
Modeling and analysis of extracellular field potentials 
in the brain

Modellering og analyse av ekstracellulære feltpotensialer i hjernen

Philosophiae Doctor (PhD) Thesis

Henrik Lindén

Department of Mathematical Sciences and Technology
Norwegian University of Life Sciences

Ås 2010

Thesis number 2010:12
ISSN 1503-1667

ISBN 978-82-575-0967-5





Acknowledgements

This thesis would not have been possible without the collaboration, help
and support from a number of people. I would first of all like to thank
my supervisor Gaute Einevoll for continuing encouragement and guidance,
and for always being a very cheerful and caring person. Your dedication to
science is truly inspirational. I sincerely want to thank all co-authors of the
papers presented in this thesis, especially Klas Pettersen and Tom Tetzlaff
with whom I have worked closely in several of the projects presented here.
Thanks for all the stimulating and interesting discussions! I also want to
thank Sonja Grün and Markus Diesmann for an inspiring collaboration and
for providing a very nice working atmosphere during my research stay at the
RIKEN Brain Science Institute, Wako, Japan, in the Fall of 2009.

Ending up doing a PhD in computational neuroscience was certainly be-
yond my wildest dreams when I started my physics studies at Chalmers in
Gothenburg just over ten years ago (in fact I did not even know that the field
existed). In retrospect I realize that there are a few people who have had a
large influence on me in ending up where I did: my high school mathematics
teacher Jan-Erik Holgersson (who got me interested in science), my friend
and fellow philosophy student Peter Ekberg (for countless discussions on the
mysteries of the brain) and physics professor Bernhard Mehlig at the MSc
Programme in Complex Adaptive Systems at Chalmers (whose inspiring lec-
tures introduced me to applying physical reasoning to biological systems).
But perhaps the most important influence was Sonja Grün who was leading
the Neuroinformatics and Theoretical Neuroscience Group at the Free Uni-
versity in Berlin where I wrote my MSc thesis around five years ago. Being
a student in her lab was a great experience and after there being introduced
to the field of computational neuroscience I was hooked.

I have been fortunate to be surrounded by great colleagues, both in the
Computational Neuroscience group at Ås and in the group of Sonje Grün and
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Abstract

In order to model processes occuring in the brain it is necessary to have
reliable measures of neural activity, with a clear intepretation rooted in the
biophysics of the neural tissue. One of the most important probes of neural
activity is the measurement of extracellular field potentials. The potential
picked up by an electrode placed inside the brain is typically filtered in to two
distinct frequency bands: the high-frequency part (! 500 Hz) captures the
spiking output of nearby cells (termed multi-unit activity or MUA), while
the low-frequency part (" 200-500 Hz) called local field potential (LFP)
is thought to mainly reflect synaptic input of the cells in a local volume
surrounding the electrode. The ability of the LFP to sample activity in
whole populations of neurons makes it an important tool for understand
neural network dynamics. Despite its wide use, there is however only limited
knowledge about the relation between the measured LFP signal and the
underlying neural activity.

This thesis addresses different aspects of the relation beween activity at
the single-cell or population level and the measured extracellular potential.
First, we characterize the salient features of extracellular potentials gener-
ated by a single synaptic input. We use a forward-modeling approach where
we simulate the LFP generated by neurons with realistic morphologies. We
describe how dendrites, due to passive cable properties, filter the signal be-
tween input current and measured potential, and propose simplified models
of LFP generation.

Second, we show how distributions of synapses on to single cells give
power-law scaling in power spectra of soma currents, soma potentials and
current dipole moments.

Third, we investigate the size of the cortical region that contributes to
LFP recordings. By a combination of a simplified model and numerical sim-
ulations of populations of neurons, we identify the main factors determining
the size of this region. Specifically, we highlight the role of correlations in
the underlying synaptic activity.

Finally, we analyze data from monkey motor cortex and relate oscillations
in the LFP to temporally precise synchronized spiking activity.

In summary, the findings presented in this thesis provide building blocks
for further modeling and interpretation of the LFP, as well as other extra-
cellular potential measures such as the electroencephalogram (EEG).





Sammendrag

For å modellere prosesser i hjernen er det nødvendig med p̊alitelige målinger
av den nevrale aktiviteten, med en klar kobling til underliggende prosesser.
En av de viktigste målemetodene av nevral aktivitet er måling av ekstra-
cellulært elektrisk potensiale. Potensialet som blir plukket opp av en måle-
elektrode i hjernen bli typisk splittet i to forskjellige frekvensregimer: høy-
frekvensregimet (! 500 Hz) plukker opp fyring av nevroner i nærheten av
elektroden (kalt ’multi-unit activity’, MUA), mens lavfrekvensregimet (" 200-
500 Hz), som kalles ’local field potential’ (LFP), reflekterer synaptisk ak-
tivitet i celler i nærheten av elektroden. Siden LFP er et mål p̊a aktiviteten
i hele populasjoner av nevroner, er den et viktig mål for å forst̊a nevral
nettverkdynamikk. Til tross for utbredt bruk, er det likevel liten kunnskap
om sammenhengen mellom målt LFP og den underliggende nevrale aktiviteten.

Denne avhandlingen har fokus p̊a flere aspekter ved sammenhengen mel-
lom enkeltcelleaktivitet og aktivitet p̊a populasjonsniv̊a, og det målte elek-
triske potensialet. Først karakteriserer vi iboende egenskaper ved elektriske
potensialer fra enkeltsynapsebidrag. S̊a simulerer vi LFP fra nevroner med
realistisk romlig struktur. Vi beskriver hvordan dendritter, gjennom sin pas-
sive membran, filtrerer signalet fra input strøm til målt elektrisk potensial,
og foresl̊ar forenklede modeller for LFP generering.

Deretter viser vi hvordan synaptisk aktivitet i enkeltnevroner gir 1/fα-
skalering i power spectra av transmembrane somastrømmer, soma potensialer
og dipolstrømmer.

For det tredje studerer vi størrelsen p̊a det corticale omr̊adet som bidrar
til LFP målingene. Ved en kombinasjon av forenklede modeller og numeriske
simuleringer av populasjoner av nevroner, identifiserer vi hovedfaktorene for
hva som bestemmer størrelsen p̊a dette omr̊adet. Her studerer vi spesielt
korrelasjoner i den underliggende synaptiske aktiviteten.

Til sist analyserer vi data fra motor cortex til aper og relaterer oscil-
lasjoner i LFP til synkronisitet i fyringsaktivitet.

Resultatene i denne avhandlingen vil være et bidrag til ytterligere mod-
ellering og tolking av LFP, og ogs̊a av andre typer målte ekstracellulære
elektriske potensialer som EEG.
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1 Introduction

The human brain is one of the most intriguing systems that we know of.
Consisting of around 100 billion nerve cells with 1000 times or so more con-
nections between them (Williams and Herrup, 1988), it makes up a highly
complex system with sophisticated information-processing capabilites. Mech-
anisms in our brains underlie all of our emotions, cognitive abilites and con-
scious experiences. Thanks to our brains we are able to make inner represen-
tations of the world we are living in and to discuss these representations with
each other. These abilities of our brain is also what has enabled our scientific
exploration. As we humans are driven by a curiosity to understand things,
it is therefore maybe not surprising that we also would like to understand
the very mechanisms that make us understand; that is, the computational
power of our own brain.

Dynamic processes in the brain are organized at different spatial scales;
ranging from microscopic molecular mechanisms within single nerve cells to
the macroscopic cooperative dynamics of large groups of neurons in different
areas of the brain. Linking models of processes occuring at the single cell level
to networks of neurons and ultimately to the global dynamics of the brain is
one of the major challenges in modern neuroscience. But the characterization
and modeling of the dynamics at different levels require reliable measures of
neural activity, with a clear interpretation rooted in the biophysics of the
neural tissue.

One of the most important probes of neural activity is the measurement
of extracellular field potentials that arise when electrically charged ions pass
through the membranes of neurons. For instance, by placing a sharp elec-
trode in the vicinity of the somata of nerve cells it is possible to record the
rapid extracellular potential fluctuation due to the spiking output of the neu-
rons (termed action potentials) resulting from the local influx of sodium and
outflux of potassium ions through the membranes of the neuron. Typically
lasting only a millisecond or less, the action potential signatures are contained
in the high-frequency (! 500 Hz) band of the extracellularly recorded voltage,
and consequently the signal is usually high-pass filtered producing what is
called multi-unit activity (MUA). Using two (stereotrode), four (tetrode) or
more electrodes close together allows for triangulation to ascribe the timing
of action potentials to single cells, resulting in what is called single-unit activ-
ity (SUA). With modern spike-sorting techniques it is possible to distinguish
between tens of neurons within 50 µm from such an electrode setup, and up
to hundreds of neurons using multi-shank electrodes (Buzsáki, 2004). With
on the order of 10000 neurons in a cubic millimeter of cortex (Abeles, 1991),
this however represents a substantial undersampling of the local neuronal
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population.
The low-frequency (" 200-500 Hz) part of the extracellular voltage, termed

local field potential (LFP), on the other hand, presumably represents the
summed activity of a large number cells in the vicinity of the electrode and
may therefore, due to a better sampling of nearby populations of neurons,
be useful in understanding local network activity. The LFP is thought to
mainly reflect synaptic input currents (Mitzdorf, 1985), but in contrast to
the MUA signal, the relation to the underlying neural activity is far from
well understood.

Scope of thesis

This thesis addresses the link between neuronal activity and extracellularly
recorded potentials, in particular the LFP. Specifically, three topics are in-
vestigated:

1. Frequency content of extracellular field potentials (papers I-III)

2. Spatial reach of LFP recordings (paper IV)

3. Relation between LFP oscillations and synchronized spiking
activity (paper V)

The following sections contain short introductions to each of these topics
along with summaries of the results presented in the included papers I-V.

1.1 Frequency content of extracellular field potentials

The background power spectrum of extracellular potential recordings have
recently received considerable interest due to ubiquitously observed 1/fα

frequency scaling both in LFP signals (Milstein et al., 2009), in cortical
surface potentials (ECoG)(Miller et al., 2009) as well as in the extracranial
encephalogram (EEG) (e.g. Freeman et al. (2003)), with α ranging from ∼1
to ∼4. The meaning of these findings is however not clear. 1/f -scaling is
a description of scale invariance in a system and has been characterized as
a hallmark of self-organized criticality found for different types of physical
systems in nature, including earthquakes and avalanches (Bak et al., 1987).
It has been suggested that the 1/f -scaling in brain potentials also could
be reflecting self-organized criticality in brain dynamics (Linkenkaer-Hansen
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et al., 2001; Buzsáki, 2006), although this is still debated (Bédard et al.,
2006).

However, in order to judge if 1/f -scaling in measured potential reflects
the same scaling in neuronal activity, it is necessary to first know which filter-
ing mechanisms are involved in the generation and volume conduction of the
extracellular potential. Following this idea, Bédard et al. (2006) attempted
to recreate the measured power spectrum of the LFP from the spiking ac-
tivity recorded in the same region as the LFP signal, since the the input
currents caused by the arrival of presynaptic spikes are thought to be the
main generator of the LFP. They assumed that the recorded spike trains
were statistically equivalent to the spikes arriving at the synaptic sites in
the local region and that each spike gave rise to an exponentially relaxing
input current. Given a certain ’drive’ D(t) to the neurons (consisting of the
input spike trains) the total synaptic current I(t) can be expressed as the
convolution

I(t) =

∫ ∞

−∞
D(t′)exp[−(t− t′)/τs]dt′ (1)

where τs is the synaptic time constant. Since a convolution is equivalent
to a multiplication in the Fourier domain this yields a power spectral density
(PSD) of the input current given by

|I(ω)|2 =
|D(ω)|2

1 + ω2τ 2
s

(2)

where ω denotes angular frequency. Bédard et al. found that, compared to
the PSD of the recorded LFP signal, a factor 1/f was ’missing’ and suggested
that this additional factor could come from frequency-specific filtering of
currents in the extracellular medium. Such a filtering effect has however been
debated, as there are experimental and theoretical findings arguing both for
(Gabriel et al., 1996; Bédard et al., 2004; Bédard and Destexhe, 2009; Bédard
et al., 2010; Dehghani et al., 2010) and against it (Logothetis et al., 2007).

