illustrate the fact that not every Filippov stationary point in

the narrow sense can be obtained by the method from [4].
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Example 6. Consider the system

ẋ1 = 1 + Z2 − γ1x1,

ẋ2 = 2− Z1Z2 − γ2x2.
(35)
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Figure 10. Some trajectories to (35) for the steep model with q = 0.01. Pa-

rameter values: γ1 = 2, γ2 = 0.5, θ1 = θ2 = 1. Diamonds mark the stationary

points Φ01 and Φ11.

The focal points Φ01 = (1, 4) and Φ11 = (1, 2) of the boxes B([01]) and B([11]) respec-

tively are located in the singular domain SD(1, [1]). At a point x ∈ SD(1, [1])

F1(x) =

{(
0

2− Z1 − 0.5x2

)
, Z1 = [0, 1]

}
.

Due to 0 ∈ F1(x) for x = (1, 2) and x = (1, 4), the points Φ01 = (1, 4) and Φ11 = (1, 2)

are stationary points of (35) in the narrow sense. Since det(∂f1/∂Z1) = 0 at Φ01 and Φ11

(f is the right-hand side of (35)), these stationary points cannot be obtained by method

from [4] as the condition A) is not fulfilled.

Using Definition 5, it can be shown that a Filippov solution starting at the point x0,

x0
1 = 1, x0

2 ≥ 4 converges along SD(1, [1]) to Φ01 = (1, 4). Some Filippov solutions reach

this point only for t →∞ and others reach it during a finite period of time. In the latter

case after passing this point Filippov solutions may either change direction and return

back to Φ01 = (1, 4) at any moment of time or continue motion towards Φ11 = (1, 2).

”Switchings” of the direction of the motion may occur any time and we have infinitely

many Filippov solutions. ¤

Example 7. Consider the system

ẋ1 = 1 + Z1 + Z2 − 2Z1Z2 − γ1x1,

ẋ2 = 1 + Z1 + Z2 − 2Z1Z2 − γ2x2.
(36)
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Figure 11. Some trajectories of (36) for the steep model with q = 0.01. Pa-

rameter values: γ1 = 1.25, γ2 = 1.25, θ1 = θ2 = 1.

This system has two black walls SD(1, [1]) (x1 = θ1, x2 > θ2) and SD(2, [1]) (x2 = θ2,

x1 > θ1). The single point x1 = θ1,x2 = θ2 is the singular domain SD(1, 2) of codimension

2. We want to find stationary points that are hidden in black walls or the intersection of

the walls.

According to Section 5, Filippov solution in the black wall SD(1, [1]) has the form

x1 = θ1

x2 = 1 + (x0
2 − 1)e−1.25(t−t0).

We have that x2(t) → 1 as t → ∞. In the black wall SD(2, [1]) the Filippov solution is

given by

x1 = 1 + (x0
1 − 1)e−1.25(t−t0)

x2 = θ2.

and here x1(t) → 1 as t →∞.

Using the method based on the Filippov theory presented in Section 5, we can show

that x0 = (θ1, θ2) is a Filippov stationary point of (36) in the narrow sense. To do this,

we need to prove that 0 ∈ F1(x
0). As

F(x) =

(
1 + Z1 + Z2 − 2Z1Z2 − γ1x1

1 + Z1 + Z2 − 2Z1Z2 − γ1x2

)
, Z = [0, 1]2,

it is easy to check that 0 ∈ F1(x
0) for x0 = (θ1, θ2). Therefore x0 = (θ1, θ2) is a Filippov

stationary point of (36) in the narrow sense.

On the other hand this Filippov stationary point cannot be obtained by the method

from [4]. This is due to the equality det(∂fS/∂ZS) = 0. Thus, the condition A) is not

fulfilled. Here f is the right-hand side of (36). ¤

The following system represents another interesting case when uniform convergence

for solutions of steep sigmoid systems cannot be shown by the method from [4] but still

follows from the method of Filippov.
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Example 8. Consider the system

ẋ1 = 3− 2Z2 − Z1Z2 − x1,

ẋ2 = 2Z1 − x2.
(37)
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Figure 12. Some trajectories of (37) for the steep model with q = 0.01. Pa-

rameter values: θ1 = 2, θ2 = 1.

The system was presented by Edwards [12]. Solutions cycle through boxes and trans-

parent walls approaching the SSP (2, 1). Solutions of (37) with step switching functions,

i.e. Filippov solutions, reach this point after an infinite number of cycles, but in finite

time, let say [0, T ]. The Main Result from [4] on uniform convergence of solutions of steep

sigmoid systems does not hold here for a finite time interval [0, T1], where T1 ≥ T. How-

ever, uniform convergence on any finite interval for solutions xq of steep sigmoid systems

can still be shown using the Filippov theory (see Corollary 2). Note that the Filippov

solution in this 2-dimensional example is unique. ¤

The example above can be generalized to the n-dimensional case for a point P belong-

ing to a switching domain SD(S, BR) of codimension |S| ≥ 2.

Proposition 1. Consider a point P ∈ SD(S, BR), where |S| ≥ 2. Suppose that in a
vicinity of P Filippov solutions of (2) pass infinitely often through switching hyperplanes
xK = θK , K ⊂ S, 2 ≤ |K| ≤ |S|, when converging to P in finite time [0, T ]. Then, as
q → 0, the trajectory xq of the system (2) with steep sigmoid converges uniformly on any
finite interval a ≤ t ≤ b to a certain Filippov solution of (2).

Proof. Indeed, it follows from Corollary 2 that solutions xq of steep sigmoid systems

convergence to a certain Filippov solution of (2) uniformly on any finite interval. ¤

Remark 8. Note that the results of Proposition 1 cannot be obtained using the method

from [4]. The Main Result there does not hold when a trajectory passes through infinite

sequence of regular and switching domains. ¤
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Conclusions and discussions

The main results of the paper provide a mathematical justification for the similarities

between the ”real-world” model based on smooth interactions (sigmoids) and the idealized

model based on step-like interactions. Putting emphasis on the Filippov approach and

focusing on singular domains mainly, we have introduced three different ways to define

Filippov solutions, unlike [8] where only one of the definitions is used. We have studied the

global existence and some other basic properties of the Filippov solutions as well as their

uniqueness and non-uniqueness. We have proved that two of the definitions (where the

right-hand sides are convex though constructed in different ways) are in fact equivalent

in the case of the gene regulatory networks, while the third provides a different inclusion

with a non-convex right-hand side. We have shown that the latter definition, which stays

for Filippov solutions in the narrow sense, covers stationary solutions in the sense of [4],

while the first two may produce stationary solutions of quite a different nature.

We have proved that the Filippov stationary points satisfying 0 ∈ F(x∗)\F1(x
∗) (i.e.

stationary points not in the narrow sense) cannot be the limits of proper stationary points

of the approximating smooth systems, where the step functions are replaced with suffi-

ciently steep sigmoids (see [4, 5, 6] for details). Numerical analysis in this 2-dimensional

case shows that trajectories of the smooth systems just pass through these points before

converging to another stationary point. Therefore, an interpretation of such points is not

obvious. Filippov stationary points which are not stationary points in the sense of [4] but

are the limits of more complicated dynamics may still exist. For instance, the approxi-

mating smooth systems may possess invariant measures, the support of which shrinks into

a singleton (being a Filippov stationary point, but not a stationary point in the sense of

[4]), as the steepness parameters approach zero. Neither the existence of such invariant

measures is shown, nor their absence proved yet.

Acknowledgments

The authors would like to thank Stig W. Omholt and Erik Plahte from the Norwegian

University of Life Sciences for many stimulating discussions.

The authors are also very much grateful to Alexander I. Bulgakov from the Tambov

State University in Russia for many useful comments and suggestions as well as for his

constant support during the authors’ work on the paper.

Special thanks to the anonymous referees for a large number of corrections and helpful

suggestions that affected the article content and presentation of the results.

References

[1] L. Glass, and S.A. Kaufmann (1972) Co-operative components, spatial localization

and oscillatory cellular dynamics. J. Theor. Biol. 34, 219-237.

[2] L. Glass, and S.A. Kaufmann (1973) The logical analysis of continuous, non-linear

biochemical control networks. J. Theor. Biol. 39, 103-129.

[3] T. Mestl, E. Plahte, and S. W. Omholt (1995) A mathematical framework for de-

scribing and analysing gene regulatory networks. J. Theor. Biol., 176:291–300.

27



[4] E. Plahte and S. Kjoglum (2005) Analysis and generic properties of gene regulatory

networks with graded response functions. Physica D 201, 150–176.

[5] E. Plahte, T. Mestl, and S.W. Omholt (1994) Global analysis of steady points for

systems of differential equations with sigmoid interactions. Dynamics and Stability

of Systems 9, 275–291.

[6] E. Plahte, T. Mestl, and S.W. Omholt (1998) A methodological basis for the descrip-

tion and analysis of systems with complex switch-like interactions. J. Math. Biol.,

36:321–348.

[7] S.R. Veflingstad and E. Plahte (2007) Analysis of gene regulatory network models

with graded and binary transcriptional responses. BioSystems, 90(2), 323-339.

[8] J.-L. Gouze and T. Sari (2002) A class of piecewise linear differential equations aris-

ing in biological models. Dynamical Systems: An International Journal, Volume 17,

Number 4, December 01, pp. 299-316.

[9] H. de Jong, J.-L. Gouze, C. Hernandez, M. Page, T. Sari, and J. Geiselmann (2004)

Qualitative simulations of genetic regulatory networks using piecewise linear models.

Bulletin of mathematical biology, vol. 66(2), pp. 301-340.

[10] A.F. Filippov, Differential equations with discontinuous right-hand sides, Nauka,

Moscow 1985 (Russian); English transl., Kluwer, Dordrecht 1998.

[11] E.H. Snoussi and R. Thomas (1993) Logical identification of all steady states: the

concept of feedback loop characteristic states. Bull. math. Biol. 55, 973–991.

[12] R. Edwards (2000) Analysis of continuous-time switching networks, Physica D, 146,

165-199.

[13] L. Glass and J.S. Pasternack (1978) Stable ascillations in mathematical models of

biological control systems. J. Theor. Biol. 6, 207–223.

[14] R. Thomas (1991) Regulatory networks seen as asynchronous automata: a logical

description. J. Theor. Biol. 153, 1–23.

[15] M. di Bernardo, C.J. Budd, A.R. Champneys, and P. Kowalczyk Piecewise-smooth

dynamical systems: theory and applications, Springer-Verlag, Series: Applied Math-

ematics Sciences, vol. 163, 2008.

Appendix A. Behavior of systems in regular domains

The behavior of the systems described by (2) can be easily characterized in the regular

domains. Within each box B the rates Fj(Z) and Gj(Z) reduce to the constants βj(B)

and γj(B), respectively. These constants may be different in different boxes. Thus, xj is

governed by the locally valid linear differential equation

ẋj = βj − γjxj, j = 1, . . . , n. (38)
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In a single box B the solution x(t) of (38) satisfying x(t0) = x0 is

xj(t) = Φj + (x0
j − Φj) exp [−γj(t− t0)],

where Φj = βj/γj. When t →∞, xj(t) → Φj. We shall call Φ(B) = [Φ1, . . . , Φn] the focal

point [13] of B because all trajectories in B head towards this point attractor until one

of the coordinates xj assumes the threshold value θj. If Φ(B) ∈ B, then Φ(B) becomes a

stable point of the system and an attractor for all trajectories in B. It is called a regular

stationary point, abbreviated RSP [14]. In [15] focal points and regular stationary point

are called virtual and admissible equilibria respectively. If Φ(B) /∈ B, any trajectory

passing through B will eventually hit one of the singular domains.
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Abstract

We study stability properties of a class of piecewise affine systems of ordinary differential

equations arising in the modeling of gene regulatory networks. Our method goes back

to the concept of a Filippov stationary solution (in the narrow sense) to a differential

inclusion corresponding to the system in question. The main result of the paper justifies

a reduction principle in the stability analysis enabling to omit the variables that are not

singular, i.e. that stay away from the discontinuity set of the system. We suggest also

”the first approximation method” to study asymptotic stability of stationary solutions

based on calculating the principal part of the system, which is 0-homogeneous rather

than linear. This leads to an efficient algorithm of how to check asymptotic stability

without calculating the eigenvalues of the system’s Jacobian. In Appendix we discuss and

compare two other concepts of stationary solutions to the system in question.

Keywords: gene regulatory network, differential inclusion, Filippov solution, singular

stationary point, stability analysis

MSC: 34D20, 34A60, 92D10

1. Introduction

The regulation of gene expression occurs through networks of regulatory interactions

between DNA, RNA, proteins and small molecules, so-called gene regulatory networks

(GRNs). There are different ways of modelling gene regulatory networks. A class of

piecewise affine (PWA) systems of differential equations, originally proposed by Glass

and Kauffman [3], is well suited to qualitative analysis and has been widely used in mod-

elling gene regulatory networks. The variables in these models stand for concentrations of

proteins encoded by genes, while the differential equations describe the regulatory interac-

tions in the network by means of step functions. The use of step functions is motivated by

the presence of thresholds causing switch-like interactions between genes. The dynamics

of the obtained system can be easily described between such thresholds, but the vector

field for the PWA systems of differential equations is undefined when one of the variables

assumes a threshold value.
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In the present work we focus on stability analysis of PWA systems. Equilibria of the

PWA systems that lie in regular domains, i.e. outside the discontinuity set of the right-

hand side (called in the sequel singular domains), are always asymptotically stable (see

e. g. [8]). A method of studying the stability of equilibria in singular domains, i. e. of

(singular stationary point - SSP) was suggested by E. Plahte et al. in [6, 8, 9]. The crucial

step in the approach consisted in replacing the step functions with continuous response

functions, the so-called logoids, which gave the opportunity to linearize the system around

the perturbed stationary point, study stability properties for the perturbed system and

then observe that going back to the step function does not influence the stability properties

of the perturbed Jacobians. Strictly speaking, this method studies stability properties of

stationary points of the perturbed systems, rather than the stability of SSP in the original

PWA model. In particular, this may, in principle, cause the situation when the basins of

attractions of the perturbed steady states would shrink into a singleton in the limit, so

that the given SSP in fact may become unstable.

On the other hand, the recent works [4, 1] exploit another approach to define and

analyze the solutions inside the singular domains, namely the one based on the Filippov

theory [2]. According to this approach the given PWA system is replaced with a PWA

differential inclusion. In order to analyze the dynamics of the system the phase space

is divided into pieces (regular domains) bounded by the threshold hyperplanes and their

intersections (singular domains). For any singular domain a multivalued function can be

defined giving a differential inclusion which enables us to define solutions and calculate

all possible equilibria for the original PWA system, including all SSP.

The stability analysis for SSP, which is based on the Filippov theory, was first con-

sidered in the paper [1]. In this pioneer work the conditions that guarantee stability of

the so-called focal sets (i.e. set-valued equilibria in singular domains) were found and

justified. However, this method offers only limited opportunities in the case when one

wants to verify whether a given SSP is stable or not.

With the present paper we will try to develop the stability analysis of PWA systems

in the spirit of the papers [6, 8, 9], i.e. we wish to analyze stability properties of a given

SSP. On the other hand, our method is based on the Filippov theory, so that we will study

stability properties of SSP itself, and not of its approximations as in [6, 8, 9]. Thus, our

approach cannot be based on the Jacobians. Instead, we use the so-called 0-homogeneous

differential inclusions described in [2]. We suggest an efficient algorithm to determine

stability of a given SSP based on this approach. This algorithm replaces the conventional

analysis of eigenvalues, which in many situations may cause difficult numerical problems.

Compared to the Filippov-like approach from [1], one of the main advantages of the

stability analysis suggested by E. Plahte et al. is the justification of the so-called reduction

principle. Roughly speaking it means that stability properties of an SSP are governed by

the reduced Jacobian which is just evaluated for the singular part of the system, thus

living apart all the regular variables (i.e. those which are not close to their respective

thresholds). This can only be justified if the response functions in the model are of the

logoid shape. A logoid Zi = Zi(xi, θi) assumes the values 0 and 1 as long as xi is outside a

δ-neighborhood of the threshold θi. When passing through this neighborhood, the logoid

rapidly increases from 0 to 1 thus following the step function. When δ tends to zero, the
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logoid approaches this step function.

In our paper we justify this important principle within the PWA model, i.e. without

referring to particular smooth perturbations.

The only case which is not covered by our method, but which is possible to treat

with the help of Plahte’s logoid approach, is the situation of the bouncing ball when the

trajectories cross singular domains infinitely many times before they reach the equilib-

rium. We conjectured that in the PWA systems describing GRN such a behavior always

imply asymptotic stability of the (only) limit point, but we did not manage to prove this

conjecture.

2. Preliminaries

Consider a system of n genes with the gene product concentration xj. The gene prod-

ucts regulate their own production by Boolean-like regulatory functions. Mestl et al. [6]

studied the following model of system of differential equations with switch-like nonlinear-

ities

ẋj = fj(x, Z) = Fj(Z)−Gj(Z)xj, j = 1, ..., n, (1)

where x ∈ Xn = Rn
+, Z is an n-dimensional vector of switching functions Zi : R+ → {0, 1},

i = 1, ..., n, (i. e. Zi = Zi(xi)); the production rate function Fj ≥ 0 and the relative

degradation rate Gj > 0 are multilinear polynomials, i.e. affine functions with respect to

each Zi.

Clearly, (1) is a system of differential equations with discontinuous right-hand sides.

Our work is aimed to apply the Filippov theory of differential inclusions (see [2]) to study

stability of the stationary points located in the discontinuity set of the system (1).

According to the assumptions on the functions F and G we have that

0 ≤ Fj(Z) ≤ F j, 0 < σj ≤ Gj(Z) ≤ Gj, Zi ∈ [0, 1], i, j = 1, ..., n, (2)

where F j, Gj, σj are constants. Therefore the dynamical properties of (1) can be analyzed

within the n-dimensional phase space box Ω = Ω1× . . .×Ωn, where every Ωj, 1 ≤ j ≤ n,

is defined as

Ωj = {xj ∈ R+ | 0 ≤ xj ≤ maxj}. (3)

maxj is a parameter denoting a maximum concentration for the protein.

The threshold hyperplanes xj = θj divide Ω into 2n open, rectangular domains called

boxes or regular domains. Thus, B is a box if there is no j such that xj = θi, i.e none

of the variables assumes the threshold value. A segment of a hyperplane of codimension

k separating two adjacent boxes is called a singular domain (or a wall in the case of

codimension 1). B is a singular domain if for at least one j, 1 ≤ j ≤ n, it holds that

xj = θj.

A more formalized definition of boxes and singular domains was suggested in [7]. Let

N = {1, . . . , n}. Let R be an ordered subset of N, and S the ordered complement N \R,

such that R ∪ S = N and R ∩ S = ∅. The symbols R and S stand for the sets of regular

and singular coordinates, respectively. For example yS stands for an |S|-dimensional

vector (|S| is the number of elements in S) consisting of the singular coordinates of an

n-dimensional vector y. A similar description applies to yR.
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Definition 1. Let a Boolean vector B = (B1, . . . , Bn) be given. To B is associated the

box B(B) = {x ∈ Xn | Z(x) = B}.

BR is a Boolean vector of length |R| (|R| is the number of elements in R) consisting

of regular coordinates of B.

Definition 2. Let S 6= ∅ and BR be given. If S ⊂ N, then a singular domain is given by

SD(S,BR) = {x ∈ Xn | xS = θS, ZR(x) = BR}. The order (codimension) of SD(S, BR)

is the number σ = |S| of elements in S.

For example, in 4-dimensional space SD({1, 3}, [01]) = {x ∈ X4 | x1 = θ1, x3 =

θ3, x2 < θ2 , x4 > θ4 }, S = {1, 3}, R = {2, 4}, BR = [01] (Z2(x2) = 0, Z4(x4) = 1 )

Singular domains of codimension 1, sometimes called walls, can be of three kinds:

• If trajectories travel through the wall, then the wall is transparent.

• If trajectories hit the wall from either side, then the wall is black.

• It trajectories depart from the wall on both sides, then the wall is white.

Point attractors in black walls or in an intersection of threshold hyperplanes, are called

singular stationary points, abbreviated SSP [10].

Definition 3. [[2], Chapter 2, §4, 2, definition a)] Let SD(S, BR) be a singular domain.

For any Boolean vector BS corresponding to one of the regular domains adjacent to

SD(S,BR) and any x ∈ SD(S, BR) put P (BS, x) = (p1, ..., pn),

pi = Fi(BS, BR)−Gi(BS, BR)xi, i = 1, ..., n. (4)

For each x ∈ SD(S,BR) we put

F(x) = co{P (BS, x) | BS ∈ {0, 1}S},

i.e. P (BS, x) stands for the values of the function F (Z)−G(Z)x, where ZR ≡ BR is fixed

and ZS ≡ BS runs through the set {0, 1}S. The number of such points P (BS, x) is 2|S|.
A Filippov solution of the equation (1) is a solution of the inclusion

ẋ ∈ F(x), (5)

with F(x) so constructed.

At the continuity points of the function f the set F(x) consists of one point f(x),

and the Filippov solution satisfies equation (1) in the usual sense. Therefore inside reg-

ular domains Filippov solutions coincide with solutions to ordinary differential equations

(ODE).

If the point x ∈ SD(S, BR) lies on the boundaries of cross-section of two or several

regular domains (boxes) B(BS, BR) (the number of such boxes k = 2|S|), the set F(x) is
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a segment, a convex polygon, or a polyhedron with vertices P j(BS, x), j = 1, ..., k, whose

coordinates pj
i (BS, x),i = 1, ..., n, are given by (4).

All the points P j(x), j = 1, . . . , k, are contained in F(x), but it is not necessary that

all of them be vertices. In other words F(x) = co{P 1, . . . , P k}.
Such a construction of the set F(x) is used in [4]. Consider an alternative definition

of an inclusion describing systems with discontinuous right-hand sides in the Filippov

theory.

Definition 4. [[2], Chapter 2, §4, 2, definition c)] Consider the system (1). For each

discontinuity point x ∈ SD(S, BR) let Zj(x) ≡ [0, 1], j ∈ S, and ZS(x) ≡ [0, 1]|S| =

[0, 1] × [0, 1] × ... × [0, 1]. At the points where Zj(x) is continuous the set Zj(x),j ∈ S,

consists only of one point Zj(x) ∈ {0, 1}. Let

F1(x) = {F (ZS, BR)−G(ZS, BR)x} ≡ f(x,ZS, BR) (6)

be the set of all values of the function f(x, ZS, ZR = BR), where x and BR are fixed and

Zj,j ∈ S, independently run over the sets Zj,j ∈ S, respectively.

The alternative Filippov solutions of the differential equation (1) can be then defined

as solutions of the differential inclusion

ẋ ∈ F2(x),

where F2(x) = coF1(x).

Normally, Definitions 3 and 4 yield different solution sets. However, it can be shown

(unpublished) that for the PWA system (1) one always has the equality F(x) = F2(x),

so that the two above definitions of a Filippov solution in fact are equivalent in our case.

That is why we will in the sequel use the notation F(x) for the multivalued function

corresponding to the right-hand side of the system (1).

There exists one more definition of a Filippov solution, which also will be used in the

sequel.

Definition 5. [[2], Chapter 2, §4, 2, definition b)] Filippov solutions of the differential

equation (1) can be defined as solutions of the differential inclusion

ẋ ∈ F1(x),

where F1(x) is given by (6). In what follows, such solutions will be called Filippov solutions

in the narrow sense.

Let us recall some basic notation. For two compact nonempty subsets A,B of a

metric space put β(A,B) = sup
a∈A

ρ(a,B). The function α(A,B) = max{β(A,B), β(B,A)}
is a metric and is called the Hausdorff metric. A function F(x) is called β-continuous

(or Hausdorff upper semicontinuous) at x if β(F(x′),F(x)) → 0 as x′ → x. A function

F(x) is called β-continuous (or Hausdorff upper semicontinuous) on a domain Ω if it is

β-continuous (or Hausdorff upper semicontinuous) at each point of this domain.
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Following [2], we say that a multivalued function G satisfies the basic conditions in Ω

if for any x ∈ Ω the set G is nonempty, bounded, closed, convex and the function G is

β-continuous. It could be shown that for the systems (1) F(x) = F2(x) and each of these

functions satisfies basic conditions.

Definition 6. A point x0 is called a Filippov stationary point of (1) if 0 ∈ F(x0), where

F(x) is from Definition 3.

Definition 7. If 0 ∈ F1(x
0), where F1(x) is given by (6), then we will call x0 a Filippov

stationary point in the narrow sense.

3. The Filippov theory and stability in the first approximation.

Assume that the step functions Zi in (1) are all replaced with sequences of certain

smooth response functions (for instance with the logoids), which converge to the step

function. Assume further that any smooth system in the sequence has a stationary point,

and the sequence (or a subsequence) of these stationary points converge to some point

P 0. In Appendix it is shown that P 0 will be a Filippov stationary solutions to (1) in the

narrow sense. This motivates us to disregard other stationary solutions, as those have

no biological interpretation. That is why in this paper we only consider the Filippov

stationary solutions in the narrow sense, i.e. those satisfying Definition 7.

The main result of this section justifies the reduction principle which says that stability

of a Filippov stationary solution in the narrow sense is only determined by the singular

variables of the system (1). Moreover, we will show that the singular part of the inclusion

can be replaced with its ”first approximation” in the sense of homogeneous inclusions of

order 0 (or piecewise constant inclusions, in other words). These two results considerably

simplify the stability analysis of stationary solutions in the sense of Filippov.

Below we consider an arbitrary Filippov stationary point in the narrow sense, which

will be denoted by P 0 = (θS, x0
R) and which by this will be assumed to be located in a

singular domain SD(S, BR).

After separating regular and singular variables the system (1) can be rewritten as

ẋS = FS(ZS, ZR)−GS(ZS, ZR)xS,

ẋR = FR(ZS, ZR)−GR(ZS, ZR)xR.
(7)

In the singular domain SD(S,BR) the latter system can be specified as follows:

ẋS = FS(hS(xS − θS), BR)−GS(hS(xS − θS), BR)xS,

ẋR = FR(hS(xS − θS), BR)−GR(hS(xS − θS), BR)xR,
(8)

where hS is a vector of the Heaviside step functions, BR is a Boolean vector.

Let us introduce a new variable y ∈ R|S| by setting

xS − θS = yS,
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which translates the singular coordinates of the SSP P 0 to the origin

ẏS = FS(hS(yS), BR)−GS(hS(yS), BR)(yS + θS),

ẋR = FR(hS(yS), BR)−GR(hS(yS), BR)xR.
(9)

For the discontinuous system (9) we denote u = (yS, xR) and consider the correspond-

ing differential inclusion

u̇ ∈ F(u) (10)

with the right-hand side F obtained via Definition 3. Let FS and FR be the projections

of the set F onto the subspace of the singular and regular coordinates, respectively. Then

every solution u = (yS, xR) of the inclusion (10) will satisfy the system

ẏS ∈ FS(yS) (11)

ẋR ∈ FR(yS, xR). (12)

The converse does not hold true, in general. For the solutions (yS(t), xR(t)) = (0, xR(t))

lying in SD(S, BR) the functions xR(t) represent solutions of the inclusion

ẋR ∈ F0(xR), F0(xR) = F(yS, xR) ∩ SD(S, BR) where (yS, xR) = (0, xR) (13)

It will be shown later (Section 3.2) that the stability of the singular part of the systems

(9) guarantees the stability of the whole system. Thus, the focus of our study will be put

on the singular variables, so that we start with considering the reduced system

ẏS = FS(hS(yS), BR)−GS(hS(yS), BR)(yS + θS). (14)

To investigate stability of the zero solution of the system (14) we will replace this

system, or more precisely the corresponding differential inclusion, with its ”first approx-

imation” around the stationary point, which in this particular case will be a differential

inclusion with a homogeneous (of order 0) right-hand side. The latter should capture

the local stability properties of the former, exactly in the same manner as the Jacobian

captures the local stability properties of a smooth system.

3.1. 0-homogeneous inclusions and their stability

Definition 8. A multivalued function H(z) is called homogeneous of order α if H(cz) ≡
cαH(z) for all c > 0.

The corresponding differential inclusion

ż ∈ H(z), H(cz) ≡ cαH(z), c > 0 (15)

will be called homogeneous (of order α) as well.

In what follows we consider homogeneous functions of order 0. We call such functions

0-homogeneous. For instance, any step function with discontinuity at the origin is 0-

homogeneous.
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Let us introduce a discontinuous system which stands for the ”first approximation” to

the system (14) around the Filippov stationary point yS = 0. This system is given by

ẏS = FS(hS(yS), BR)−GS(hS(yS), BR)θS, (16)

or by the corresponding differential inclusion

ẏS ∈ HS(yS). (17)

with the right-hand side HS obtained via Definition 3 (or Definition 4).

Clearly, the inclusion (17) is 0-homogeneous.

Below we will show that the stability properties of the zero solution of the system

(14) can be deduced from the corresponding stability properties of its 0-homogeneous

counterpart. That is why we will now focus on a stability criterium for the homogeneous

inclusions.

The following theorem reformulates Theorem 6, [2], Chapter 3, 15 in terms of the

systems we are interested in and provides a verifiable stability condition for 0-homogeneous

inclusions with piecewise constant right-hand sides. It could be applied to differential

inclusions in the sense of Definition 3 or Definition 4.

Given SD(S, BR), consider further the space Rl (l = |S| ≤ n) of singular coordinates

yS. Let SDm
p m = 1, ..., l − 1; p = 1, ..., pm, denote m-dimensional singular domains in Rl

that separate the space Rl into regular boxes Bl
p p = 1, ..., 2l, with a vertex y = 0.

Theorem 1. Consider the multi-valued 0-homogeneous function HS(yS) from (17), which
depends on yS in none of the regular boxes Bl

p and on none of the singular domains SDm
p ,

i.e., H(yS) = Hm
p for y ∈ SDm

p , m = 1, ..., l − 1, p = 1, ..., pm, and H(yS) = H l
p for

y ∈ Bl
p, p = 1, ..., 2l. Let the solutions of the inclusion ẏS ∈ HS(yS) be unable to pass from

one singular domain SDm
p or regular box Bl

p into another singular domain or regular box
infinitely many times. The function yS(t) ≡ 0 is an asymptotically stable solution if and
only if for each SDm

p (respectively Bl
p,) none of the vectors from the set Hm

p (respectively
H l

p) lie in SDm
p (respectively Bl

p) or on its boundary ∂SDm
p (respectively ∂Bl

p).

Remark 1. Note that according to the proof presented in [2], Chapter 3, §15 2, the

solutions in the above theorem actually reach the zero point after a finite time. This

observation will be crucial in the next subsection.

Definition 9. Let a multi-valued function H(z) be 0-homogeneous. We say d0(F ,H) ≤ δ

for |z| ≤ ρ0 if for each ρ ∈ (0, ρ0] the graph of the function F(ρω) considered as a function

of ω,|ω| = 1, is contained in the δ-neighborhood of the graph of the function H(ω) and

F(0) ⊂ H(0)δ.

The next theorem essentially reformulates a result from [2] (Theorem 7, Chapter 3,

§15 3) in terms that are convenient for our purposes.

Theorem 2. If the inclusion (17) has an asymptotically stable zero solution, then so does
the inclusion (11).

8



Proof. By [2] (Theorem 7, Chapter 3, §15 3), we need to show that there exists

δ(ρ) → 0 (ρ → 0) such that for every fixed ρ ≤ ρ0 we have d0(FS(yS),HS(yS)) ≤ δ(ρ)

for |yS| ≤ ρ. Here the functions HS(yS), FS(yS) are from (17),(11) respectively. First, let

H̃S(yS), F̃S(yS) be the functions defined by (16),(14) with hS(yS) = [0, 1]|S| ≡ {hS | 0 ≤
hs ≤ 1, ∀s ∈ S}, i.e. HS(yS) = coH̃S(yS), FS(yS) = coF̃S(yS).