In this thesis we investigate an additional source of filtering arising from
the cable properties of neuronal dendrites. Previously shown to give a filter-
ing of the extracellular high-frequency signatures of action potentials (Pet-
tersen and Einevoll, 2008), this mechanism is througout papers I-III shown
to affect field potentials arising from synaptic currents in the frequency-range
captured by the LFP. We argue that for a more accurate description of the
spectral relation between input spike trains and recorded LFP φ, the above
expression should be extended to include also this dendritic filtering:

PSD(φ(ω)) = |I(ω)|2 · |Fdendritic|2 · |Fmedium|2 (3)
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where Fdendritic and Fmedium represents filters in the dendrites and in the
medium, respectively.

Paper I The first paper of this thesis serves partly as a more compre-
hensive introduction to extracellular measurements than the present section.
In particular, we outline the biophysical principles behind the generation
of extracellular potentials and describe the forward-simulation scheme used
throughout papers I-IV. We also discuss used assumptions of the extracellular
medium.

We then present example results using the forward-modeling scheme to
illustrate the salient features of the LFP generated by synaptic activity. The
mechanism of dendritic filtering is illustrated with simulations of a layer 5
pyramidal cell: A single synaptic input at an apical synapse generates posi-
tive and negative deflections of the extracellular potential in vicinity of the
cell. The sign of the deflection depends on the position of the recording
electrode; for positions where the synaptic input current dominates the sign
is negative (due to the current sink produced by the synapse) and for posi-
tions close to the soma of the cell the sign is positive (due to positive return
currents through the cell’s membrane). In addition, the extracellular poten-
tial shows a position-dependent filtering compared to the input current; for
recordings close the synapse the deflections contains more high frequencies
than recordings close to the soma. This effect can be understood from the
passive cable-properties of the dendrites; for low frequencies more current
propagates to the soma compartments while for higher frequencies a larger
fraction of return currents leave the cell close to the synapse. This is further
illustrated by injection of sinusoidal currents at ten apical synapses of the
same pyramidal cell and and then plotting the amplitude (envelope) of return
currents along the apical direction of the cell.

In this paper we also revisit modeling results published previously, in-
cluding

- the effect of dendritic filtering on extracellular signatures of action po-
tentials explained through the concept of a frequency-dependent dipole
length (Pettersen and Einevoll, 2008),

- forward-modeling results of MUA and LFP from columnar population
activity (Pettersen et al., 2008),

- and estimation of current-source density (CSD) from LFPs by using
the inverse CSD method (iCSD) (Pettersen et al., 2006).

4



Paper II The second paper in this thesis is an extensive numerical study
of the dendritic filtering effect described above. We show simulation results
for a layer 5 pyramidal and a layer 4 stellate cell from cat visual cortex for
input at single synapses. By injecting a white-noise current (i.e. a noise
current with a flat power spectrum) we isolate the effect of the dendritic
filtering from that of synaptic filtering. For the layer 5 cell the measured
power spectrum of the extracellular potential is shown to be highly depen-
dent of recording position; at most positions the power spectrum exhibits
low-pass characteristics while some recording positions the dendritic filtering
gives band-pass filtering. Furthermore, the frequency content of the extra-
cellular potential is typically more flat close to the synaptic input, with a
more pronounced filtering further away from the synapse. Also the layer 4
cells exhibits pronounced low-pass filtering, but in a higher frequency range
(>∼ 100 Hz) compared to the layer 5 cell (>∼ 10 Hz). Following the idea in
Pettersen and Einevoll (2008) we characterize the dendritic filtering by the
corresponding frequency dependence of the current dipole moment. Since the
cell due to current conservation produces no total current monopole contri-
bution, the current dipole moment represents the first order of a multi-pole
expansion of the current-source distribution generated by the synaptic input.
In search for an simplified model that can account for the gross features of
the extracellular potential of the layer 5 cell we investigate two approximate
models: the dipole model where the potential around the cell is represented
by the far-field dipole expression and a two-monopole model where the poten-
tial is generated by a current sink placed at the location of the synapse and
a current source in the soma of the cell. For both models the dipole moment
is adjusted to fit with the numerically obtained values for the detailed multi-
compartment model. While both simplified models reproduce the results of
the more detailed model both in terms of frequency content and distance-
dependence of the LFP at large distances (>∼ 1 mm), the performance at
closer distances is not more than fair, suggesting that such simplified models
may be of more use in the modeling of EEG than of LFP.

Paper III In this paper the numerical results from paper II are extended
to the situation of many simultaneously active synapses on a single cell. A
simplified ball-and-stick cell model is shown to qualitatively account for most
of the salient features of the layer 5 pyramidal cell in terms of power spectra
of soma membrane potential, dipole moment and soma current. For all these
three measures the combined effect of multiple synapses is shown to give a
more linear decay of the power spectra in the high-frequency limit compared
to single synapses (investigated in paper II). The cable equation for the ball-
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and-stick model is solved in frequency space to give analytical results for the
single-synapse expressions which are then integrated to give predictions of
the decay slope α in the high-frequency limit. For uncorrelated white-noise
input we find a systematic difference in α of 1 between the power spectra
of soma currents (α=0.5), dipole moments (α=1.5) and soma membrane
voltage (α=2.5) in the asymptotic high-frequency limit. For correlated input
currents the asymptotic values are higher (α=1,2,3 respectively). In the
frequency range typically recorded in LFP or EEG experiments, however,
the power spectra typically exhibit ’quasi-linear’ regimes with a slightly lower
α. Even though explicit modeling of the extracellular potentials is not done
in this paper, these results have, in light of the findings in paper I, direct
implications for the interpretation of extracellular potentials recorded far
from cells, especially the EEG.

1.2 Spatial reach of LFP recordings

A key question in the interpretation of experimentally recorded LFPs is how
large the brain region that generates the signal is, or in other words how
many neurons an LFP electrode can ’see’. For instance, does an oscillatory
LFP signal reflect the rhythmic activity of a large brain region or just a small
cell population close to the electrode? And how should one interpret that
LFP signals measured at neighbouring sites have been found to be correlated
several millimeters apart (Destexhe et al., 1999; Nauhaus et al., 2009)? Does
this mean that the underlying neural activity is correlated between the dif-
ferent recording sites, or that the LFP generated in one area spreads through
the tissue to the other recording sites by volume conduction?

Several recent experimental studies have investigated how local the LFP is
by comparing it to other measures of neural activity such as voltage-sensitive
dye (VSD) (Katzner et al., 2009), spiking activity (Kreiman et al., 2006;
Xing et al., 2009) in combination with known spatial organization of cortical
columns (Liu and Newsome, 2006) or ocular dominance (Berens et al., 2008).
Results vary from a few hundred micrometers (Katzner et al., 2009; Xing
et al., 2009) to several millimeters (Kreiman et al., 2006). One may speculate
that this discrepancy could be attributed to differences in animal species,
cortical areas or stimulation paradigms used. However, these studies also
highlight the inherent difficulty in experimental studies to disentangle the
properties of the neuronal activity from the biophysical phenomena involved
in the generation of the recorded LFP signals.
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Paper IV In this paper we use a biophysical forward-modeling approach
to investigate which factors influence the reach of an LFP electrode placed
in the center of a cylindrical neuronal population. Since the LFP is a sum
of contributions from a number of cells in the vicinity of the recording elec-
trode, the amplitude of the signal is expected to grow with the size of the
population. We reason that if the amplitude reaches a finite value for a cer-
tain population radius, a natural definition of the reach of the electrode may
be the population radius where the amplitude has reached e.g. 95 % of the
maximum value. By using a simplified model we first identify the main de-
termining factors of the LFP reach: i) the distance-dependence of single cell
LFP contributions, ii) the increase in number of cells with increasing pop-
ulation radius, and iii) the amount of correlation between single cell LFP
contributions. Only if the single-cell contributions decay as 1/r2 or more
rapidly, and the contributions from different cells are uncorrelated, does the
LFP amplitude converge to a constant value, otherwise it grows unbounded
with population radius.

We then investigate these effects in populations of morphologically recon-
structed neurons of three different cell types (a layer 3 pyramidal, a layer 4
stellate and a layer 5 pyramidal cell). The single-cell decay shows, for all cell
types, a 1/r2-decay far from the electrode with a slower decay close to the
electrode. For uncorrelated synaptic input, this results in a spatial reach of
a few hundred micrometers, with the shortest reach and highest amplitude
at the cortical level of the cell somata. If synaptic inputs are correlated, the
reach is in some cases substantially larger, in fact it is shown to be limited
only by either the size of the contributing population, or the spatial extent
of the correlations in synaptic input. The reach for a population of more
symmetric layer 4 cells is less affected by input correlations than the more
asymmetric layer 5 pyramidal cells, and this is explained by how well corre-
lations in synaptic input are transferred to correlation between LFP contri-
butions. Finally, we discuss how these findings might reconcile the different
results of previous experimental studies and the possible implications for the
interpretation of correlated LFP signals at different recording positions.

1.3 Relation between LFP oscillations and synchro-
nized spiking activity

Oscillatory components in LFP signals have been observed in a wide range
of brain regions and experimental settings. These components are typically
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classified according to their dominating frequency range and behavioral corre-
lates (Buzsáki and Draguhn, 2004). The role of oscillations in brain function
has been a topic of intensive study (see e.g. the book by Buzsáki (2006)) but
how different aspects of rhythmic activity in networks of neurons are related
to LFP oscillations is not clear.

In motor cortex, LFP oscillations in the β-frequency range (∼ 15-45 Hz)
have been observed during movement preparation (Murthy and Fetz, 1992;
Donoghue et al., 1998; Rickert et al., 2005) while lower-frequency components
typically dominate during movement onset and execution (Rickert et al.,
2005; Roux et al., 2006). Unlike the lower-frequency components (Mehring
et al., 2003), β-oscillations show no tuning-preferences for movement direc-
tion and their role in motor computation has rather been related to attention
and sensorimotor integration than to movement execution (Murthy and Fetz,
1992; Rickert et al., 2005).

At the single-cell level neurons have been shown to spike at a preferred
phase of the β-oscillation (Murthy and Fetz, 1996; Denker et al., 2007) sug-
gesting that the LFP oscillations reflect synchronized spiking activity at the
frequency of the oscillation. Furthermore, during periods of movement prepa-
ration, spiking activity from pairs of neurons have been shown to synchronize
with millisecond temporal precision, independent of their modulation in fir-
ing rate (Riehle et al., 1997; Kilavik et al., 2009). This has been interpreted
as a sign of temporally precise activation of groups of neurons (in line with
the hypothesis of so-called cell assemblies (Hebb, 1949)). A clear relation
between LFP oscillations and the timing of synchronized spiking activity,
although often assumed, has however not been demonstrated.

Paper V In this paper we analyze data recorded from monkey motor cor-
tex during the preparatory period of a movement task to investigate the link
between LFP oscillations and temporally precise spike synchrony. LFPs and
spikes are recorded with different electrodes with a spacing of 400 µm and
the relation between spiking activity and LFP oscillations is investigated.
Average LFP from signals filtered close to the β-range (10-22 Hz) are com-
puted by spike-triggered averages (STA) in a time window centered on the
spike times. To avoid contamination of spike signatures in the LFP, only
spikes and LFP recorded with different electrodes are considered. We sep-
arate between spiking events from only one neuron (isolated spikes, ISO)
and synchronized spiking events (with a temporal precision of 3 ms) between
pairs of neurons (chance coincidences, CC). If the occurrence of synchronized
(coincident) events is higher than the chance-level expected by the individual
neuron firing rates, these are labeled Unitary Events (UE), according to the
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previously developed Unitary Events method (Grün et al., 2002).
We find that STAs of synchronized spiking activity (CC and UE) have

a significantly higher magnitude than those of isolated spikes (ISO). More-
over, the spike-triggered average of UE is larger than that of CC. The STAs
exhibit a clear β-frequency component, and the STAs are typically centered
on the onward phase of the oscillations. We then perform further analysis to
identify which factors cause the difference in STA magnitude. By extract-
ing the phase and instantaneous amplitude (envelope) of the LFP signal we
investigate their relation to spiking separately. We find that synchronously
emitted spikes are better phase-locked to the LFP oscillation than isolated
ones. For chance coincidences (CC) this can be explained by a predictor ob-
tained from the phase-locking of single neurons. For spike synchrony above
the chance level (UE), the pronounced phase-locking can however not be ex-
plained in this way. Amplitude of LFP oscillations are only weakly related
to the probability of synchronized spiking, but synchronized events occuring
during high-amplitude oscillations are on average better locked to the LFP
than low amplitudes.