Following Definition 9, we fix ρ0 and consider for each ρ ∈ (0, ρ0] the Euclidean distance

ρeuc(uS, H̃(ωS)), where uS ∈ F̃S(ρωS), |ωS| = 1. We assume first that ρωS is a discontinuity

point of (14). Let uS ∈ F̃S(ρωS) correspond to some hu
S ∈ [0, 1]|S|, i.e.

uS = FS(hu
S(ρωS), BR)−GS(hu

S(ρωS), BR)(ρωS + θS) = F̃ u
S − G̃u

S(ρωS + θS),

where F̃ u
S , G̃u

S are constants. Then the set H̃S(ωS) contains the point F̃ u
S − G̃u

SθS. There-

fore ρeuc(uS, H̃(ωS)) ≤ | − GSρωS| ≤ Ḡρ|ωS| = Ḡρ, where Ḡ = max
j

Ḡj. Since uS ∈
F̃S(ρωS) is arbitrary, F̃S(ρωS) ⊂ (H̃S(ωS))Ḡρ. Due to the properties of a convex set,

FS = coF̃S ⊂ co((H̃S)Ḡρ) = (HS)Ḡρ. The validity of this embedding for a continuity point

ρωS is straightforward. Thus the graph of the function F(ρω) considered as a function of

ω,|ω| = 1, is contained in the δ-neighborhood of the graph of the function H(ω).

Since FS(0) ≡ HS(0), we put δ(ρ) = Ḡρ → 0 (ρ → 0) and we have that d0(FS(yS),HS(yS)) ≤
δ(ρ) for |yS| ≤ ρ. Thus, by [2] (Theorem 7, Chapter 3, §15 3), the statement of the theorem

holds true. ¤

3.2. The reduction principle in stability analysis of Filippov stationary solutions

In this subsection we prove that stability of the singular component of a Filippov

stationary solution in the narrow sense ensures the stability of the other, i.e. regular

component. This result justifies the reduction principle for the discontinuous systems (9).

This principle (in other terms) appeared in the papers [6, 8, 9] as a main simplification

tool in the stability analysis of gene regulatory networks.

We start with the following ”first approximation” system in a small neighborhood of

the singular domain SD(S,BR)

ẏS = FS(hS(yS), BR)−GS(hS(yS), BR)θS ≡ fS(0, hS(yS)) = f̂S(hS(yS))

ẋR = FR(hS(yS), BR)−GR(hS(yS), BR)xR ≡ fR(xR, hS(yS)).
(18)

Our first objective is to justify the reduction principle for the system (18).

We put two requirements on the system in question, which are formulated in terms of

the singular part of the system (inclusion), i. e. for the differential inclusion

ẏS ∈ cof̂S(ZS) (19)

with the right-hand side obtained via Definition 3

Assumption 1. 0 ∈ cof̂S(ZS) if and only if 0 ∈ f̂S(ZS) and the latter inclusion has
finitely many solutions.

This ensures that the zero solution can only be Filippov stationary solution in the

narrow sense (as we do not consider other types of stationary solutions - see the discussion

at the beginning of Section 3).
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Assumption 2. The inclusion (19) satisfies the assumptions of Theorem 1.

This implies that the zero solution y0
S = 0 of the reduced system is asymptotically

stable.

For the system (18) we consider the corresponding differential inclusion obtained by

Definition 3 (
ẏS

ẋR

)
∈ co

(
f̂S(ZS)

fR(xR,ZS)

)
(20)

The following theorem provides the reduction principle for the discontinuous system

(18) and the corresponding differential inclusion (20).

Theorem 3. Assume that (y0
S, x0

R), where y0
S = 0 is a Filippov stationary solution in the

narrow sense of the inclusion (20). If Assumptions 1 and 2 are fulfilled, then (y0
S, x0

R) is
asymptotically stable.

Proof. By Assumption 2, y0
S(t) = 0 is an asymptotically stable solution of (19). According

to Remark 1 any solution of (19) become zero after a finite time T , i. e. yS(t) = 0 = y0
S(t)

for all t ≥ T . Let us fix any such a solution. The inclusion (20) becomes then

(
0

ẋR

)
∈ co

(
f̂S(ZS)

fR(xR,ZS)

)
for t > T, (21)

or in other words, 0 =
∑

l∈L(t) µl(t)f̂S(Z l
S(t)) and ẋR(t) =

∑
l∈L(t) µl(t)fR(xR,Zl

S(t)) where

for any t > T the set of natural numbers L(t) is finite, µl(t) ≥ 0,
∑

l∈L(t) µl(t) = 1,

0 ≤ Z l
S(t) ≤ 1.

By Assumption 1 the inclusions 0 ∈ cof̂S(ZS) and 0 ∈ f̂S(ZS) are equivalent. In

terms of µl(t) and Z l
S(t) this means that there exist a finite number of values Z

(k)
S ∈ [0, 1],

k = 0, 1, ..., N, and a finite partition I(k), k = 0, 1, ..., N, of the interval [T,∞) such that

(after a renumbering if necessary) µk(t) = 1 and Zk
S(t) = Z

(k)
S as soon as t ∈ I(k).

In other words,

FS(Z
(k)
S , BR)−GS(Z

(k)
S , BR)θS = 0,

ẋR = FS(Z
(k)
S , BR)−GS(Z

(k)
S , BR)xR,

if t ∈ I(k). (22)

Next we use the piecewise continuous substitution

yR(t) = xR(t)− x
(k)
R , if t ∈ I(k), t ≥ t,

where x
(k)
R is such that

FR(Z
(k)
S , BR)−GR(Z

(k)
S , BR)x

(k)
R = 0, if t ∈ I(k).

Then the second equation in (22) can be rewritten as

ẏR = FR(Z
(k)
S , BR)−GR(Z

(k)
S , BR)x

(k)
R −GR(Z

(k)
S , BR)yR = −GR(Z

(k)
S , BR)yR

As GR ≥ m > 0, by GronwallBellman inequality,

|yR(t)| ≤ Ce−mt, t ≥ T.
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In other words,

|xR(t)− x
(k)
R | ≤ Ce−mt, t ∈ I(k), k = 1, ..., N. (23)

This holds in particular for the stationary solution (y0
S, x0

R), so that

|x0
R − x

(k)
R | ≤ Ce−mt, t ∈ I(k), k = 1, ..., N. (24)

Using (23) and (24) results in the estimate |xR(t) − x0
R| ≤ 2Ce−mt, t ≥ T, which proves

asymptotic stability of the stationary solution (y0
S, x0

R) to (20). ¤

Combining Theorem 3 with Theorem 9, [2], Chapter 3, §15 yields the reduction prin-

ciple for the main system (8).

Theorem 4. Let P 0 ∈ SD(S,BR) be a Filippov stationary solution in the narrow sense
for the system (8). Under Assumptions 1 and 2 this solution will be locally asymptotically
stable.

3.3. Stability of SSPs in black walls

Here we consider an example, where we apply the proposed above method (based

mainly on Assumption 1 and Assumption 2) to study the stability of a differential inclu-

sions. We consider the case of a black wall.

Example 1. Let us show that any Filippov stationary solution P 0 = (θs, x
0
R) located in

a black wall SD(s, BR) is locally asymptotically stable.

Without loss of generality we may assume that x1 = θ1 for the black wall SD(s,BR).

In a black wall any Filippov stationary point is a Filippov stationary point in the narrow

sense and therefore Assumption 1 is fulfilled.

Following Assumption 2 (and thus Theorem 1) we restrict ourselves to the space of

singular variables only, i.e. the x1 axis.

By introducing a new variable

x1 − θ1 = y1,

we get ”the first approximation” equation for y1

ẏ1 = F1(h1(y1), BR)−G1(h1(y1), BR)θ1,

and the corresponding 0-homogeneous differential inclusion ẏ1 ∈ H1(y1) with the right-

hand side from Definition 3.

The vertex y1 = 0 separates the y1 axis into two regular boxes B1
1 : {y1 < 0} and

B1
2 : {y1 > 0}. Consider H(y) = H1

1 for y ∈ B1
1, i.e. h(y1) = 0,

H1
1 = F1(0, B)−G1(0, B)θ1.

and H(y) = H1
2 for y ∈ B1

2, i.e. h(y1) = 1,

H1
2 = F1(1, B)−G1(1, B)θ1.
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Since the wall is black, we have the following inequalities

F1(0, B)−G1(0, B)θ1 > 0,

F1(1, B)−G1(1, B)θ1 < 0

indicating that H1
1 /∈ B1

1 and H1
2 /∈ B1

2.

By Theorem 1 and Theorem 4, the SSP (θ1, x
0
R) is asymptotically stable.

¤

4. Algorithm for stability analysis of SSPs based on the Filippov theory

As a practical application to Theorem 4 we propose an algorithm for stability analysis

of SSPs and consider some examples, where we apply the proposed algorithm.

Algorithm

Let P 0 = (θS, x0
R) be a Filippov stationary solution in the narrow sense located in a

singular domain SD(S, BR). Let hR(xR(0)− θR) = BR.

Step 1 Introduce the new variable y ∈ Rl, l = |S|.

xS − θS = yS

to translate the singular coordinates of P 0 to the origin. Write down the following

equations for the singular variables only

ẏS = FS(hS(yS), BR)−GS(hS(yS), BR)θS. (25)

Step 2 List all the regular domains Bl
p, p = 1, ..., 2l and singular m-dimensional domains

SDm
p , m = 1, ..., l− 1, p = 1, ..., pm adjacent to the point yS = 0 in Rl. For example,

Bl
p0

: {y1 > 0, y2 < 0, ..., yl > 0}, SD2
p0

: {y1 = 0, y2 = 0, y3 > 0, ..., yl < 0}.

Step 3 For each of the regular domains Bl
p, p = 1, ..., 2l, calculate H l

p = FS(Bp, BR) −
GS(Bp, BR)θS, where Bp is a Boolean vector of length |S| = l associated to the

regular domain Bl
p. For example, H l

p0
= FS([10...1], BR)−GS([10...1], BR)θS.

Check the condition H l
p /∈ Bl

p, which simply means to compare with 0 the coordinates

of the vector H l
p. Violation of this condition implies instability of P 0. Otherwise

proceed to the next step.

Step 4 For each of the singular domains SDm
p , m = 1, ..., l − 1, p = 1, ..., pm, consider the

set

Hm
p = co{FS((B)i, BR)−GS((B)i, BR)θS | i = 1, 2, 3, ..., 2l−m},

where (B)i, i = 1, 2, 3, ..., 2l−m, are the Boolean vectors of length |S| = l associated

to all the regular domains in Rl adjacent to SDm
p .

Thus Hm
p = {

2l−m∑
i=1

αi (FS((B)i, BR)−GS((B)i, BR)θS) |
2l−m∑
i=1

αi = 1, 0 ≤ αi ≤ 1}.
12



For each m = 1, ..., l − 1, p = 1, ..., pm check that none of the vectors from the set

Hm
p lie in SDm

p (or in ∂SDm
p ). To do this one will need to solve the following system

of linear equations and inequalities





2l−m∑
i=1

αi (FS((B)i, BR)−GS((B)i, BR)θS) = b, b ∈ SDm
p , (or b ∈ ∂SDm

p )

2l−m∑
i=1

αi = 1,

0 ≤ αi ≤ 1

(26)

with the unknown (α1, ..., α2l−m) and (b1, ..., bl).

If the solution set of (26) is empty, then the SSP P 0 is asymptotically stable. Oth-

erwise it is unstable.

End

4.1. Examples

Example 2. Consider the following example from [7].

ẋ1 = Z1 + Z2 − 2Z1Z2 − γ1x1,

ẋ2 = 1− Z1Z2 − γ2x2.
(27)

0  0.5 1.5 2  
0  

0.5

1.5

2  

x
1

x 2

θ
1

θ
2

Figure 1. Some trajectories of (27) for the steep model with q = 0.01. Para-

meter values: γ1 = 0.6, γ2 = 0.9, θ1 = θ2 = 1.

This model has two black walls SD(1, [1]) (x1 = θ1, x2 > θ2) and SD(2, [1]) (x2 = θ2,

x1 > θ1). The single point x1 = θ1,x2 = θ2 is the singular domain SD(1, 2) of codimension

2. It can be shown that this system possesses two SSPs: (3/2, θ2) and (θ1, θ2). The point

(3/2, θ2) is located in a black wall and is therefore asymptotically stable. Let us investigate

the stability of (θ1, θ2).

We introduce the new variables

x1 − θ1 = y1,

x2 − θ2 = y2,
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and consider the following system

ẏ1 = h1(y1) + h2(y2)− 2h1(y1)h2(y2)− γ1θ1,

ẏ2 = 1− h1(y1)h2(y2)− γ2θ2.

and its corresponding 0-homogeneous differential inclusion ẏ ∈ H(y) with the right-hand

side from Definition 3.

Following the algorithm we consider in the space of new variable y four 2-dimensional

regular boxes B2
1 : {y1 < 0, y2 < 0}, B2

2 : {y1 > 0, y2 < 0}, B2
3 : {y1 < 0, y2 > 0},

B2
4 : {y1 > 0, y2 > 0} and four 1-dimensional singular domains SD1

1 : {y1 = 0, y2 > 0},
SD1

2 : {y2 = 0, y1 > 0}, SD1
3 : {y1 = 0, y2 < 0}, SD1

4 : {y2 = 0, y1 < 0}. Then for the

regular boxes we have H2
1 =

( −0.6

0.1

)
/∈ B2

1, H2
2 =

(
0.4

0.1

)
/∈ B2

2, H2
3 =

(
0.4

0.1

)
/∈ B2

3,

H2
4 =

( −0.6

−0.9

)
/∈ B2

4.

For singular domains, by Definition 3, we have H1
1 = co{

(
0.4− h

0.1− h

)
| h ∈ {0, 1}} =

{α
(

0.4

0.1

)
+ (1 − α)

( −0.6

−0.9

)
, 0 ≤ α ≤ 1} = {H1

1 (α)}. It is easy to check that there

does not exist α, 0 ≤ α ≤ 1, such that H1
1 (α) ∈ SD1

1.

But for H1
2 = co{

(
0.4− h

0.1− h

)
| h ∈ {0, 1}} = {α

(
0.4

0.1

)
+ (1 − α)

( −0.6

−0.9

)
,

0 ≤ α ≤ 1} = {H1
2 (α)} there exists α = 0.9 so that H1

2 (0.9) =

(
0.3

0

)
∈ SD1

2. Then it

follows from Theorem 1 that the SSP (θ1, θ2) is unstable. ¤

Example 3. Consider the system

ẋ1 = 1.65− Z1 + 2Z2 − 2Z1Z2 − γ1x1,

ẋ2 = 2.25 + Z1 − Z2 − Z1Z2 − γ2x2.
(28)
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Figure. Some trajectories of (28) for the steep model with q = 0.01. Parameter

values: γ1 = 1.5, γ2 = 2.3, θ1 = θ2 = 1.

This model has three black walls SD(1, [1]) (x1 = θ1, x2 > θ2), SD(2, [1]) (x2 = θ2,

x1 > θ1), and SD(1, [0])(x1 = θ1, x2 < θ2). The single point P 0 = (θ1, θ2) is actually a
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Filippov stationary point in the narrow sense, i.e. in the sense of Definition 7. Let us

investigate the stability of (θ1, θ2).

We introduce the new variables

x1 − θ1 = y1,

x2 − θ2 = y2

and consider the following system

ẏ1 = 1.65− h1(y1) + 2h2(y2)− 2h1(y1)h2(y2)− γ1θ1,

ẏ2 = 2.25 + h1(y1)− h2(y2)− h1(y1)h2(y2)− γ2θ2.

and its corresponding 0-homogeneous differential inclusion ẏ ∈ H(y) with the right-hand

side from Definition 3.

Following the algorithm we consider in the space of new variable y four 2-dimensional

regular boxes B2
1 : {y1 < 0, y2 < 0}, B2

2 : {y1 > 0, y2 < 0}, B2
3 : {y1 < 0, y2 > 0}, B2

4 :

{y1 > 0, y2 > 0} and four 1-dimensional singular domains SD1
1 : {y1 = 0, y2 > 0}, SD1

2 :

{y2 = 0, y1 > 0}, SD1
3 : {y1 = 0, y2 < 0}, SD1

4 : {y2 = 0, y1 < 0}. Then for the regular

boxes we have H2
1 =

(
0.15

−0.05

)
/∈ B2

1, H2
2 =

( −0.85

0.95

)
/∈ B2

2, H2
3 =

(
2.15

−1.05

)
/∈ B2

3,

H2
4 =

( −0.85

−1.05

)
/∈ B2

4.

For singular domains, by Definition 3, we have H1
1 = co{

(
0.15− 3h

−1.05

)
| h ∈

{0, 1}} = {α
(

0.15

−1.05

)
+ (1 − α)

( −2.85

−1.05

)
, 0 ≤ α ≤ 1} = {

(
3α− 2.85

−1.05

)
, 0 ≤

α ≤ 1} = {H1
1 (α)}. It is easy to check that there does not exist α, 0 ≤ α ≤ 1, such

that H1
1 (α) ∈ SD1

1. For example using the angle between vectors and the inner product:
(H1

1 (α),d1
1)

|H1
1 (α)||d1

1|
6= 1, where d1

1 = (0, d), d > 0.

H1
2 = co{

( −0.85− h

0.95− 2h

)
| h ∈ {0, 1}} = {α

( −0.85

0.95

)
+ (1 − α)

( −1.85

−1.05

)
, 0 ≤

α ≤ 1} = {H1
2 (α)}. It is easy to check that there does not exist α, 0 ≤ α ≤ 1, such that

H1
2 (α) ∈ SD1

2.

H1
3 = co{

(
0.15− h

−0.05 + h

)
| h ∈ {0, 1}} = {α

(
0.15

−0.05

)
+ (1 − α)

( −0.85

0.95

)
, 0 ≤

α ≤ 1} = {H1
3 (α)}. It is easy to check that there does not exist α, 0 ≤ α ≤ 1, such that

H1
3 (α) ∈ SD1

3.

H1
4 = co{

(
0.15 + 2h

−0.05− h

)
| h ∈ {0, 1}} = {α

(
0.15

−0.05

)
+ (1 − α)

(
2.15

−1.05

)
, 0 ≤

α ≤ 1} = {H1
4 (α)}. It is easy to check that there does not exist α, 0 ≤ α ≤ 1, such that

H1
4 (α) ∈ SD1

4.

Thus, the SSP (θ1, θ2) is locally asymptotically stable. ¤

Conclusions

The main results of the paper provide a stability analysis for differential systems with

discontinuous right-hand sides arising from gene regulatory networks. Putting emphasis
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on the Filippov approach and focusing on singular domains mainly, we have developed

an algorithm enabling to investigate the stability of any given stationary solution which

is located in the discontinuity set of the system. The algorithm is based on the reduction

principle which is justified in the paper and which relies upon the analysis of only those

variables which are close to their respective threshold values (”singular variables”). The

algorithm of checking local asymptotic stability consists in determining the signs of cer-

tain parameters of the given equations, rather than in calculating the eigenvalues of the

Jacobian. Therefore, the suggested algorithm seems to be numerically advantageous. We

restricted ourselves to the case of Filippov stationary solutions in the narrow sense (that

are defined without convexifying the right-hand side of the corresponding inclusion), be-

cause only these stationary solutions can be obtained as limits of the stationary solutions

to the smooth perturbations of the given discontinuous system.
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Appendix: Stationary solutions revisited

In the Appendix we want to discuss connections of the concept of the Filippov sta-

tionary solutions in the narrow sense with two other definitions of stationary solutions to

the PWA systems.

The definition below gives a formal description of a singular stationary point (SSP) in

the sense of E. Plahte et al. [8].

Definition 10. A point P 0 ∈ SD(θS, BR) is called a singular stationary point (SSP) for

system (7) Zs = Σ(xs, θs, 0)(s ∈ S) if for any set of logoid functions Σ(xs, θs, q), s ∈ S,

there exists a number ε > 0 and points P q, where q ∈ (0, ε), such that

• The point P q is a stationary point for system (7) with Zs = Σ(xs, θs, q) (s ∈ S);

• P q → P 0 as q → +0 (s ∈ S).

Due to Theorem 4 in [7], this is the case if det(∂fS/∂ZS) 6= 0 and 0 < Z∗
S < 1, where

Z∗
S is the solution of the stationary conditions

0 = FS(Z∗
S, BR)−GS(Z∗

S, BR)θS,

0 = FR(Z∗
S, BR)−GR(Z∗

S, BR)x0
R.

(29)

Theorem 5. Any SSP of Eq. (7) obtained by method of E. Plahte et al. [8, 7] is a Filippov
stationary point in the narrow sense.

Proof. Since x(t) = xq is the solution of ẋ = F (Z) − G(Z)xq = 0 with a logoid Zi =

Σ(xi, θi, q),q > 0, this solution converges uniformly on any interval to a certain solution of

the inclusion ẋ ∈ F(x). On the other hand xq → x0 as q → 0 and hence x0 is the solution

of ẋ ∈ F(x) on any interval and therefore for all x. Since x0 is a constant, 0 ∈ F(x0) and

x0 is a Filippov stationary point of Eq. (7). ¤

The converse in general probably doesn’t hold but still holds for black walls.

Theorem 6. Any Filippov stationary point of Eq. (7) located on a black wall is a SSP in
the sense of E. Plahte et al. [7] as well.

Proof. Let x0 ∈ SD(s, BR), s ∈ S, be a Filippov stationary point. Without loss of

generality we may assume that x0 ∈ SD(1, BR), and let SD(1, BR) be a black wall. As

functions are affine with respect to Z1 the Filippov solution is unique in the black wall, as

there exists only one Z∗
1 ∈ [0, 1] such that for the Filippov stationary solution x0 we have

0 = F1(Z
∗
1 , BR)−G1(Z

∗
1 , BR)θ1,

0 = FR(Z∗
1 , BR)−GR(Z∗

1 , BR)x0
R.

(30)

Let
∂F1

∂Z1

− ∂G1

∂Z1

θ1 6= 0. (31)
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This equality holds for a black wall. Then, the implicit function theorem used in [7], gives

xq (for sufficiently small q) such that

0 = F1(Z1, BR)−G1(Z1, BR)xq
1,

0 = FR(Z1, BR)−GR(Z1, BR)xq
R

(32)

and xq → x0 as q → 0. We have obtained a stationary solution in the sense of E. Plahte

et al. ¤
Let us now consider an example showing that not every Filippov stationary solution is

a solution in the narrow sense, i.e. that the inclusion 0 ∈ F(x)\F1(x) may have constant

solutions x = x∗.

Example 4. Let
ẋ1 = 1.65− Z1 + 2Z2 − 2Z1Z2 − γ1x1,

ẋ2 = 2.25 + Z1 − Z2 − Z1Z2 − γ2x2.
(33)

The parameter values are: γ1 = 1.5, γ2 = 2.5, θ1 = θ2 = 1.

It is straightforward to check that 0 ∈ F(1, 1), where

F(x) = co{P 00(x), P 01(x), P 10(x), P 11(x)}.

Here P 00(x) =

(
1.65− 1.5x1

2.25− 2.5x2

)
, P 01(x) =

(
3.65− 1.5x1

1.25− 2.5x2

)
, P 10(x) =

(
0.65− 1.5x1

3.25− 2.5x2

)
,

P 11(x) =

(
0.65− 1.5x1

1.25− 2.5x2

)
.

On the other hand, the stationary point (1, 1) is not the stationary point in the narrow

sense (and hence not SSP in the sense of E. Plahte et al., as the system

1.65− Z1 + 2Z2 − 2Z1Z2 − 1.5 = 0,

2.25 + Z1 − Z2 − Z1Z2 − 2.5 = 0
(34)

does not have real solutions.

The question then arises as to how to interpret Filippov stationary solutions that are

not solutions in the narrow sense and therefore not limits of proper stationary solutions of

approximating equations. Below we suggest that such solutions may come from invariant

measures of the solution flows of approximating equations. If these measures shrink into

the singleton in the limit, then this limit must belong to the convex hull F of the set F1,

but not necessarily to F1 itself. ¤

Theorem 7. Let Aq, q > 0, be the the sequence of compact sets that converges in the
Hausdorff metric to the point x∗ as q → 0. Suppose that the set Aq remains invariant with
respect to the solution flow U(t, x, q), t ≥ 0, x ∈ X, of the system

ẋi = fi(xi, q) = Fi(Σ(xi, θi, q))−Gi(Σ(xi, θi, q))xi, i = 1, ..., n,

with the logoid functions Σ, i.e.

U(t, Aq, q) ⊂ Aq, ∀t ≥ 0, 0 < q < q0.

Then x∗ is a Filippov stationary solution to the differential inclusion (5).
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Proof.

By the Krylov-Bogolubov theorem (see e.g. [5]), the solution flow U(t, x, q) has an

invariant probability measure µq and µq(Aq) = 1, (0 < q < q0). Due to the convergence

of Aq, we can assume that Aq ⊂ A, 0 < q < q0, A is a compact set.

By the definition of a solution flow, we have that

U(t, x, q)− U(0, x, q) =

t∫

0

f(U(s, x, q), q)ds.

Integrating this equality with respect to µq, yields, due to U(0, x, q) = x, the following

equality:

∫

X

U(t, x, q)µq(dx)−
∫

X

xµq(dx) =

t∫

0

ds

∫

X

f(U(s, x, q), q)µq(dx). (35)

By the definition of an invariant measure we get

∫

X

g(x)µq(dx) =

∫

X

g(U(t, x, q))µq(dx)

for any continuous function g.

Hence choosing g(x) = x in the latter equality gives the left hand side of (35) which

is equal to 0. Therefore if we change, by Fubini’s theorem, the order of the integration in

(35), then we obtain, due to continuity of f(x, q) and the invariance of the measure µq

with respect to U(t, x, q), that

t

∫

X

f(x, q)µq(dx) = 0, 0 < q < q0.

Thus, ∫

X

f(x, q)µq(dx) = 0, 0 < q < q0. (36)

Since the function f(x, q) becomes discontinuous for q = 0, we cannot interchange the

limit and the integration in (36). Therefore we will act in the the following way. For any

ε > 0 we choose qε such that for 0 < q < qε we have f(x, q) ∈ F ε
1(x) ∀x ∈ A, where

F ε
1(x) is the ε-neighborhood of F1.

Hence

0 ∈
∫

X

F ε
1(x)µq(dx).

Moreover, since supp µq converges to x∗, we may assume without loss of generality (by

taking a smaller qε if required) that supp µq ∈ B[x∗, ε] (B[x∗, ε] is the closed ε-vicinity of

x∗) for 0 < q < qε. Therefore

0 ∈
∫

B[x∗,ε]

F ε
1 (x)µq(dx).
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Due to the mean value theorem for multivalued functions (see [2]), there exists xε ∈
B[x∗, ε] such that

0 ∈ coF ε
1 (xε).

As coF ε
1 (xε) = F ε

1(xε) (see [2]), we obtain that

0 ∈ F ε
2 (xε).

Since ε > 0 is arbitrarily small and F1 is upper semicontinuous (see [2]), we conclude

that 0 ∈ F2(x
∗). This implies that x∗ is a Filippov stationary solution to the differential

inclusion (5). The theorem is proved. Let us only remark that it is the mean value

theorem for multivalued functions that yields the convex hull of F1, i.e F , and not F1

itself. ¤
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a b s t r a c t

Recent trends suggest that future biotechnology will increasingly rely on mathematical models of the bio-
logical systems under investigation. In particular, metabolic engineering will make wider use of metabolic
pathway models in stoichiometric or fully kinetic format. A significant obstacle to the use of pathway
models is the identification of suitable process descriptions and their parameters. We recently showed
that, at least under favorable conditions, Dynamic Flux Estimation (DFE) permits the numerical character-
ization of fluxes from sets of metabolic time series data. However, DFE does not prescribe how to convert
these numerical results into functional representations. In some cases, Michaelis–Menten rate laws or
canonical formats are well suited, in which case the estimation of parameter values is easy. However, in
other cases, appropriate functional forms are not evident, and exhaustive searches among all possible
candidate models are not feasible. We show here how piecewise power-law functions of one or more vari-
ables offer an effective default solution for the almost unbiased representation of uni- and multivariate
time series data. The results of an automated algorithm for their determination are piecewise power-law
fits, whose accuracy is only limited by the available data. The individual power-law pieces may lead to
discontinuities at break points or boundaries between sub-domains. In many practical applications, these
boundary gaps do not cause problems. Potential smoothing techniques, based on differential inclusions
and Filippov’s theory, are discussed in Appendix A.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Enormous advances in molecular biology, engineering and
computer science have propelled the computational analysis of
biological systems into the center of systems biology, and it is
becoming feasible to use systems biological methods like pathway
analysis in biotechnology and, especially, metabolic engineering.
The main challenge for practical applications of computational
systems biology is currently the process of making the compu-
tational models fit the dynamic responses of biological systems.
This challenge consists of two related sub-tasks. The first is the
determination of suitable functions that are capable of describing
the observed dynamics with sufficient accuracy, and the second is
the identification of parameter values that render a good numer-
ical fit between observed and modeled responses. Although these
two sub-tasks are clearly dependent on each other, they are differ-
ent in character. While the second task of parameter identification

∗ Corresponding author. Tel.: +1 404 385 5057; fax: +1 404 894 4243.
E-mail addresses: anna.machina@umb.no (A. Machina), arkadi@umb.no

(A. Ponosov), eberhard.voit@bme.gatech.edu, voiteo@musc.edu (E.O. Voit).
1 Tel.: +1 404 385 5057; fax: +1 404 894 4243.
2 Tel.: +47 64 96 52 97; fax: +47 64 96 51 01.

is primarily a technical issue, which may be difficult, but which
one might expect to be solvable with brute force, if not with ele-
gance, the task of determining appropriate functions exceeds the
realm of pure computation and requires insight into the biologi-
cal phenomenon under investigation, numerous assumptions and
simplifications, which cannot always be validated, and some degree
of ingenuity in finding or inventing functional forms that fit the
need. The reason that this sub-task is complicated is that nature
has not provided us with guidelines for selecting these functions,
and that it is usually not feasible to reduce biological processes to
elemental physical processes for which mathematical descriptions
are available (Voit, 2008).

Many models of biochemical systems in the past used functional
forms that were chosen from a default repertoire of candidates,
which included Michaelis–Menten and Hill rate laws, their general-
izations toward several substrates, inhibitors and other modulators
(Schulz, 1994), or so-called canonical representations like power-
law (Voit, 1991) and lin-log functions (Heijnen, 2005). However, it
is becoming increasingly evident that the standard rate functions
are not always applicable and that they, like canonical represen-
tations, are simply too inaccurate for reliable extrapolations of the
model to new experimental conditions.

In an attempt to respond to these challenges, we recently pro-
posed Dynamic Flux Estimation as a useful tool for estimating

0168-1656/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jbiotec.2009.12.016
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metabolic pathway systems (Goel et al., 2008). This method con-
sists of two phases, of which the first is entirely model free, while
the second requires the choice of a mathematical representation
of all involved fluxes. More specifically, the first phase consists of
solving a linear system of fluxes in such a manner that the change
in each variable pool at each time point is the numerical result of
fluxes entering and exiting the pool. Under ideal conditions, this
solution can be obtained with straightforward methods of linear
algebra; in other cases, additional biological information, comple-
menting the observed metabolic time series, is needed (Voit et al.,
2009). In either case, the solution of the first phase of DFE consists
of a set of points characterizing the dynamic profile of each flux
over the observed time interval. This solution allows inspection
of each flux either plotted against time or against its contributing
metabolites and modulators. However, since the representation is
not functional, it does not allow simulations of new scenarios or
extrapolations to untested conditions.

The key goal of the second phase is the conversion of these
numerical representations into functional forms, which subse-
quently permit simulations, extrapolations, and other manipula-
tions and analyses with the model. If the numerical representation
of a flux exhibits a simple trend, a function like a Michaelis–Menten
or Hill rate law, or even a simple power-law representation, may
serve as an adequate model. Indeed, the arsenal of traditional
biochemical process descriptions is essentially unlimited (Schulz,
1994), yet it may still be insufficient. For instance, Peskov et al.
(2008) recently proposed a representation of the phosphofructo-
kinase reaction in Escherichia coli that by far exceeds the complexity
of any traditional rate laws. In cases where the typical candidates
of biochemistry fail, there is no guidance as to what other func-
tional forms might yield satisfactory flux fits. Without an evident
functional format, one might try to exhaust a set of more complex
candidate functions, but it is clear that it is logistically difficult and
computationally very expensive to execute such a search.

As an alternative with minimal bias, we propose here the use
of univariate or multivariate piecewise power-law functions. It is
known that such functions with sufficiently many pieces are capa-
ble of modeling unknown data trends with arbitrary accuracy. It
is also known that even single power-law functions are often rea-
sonable descriptions of biological processes in vivo, in most cases
outperforming linear and other simple functions. Thus, the search
for a moderately small number of pieces, each described with a
power-law function, appears to be quite natural. One might wonder
whether this inference of piecewise representations really qualifies
as model identification. Two arguments seem to provide affirma-
tive answers. First, if the piecewise representation is sufficiently
accurate, it may serve as an extrapolation tool that is likely much
better than a single-pieced representation. Furthermore, once suit-
able pieces have been identified, it might at least in principle be
possible to reverse-engineer a single function that provides a col-
lective, smooth representation of all individual pieces and, thus, the
data describing the process.

If the numerical flux representation depends on only one vari-
able, the determination of suitable breakpoints and fitting intervals
may be accomplished by inspection. However, this is no longer fea-
sible if the flux depends on multiple variables. In the following we
describe an algorithm, adapted from a method for piecewise lin-
ear systems analysis, that automatically dissects the flux-variable
space into suitable segments within which the flux is represented
with a product of power-law functions. The algorithm works well
for fluxes that depend on a single variable or on a larger number
of variables. It allows the specification of the number of desired
segments or iteratively increases this number until an acceptable
residual error is reached. The resulting piecewise representation is
a direct generalization of models within the widely used modeling
framework of Biochemical Systems Theory (Savageau, 1976; Voit,

2000) and introduces minimal bias due to the choice of functional
forms.

2. Problem statement

We consider a system of the form

ẋi = V+
i

(x1, x2, . . . , xn+m) − V−
i

(x1, x2, . . . , xn+m), (1)

where index i (i = 1, . . ., n) refers to dependent variables, while
higher indices (n + 1, . . ., n + m) refer to independent variables. The
non-negative influx and efflux functions V+

i
and V−

i
may possibly

consist of sums of other functions describing different contribu-
tions to the production or degradation of xi.

Once the functions V+
i

and V−
i

are specified, simulations with the
model in Eq. (1) are easily performed, and many methods are avail-
able for mathematical analyses of features such as local stability
or parameter sensitivities at the system’s steady states. However,
before such analyses are feasible, it is necessary to specify the func-
tions in the model. As discussed in Section 1, this specification
consists of two parts, namely the determination of the mathemat-
ical structure of the functions and the identification of suitable
parameter values.

It is by now widely recognized that the estimation of parameter
values from time series data is much simplified if the data are first
smoothed, because smoothing permits the computation of slopes
at any desired number of points along the time trajectory of any of
the system variables (Vilela et al., 2007). The slopes, in turn, can be
used as a set of substitutes for the differentials on the left-hand side
of each differential equation at k time points (Si(tk) ≈ ẋi(tk)) (Voit
and Savageau, 1982; Varah, 1982). This procedure has two signifi-
cant advantages. First, the differential equations no longer have to
be integrated numerically, which usually requires substantial com-
putational effort, often consuming between 95% and close to 100%
of the entire estimation time (Voit and Almeida, 2004). Second,
the slope substitution in effect decouples the system of differen-
tial equations and permits parameter estimation one equation at
a time, thus facilitating simpler sequential or parallel execution.
Many applications of these methods have been analyzed in the
fields of genomics and metabolic pathway analysis (Chou and Voit,
2009). The latter is particularly well suited because pathways not
only have a well-defined connectivity but also entail conservation
of mass at nodes and within the entire system. Most comments in
the following therefore refer to metabolic pathway systems, even
though other biological systems are not categorically excluded.

While the slope substitution and decoupling method has found
plenty of applicability (Chou and Voit, 2009) and was shown to
be statistically sound (Brunel, 2008), it still requires in most cases
the estimation of parameters in sets of nonlinear (algebraic) equa-
tions. This estimation is not always trivial. Indeed it is common
that evolutionary or regression algorithms are unable to find the
global optimum within a reasonable time, while global estimation
methods, such as branch-and-bound methods, are computationally
expensive and sometimes difficult to implement (Guillen-Gosalbez
and Sorribas, 2009; Polisetty et al., 2006). A second common issue
is that entire ensembles of solutions may model the data with
similar residual errors, thus causing model identification problems
(Gutenkunst et al., 2007a,b; Raue et al., 2009). These ensembles
may form more or less elliptical regions whose center is the optimal
solution, but it is also possible that distinctly different solution sets
are indistinguishable with respect to the residual error. Finally, a
less-recognized issue is the compensation of errors among different
terms within an equation, among sets of equations, or even within a
single term (Raue et al., 2009; Goel, 2009). In the simplest case, two
parameters p and q may always appear in the same combination,
such as p/q, which precludes their individual identification. In other
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cases, conserved quantities are much more complex and difficult to
detect and characterize. Error compensation is a hideous problem:
the fit to one or a few training datasets may be quite good, because a
badly estimated parameter in one term is compensated by an incor-
rect parameter in a different term. However, if the resulting model
is used for extrapolations to new conditions, the compensation may
no longer hold and the model fit becomes unacceptable.

Dynamic Flux Estimation (DFE) addresses this issue of error
compensation (Goel, 2009). DFE begins with a model-free estima-
tion phase, where a linear system of fluxes is constructed at each
time point. These fluxes correspond to the functions affecting the
dynamics of each variable (as in Eq. (1)), but only their values are
taken at one point at a time, and a functional specification is not
required. Thus, at time point tk, equations of the following type are
constructed:

ẋi(tk)=Influx1(tk)+Influx2(tk)+· · ·−Efflux1(tk)−Efflux2(tk)−· · ·. (2)

Under ideal conditions (see Goel et al., 2008), the collection of all
these linear equations for all variables can be solved directly with
method of linear algebra, and the result is a set of points character-
izing the dynamic profiles of all fluxes in the system. In other words,
one obtains model-free representations of all fluxes as discrete time
series. For example, if Efflux2 in Eq. (2) depends on variables x3
and x6 and if we rename this flux for simplicity as V, one obtains
a dataset of the form {x3(tk), x6(tk), V(tk); k = 1, . . ., K}. From this
result, one obtains an impression of V as a function of time and/or
as a function of x3 and x6.

The second phase of DFE is model based. Here, the task is to
assign functional forms to the flux profiles that were obtained in
the first phase. Ideally, such a function should perfectly match
the plot of the flux versus time and also versus its alleged sub-
strates and modulators. If a suitable functional form is known or
can be assumed with some justification, this matching step is eas-
ily accomplished with a nonlinear regression algorithm. However,
if no such form is known, it is unclear how to proceed.

A possible default candidate is a power-law representation of
the form

Vi = �i

n∏

j=1

x fij
j , (3)

where the rate constant � i is non-negative and the kinetic orders fij
are real numbers. These representations were proposed as useful
approximations for metabolic systems 40 years ago and have been
the method of choice in many applications. They form the basis
of a modeling framework that is now widely recognized as Bio-
chemical Systems Theory (BST; Voit, 1991, 2000; Savageau, 1969a,b,
1970, 1976; Torres and Voit, 2002). Power-law representations are
intriguing because they are nonlinear and cover an enormously
rich repertoire of functional responses when they are embedded
in differential equations (Savageau and Voit, 1987), yet individu-
ally permit a simple logarithmic transformation to linearity. It was
clear from the beginning of BST and its roots in Taylor approxi-
mation theory that power-law functions are local representations
that are useful for modeling the dynamics of variables operating
within a moderate range about their normal states, but that they
may incur unacceptable errors if one tries to fit complex functional
shapes that extend over wide ranges of variation in the involved
metabolites and modulators.

Because power-law functions can be seen as linearizations in
logarithmic space, their range of applicability may be extended
in two ways. First, higher order terms could be considered in
order to improve the accuracy of approximation (Cascante et al.,
1991). However, while theoretically reasonable, this strategy leads
to convoluted representations that are rather inconvenient for fur-
ther analyses and modeling purposes. As an alternative, one may

consider piecewise representations. For univariate functions, it is
relatively easy to determine such representations, and they have
been used, for instance, in the analysis of gene circuits (Savageau,
2001, 2002). However, for multivariate functions, the suitable
determination of a piecewise power-law representation becomes
difficult. In the following, we present an algorithm that automati-
cally identifies appropriate piecewise power-law representations.

Thus, our goal is the following: given metabolic time series data
corresponding to an unknown, univariate or multivariate function,
compute a piecewise power-law representation that is suitable in a
sense that it fits the data within an acceptable error while consisting
of the smallest possible number of pieces. The problem of a piece-
wise power-law regression, as posed here, is not straightforward,
because, given a set of samples of a flux V, which is possibly affected
by noise, one has to compute both a partitioning into regions in the
space of metabolites and the behavior of the unknown function V
over each of them. Because of the “mixed nature” of the problem,
classical approximation techniques cannot be directly applied, and
it is instead necessary to develop a specific, customized method.
The principles of such a method were introduced a few years ago
for linear systems, where the regions in the space of variables are
polyhedra and the behavior of the function V in each region is
approximated by a linear expression (Ferrari-Trecate and Muselli,
2002; Ferrari-Trecate et al., 2001a).

3. Methods

3.1. An algorithm for piecewise linear regression

Ferrari-Trecate and Muselli (2002) and Ferrari-Trecate et al.
(2001a) introduced a machine learning method for piecewise linear
regression based on Artificial Neural Networks (ANNs). The solution
of such a machine learning problem involves the reconstruction of
an unknown function W: X → Y from a finite set M of samples of
W (the so-called training set), which is possibly corrupted by noise.
Upon training, the result is tested against a set of data that was not
used during training and is typically called the validation set. ANNs
may be applied to two groups of such problems according to the
range of values assumed by the output Y. For Boolean-like output
(0 or 1; on or off) or for output with a limited number of elements,
one speaks of a classification problem, while output coded by a
continuous variable requires the solution of a regression task. The
identification of an optimal partition that is of interest in (Ferrari-
Trecate and Muselli, 2002; Ferrari-Trecate et al., 2001a), as well
as here, lies right at the border between classification and regres-
sion, because the input space X has to be subdivided into a small
number of disjoint regions and the behavior of the unknown, con-
tinuous function W over each of these regions has to be generated.
Thus, the method proposed in Ferrari-Trecate and Muselli (2002)
and Ferrari-Trecate et al. (2001a) combines local estimation, clus-
tering in weight space, multi-categorical classification, and linear
regression, which we will substitute by power-law regression. The
original method may be summarized as follows.

Let X be a polyhedron in the n-dimensional space �n+\{0} and
let {Xs}S

s=1 be a polyhedral partition of X, i.e., Xi ∩ Xj = Ø for every i,

j = 1, . . ., S and
⋃S

i=1Xi = X . The target of piecewise linear regression
is to reconstruct an unknown function f: X → �+ assuming linear
behavior in each region Xs:

f (x) = zs = ws0 +
n∑

j=1

wsjxj, (4)

when only a training set M containing m samples (xk, yk), k = 1, . . ., m
is available. The output yk gives an evaluation of f(xk) subject to
noise in xk ∈ X, and the region Xs to which xk belongs is not known in
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Fig. 1. Diagram of a neural network realizing a piecewise linear function (adapted
from Ferrari-Trecate and Muselli, 2002; Ferrari-Trecate et al., 2001a).

advance. Scalar weights ws0, ws1, . . . , wsn, for s = 1, . . ., S, uniquely
characterize the function f, and their estimation is the target of
the piecewise linear regression problem. For notational purposes,
the weights are collected in a vector ws. Since the regions Xs are
polyhedral, they can be defined by a set of ls linear inequalities of
the type:

asj0 +
n∑

k=1

asjkxk ≤ 0. (5)

The scalars asjk, for j = 1, . . ., ls and k = 0, 1, . . ., n, can be col-
lected in a matrix As whose estimation thus becomes the target of
the reconstruction process for every s = 1, . . ., S. Discontinuities are
allowed and indeed are often present at the boundaries between
two regions Xs.

Following (Ferrari-Trecate and Muselli, 2002; Ferrari-Trecate et
al., 2001a), a neural network realizing a piecewise linear function f
of this kind can be modeled as shown in Fig. 1.

As previously noted, the solution of the piecewise linear regres-
sion requires a combination of classification and regression: the
classification aims at finding matrices As to be inserted into the
gate layer of the neural network, whereas the latter provides the
weight vector ws as input to the hidden layer connections (Fig. 1).

Ferrari-Trecate and Muselli (2002) and Ferrari-Trecate et al.
(2001a) solved the problem in four steps that correspond to specific
tasks and are outlined below.

1. Local regression
For every k = 1, . . ., m do the following:
1a. Form the set Ck containing the pair (xk, yk) and the samples
(x, y) ∈ M associated with c − 1 nearest neighbors x to xk.
1b. Perform linear regression to obtain the weight vector vk of
a linear unit fitting the samples in Ck.

2. Clustering
Perform a clustering process in the space �n+1 to subdivide the

set of weight vectors vk into S groups Vs.
3. Classification

Build a new training set M′ containing the m pairs (xk, sk),
where Vsk

is the cluster containing vk. Train a multi-categorical
classification method to produce the matrices As for the regions
Xs.

4. Regression
For every s = 1, . . ., S perform linear regression on the samples

(x, y) ∈ M with x ∈ Xs to obtain the weight vector ws for the sth

unit in the hidden layer.

In the following, we are interested in power-law functions
rather than linear functions and, correspondingly, use either lin-
ear regression in log space or power-law regression. In order to
make the necessary alterations to the linear method as clear as
possible, Table 1 shows, side by side, the steps in the different
procedures.

In broad strokes, the linear and power-law methods are struc-
tured as follows (excluding self-evident log-transformations):

1. Associate to each data point a local linear model (Step 1);
2. Aggregate local models with similar features into clusters (Step

2);
3. Classify data points corresponding to local models in the same

cluster and estimate the regions (Step 3);
4. Estimate the parameter vectors (Step 4).

Each step faces distinct challenges and assumptions, which may
be summarized as follows:

1. Step 1 requires the specification of the number of neighboring
points c, which is needed for each local regression. The bigger the
number c, the bigger is the number of mixed points (i.e., points
providing spurious information about the true model). For this
reason, one should like to keep c as low as possible. At the same
time, one needs to choose c large enough to counteract the effects
of noise on the accuracy of the local models. Thus, the choice of
c is a trade-off.

2. The goal of Step 2 is to determine S clusters. This is accomplished
via clustering algorithms, that require S as an input. In some cases,
the number of desired clusters is given a priori. However, if S is
not known, it may theoretically be estimated from the dataset.
According to Ferrari-Trecate et al. (2003), this can be done by
adopting clustering algorithms where the number of clusters is
not fixed a priori but automatically estimated (Fritzke, 1997).

3. At Step 3 each cluster is expected to collect all local models
with similar features, data points are classified, and sub-model
datasets are built accordingly. The regions {Xs}S

s=1 can be found
by resorting to pattern-recognition algorithms. The main disad-
vantage is that the fastest pattern-recognition algorithms may
leave gaps in the input domain X, when the dimension of X is
greater than one. More precise algorithms that do not leave holes
are available, but they are considerably slower and require more
memory. Specifically, for the identification of a small number
of pieces with a large number of data points, the fast Proximal
Support Vector Classification (PSVC) algorithm is recommended,
and results are obtained within seconds or minutes on a standard
PC. However, if the dimension of the problem is greater than
one, it is not guaranteed that the union of regions will cover
the input domain. To avoid gaps, one may use Multi-category
Robust Linear Programming (MRLP), if access to professional Lin-
ear Programming (LP) and Quadratic Programming (QP) solvers
like CPLEX is available.

4. Conceptually, this is the easiest step. The data points in each
region {Xs}S

s=1 can be used for estimating the parameter vectors of
the linear (or, respectively, power-law) regression. It is apparent
that Xs must contain enough data points to perform both the local
regressions and the estimation of scalar parameters composing a
parameter vector. If a cluster contains few points, it is discarded
and the number of modes is reduced.

3.2. Piecewise Power-Law Regression

Given the general strategy in the previous section and in Table 1,
it is now relatively straightforward to adapt the original linear
method to power-law models. This adaptation begins with a log-
arithmic transformation of the data. In logarithmic coordinates,
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Table 1
Steps toward piecewise linear and piecewise power-law models.

Method Original linear method Piecewise power-law model based
on linear regression

Piecewise power-law model based
on power-law regression

Logarithmic transformation
Local regression (Step 1)
Clustering (Step 2)
Classification (Step 3)

Linear regression (Step 4) Linear regression Inverse-logarithmic
transformation

Inverse-logarithmic
transformation

Power-law regression

Key features Output is a piecewise linear
approximation to a function. The
sum of squared errors is E1.

Output is a piecewise power-law
approximation with the sum of
squared errors E2 < E1 (provided
the unknown function is
nonlinear).

Output is a piecewise power-law
approximation with the sum of
squared errors E3 < E2 < E1
(provided the unknown function is
nonlinear).

the piecewise power-law function becomes piecewise linear, and
we therefore implement the first three steps of local regression,
clustering, and classification of the above algorithm with the log-
transformed data. This transition allows us to obtain a polyhedral
partition of the input domain in logarithmic space. Implementa-
tion of Step 4 (linear regression) yields the weight parameters in
Eq. (4) for the data in logarithmic coordinates. These parameters
are the rate constant and the kinetic orders of the target rep-
resentation in piecewise power-law format. When we apply the
inverse-logarithmic transformation, the polyhedral partition that is
produced by the algorithm for logarithmic data becomes a partition
of the initial input domain that is bounded by nonlinear surfaces
given by

asj0 +
n∑

k=1

asjk ln xk ≤ 0, (6)

where the coefficients asjk (k = 0, 1, . . ., n; s = 1, . . ., S) were obtained
in the classification Step 3 of the algorithm. In this manner we
obtain a piecewise power-law approximation to an unknown
function, where sub-domains of the partition are defined by
Eq. (6).

The procedure has all the advantages of linear regression. How-
ever, because the logarithmic transformation distorts the error
structure of the problem, the least squares error for the resulting
piecewise power-law is in general less accurate than the corre-
sponding error obtained by power-law regression of the original
data. As a partial remedy, it is therefore advantageous to mod-
ify Step 4 of the algorithm by applying a power-law regression
to the original data over each of the S regions in Eq. (6). Even
though the regression is now nonlinear, the increase in compu-
tational difficulty is modest, due to the partition in small pieces.
In other words, the partition of the initial domain localizes the
process of approximation to sub-domains, thereby reducing the
risk of failure of the power-law regression. While this modification
reduces error distortion to some degree, it does not affect Steps
1-3, in which the boundaries of the domains are determined. As
a consequence, the domains are optimal in log space but not nec-
essarily in Cartesian space and, for instance, result in better fits
for small values of metabolite concentrations, which become more
pronounced in the logarithmic representation. Expressed differ-
ently, the method is optimized toward relative, rather than absolute
errors, which in many cases in biology is actually an advantage. We
will see the consequences of this distortion in the first example
of Section 4. The same example demonstrates that the distortion
becomes less significant as the algorithm uses higher numbers of
segments.

The modified algorithm thus proceeds as follows. Let X be the
image of X in the n-dimensional logarithmic space Rn and let {Xs}S

s=1

be a polyhedral partition of X, i.e., Xi ∩ Xj = Ø for every i, j = 1, . . ., S

and
⋃S

i=1Xi = X . Let M be the image of M in logarithmic space Rn.

1. Logarithmic transformation
Transform the data points (xk, yk) (k = 1, . . ., m) logarithmically

to xk = ln xk, yk = ln yk.
2. Local regression

For every k = 1, . . ., m do the following:
2a. Form the set Ck containing the pair (xk, yk) and the samples
(x, y) ∈ M associated with c − 1 nearest neighbors x to xk.
2b. Perform a linear regression to obtain the weight vector vk

of a linear unit fitting the samples in Ck.
3. Clustering

Perform a clustering process in the space Rn+1 to subdivide the
set of weight vectors vk into S groups Vs.

4. Classification
Build a new training set M′ containing the m pairs (xk, sk),

where Vsk
is the cluster containing vk. Train a multi-categorical

classification method to produce the matrices As for the polyhe-
dral regions Xs.

5. Inverse-logarithmic transformation
Exponentially transform the data back to Cartesian space:

xk = exp(xk), yk = exp(yk). Utilize matrices As to obtain the par-
tition of the input domain given by Eq. (6).

6. Regression
For every s = 1, . . ., S perform power-law regression on the sam-

ples (x, y) ∈ M with x ∈ Xs to obtain the rate constant and the
kinetic orders for each sub-domain given by Eq. (6).

3.3. Implementation as MatLab toolbox

The Hybrid Identification Toolbox (HIT) is a free MatLab tool-
box for regression with piecewise linear maps. HIT implements
the clustering-based algorithms described in (Ferrari-Trecate et
al., 2001b, 2003; Ferrari-Trecate and Muselli, 2003; Ferrari-Trecate
and Schinkel, 2003). In addition, HIT provides facilities for plot-
ting and validating the identified models. HIT uses routines of the
MPT toolbox (Kvasnica et al., 2004) for handling polytopes and
solving Linear Programming (LP) and Quadratic Programming (QP)
problems. These toolboxes can be used to implement the first
four steps of the modified algorithm, which produce the parti-
tion of the input domain. As soon as the partitioning is known,
one can perform a power-law regression, using MatLab or other
software.

One of the default assumptions of the algorithm is that the num-
ber of sub-domains S in the target solution is given. However, this
may not always be desirable. For instance, one may want to create
a minimal partition that satisfies a maximally acceptable error. If
S is unknown, it may be estimated from the dataset. According to
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Fig. 2. Two-piece power-law fit to the Hill function in Eq. (7). See text for explana-
tions.

Ferrari-Trecate et al. (2003), this can be done by adopting cluster-
ing algorithms where the number of clusters is not fixed a priori
and is automatically estimated (Fritzke, 1997). As a simple alterna-
tive, one may run the algorithm with increasing values for S until
an acceptable solution is reached. This strategy is quite reasonable
because the algorithm is fairly fast on a standard PC. An example is
presented in Section 4.

Another parameter to be specified is the number c of nearest
neighbors (see 2.a of the modified algorithm). HIT provides facili-
ties for the selection of S and c through cross-validation. For details
about tuning the parameter c the reader is referred to Ferrari-
Trecate et al. (2003).

4. Results

4.1. Piecewise power-law regression of a univariate function

For reasons of easy illustration and visualization, it is benefi-
cial to study the algorithm for modeling a univariate function. It
is known that a single power-law function cannot model S-shaped
dynamics well, and we therefore use as a base function the Hill rate
law

V(x1) = Vmxh
1

Kh
m + xh

1

(7)

with arbitrarily chosen Hill coefficient h = 4, maximal velocity
Vm = 100, and Michaelis constant Km = 50. The artificial dataset con-
sists of 200 points that are uniformly spread out over the interval
[1, 200].

As a first illustration, we specify the number of sub-domains as
S = 2. The result of the algorithm is a good fit for small values of x1
and a less appealing fit for large values (Fig. 2). The breakpoint at
x1 = 47 is obtained directly by the algorithm, and the sum of squared
errors in this case is SSE = 7056. Inspection makes it clear that the
interval of lower values of V is better represented than the inter-
val containing higher values of V. The imbalance is due to the fact
that the partitioning algorithm works on logarithms of the data and
therefore on relative errors, which are more pronounced for small
concentrations x1.

One may proceed in two ways. Either, one may specify S = 3
and redo the analysis. Or, one may retain the fit for the interval
[0, 47] and compute a two-piece approximation of the remain-
ing interval [47, 200]. The result of the latter strategy is a good
representation of high values [117, 200] and a reasonable rep-
resentation of the center interval (Fig. 3). The residual error is
now SSE = 1849, which roughly corresponds to a 70% error reduc-

Fig. 3. An improved fit is obtained if the interval of higher concentrations from the
previous fit (Fig. 2) is automatically split into two. The new breakpoint is x1 = 117
and the residual error is SSE = 1849.

tion. A third application of the algorithm to this center interval
leads to a four-piece representation with a much reduced error of
SSE = 196 (Fig. 4).

An obvious question is the minimally required number of data
points. While the question itself is important and valid, its answer
is surprisingly complicated, because it depends on a number of
factors, including the complexity of the function, the complexity
in relation to the noise in the data, and the desired smoothness.
For instance, the identification of an exponential function with-
out much noise may only require three or four data points, while
a damped oscillation or a more complicated function may need
dozens or more points, even if the noise level is low. Another
factor influencing the minimum number of data points is their spa-
tial distribution. If many data points are clustered within a small
domain, they do not convey much information. Similarly, if many
time courses are available but represent only a small portion of the
possible space of values of the variables, not much is gained from
additional, similar data.

As an example, Fig. 5 shows fits to the Hill function (Eq. (7);
compare with Figs. 2–4) obtained with 50, 20, and 10 error-free
points, respectively.

4.2. Piecewise power-law regression of a multivariate function

As a more complicated example, suppose we had analyzed N
time series with K time points each from a metabolic pathway

Fig. 4. A much improved fit is obtained if the former center interval (Fig. 3) is further
split into two. The new residual error is SSE = 196.
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Fig. 5. Piecewise power-law fits to the Hill function in Eq. (7) when smaller numbers
of data points are available than in Figs. 2–4. Reducing the number of data points to
50 (top panel) does not alter the earlier results much. If the number of data points is
further reduced to 20 (center panel), four pieces can no longer be estimated, and the
best option is a representation with three pieces. Finally, only 2 pieces are possible
for a dataset containing 10 points (bottom panel).

system involving some number of metabolites. The differences
between the N time series may be the result of different initial
conditions, such as different amounts of substrate input. Under
the action of the pathway system, each metabolite exhibits some
time trend, which is affected directly or indirectly by some or all
of the other variables. Suppose we had analyzed the data with
DFE and that one of the processes in the system, V, was known
to depend directly only on two of the system variables, x1 and x2,
which themselves were affected by other variables. The result of
the DFE analysis that is pertinent here would then consist of N data
sets {x1(tk), x2(tk), V(tk)}n (k = 1, . . ., K; n = 1, . . ., N). The true func-
tion V, which we however pretend not to know, is a two-variable

Fig. 6. Different datasets correspond to points that form trend lines lying on the sur-
face given by Eq. (8). The shape and location of the trend lines depend, for instance,
on the initial conditions of the pathway model, in which x1 and x2 are just two of
several metabolites.

Hill function of the form

V(x1, x2) = Vmxh
1xh

2

(Kh
m1 + xh

1)(Kh
m2 + xh

2)
(8)

with the arbitrarily chosen Hill coefficient h = 2 for both com-
ponents, a maximal velocity Vm = 150, and Michaelis constants
Km1 = 600 and Km2 = 0.1.

Each dataset corresponds to a single time course and forms a
dotted trend line on the three-dimensional surface that is given
by Eq. (8) in the space of x1, x2, and V (Fig. 6). In reality this sur-
face is unknown. Even with 13 complete datasets, the observed
data constitute a rather sparse sample of the surface, demonstrat-
ing how difficult the quest for the minimal number of necessary
data is (Fig. 6). In our example, the data are noise free, but noise is
no hindrance to the partitioning and approximation method and is
therefore ignored here for clarity.

The operating domain for the algorithm is specified as
˝ = [min(x1), max(x1)] × [min(x2), max(x2)]. Fitting the data with a
single two-variable power-law over the entire domain ˝ yields an
SSE of 180625 (results not shown). In order to reduce SSE, we exe-
cute the piecewise power-law method for two sub-domains (S = 2).
The resulting representations in log space and Cartesian space are
shown in Figs. 7 and 8. The residual error in this case is SSE = 101761

Fig. 7. Two-domain power-law representation for 13 datasets sampling the space
(x1, x2, V) as trend lines (see text for explanations). The representation shown is in
logarithmic coordinates. See Fig. 8 for a Cartesian representation.
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Fig. 8. Two-domain power-law representation for 13 datasets sampling the space
(x1, x2, V) as trend lines (see text for explanations). In contrast to Fig. 7, the repre-
sentation here is in Cartesian coordinates.

which corresponds to a reduction of about 40% over the single
power-law fit.

As the next illustration we increase the number of sub-domains
to S = 4. This higher resolution reduces SSE to 30976, which corre-
sponds to about 80% of the single-domain fit, but one notes that
the algorithm begins to suffer from an insufficient number of data
points in some of the sub-domains. The results in log space and
Cartesian space are shown in Figs. 9 and 10. One also notes the gaps
in representation. These gaps are caused by MatLab’s fast Prox-
imal Support Vector Classification pattern-recognition algorithm
for reconstructing the regions. If it is necessary to fill these gaps, a
slower method such as Multi-category Robust Linear Programming
(MRLP) must be employed.

It is not easy to judge the quality of approximation from
these global plots. It is therefore useful to show how well indi-
vidual time courses (x1(tk), x2(tk), V(tk)) are represented by the
four-piece power-law representation. Six examples are given in
Fig. 11, where the black symbols represent the original data, while
corresponding piecewise approximations are shown in different
colors. One can see that the approximation quality depends on
the particular dataset as well as the concentrations of x1 and
x2.

Fig. 9. Four-domain power-law representation for 13 datasets sampling the space
(x1, x2, V) as trend lines (blue symbols; see text for explanations). The corresponding
representation in Cartesian space is shown in Fig. 10. The fit with four pieces is
significantly improved over a fit with two pieces (Fig. 7), with the SSE being reduced
from 101761 to 30976.

Fig. 10. Four-domain power-law representation for 13 datasets sampling the space
(x1, x2, V) as trend lines. The corresponding representation in log space is shown in
Fig. 9. The fit with four pieces is much better than the corresponding fit with two
pieces (Fig. 8).

The algorithm is not limited to two dimensions and can,
in principle, be applied to any number of dependent variables.
Such examples are difficult to visualize and require rich datasets.
Nonetheless, if such data are given, the algorithm performs the
classification and piecewise representation quite quickly.

5. Discussion

Until about a decade ago, biomathematical modeling was in
some sense easier, because the comparatively poor quality of
data allowed for substantial latitude. For instance, even rather
crude approximations were often still considered consistent with
the modeled data, due to large experimental error bands. Recent
developments in molecular and high-throughput biology have
changed this situation. It is now feasible to measure comprehensive
metabolic time series, sometimes even in vivo (Neves et al., 2000),
and the resulting data are often so good and plentiful that infe-
rior model descriptions can no longer survive and that it quickly
becomes evident when the deviations between model and data
are systematic, rather than statistic. Furthermore, methods like
Dynamic Flux Estimation (DFE; Goel et al., 2008) reach beyond
standard fitting routines by identifying individual flux represen-
tations and their dependency not only just on time but also on its
contributing metabolites and modulators. While a significant step
forward, this result leads to a new challenge, namely the identifi-
cation of specific functional forms matching the inferred numerical
flux profile. Experience in our lab indicates that these profiles are
often much more complicated than previously assumed and that
simple Michaelis–Menten, Hill, or power-law functions are some-
times, but not always, capable of representing them appropriately
(Goel, 2009). This insight, in turn, suggests the need for either an
intensified, yet targeted search for suitable local representations
of metabolic processes, or an expansion of the simple canonical
approximations that in the past were found to be useful defaults.

In this article we have discussed the second of the two options.
Specifically, we showed how piecewise power-law representa-
tions for unknown functional relationships between fluxes and
metabolites can automatically be constructed with a customized
adaptation of software that had been proposed for piecewise
linear systems analysis (Ferrari-Trecate and Muselli, 2002; Ferrari-
Trecate et al., 2001a). This expansion is directly in line with
Biochemical Systems Theory (Voit, 1991, 2000; Savageau, 1976;
Torres and Voit, 2002) and the next logical step beyond piece-
wise definitions of single power-law functions (e.g., Savageau, 2001,
2002).
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Fig. 11. Comparison of individual time trends in V as a function of its substrates x1 and x2. Depending on the particular dataset, the shape of V is quite different, and so is the
quality of the piecewise power-law approximations. Error-free data are shown as black symbols and pieces of approximation in different colors.