We interpret these results as an indication that LFP oscillations carry
information about the activation of temporally precise patterns of synchro-
nized network activity (cell assemblies). However, since neurons in motor
cortex may use several parallel coding schemes (Riehle et al., 1997), only a
fraction of spikes are involved in this type of activation. Finally, we present
and discuss a conceptual model to estimate the level of participation from
the phase distribution of the LFP at spike times.

2 General discussion and future directions

The work presented in this thesis provides building blocks for the modeling
and interpretation of extracellular field potentials recorded both inside (LFP)
and on the surface of the brain (ECoG), and outside the scull (EEG).

In papers I-II we describe the biophysical principles behind the genera-
tion of extracellular potentials from nerve cells, and how to study them using
computer simulations. We describe how dendrites, due to passive cable prop-
erties, give low-pass filtering effects between synaptic currents and measured
potentials. We use the concept of current dipole moments to explain this
frequency-filtering effect, and present simplified models of the generation of
extracellular potentials to represent the complicated morphological structure
of realistic neurons.
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In paper III we show that when neurons receive input at synapses homo-
geneously spread over the dendritic structure, this gives power spectra with
1/fα power-law scaling, in soma potential as well as in dipole moment (rep-
resenting the single-cell contribution to the EEG), for intermediate to high
frequencies.

In paper IV we study the spatial reach of cortical LFP recordings by
combining a simplified model with detailed numerical simulations, to identify
which factors influence the spatial summation of the recorded LFP signal.
In particular, we highlight the role of correlations in synaptic activity.

Finally, in paper V we investigate the relation between LFP oscillations
and synchronized spiking activity in experimentally recorded data, thereby
linking the mescoscopic LFP signal to the concept of cell assemblies.

All of the presented papers thus have a clear ambition to bridge mod-
els at different levels of description; from neuronal activity at one level to
measurable quantities at another:

- from the activation of single synapses to contributions in LFP and
EEG,

- from single-synapse filtering to power-law expressions in EEG contri-
butions for many simultaneously active synapses

- from spatial decay of single-cell LFP contributions to spatial reach of
the population LFP signal, and

- from synchronized spiking activity to LFP oscillations.

In most of these cases the bridge in levels of description also represents a
bridge in spatial scale; from microscopic (single-synapse or single-cell level)
to macrosopic (population-level LFP/EEG). A reduction in complexity of
the microscopic models is therefore necessary, which is the motivation to in-
troduce simplified models: e.g. the dipole current moment as a simplification
of more complicated current-source density distributions, and the ball-and-
stick model to represent the salient features of more complicated dendritic
structures.

2.1 Towards large-scale modeling of LFP / EEG

Such simplified models will be useful when embarking on future projects of
linking large-scale network models to measured LFP or EEG signals. Some
attempts in this direction have already been made (see e.g. Mazzoni et al.
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(2008, 2010)), using simpler models of LFP generation than the ones pre-
sented here. It should be a natural ambition of network modelers to provide
predictions of measurable quantities such as LFP, EEG and VSD signals, and
for this, biophysically realistic models of the signal generation are needed.
The work presented in this thesis provides starting points for such pursuits.

There are, however, still many issues open for investigation. For instance,

- How do the details of dendritic structure influence the magnitude of
EEG contributions from different neuronal populations?

- How do contributions from several simultaneously active populations
determine the laminar variation in LFP signals? (Lindén et al., 2009)

- Does the dendritic filtering described in this thesis influence the spatial
reach of different frequency components of the LFP?

- Do the predictions of the models presented here change when using
(non-linear) conductance-based models of synapses and other active
membrane conductances?

When compared to experimental recordings, these models should also be
combined with accurate models of filtering in the extracellular medium for
the LFP (e.g. Bédard et al. (2004)) and with effects resulting from non-
isotropies when signals pass through different types of tissue for the EEG
(Nunez, 2006).

The forward-modeling approach used here could also be extended to make
accurate models of the VSD signal, in line with recently published work by
Chemla and Chavane (2010).

The advances in modeling of extracellular field potentials are dependent
on appropriate simulation technology. We are currently developing a Python-
based toolbox under the working name ’LFPy’ that runs in combination
with the NEURON software (Carnevale and Hines, 2006), with the aim of
providing this toolbox to a wider group of users.
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1 Introduction
Extracellular recordings have been, and still are, the main workhorse when measur-
ing neural activity in vivo. In single-unit recordings sharp electrodes are positioned
close to a neuronal soma, and the firing rate of this particular neuron is measured by
counting spikes, that is, the standardized extracellular signatures of action potentials
[30]. For such recordings the interpretation of the measurements is straightforward,
but complications arise when more than one neuron contribute to the recorded ex-
tracellular potential. For example, if two firing neurons of the same type have about
the same distance from their somas to the tip of the recording electrode, it may be
very difficult to sort the spikes according to from which neuron they originate.

The use of two (stereotrode [49]), four (tetrode [23, 32, 76, 89]) or more [9]
close-neighbored recording sites allows for improved spike sorting, since the different
distances from the electrode tips or contacts allow for triangulation. With present
recording techniques and clustering methods one can sort out spike trains from tens
of neurons from single tetrodes and hundreds of neurons with multishank electrodes
[9].

Information about spiking is typically extracted from the high frequency band
(! 500 Hz) of extracellular potentials. Since these high-frequency signals generally
stem from an unknown number of spiking neurons in the immediate vicinity of the
electrode contact, it is called multi-unit activity (MUA). The low-frequency part
(" 500 Hz) of extracellular potentials is called the local field potential (LFP). In in
vivo recordings the LFP is typically due to dendritic processing of synaptic inputs,
not firing of action potentials [14, 43, 53, 67]. The interpretation of LFP is diffi-
cult as it is a less local measure of neural activity than MUA; the LFP measured
at any point will typically have sizable contributions from neurons located several
hundred micrometers away [5, 34, 36, 41–43, 45, 67, 90]. The analysis of LFP data
has thus generally been restricted to the estimation of current source density (CSD),
the volume density of net transmembrane currents through the neuronal membranes
[53, 60, 65], based on linear (laminar) multi-electrode recordings [13, 14, 57, 75, 86].
While CSD analysis cannot separate out contributions from different spatially in-
termingled neuronal populations (unlike the newly developed laminar population
analysis (LPA) [14]), the CSD is still easier to interpret than the less localized LFP
signal. New silicon-based multicontact probes in various other geometrical arrange-
ments, such as ’multi-shank’ [9] or ’needlepad’ [63], are rapidly being developed, and
the inverse current-source density (iCSD) method has been introduced to estimate
CSDs in such situations [37, 38, 65].

The estimation of CSD from measured LFP is a so called ’inverse problem’ which
cannot be solved without imposing additional constraints on the form of the CSD
[37, 38, 60, 65]. However, the corresponding ’forward problem’, i.e., calculation of
the LFP from a known CSD distribution, is well-posed [14, 37, 60, 65]. Likewise, the
extracellular potential generated by neurons, both the LFP and the MUA, can be
calculated if one knows the transmembrane currents through, and spatial positions
of, all parts of the neuronal membranes, and also the extracellular conductivity in
the surrounding medium [14, 22, 29, 43, 66, 67].

In the 1960s Rall used such a neuronal forward-modeling scheme to calculate
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extracellular potentials related to action-potential firing and synaptic interaction
using simplified equivalent-cylinder geometries [73, 74]. Thirty years later Holt and
Koch combined this scheme with compartmental modeling based on morphologi-
cally reconstructed pyramidal neurons, to calculate the extracellular signature of
an action potential [29]. This modeling scheme has later been used to calculate
other extracellular spike signatures of single neurons [21, 22, 51, 66], MUA from
populations of firing neurons [67], and LFP from synaptically activated neurons and
neuronal populations [14, 43, 67]. A convenient feature of the forward-modeling
scheme is that due to the linearity of Maxwell’s equations, the contributions to
the extracellular potential from the various neuronal sources add up linearly, and
the calculation of extracellular potentials from joint activity in populations with
thousands of morphologically reconstructed neurons may even be done on desktop
computers [67].

In the next section we describe the biophysical origin of the extracellular po-
tentials and the mathematical formalism connecting it to the underlying neural
activity. In Section 3 we illustrate the biophysical forward-modeling scheme by in-
vestigating the LFP generated by a single pyramidal neuron activated by apical
synapses. This example also illustrates some general salient features of LFP, in
particular an unavoidable low-pass filtering effect due to the dendritic distribution
of transmembrane return currents [43] (also in the absence of inherent frequency-
dampening in the extracellular medium [2, 46]). In Section 4 we describe results
from a forward-modelling study of the influence of the dendritic morphology on the
size and shape of the extracellular spike [66], and in Section 5 we correspondingly
investigate the LFP and MUA generated by a synaptically activated model popula-
tion of about 1000 morphologically reconstructed pyramidal neurons, mimicking the
sensory-evoked response in a population of layer-5 neurons in rat whisker (barrel)
cortex [67]. In Section 6 we discuss the problem of CSD estimation, and in partic-
ular outline the principles behind the iCSD method [37, 38, 65]. Some concluding
remarks are given in the final section.

2 Biophysical origin of extracellular potentials
From an electrical point of view cortical tissue consists of a tightly packed collection
of neurons and other cells embedded in a low-resistance extracellular medium filling
less than a fifth of the total volume [64]. The low resistance of the extracellular
medium implies that neighboring cells typically are electrically decoupled and that
the difference between the extracellular potential recorded at different positions will
be small, typically less than a millivolt. In contrast, the potential difference across
the highly resistant cell membranes, that is, the membrane potential, is typically
between 50 and 100 millivolts.

2.1 Biophysical forward-modeling formula
The extracellular potentials are generated by transmembrane currents, and in the
commonly used volume conductor theory the system can be envisioned as a three-
dimensional smooth extracellular continuum with the transmembrane currents rep-
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resented as volume current sources [64]. In this theoretical framework the funda-
mental relationship describing the extracellular potential φ(t) at position r due to a
transmembrane current I0(t) at position r0 is given by [25, 64]

φ(r, t) =
1

4πσ

I0(t)

|r− r0|
. (1)

Here the extracellular potential φ is set to be zero infinitely far away from the
transmembrane current, and σ is the extracellular conductivity, assumed to be real,
scalar (the same in all directions) and homogeneous (the same at all positions).

The validity of Eq. (1) relies on several assumptions:

A. Quasistatic approximation of Maxwell’s equations: This amounts to neglecting
the terms with the time derivatives of the electric field E and the magnetic
field B from the original Maxwell’s equation, i.e.,

∇×E = −∂B

∂t
≈ 0 , (2)

∇×B = µ0j + µ0ε0
∂E

∂t
≈ µ0j , (3)

so that the electric (Eq. 2) and magnetic (Eq. 3) field equations effectively
decouple [25]. With ∇ × E = 0 it follows that the electric field E in the
extracellular medium is related to an extracellular potential φ via

E = −∇φ . (4)

For the frequencies inherent in neural activity, i.e., less than a few thousand
hertz, the quasistatic approximation seems to be well justified (see, e.g., argu-
ment on p. 426 of [25]).

B. Linear extracellular medium: Linear relationship between the current density
j and the electrical field E,

j = σE . (5)

This constitutive relation is quite general, and σ in Eq. (5) may in principle be
(i) a tensor, accounting for different conductivities in different directions [60],
(ii) complex, accounting also for capacitive effects [64], and/or (iii) position-
dependent, that is, vary with spatial position. (Note that Eq. (5) is valid only
in the frequency domain. In the time domain j is generally given as a temporal
convolution of σ and E [4]. However, in the case of a frequency independent
σ, cf. point E below, Eq. (5) will also be valid in the time domain.)

C. Ohmic (resistive) medium: Imaginary part of the conductivity σ is assumed
to be zero, that is, the capacitive effects of the neural tissue is assumed to be
negligible compared to resistive effects. This appears to be well fulfilled for
the relevant frequencies in extracellular recordings [46, 64].

D. Isotropic (scalar) extracellular conductivity: Conductivity σ is assumed to be
the same in all directions, i.e., σx = σy = σz = σ. Recent cortical mea-
surements indeed found the conductivities to be comparable across different
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directions in cortical grey matter; in white matter, however, the conductiv-
ity was found to be anisotropic [46]. Early measurements on frog and toad
cerebella also revealed anisotropy in the conductivity [60].

E. Frequency-independent extracellular conductivity: Conductivity σ is assumed
to be the same for all relevant frequencies, i.e., σ(ω) is constant. The va-
lidity of this assumption is still debated: while some studies have measured
negligible frequency dependence [46, 60], other investigations have suggested
otherwise [1–3, 20]; cf. chapter by Bedard and Destexhe in present volume.

F. Homogeneous extracellular conductivity: Extracellular medium is assumed to
have the same conductivity everywhere. This appears to be roughly fulfilled
within cortical gray matter [46] and frog and toad cerebella [60], but maybe
not in the hippocampus [47]. Further, white matter has a lower conductivity
than cortical grey matter which in turn has a lower conductivity than the
cell-free cerebral spinal fluid (CSF) [64].

While Eq. (1) requires all assumptions A-F to be fulfilled, the expression can be
generalized to apply also for other situations. For example:

• If assumption E is violated and σ varies with frequency, Eq. (1) can still
be used separately for each Fourier component Î0(ω) of the transmembrane
current I0(t) with σ(ω) inserted in the denominator of the equation. Since the
extracellular potential φ is linear in the transmembrane current I0, a simple
Fourier sum over the contributions from all Fourier components will provide
the total extracelluar potential [66]; see also chapter by Bedard and Destexhe
in present volume.

• For the case where the conductivity is anisotropic, i.e., assumption D is vio-
lated, the equations still apply if the denominator 4πσ|r − r0| is replaced by
4π

√
σyσz(x− x0)2 + σzσx(y − y0)2 + σxσy(z − z0)2 [60].

• In situations with piecewise constant conductivities, for example with discon-
tinuities in σ at the interfaces between grey and white matter or between the
grey matter and the cortical surface, assumption F is violated. However, a
generalized version of Eq. (1) can be derived based on the ’method of images’
[14, 22, 61, 65].

Eq. (1) applies to the situation with a single transmembrane current I0, but since
contributions from several transmembrane current sources add linearly, the equa-
tion straightforwardly generalizes to a situation with many transmembrane current
sources. With N current point sources the formula in Eq. (1) generalizes to

φ(r, t) =
1

4πσ

N∑

n=1

In(t)

|r− rn|
. (6)

In Fig. 1 we illustrate this formula for the situation where all transmembrane cur-
rents comes from a single compartmentalized ’ball-and-stick’ neuron; it is clear that
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Figure 1: Illustration of mathematical formula Eq. (6) providing the extracellular potential
from transmembrane currents in a single neuron. The size and direction of the arrows
illustrate the amplitudes and directions of the transmembrane currents.

the measured extracellular potential will not only depend on the position of the
electrode, but also the distribution of transmembrane currents.

Fig. 1 further illustrates an important ’conservation’ law when calculating ex-
tracellular potentials due to neural activity: Kirchhoff’s current law implies that
the net transmembrane current (including the capacitive current) coming out of a
neuron at all times must equal zero. Thus with the neuron depicted in Fig. 1 di-
vided into N compartments, one must at all times have

∑N
n=1 In(t) = 0. Therefore

a one-compartment model cannot generate any extracellular potential since the net
transmembrane current necessarily will be zero. The simplest model producing an
extracellular potential is a two-compartment model where transmembrane current
entering the neuron at one compartment leaves at the other compartment. The
simplest possible multipole configuration is thus the current dipole.

2.2 Numerical forward-modeling scheme
The numerical evaluation of extracellular potentials naturally splits into two stages
[29, 43, 66, 67]:

1. Calculation of transmembrane currents for all neuronal membrane segments
using multicompartment neuron models [79], typically using neural simulation
tools such as NEURON [10] or Genesis [7].

2. Calculation of the extracellular potential on the basis of the modeled trans-
membrane currents and their spatial position using a forward-modeling for-
mula similar to Eq. (6).

When a neuron is split into N compartments, the formula in Eq. (6) should be used
with rn corresponding to a characteristic ’mean’ position for compartment n, e.g., the
center of a spherical soma compartment or the mid-point of a cylindrical dendritic
compartment. This scheme corresponds to the so called point-source approximation
[29, 66] since all transmembrane currents into the extracellular medium from a par-
ticular compartment are assumed to go through a single point. Another scheme, the
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line-source approximation, assumes the transmembrane currents from each cylindri-
cal compartment to be evenly distributed along a line corresponding to the cylinder
axis [29, 66]. A line-source formula, analogous to the point-source formula in Eq. (6),
can be found in Ref. [66] (Eq. 2). Unless otherwise noted all forward-modeling cal-
culations with morphologically reconstructed neurons presented in this chapter use
the line-source approximation. Further, a frequency-independent, scalar and homo-
geneous extracellular conductivity with a numerical value of σ = 0.3 S/m [25] is
assumed.

2.3 Current-source density (CSD)
The forward-modeling formula in Eq. (6) can be mathematically reformulated as

φ(r, t) =
1

4πσ

∫∫∫

V

C(r′, t)

|r− r′|
d3r′ . (7)

when we introduce the quantity C(r, t) ≡
∑N

n=1 In(t) δ3(r − rn). Here δ3(r) is the
three-dimensional Dirac δ-function, and the volume integral goes over all transmem-
brane currents. The quantity C(r, t) is called the current source density (CSD), has
dimension A/m3, and is in general interpreted as the volume density of current enter-
ing or leaving the extracellular medium at position r [53, 60, 64]. A negative C(r, t)
corresponds to current leaving the extracellular medium and is thus conventionally
called a sink. Likewise, current entering the extracellular medium is called a source.
The CSD is easier to relate to the underlying neural activity than the extracellular
potential itself, and current-source density analysis has thus become a standard tool
for analysis of the low-frequency part (LFP) of such potentials recorded with linear
(laminar) multielectrodes [60, 65].

While Eq. (7) gives the numerical recipe for calculating the extracellular potential
given the CSD, a formula providing the opposite relationship can also be derived.
Following Refs. [60, 61, 64] we have for the situation with an ohmic extracellular
medium that current conservation requires

∇ · jtot = ∇ · (σE + js) = 0 , (8)

where js is the so called impressed transmembrane currents entering the extracellular
medium [61, 64]. With the additional use of Eq. (4) one obtains

∇ ·
(
σ(r)∇φ(r, t)

)
= −C(r, t) , (9)

where C(r, t) ≡ −∇ · js(r, t). This equation is not only valid for the case with
position-dependent σ, but also when it depends on direction, i.e., is a tensor [60].
In the special case where σ is isotropic and homogeneous, the equation simplifies to

σ∇2φ(r, t) = −C(r, t) . (10)

This equation, called Poisson’s equation, is well known from standard electrostatics
where it describes how potentials are generated by electrical charges (with the con-
ductivity σ replaced by the dielectric constant ε) [31]. As emphasized in Ref. [64],
however, these two versions of Poisson’s equation represent different physical pro-
cesses.
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3 Local-field potential (LFP) from single neuron

3.1 Characteristic features of LFP
To illustrate the forward-modeling scheme and highlight some salient features of LFP
we here calculate the extracellular potential around a reconstructed layer-5 model
pyramidal neuron from cat visual cortex [48] receiving a single excitatory synaptic
input in the apical dendrite. For simplicity the neuron is considered to have purely
passive neuronal membranes and to be excited by a synaptic input current Is(t)
modeled as an α-function, that is,

Is(t) = I0 t/τs e1−t/τs θ(t) , (11)

where θ(t) is the Heaviside unit step function. A time constant τs = 1 ms is chosen,
and I0 is set to give a peak EPSP amplitude in the soma of about 0.5 mV. The
model is linear, that is, all calculated extracellular and intracellular potentials are
proportional to I0, making the model somewhat easier to analyze than when non-
linear currents are involved. However, most qualitative features is expected to be
unchanged if we, e.g., considered excitation by a set of conductance-based synapses
instead.

In Fig. 2A we show the calculated extracellular potential traces at a set of po-
sitions outside the neuron. An important feature which is immediately apparent
is that the shape and amplitude of the extracellular potentials depend on position.
Near the apical synaptic input the extracellular signature is always negative, reflect-
ing that the excitatory current-synapse providing a current sink dominates the sum
in the forward-model formula, cf. Eq. (6). At positions close to the soma the extra-
cellular potential is always positive, reflecting that return currents in the soma area
dominate the sum. At other positions, for example above the synapse, a biphasic
extracellular potential is observed. Interestingly, there is not a monotonous decay of
the amplitude with distance from the synaptic input: large extracellular responses
are observed close to the soma, almost a millimeter away.

Another important feature is the observed increased half-width of the extracel-
lular potentials recorded close to the soma compared to those in the vicinity of the
synaptic input. This is illustrated by the two insets showing magnified extracellular
potential traces in Fig. 2A. In the upper inset close to the synapse the width is
4.2 ms, while the width at the lower inset close to soma is 7.1 ms, both widths mea-
sured at 50% of the trace’s peak amplitudes. Thus the extracellular potential close
to the synaptic input contains higher frequencies than the extracellular potential far
away from the synaptic current generator.

This feature can be understood on the basis of passive cable properties of the
neuron. The transmembrane currents dominating the extracellular potentials close
to the soma have been low-pass filtered and have a wider temporal profile compared
to the transmembrane currents close to the synaptic input. This is illustrated in
Fig. 2C where the transmembrane current profile is seen to have a much larger half-
width at the soma (∼6.5 ms) compared to at the dendritic segment containing the
synapse (∼2.5 ms).

An analogous low-pass filtering is seen from the temporal shapes of the apical
and somatic membrane potentials, respectively, in Fig. 2E. Here the apical EPSP
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Figure 2: Calculated extracellular potentials following an excitatory synaptic input into purely
passive neuron models. The synapse is current-based and modeled as an α-function Is(t − ton)
(Eq. 11) with τs = 1 ms, I0 = 0.1 nA and the onset time ton set to 10 ms. (A) Results for
reconstructed L5 pyramidal neuron from Ref. [48] with active channels removed. Passive pa-
rameters: membrane resistivity Rm = 30000 Ωcm2, axial resistivity Ri = 150 Ωcm, membrane
capacitance Cm = 0.75 µF/cm2. Potentials are shown in a 20 ms window starting 2 ms prior
to synaptic onset. Dashed circle denotes position of synapse. (B) Results for analogous two-
compartment neuron model. The apical (top) and soma (bottom) compartments have resistive
(ra,rs) and capacitive (ca,cs) membrane elements, are connected to each other via the resistance
ras. The same synaptic current as in A is inserted into the apical compartment. Model parameters:
ra=318 MΩ, rs=95 MΩ, ras=358 MΩ, ca=71 pF, cs=236 pF. The point-source approximation is
used, cf. Eq. (6). (C) Normalized transmembrane currents at the synaptic input segment and
at the soma for the pyramidal neuron in A. Half-widths are 2.5 ms and 6.5 ms, respectively. (D)
Synaptic input current, return current, and net transmembrane current for the apical compartment
in two-compartment model. Half-widths are 2.5 ms, 2.3 ms and 5.2 ms, respectively. (E) Normal-
ized membrane potential for synaptic input segment and soma segment for the pyramidal neuron
model. Half-widths are 4.1 ms and 33 ms, respectively. (F) Normalized membrane potential of
apical and soma compartments of two-compartment model. Half-widths are 13 ms and 38 ms,
respectively. Extracellular potentials in insets in A and B are scaled arbitrarily.
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peaks already a couple of milliseconds after synaptic onset and has a half-width
of about 4 ms. In contrast the somatic EPSP peaks about 15 ms after synaptic
onset and has a half-width of more than 30 ms. The low-pass filtering effect is thus
stronger for the membrane potential than for the transmembrane current, and thus
also compared to the extracellular potentials.