The proposed algorithm resolves the main difficulty in
reconstructing piecewise power-law representations, namely the
simultaneous (integer-valued) subdivision of the variable space
and the optimized (real-valued) estimation of parameters within
each subdivision. Interestingly, this dual task is solved automati-
cally and requires only a few settings of operational parameters,
which however is not a problem. The number of clusters, S, can
either be predetermined, increased sequentially, or estimated with
an adaptive algorithm (Fritzke, 1997), and the number of neigh-
boring points for each local regression (parameter c) can be tuned
through cross-validation with a built-in option of the HIT software
in Matlab (Ferrari-Trecate et al., 2003).

Theoretically, the proposed software permits arbitrarily accu-
rate representations of univariate or multivariate processes. In
reality, however, the method is limited by the number of data
points and their representation of the manifold on which they
lie. Metabolic time series that correspond to trend lines within a
narrow sub-manifold constitute limited samples that may allow
the inference of the sub-manifold, but not of the entire manifold,
which might be of interest for extrapolation studies. Obviously, the
method is also limited by the complexity of the manifold itself. If
this manifold is smooth and monotonic, a few sub-domains with

their own power-law models might be sufficient. By contrast, a
ragged manifold will require many more sub-domains and quickly
lead to situations where the data samples are no longer represen-
tative and sufficiently comprehensive.

By its nature, the proposed method usually leads to represen-
tations with gaps or discontinuities at the boundaries between
sub-domains. These discontinuities come in two types. First, the
illustrative examples identify gaps in the operating domain. These
gaps are entirely due to the choice of a fast pattern-recognition
algorithm by the software and can be circumvented with more
complex and much slower methods. The second type of discon-
tinuity results from the fact that the algorithm does not require
the power-law representations to be continuous on the boundaries
of sub-domains. In most practical applications, these discontinu-
ities will be of no major concern. However, if the discontinuities
are indeed undesirable, inspection of the collection of pieces might
suggest a suitable nonlinear function that could capture the entire
range of variation in variables. If so, this candidate function can
be reverse-engineered and parameterized from the pieces, and the
result is smooth throughout. In this sense, the proposed method is
indeed a means for model identification, even if it is somewhat indi-
rect. As an alternative, Appendix A discusses means of addressing
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this situation based on differential inclusions and Filippov’s theory
(Filippov, 1985).

While issues such as discontinuities should be investigated fur-
ther, the proposed piecewise power-law representation, as it is
described here, offers a welcome and relatively unbiased alterna-
tive to a potentially unlimited search for suitable functions.
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Appendix A.

The proposed piecewise power-law regression method natu-
rally leads to discontinuities between neighboring sub-domains.
In many cases, these jumps may not cause problems: one simply
defines variables within sub-domains and uses one of the boundary
values. Nevertheless, the question arises of whether it is possible
in principle to define continuous solutions. A general answer is not
trivial and requires concepts from Filippov’s theory and differential
inclusions (Filippov, 1985). These concepts are sketched out in the
following.

Let us consider the generic vector equation

ẋ = f (x) ≡ V+(x) − V−(x), (A1)

where x = (x1, x2, . . ., xn) belongs to the open operat-
ing domain ˝ whose closure ¯̋ is contained in the set
�n+ =

{
(x1, x2, . . . , xn)

}
, xj > 0, j = 1, 2, . . . , n. Assume that

after having performed the piecewise power-law regression we
arrived at the following result: the influx (or efflux) function V+(x)

(or V−(x)) is approximated by V+ = �+∏n
j=1x

f +
ij

j
if x ∈ ˝+

i
(or by

V− = �−∏n
j=1x

f −
ij

j
if x ∈ ˝−

i
), where the closures ¯̋ ±

i
of the disjoint

open subsets ˝±
i

⊂ ˝±, i ∈ I± satisfy
⋃

i ∈ I±
¯̋ ±

i
⊃ ˝±. In other

words, the open sets ˝±
i

constitute a partition of the set ˝±, which
does not contain gaps as they appeared in Fig. 9; that is, we assume
that the regression algorithm automatically removes possible gaps
from the partition.

The approximation leads to the following vector equation

ẋ = f̂ (x) ≡ V̂+(x) − V̂−(x), (A2)

where the functions V̂±(x) are defined as follows

V̂±(x) = V±
i

(x) ≡ �±
i

n∏

j=1

x
f ±
ij

j
if x = (x1, x2, . . . , xn) ∈ ˝±

i
, i ∈ I±.

This representation simply formalizes the fact that we merged
different pieces of the functions V̂±(x) that are defined differently
over different operating sub-domains. As any of these pieces is an
output of the automatically performed regression procedure, the
functions V̂±(x) may be discontinuous on the borders of the oper-
ating sub-domains, i.e., on the sets ˝±\⋃i ∈ I± ˝±

i
, respectively. One

also notes that the regression does not guarantee that the parti-
tions ˝±

i
, i ∈ I±, coincide. This implies that the discontinuity set of

the function f̂ (x) in (A2) may be as big as the union of the respec-
tive discontinuity sets of the functions V̂±(x). Hence the solutions
of the vector equation (A2) are only well defined in any of the open
subsets ˝+

i
∩ ˝−

k
provided that this subset is non-empty. More pre-

cisely, we are able to define mathematically and find (theoretically
or numerically) a piece xij(t) of the entire solution of the vector
equation (A2) for time points t, where xik(t) ∈ ˝+

i
∩ ˝−

k
. In this case,

the solution satisfies the equation having the following power-law
representation:

ẋ = �+
i

n∏

j=1

x
f +
ij

j
− �−

k

n∏

j=1

x
f −
kj

j
. (A3)

This representation is valid only for separate pieces of the entire
trajectory, namely for those satisfying xik(t) ∈ ˝+

i
∩ ˝−

k
.

Now the natural question arises of whether and how it is
possible to join these pieces. The resulting trajectory should be con-
tinuous, being an approximation to the continuous solution x(t) of
the vector equation (A1). But unlike x(t), this approximation may be
non-smooth outside the subsets ˝+

i
∩ ˝−

k
, as the right-hand side

of the approximating vector equation (A2) is discontinuous there.
An answer to the question of how to “glue together” the differ-
ent pieces is not always trivial, even if we sacrifice the property of
smoothness. In fact, it requires a more thorough treatment than we
presented before.

We observe first that the solution to (A3) is not unique, because
it still requires an initial value and an initial time. Assume that we
know how to find any of these solutions and that we are able to
check for which values of t the solutions belong to the sub-domain
˝+

i
∩ ˝−

k
. We know as well that joining the pieces of the solution

should produce a continuous function. Let us first consider the case
where this problem can be easily solved. Assume that we have two
adjacent sub-domains G1 = ˝+

i1 ∩ ˝−
k1 and G2 = ˝+

i2 ∩ ˝−
k2 having

� as the common piece of the boundary. Assume further that the
piece of the solution which belongs to G1 hits � at some point �
at some time point t0. In this case we may try to define a natural
extension of the solution by solving the corresponding vector equa-
tion (A3) in G2 under the additional initial value condition x(t0) = �.
If the resulting solution proceeds into the sub-domain G2, then our
problem is solved, at least as long as the solution belongs to G2 for
t > t0. By definition, this solution is continuous in both G1 and G2,
but its derivative may have a jump at t = t0. This kind of solutions
is well known in the theory of switching systems. Sometimes one
calls the set � the transparent piece of the boundary, because the
solution just travels through � like a ray of light.

However, this is not the only scenario. Assume, for instance, that
the solution to the corresponding Eq. (A3) satisfying the initial con-
dition x(t0)= � does not belong to G2 for t > t0. In other words, the
solutions of the respective equations in the sub-domains G1 and
G2 approach � ∈ � from both sides, which means that the point �
is attractive. From the mathematical point of view both solutions
stop at �, but we know that this cannot be true, as no solution of
the original vector equation (A1) can stop. Again, from the the-
ory of switching systems it is known that such � gives rise to
so-called “sliding motions” along the piece � , which in this case
is called “black.” This situation is generic in a sense that it cannot
be destroyed by small, even smooth, perturbations. In our setting
such a situation would mean that the solutions cannot simply be
joined at �. To obtain a proper solution we need to trace the slid-
ing motion along � which however cannot be constructed directly
from the representation (A3). The solution may still leave � after
some time, entering G2 at some point �1 at time t1, so that we will
be able to calculate it as the solution of the corresponding Eq. (A3)
subject to the initial condition x(t1) = �1(t > t1) and provided that
we know how to calculate t1 and �1. The latter is only possible if
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we know exactly the behavior of the solution along � , which is
a non-trivial problem in its own. Thus, the main disadvantage of
the piecewise power-law regression method lies in the properties
of the approximating solutions in the vicinity of the boundaries
between the operating sub-domains. This disadvantage balances
the considerable appeal of this method, namely that the power-
law representation (A3) is often very efficient and fits biological
data well.

The question therefore arises as to how to construct approxi-
mating solutions in the discontinuity set of vector equation (A2). A
natural way to do this consists of using smooth approximations of
Eq. (A2), which replace the right-hand side f̂ (x) with a continuous
approximation. However, such a replacement makes it impossible
to exploit the representation in (A3) and thus removes the advan-
tage of using the power-law formalism. In addition, one is left with
very steep nonlinearities which are often difficult to handle.

An alternative approach goes back to Filippov’s theory and is
based upon differential inclusions, i.e., differential equations with
multi-valued right-hand sides. This approach enables us to define
continuous trajectories of the approximating solutions without sac-
rificing the local power-law representations. The price we have to
pay is non-uniqueness of the solutions themselves. The following
offers a brief explanation for this phenomenon, based on ideas from
Chapter 2 of Filippov’s monograph (Filippov, 1985).

Assume that a point x ∈ ˝ is a limit point for the sub-domains
Gm = ˝+

im
∩ ˝−

km
(m = 1, 2, . . ., M), but not for any other sub-domain

G = ˝+
i

∩ ˝−
k

, i.e., x ∈ Ḡm (m = 1, 2, . . ., M), but x /∈ Ḡ for any other
sub-domain. Inside each Gm the vector equation (A2) can be repre-
sented as in (A3):

ẋ = f (x, m) ≡ �+
im

n∏

j=1

x
f +
ijm

j
− �−

km

n∏

j=1

x
f −
kjm

j
. (A4)

Let F(x) be the least convex subset of �n containing all vectors
f(x, m) (m = 1, 2, . . ., M), i.e., F(x) = co{f (x, m)|m = 1, 2, . . . , M}, and
let us consider the following differential inclusion:

ẋ ∈ F(x) (A5)

in the operating domain ˝. A solution to the inclusion (A5) on an
interval [a, b] is an absolutely continuous function x(t), t ∈ [a, b]
which satisfies ẋ(t) ∈ F(x(t)) almost everywhere on [a, b].

According to Filippov’s theory, the initial value problem
x(t0) = x0 has a solution for some t > t0 provided that x0 ∈ ˝. The
solution either exists for all t > t0, or it blows up at some instant t1:
x(t) → ∞ as t → t1. However, this solution is not unique in general.

If x belongs to some sub-domain, i.e., if x ∈ ˝+
i

∩ ˝−
k

, then

by definition F(x) = �+
i

∏n
j=1x

f +
ij

j
− �−

k

∏n
j=1x

f −
kj

j
and we obtain the

power-law representation (A3). This means that inside any ˝+
i

∩
˝−

k
the solutions of (A5) coincide with the solutions of (A3). But

the inclusion (A5) gives us much more information about the solu-
tions: it states how to join the separate pieces without losing
control over continuity. Thus, any solution of the inclusion (A5)
may be viewed as a continuous approximation of the solution to the
vector equation (A1). Moreover, this approximating solution coin-
cides with the solutions of Eq. (A3) on the respective sub-domains.
Thus, we have solved (at least theoretically) the problem of how
to define solutions of collections of differential equations obtained
with piecewise power-law regression.

The approximations thus defined may be non-unique. To see
why this is so, let us go back to the conventional method of cal-
culating approximating solutions by replacing the right-hand side
f̂ (x) with its smooth approximations f̂˛(x) where the parameter
˛ indicates how good the approximation f̂˛(x) is, i.e., f̂˛(x) → f̂ (x)
as ˛ → 0. The smoothness of f̂˛(x) guarantees the existence of a
unique solution x˛(t) of the initial value problem ẋ = f̂˛(x), x(a) = x0,

say, on the interval [a, b]. According to Filippov’s theory, the set
{x˛} is compact in the topology of the uniform convergence on [a,
b], and any converging subsequence {x˛� } approaches one of the
solutions x(t) of the differential inclusion (A5) satisfying the same
initial condition x(a) = x0. However, different approximations may
give different limit solutions, so that non-uniqueness of the Fil-
ippov solutions means simply non-uniqueness of approximating
solutions in the piecewise power-law regression algorithm. The lat-
ter is in turn the result of a very special shape of the approximation
(A2): we know how the solutions look like inside any of the oper-
ating sub-domains ˝+

i
∩ ˝−

k
due to the power-law representation

(A3). However, between the operating sub-domains the behavior
of the approximating trajectories becomes more uncertain, which
is reflected in the possible non-uniqueness of the solutions outside
these sub-domains.

In summary, the paper prescribes how to obtain piecewise
power-law representations, even in high-dimensional spaces, but
the problem of constructing smooth approximating solutions
numerically is not solved. Some algorithms based on singular per-
turbation analysis may be useful for this purpose and can be found
in (Plahte and Kjoglum, 2005). Similarly, characterization of the
convergence of the approximating solutions, i.e., the solutions of
the differential inclusion (A5) to the solutions of the vector equa-
tion (A1), is beyond the scope of this paper. The major difficulty
of this characterization is the mean-square convergence of the
approximations in the piecewise power-law regression, which is
distinct from the standard uniform convergence used in the theory
of differential equations and inclusions. It is likely that additional
assumptions on the influx and efflux functions V+(x) and V−(x) are
needed in order to prove convergence of the approximating solu-
tions.
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Abstract We address a problem of convergence of approximations obtained from two versions
of the piecewise power-law representation arisen in Systems Biology. The most important case of
the mean square (L2) convergence is analyzed in detail, but the uniform convergence is studied as
well. Advantages and drawbacks of piecewise power-law representations from the theoretical and
practical point of view are discussed, and some ideas of how to use piecewise approximations are
suggested, where the emphasis is put on the so-called ”Saturable and Cooperative (SC) Formalism”,
as the latter has a strong biological motivation. Illustrating examples show the practical utility of
the methods.
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1 Introduction

Mathematical representation of kinetic processes, i.e. enzymatic catalyzed reactions that are part
of complex metabolic networks, is a challenge for obtaining useful models in Systems Biology.
Although mechanistic descriptions provide a detailed account of the underlying processes, a close
form for the rate of the process can be obtained only under specific simplifying assumptions. Thus,
classical enzyme rate-laws are approximations to the actual dynamic processes that are associated
to each step of the mechanism. The validity of these rate-laws in conditions other than those cor-
responding to the assumptions used in their derivation is open to question (Savageau 1993, 1995).
At the best, the previous strategy produces mathematical representations with a case-dependent
mathematical structure that, in general, are too much complicated for modeling purposes. Further-
more, in most cases the involved parameters are difficult to identify with a reasonable experimental
effort.
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E-mail: arkadi@umb.no

A. Sorribas
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An alternative that may help obtaining useful models is to use mathematical approximations
that lead to canonical representations and simplify the modeling task and the estimation of para-
meters from experimental data. Of course, by doing that we pay an additional price of accuracy
that will now be restricted to a given range around an operating point. The Power-Law Formalism
(Savageau 1969a,b, 1970) is one of these alternative representations. It is based on a Taylor series
linear approximation of the actual function in the Logarithmic (”log-log”) space (Alves et al 2008).
As a result, an unknown kinetic function that depends on n variables can be approximated at a
given operating point (x10 , .., xn0) as:

vr(x1, .., xn) = γr

n∏

j=1

X
frj

j , (1)

where γr and frj are the apparent rate-constant and kinetic-orders defined as:

frj =
(

∂vr

∂Xj

)

0

Xj0

vr0

, (2)

and

γr = vr0

n∏

j=1

X
−frj

j0
. (3)

The Power-Law Formalism has been successfully applied to a wide number of problems. His
main advantage is that the models are systematic and relatively easy to analyze. In practice,
power-law representations can be derived in different ways: (1) As a local approximation at a
given operating point (Savageau 1969a,b, 1970); (2) Using a piecewise representation that takes
into account a different power-law in different regions (Savageau 1969a, 2002); (iii) As a result of
fitting experimental data that encompasses a given range of values (Hernández-Bermejo et al 2000;
Chou and Voit 2009); and (iv) As an exact representation through recasting a non-linear model
into a power-law form (Savageau and Voit 1987). Each of these alternatives has its advantages and
drawbacks. When it comes to numerical models, recasting and piecewise representations may have
advantages. However, recasting can only be used if we know the actual function. This precludes
using this technique in many cases. Piecewise representations can be obtained either by qualitative
modeling or from actual data (Machina et al 2010).

Power-law models are particularly well suited for analyzing design principles in biological net-
works (Savageau 1975b,a, 1977, 2002). In this kind of problems, alternative designs for a given
network are analyzed to identify the functional advantages linked to specific designs when com-
pared to the alternatives. The concept of design space helps in discussing the possible phenotypes
associate to parameter values by identifying boundaries between qualitatively different regions
(Savageau et al 2009). In this case, piecewise representation of the target system helps in the
process.

Piecewise representations are appealing as they may cover the whole variation of the rate as
a function of the underlying metabolites while maintaining in each subregion a simple power-
law representation. In this way, we can keep track of cooperativity and saturation for each of
the involved variable. Following similar arguments as those used for developing the Power-Law
Formalism, an alternative representation that has been recently suggested is the Saturable and
Cooperative (SC) Formalism (Sorribas et al 2007), which results from Taylor series approximation
of an unknown function in a space of generalized-inverses (see (Sorribas et al 2007) for details).
The SC representation includes saturation and cooperativity and may serve as both a complement
and an alternative to the piecewise representation.

In this paper we shall explore the convergence of piecewise power-law representations to kinetic
functions that can exhibit cooperativity and saturation. Also we shall briefly discuss the practical
utility of the obtained representations and its connection to SC representations.

2 Description of the mathematical framework

Let us consider a system of the form
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ẋi =
p∑

r=1

µirvr(x1, .., xn+m), (4)

where index i (i = 1, ..., n) refers to dependent variables, while higher indices (n+1, ..., n+m) refer
to independent variables. The function vr(x1, .., xn+m) accounts for the rate of a given process,
while µir is a stoichiometric factor that accounts for the number of molecules of xi produced, i.e.
µir = 1, 2, ... or µir = −1,−2, ....

Once the functions vr are specified, simulations with the model in Eq. (4), representing a
complex biological system, are easily performed, and many methods are available for mathematical
analyses of features such as local stability or parameter sensitivities at the systems steady states.
However, before such analyses are feasible, it is necessary to specify the functions in the model.

For simply shaped flux profiles vr(x), a possible candidate is a power-law (PL) representation
of the form

vPL
r (x1, x2, ..., xn+m) = γr

n+m∏

j=1

x
frj

j , (5)

where the rate constants γr are non-negative and the kinetic-orders frj are real numbers.
For the sake of notational convenience, as we will intend to approximate any of the functions

vr, we put m = 0 and omit the index r in the calculations, so that

vPL(x1, x2, ..., xn) = γ

n∏

j=1

x
fj

j , (6)

Power-law representations are intensively exploited in approximations because they are non-
linear and cover a rich repertoire of functional responses when they are embedded in differential
equations (4), yet individually permit a simple logarithmic transformation to linearity.

Applying the logarithmic transformation to the power-law representation vPL of the function
v(x), we obtain

yj = log xj , j = 1, ..., n,

vPL(x1, x2, ..., xn) = exp(f1y1 + ... + fnyn + c),
v(x1, x2, ..., xn) = exp(ψ(y1, y2, ..., yn)),

(7)

where c = log(γ). In the classical formulation of the Power-Law Formalism the sum f1y1 + ... +
fnyn + c can be interpreted as the first order Taylor series approximation of the actual, in general
non linear, function ψ(y).

Although Taylor-based power-law representation can be adequate for many applications, it
might be desirable to give an approximation of the function over a range which cannot be covered
by its approximation in a single operating point. We would look for a method that, without
leaving the Power-Law Formalism, would lead to a better representation of the behavior of the
target function within the selected range.

In (Hernández-Bermejo et al 2000) a least-squares (LS) minimization is used to provide a way
for defining the power-law approximation to rate laws v(x1, ..., xn). Minimization is constrained
within the operating domain Ω ∈ Rn

+ \ {0} in such a way that the following integral achieves a
minimum:

∫

Ω


v(x1, ..., xn)− γ

n∏

j=1

x
fj

j




2

dx1...dxn → min . (8)

Thus, the problem amounts to determining the set of LS kinetic-orders fj and the LS rate
constant γ.

The advantage of a model with operating domains is obvious if the actual dynamics of the
system should be considered over the entire range. This new formulation is more consistent, as it
was shown in (Hernández-Bermejo et al 2000), with the results that can be obtained by fitting
experimental data. In practice, data fitting from dynamic data may proceed in a quite different way,
thus producing a power-law model that, overall, describes the available data according to specific
criteria (see (Chou and Voit 2009) for a review). In any case, the resulting power-law functions are
no longer local representations in the sense of the original definition.
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3 Piecewise power-law approximation

In general, even the model with operating domains can have low accuracy. For example, if the
operating domain is wide, the target function can run through saturation and cooperativity. In
that case, power-law approximations cannot capture these features at the same time (see the
examples in Section 6). A piecewise power-law (PWPL) representation provides a logical extension
to a single power-law over an operating domain (Savageau 2002).

The problem of a piecewise power-law regression is not straightforward, because, given a func-
tion v : Ω → R+, one has to compute both a partitioning into sub-domains and an approximation
to v within each of the sub-domains.

Because of the mixed nature of the problem, classical approximation techniques cannot be
directly applied, and it is instead necessary to use a specific, customized method. The principles
of such a method were introduced a few years ago for the simplest situation, where the regions in
the space of variables are polyhedra and the behavior of an unknown function in each region is
approximated by a linear expression (Ferrari-Trecate and Muselli 2002; Ferrari-Trecate et al 2001).

The adaption to power-law functions begins with a logarithmic transformation of the data.
In the logarithmic coordinates, a piecewise power-law function becomes piecewise linear (PWL).
Thus, one can implement the algorithm of the piecewise linear regression from (Ferrari-Trecate and
Muselli 2002; Ferrari-Trecate et al 2001) to the logarithmic data and obtain an optimal polyhedral
partition of the input domain in the Logarithmic space and the best piecewise linear approximation.

Let ∆ be a polyhedral domain in the Logarithmic space Rn and Ψ(y) = log(v(x)), so that
Ψ : ∆ → R.

Let also the number N of the sub-domains be fixed. Partitions {∆s}N
s=1 of ∆ are assumed to

be polyhedral as well. The target of piecewise linear regression from (Ferrari-Trecate and Muselli
2002; Ferrari-Trecate et al 2001) is to determine a polyhedral partition {∆s}N

s=1 and a piecewise
linear function

ψPWL(y) = ψs(y) = ws0 +
n∑

j=1

wsjyj , y ∈ ∆s (9)

(thus assuming its linear behavior in each region ∆s) which minimize the functional
∫
∆

[Ψ(y1, ..., yn)− ψ(y1, ..., yn))]2 dy1...dyn =
∑N

s=1

∫
∆s

[Ψ(y1, ..., yn)− ψs(y1, ..., yn))]2 dy1...dyn

→ min

(10)

The minimum is taken over all polyhedral partitions {∆s}N
s=1 of ∆ and all piecewise linear

approximations ψs (s = 1, ..., N).
Scalar weights ws0, ws1, ..., wsn, for s = 1, ..., N uniquely characterize the function ψ in ∆s.

For notational purposes, the weights can be collected in a vector ws. Since the regions ∆s are
polyhedral, they can be defined by a set of linear inequalities of the type:

asj0 +
n∑

k=1

asjkyk ≤ 0. (11)

The scalars asjk for j = 1, ..., ls and k = 0, 1, ..., n can be collected in a matrix As whose estimation
also was the target of the reconstruction process for every s = 1, ..., N. Discontinuities are allowed
and indeed are often present at the boundaries between two regions ∆s.

As long as the partition is known, one can perform a linear regression over each of the sub-
domains ∆s and thus find the piecewise linear function ψPWL(y). The construction of the optimal
partition is based on a special clustering algorithm. The details can be found in (Ferrari-Trecate
and Muselli 2002; Ferrari-Trecate et al 2001) (see also (Machina et al 2010).

When we apply the inverse logarithmic transformation, the polyhedral partition that is pro-
duced by the algorithm for logarithmic data becomes a partition of the initial input domain by
nonlinear surfaces given by

asj0 +
n∑

k=1

asjk log xk ≤ 0, (12)
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where the coefficients asjk, k = 0, 1, ...n, s = 1, ..., N are known and obtained by the algorithm.
The inverse logarithmic transformation

vPWPL(x) = exp(ψPWL(y))

defines a piecewise power-law approximation to an unknown function v(x), where sub-domains of
the partition are defined by (12).

The procedure has all the advantages of the linear regression. However, because the logarithmic
transformation distorts the error structure of the problem, the least squares error for the resulting
piecewise power-law is in general less accurate than the corresponding error for a power-law regres-
sion of the original data. As a partial remedy, it is therefore advantageous to apply a power-law
regression to the original data over each of the N regions in (12). Even though the regression is now
nonlinear, the increase in difficulty is modest, due to the partition in small pieces. In other words,
the partition of the initial domain localizes the process of approximation to sub-domains, thereby
reducing the risk of failure of the power-law regression. While this modification reduces error dis-
tortion to some degree, it does not affect that part of the algorithm, in which the boundaries of the
domains are determined. As a consequence, the domains are optimal in the Logarithmic space but
not necessarily in the Cartesian space. The distortion constitutes the price one has to pay for the
automated nature of the segmentation process. It may be undesirable, but becomes less influential
as the algorithm uses higher numbers of segments.

In the next section we discuss advantages and disadvantages of both approaches.

3.1 Least squares criteria in the Cartesian and Logarithmic spaces

Here we will discuss two different ways to obtain a piecewise power-law approximation when a
partition of the input domain is known. The partition is defined by (11) in the Logarithmic space
(respectively, by (12) in the Cartesian space) and, according to the algorithm in (Ferrari-Trecate
and Muselli 2002; Ferrari-Trecate et al 2001), is optimal in the Logarithmic space.

Let ∆ be a polyhedron in the Logarithmic space Rn. Suppose that ∆ is the image of the domain
Ω in the Cartesian space Rn

+ \ {0}. Let (11) define a partition {∆s}N
s=1 of ∆, ∆s ∩ ∆j = ∅ for

every s, j = 1, ..., N and
⋃N

s=1 ∆s = ∆. Let {Ωs}N
s=1 be the corresponding partition of Ω in the

Cartesian space Rn
+ \ {0}.

Let v : Ω → R+ and let the function ψ : ∆ → R be given by ψ(y) = log v(x), y = log x.
Since the partition is optimal in the Logarithmic space, it is natural to complete the approxi-

mation procedure in the logarithmic coordinates. Then, over each of the sub-domains ∆s a power
law function is represented in the linear form (see (7)) and its coefficients can be obtained from
the least squares minimization criterion

∫

∆s

[ψ(y1, ..., yn)− (f1y1 + f2y2 + ... + fnyn + c)]2 dy1...dyn → min, (13)

where the constant c is defined in (7).
Another approach is as follows: using the optimal partition in the Logarithmic space one per-

forms the inverse logarithmic transformation to find a power-law approximation to the original
function in the Cartesian space over each of Ωs, i.e. using the following minimization criterion:

∫

Ωs


v(x1, ..., xn)− γ

n∏

j=1

x
fj

j




2

dx1...dxn → min . (14)

The main advantage of the criterion (13) is its linearity that provides the uniqueness of the
solution and also makes the process of finding the solution computationally cheap, as it is based
on explicit matrix formulas. On the other hand the use of the logarithmic transformation requires
caution. The influences of the data values will change, as will the error structure of the model.

Obviously, the criterion (14) gives better approximation in terms of the LS error in the Carte-
sian space. However, a nonlinear regression algorithm should be used in this case, which is less
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Fig. 1 Convex vs. nonconvex projection sets

advantageous, especially when the number of the estimated parameters is big. In addition, the
nonlinear regression may have other drawbacks, one of which is ill-posedness.

Below we show that the nonlinear regression in the case of the minimization criterion (14) is
indeed ill-posed.

Hence both criteria have their strong and weak sides, so that the choice between them must be
undertaken by modeling considerations.

Now let us consider an example when the minimization problem (14) is ill-posed.

Example 1 Let us assume that v(x) is only known with a certain accuracy, as it is often the case.
Mathematically, we will describe this situation by letting v depend on a (small) parameter λ, i.e.
v = vλ(x) (and so becomes the function ψ = ψλ(y) as well). But it turns out, as we will show
below, that for certain values of λ small perturbations may cause a ”jump” in the corresponding
power-law representation, i.e. while functions vλ(x) remain close to each other, the least-squares
minimization criterion (14) may produce the power-law representations that are very different.

This ill-posedness is caused by the fact that the set {γxf1
1 ...xfn

n } from (14) is a non-convex set.
Let us remind that given a linear space L, a set M ∈ L is said to be convex if whenever it contains
two points x and y, it also contains the segment joining x and y. For example, {f1y1 + f2y2 + ... +
fnyn + c} from (13) is a vector space and therefore a convex set.

Geometrically, we can think of a LS power-law (respectively, linear) representation of a given
function as its projection onto the set of functions of the form {γxf1

1 ...xfn
n } (respectively, {f1y1 +

f2y2 + ... + fnyn + c}).
When the projection set is convex, the problem is always well-posed. This is the case with the

projection of the parameterized point ψλ onto {f1y1 + f2y2 + ... + fnyn + c}, see Figure 1. This
means that for any point its projection onto a convex set is unique and the projections of two
points are close to each other if the points are close to each other. Graphically, there is no jump
in the projection function of the parameterized point, if the point depends continuously on the
parameter λ.

However, if we are dealing with a nonconvex projection set, for example with the set {γxf1
1 ...xfn

n },
then for certain parameterized sets of points (e.g. for the dotted line in Figure 1) the corresponding
projection functions may have jumps around certain critical values of λ.

Let us illustrate this fact analytically considering a specific example. We will consider, only for
the sake of simplicity, a function v(x) of one variable

U∫

L

(v(x)− γxf )2dx → min . (15)

Using MATLAB we will also provide some graphical representations.
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Fig. 2 The continuous lines represent the function Hλ(y) for different values of λ and the dotted lines give its LS
approximation. Red color corresponds to the values λ > 0, while green color describes the case λ < 0

If v = vλ(x), then γ and f that minimize (15) are also functions of λ.
We first consider a simpler problem assuming that γ = const, so that after rescaling we may

assume that γ = 1 and rewrite (15) as

U∫

L

(
vλ(x)− xfλ

)2
dx → min

After applying the variable substitution y = log x, a = log U, b = log L, we obtain

b∫

a

(
vλ(ey)− eyfλ

)2
eydy → min

or
b∫

a

(
Hλ(y)− eβλy

)2
dy → min, (16)

where Hλ(y) = vλ(ey)ey/2, βλ = fλ + 1/2.
Now, let the operating interval be [−1, 1]. Consider the specific function defined as Hλ(y) =

3λy + 6y2 + 1 and its LS power-law approximation eβ(λ)y.
It is easily seen that the projection function eβ(λ)y is discontinuous in λ (see Figure 2). Figure

3 gives a graphical representation of this discontinuity in λ for one value of y.
Of course, we can always go back to the variable x. The above function becomes then vλ(x) =

3λ log x + 6 log2 x + 1√
x

, the operating interval being given by [1/e, e]. But the discontinuity in λ

will of course be preserved.
Let us now consider the general scalar case as it is given by the minimization criterion (15).

Using the same function Hλ(y) as before we in a similar way obtain its LS power-law approximation
given by eβ(λ)y+c(λ) where cλ = log γ, γ = γ(λ). The results of approximations are depicted in
Figures 4 and 5. Again, we observe a discontinuity of the projection function in λ.