In Fig. 2B we further show calculated extracellular potential traces for an anal-
ogous two-compartment model, the simplest neuron model that produces an extra-
cellular potential. The spatial extension corresponds to the distance between the
single synapse and the soma for the reconstructed neuron in Fig. 2A. This model has
only five parameters, the resistances (ra,rs) and capacitances (ca,cs) of the apical
and soma compartments, respectively, and the intercompartment resistance (ras).

The pattern of extracellular responses in the two-compartment model is seen to
resemble the pattern for the reconstructed pyramidal neuron in that large negative
responses are observed close to the apical compartment while large positive responses
are observed close to the soma compartment. However, in the two-compartment
model the net transmembrane current in the soma compartment is forced by Kirch-
hoff’s current law to be identical in size, but with opposite sign, compared to the
apical compartment. What goes in at one compartment, must leave at the other.
Since only these two compartments contribute to the sum in the forward-modeling
formula for the extracellular potential (that is, N = 2 in Eq. 6), the temporal form
of the extracellular potential will be the same everywhere; only the sign and size
of an overall amplitude will vary. This is illustrated by the two insets showing
magnified extracellular traces in Fig. 2B which both have half-widths of 11.3 ms.
There is thus no position-dependent filtering of frequency components in the two-
compartment model. At least three neuron compartments are needed to capture
such an effect.

There is, however, low-pass filtering also inherent in the two-compartment model
as illustrated by the larger half-width of the extracellular potential (11.3 ms) ob-
served in Fig. 2B compared to the half-width of the synaptic input current (2.5 ms)
in Fig. 2D. This reflects that in a two-compartmental model like this, where both
compartments have a resistive and a capacitive component, the axial current go-
ing between the compartments is not equal to the imposed synaptic current in the
apical compartment. Instead it is the difference between the synaptic current and
the return current of the apical compartment. This axial current corresponds in
magnitude to the net transmembrane currents at the two compartments, and as il-
lustrated in Fig. 2D these net transmembrane currents are both smaller in amplitude
and temporally wider than the synaptic current. In Fig. 2F we in fact observe an
even larger low-pass filtering effect for the membrane potential compared to results
for the reconstructed model neuron in Fig. 2E.

In Lindén et al. [43] we discuss in detail how the LFP patterns depend on
neuronal morphologies, spatial positions of the driving synapse, as well as electrode
recording positions.
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Figure 3: Illustration of frequency-filtering of LFP for the passive layer-5 pyramidal model
neuron in Fig. 2A receiving simultaneous sinusoidal input currents Is(t) = I0 cos(2πft) at
10 apical synapses (red dots in middle panel). The middle panel shows the envelope
(amplitude) of the sinusoidally varying extracellular potential plotted at different lateral
positions at the level of the soma (x-direction). The left panel shows the envelope of the
linear current-source density of the return current along the depth direction (z-direction)
for f=10 Hz and f=100 Hz. The right panel shows the relative magnitude of envelopes of
the extracellular potential as a function of frequency for different lateral distances from the
soma. Here curves are normalized to unity for the lowest frequency considered, f=10 Hz.

3.2 Low-pass filtering of LFP
The frequency content of LFP and EEG signals has attracted significant interest in
particular since power laws, i.e., power spectra scaling as 1/fβ, have commonly been
observed [2, 4, 8, 18, 27, 44, 50, 52, 55, 70]. Suggested explanations of these observed
power laws have invoked a variety of neural network mechanisms [19, 39, 50, 52],
as well as frequency filtering inherent in the extracellular medium [2, 4, 19]. The
results above, elaborated in [43], point to an additional source of frequency filtering
of the LFP and EEG: extended dendritic morphologies will due to their passive cable
properties unavoidably give a separate frequency-filtering effect for the extracellular
potentials. In fact there are two dendrite-based filtering mechanisms: (i) a higher
fraction of the apical synaptic input current will propagate to the soma for low
frequencies than high frequencies, and (ii) extracellular potentials recorded far away
from the synaptic input current will have more low frequencies than those recorded
close to the input current due to the low-pass filtering of the return current by the
dendritic tree. The simple two-compartment model only displayed the first type of
filtering, while the reconstructed pyramidal neuron model displayed both types.

A comprehensive investigation of these filtering effects is beyond the scope of
this chapter; for this we refer to Lindén et al. [43]. However, some example results
illustrating the important principles are shown in Fig. 3. The same pyramidal neuron
as in Fig. 2A is considered, now with sinusoidal currents Is(t) = I0 cos(2πft) inserted
at ten apical synapses. The extracellular potential is simulated along an axis oriented
perpendicular to the primary apical dendrite at the level of the soma.
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The amplitude of the extracellular potential is plotted in the main (middle)
panel. The most obvious feature is the amplitude differences in the extracellular
potential for the different frequencies: the amplitude is much larger for the lowest
frequency (f = 10 Hz) than for the highest frequency (f = 100 Hz), even with the
same input current amplitude I0.

The somatic transmembrane current is usually the most important source for the
extracellular potential for proximal recordings at the level of soma. As the frequency
increases, the current profile of the return currents tend to become more localized
around the synaptic inputs, i.e., a larger fraction of the current returns through the
dendrites near the synapses. This is clearly seen in the current profile to the left in
Fig. 3. The 100 Hz sinusoid has a much larger current apically, and a much smaller
current basally, than the 10 Hz sinusoid.

In the right part of Fig. 3 we illustrate how the low-pass filtering effect of the
extracellular potential depends on the distance from soma. Here all curves are nor-
malized to unity for the lowest frequency considered, f=10 Hz. When the frequency
is increased, more of the current return apically, further away from any recording
position at the depth level of the soma. This implies that the extracellular potential
becomes smaller, since the difference in distances between the contributions to the
potential from the synaptic input current and the return current will be smaller.
Since the distance between the synaptic current generator and the return currents is
relatively larger for recordings near the soma than for recordings further away in the
lateral direction, the frequency decay of the extracellular potential will be steeper
near the soma (small x) than for the distal recordings (large x).

The decay in extracellular amplitude as a function of frequency is not only seen
in recordings at the level of the soma, but is also prominent for recordings at the
level of the synaptic input (results not shown). The reason is the same: the potential
is the sum of the transmembrane currents weighted inversely with distance to the
sources, and when the typical distance between the synaptic current generator and
the return currents gets smaller, the extracellular potential will also become smaller.

The low-pass filtering effect described here is a general feature always present
for spatially extended neuronal-membrane structures [43], and in the next section
we will show its impact on the extracellularly recorded signature from an action
potential.
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Extracellular vs. intracellular potentials. Intracellular and extracellular po-
tentials are often confused: modelers sometimes compare their model predictions
of intracellular potentials (which are easier to model) with recorded extracellular
potentials (which are easier to measure). As seen in Figs. 2 and 4 the connec-
tion between intracellular and extracellular is not trivial, however. A light-hearted
metaphor is illustrated by the above map of the Oslo subway system. With its
branchy structure of different lines (’dendrites’) stretching out from the hub at
Oslo Central Station (’soma’), the subway system resembles a neuron. If we pursue
this analogy, the subway stations (marked with dots) may correspond to ’neuronal
compartments’ and the net number of passengers entering or leaving the subway
system at each station to the net ’transmembrane current’ at this compartment. If
more passengers enter than leave the subway system at a point in time, it means
that the number of people in the subway system, i.e., the ’intracellular membrane
potential’, increases. (If we introduce a ’capacitive current’ corresponding to the
change in the number of people inside each station, we can even get a ’current con-
servation law’.) The intracellular soma membrane potential, crucial for predicting
the generation of neuronal action potentials (which luckily have no clear analogy
in normal subway traffic), would then correspond to the number of passengers
within the subway station at Oslo Central Station. The extracellular potential on
the other hand would be more similar to what could be measured by an eccentric
observer counting passengers flowing in and out of a few neighboring subway sta-
tions (with binoculars on the top of a large building maybe). While the analogy is
not perfect, it should illustrate that intracellular and extracellular potentials are
correlated, but really two different things. Adapted from Ref. [68].

4 Extracellular signatures of action potentials

4.1 Example forward-modeling result
In a typical single- or multielectrode recording spikes from tens of neurons may be
intermingled [9]. When developing automated algorithms for detecting and sorting
these spikes according to their true neural source [15, 16, 26, 35, 40, 69, 71, 72, 77,
80, 82, 85, 88], several issues arise: For example, which types of neurons are most
likely to be seen in the recordings, which neuronal parameters are important for the
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Figure 4: (A) Calculated extracellular signature of an action potential in layer-5 pyramidal
model neuron taken from Ref. [48]. Neuron is stimulated with apical excitation and basal
inhibition similar to ’stimulus input pattern 1’ (SIP1) in Ref. [67]. Traces show extracellular
potential in 5 ms window around time of spiking. Thick lines corresponds to 20 µV scaling,
thin lines to 5 µV scaling. Extracellular potentials in the two insets are scaled arbitrarily.
(B) Somatic membrane potential during simulation. Inset shows soma potential for same
5 ms time window as for the extracellular potentials in A.
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spike amplitude and shape, and which parameters determine the decay of the spike
amplitude with increasing distance from the neuron? These are important questions
also for the interpretation of multi-unit activity (MUA), the high-frequency content
of the extracellular potential [14, 66, 67, 78, 86], and for the question of why the
firing of neurons in the brain appear to be so sparse [81].

An example forward-modeling result for the extracellular potential related to an
action potential is shown in Fig. 4A. Again the layer-5 pyramidal model neuron of
Ref. [48] is used, this time including active conductances. A combined pattern of
apical excitation and basal inhibition is used to excite the action potential, similar to
what is labeled ’stimulus input pattern 1’ (SIP1) in Ref. [67]. The largest extracel-
lular responses are seen closest to the soma (thick lines in Fig. 4A). As the shortest
distance considered is as large as 100 µm, the spike amplitudes depicted in the figure
are nevertheless all smaller than 20 µV (see Fig. 3 in [67] for a close-up picture of
spike shapes closer to the soma). The lowest inset in the figure, showing a mag-
nified extracellular potential, illustrates the typical shape of recorded extracellular
spikes: a sharp, deep dip (sodium phase) followed by a shallower, but longer-lasting,
positive bump (potassium phase).

As for the spatial LFP patterns in Fig. 2, the extracellular spike is also seen to
have an inverted sign apically compared to basally. Further, a position-dependent
low-pass filtering effect is also observed: the magnified extracellular potential in the
top inset in Fig. 4A is seen to be wider than at the lower inset closer to the soma.
With the extracellular spike-width defined as the width of the sodium phase at 25%
of its maximum, a widening from 0.625 to 0.75 ms is observed. This implies that
the higher frequencies attenuate faster than the lower frequencies when moving away
from the soma. A spike-width increase with increasing distance from the soma has
been seen experimentally, and explanations for this in terms of extracellular-medium
effects has been suggested [1, 3]. However, it is still debated whether such effects are
present in cortical tissue: while some investigators have measured low-pass filtering
effects in the extracellular medium [20], other investigators found no such effect
[46, 60].

Below we outline how the neuron morphology, combined with its cable properties,
can provide an alternative, or supplementary, explanation for the distance-dependent
low-pass filtering effect of extracellular spikes [66]. Section 2 explained why a neuron
model has to contain at least two compartments to produce an extracellular potential
at all, and in Section 3 it was shown that a two-compartment model could not
produce any distance-dependent low-pass filtering effect. In Ref. [66] we investigated
the effect of the neuronal morphology and the passive dendritic parameters on the
extracellular spike signature in detail, in particular the distance dependence of the
spike amplitude and low-pass filtering. A variety of neuronal morphologies was
considered, both morphologically reconstructed pyramidal (Fig. 5A) and stellate
cells (Fig. 5C) and simplified models built up of dendritic sticks (’ball-and-stick’,
’ball-and-star’, ’ball-and-bush’, cf. Fig. 1 in Ref. [66]). While the shape of the
intracellular action potential vary from neuron to neuron, we wanted to focus on
how the dendritic structure affects the relationship between the intracellular and
extracellular potentials [28, 88]. We thus imposed a standardized intracellular action
potential (cf. Fig. 5B) in the somas of the neurons in the numerical evaluation of
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Figure 5: (A) Pyramidal layer-5 neuron used in investigation of extracellular spikes [66].
(B) Upper: ’Standard’ action potential (AP) used in model study, half-amplitude spike
width is 0.55 ms. Lower: Typical shape of corresponding extracellular spike near soma
for ’standard’ AP. Extracellular spike width is 0.44 ms (see text for definition). (C) Stel-
late layer-4 neuron used in investigation [66]. (D) Frequency spectrum of intracellular
voltage for ’standard’ AP in B, and a corresponding ’narrow’ AP with identical form but
exactly half the spike width. (E) Frequency spectrum of extracellular voltage traces of
’standard’ spike in B (solid), and corresponding extracellular voltage trace for ’narrow’
spike (dashed). Reconstructed neuron morphologies taken from Ref. [48]. See Ref. [66] for
further information.
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the extracellular spike signatures. In accordance with the qualitative observation
in Fig. 4A all neuron models were found to exhibit a distance-dependent low-pass
filtering effect, that is, larger spike widths further away from soma, cf. Figs. 6 and 7
in Ref. [66]. However, the amplitudes of the spikes were found to be quite different,
both their size and their dependence on distance from soma. For example, with
identical intracellular action potentials, the spike-amplitude 60 µm away from soma
was found to be about 40 mV for the pyramidal neuron, but only about 10 mV for
the stellate neuron.

To obtain a better understanding of the phenomenon we also developed a con-
ceptually simpler and more intuitive theory accounting for the observed variation
in spike shape and amplitude [66]. This theory also produced analytical predictions
of the dependence of the spike amplitude on the dendritic parameters, predictions
that later were confirmed by numerical calculations. The essential idea behind the
theory is that during an action potential, the soma can be viewed as a voltage source
driving current into the soma-attached dendrites, and that the size and shape of the
extracellular signature will qualitatively depend on (i) the magnitudes of the axial
currents entering the dendrites from the soma, (ii) what distances from the soma
the imposed axial currents on average returns through the dendritic membranes and
(iii) the number and geometrical arrangement of dendrites. In fact it was found
that many of the salient features of the extracellular spike could be understood by
considering the simple ball-and-stick neuron model where the soma is modeled as
a single compartment and the dendrite as a simple cable stick [33, 66]. With the
soma considered as a voltage source, the various soma-attached dendrites are ef-
fectively decoupled from each other. Consequently the total extracellular potential
generated by a more complex neuron can be approximated as a superposition of con-
tributions from a collection of soma-attached dendritic sticks pointing in different
directions [66].

4.2 Dendritic sticks and AC length constant
A concept we found essential to get both an intuitive and quantitative handle on
the crucial spatial distribution of the return current along the dendritic stick, is the
so called alternating current (AC) length constant [66]

Imagine a ball-and-stick neuron model (cf. Fig. 6) where the dendritic stick is
infinitely long. This infinite ball-and-stick neuron is assumed to receive a constant
(DC) somatic transmembrane current. Since the membrane currents at all times
have to sum to zero, the same amount of current has to return to the extracellular
medium through the dendritic stick. The density function of the dendritic return
current has the functional form of an exponential decay with the length constant
(or space constant) λ describing the steepness of the decay [12, 66]. More precisely,
the length constant is the dendritic position where the steady-state transmembrane
return current has decreased to 1/e of its value at the soma end, or equivalently, λ is
the position where the dendritic return current has its center of gravity. The center
of gravity is then defined as the mean of the normalized transmembrane current
density weighted by dendritic position.

The length constant is not only useful for describing the neuron’s intrinsic qual-
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Figure 6: Illustration of ball-and-stick neuron and its frequency-dependent dipole sizes and
corresponding far-field limits. (A) For high frequencies (hf), the center of gravity (blue
arrow) of the dendritic return current is close to soma. Therefore, the AC length constant
λhf is small and transition to the far-field limit occurs around a distance dhf , relatively close
to the neuron. Inset: Transmembrane return-current profile along an infinite dendritic
stick for different frequencies [66]. Parameter: stick diameter 2 mm, membrane and axial
resistivities Rm = 30000 Ωcm2, Ri = 150 Ωcm2, membrane capacitance Cm = 1 µF/cm2.
λ∞AC is 317 mm, 145 mm, 103 mm, and 84 mm for 100 Hz, 500 Hz, 1000 Hz, and 1500 Hz,
respectively. (B) For low frequencies (lf) the AC length constant λlf is relatively large and
the far-field limit is reached for a larger distance dlf than for the higher frequency in A.
Inset: AC length constant λAC(ω) as a function of frequency for ball-and-stick models of
different length; parameter values for diameter, resistivity and capacitance are the same
as in A.

17



θ

θ

I

I

I

-I

-2 I

r

r

L

L

L

dipole

linear quadrupole

A

B

ρ

ρ
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ities (for example electrotonic compactness), it is also useful for understanding the
extracellular potentials generated by the neuron. For example, when computing the
extracellular potential far away from the neuron (far-field limit), the ball-and-stick
neuron model can be approximated by a dipole model [66]. The parameters of the
dipole model will then be the dipole current, which equals the somatic current,
and the dipole size, which essentially is given by the dendritic length constant, cf.
Fig. 7A. For infinite dendritic sticks under the DC condition this length constant is
given by λ =

√
dRm/4Ri, where d is the stick diameter, Rm is membrane resistivity

[Ωcm2] and Ri is the axial resistivity [Ωcm] [12].
As the length constant is important for understanding several aspects of a neuron

(electrotonic compactness, extracellular far-field potential), it is useful to define a
general length constant which is not restricted to infinite sticks and DC conditions.
In analogy to the definition of the standard DC space constant λ, Ref. [66] define
the AC length constant, λAC(ω), to be the mean of the absolute value of the current
density amplitude weighted with distance, when the dendritic stick is driven by
a sinusoidal voltage in the soma-end of the stick. This length constant will be
frequency dependent through the angular frequency ω = 2πf . For a finite stick this
corresponds to (in complex notation)

λAC(ω) =

∫ l

0 z|̂im(z)|dz
∫ l
0 |̂im(z)|dz

, (12)

where the stick is assumed to be extended along the positive z-axis from z = 0 (soma
end) to z = l. îm(z) denotes the complex transmembrane current density at position
z along the stick (where the real part corresponds to the physical transmembrane
current). In the inset in Fig. 6A we show normalized values for |̂im(z)| as a function of
distance from the soma for an infinite ball-and-stick neuron for different frequencies.
The higher the frequency, the closer to the soma the return current is seen to be.
This is reflected in the frequency-dependence of the AC length constant λAC(ω) as
seen in the inset of Fig. 6B: the highest frequencies have the shortest AC length
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constants. This latter panel also shows that shorter dendritic sticks have shorter
λAC(ω), as expected since the closed ends will force the return currents out closer
to the soma. This effect will be most pronounced for the lower frequencies.

For an infinite stick an analytical formula can be found for the AC length con-
stant. In this special case Eq. 12 reduces to [33, 66]

λ∞AC(ω) = λ
√

2/[1 +
√

1 + (ωτ)2] , (13)

where τ denotes the membrane time constant, τ = RmCm.

4.3 Low-pass filtering for the ball-and-stick neuron
In Ref. [66] numerical investigations of the extracellular signature of action potentials
in ball-and-stick neurons also revealed a characteristic spike-width increase when
moving away from soma, similar to what is seen for the pyramidal neuron in Fig. 4A.
Here we will outline how a reduced model, a dipole model with a soma compartment
attached to a conflated dendritic stick, can explain the phenomenon. In Section 3
we showed that a two-compartment neuron model, i.e., a dipole model with a fixed
dipole length, cannot express such position-dependent low-pass filtering. The crucial
element introduced here is that the dipole model must have a frequency-dependent
dipole length based on λAC.

Far way (i.e., far-field limit) from a current dipole with current strength I and
length L the extracellular potential is given by [31, 66]

φfar,d(r, θ) =
1

4πσ

I L

r2
cos θ , (14)

when polar coordinates are used, cf. Fig. 5A. This model shows a 1/r2 decay when
moving in any direction where θ is fixed. However, when moving perpendicular to
the dipole (e.g., along the ρ-axis in Fig. 5A) the extracellular potential decays as a
quadrupole, i.e., as 1/r3 [66] .

The distance dependence is more complicated for proximal extracellular poten-
tials than for far-field potentials. Close to the soma compartment, the soma current
will dominate the potentials, and in this region the distance dependence will be
given by the monopole expression

φm(r, θ) =
1

4πσ

I

r
, (15)

that is, the amplitude decays as 1/r. This dipole neuron model therefore predicts
a transition in the power of the distance dependence of the extracellular potential
from −1 close to the soma to −2 (or −3) in the far-field limit.

If the soma membrane potential oscillates at an angular frequency ω, current will
flow from the extracellular medium through the soma and up into the dendritic stick
with the same frequency with an amplitude we denote I(ω). A simple model for the
generated extracellular potential around the ball-and-stick neuron can now be made:
Near the soma the amplitude of oscillating extracellular potential can be descibed
by Eq. (15) with I replaced by I(ω), and in the far-field limit the extracellular
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potential amplitude can be described by Eq. (14) with I replaced by I(ω) and L
with λAC(ω) from Eq. (12) [66]. From the dendrite’s point of view the soma action
potential can be seen as a voltage source enforcing the characteristic intracellular
voltage waveform. Since the dendritic stick itself has linear response properties, this
waveform can be Fourier decomposed, and each frequency can be treated separately.
The extracellular signature of the action potential can thus be found by a simple
linear superposition [66].

The extracellular signature at a particular position will depend crucially on
whether the frequency components are in the ’close-to-soma-regime’ (Eq. 15), in
the ’far-field limit’ (Eq. 14), or somewhere in between. The following question thus
arises: what decides the distance for which the far-field limit is reached? Clearly, the
transition to the far-field limit must depend on the dipole length, that is, λAC(ω).
Thus the transition to the far-field limit for each component will depend on fre-
quency. Further, since the highest frequencies will have the smallest λAC(ω), these
components will reach the far-field limit (where the distance-decay is sharper and
the signal rapidly diminishes) closer to soma. Fig. 6 illustrates this low-pass filtering
effect for the dipole-model approximation of the ball-and-stick neuron.

4.4 Parameter dependence of spike amplitude
In addition to explaining the position-dependent low-pass filtering of the extracel-
lular spike, the dipole model approximation of the ball-and-stick neuron can also
explain essential features of the size and distance dependence of the spike-amplitude
[66]: For the infinite ball-and-stick neuron it is possible to derive an analytical ex-
pression for the frequency-dependent transfer function T describing how a soma
membrane potential ’transfers’ to an extracellular potential. With a complex nota-
tion (boldface) the soma membrane potential for a given angular frequency ω can
be represented as V0(t; ω) = V̂0(ω)ejωt, where V̂0 contains both the amplitude and
phase of the sinusoidal potential and j =

√
−1. The physical soma membrane poten-

tial will then be the real part of this complex quantity, V0(t; ω) = Re{V0(t; ω)}. The
complex Fourier amplitude of the extracellular potential Φ̂(r, ω) for a ball-and-stick
model can thus be related to the complex soma potential V̂0(ω) through the trans-
fer function T(r, ω), i.e., Φ̂(r, ω) = T(r, ω)V̂0(ω) [66]. Since the DC-subtracted
intracellular somatic action potential V0(t) can be expressed by a Fourier series,
V0(t) =

∑∞
k=1 Re{V̂0(ωk)ejωkt}, the measured extracellular response to any such

DC-subtracted somatic action potential can be expressed as

φ(ρ, z, t) =
∞∑

k=1

Re{T(r, ωk)V̂0(ωk)e
jωkt} . (16)

The transfer function for the ball-and-stick neuron has a rather complex analytical
form [66]. To investigate the parameter dependence of the spike amplitude we
instead use the much simpler dipole model with a frequency-dependent dipole length
given by the length constant of the infinite ball-and-stick model in Eq. (13).