This example shows that the criterion (8) may produce a LS power-law approximation that is
not stable under small perturbations of the parameter λ and by this under small perturbations of
the target function, which causes ill-posedness of the minimization problem. We stress also that
this effect is generic, i.e. independent of the number of the involved parameters, as the comparison
of Figures 2 (resp. Figure 3) and Figure 4 (resp. Figure 5) clearly demonstrates.

4 L2-convergence of piecewise power-law approximations obtained in the Cartesian
and Logarithmic spaces

In this section we continue to analyze mathematical justification of the piecewise power-law model
focusing on the convergence properties of the piecewise approximations constructed in (Machina
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Fig. 4 The continuous lines represent the functions Hλ(y) for different values of λ and the dotted lines give its LS
approximations within the operating interval [0.5, 1.5]. Blue and green colors correspond to the values λ > λ0, while
red and black colors describe the case of λ < λ0
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Fig. 5 This graph explains how the LS power-law approximations at y = 1, i.e eβ(λ)+c(λ), depend on λ. We see
that β(λ) + c(λ) is discontinuous at λ0 ≈ −2.365

et al 2010). The main question can be formulated as follows: do these approximations of a given tar-
get function converge to this function when the number of sub-domains in the partitions increases.
An important issue to be studied concerns the topology of this convergence, which depends on
the overall mathematical model. Since the approximations include minimization in the L2-metric,
we consider first L2-convergence conditions, while in the next section we will concentrate on the
uniform convergence which is topologically stronger.

The main technical challenges stemming from the approximation algorithm can be summarized
as follows: 1) the L2-convergence of the approximations in the logarithmic space may not imply
the L2-convergence of their images in the Cartesian space (and vice versa); 2) it is not evident that
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automatic dissection of the operating domain makes the diameters of the sub-domains go to zero
even if the number of sub-domains tends to ∞.

We review here some notation. Let v : Rn
+ \ {0} → R+, and let ψ : Rn → R be given by

ψ(y) = log v(x), y = log x.
Let Ω be a domain in the Cartesian space Rn

+ \ {0}. We assume Ω to be closed and bounded
(i.e. compact) subset of Rn. Let ∆ be its image in the Logarithmic space Rn and {∆N

i }N
i=1 be a

measurable partition of ∆. This means that ∆N
i are all Borel measurable subsets of Rn, ∆N

i ∩∆N
j =

∅ for every i, j = 1, ..., N and
⋃N

i=1 ∆N
i = ∆ for any natural N . The reason why we cannot assume

the sub-domains to be closed, is that it would contradict the second assumption of disjointness.
Let {ΩN

i }N
i=1 be the corresponding partition of Ω in the Cartesian space.

We also put δN = max
1≤i≤N

(diam
(
∆N

i

)
).

For a given number N of sub-domains we let vN
i (x) = γN

i

n∏
j=1

x
fN

ij

j be the LS power-law ap-

proximation to the function v on ΩN
i , i = 1, ..., N. For x ∈ Ω we consider a piecewise power-law

function vN (x) = vN
i (x), whenever x ∈ ΩN

i . We put ψN (y) = log(vN (x)).

We also put ΨN
i (y) = cN +

n∑
j=1

fN
ij yj , cN = log(γN ), being a LS linear approximation to the

function ψ on ∆N
i , i = 1, ..., N. For y ∈ ∆ we consider the piecewise linear function ΨN (y) = ΨN

i (y),
whenever y ∈ ∆N

i . We put also V N (x) = exp(ΨN (y)).
The results below provide the L2-convergence of piecewise power-law approximations whose

parameters were obtained either in the Logarithmic space (V N ) or in the Cartesian space (vN ), or
in other words, according to the minimization criteria (13) and (14), respectively.

In the first theorem we do not assume that {∆N
i }N

i=1 is an optimal polyhedral partition in
the Logarithmic space obtained by the algorithm described in Machina et al (2010) or briefly in
Section 3.

Theorem 1 Let the target function v be continuous on Ω and ψ = log v. Suppose that for each
natural number N the measurable partition {∆N

i }N
i=1 satisfies the property δN → 0 (N →∞). Then

for the corresponding LS approximations ΨN (in ∆) and vN (in Ω) we have ΨN → ψ, vN → v in
the respective L2-norms if N →∞.

To prove this theorem we need the following lemma:

Lemma 1 Let v be continuous on Ω and ψ = log v. Let the measurable partition {∆N
i }N

i=1 satisfy
the property δN → 0 (N →∞), yN

i ∈ ∆N
i and θN (y) = ψ(yN

i ) for all y ∈ ∆N
i . Then the functional

sequence {θN} (resp. {ΘN} = {exp(θN )}) converges to ψ (resp. v), and this convergence is uniform
on ∆ (resp. Ω).

Proof. We start first with the convergence in the Logarithmic space. Let us notice that the
function ψ = log v is continuous on ∆ and ∆ is compact, as it is the image of the compact set
Ω under the continuous transformation. That is, the function ψ is uniformly continuous on ∆, so
that given an ε > 0 there exists a δ > 0 for which |y− y′| < δ, y, y′ ∈ ∆ implies |ψ(y)−ψ(y′)| < ε.
Let N be chosen in such a way that δN < δ for all N ≥ N0. If y ∈ ∆N

i , then we have

|ψ(y)− θN (y)| = |ψ(y)− ψ(yN
i )| < ε,

as y, yN
i ∈ ∆N

i and diam ∆N
i < δN < δ, which gives uniform convergence of the sequence {θN} on

∆.
A similar argument can be applied to the sequence {ΘN} on Ω if we prove that δ̃N =

max
1≤i≤N

(diam
(
ΩN

i

)
) → 0 as N → ∞. This fact follows however from the uniform continuity of

the inverse logarithmic transformation on the compact set ∆. ¤
Proof of Theorem 1. We use the sequences

{θN} and {ΘN} = {exp(θN )}
from the lemma 1, which both converge uniformly and therefore in the L2-sense in the respective
input domains.



10

Since ΨN (y) is the LS piecewise linear approximation in the input domain ∆ and vN (x) is the
LS piecewise power-law approximation in the input domain Ω, we have

‖ΨN − ψ‖L2(∆) ≤ ‖θN − ψ‖L2(∆) → 0

and
‖vN − v‖L2(Ω) ≤ ‖ΘN − ψ‖L2(Ω) → 0

as N →∞. ¤
In the next theorem we do not assume continuity of the functions and that δN → 0.

Theorem 2 Let ∆ be a polyhedral input domain in Rn, the function ψ be measurable and square
integrable (i. e. L2) and {∆N

i }N
i=1 be an optimal polyhedral partition in the Logarithmic space

obtained by the algorithm described in Machina et al (2010) or briefly in Section 3. Then for the
corresponding LS approximations ΨN in ∆ we have ΨN → ψ in the L2-norm if N →∞.

Proof. For the function ψ there exists a sequence of polyhedral partitions {∆̄i}N
i=1 of the input

domain ∆ such that δ̄ = max
i

(diam
(
∆̄i

)
) → 0 as N → ∞ and a sequence of piecewise constant

functions {Ψ̄N (y)} given by ψ̄N (y) = C̄N
i , whenever y ∈ ∆̄N

i for which Ψ̄N → ψ in the L2-norm if
N →∞.

For the optimal polyhedral approximation ΨN (y) we obtain

‖ΨN − ψ‖L2(∆) ≤ ‖Ψ̄N − ψ‖L2(∆) → 0

as N →∞. ¤
In particular, the assumption on ψ is fulfilled if the target function v is measurable and bounded

on Ω.
The case of the L2-convergence of the approximations V N given as V N = exp(ΨN ) is more

involved. The reason for that is that the L2-convergence of the sequence {ΨN} does not necessarily
imply the L2-convergence of the sequence {exp(ΨN )}.

We introduce the following notation. Given a sub-domain ∆N
i of the input domain ∆ we set

eN
i (0, y) = 1, eN

i (k, y) = yk − ȳN
i (k) (k = 1, ..., n), (17)

where the point (ȳN
i (k))n

k=1 ∈ ∆N
i is the center of mass of the convex set ∆N

i given by

ȳN
i (k) =

1
mes ∆N

i

∫

∆N
i

ykdy, k = 1, ..., n. (18)

Let AN
i = (aN

i (kl)) be the symmetric n× n-matrix with the entries defined as

aN
i (k, l) =

1
mes∆N

i

∫

∆N
i

eN
i (k, y)eN

i (l, y)dy, k, l = 1, ..., n, (19)

Below we fix a matrix norm ‖.‖. All matrix norms are equivalent. One of the norms is Euclidean,
which is defined via the maximal eigenvalues: ‖A‖ =

√
λmax(AT A). In the case of symmetric,

positive definite matrices (like AN
i above) we can write that ‖A‖ = λmax(A).

We say that the sequence of partitions {∆N
i }N

i=1 (N = 1, 2, ...) of ∆ satisfies the condition (∆)
if there exists a constant c0 > 0 such that

diam∆N
i

√
‖(AN

i )−1‖ ≤ c0.

If the chosen norm is Euclidean, then the latter estimate can be rewritten as

diam∆N
i√

λN
i

≤ c0,

where λN
i is the least (positive) eigenvalue of the matrix AN

i (i = 1, ..., N ; N = 1, 2, ...).
Informally speaking, this property means, that the sub-domains cannot be too different from

each other in the shape. As an illustration, let us consider the case of a sequence of rectangular
boxes. The result says that ratio between the longest edge and the shortest edge is bounded above,
i. e. boxes cannot be ”too thin”.
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Theorem 3 A sequence of rectangular boxes {PN} satisfies the property (∆) if and only if sup
N=1,2,...

aN

bN <

∞, where aN (resp. bN ) is the length of the least (resp. biggest) edge of the box PN .

Proof. We calculate the matrix (19).
We fix N and the Nth rectangular box P = PN given by

yl
1 ≤ y1 ≤ yr

1,
yl
2 ≤ y2 ≤ yr

2,
...

yl
n ≤ yn ≤ yr

n.

Let ȳi =
yl

i + yr
i

2
, i = 1, ..., n, be the center of mass and e(i, y) = yi − ȳi.

The substitution

yi = yl
i + δizi, where δi = yr

i − yl
i, zi ∈ [0, 1], yi − ȳi = δi(zi − 1/2),

yields ∫

P

e(k, y)e(l, y)dy =
∫

Σ

δ1...δnδkδl(zk − 1/2)(zl − 1/2)dz (1 ≤ k, l ≤ n)

where Σ = [0, 1]× [0, 1]× ...× [0, 1] ∈ Rn. Since
∫

Σ

(zk − 1/2)(zl − 1/2)dz = 0 (k 6= l),
∫

Σ

(zk − 1/2)2dz =
1
12

,

and mes∆N
i = δ1...δn, the matrix (19) becomes diag[ δ2

1
12 , ...,

δ2
n

12 ]. The least eigenvalue of the matrix

is equal to min{ δ2
1

12 , ...,
δ2

n

12}, i. e. to (aN )2

12 . The diameter of the box can be estimated above by the
constant

√
n bN , which also dominates the asymptotics of the diameter. Therefore the condition

(∆) is fulfilled for the given sequence of rectangular boxes if and only if the sequence { bN

aN } is
bounded above. ¤

Lemma 2 Assume that the target function v(x) is measurable and bounded on Ω and ψ = log v.
Assume further that the sequence of partitions {∆N

i }N
i=1 (N = 1, 2, ...) of ∆ satisfies the condition

(∆). Then the corresponding LS approximations V N (x) and ΨN (y) are uniformly bounded on Ω
and ∆, respectively, i.e. there exist constant C1 > 0 and C2 > 0 such that

|V N (x)| ≤ C1 sup
x∈∆

|v(x)|

for all N = 1, 2, ... and all x ∈ ∆,

|ΨN (y)| ≤ C2 sup
y∈∆

|ψ(y)|

for all N = 1, 2, ... and all y ∈ ∆.

Proof.
Clearly, ψ(y) is measurable and bounded on ∆. Let c = sup

y∈∆
|ψ(y)|.

Let us fix a sub-domain ∆N
i . Our aim now is to find estimates for the norms of orthonormal

basis functions {ẽk}, k = 0, ...n in the linear subspace of the space L2(∆N
i ) consisting of all linear

functions and equipped with the scalar product

ξ · η =
1

mes ∆N
i

∫

∆N
i

ξ(y)η(y)dy.

One basis is given by the set (17). However, this set is not necessarily orthogonal.
First of all, we choose ẽ0 = 1 and observe that its norm is equal to 1. Using the description

(17) of the basis functions eN
i (k, y) defined via the center of mass we directly deduce from (18)
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that ẽ0 = 1 is orthogonal to any linear combination of the other basis functions. The challenge
is therefore to estimate the norms of linear combinations ẽk =

∑n
l=1 αle

N
i (l, y), where αl are real

numbers.
In the proof below we often omit one of the variables in eN

i (l, y), that is either l, or y, depending
on a particular interpretation of this basis. Writing eN

i (y) means that we regard it as a vector for
each particular y, i. e. eN

i (y) = (eN
i (1, y), ..., eN

i (n, y)) (the component eN
i (0, y) is excluded in

further considerations). Omitting y (eN
i (l) ) means that we treat eN

i (l, y) as a function of y for a
given l, i.e. as an element of the space L2(∆N

i ).
As ‖ẽk‖ = 1, we require the following constraints on the coefficients:

1 = 1
mes∆N

i

∫
∆N

i

|ẽk(y)|2dy =
n∑

k,l=1

1
mes∆N

i

∫
∆N

i

eN
i (k, y)eN

i (l, y)αlαkdy

= αT AN
i α,

(20)

where α = (αl)n
l=1. Therefore,

max
y∈∆N

i

|ẽk(y)| = max
y∈∆N

i

|α · eN
i (y)| (21)

(where |.| is the Euclidean norm in Rn and a · b is the scalar product of two vectors) with the
constraint αT AN

i α = 1.
Diagonalization of the symmetric, positive definite matrix AN

i with the help of an orthogonal
matrix Q gives the matrix containing the eigenvalues λk > 0 of AN

i on the diagonal. Putting
β = Qα and using |Qy| = |y|, we obtain from (21) that

max
y∈∆N

i

|ẽk(y)| = max
y∈∆N

i

|β ·QeN
i (y)|

≤ |β|max
y∈∆N

i

|eN
i (y)| ≤ diam∆N

i

(
n∑

k=1

β2
k

)1
2

with the constraint
∑n

k=1 λkβ2
k = 1, where the constant diam∆N

i is evidently an upper estimate

for the functions (17) on the sub-domain ∆N
i . The maximum value of the expression

(∑n
k=1 β2

k

)1
2

under the above constraint is 1√
λN

i

, where λN
i is the minimal eigenvalue of the matrix AN

i . Due to

the condition (∆) we get that max
y∈∆N

i

|eN
i (k, y)| ≤ c0, where the constant c0 does not depend on i

and N .
The final step in the proof of the lemma uses the explicit representation of the LS approximation

ΨN :

ΨN (y) =
n∑

k=0

µkẽk(y) (y ∈ ∆N
i ),

where

µk =
1

mes ∆N
i

∫

∆N
i

ψ(y)ẽk(y)dy.

Therefore |µ0| ≤ c, |µk| ≤ cc0 (k = 1, ..., n) and

|ΨN (y)| ≤ n(1 + c)c2
0 = C2 sup

y∈∆
|ψ(y)|.

This implies also the uniform boundedness of the approximations V N
i (x) on Ω. The proof of the

lemma is complete. ¤

Combining the previous results on the L2-convergence we get the following theorem:
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Theorem 4 Assume that the sequence of partitions {∆N
i }N

i=1 (N = 1, 2, ...) of ∆ satisfies the
condition (∆).

Let, in addition, one of the two following conditions be fulfilled:
1. The target function v is continuous on Ω and for each natural number N the measurable

partition {∆N
i }N

i=1 has the property δN → 0 (N →∞).
2. The target function v is measurable and bounded on Ω, ∆ is a polyhedral input domain in Rn

and {∆N
i }N

i=1 is the optimal polyhedral partition in the Logarithmic space obtained by the algorithm
described in Machina et al (2010) or briefly in Section 3.

Then the LS power-law approximations V N converge to v in the L2(Ω)-norm as N →∞.

Proof. Using either the theorem 1 or the theorem 2 we obtain the L2 convergence of the
LS approximations ΨN to the function ψ = log v. Applying the lemma 2 we obtain the uniform
boundedness of the approximations: |ψ(y)|, |ΨN (y)| ≤ M for some M and any N = 1, 2, .... Then
we have

‖V N − v‖L2(Ω) =
∫

Ω

|V N (x)− v(x)|2dx

=
∫

∆

| exp(ΨN (y))− exp(ψ(y))|2 exp(y1 + ... + yn)dy ≤ C‖ΨN − ψ‖L2(∆),

where C = exp(M)max
y∈∆

exp(y1 + ... + yn). The latter estimate is due to the uniform Lipschitz

continuity of the function exp(u) on the interval [0,M ]: | exp(u)− exp(v)| ≤ exp(M) |u− v|.
This estimate proves the L2-convergence of the LS approximations V N to the target function

v.
¤

5 Uniform convergence of approximations

In the previous section the convergence in the L2-norm on any compact domain was considered,
which is the main mathematical result of the paper. However, in many applications it is desirable
to consider certain types of convergence in a stronger sense, for instance, the uniform convergence.
This may be, for instance, of interest, if we include the obtained approximations into the models
based on differential equations, as it is well-known that convergence of (approximations of) solutions
is only guaranteed by the uniform convergence of (approximations of) the right-hand sides.

In the case of LS power-law approximations treated in this paper, the situation with the con-
vergence may be even more complicated. As the regression process within each sub-domain is
independent of the other sub-domains, the resulting approximating functions may be discontinu-
ous, so that we will need to deal with the solutions of discontinuous differential equations. It is
well-known (see e. g. the monograph (Filippov 1998) or the discussion in the paper (Machina et al
2010)) that the continuous solutions can be in such a case defined as the so-called ”Filippov so-
lutions” of the corresponding differential inclusions. Again, the convergence of these solutions can
only be guaranteed if the approximating right-hand sides converge uniformly. Neither the problem
of convergence of the solutions of differential equations, nor the procedure of how to define and
treat Filippov solutions in the case of discontinuous approximations is addressed in the paper. Yet,
we intend to demonstrate in this section how the uniform convergence of approximations can be
proved if needed.

A different type of convergence may require a different type of approximations. Therefore, in
the most cases below we will not assume that vN or ΨN are LS approximations (i.e. the best
possible approximations in the L2-norm).

An immediate consequence of the lemma 1 is the following

Theorem 5 Let v be continuous on Ω and ψ = log v. Let the measurable partition {∆N
i }N

i=1 satisfy
the property δN → 0 (N →∞). Then there exist piecewise power-law approximations {wN} (resp.
piecewise linear approximations {θN )}) which converge to v (resp. ψ) uniformly on Ω (resp. ∆).
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However, these approximations are piecewise constant. Below we treat proper piecewise linear
approximations. In the next theorem we assume that the partition consists of sub-domains ∆N

i

satisfying the following property: the closure of ∆N
i coincides with the closure of its interior (i.e.

the closure of ∆N
i is the closed domain). This is necessary, as we want to differentiate the target

function within each of the sub-domains.

Theorem 6 Let the target function v be a C1-function (i.e. differentiable with the continuous
partial derivatives). Let the sequence of partitions {∆N

i }N
i=1 (N = 1, 2, ...) of ∆ have the property

δN → 0 (N → ∞). Assume, in addition, that for any i = 1, ..., N , N = 1, 2, ... there exist points
yN

i , cN
i ∈ ∆N

i such that the piecewise linear approximations ΨN (= ΨN
i on ∆N

i ) satisfy

ψ(yN
i ) = ΨN (yN

i ),
∇ψ(cN

i ) = ∇ΨN (cN
i ). (22)

Then for the corresponding (not necessarily least-squares) approximations ΨN (in ∆) and V N

(in Ω) we have
ΨN → ψ, V N → v (N →∞)

uniformly on ∆ (resp. on Ω).

Proof. We fix N and consider some arbitrarily chosen sub-domain ∆N
i . By assumption, for y ∈ ∆N

i

we have ΨN
i (y) = ∇ψ(cN

i ) · (y − y0) + ψ(yN
i ), where yN

i , cN
i ∈ ∆N

i . On the other hand, the mean
value theorem yields ψ(y)− ψ(yN

i ) = ∇ψ(c)(y − yN
i ) where c ∈ ∆N

i depends on y. Therefore

|ΨN
i (y)− ψ(y)| ≤ |∇ψ(c)−∇ψ(cN

i )||y − yN
i |.

The uniform continuity of the continuous vector function ∇ψ(y) on ∆ and the property that
δN = max

1≤i≤N
diam ∆N

i → 0 (N →∞) imply that given an ε > 0 the estimate

|ΨN
i (y)− ψ(y)| < ε. (23)

holds for sufficiently large N .
Since (23) holds for any i ∈ {1, 2, ..., N}, we also obtain that for sufficiently large N |ΨN (y)−

ψ(y)| < ε, i.e. ΨN → ψ uniformly as N →∞.
As the proven uniform convergence of the sequence {ΨN} implies its uniform boundedness, i.

e. that for some M we have |ΨN (y)|, |ψ(y)| ≤ M for all y ∈ ∆, then

|V N (x)− v(x)| = | exp ΨN (y)− exp ψ(y)| ≤ C|ΨN (y)− ψ(y)|,

where C = exp M . This gives the uniform convergence of V N to v as N →∞.
¤

Our last result shows that the LS approximations converge uniformly in the scalar case. This
is due to the fact that in the scalar case the equalities (22) are fulfilled.

Theorem 7 Let the target function v be continuous on Ω = [A, B] (A > B > 0) and ψ = log v.
Assume that the sequence of partitions {∆N

i }N
i=1 (N = 1, 2, ...) of ∆ = [a, b] (a = log A, b = log B)

has the property δN → 0 (N →∞).
Then for the corresponding LS approximations ΨN (in ∆) and V N (in Ω) we have

ΨN → ψ, V N → v (N →∞)

uniformly on ∆ (resp. on Ω).

The proof of the theorem follows directly from the previous theorem and the following lemma:

Lemma 3 Let a linear function l : [a, b] → R be the LS approximation of a C1 function ψ : [a, b] →
R on the entire interval [a, b]. Then there exist y0 ∈ [a, b] and c ∈ (a, b) such that

l(y0) = ψ(y0),
l′(c) = ψ′(c).
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Proof. Let us first prove the existence of y0. Assume the converse, i.e. that θ(y) 6= l(y) for all
y ∈ [a, b]. Let for instance θ(y) − l(y) > 0 for all y ∈ [a, b]. Put ε = min

y∈[a,b]
|θ(y) − l(y)| > 0. Then

the linear function l1(y) = l(y) + ε/2 satisfies the estimates l(y) < l1(y) < θ(y). Therefore

b∫

a

(θ(y)− l(y))2dy =

b∫

a

(θ(y)− l1(y))2dy + 2

b∫

a

(θ(y)− l1(y))
ε

2
dy +

b∫

a

ε2

4
dy

>

b∫

a

(θ(y)− l1(y))2dy.

This, however, contradicts the definition of the least squares approximations. The case θ(y)−l(y) <
0 is treated in a similar manner.

Assume now that l′(y) 6= θ′(y) for all y ∈ [a, b]. We shall prove that in this case the graph of
the scalar linear function l(y) intersects the graph of θ(y) in at least two points from the interval
[a, b].

From the first part of the proof we know that at least one intersection point does exist. Assume
that there is exactly one point d ∈ [a, b] such that l(d) = θ(d). Without loss of generality we may
assume that Θ′(d) > 0 where Θ(y) = θ(y) − l(y). Since Θ(d) = 0 and Θ(y) 6= 0 for all y 6= d, we
obtain that Θ(y) = θ(y) − l(y) < 0 for y < d and Θ(y) = θ(y) − l(y) > 0 for y > d (one of these
sets may be empty). Consider a new linear approximation given by l1(y) = l(y) + δ(y − d), where
a sufficiently small δ > 0 is chosen in such a way that the graphs of the functions θ(y) and l1(y)
have still one intersection point in [a, b] (namely, d by construction).

It is easy to see that such a δ does exist. Indeed, in a vicinity U of the point d we have that
Θ′(y) 6= 0, so that for small δ > 0 we have θ′(y) > l′1(y), y ∈ U and hence d is the only intersection
point of the graphs of the functions θ(y) and l1(y) in U . Outside U , i.e. inside the compact set
[a, b]\U the continuous function Θ is non-zero, so that m = min

y∈U
Θ(y) > 0. Choosing δ > 0 in such

a way that max
y∈[a,b]

|l(y)− l1(y)| < m guarantees that the graphs of the functions θ and l1 meet only

in d.
We complete now our analysis of the scalar case observing that for such δ

∫ b

a

(θ(y)− l(y))2dy >

∫ b

a

(θ(y)− l1(y))2dy,

simply because the graph of l1 is closer to the graph of θ, than the graph of l. This contradicts
the assumption that l is the LS approximation of θ. We have therefore proved that there exists
c ∈ [a, b] such that Θ′(c) = 0. ¤

The main results of Sections 5 and 6 provide a mathematical justification of the piecewise power-
law approximations in two cases, which are of importance for applications, as both come from the
optimal polyhedral partitions of the operating domain in the Logarithmic space. This justification
consists in verification of the L2 convergence of the approximations so obtained. In addition, we
notice that the uniform convergence (at least in the one dimensional case) can be proved, if needed,
provided that some additional assumptions are put on the functions and the domains. However,
the uniform convergence, including convergence of the Filippov solutions of differential inclusions,
is beyond the scope of this paper and will be discussed in a separate publication. Instead, we now
will concentrate on a more practical solution of how piecewise approximations can be included
into differential equations. This approach, which is an alternative to the piecewise continuous
representation, is discussed in the next section.

6 Smoothing piecewise representations

In practice, piecewise representations may be difficult to use in a mathematical model. Also, data
from experiments may be incomplete, which makes it impossible to derive a complete piecewise
representation. At the best, i.e. when enough data points are available, piecewise functions will
have discontinuities at the boundary of each subregion. At the worst, data will be available only
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in some ranges, leading to piecewise representations that do not cover the full space of metabolite
values.

While the limitations of these incompleteness remains to be established in actual problems, it is
interesting to consider the problem of smoothing the piecewise representations obtained in a given
case. Machina et al. (Machina et al 2010) discussed this problem through the use of Filippov’s theory
(Filippov 1998). This theory provides a theoretical basis for the model and suggests possible ways
of a mathematical justification of the modeling paradigm. However, its straightforward application
is difficult and unpractical.

As an alternative, we will discuss a quite different approach known as ”the SC Formalism”
(Hernández-Bermejo et al 2000), which is defined via the representation

vr =

Vr

n+m∏

j=1

x
nrj

j

n+m∏

j=1

(
K

nrj

rj + x
nrj

j

)
, (24)

where nrj and Krj are real numbers.
The function in (24) accumulates two important properties widely observed in biological sys-

tems: saturation and cooperativity - see (Sorribas et al 2007) for more details. The piecewise
power-law representation does not possess these two properties, yet it has other convenient fea-
tures. In particular, the procedure of calculating the power-law representation is essentially linear
and can be automatized. We think therefore that the idea to use piecewise power-law approxima-
tions to derive the SC representation may be useful in application. Below we illustrate this idea
with a numerical example.

Example 2 Let us consider a target function of the form

v =
1

1 + e−β0−β1x
(25)

First, we will obtain the approximation of this function over the full range of values of S from 0
to saturation by a piecewise power-law in three segments (Figure 6). As expected, the result is good
enough although a discontinuity in the piecewise representation can be observed at the boundary
of each subregion. Using the piecewise representation as a target, a SC function can be fitted to the
resulting k piecewise representations obtained at each of the (ak, bk) regions by minimizing SSE

SSE =
∑

k

(∫ bk

ak

(
γkxfk − V xn

Kn + xn

)2

dx

)
(26)

In Figure 6 we show the obtained result compared to the piecewise and the original function.
The resulting SC representation smooths the piecewise representation and provides a close approx-
imation to the target function. Of course, if the number of regions in the piecewise representation
increases, results are closer to the actual function (Figure 7).

Similar results can be obtained from a piecewise representation derived from data points. In
Figure 8 we simulate a case in which data from two experiments are obtained. Here, the piecewise
representation provides an approximation to each data set, but a poor extrapolation is obtained
outside the data region. The SC Formalism can be used as an all-purpose function for obtaining
an approximation to the original function. As shown in Figure 8, the resulting SC representation
approximates with reasonable accuracy the target function.

As far as data points include saturation and information on other parts of the rate-substrate
curve, results are good and the resulting SC is an excellent approximation to the actual function.
Poor data sets may arise if few experiments are available or when the system behavior leads to
few variations on the rate-substrate region. In that case, it may be impossible to recover the
actual function (Figure 9). This emphasizes the importance of an appropriate experimental design.
However, depending on the complexity of the system, identifiability problems may arise even if
sufficiently many experiments are at hand (Srinath and Gunawan 2010).
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Fig. 6 The piecewise power-law (red) and the resulting SC (black) representations compared to the original func-
tion (blues). The number of regions is 3. (a) Piecewise approximation to the original function using the partition
(0,2), (2,3), (3,5). (b) Resulting power-law functions fitted within each region. (c) Piecewise representation. (d) SC
representation fitted to the piecewise representation
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Fig. 7 The piecewise power-law (red) and the resulting SC (black) representations compared to the original function
(blue). The number of regions is 4. (a) Piecewise approximation to the original function using the partition (0,1.5),
(1.5,2.5), (2.5,3), (3,5). (b) Resulting power-law functions fitted within each region. (c) Piecewise representation.
(d) SC representation fitted to the piecewise representation
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Fig. 8 The piecewise power-law (red) and the resulting SC (black) representations compared to the available data
set (dotted). (a) and (c) show two examples of piecewise approximations to each data set. (b) and (d) show the
corresponding SC approximations fitted to these regions. The number of regions is 2
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Fig. 9 The piecewise power-law (red) and the resulting SC (black) representations compared to the available data
set (dotted). The number of regions is 1 or 2. (a) and (c) show two examples of piecewise approximations to each
data set. (b) and (d) show the corresponding SC approximations fitted to these regions
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7 Conclusions

Piecewise representations may be very useful as a practical approximation to an unknown function.
In the work (Hernández-Bermejo et al 2000), it was shown that piecewise power-law representations
can easily fit experimental data that expand well over wide ranges that cannot be covered by a
single power-law. In this work, it is shown that these approximations converge to the target function
provided that the partitions satisfy some additional assumptions, for instance they are optimal in
the sense of (Ferrari-Trecate and Muselli 2002).

Of course, the quality and completeness of the experimental data will determine the appro-
priateness of the piecewise representation. If the function depends on several variables, it may be
difficult to effectively devise experiments that produce data expanding all the potential variable
ranges. Thus, at the best one may expect obtaining incomplete piecewise representations according
to the available experimental data.

We have demonstrated that the SC representation (Sorribas et al 2007) may be an excellent
complement to a piecewise power-law. By taking the piecewise representation as an approximation
to an unknown function, a SC function that fits the piecewise representation can be obtained. This
SC function smooths the piecewise representation and may provide a practical approximation to
the underlying unknown function.
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1. Introduction

During the last years, mathematicians have been intensively studying (see [1, 2]) perturbed
inclusions that are generated by the algebraic sum of the values of two multivalued map-
pings, one of which is decomposable. Many types of differential inclusions can be repre-
sented in this form (ordinary differential, functional differential, etc.). In the above-mentioned
papers, the authors investigated the solvability problem for such inclusions. Estimates for
the solutions were obtained similar to the estimates, which had been obtained by Filip-
pov for ordinary differential inclusions (see [3, 4]). The concept of quasisolutions is intro-
duced and studied. The density principle and the “bang-bang” principle are proven. In pa-
pers [5–8], the perturbed inclusions with internal and external perturbations are consid-
ered, and the conjecture that “small” internal and external perturbations can significantly
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change the solution set of the perturbed inclusion is proven. Let us remark that, in the
cited papers, the proofs of the obtained results essentially depend on the assumption that
the multivalued mapping, which generates the algebraic sum of the values, is decompos-
able. Therefore, these studies once again confirm V. M. Tikhomirov’s conjecture that decom-
posability is a specific feature of the space Ln1[a, b] and plays the same role as the con-
cept of convexity in Banach spaces. The decomposability is implicitly used in many fields
of mathematics: optimization theory, differential inclusions theory, and so forth. If a mul-
tivalued mapping is not necessarily decomposable, then the methods known for multival-
ued mappings cannot even be applied to the solvability problem of the perturbed inclu-
sion. Furthermore, in this case, the equality between the set of quasisolutions of the per-
turbed inclusion and the solution set of the perturbed inclusion with the decomposable
hull of the right-hand side fails. This equality for the ordinary differential inclusions was
proven by Ważewski (see [9]). The point is that, in this case, the closure (in the weak
topology of Ln1[a, b]) of the set of the values of this multivalued mapping does not coin-
cide with the closed convex hull of this set. As a result, we have that fundamental proper-
ties of the solution sets (the density principle and “bang-bang” principle) do not hold any
more (see [3, 10–13]). The situation cannot be improved even if the mapping in question is
continuous.