Near the soma the monopole contribution from the soma membrane current
will dominate, and the extracellular potential will decay as |Φ̂(ω)| ∼ |Î(ω)|/4πσr,
where the somatic membrane current I is related to the somatic membrane potential
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through the dendrite’s admittance, Î = ŶV̂0, see [66]. The transfer function T
will therefore be given by Ŷ/4πσr in the near-field approximation, and for high
frequencies (ωτ ( 1), the transfer function can be shown to be [66]

|Tnear| ∼
d3/2

σr

(
fCm

Ri

)1/2

. (17)

In the far-field approximation the potential is given by the dipole or quadrupole
expressions (when moving laterally, see above), Φ̂(ω) ∼ Î(ω)L/4πσr2 or Φ̂(ω) ∼
Î(ω)L2/4πσr3, respectively [66]. We then assume L ≈ λ∞AC(ω) (Eq. 13), and for
ωτ ( 1 we have λ∞AC(ω) ∼ λ/

√
ωτ ∼

√
d/fRiCm. With a reasonable time constant

such as τ = 20 ms, this high-frequency approximation holds for frequencies f (
8 Hz, i.e., all the dominant frequencies of the action potential. The far-field transfer
functions can with these assumptions be shown to be [66]

|Tfar,d| ∼
d2

σr2Ri
, |T|far,q ∼

d5/2

σr3f 1/2R3/2
i C1/2

m

, (18)

where ’far,d’ means far-field dipole expression and ’far,q’ means far-field quadrupole
expression (applicable when moving perpendicular to the ball-and-stick neuron [66]).
In Pettersen and Einevoll [66] a host of numerical simulations were done to investi-
gate to what extent these analytical predictions are accurate, not only for individual
frequency components but also for the full action potential. The numerical calcula-
tions indeed confirmed their validity, cf. Fig. 9 in Ref. [66].

The transfer-function expressions in Eqs. (17) and (18) give some interesting
qualitative insights:

1. Close to the soma the higher frequencies are amplified compared to the low fre-
quencies, |T | ∼

√
f . Thus close to the soma the extracellular action potential

will typically appear sharper than the intracellular action potential.

2. Far away this high-frequency amplification is either vanished (’far,d’, |T | ∼ f 0)
or reversed (’far,q’, |T | ∼ 1/

√
f).

3. |T | is independent of the membrane resistivity Rm.

4. |T | decreases with increasing intracellular resistivity Ri.

5. |T | may, depending on distance from soma, increase or decrease with increasing
capacitance Cm.

6. |T | increases with increasing dendritic diameter d, that is, T ∼ dk where
k = 1.5− 2.5.

While Eqs. (17) and (18) were derived for a simple ball-and-stick, similar expressions
can easily be derived for more complicated neuron models, see Ref. [66] for details.
For example, for the linear quadrupole model depicted in Fig. 7B the quadrupolar
far-field expression in Eq. (18) applies in all angular directions [66].

The last entry in the above list (point 6) suggests an important connection
between the extracellular spike amplitude and the dendritic diameters. Since the
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contributions from different soma-attached dendrites add up, the point suggests a
rule of thumb: A neuron’s extracellular spike amplitude is approximately proportional
to the sum of the dendritic cross-sectional areas of all dendritic branches connected
to the soma [66]. Thus, neurons with many, thick dendrites connected to soma
will produce large-amplitude spikes, and will therefore have the largest radius of
visibility.

In Ref. [66] we confirmed this rule of thumb for the two morphologically recon-
structed cells shown in Fig. 5A and C.. The pyramidal neuron had more soma-
attached dendrites than the stellate cell (11 vs. 6) and they were thicker as well
(average diameter of 3.0 µm vs. 2.1 µm). In the numerical simulations the ratio be-
tween the peak-to-peak extracellular spike amplitudes of the pyramidal and stellate
neurons were found to be 3.3, 3.7, and 4.0 at 20 µm, 60 µm, and 100 µm distances,
respectively (see Table 1 in [66] for details). The above rule of thumb (|T | ∼ d2)
predicts this ratio to be 4.5, in reasonable agreement with the numerical results.
The agreement is even better if one considers that the d2-rule is expected to be best
far away from the soma. Strictly speaking, a d3/2-rule is predicted close to the soma
(Eq. 17). The latter rule predicts the ratio to be 3.3, exactly what is calculated for
the smallest distance (20 µm).

4.5 Active dendritic conductances
So far, we have only considered action potentials from neurons with electrically
passive dendrites. This assumption makes the problem of translating intracellular
potentials in the soma to extracellular potentials recorded outside the neuron lin-
ear and, importantly, independent of the detailed form of the intracellular action
potential, i.e., independent of the detailed properties of the active soma conduc-
tances responsible for generating the action potential. Thus the analytical insights
reviewed in the previous subsection apply in principle to all different intracellular
action-potential waveforms.

However, real neurons have active conductances also in the dendrites [83]. In
general, this makes the problem nonlinear, and the trick of considering each fre-
quency component of the action potential separately is no longer applicable. Instead
one has to use comprehensive compartmental models including all active conduc-
tances explicitly. Gold and coworkers [21, 22] have done thorough investigations of
the extracellular signatures of spikes from pyramidal neurons in hippocampus CA1
and fitted compartmental models to reproduce simultaneously recorded intracellular
and extracellular waveforms. An important result from their studies was that ex-
tracellular waveforms provide tighter constraints on the model parameters than the
intracellularly recorded somatic action potentials. This suggested that extracellular
action potentials could be a a good source of data for constraining compartmental
models [21].

Their results are also in qualitative agreement with many of the observations
seen above for the purely passive dendrites: (i) the spike width was seen to increase
with distance from the soma (cf. Fig. 5A in Ref. [22]), (ii) the amplitude was seen to
decay with soma distance with a power between 1 and 2 for distances less than 50 µm
(cf. Fig. 14 in Ref. [22]), and (iii) the amplitude was seen to change significantly to
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Figure 8: (A) Schematic illustration of the population of reconstructed layer-5 pyramidal
neurons considered in forward-modeling study [67]. (B) Somas of pyramidal neurons placed
randomly inside a cylindrical annulus with height 0.4 mm, outer diameter 0.4 mm and
inner diameter 0.1 mm. One thousand neurons were non-spiking (dots), while 40 neurons
(triangles) produced a single spike following synaptic stimulation . Extracellular potential
was simulated at assumed electrode contact positions along the center axis of the population
(filled circles). (C) Illustration of line-source method: the transmembrane current from
each neural segment is modelled as a linear current source of uniform current density. Note
that each neural branch (section) depicted in the panel may consist of several segments.

varying intracellular resistivity Ri and capacitance Cm, but not so much to varying
membrane resistivity [21].

5 Extracellular potentials from columnar popula-
tion activity

In Sections 3 and 4 we considered extracellular potentials generated by activity in
single neurons. Extracellularly recorded signals like LFP and MUA do not stem
from single neurons, however, rather from populations of neurons. The forward-
modeling scheme applied above for single neurons applies equally well to populations
of neurons, and here we outline results from our modeling study of the generated
LFP and MUA by a synaptically activated, spatially confined population of layer-5
neurons [67], mimicking a population of large pyramidal cells in a sensory neocortical
column [56].

In this pilot MUA and LFP forward-modeling study we sought to answer ques-
tions like: Is the MUA really a more local measure of neural activity than LFP?
How sharply does the MUA and LFP decay outside the active population? To what
extent is the MUA a measure of the population firing rate? Do existing CSD analysis
methods estimate the true CSD accurately?
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5.1 Columnar population model
The simulated population in Pettersen et al. [67] consisted of 1040 layer-5 pyramidal
neurons of the type shown in Fig. 5A. Their somas were placed stochastically in a
cylinder with both diameter and height of 0.4 mm, see Fig. 8. The population was
constructed based on a single neuron model template, but with two different synaptic
input patterns. To get MUA responses in reasonable agreement with experimental
data [14, 78], only 40 of the neurons received a net synaptic input sufficiently strong
to generate a single action potential within a time window of about 20 ms. The
net synaptic input to the remaining 1000 neurons was tuned such that no action
potential was generated. To introduce temporal jitter in the synaptic activation of
the neurons in the population, the neuronal templates were stochastically shifted
in the time domain assuming a Gaussian distribution with a standard deviation of
5 ms. The extracellular potential was computed at 23 positions, every 0.1 mm along
the center axis of the population, see Fig. 8B. For the present modeling example
we found that a balanced combination of apical excitation and basal inhibition was
needed to get realistic LFP amplitudes compared to experimental LFP data, since
apical excitation alone did not give large enough LFP amplitudes for a population
of about 1000 cells. Both single-trial and trial-averaged population responses were
calculated. A set of 40 trials was considered in the trial-averaging procedure, and
each trial differed in their stochastic distribution of both the position and time-
shifting for the individual neurons.

5.2 Population response
With more than 1000 synaptically activated pyramidal neurons, the LFP response
was found to be very robust, different trials gave virtually identical results. For
the MUA, the detailed temporal structure of single-trial signals was found to vary
considerably on a millisecond scale, reflecting the stochastic firing of specific neurons
located close to the electrode contacts (cf. Fig. 4 in [67]). The stochastic placement
of the soma positions in the model thus makes single-trial MUA a much more noisy
measure of neural activity than LFP. However, the trial-averaged MUA over 40
trials was seen to be quite reproducible and, importantly, independent of the form
of synaptic input pattern providing the excitation.

Trial-averaged responses for the LFP and MUA data obtained in our forward
modeling scheme are shown in Fig. 9A and B. Note that while synaptically evoked
LFP can be seen at most electrode contacts, MUA can essentially only be seen at
the contacts inside the vertical distribution of somas in the population, i.e., between
contacts 13 and 17.

5.3 Spatial spread of LFP and MUA signals
If one measures extracellular potentials in cortex with two adjacent electrodes, say,
0.5 millimeter apart and find that their LFP signals are correlated, two possible inter-
pretations come to mind. Either (i) the two electrodes may measure neural activity
from two separate neural populations which happen to have correlated synaptic in-
put activity, or (ii) the LFP generated by a single population may spread to the
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Figure 9: Trial-averaged (A) local field potential and (B) multi-unit activity recorded at
center axis of cylindrical population of 1040 layer-5 pyramidal neurons receiving apical
excitation and basal inhibition. The depicted LFP is obtained by (i) low-pass filtering
of the calculated extracellular potential (<500 Hz) and (ii) trial-averaging (n=40). The
MUA is obtained by (i) band-pass filtering between 750-5000 Hz, (ii) rectification, and (iii)
trial-averaging (n=40). 40 of 1040 neurons fire an action potential stochastically within
time window of 20 ms. For details of numerical simulation, see Ref. [67]. (C) Decay
of amplitude of ’area under graph’ MUA and LFP calculated at electrode 15 (middle of
population) as a function of lateral distance from the population center, cf. Fig. 15 in [67].
The vertical dotted line illustrates the lateral edge of the soma distribution corresponding
to a radial distance of 200 µm. (D) Relationship between ’true’ firing rate and estimates
based on MUA signal, cf. Fig. 13 in [67]. The depicted MUA is the average MUA for the 5
electrode contacts running through the center of the population (electrode contacts 13-17,
see Fig. 8). The population size was varied and all neurons within the population were
spiking. The power law giving the best fit to the data has a coefficient of 1.346.
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two electrodes by volume conduction [64]. Likewise, if the MUA signals of the two
electrodes are observed to be correlated, this can also be due to correlated firing in
two spatially separated populations or volume conduction of the MUA signal from
a single population.