In this paper, we consider the initial value problem for a functional differential inclusion
with a multivalued mapping. We assume that this mapping is not necessarily decomposable.
Some mathematical models can naturally be described by such an inclusion. For instance, so
do certain mathematical models of sophisticated multicomponent systems of automatic con-
trol (see [14]), where, due to the failure of some devices, objects are controlled by different
control laws (different right-hand sides) with the diverse sets of the control admissible values.
This means that the object’s control law consists of a set of the controlling subsystems. These
subsystems may be linear as well as nonlinear. For example, this occurs in the control theory of
the hybrid systems (see [15–20]). Due to the failure of a device, the control object switches from
one control law to another. The control of an object must be guaranteed in spite of the fact that
failures (switchings) may take place any time. Therefore, the mathematical model should treat
all available trajectories (states) corresponding to all switchings. The generalized solutions of
the inclusion make up the set of all such trajectories. The concept of a generalized solution
should be then introduced and its properties should be studied.

We consider a functional differential inclusion with a Volterra-Tikhonov type (in the se-
quel simply Volterra type) multivalued mapping and we prove that for such an inclusion, the
theorem on existence and continuation of a local generalized solution holds true. This justifies
one of the requirements, which were formulated in the monograph of Filippov [4] for gener-
alized solutions of differential equations with discontinuous right-hand sides. In the present
paper, it is also proven that in the regular case, that is, when a multivalued mapping is de-
composable, a generalized solution coincides with an ordinary solution. At the same time, the
concept of a generalized solution discussed in the present paper does not satisfy all the re-
quirements that are usually put on generalized (in the sense of the monograph [4]) solutions
of differential equations with discontinuous right-hand sides. For instance, the limit of general-
ized (in the sense of the present paper) solutions is not necessarily a generalized solution itself.
The reason for that is that a multivalued mapping that determines a generalized solution (the
definition is given below) may not be closed in the weak topology of Ln1[a, b], as this mapping
is not necessarily convex-valued.
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2. Preliminaries

We start with the notation and some definitions. Let X be a normed space with the norm ‖·‖X.
Let BX[x, ε] be the closed ball in the space X with the center at x ∈ X and of radius ε > 0; if
ε = 0, then BX[x, 0] ≡ x. Let U ⊂ X. Then U is the closure of U, coU is the convex hull of U;
coU ≡ coU, extU is the set of all extreme points of U; extU = extU. Let ‖U‖X = sup u∈U‖u‖X.
Let Uε ≡ ⋃

u∈UB[u, ε] if ε > 0 and U0 ≡ U.
Let ρX[x;U] be the distance from the point x ∈ X to the set U in the space X; let

h+X[U1;U] ≡ sup x∈U1
ρX[x,U] be the Hausdorff semideviation of the set U1 from the set U;

let hX[U1;U] = max {h+X[U1;U];h+X[U;U1]} be the Hausdorff distance between the subsets U1

and U of X.
We denote by comp [X] (resp., comp [X∗]) the set of all nonempty compact subsets of X

(resp., the set of all nonempty, bounded, closed in the space X, and relatively compact in the
weak topology on the spaceX subsets ofX). Let 2X be the set of all nonempty bounded subsets
of X.

Let P be a system of subsets of X (a subset of X). We denote by Ω(P) the set of all
nonempty convex subsets of X, belonging to the system P (the set of all nonempty convex
subsets of X, belonging to P).

Let R
n be the space of all n-dimensional column vectors with the norm |·|. We denote

by Cn[a, b] (resp., Dn[a, b]) the space of continuous (resp., absolutely continuous) functions
x : [a, b] → R

n with norm ‖x‖Cn[a,b] = max {|x(t)| : t ∈ [a, b]} (resp., ‖x‖Dn[a,b] = |x(a)| +
∫b
a |ẋ(s)|ds). Let U ⊂ [a, b] be a measurable set μ(U) > 0 (μ—the Lebesgue measure). We

denote by Lnp(U) the space of all functions x : U → R
n such that (x(s))p is integrable (if p <∞)

and the space of all measurable, essentially bounded (if p = ∞) functions x : U → R
n with the

norms

‖x‖Lnp(U) =
(∫

U

∣
∣x(s)

∣
∣pds

)1/p

, ‖x‖Ln∞(U) = vraisup
s∈U

∣
∣x(s)

∣
∣, (2.1)

respectively.
Let Φ ⊂ Ln1[a, b]. The set Φ is called integrally bounded if there exists a function ϕΦ ∈

L1
1[a, b] such that |x(t)| ≤ ϕΦ(t) for each x ∈ Φ and almost all t ∈ [a, b]. The set Φ is said to

be decomposable if for each x, y ∈ Φ and every measurable set U ⊂ [a, b] the inclusion χ(U)x +
χ([a, b] \ U)y ∈ Φ holds, where χ(V ) is the characteristic function of the set V . We denote by
Q[Ln1[a, b]] (resp., Π[Ln1[a, b]]) the set of all nonempty, closed, and integrally bounded (resp.,
nonempty, bounded, closed, and decomposable) subsets of the space Ln1[a, b].

Let F : [a, b] → comp [Rn] be a measurable mapping. Then by definition, S(F) =
{y ∈ Ln1[a, b] : y(t) ∈ F(t) for almost all t ∈ [a, b]}. By C1

+[a, b] (resp., L1
+[a, b]), denote the

cone of all nonnegative functions of the space C1
1[a, b] (resp., L1

1[a, b]).
Let f : P → Q be a mapping between two partially ordered sets P and Q (the partial

order of both sets is denoted by ≤). The mapping f is isotonic if f(x) ≤ f(y), whenever x ≤ y.
In this paper, the expression “measurability of a single-valued function” is always used

in the sense of Lebesgue measurability and “measurability of a multivalued function” in the
sense of [21]. Let (T,Σ, μ) be a space with finite positive measure and let F be a multivalued
mapping from T to R

n. A set {xν(·)} (ν ∈ N) of measurable mappings from T to R
n is said to

approximate the multivalued mapping F if the set {t ∈ T | xν(t) ∈ F(t)} is measurable for any
ν ∈ N, and the set F(t) belongs to the closure of its intersection with the set

⋃
ν∈N

{xν(t)} for
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almost all t ∈ T. A multivalued mapping F from T to R
n is called measurable if there exists a

countable set of measurable mappings from T to R
n that approximates the mapping F.

Further, let us introduce the main characteristic properties of a set that is decomposable.

Lemma 2.1. Let Φ ∈ Π[Ln1[a, b]]. Then there exists a function u ∈ L1
1[a, b] such that |ϕ(t)| � u(t)

for each function ϕ ∈ Φ and almost all t ∈ [a, b].

Proof. Let ϕi ∈ Φ, i = 1, 2, . . . , be a sequence of functions such that

lim
i→∞

∥
∥ϕi

∥
∥
Ln1 [a,b]

= ‖Φ‖Ln1 [a,b]. (2.2)

Let us show that there exists a sequence of functions ϕ̃i ∈ Φ, i = 1, 2, . . . , such that the
equality (2.2) holds and

∣
∣ϕ̃1(t)

∣
∣ �

∣
∣ϕ̃2(t)

∣
∣ �

∣
∣ϕ̃3(t)

∣
∣ � · · · �

∣
∣ϕ̃i(t)

∣
∣ �

∣
∣ϕ̃i+1(t)

∣
∣ � · · · (2.3)

for almost all t ∈ [a, b].
Indeed, let ϕ̃1 = ϕ1 and ϕ̃i+1 = χ(Ui)ϕ̃i + χ([a, b \ Ui)ϕi+1, i = 1, 2, . . . , where Ui = {t ∈

[a, b] : |ϕ̃i(t)| � |ϕi+1(t)|}. Since Φ ∈ Π[Ln1[a, b]], we see that the sequence ϕ̃i ∈ Φ, i = 1, 2, . . . ,
has the following properties: for almost all t ∈ [a, b], the inequalities (2.3) hold and ‖ϕ̃i‖Ln1 [a,b] �
‖ϕi‖Ln1 [a,b] for each i = 1, 2, . . . . Hence, from this property and equality (2.2), it follows that the
sequence ϕ̃i, i = 1, 2, . . . , satisfies (2.2). Further, we consider a measurable function u : [a, b] →
[0,∞) defined by

u(t) = lim
i→∞

∣
∣ϕ̃i(t)

∣
∣. (2.4)

Since the set Φ is bounded, we see, using Fatou’s lemma (see [22]), that u ∈ L1
1[a, b]. Moreover,

by the definition of the function u and due to (2.2),
∫

U
u(t)dt = ‖Φ‖Ln1 (U) (2.5)

for every measurable set U ⊂ [a, b]. Now, let us show that the function u defined by (2.4)
satisfies the assumptions of the lemma. Indeed, if the contrary is true, then there exist a function
ϕ ∈ Φ and a measurable set U1 ⊂ [a, b] (μ(U1) > 0) such that |ϕ(t)| > u(t) for each t ∈ U1. This
implies that

∫

U1
|ϕ1(t)|dt >

∫

U1
u(t)dt, which contradicts (2.5). This completes the proof.

Lemma 2.2. Let Φ ∈ Π[Ln1[a, b]] and ϕi ∈ Φ, i = 1, 2, . . . , be a sequence that is dense in Φ. Further,
let a measurable set F : [a, b] → comp [Rn] be defined by

F(t) =
{
ϕi(t), i = 1, 2, . . .

}
. (2.6)

Then S(F) = Φ.

Proof. Since ϕi ∈ S(F) and the sequence ϕi, i = 1, 2, . . . , is dense in Φ, we have, due to the
closedness of the set Φ, the relation Φ ⊂ S(F). Let us prove that S(F) ⊂ Φ. Let x ∈ S(F). For
each k, i = 1, 2, . . . , put

Eki =
{

t ∈ [a, b] :
∣
∣x(t) − ϕi(t)

∣
∣ � 1

k

}

, (2.7)
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which are measurable sets. For i = 1, let Ẽk1 = Ek1 , and for i = 2, 3, . . . , let Ẽki = Eki \ ⋃ i−1
j=1E

k
j .

Then Ẽki
⋂
Ẽkj = ∅ if i /= j. By the definition of the mapping F : [a, b] → comp [Rn], for each

k = 1, 2, . . . , we have

μ

( ∞⋃

i=1

Ẽki

)

= b − a. (2.8)

Let xk : [a, b] → R
n, k = 1, 2, . . . , be a sequence of measurable functions such that

xk(t) =

⎧
⎪⎨

⎪⎩

ϕi(t) if t ∈ Ẽki , i = 1, 2, . . . , k,

ϕ1(t) if t ∈ [a, b] \
k⋃

i=1

Ẽki .
(2.9)

Since the set Φ is decomposable, we see that xk ∈ Φ for each k = 1, 2, . . . . Moreover, from
Lemma 2.1 and the definition of the set Ẽki , it follows that for the functions xk, k = 1, 2, . . . , we
have the estimates

∥
∥x − xk

∥
∥
Ln1 [a,b]

� b − a
k

+ 2
∫

[a,b]\∪ki=1Ẽ
k
i

u(t)dt, (2.10)

where u satisfies the assertions of Lemma 2.1. From (2.8) and (2.10), it follows that xk → x
in Ln[a, b] as k → ∞. Since the set Φ is closed, we have that x ∈ Φ. Hence S(F) ⊂ Φ. Thus
S(F) = Φ.

Lemma 2.3. Let measurable sets Fi : [a, b] → comp [Rn], i = 1, 2, . . . , be integrally bounded, then
S(F1(·)) ⊂ S(F2(·)) if and only if F1(t) ⊂ F2(t) for almost all t ∈ [a, b].

Proof. First of all, it is evident that if for almost all t ∈ [a, b], F1(t) ⊂ F2(t), then S(F1(·)) ⊂
S(F2(·)).

Let S(F1(·)) ⊂ S(F2(·)) and let ϕi ∈ Ln1[a, b], i = 1, 2, . . . , be a countable set, which is dense
in S(F1) and which approximates F1 : [a, b] → comp [Rn] (see [21]). Thus ϕi ∈ S(F2(·)) for each
i = 1, 2, . . . and by the definition of the set S(F2(·)), we have that {ϕi(t) : i = 1, 2, . . . } ⊂ F2(t)
for almost all t ∈ [a, b]. Since the sequence ϕi, i = 1, 2, . . . , approximates the map F1 : [a, b] →
comp [Rn], it follows from the previous inclusion that F1(t) ⊂ F2(t) for almost all t ∈ [a, b].

Corollary 2.4. LetΦ ∈ Π[Ln1[a, b]] and let Fi : [a, b] → comp [Rn], i = 1, 2, be measurable sets such
that Φ = S(F1) = S(F2). Then F1(t) = F2(t) for almost all t ∈ [a, b].

Remark 2.5. If Φ ∈ Π[Ln1[a, b]], then a measurable set F : [a, b] → comp [Rn], that satisfies
S(F) = Φ, uniquely determines the set Φ.

3. Decomposable hull of a set in the space of integrable functions

We introduce the concept of the decomposable hull of a set in the space Ln1[a, b]. We consider a
multivalued mapping that is not necessarily decomposable. For such a mapping, we construct
its decomposable hull and investigate topological properties of this hull.
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Definition 3.1. Let Φ be a nonempty subset of Ln1[a, b]. By decΦ, we denote the set of all finite
combinations

y = χ
(U1

)
x1 + χ

(U2
)
x2 + · · · + χ(Um

)
xm (3.1)

of elements xi ∈ Φ, i = 1, 2, . . . , m, where the disjoint measurable subsets Ui, i = 1, 2, . . . , m, of
the segment [a, b] are such that

⋃m
i=1Ui = [a, b].

Lemma 3.2. The set decΦ is decomposable for any nonempty set Φ ⊂ Ln1[a, b].

Proof. Let y1, y2 ∈ decΦ. Let also U ⊂ [a, b] be a measurable set. Without loss of generality, it
can be assumed that

yi = χ
(Ui

1

)
xi1 + χ

(Ui
2

)
xi2 + · · · + χ(Ui

m

)
xim, (3.2)

where xij ∈ Φ, j = 1, 2, . . . , m, i = 1, 2, and the measurable disjoint sets Ui
j ⊂ [a, b], j = 1, 2, . . . , m,

i = 1, 2, are such that [a, b] =
⋃m

j=1Ui
j , i = 1, 2, (if the number of summands in (3.2) is not the

same, we may use arbitrary functions multiplied by the characteristic functions of the empty
sets). Further, from the equality

χ(U)y1 + χ
(
[a, b] \ U)

y2 =
m∑

i=1

χ
(U ∩U1

i

)
x1
i +

m∑

i=1

χ
((
[a, b] \ U) ∩ U2

i

)
x2
i , (3.3)

it follows that χ(U)y1 + χ([a, b] \ U)y2 ∈ decΦ. Hence, the set decΦ is decomposable.

Remark 3.3. Note that even if a set Φ ⊂ Ln1[a, b] is bounded, the set decΦ is not necessarily
bounded. For example, let us check that

dec
[
BLnp[a,b][0, 1]

]
= Lnp[a, b]

(
p ∈ [1,∞)

)
. (3.4)

Indeed, let z ∈ Lnp[a, b] and ei, i = 1, 2, . . . , m, be measurable sets with the following properties:
ei ∩ ej = ∅ if i /= j, i, j = 1, 2, . . . , m,

⋃m
i=1ei = [a, b]; for each i = 1, 2, . . . , m, the inequality

∫

ei

∣
∣z(s)

∣
∣pds < 1 (3.5)

holds. Then zi = χ(ei)z ∈ BLnp[a,b][0, 1], i = 1, 2, . . . , m, and

z = χ
(
e1

)
z1 + χ

(
e2

)
z2 + · · · + χ(em

)
zm. (3.6)

Therefore, z ∈ dec [BLnp[a,b][0, 1]] and consequently, the equality (3.4) holds.

Remark 3.4. From (3.4), it follows that if a set Φ ⊂ Ln1[a, b] is relatively compact in the weak
topology of Ln1[a, b], then the set decΦ does not necessarily possess this property.

Remark 3.5. Note that if a set is convex in Ln1[a, b], then this set is not necessarily decomposable.
The ball BLn1 [a,b][0, 1] is an example of such a set.
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Remark 3.6. If a set Φ ⊂ Ln1[a, b] is integrally bounded, then by Lemma 2.2, for the set
decΦ ∈ Π[Ln1[a, b]], there exists a measurable and integrally bounded mapping FdecΦ :
[a, b] → comp [Rn] such that

decΦ = S
(
FdecΦ(·)

)
. (3.7)

Lemma 3.7. If a set Φ ⊂ Ln1[a, b] is decomposable, then decΦ = Φ.

Proof. Evidently, Φ ⊂ decΦ. We claim that decΦ ⊂ Φ. The proof is made by induction over
m. By the definition of the switching convexity, any expression (3.1) including two elements
x1, x2 ∈ Φ and two measurable sets U1,U2 ⊂ [a, b] belongs to Φ.

Suppose now that for m = k, the combination of the form (3.1) belongs to Φ. Let
x1, x2, . . . , xm+1 ∈ Φ and let U1,U2, . . . ,Um+1 ⊂ [a, b] be disjoint measurable sets such that
[a, b] =

⋃m+1
i=1 Ui. Let

z = χ
(U2 ∪ U1

)
x2 + χ

(U3
)
x3 + · · · + χ(Um+1

)
xm+1. (3.8)

By the inductive assumption, z ∈ Φ and therefore χ(U1)x1 + χ([a, b] \ U1)z ∈ Φ. Since

χ
(
[a, b] \ U1

)
z = χ

(U2
)
x2 + χ

(U3
)
x3 + · · · + χ(Um+1

)
xm+1, (3.9)

we have that

χ
(U1

)
x1 + χ

(U2
)
x2 + · · · + χ(Um+1

)
xm+1 ∈ Φ. (3.10)

Hence decΦ ⊂ Φ. This concludes the proof.

Corollary 3.8. If Φ ⊂ Ln1[a, b], then the set decΦ is the minimal set which is decomposable and which
contains Φ.

Proof. Consider any set U ⊂ Ln1[a, b] which is decomposable and which satisfies Φ ⊂ U. Then,
by Lemma 3.7, we have Φ ⊂ decΦ ⊂ decU = U.

Lemma 3.9. If a set Φ ⊂ Ln1[a, b] is convex, then so is the set decΦ ∈ Ln1[a, b].

Proof. Let y1, y2 ∈ decΦ be given by the formula (3.2). It follows from the convexity of the set
Φ ⊂ Ln1[a, b] and the equality

λy1 + (1 − λ)y2 =
m∑

i,j=1

χ
(U1

i ∩ U2
j

)(
λx1

i + (1 − λ)x2
j

)
(3.11)

that λy1 + (1 − λ)y2 ∈ decΦ for any λ ∈ [0, 1]. Thus, the set decΦ is convex.

Similar to the definition of the convex hull in a normed space, the set decΦ will, in the
sequel, be called the decomposable hull of the setΦ in the space of integrable functions, or simply the
decomposable hull of the set Φ. Likewise, decΦ is addressed as the closed decomposable hull of the
set Φ.
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Remark 3.10. If Φ ∈ Q[Ln1[a, b]], then the closed decomposable hull of the set Φ (the set decΦ)
can be constructed as described in Remark 3.6. To do it, one needs a measurable and integrally
bounded (see Remark 3.6) mapping FdecΦ : [a, b] → comp [Rn] that satisfies (3.7). Note that
finding this mapping FdecΦ is easier than constructing the set decΦ. At the same time, when
one studies the metrical relations between the sets Φ1,Φ2 ⊂ Ln1[a, b] and their decomposable
hulls (see Lemma 3.12), it is more convenient to use Definition 3.1.

Lemma 3.11. Let v ∈ Ln1(U) (U ⊂ [a, b]) and let a set Φ ⊂ Ln1[a, b] be decomposable. Then for any
disjoint measurable sets U1,U2 ⊂ U such that U1 ∪ U2 = U, one has

ρLn1 (U)[v;Φ] = ρLn1 (U1)[v;Φ] + ρLn1 (U2)[v;Φ]. (3.12)

Proof. Indeed, let ε > 0 and y ∈ Φ satisfy ‖v − y‖Ln1 (U) < ρLn1 (U)[v;Φ] + ε. It follows from this
estimate that

ρLn1 (U1)[v;Φ] + ρLn1 (U2)[v;Φ] � ‖v − y‖Ln1 (U1) + ‖v − y‖Ln1 (U2) < ρLn1 (U)[v;Φ] + ε. (3.13)

This yields

ρLn1 (U1)[v;Φ] + ρLn1 (U2)[v;Φ] � ρLn1 (U)[v;Φ]. (3.14)

Further, let us show that the opposite inequality is valid. Let yi ∈ Φ|Ui
, i = 1, 2, where

Φ|Ui
is the set of of all mappings from Φ, restricted to Ui, i = 1, 2, and suppose that the functions

yi, i = 1, 2, satisfy
∥
∥v − yi

∥
∥
Ln1 (Ui)

< ρLn1 (Ui)[v;Φ] +
ε

2
, i = 1, 2. (3.15)

Since the set Φ is decomposable, it follows that the map y : U → R defined by

y(t) =

{
y1(t) if t ∈ U1,

y2(t) if t ∈ U2
(3.16)

belongs to the set Φ|U. By (3.15), we have

ρLn1 (U)[v;Φ] � ‖v − y‖Ln1 (U) < ρLn1 (U1)[v;Φ] + ρLn1 (U2)[v;Φ] + ε. (3.17)

This implies that

ρLn1 (U)[v;Φ] � ρLn1 (U1)[v;Φ] + ρLn1 (U2)[v;Φ]. (3.18)

Comparing (3.14) and (3.18), we obtain (3.12).

Lemma 3.12. If Φ1,Φ2 ∈ Q[Ln1[a, b]] and there exists a function ω ∈ L1
+[a, b] such that

h+Ln1 (U)

[
Φ1;Φ2

]
�

∫

U
ω(s)ds (3.19)

for any measurable set U ⊂ [a, b], then

h+Ln1 (U)

[
decΦ1; decΦ2

]
�

∫

U
ω(s)ds (3.20)

for any measurable set U ⊂ [a, b].
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Proof. Let U ⊂ [a, b] be a measurable set, μ(U) > 0. Let z ∈ decΦ1 and zi ∈ Φ1, i = 1, 2, . . . , m.
Suppose also that the functions zi and disjoint measurable sets ẽi ⊂ [a, b], i = 1, 2, . . . , m, such
that [a, b] =

⋃m
i=1ẽi, satisfy the equality

z = χ
(
ẽ1

)
z1 + χ

(
ẽ2

)
z2 + · · · + χ(ẽm

)
zm. (3.21)

Further, by z, zi, i = 1, 2, . . . , m, we denote the restrictions of these functions to U and put
ei = ẽi ∩ U, i = 1, 2, . . . , m.

From (3.21) and Lemma 3.11, it follows that

ρLn1 (U)

[
z; decΦ2

]
=

m∑

i=1

ρLn1 (ei)
[
zi; decΦ2

]
�

m∑

i=1

ρLn1 (ei)
[
zi;Φ2

]
. (3.22)

From (3.19), we obtain that

ρLn1 (ei)
[
zi;Φ2

]
�

∫

ei

ω(s)ds (3.23)

for each i = 1, 2, . . . , m.
Therefore, (3.22) and (3.23) imply

ρLn1 (U)

[
z; decΦ2

]
�

∫

U
ω(s)ds. (3.24)

Since (3.24) holds for any z ∈ decΦ1, it follows from (3.24) that (3.20) holds as well.

Remark 3.13. Note that the function ω ∈ L1
+[a, b] (see (3.19)) provides a uniform with respect

to measurable sets U ⊂ [a, b] estimate for the Hausdorff semideviation of the set Φ1 from the
set Φ2.

Remark 3.14. The inequality (3.20) holds true even if the set decΦi is replaced with its closure
decΦi, i = 1, 2.

We say that a multivalued mapping Φ : Cn[a, b] → Q[Ln1[a, b]] is integrally bounded on a
set K ⊂ Cn[a, b] if the image Φ(K) is integrally bounded.

Let Φ : Cn[a, b] → Q[Ln1[a, b]]. We introduce an operator Φ̃ : Cn[a, b] → Π[Ln1[a, b]] by
the formula

Φ̃(x) = decΦ(x). (3.25)

Note that even if a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] is continuous, the mapping
Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25) may be discontinuous. To illustrate this, let us
consider an example.

Example 3.15. We define an integrable function ϕ : [0, 2] × [0, 1] × [0, 2] → R
1 by

ϕ(x, r)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if t ∈ [x, x + r] ∩ [0, 2], r /= 0,

0 if t∈ [x, x + r] ∩ [0, 2], r /= 0,

0 if r = 0.

(3.26)
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ϕ
(x
,r
)(
t) 1

x x + r 2
t

Figure 1

We also define a multivalued mapping Φ : [0, 1] → Q[L1
1[0, 2]] by the formula

Φ(r) =

⎧
⎪⎨

⎪⎩

⋃

x∈[0,2]
ϕ(x, r) if r /= 0,

0 if r = 0.
(3.27)

Note that

hL1
1[0,2]

[
Φ
(
r1
)
;Φ

(
r2
)]

=
∣
∣r1 − r2

∣
∣ (3.28)

for any r1, r2 ∈ [0, 1], but at the same time,

hL1
1[0,2]

[
Φ̃(0); Φ̃(r)

]
= 2 (3.29)

for any r ∈ (0, 1].

Using Lemma 3.12, we obtain the following continuity conditions for the operator Φ̃ :
Cn[a, b] → Π[Ln1[a, b]] given by (3.25).

Definition 3.16. Let U ⊂ Cn[a, b]. One says that a mapping P : U ×U → L1
+[a, b] is symmetric

on the set U if P(x, y) = P(y, x) for any x, y ∈ U. One says that a mapping P : U×U → L1
+[a, b]

is continuous in the second variable at a point (x, x) belonging to the diagonal of U ×U if for
any sequence yi ∈ U such that yi → x as i → ∞ it holds that P(x, x) = lim i→∞P(x, yi). One
says that a mapping P : U ×U → L1

+[a, b] is continuous in the second variable on the diagonal
of U ×U if P is continuous in the second variable at each point of this diagonal. Continuity in
the fist variable is defined similarly.

Definition 3.17. Let U ⊂ Cn[a, b]. Suppose also that P(x, x) = 0 for any x ∈ U. One says that a
mapping P : U × U → L1

+[a, b] has property A on the set U if it is continuous in the second
variable on the diagonal of U ×U; it has property B on the set U if it is continuous in the first
variable on the diagonal of U × U; it has property C on the set U if it is continuous on the
diagonal of U ×U and symmetric on the set U.

Theorem 3.18. Let U ⊂ Cn[a, b]. Suppose also that for a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] there
exists a mapping P : U ×U → L1

+[a, b] such that

h+Ln1 (U)

[
Φ(x),Φ(y)

]
�

∥
∥P(x, y)

∥
∥
L1

1(U) (3.30)
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for any x, y ∈ U and any measurable setU ⊂ [a, b]. Then for the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]]
given by (3.25), the inequality (3.30), where Φ(·) ≡ Φ̃(·), is satisfied as well as for any x, y ∈ U and
any measurable set U ⊂ [a, b].

Corollary 3.19. If the mapping P : U ×U → L1
+[a, b] in Theorem 3.18 has property A (resp., B, C)

on the set U ⊂ Cn[a, b], then the operator Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25) is Hausdorff
lower semicontinuous (resp., Hausdorff upper semicontinuous, Hausdorff continuous) on the set U ⊂
Cn[a, b].

We say that the mapping P : U × U → L1
+[a, b] satisfying the inequality (3.30) for any

measurable set U ⊂ [a, b] is a majorant mapping for Φ : Cn[a, b] → Q[Ln1[a, b]] on the set U.
Let a mapping Fi : [a, b] × R

n → comp [Rn], i = 1, 2, be measurable as a composite
function for every x ∈ Cn[a, b]. Let also Fi be integrally bounded for every bounded setK ⊂ R

n.
Consider a mapping M : Cn[a, b] → Q[Ln1[a, b]] given by

M(x) = N1(x) ∪N2(x), (3.31)

where the mapping Ni : Cn[a, b] → Π[Ln1[a, b]], i = 1, 2, is the Nemytskii operator gener-
ated by the mapping Fi : [a, b] × R

n → comp [Rn], i = 1, 2. For the operator M : Cn[a, b] →
Q[Ln1[a, b]] given by (3.31), the majorant mapping P̃ : Cn[a, b] × Cn[a, b] → L1

+[a, b] can be
defined as

P̃(x, y)(t) = max
{
h+

[
F1

(
t, x(t)

)
; F1

(
t, y(t)

)]
; h+

[
F2

(
t, x(t)

)
;F2

(
t, y(t)

)]}
. (3.32)

It follows from Theorem 3.18 that the operator P̃(·, ·) given by (3.32) is also a majorant
mapping for the mapping M̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25), where Φ(·) ≡ M(·). If
the mapping Fi : [a, b] × R

n → comp [Rn], i = 1, 2, is Hausdorff lower semicontinuous (resp.,
Hausdorff upper semicontinuous and Hausdorff continuous) in the second variable, then by
Corollary 3.19, the mapping M̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25) is Hausdorff lower
semicontinuous (resp., Hausdorff upper semicontinuous and Hausdorff continuous).

Definition 3.20. One says that a multivalued mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property
A (resp., B and C) if for this mapping there exists a majorant mapping P : Cn[a, b]×Cn[a, b] →
L1
+[a, b] satisfying Property A (resp., B and C).

4. Basic properties of generalized solutions of functional differential inclusions

Using decomposable hulls, we introduce in this section the concept of a generalized solution
of a functional differential inclusion with a right-hand side which is not necessarily decom-
posable. Using, as mentioned in Section 3, basic topological properties of a mapping given by
(3.25), we study the properties of a generalized solution of the initial value problem.

Consider the initial value problem for the functional differential inclusion

ẋ ∈ Φ(x), x(a) = x0
(
x0 ∈ R

n), (4.1)

where the mapping Φ : Cn[a, b] → Q[Ln1[a, b]] satisfies the following condition: for every
bounded set U ⊂ Cn[a, b], the image Φ(U) is integrally bounded. Note that the right-hand side
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of the inclusion (4.1) is not necessarily decomposable. Note also that ẋ in (4.1) is not treated as
a derivative at a point but as an element of Ln1[a, b] (see [10, 23–25]). When we study such a
problem, there may appear some difficulties described in the introduction. In this connection,
we will introduce the concept of a generalized solution of the problem (4.1) and study the
properties of this solution. Using the Nemytskii operator, which is decomposable, the initial
value problem for a classical differential inclusion, that is, one without delay (see [10, 23–25]),
can be reduced to (4.1).

Definition 4.1. An absolutely continuous function x : [a, b] → R
n is called a generalized solu-

tion of the problem (4.1) if

ẋ ∈ decΦ(x), x(a) = x0
(
x0 ∈ R

n). (4.2)

Note that from Lemma 3.7, it follows that if the set Φ(x) (see(4.1)) is decomposable, then
a generalized solution of the problem (4.1) coincides with a classical solution.

Example 4.2. Consider an ordinary differential equation, x ∈ [0, 1],

ẋ = kx, x(0) = 1. (4.3)

Its solution is the function x = ekt.
We assume that the parameter k may take two values: 1 or 2. Then the trajectories of

such a system are described by the differential inclusion

ẋ ∈ Φ(t)x(t), x(0) = 1, (4.4)

where Φ(t) is a multivalued function with the values from the set {1, 2}. Note that
decΦ(t) = Φ(t), that is, the set in the right-hand side of the inclusion is decomposable. In
this case, a generalized solution of the inclusion coincides with a classical solution.

The latter differential inclusion describes the model that is controlled by the differential
equation either with the parameter value k = 1 or with the parameter value k = 2. In this
model, switchings from one law (equation) to another may take place any time.

In the limit case, all possible solutions fill entirely the set of all points between the graphs
of the functions et and e2t.

Example 4.3. Consider a simple pendulum. It consists of a mass m hanging from a string of
length l and fixed at a pivot point P . When displaced to an initial angle and released, the
pendulum will swing back and forth with periodic motion. The equation of motion for the
pendulum is given by

ẍ = −a sin x, (4.5)

where x(t) is the angular displacement at the moment t, a = g/l, g is the acceleration of gravity,
and l is the length of the string.

If the amplitude of angular displacement is small enough that the small angle approx-
imation holds true, then the equation of motion reduces to the equation of simple harmonic
motion

ẍ = −ax. (4.6)
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Figure 2: The solution of the differential inclusion that corresponds to switching from k = 1 (control law 1)
to k = 2 (control law 2) at the moment t = 1/2.
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Figure 3: The solution of the differential inclusion that corresponds to two switchings: from k = 1 to k = 2
at the moment t = 1/4 and from k = 2 to k = 1 at the moment t = 1/2.

Let us now assume that the length of the string l may change, that is, it may take an value from
a finite set {l1, . . . , lm}. In this case, the equation of simple harmonic motion transforms to the
differential inclusion with a multivalued mapping

ẍ ∈ Φ(x), (4.7)

where Φ(x) =
⋃m

i=1 − (g/li)x.
We assume that switching from one length (equation) to another may take place any

time. Then the generalized solutions of the inclusion treat all available trajectories (states) cor-
responding to all switchings.

Definition 4.4. An operator Φ : Cn[a, b] → Q[Ln1[a, b]] is called a Volterra-Tikhonov (or simply
a Volterra) operator (see [26]) if the equality x = y on [a, τ], τ ∈ (a, b], implies (Φ(x))|τ =
(Φ(y))|τ , where (Φ(z))|τ is the set of all functions from Φ(z) restricted to [a, τ].
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In what follows, we assume that the operator Φ : Cn[a, b] → Q[Ln1[a, b]] (the right-hand
side of the inclusion (4.1)) is a Volterra operator. This implies that the operator Φ̃ : Cn[a, b] →
Q[Ln1[a, b]] given by (3.25) is also a Volterra operator.

Let τ ∈ (a, b]. Let us determine the continuous mapping Vτ : Cn[a, τ] → Cn[a, b] by

(
Vτx

)
=

{
x(t) if t ∈ [a, τ],

x(τ) if t ∈ (τ, b].
(4.8)

Definition 4.5. One says that an absolutely continuous function x : [a, τ] → R
n is a generalized

solution of the problem (4.1) on the interval [a, τ], τ ∈ (a, b], if x satisfies ẋ ∈ (decΦ(Vτ(x)))|τ
and x(a) = x0, where the continuous mapping Vτ : Cn[a, τ] → Cn[a, b] is given by (4.8).

A function x : [a, c) → R
n, which is absolutely continuous on any interval [a, τ] ⊂ [a, c),

c ∈ (a, b], is called a generalized solution of the problem (4.1) on the interval [a, c) if for each
τ ∈ (a, c) the restriction of x to [a, τ] is a generalized solution of the problem (4.1) on the
interval [a, τ].

A generalized solution x : [a, c) → R
n of the problem (4.1) on the interval [a, c) is said

to be nonextendable if there is no generalized solution y of the problem (4.1) on any larger
interval [a, τ] (here, τ ∈ (c, b] if c < b and τ = b if c = b) such that x(t) = y(t) for each t ∈ [a, c).

In Theorems 4.6–4.12 below, we assume that the mapping Φ : Cn[a, b] → Q[Ln1[a, b]]
has Property A. Due to Corollary 3.19, the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25)
is lower semicontinuous. Due to [27, 28], the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] admits a
continuous selection. Therefore, the following propositions on local solutions of the problem
(4.1) are straightforward.

Theorem 4.6. There exists τ ∈ (a, b] such that a generalized solution of the problem (4.1) is defined
on the interval [a, τ].

Theorem 4.7. A generalized solution x : [a, c) → R
n of the problem (4.1) admits a continuation if and

only if lim t→c−0|x(t)| <∞.

Theorem 4.8. If y is a generalized solution of the problem (4.1) on the interval [a, τ], τ ∈ (a, b), then
there exists a nonextendable solution x of the problem (4.1) defined on the interval [a, c) (c ∈ (τ, b]),
or on the entire interval [a, b], such that x(t) = y(t) for each t ∈ [a, τ].

Let H(x0, τ) be the set of all generalized solutions of the problem (4.1) on the interval
[a, τ] (τ ∈ (a, b]).
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We say that generalized solutions of the problem (4.1) admit a uniform a priori estimate
if there exists a number r > 0 such that for every τ ∈ (a, b], there is no generalized solution
y ∈ H(x0, τ) satisfying ‖y‖Cn[a,τ] > r.

Theorems 4.6–4.8 yield the following result.

Theorem 4.9. Let the generalized solutions of the problem (4.1) admit a uniform a priori estimate.
ThenH(x0, τ)/=∅ for any τ ∈ (a, b] and there exists a number r > 0 such that ‖y‖Cn[a,τ] � r for any
τ ∈ (a, b], y ∈ H(x0, τ).

Definition 4.10. One says that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γ1 if there
exists an isotonic continuous operator Γ1 : C1

+[a, b] → L1
+[a, b] satisfying the following condi-

tions:

(i) for any function x ∈ Cn[a, b] and any measurable set U ⊂ [a, b], one has
∥
∥Φ(x)

∥
∥
Ln1 (U) �

∥
∥Γ1(Zx)

∥
∥
L1

1(U), (4.9)

where the continuous mapping Z : Cn[a, b] → C1
+[a, b] is given by

(Zx)(t) =
∣
∣x(t)

∣
∣; (4.10)

(ii) the local solutions of the problem

ẏ = Γ1(y), y(a) =
∣
∣x0

∣
∣ (4.11)

admit a uniform a priori estimate.

Lemma 4.11. Suppose that a multivalued mappingΦ : Cn[a, b] → Q[Ln1[a, b]] has Property Γ1. Then
so does the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25).

Proof. It suffices to show that
∥
∥decΦ(x)

∥
∥
Ln1 (U) �

∥
∥Γ1(Zx)

∥
∥
L1

1(U) (4.12)

for any function x ∈ Cn[a, b] and any measurable set U ⊂ [a, b]. Indeed, let a function y ∈
decΦ(x) be as in (3.1). By (4.9),

∫

Ui∩U

∣
∣xi(s)

∣
∣ds �

∥
∥Γ1(Zx)

∥
∥
L1

1(Ui∩U) (4.13)

for each i = 1, 2, . . . , m. Hence, we have that for the function y ∈ decΦ(x), the estimate
∫

U

∣
∣y(s)

∣
∣ds �

∥
∥Γ1(Zx)

∥
∥
L1

1(U) (4.14)

is satisfied as well. This gives the inequality (4.12). The proof is complete.

Let a continuous operator Θ : Dn[a, b] → C1
+[a, b] be given by

(Θz)(t) =
∣
∣z(a)

∣
∣ +

∫ t

a

∣
∣ż(s)

∣
∣ds. (4.15)
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Theorem 4.12. Suppose that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γ1. Then the set
H(x0, τ) is nonempty for any τ ∈ (a, b] and there exists a number r > 0 such that ‖y‖Cn[a,τ] � r for
any y ∈ H(x0, τ), τ ∈ (a, b].

Proof. Indeed, let x ∈ H(x0, τ) (τ ∈ (a, b]). From Lemma 4.11, it follows that for any t ∈ [a, τ],

(Θx)(t) �
∣
∣x0

∣
∣ +

∫ t

a

(
Γ1(Zx)

)
(s)ds �

∣
∣x0

∣
∣ +

∫ t

a

(
Γ1(Θx)

)
(s)ds, (4.16)

where the function Θx is given by (4.15). Due to the theorem on integral inequalities for an
isotonic operator (see [29]), this implies that we actually have Θx � ξ0, where ξ0 is the up-
per solution of the problem (4.11). Thus, there is no x ∈ H(x0, τ) satisfying the inequality
‖x‖Cn[a,τ] > ‖ξ0‖C1[a,b]. From this, it follows that the set of all local generalized solutions of
the problem (4.1) admits a uniform a priori estimate. Applying Theorem 4.9 completes the
proof.

Let a linear continuous operator Λ : Ln1[a, b] → Cn[a, b] be given by

(Λz)(t) =
∫ t

a

z(s)ds, t ∈ [a, b]. (4.17)

We say that Λ : Ln1[a, b] → Cn[a, b] is the operator of integration.

Theorem 4.13. Let the set of all local generalized solutions of the problem (4.1) admit a uniform a
priori estimate. Suppose also that Φ : Cn[a, b] → Q[Ln1[a, b]] has Property C. Then for any function
v ∈ Ln1[a, b] and any ε > 0, there exists a generalized solution x ∈ Dn[a, b] of the problem (4.1) such
that

∥
∥ẋ − v∥∥Ln1 (U) � ρLn1 (U)

[
v,decΦ(x)

]
+ εμ(U) (4.18)

for any measurable set U ⊂ [a, b].
If Φ : Cn[a, b] → Ω(Q[Ln1[a, b]]), then the theorem is also valid for ε = 0.

Proof. Let Φ : Cn[a, b] → Q[Ln1[a, b]] have Property C. Then by Corollary 3.19, the map-
ping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25) is continuous. Therefore (see [30–32]),
given a number ε > 0 and a function v ∈ Ln1[a, b], there exists a continuous mapping
ϕ : Cn[a, b] → Ln1[a, b] satisfying ϕ(y) ∈ Φ̃(y) and

∥
∥ϕ(y) − v∥∥Ln1 (U) � ρLn1 (U)

[
v,decΦ(y)

]
+ εμ(U) (4.19)

for any y ∈ Cn[a, b] and any measurable set U ⊂ [a, b]. It follows from Theorem 4.9 that
H(x0, τ)/=∅ for any τ ∈ (a, b], and that there exists a number r > 0 such that ‖y‖Cn[a,τ] � r
for each τ ∈ (a, b], y ∈ H(x0, τ). Now, we show that there exists x ∈ H(x0, b) satisfying (4.18).
Consider the problem

ẋ ∈ decΦ
(
Wr(x)

)
, x(a) = x0

(
x0 ∈ R

n), (4.20)
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where the continuous mapping Wr : Cn[a, b] → Cn[a, b] is given by

(
Wrx

)
(t) =

⎧
⎪⎨

⎪⎩

x(t) if
∣
∣x(t)

∣
∣ � r + 2,

r + 2
∣
∣x(t)

∣
∣
x(t) if

∣
∣x(t)

∣
∣ > r + 2.

(4.21)

We denote by H(W) the set of all solutions of the problem (4.20). Let us show that H(W) =
H(x0, b). It follows from the definition of the mapping Wr : Cn[a, b] → Cn[a, b] (see (4.21))
that H(x0, b) ⊂ H(W). Let us prove that H(W) ⊂ H(x0, b). Assume the converse. Then there
exists y ∈ H(W) such that ‖y‖Cn[a,b] > r+2. Since y(a) = x0,we have |y(a)| < r+2. This implies
that there exists a number τ ∈ (a, b] such that ‖y|τ‖Cn[a,τ] = r + 1 (y|τ is the restriction of the
function y to [a, τ]). By (4.21), we have y|τ ∈ H(x0, τ). This contradicts to the definition of the
number r. Hence, H(x0, b) = H(W). Consider a continuous operator Ψ : Cn[a, b] → Cn[a, b]
given by

Ψ(x) = x0 + Λϕ
(
Wr(x)

)
, (4.22)

where the operator Λ : Ln1[a, b] → Cn[a, b] is the operator of integration defined by (4.17), and
ϕ : Cn[a, b] → Ln1[a, b] is a continuous selection of the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]]
given by (3.25). The function ϕ ia also assumed to satisfy (4.19). Since the operator Wr :
Cn[a, b] → Cn[a, b] is bounded, we obtain that the image Ψ(Cn[a, b]) is a relatively compact
subset of Cn[a, b].Hence, the setU = coΨ(Cn[a, b]) is a convex compact set. Since the operator
Ψ : Cn[a, b] → Cn[a, b] given by (4.22) takes the set U into itself, we have, by Schauder theo-
rem, that the mapping Ψ(·) has a fixed point. This fixed point x is the solution of the problem
(4.20). It follows from the above equality H(W) = H(x0, b) that this solution x ∈ H(W) is a
generalized solution of the problem (4.1). Since ẋ = ϕ(x), we see that (4.19) implies (4.18).

Let us prove the second statement of the theorem. Let Φ : Cn[a, b] → Ω(Q[Ln1[a, b]]).
Suppose also that Φ has Property C. Then by Lemma 3.9, Φ̃ : Cn[a, b] → Ω(Π[Ln1[a, b]]).Hence
for each i = 1, 2, . . . , there exists a generalized solution xi ∈ Dn[a, b] of the problem (4.1) such
that for any measurable set U ⊂ [a, b], the inequality (4.18) is valid for ẋ = ẋi and ε = 1/i.
Since the set H(x0, b) is bounded, we see that the sequence {ẋi} is weakly compact in Ln1[a, b].
Without loss of generality, it can be assumed that ẋi → ẋ weakly in Ln1[a, b] and xi → x in
Cn[a, b] as i → ∞. Let us show that x is a generalized solution of the problem (4.1). In other
words, we have to prove that ẋ ∈ decΦ(x). Assume that the functions yi ∈ decΦ(x), i =
1, 2, . . . , satisfy

∥
∥yi − ẋi

∥
∥
Ln1 [a,b]

= ρLn1 [a,b]
[
ẋi; decΦ(x)

]
(4.23)

(as decΦ(x) ∈ Π[Ln1[a, b]], these functions do exist). It follows from (4.23) that

∥
∥yi − ẋi

∥
∥
Ln1 [a,b]

� hLn1 [a,b]
[
decΦ

(
xi
)
; decΦ(x)

]
. (4.24)

Since the mapping Φ̃ : Cn[a, b] → Ω(Π[Ln1[a, b]]) given by (3.25) is continuous, we obtain, by
(4.24), that yi − ẋi → 0 in Ln1[a, b] as i → ∞. Since ẋi → ẋ weakly in Ln1[a, b] as i → ∞, we have
that yi → ẋ weakly in Ln1[a, b] as i → ∞. Therefore, the convexity of the set decΦ(x) implies
that ẋ ∈ decΦ(x) (see [21]). Thus, x is a generalized solution of the problem (4.1).
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Further, let us show that (4.19) holds for the solution x and for ε = 0. Since ẋi → ẋ
weakly in Ln1[a, b] as i → ∞, we have, by [21], that for each m = 1, 2, . . . , there exist numbers
i(m), λmj � 0, j = 1, 2, . . . , i(m), satisfying the following conditions:

∑ i(m)
j=1 λ

m
j = 1; the sequence

{βm =
∑ i(m)

j=1 λ
m
j ẋj+m} tends to ẋ in Ln1[a, b]. Since

∥
∥ẋ − v∥∥Ln1 [a,b]

�
∥
∥ẋ − βm

∥
∥
Ln1 [a,b]

+
i(m)∑

j=1

λmj
∥
∥ẋj+m − v∥∥Ln1 [a,b]

(4.25)

for each m = 1, 2, . . . , it follows, due to the choice of the sequence {ẋi}, that

∥
∥ẋ − v∥∥Ln1 [a,b]

�
∥
∥ẋ − βm

∥
∥
Ln1 [a,b]

+
i(m)∑

j=1

λmj ρLn1 [a,b]
[
v; decΦ

(
xj+m

)]
+ (b − a)

i(m)∑

j=1

λmj
1

j +m
(4.26)

for each m = 1, 2, . . . .
Since

lim
i→∞

ρLn1 [a,b]
[
v; decΦ

(
xi
)]

= ρLn1 [a,b]
[
v; decΦ(x)

]
, (4.27)

it follows that letting m→ ∞ in the previous inequality, we obtain

∥
∥ẋ − v∥∥Ln1 [a,b]

= ρLn1 [a,b]
[
v; decΦ(x)

]
. (4.28)

Finally, note that by the decomposability of the set decΦ(x), this equality holds for any mea-
surable set U ⊂ [a, b]. This completes the proof.

Theorems 4.12 and 4.13 yield the following result.

Corollary 4.14. Suppose that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Properties Γ1 and C. Then
for any function v ∈ Ln1[a, b] and any ε > 0, there exists a generalized solution x ∈ Dn[a, b] of the
problem (4.1) such that (4.18) holds for any measurable set U ⊂ [a, b].

If Φ : Cn[a, b] → Ω(Q[Ln1[a, b]]), then the corollary is also valid for ε = 0.

Remark 4.15. Consider the convex compact set U = co Ψ̃(Cn[a, b]) ⊂ Cn[a, b], where the map-
ping Ψ̃ : Cn[a, b] → 2Cn[a,b] is given by

Ψ̃(x) = x0 + ΛΦ̃
(
Wr(x)

)
. (4.29)

Here, the operators Φ̃ : Cn[a, b] → Π[Ln1[a, b]] and Wr : Cn[a, b] → Cn[a, b] are determined by
(3.25) and (4.21), respectively. If a number r > 0 is such that ‖y‖Cn[a,τ] � r for any τ ∈ (a, b],
y ∈ H(x0, τ), then due to the the coincidence of the sets H(W) and H(x0, b) (see the proof of
Theorem 4.13), H(x0, b) ⊂ U.

Definition 4.16. Given ε ≥ 0, p ≥ 0, u ∈ L1
+[a, b], one says that a mapping Φ : Cn[a, b] →

Q[Ln1[a, b]] has Property Γu,ε,p2 if there exists an isotonic and continuous Volterra operator Γ2 :
C1

+[a, b] → L1
+[a, b] satisfying the following conditions:



Anna Machina et al. 19

(i) Γ2(0) = 0;
(ii) for any functions x, y ∈ Cn[a, b] and any measurable set U ⊂ [a, b], one has

hLn1 (U)
[
Φ(x);Φ(y)

]
�

∥
∥Γ2

(
Z(x − y))∥∥L1

1(U), (4.30)

where the continuous mapping Z : Cn[a, b] → C1
+[a, b] is determined by (4.10);

(iii) the set of all local solutions of the problem

ẏ = u + ε + Γ2(y), y(a) = p, (4.31)

admits a uniform a priori estimate.

Given y ∈ Dn[a, b] and κ ∈ L1
+[a, b], the following estimate will be used in the sequel:

ρLn1 (U)

[
ẏ;Φ(y)

]
�

∫

U
κ(s)ds (4.32)

for each measurable set U ⊂ [a, b].

Theorem 4.17. Let functions y ∈ Dn[a, b] and κ ∈ L1
+[a, b] satisfy the inequality (4.32) for each

measurable set U ⊂ [a, b]. Suppose that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γκ,ε,p

2 ,
where ε � 0, p = |x0−y(a)|, and x0 is the initial condition of the problem (4.1). Then for any generalized
solution of the problem (4.1) satisfying

∥
∥ẋ − ẏ∥∥Ln1 (U) � ρLn1 (U)

[
ẏ; decΦ(x)

]
+ εμ(U) (4.33)

for any measurable set U ⊂ [a, b], the following conditions are satisfied:

(1)

Θ(x − y)(t) � ξ(κ, ε, p)(t) (4.34)

for each t ∈ [a, b], where the function ξ(κ, ε, p) ∈ D1[a, b] is the upper solution of the problem
(4.31) for u = κ and p = |x0 − y(a)|, and the mapping Θ : Dn[a, b] → C1

+[a, b] is given by
(4.15);
(2)

∣
∣ẋ(t) − ẏ(t)∣∣ � κ(t) + ε +

(
Γ2

(
ξ(κ, ε, p)

))
(t) (4.35)

for almost all t ∈ [a, b].

Proof. First, note that since the mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γκ,ε,p

2 , it
follows from Theorem 3.18 that so does the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] determined
by (3.25). Further, the inequality (4.33) yields that

∥
∥ẋ − ẏ∥∥Ln1 (U) � ρLn1 (U)

[
ẏ; decΦ(y)

]
+ hLn1 (U)

[
decΦ(y); decΦ(x)

]
+ εμ(U) (4.36)

for any measurable set U ⊂ [a, b].
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Remark 4.15 and relations (4.36), (4.32), and (4.30) imply that for any measurable set
U ⊂ [a, b], we obtain the inequality

∥
∥ẋ − ẏ∥∥Ln1 (U) �

∫

U

(
κ(s) + ε + Γ2

(
Z(x − y))(s))ds, (4.37)

where the mapping Z : Cn[a, b] → C1
+[a, b] is given by (4.10). It follows from this inequality

that

∣
∣ẋ(t) − ẏ(t)∣∣ � κ(t) + ε + Γ2

(
Z(x − y))(t) (4.38)

for almost all t ∈ [a, b]. Since Z(x − y)(t) � Θ(x − y)(t) for all t ∈ [a, b] (see (4.10), (4.15)) and
the operator Γ2 : C1

+[a, b] → L1
+[a, b]] (see (4.38)) is isotonic, we have that

∣
∣ẋ(t) − ẏ(t)∣∣ = Θ̇(x − y)(t) � κ(t) + ε + Γ2

(
Θ(x − y))(t) (4.39)

for almost all t ∈ [a, b]. Therefore, (4.39) and the theorem on differential inequalities with an
isotonic operator (see [29]) imply (4.34) for any t ∈ [a, b]. The inequality (4.35) follows from
(4.34) and (4.39). The proof is complete.

Theorems 4.13 and 4.17 yield the following result.

Theorem 4.18. Let functions y ∈ Dn[a, b] and κ ∈ L1
+[a, b] satisfy (4.32) for each measurable set

U ⊂ [a, b]. Suppose that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γκ,ε,p

2 , where ε ≥ 0,
p = |x0−y(a)|, x0 is the initial condition in the problem (4.1). Let the set of all local generalized solutions
of the problem (4.1) admit a uniform a priori estimate. Then for ε > 0, there exists a generalized solution
x ∈ Dn[a, b] of the problem (4.1) which satisfies (4.34) and (4.35) for all t ∈ [a, b] and for almost all
t ∈ [a, b], respectively.

If Φ : Cn[a, b] → Ω(Q[Ln1[a, b]]), then the theorem is also valid for ε = 0.

Corollary 4.19. Let functions y ∈ Dn[a, b] and κ ∈ L1
+[a, b] satisfy (4.32) for each measurable set

U ⊂ [a, b]. Suppose that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has properties Γ1 and Γκ,ε,p

2 , where
ε ≥ 0, p = |x0 − y(a)|, x0 is the initial condition in the problem (4.1). Then for ε > 0, there exists a
generalized solution x ∈ Dn[a, b] of the problem (4.1)which satisfies (4.34) and (4.35) for all t ∈ [a, b]
and for almost all t ∈ [a, b], respectively.

If Φ : Cn[a, b] → Ω(Q[Ln1[a, b]]), then the corollary is also valid for ε = 0.

Remark 4.20. It follows from the proof of Theorem 4.17 that Theorems 4.17, 4.18, and
Corollary 4.19 are also valid if the functions y ∈ Dn[a, b] and κ ∈ L1

+[a, b] satisfy

ρLn1 (U)

[
ẏ; decΦ(y)

]
�

∫

U
κ(s)ds (4.40)

for each measurable set U ⊂ [a, b].

Definition 4.21. An absolutely continuous function x ∈ Dn[a, b] is called a generalized quasiso-
lution of the problem (4.1) if there exists a sequence of functions xi ∈ Dn[a, b], i = 1, 2, . . . , such
that the following conditions hold:
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(i) xi → x in Cn[a, b] as i→ ∞;
(ii) ẋi ∈ decΦ(x) and xi(a) = x0 for each i = 1, 2, . . . .

Note that by Lemma 3.7, if the set Φ(x) mentioned in Definition 4.21 is decomposable,
then a generalized quasisolution coincides with a quasisolution defined in [9, 33], where Φ(·)
is the Nemytskii operator. Note also that this definition of a generalized quasisolution differs
from the definition of a quasitrajectory given in [9, 33, 34] due to the condition ẋi ∈ decΦ(x).
Using Definition 4.21, we can obtain more general results on the properties of quasisolutions
(see Remark 4.23). Moreover, this definition is more suitable for applications.

Let H(x0) be the set of all generalized quasisolutions of the problem (4.1).
We define a mapping Φ̃co : Cn[a, b] → Ω(Π[Ln1[a, b]]) by the formula

Φ̃co(x) = co
(
decΦ(x)

)
. (4.41)

We call Φ̃co : Cn[a, b] → Ω(Π[Ln1[a, b]]) the convex decomposable hull.
Consider the problem (4.1) with the convex decomposable hull Φ̃co : Cn[a, b] →

Ω(Π[Ln1[a, b]]) given by (4.41) leading to

ẋ ∈ Φ̃co(x), x(a) = x0
(
x0 ∈ R

n). (4.42)

Let Hco(x0, τ) be the set of all solutions of the problem (4.42) on the interval [a, τ] (τ ∈
(a, b]).

Theorem 4.22. H(x0) = Hco(x0, b).

Proof. First, we will show that Hco(x0, b) ⊂ H(x0). Let x ∈ Hco(x0, b). By [35], for ẋ ∈
Ln1[a, b], there exists a sequence yi ∈ decΦ(x), i = 1, 2, . . . , such that yi → ẋ weakly in
Ln1[a, b] as i → ∞. This implies that xi = x0 + Λyi → x in Cn[a, b] as i → ∞, where
Λ : Ln1[a, b] → Cn[a, b] is the operator of integration (see (4.17)). Hence, Hco(x0, b) ⊂ H(x0).

Let us now prove that H(x0) ⊂ Hco(x0, b). Let x ∈ H(x0). Then there exists a sequence
xi ∈ Dn[a, b], i = 1, 2, . . . , satisfying the following conditions: (1) ẋi ∈ decΦ(x) (see (4.41))
and xi(a) = x0 for each i = 1, 2, . . . ; (2) xi → x in Cn[a, b] as i → ∞. Since the sequence ẋi,
i = 1, 2, . . . , is weakly compact, we can assume without loss of generality that ẋi → ẋ weakly
in Ln1[a, b] as i → ∞. Since ẋi ∈ Φ̃co(x) (see (4.41)), it follows that ẋ ∈ Φ̃co(x) (see [21]). Hence
x ∈ Hco(x0, b) and therefore H(x0) ⊂ Hco(x0, b).

Remark 4.23. Theorem 4.22 may still remain valid even if the mapping Φ : Cn[a, b] →
Q[Ln1[a, b]] is discontinuous and its image Φ(B) is not integrally bounded for every bounded
set B ⊂ Cn[a, b]. The proof of Theorem 4.22 is only based on the fact that every value of this
mapping is integrally bounded, rather than on the assumption that Φ is a Volterra operator.

Definition 4.24. One says that a compact convex set U ⊂ Cn[a, b] has Property D if H(x0) ⊂ U,
and for any x ∈ H(x0), there exists a sequence of absolutely continuous functions xi : [a, b] →
R
n, i = 1, 2, . . . , such that

(i) xi → x in Cn[a, b] as i→ ∞;
(ii) xi ∈ U, ẋi ∈ decΦ(x) and xi(a) = x0 for each i = 1, 2, . . . .
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Lemma 4.25. Suppose that the set of all local solutions of the problem (4.41) admits a uniform a priori
estimate. Then, there exists a setU ⊂ Cn[a, b] satisfying Property D.

Proof. It follows from Theorem 4.22 and Remark 4.15 that the set U = coΨ̃(Cn[a, b]) has Prop-
erty D. Here, the mapping Ψ̃ : Cn[a, b] → 2Cn[a,b] is determined by (4.29), where Φ̃(·) ≡
Φ̃co(·).

Lemma 4.26. Let sets Φi ∈ Π[Ln1[a, b]], i = 1, 2, satisfy Φi = S(Fi(·)), i = 1, 2, where Fi : [a, b] →
comp [Rn] are measurable mappings. Then for any measurable set U ⊂ [a, b], one has

hLn1 (U)
[
Φ1;Φ2

]
�

∫

U
h
[
F1(t);F2(t)

]
dt � 2hLn1 (U)

[
Φ1;Φ2

]
. (4.43)

Proof. Let U ⊂ [a, b] be a measurable set. Put

Ũ =
{
t ∈ U : h+

[
F1(t);F2(t)

] ≥ h+[F2(t);F1(t)
]}
. (4.44)

The set Ũ ⊂ U is measurable. Since
∫

U
h
[
F1(t);F2(t)

]
dt =

∫

Ũ
h+

[
F1(t);F2(t)

]
dt +

∫

U\Ũ
h+

[
F2(t);F1(t)

]
dt, (4.45)

we have
∫

U
h
[
F1(t);F2(t)

]
dt = h+

Ln1 (Ũ)

[
Φ1;Φ2

]
+ h+

Ln1 (U\Ũ)

[
Φ2;Φ1

]
. (4.46)

This implies (4.43), and the proof is completed.

Let F : [a, b] → comp [Rn] be a measurable mapping. Let a mapping coF : [a, b] →
comp [Rn] be defined by

(coF)(t) = co
(
F(t)

)
. (4.47)

Corollary 4.27. Let sets Φi ∈ Π[Ln1[a, b]], i = 1, 2, satisfy Φi = S(Fi(·)), i = 1, 2, where Fi : [a, b] →
comp [Rn] are measurable mappings. Then for any measurable set U ⊂ [a, b], one has

hLn1 (U)
[
co

(
Φ1

)
; co

(
Φ2

)]
� 2hLn1 (U)

[
Φ1;Φ2

]
. (4.48)

Proof. By [35], we have that co(Φi) = S(coFi(·)), i = 1, 2. Therefore,

hLn1 (U)
[
co

(
Φ1

)
; co

(
Φ2

)]
�

∫

U
h
[(

coF1
)
(t);

(
coF2

)
(t)

]
dt (4.49)

for any measurable set U ⊂ [a, b]. Since, for any measurable set U ⊂ [a, b],

∫

U
h
[(

coF1
)
(t);

(
coF2

)
(t)

]
dt �

∫

U
h
[(
F1

)
(t);

(
F2

)
(t)

]
dt, (4.50)

we obtain, due to (4.43), the inequality (4.48).
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Definition 4.28. One says that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γ3 if Property
Γ0,0,0

2 is satisfied and the following conditions hold:

(i) Γ2(0) = 0;
(ii) on every interval [a, τ] (τ ∈ (a, b]), there exists a unique zero solution of the problem
(4.31), where u = 0, ε = 0, p = 0.

Theorem 4.29. Suppose that the set of all local generalized solutions of the problem (4.1) admits a
uniform a priory estimate. Suppose also that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] satisfies Property
Γ3. Then,H(x0, b)/=∅ and

H
(
x0, b

)
= Hco

(
x0, b

)
, (4.51)

whereH(x0, b) is the closure of the setH(x0, b) in Cn[a, b].

Proof. Let us first prove that the set Hco(x0) is closed in Cn[a, b]. Indeed, suppose that a se-
quence xi ∈ Hco(x0), i = 1, 2, . . . , tends to x in Cn[a, b] as i → ∞. Since the sequence {ẋi} is
integrally bounded, it follows that xi ∈ Dn[a, b] and ẋi → ẋ weakly in Ln1[a, b] as i → ∞. For
each i = 1, 2, . . . , let the function zi ∈ Φ̃co(x) satisfy

∥
∥ẋi − zi

∥
∥
Ln1 [a,b]

= ρLn1 [a,b]
[
ẋi; Φ̃co(x)

]
, (4.52)

where Φ̃co : Cn[a, b] → Ω(Π[Ln1[a, b]]) is the convex decomposable hull given by (4.41). Since
the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25) is Hausdorff continuous, it follows
from (4.48) that so is the mapping Φ̃co(x) : Cn[a, b] → Ω(Π[Ln1[a, b]]). Therefore, (4.52) implies
that ẋi − zi → 0 in Ln1[a, b] as i → ∞. Hence, zi → ẋ weakly in Ln1[a, b] as i → ∞. Since the set
Φ̃co(x) is convex, we have (see [21]) that ẋ ∈ Φ̃co(x). Therefore, the set Hco(x0) is closed in
Cn[a, b].

Now, let us prove the equality (4.51). The closedness of the set Hco(x0) yields that
H(x0, b) ⊂ Hco(x0). Further, let us show that Hco(x0) ⊂ H(x0, b). Suppose x ∈ Hco(x0). Then
from Theorem 4.22, it follows that there exists a sequence yi ∈ Dn[a, b], i = 1, 2, . . . , such that
yi ∈ Φ̃(x), yi(a) = x0, i = 1, 2, . . . (x0 is the initial condition in the problem (4.1)) and yi → x in
Cn[a, b] as i → ∞. Since the mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property Γ3, we see that,
due to (4.30),

ρLn1 (U)

[
ẏi;Φ

(
yi

)]
� hLn1 (U)

[
Φ(x);Φ

(
yi

)]
�

∫

U

(
Γ2

(
Z
(
x − yi

)))
(s)ds (4.53)

for each i = 1, 2, . . . and any measurable set U ⊂ [a, b]. Here, the operator Z : Cn[a, b] →
C1

+[a, b] is given by (4.10). Since the mapping Γ2 : C1
+[a, b] → L1

+[a, b] is continuous and Γ2(0) =
0, we have that κi = Γ2(Z(x−yi)) → 0 in L1

1[a, b] as i→ ∞. Since the problem (4.31) with u = 0,
ε = 0, and p = 0 only has the zero solution on each interval [a, τ] (τ ∈ (a, b]), we see that the
set of all local solutions of the problem (4.31) with u = κi, ε = 1/i, and p = 0 admits a uniform
a priori estimate starting from some i = 1, 2, . . . (see [36]). Renumerating, we may assume
without loss of generality that this holds true for all i = 1, 2, . . . . This implies (see [29]) that for
each i = 1, 2, . . . , there exists the upper solution ξ(κi, 1/i, 0) of the problem (4.31) with u = κi,
ε = 1/i, and p = 0. Hence, it follows from Theorem 4.18 that for each i = 1, 2, . . . , there exists
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a generalized solution xi ∈ Dn[a, b] of the problem (4.1) satisfying Θ(xi − yi) � ξ(κi, 1/i, 0),
where the continuous operator Θ : Dn[a, b] → C1

+[a, b] is given by (4.15). Since ξ(κi, 1/i, 0) → 0
in C1[a, b] as i → ∞, we have that Θ(xi − yi) → 0 as i → ∞. Since yi → x in Cn[a, b] as
i → ∞, we see that xi → x in Cn[a, b] as i → ∞. Therefore, x ∈ H(x0, b) and consequently
Hco(x0) ⊂ H(x0, b). This yields (4.51). The proof is complete.

Corollary 4.30. Suppose that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Properties Γ1 and Γ3. Then
H(x0, b)/=∅ and the equality (4.51) is satisfied.

Remark 4.31. If the solution set of a differential inclusion with nonconvex multivalued map-
ping is dense in the solution set of the convexified inclusion, then such a property is called the
density principle. The density principle is a fundamental property in the theory of differential
inclusions (see [13]). Many papers (e.g., [3, 4, 6, 10–12, 23–25, 29–32, 37–39]) deal with the jus-
tification of the density principle. Theorem 4.29 and Corollary 4.30 justify the density principle
for the generalized solutions of the problem (4.1).

5. Generalized approximate solutions of the functional differential equation

Approximate solutions are of great importance in the study of differential equations and inclu-
sions (see [4, 40–43]). They are used in the theorems on existence (e.g., Euler curves) as well
as in the study of the dependence of a solution on initial conditions and the right-hand side
of the equation. In [40, 41], the definition of an approximate solution of a differential equation
with piecewise continuous right-hand side was given, using so-called internal and external
perturbations. This definition not only deals with small changes of the right-hand side within
its domain of continuity, but also with the small changes in the boundaries of these domains. A
more general definition of an approximate solution, which can be used not only for the study of
functional differential equations with discontinuous right-hand sides but also for differential
inclusions with upper semicontinuous convex right-hand sides, was given in [4]. In this paper,
the following important property was justified for such an inclusion: the limit of approximate
solutions is again a solution of functional differential inclusion. In the present paper, we in-
troduce various definitions of generalized approximate solutions of a functional differential
inclusion. The main difference of our definitions from the one given in [4] is that the values of
a multivalued mapping are not convexified. Due to this, the topological properties of the sets
of generalized approximate solutions are studied and the density principle is proven.

Since a generalized solution of the problem (4.1) is determined by the closed decom-
posable hull of a set, it is natural to raise the following question: how robust is the set of the
generalized solutions of (4.1) with respect to small perturbations of decΦ(x)? It follows from
Remark 3.10 that constructing decΦ(x) for each fixed x ∈ Cn[a, b] is equivalent to finding a
measurable, integrally bounded mapping Δx : [a, b] → comp [Rn] satisfying

decΦ(x) = S
(
Δx(·)

)
. (5.1)

The mapping Δx : [a, b] → comp [Rn] is, in the sequel, written as Δ : [a, b] × Cn[a, b] →
comp [Rn] and called a mapping generating the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by
(3.25).

Denote by K([a, b]×[0,∞)) the set of all continuous functions η : [a, b]×[0,∞) → [0,∞)
satisfying the following conditions:
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(1) for each δ � 0, η(·, δ) ∈ L1
1[a, b];

(2) for each δ � 0, there exists a function βδ(·) ∈ L1
1[a, b] such that η(t, τ) � βδ(t) for almost

all t ∈ [a, b] and all τ ∈ [0, δ];
(3) lim δ→0+0η(t, δ) = η(t, 0) = 0 for almost all t ∈ [a, b].

Since the mappings Δ(·, ·) and Φ(·) are related by the equality (5.1), we have that the
robustness of the set of the generalized solutions of (4.1) with respect to small perturbations
of decΦ(x) can be studied via the robustness properties of Δ. Assume that the perturbation
Δη(t, x, δ) (e.g., an error in measurements of Δ(t, x)) is given by

Δη(t, x, δ) =
(
Δ(t, x)

)η(t,δ)
, (5.2)

where η(·, ·) ∈ K([a, b]× [0,∞)) (here, (Δ(t, x))η(t,δ) is an η-neighborhood of the set Δ(t, x), see
Preliminaries).

Note that (5.2) yields

h
[
Δ(t, x);Δη(t, x, δ)

]
= η(t, δ) (5.3)

for all (t, x) ∈ [a, b] × Cn[a, b]. Thus, (5.3) implies that

lim
δ→+0

h
[
Δ(t, x);Δη(t, x, δ)

]
= 0 (5.4)

for each function η(·, ·) ∈ K([a, b]× [0,∞)), almost all t ∈ [a, b], and all x ∈ Cn[a, b]. Therefore,
all mappings Δη : [a, b] × Cn[a, b] × [0,∞) → comp [Rn] defined by (5.2) and depending on
η(·, ·) ∈ K([a, b] × [0,∞)) are close (in the sense of (5.4)) to the mapping Δ : [a, b] ×Cn[a, b] →
comp [Rn]. The mapping Δη : [a, b] ×Cn[a, b] × [0,∞) → comp [Rn] is called the approximating
operator.

We define a mapping Φ̃η : Cn[a, b] × [0,∞) → Π[Ln1[a, b]] by the formula

Φ̃η(x, δ) = S
(
Δη(·, x, δ)

)
, (5.5)

where the operator Δη : [a, b] × Cn[a, b] × [0,∞) → comp [Rn] is given by (5.2). The equalities
(5.3) and (5.5) imply that

hLn1 [a,b]
[
Φ̃η(x, δ); Φ̃(x)

]
=

∫b

a

η(t, δ)dt (5.6)

for any x ∈ Cn[a, b].
It follows from (5.6) and the Lebesgue theorem that

lim
δ→0+0

hLn1 [a,b]
[
Φ̃η(x, δ); Φ̃(x)

]
= 0. (5.7)

Thus, all mappings Φ̃η : Cn[a, b] × [0,∞) → Π[Ln1[a, b]] defined by (5.2) and (5.5) and
depending on η(·, ·) ∈ K([a, b] × [0,∞)) are close (in the sense of (5.7)) to the mapping Φ̃ :
Cn[a, b] → Π[Ln1[a, b]] given by (3.25).
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Lemma 5.1 (see [6]). Let X be a normed space and letU ⊂ X be a convex set. Then

hX
[
BX

[
x1, r1

] ∩U;BX
[
x2, r2

] ∩U]
�

∥
∥x1 − x2

∥
∥
X +

∣
∣r2 − r1

∣
∣ (5.8)

for all x1, x2 ∈ U and all r1, r2 > 0.

Denote by P(Cn[a, b] × [0,∞)) the set of all continuous functions ω : Cn[a, b] × [0,∞) →
[0,∞) such thatω(x, 0) = 0 for any x ∈ Cn[a, b] andω(x, δ) > 0 for any (x, δ) ∈ Cn[a, b]×(0,∞).

Let U ⊂ Cn[a, b] be a closed convex set and let ω(·, ·) ∈ P(Cn[a, b] × [0,∞)). We define a
multivalued mapping MU(ω) : U × [0,∞) → Ω(U) by

MU(ω)(x, δ) = BCn[a,b]
[
x,ω(x, δ)

] ∩U. (5.9)

The inequality (5.8) yields the following result.

Lemma 5.2. Let U ⊂ Cn[a, b] be a closed convex set and let ω(·, ·) ∈ P(Cn[a, b] × [0,∞)). Then, a
multivalued mappingMU(ω) : U × [0,∞) → Ω(U) given by (5.9) is Hausdorff continuous.

We define a mapping ϕU(ω) : [a, b] ×U × [0,∞) → [0,∞) by the formula

ϕU(ω)(t, x, δ) = sup
y∈MU(ω)(x,δ)

h
[
Δ(t, x);Δ(t, y)

]
, (5.10)

where the mapping MU(ω) : U × [0,∞) → Ω(U) is given by (5.9) and the mapping Δ :
[a, b] × Cn[a, b] → comp [Rn] generates the mapping Φ̃ given by (3.25).

It is natural to address the value of the function ϕU(ω)(·, ·, ·) at the point (t, x, δ) ∈ [a, b]×
U × [0,∞) as the modulus of continuity of the mapping Δ : [a, b] × Cn[a, b] → comp [Rn] at
the point (t, x) with respect to the variable x ∈ U. We call the function ω(·, ·) the radius of
continuity, while the function ϕU(·, ·, ·) itself is called the modulus of continuity of the mapping
Δ : [a, b] × Cn[a, b] → comp [Rn] with respect to the radius of continuity ω(·, ·).

Definition 5.3. One says that a mapping Φ : Cn[a, b] → Q[Ln[a, b]] has Property C̃ if the map-
ping Δ : [a, b] × Cn[a, b] → comp [Rn] generating the mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]]
given by (3.25) is Hausdorff continuous in the second variable for almost all t ∈ [a, b].

Lemma 5.4. Suppose that for a mapping Φ : Cn[a, b] → Q[Ln[a, b]], there exists an isotonic contin-
uous operator Γ : C1

+[a, b] → L1
+[a, b] satisfying the following conditions:

(i) Γ(0) = 0;
(ii) the inequality (4.30), where Γ2 ≡ Γ, is satisfied for any x, y ∈ Cn[a, b] and any measurable set
U ⊂ [a, b].

Then the mapping Φ(·) has Property C̃.

Proof. Let xi → x in Cn[a, b] as i→ ∞. Let us show that

lim
i→∞

h
[
Δ
(
t, xi

)
;Δ(t, x)

]
= 0 (5.11)

for almost all t ∈ [a, b].
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For each i = 1, 2, . . . , put yi = sup j�i‖xj − x‖Cn[a,b]. Due to Theorem 3.18, (4.43), and the
isotonity of the operator Γ : C1

+[a, b] → L1
+[a, b], for each i = 1, 2, . . . and almost all t ∈ [a, b],

we have

h
[
Δ
(
t, xi

)
;Δ(t, x)

]
� 2Γ

(
Z
(
xi − x

))
(t) � 2Γ

(
yi

)
(t). (5.12)

Since the sequence Γ(yi), i = 1, 2, . . . , decreases, we obtain, due to the continuity of the mapping
Γ(·) and the equality Γ(0) = 0, the equality (5.11). This completes the proof.

Lemma 5.5. Let U be a nonempty, convex, compact set in the space Cn[a, b] and let ω(·, ·) ∈
P(Cn[a, b] × [0,∞)). Suppose also that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property C̃.
Then the mapping ϕU(ω) : [a, b] ×U × [0,∞) given by (5.10) has the following properties:

(i) ϕU(ω)(·, x, δ) is measurable for any (x, δ) ∈ U × [0,∞);
(ii) ϕU(t, ·, ·) is continuous onU × [0,∞) for almost all t ∈ [a, b];
(iii) for any x ∈ U and for almost all t ∈ [a, b],

lim
z→x,δ→0+0

ϕU(ω)(t, x, δ) = 0; (5.13)

(iv) there exists an integrable function pU : [a, b] → [0,∞) such that ϕU(ω)(t, x, δ) � pU(t) for
almost all t ∈ [a, b], any x ∈ U, and all δ ∈ [0,∞).

Definition 5.6. Let U ⊂ Cn[a, b]. One says that the function η(·, ·) ∈ K([a, b] × [0,∞)) provides
on U a uniform with respect to the radius of continuity ω(·, ·) ∈ P(Cn[a, b] × [0,∞)) estimate
from above for the modulus of continuity of the mapping Δ : [a, b] × Cn[a, b] → comp [Rn]; if
for any ε > 0 there exists δ(ε) > 0 such that for almost all t ∈ [a, b], all x ∈ U, and δ ∈ (0, δ(ε)],
one has

ϕU(ω)(t, x, δ) � η(t, ε), (5.14)

where ϕU : [a, b] ×U × [0,∞) → [0,∞) is given by (5.10).

Let U ⊂ Cn[a, b] and ω(·, ·) ∈ P(Cn[a, b]× [0,∞)). One defines a function λU(ω) : [a, b]×
[0,∞) → [0,∞) by

λU(ω)(t, δ) = sup
x∈U

ϕU(ω)(t, x, δ). (5.15)

Lemma 5.1 yields the following result.

Corollary 5.7. Let U be a nonempty, convex, compact set in the space Cn[a, b] and let ω(·, ·) ∈
P(Cn[a, b] × [0,∞)). Suppose also that a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property C̃. Then
the mapping λU(ω) : [a, b]×[0,∞) → [0,∞) given by (5.15) belongs to the setK([a, b]×[0,∞)) and
provides a uniform (in the sense of Definition 5.6) estimate from above for the modulus of continuity of
the mapping Δ : [a, b] × Cn[a, b] → comp [Rn].

Remark 5.8. Corollary 5.7 yields that if U is a nonempty, convex, compact set in the space
Cn[a, b] and a mapping Φ : Cn[a, b] → Q[Ln1[a, b]] has Property C̃, then for a given ω(·, ·) ∈
P(Cn[a, b] × [0,∞)), there exists at least one function η(·, ·) ∈ K([a, b] × [0,∞)) that provides a
uniform (in the sense of Definition 5.6) estimate from above for the modulus of continuity of
the mapping Δ : [a, b] × Cn[a, b] → comp [Rn].
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Let η(·, ·) ∈ K([a, b] × [0,∞)). For each δ ∈ [0,∞), consider the initial value problem

ẋ ∈ Φ̃η(x, δ), x(a) = x0
(
x0 ∈ R

n), (5.16)

where the mapping Φ̃η : Cn[a, b] × [0,∞) → Π[Ln1[a, b]] is given by (5.1) and (5.5).
Since the operator Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25) is a Volterra operator, we

see that the mapping Δ : [a, b] × Cn[a, b] → comp [Rn] has the following property: if x = y
on [a, τ] (τ ∈ (a, b]), then Δ(t, x) = Δ(t, y) for almost all t ∈ [a, τ]. This property, (5.1), and
(5.4) imply that the operator Φ̃η : Cn[a, b]× [0,∞) → Π[Ln1[a, b]] is a Volterra operator for each
δ ∈ [0,∞).

Any solution of the problem (5.16) with a given δ > 0 is said to be a generalized δ-
solution (a generalized approximate solution with external perturbations) of the problem (4.1).
We denote by Hη(δ)(U) the set of all generalized δ-solutions of (4.1) belonging to U ⊂ Cn[a, b].

Theorem 5.9. Suppose that a set U ⊂ Cn[a, b] has Property D. Then for any function η(·, ·) ∈
K([a, b] × [0,∞)) that provides a uniform (in the sense of Definition 5.6) estimate from above for
the modulus of continuity of the mapping Δ : [a, b] × Cn[a, b] → comp [Rn], one has

Hco
(
x0, b

)
=

⋂

δ>0

Hη(δ)(U), (5.17)

whereHη(δ)(U) is the closure ofHη(δ)(U) in Cn[a, b].

Proof. First, let us prove that

Hco
(
x0, b

) ⊂
⋂

δ>0

Hη(δ)(U). (5.18)

Let x ∈ Hco(x0, b). Let us show that x is a limit point of the set Hη(δ)(U) for any δ > 0. By
Theorem 4.22, x is a generalized quasisolution of the problem (4.1). Moreover, x ∈ U. Since the
set U has Property D, we see that there exists a sequence of absolutely continuous functions
xi : [a, b] → R

n, i = 1, 2, . . . , such that the following conditions hold: xi → x in Cn[a, b] as
i → ∞; xi ∈ U, ẋi ∈ decΦ(x), and xi(a) = x0 for each i = 1, 2, . . . . Suppose that η(·, ·) ∈
K([a, b] × [0,∞)) provides a uniform (in the sense of Definition 5.6) estimate from above for
the modulus of continuity of the mapping Δ : [a, b] × Cn[a, b] → comp [Rn]. Then there exists
i1 such that ‖x − xi‖Cn[a,b] < ω(x, δ) for each i � i1. This implies that xi ∈ BCn[a,b][x,ω(x, δ)] for
each i � i1. Therefore, xi ∈MU(ω)(x, δ) for each i � i1. By Definition 5.6, there exists a number
i2 � i1 such that

ϕU(ω)
(
t, x,

∥
∥x − xi

∥
∥
Cn[a,b]

)
� η(t, δ) (5.19)

for any i � i2 and almost all t ∈ [a, b].
The inequality (5.19) yields that

ρ
[
ẋi(t);Δ

(
t, xi

)]
� h

[
Δ(t, x);Δ

(
t, xi

)]
� ϕU(ω)

(
t, x,

∥
∥x − xi

∥
∥
Cn[a,b]

)
� η(t, δ) (5.20)

for each i � i2 and almost all t ∈ [a, b]. By (5.20), xi ∈ Hη(δ)(U) for each i � i2. This implies
that x is a limit point of the set Hη(δ)(U). Therefore, x ∈ Hη(δ)(U), and consequently (5.18), is
satisfied.
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Let us prove the opposite inclusion

⋂

δ>0

Hη(δ)(U) ⊂ Hco
(
x0, b

)
. (5.21)

Let x ∈ ⋂
δ>0Hη(δ)(U). This implies that for each i = 1, 2, . . . , there exists xi ∈ Hη(1/i)(U)

satisfying ‖x − xi‖Cn[a,b] < 1/i. Suppose that functions zi ∈ decΦ(x) satisfy

∣
∣ẋi(t) − zi(t)

∣
∣ = ρ

[
ẋi(t);Δ(t, x)

]
(5.22)

for each i = 1, 2, . . . and almost all t ∈ [a, b]. Let us show that

lim
i→∞

∥
∥ẋi − zi

∥
∥
Ln1 [a,b]

= 0. (5.23)

Since η(·, ·) ∈ K([a, b] × [0,∞)), by the Lebesgue theorem, we have that

lim
i→∞

∫b

a

η

(

t,
1
i

)

dt = 0. (5.24)

By (5.22), the estimates

∣
∣ẋi(t) − zi(t)

∣
∣ � h

[
Δ
(
t, xi

)η(t,1/i);Δ(t, x)
]

� η

(

t,
1
i

)

+ h
[
Δ(t, x);Δ

(
t, xi

)]
(5.25)

are satisfied for each i = 1, 2, . . . and almost all t ∈ [a, b]. Therefore,

∫b

a

∣
∣ẋi(t) − zi(t)

∣
∣dt �

∫b

a

η

(

t,
1
i

)

dt + 2hLn1 [a,b]
[
decΦ(x); decΦ

(
xi
)]

(5.26)

for each i = 1, 2, . . . . By (5.24) and due to the continuity of the mapping Φ̃ : Cn[a, b] →
Π[Ln1[a, b]] given by (3.25), we have (5.23).

Since ẋi → ẋ weakly in Ln1[a, b] as i → ∞, we have that zi → ẋ weakly in Ln1[a, b] as
i → ∞. Therefore, by [21], ẋ ∈ Φ̃co(x) and hence x ∈ H(x0, b). Thus, (5.21) is valid. Hence,
(5.17) holds and the proof is complete.

Theorem 5.10. Suppose that a setU ⊂ Cn[a, b] has Property D. Then,

H
(
x0, b

)
=

⋂

δ>0

Hη(δ)(U) (5.27)

for any η(·, ·) ∈ K([a, b] × [0,∞)) if and only if the equality (4.51) is satisfied.

Proof. Let us prove the sufficiency. Assume that (4.51) holds. Let us show that the equality (5.27)
is satisfied for any function η(·, ·) ∈ K([a, b] × [0,∞)). By the definition of the problem (5.16),
the inclusion

H
(
x0, b

) ⊂ Hη(δ)(U) (5.28)
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is satisfied for any δ > 0. Therefore, for any δ > 0, we have the inclusion

H
(
x0, b

) ⊂ Hη(δ)(U) (5.29)

and consequently the inclusion

H
(
x0, b

) ⊂
⋂

δ>0

Hη(δ)(U) (5.30)

holds. Now, let us check that the opposite relation
⋂

δ>0

Hη(δ)(U) ⊂ H(
x0, b

)
, (5.31)

which is, by (4.51), equivalent to the inclusion
⋂

δ>0

Hη(δ)(U) ⊂ Hco
(
x0, b

)
, (5.32)

holds as well. The latter relation can be proven similarly to Theorem 5.9.
The necessity follows readily from Theorem 5.9. The proof is complete.

Remark 5.11. Note that the equality (5.27) describes the robustness property of the set H(x0, b)
with respect to external perturbations η(·, ·) ∈ K([a, b] × [0,∞)). These external perturbations
(e.g., η(·, ·) ∈ K([a, b] × [0,∞))) characterize an error in measurements of the values of the
mapping Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25).

On the other hand, each generalized solution x : [a, b] → R
n of the problem (4.1) may

also be measured with a certain error. This error may be described by a function belonging
to the set P(Cn[a, b] × [0,∞)) and it may be characterized by so-called internal perturbations,
which are defined below. Let us show further that internal perturbations influence essentially
the properties of generalized solutions of the problem (4.1).

We define a mapping Δext : [a, b] × Cn[a, b] → comp [Rn] by

Δext(t, x) = ext
(
coΔ(t, x)

)
, (5.33)

where Δ : [a, b] × Cn[a, b] → comp [Rn] is the mapping generating the operator
Φ̃ : Cn[a, b] → Π[Ln1[a, b]] given by (3.25); see the definition of ext(coΔ(t, x)) in Section 2.
Let us remark that the mapping Δext(·, x) is measurable (see [25]) and integrally bounded for
each x ∈ Cn[a, b].

Consider the operator Φ̃ext : Cn[a, b] → Π[Ln1[a, b]] given by

Φ̃ext(x) = S
(
Δext(·, x)

)
, (5.34)

where the mapping Δext : [a, b] × Cn[a, b] → comp [Rn] is given by (5.33).

Remark 5.12. Note that for each x ∈ Cn[a, b], the set Φ̃ext(x) has the following property

co
(
Φ̃ext(x)

)
= co

(
decΦ(x)

)
. (5.35)

Also, Φ̃ext(x) is the minimal set among all nonempty closed in Ln1[a, b] decomposable subsets
of decΦ(x) satisfying (5.35).
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Consider the problem

ẋ ∈ Φ̃ext(x), x(a) = x0
(
x0 ∈ R

n). (5.36)

We call any solution (resp., quasisolution) of (5.36) a generalized extreme (in the sense of the
definition in Section 2) solution (resp., generalized extreme quasisolution) of the problem (4.1).

Let Hext(x0) be the set of all generalized extreme quasisolutions of the problem (4.1).
Theorem 4.22, Remark 4.23, and equality (5.35) imply the following result.

Corollary 5.13. Hext(x0) = Hco(x0, b).

Let η(·, ·) ∈ K([a, b]× [0,∞)), ω(·, ·) ∈ P(Cn[a, b]× [0,∞)). Let also U be a convex closed
set in Cn[a, b]. We define mappings Φ̃η,ω : U × [0,∞) → comp [Ln1[a, b]

∗], Δext,η : [a, b] ×
Cn[a, b] × [0,∞) → comp [Rn], Φ̃ext,η : Cn[a, b] × [0,∞) → Π[Ln1[a, b]], Φ̃ext,η,ω : Cn[a, b] ×
[0,∞) → comp [Ln1[a, b]

∗] by the formulas

Φ̃η,ω(x, δ) = Φ̃η

((
MU(ω)(x, δ)

)
, δ

)
,

(
Δext,η

)
(t, x, δ) =

(
Δext(t, x)

)η(t,δ)
,

(
Φ̃ext,η

)
(x, δ) = S

(
Δext,η(·, x, δ)

)
,

Φ̃ext,η,ω(x, δ) = Φ̃ext,η
((
MU(ω)(x, δ)

)
, δ

)
,

(5.37)

where the mappings Φ̃η : Cn[a, b] × [0,∞) → Π[Ln1[a, b]], MU(ω) : U × [0,∞) → Ω(U),
Δext : [a, b] × Cn[a, b] × [0,∞) → comp [Rn] are given by the equalities (5.5), (5.9), and (5.33),
respectively.

For each δ > 0, consider the following problems on U ⊂ Cn[a, b]:

ẋ ∈ Φ̃η,ω(x, δ), x(a) = x0
(
x0 ∈ R

n
)
, (5.38)

ẋ ∈ Φ̃ext,η,ω(x, δ), x(a) = x0
(
x0 ∈ R

n
)
, (5.39)

where the mappings Φ̃η,ω :U×[0,∞)→ comp[Ln1[a, b]
∗], Φ̃ext,η,ω :U×[0,∞)→ comp[Ln1[a, b]

∗]
are given by (5.37).

We call any solution of the problem (5.38) with a fixed δ > 0 a generalized δ-solution of the
problem (4.1), or a generalized approximate solution of (4.1) with external and internal perturba-
tions. For each δ > 0, we denote by Hη(δ),ω(δ)(U) (Hext,η(δ),ω(δ)(U)) the set of all solutions of the
problem (5.38) ((5.39)) on U ⊂ Cn[a, b]. Since Φ̃ext,η,ω(x, δ) ⊂ Φ̃η,ω(x, δ) for any δ > 0 and any
x ∈ U, we see that Hext,η(δ),ω(δ)(U) ⊂ Hη(δ),ω(δ)(U) for any δ > 0.

Theorem 5.14. Let the set U ⊂ Cn[a, b] have Property D. Then for any η(·, ·) ∈ K([a, b] × [0,∞)),
ω(·, ·) ∈ P(Cn[a, b] × [0,∞)), one has

Hco
(
x0, b

)
=

⋂

δ>0

Hext,η(δ),ω(δ)(U) =
⋂

δ>0

Hη(δ),ω(δ)(U), (5.40)

where Hext,η(δ),ω(δ)(U) and Hη(δ),ω(δ)(U) are the closures of the sets Hext,η(δ),ω(δ)(U) and
Hη(δ),ω(δ)(U), respectively, in the space Cn[a, b].
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Proof. First of all, let us check that

Hco
(
x0, b

) ⊂
⋂

δ>0

Hext,η(δ),ω(δ)(U). (5.41)

Let x ∈ H(x0, b). We show that x is a limit point of the set Hext,η(δ),ω(δ)(U) for any δ > 0. By
Corollary 5.13, x is a generalized extreme quasisolution of the problem (4.1). Since the setU has
Property D, we see that x ∈ U and there exists a sequence of absolutely continuous functions
xi : [a, b] → R

n, i = 1, 2, . . . , with the following properties: xi → x in Cn[a, b] as i → ∞; xi ∈ U,
ẋi ∈ Φ̃ext(x), and xi(a) = x0 for each i = 1, 2, . . . . Here, the operator Φ̃ext : Cn[a, b] → Π[Ln1[a, b]]
is given by (5.33) and (5.34).

Let us prove also that there exists a number i0 such that for each i � i0,

xi ∈ Hext,η(δ),ω(δ)(U). (5.42)

Since ω(·, ·) ∈ P(Cn[a, b]× [0,∞)), we see that there exists a number i0 such that for each i � i0,
x ∈ BCn[a,b][xi;ω(xi, δ)]. This implies that for each i � i0, we have that x ∈ MU(xi, δ) (see
(5.9)). Therefore, for each i � i0, the inclusion Φ̃ext(x) ⊂ Φ̃ext,η,ω(xi, δ) holds. Hence, for each
i � i0, we have (5.42). This means that x is a limit point of the set Hext,η(δ),ω(δ)(U). Therefore,
x ∈ Hext,η(δ),ω(δ)(U) and (5.41) is satisfied.

The relation

⋂

δ>0

Hext,η(δ),ω(δ)(U) ⊂ Hco
(
x0, b

)
(5.43)

can be proven similarly to (5.21) (see the proof of Theorem 5.9). The second equality of (5.40)
can be proven in the same way. This completes the proof of the theorem.

Remark 5.15. Theorem 5.14 says that no measurement accuracy of the values of the map-
ping Δ : [a, b] × Cn[a, b] → comp [Rn] could guarantee the “reconstruction” of the set
H(x0, b) by means of Hη(δ),ω(δ)(U). That is only possible if the density principle holds for the
generalized solutions.

6. Conclusion

The main results of the paper can be summarized as follows. For the decomposable hull of a
mapping, we have obtained the conditions for the property of the Hausdorff lower semicon-
tinuity (resp., upper semicontinuity and continuity). We considered a functional differential
inclusion with a Volterra multivalued mapping which is not necessarily decomposable. The
concept of a generalized solution of the initial value problem for such an inclusion was in-
troduced and its properties were studied. Conditions for the local existence and continuation
of a generalized solution to the initial value problem were obtained. We have offered some
estimates, which characterize the closeness of generalized solutions and a given absolutely
continuous function. These estimates were derived from the conditions for the existence of a
generalized solution satisfying the inequality (4.18) (see Theorem 4.13 and Corollary 4.14).

The concept of a generalized quasisolution of the initial value problem was introduced.
We proved that the set of all generalized quasisolutions of the initial value problem coincides
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with the solution set of the functional differential inclusion with the convex decomposable
hull of the right-hand side. Using this fact as well as the estimates characterizing the closeness
of generalized solutions and a given absolutely continuous function, we obtained the density
principle for the generalized solutions.

Asymptotic properties of the set of generalized approximate solutions (generalized δ-
solutions) were studied. It was proven that the limit of the closures of the sets of generalized
approximate solutions coincides with the closure of the set of the generalized solutions if and
only if the density principle holds for the generalized solutions.
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List of changes (made after submission)

1) Paper II, Section 1.Introduction. There was a misprint at the end of
the fifth paragraph. ”ction” was corrected to ”function”.

2) Paper II, Section 3.2. There was a misprint in the last line of Proof of
Theorem 3. (yS, x0

R) was corrected to (y0
S, x0

R).

2) Paper II, Appendix. Sections Appendix and References interchanged
their order. Now Appendix is located after References. Section Refer-
ences was also missing its title.
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