From the discussion in Section 4 one would expect the LFP generated by a
population to have a larger spatial spread, i.e. larger volume conduction, than the
corresponding MUA: the LFP contains lower frequencies than the MUA and will
thus have longer characteristic AC length constants and consequently decrease less
steeply with distance. These expectations were confirmed by numerical simulations
[67]: Fig. 9C illustrates the distance-decay of the MUA and LFP signals from our
model population in a direction perpendicular to its center axis. The MUA is seen
to decay sharply outside the population (r > 200 µm), whereas the LFP is seen to
spread much further . For example, at a position 0.3 mm outside the population
cylinder, i.e., 0.5 mm from the population center, the magnitude of the LFP signal is
seen to be reduced with about a factor five compared to the value at the population
center, whereas the MUA is reduced by a factor 30. Thus compared to the LFP,
observed correlations of the MUA signal between adjacently placed electrodes are
more likely to be due to correlated firing in two different populations. However,
these are just example results, and more systematic studies are needed to elucidate,
e.g., the neural origin of LFPs recorded in cortex [41–43].

5.4 MUA as a measure of population firing rate
The MUA, obtained by high-pass filtering (! 500 Hz) with subsequent rectification
of the extracellular signal, has been assumed to measure the population firing rate
for a group of neurons around the electrode contacts [6, 14, 78, 86]. In Ref. [67]
we used the present population forward-modeling study to test this assertion: since
we can set the population firing rate ourselves in this model world, we have a gold
standard against which the calculated MUA signal can be compared.

Two different regimes can be expected [67]: The first regime corresponds to very
low firing rates. Here the various extracellular signatures from firing in the nearby
neurons contributing to the MUA will not overlap significantly in time. Thus even
with biphasic extracellular signatures (cf. Fig. 4A), there will be little cancela-
tion between positive and negative phases of the extracellular potential. A linear
relationship between the MUA and the population firing rate is thus expected.

The other regime corresponds to very high population firing rates. In this high-
firing limit the MUA was found to grow roughly as the square root of the population
firing rate [67]. Here there will be strong temporal overlap in the sum over extracel-
lular signatures from all contributing neurons, and the summation is better viewed
as a sum over randomly drawn positive and negative contributions to the extracel-
lular potential. If the positive and negative contributions are similar in size, the
rectified summed signal is expected to grow as the square root of the number of
contributions, i.e., as the square root of the population firing rate.

It is, however, a priori unclear what ranges of population firing rates correspond
to the different regimes; this will depend on neuronal morphologies and densities
(as well as the physical characteristics of the electrode). In Pettersen et al. [67] it
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was found that for realistic population firing-rates and trial-averages over 40 trials,
there is a large regime where the relationship between the MUA and population
firing rate is well approximated by raising the population firing rate to a power of
3/4, i.e., intermediate between the linear and the square-root regimes. This implied
that a good estimate of the population firing rate can be obtained by raising the
MUA to the power 4/3, see double-logarithmic plot in Fig. 9D. Indeed, this rule
clearly improved the population firing rate estimates for the examples considered
in Ref. [67] compared to results from using the standard linear rule. However, it is
unclear to what extent this rule extends to other situations.

6 Estimation of current-source density (CSD) from
LFP

The previous Sections 3, 4, and 5 all considered forward-modeling of extracellular
potentials, that is, the calculation of extracellular potentials from known activity
in neurons. The present section deals with the opposite problem, namely how the
underlying neural activity can be estimated based on measurements of the extra-
cellular potential or more specifically the LFP. An estimation of transmembrane
current through a particular segment of a particular neuron is in practice out of the
question; in principle, one can only extract one unknown current source per elec-
trode contact and an infinite number of different current-source constellations can
produce the extracellular potential recorded on a finite number of electrode contacts.

A common strategy has been to use multicontact LFP recordings to estimate the
current-source density (CSD), that is, the volume density of net current entering or
leaving the extracellular medium, see Section 2.3. A microscopic view inside the
cortical tissue reveals an inhomogeneous, densely packed collection of neural seg-
ments acting as current sources. The CSD is a more mesoscopic concept and can
be interpreted as the average transmembrane current for a piece of neural tissue in
a volume element a few tens of micrometers across. In practice the maximum pos-
sible spatial resolution in the estimation of CSD will be limited by the intercontact
distance, typically 100 µm or more.

6.1 Standard CSD method
The traditional CSD estimation is based on LFP recordings with laminar (linear)
multielectrode arrays with a constant inter-contact distance h inserted perpendic-
ularly to the cortical surface [13, 14, 53, 75, 78, 86]. Motivated by the prominent
laminar structure of cortical tissue where the changes in the lateral directions are
much smaller than in the vertical direction, it has been common to assume an in-
finite activity diameter in the lateral (xy) plane, i.e., perpendicular to the laminar
electrode oriented in the z-direction. Variation of the extracellular potential in the
x- and y-directions can then be neglected, so that Eq. (10) simplifies to its one-
dimensional version:

σ
d2φ(z, t)

dz2
= −C(z, t) . (19)
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Figure 10: Illustration of errors inherent in standard CSD estimation method for one-
dimensional recordings for simplified CSD profile, similar to Ref. [60]. (A) Example CSD
depth profile, (B) corresponding LFP at center axis when the CSD distribution has a
diameter-to-height ratio of 0.5. (C–F) Estimated CSDs for increasing diameter-to-height
ratios, as indicated by the number and inset in the lower left of each panel. All estimates are
based on the double spatial-derivative formula of the standard CSD method, i.e., Eq. (20).
Arbitrary units, negative values to the left and positive to the right.
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A natural estimator for the CSD at electrode position zj has thus been [60]

C(zj) = −σ
φ(zj + h)− 2φ(zj) + φ(zj − h)

h2
(20)

or variations thereof, including additional spatial smoothing filters [17, 86]. With
N electrode contacts the above estimator can predict the CSD only at the N − 2
interior contact positions. However, a trick allowing for the estimation of the CSDs
also at the top and bottom electrodes has been suggested [87].

If we define the domain of electrode contact j located at position zj as the do-
main from zj−h/2 to zj +h/2, it is natural to assume that the estimate C(zj) should
correspond to the average CSD within this domain. In Ref. [65] it was instead shown
from electrostatic theory that the process of discretizing the one-dimensional Pois-
son equation into Eq. 20 corresponds to assuming all CSD within each electrode’s
domain to be located in an infinitely thin (and infinitely wide) sheet at the height
of the electrode-contact. However, a possibly larger source of estimation error stems
from the assumption of an infinite activity diameter perpendicular to the laminar
electrode. This was noted already by Nicholson and Freeman in 1975 [60] who
showed that small ’columnar’ activity diameters (∼ 1 mm or less) may give large
errors in the estimated CSD. The numerical example from Ref. [60] is reproduced
here in Fig. 10, and for the small source diameters the estimated CSD is clearly seen
to be erroneous, predicting, for example, spurious sinks and sources. Indeed Nichol-
son and Freeman [60] recommended and later pursued a full three dimensional CSD
analysis based on the full Poisson equation (Eq. 10) which required technically de-
manding measurements of extracellular potentials in all three spatial directions [62].
With the advent of the present silicon-based multielectrodes such a CSD estimation
scheme can now become more practically feasible [9].

6.2 Inverse CSD methods
In Pettersen et al. [65] a new method for estimation of CSD was introduced, the
inverse CSD (iCSD) method. The core idea behind this method is to exploit the
well-known forward-modeling scheme for calculation of the LFP from given a CSD
distribution: With an assumed form of the CSD distribution parameterized by N
unknown parameters, the forward solution can be calculated and inverted to give es-
timates of these N parameters based on N recorded potentials. This iCSD approach
has several inherent advantages:

• The method does not rely on a particular geometrical arrangement of the N
electrode contacts recording the LFP signals. It is thus not only applicable to
linear multielectrodes [65], but can also be straightforwardly be generalized to
other multielectrode geometries [37, 38].

• A priori constraints, such as knowledge about the lateral size of columnar
activity, can be built directly into the iCSD estimator [14, 38, 65, 67].

• Unlike the standard CSD method, the iCSD method can also predict CSD at
the positions of the boundary electrode contacts [37, 38, 65].
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• Discontinuities and direction dependence of the extracellular conductivity can
be incorporated [14, 65].

To present the iCSD idea more explicitly we now consider a situation where one has
recordings from N electrode contacts. Further, the CSD has been parameterized by
N parameters describing the weights of the different contributions to the CSD [65].
Regardless of the choice of parametrization, the CSD is now uniquely determined
by the N weight parameters {C1, C2, . . . , CN}. The LFP due to this CSD distribu-
tion can then be calculated at the N electrode contact positions using electrostatic
theory (e.g., using Eq. (7) if σ is scalar and homogeneous). Due to the linearity of
electrostatic theory the LFP grows linearly with the CSD weight parameters, and
their relationship can thus be formulated in matrix form as [65]

Φ = FC . (21)

Here Φ = [φ1 φ2 . . . φN ]T is a vector containing the extracellular potential, and
C = [C1 C2 . . . CN ]T is a corresponding vector containing the CSD parameters. F
is an N × N matrix containing the mapping from CSDs to extracellular potentials
found from electrostatic theory. If F is constructed properly, it will be invertible,
and an estimate of the N unknown CSD parameters Ĉ can then be estimated from
the N recorded potentials by a simple matrix multiplication with the inverse matrix
F−1:

Ĉ = F−1Φ (22)

To illustrate the calculation of the matrix F we can consider the most common situ-
ation where a laminar electrode array with equidistant electrode contacts is inserted
perpendicularly into, say, sensory cortex [13, 14, 53, 75, 78, 86]. For simplicity we
further assume the stimulus-evoked CSD to be located in infinitely thin, circular
disks centered on the N electrode contacts. Each disk is further assumed to have
the same CSD throughout the disk and to be positioned in the horizontal plane per-
pendicular to an inserted laminar electrode array [65]. For this ’δ-source’ method a
simple formula is obtained for the matrix elements, and the method also has some
additional interest since it turns out to correspond to the standard CSD method in
the limit of infinitely large discs [65]. From electrostatic theory we have that the
extracellular potential at a position z at the center axis due to an infinitely thin
current-source disk placed in z′ is given by φ = (

√
(z − z′)2 + R2 − |z − z′|)Cp/2σ,

where Cp now is the planar CSD, R is the radius of the disks, and σ is the extracel-
lular conductivity [61, 65]. This implies that the matrix elements fjk of the matrix
F is given by

fjk =

(√
(zj − zk)2 + R2 − |zj − zk|

)
h/2σ , (23)

where Cj = Cp
j /h and zj − zk = h(j − k). This δ-source iCSD method is now

completely specified by Eqs. (22) and (23), and as shown, e.g., in Fig. 7 of Ref. [65],
even this simple δ-source CSD method completely outperforms the standard CSD
method when the population activity is spatially confined.

In Ref. [65] two other variations of the iCSD method were also investigated:
the step iCSD method, where the CSD is assumed to be step-wise constant in the
z-direction, and the spline iCSD method based on cubic-splines interpolation. A
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GUI-based MATLAB toolbox for estimating the CSD from laminar multielectrode
recordings has been developed based on these three iCSD methods and can be
downloaded from http://software.incf.org/.

These two latter methods were generalized and further developed by Leski et al.
[37] who developed iCSD method for estimation of CSD based on three-dimensional
recordings. In this situation the advantage of the iCSD method is even larger com-
pared to the standard CSD method in that the fraction of electrode contacts at the
boundary is much higher. For example, their electrode grid consisted of 4 × 5 × 7
contacts, for which 110 of the 140 electrode contacts are the boundary and thus
outside the scope of the standard CSD method. From their studies Leski et al.
concluded that a spline iCSD method was a good choice for this three-dimensional
situation [37].

The iCSD method has now also been implemented for the case with two-dimensional
recordings [38], e.g., recordings done with multishank laminar electrodes [9]. As for
the 1D method, a GUI-based MATLAB toolbox has been developed to facilitate
easy use of the method [38].

6.3 Validation of iCSD with population forward modeling
The results from forward-modeling of synaptically evoked activity in a population of
morphologically reconstructed pyramidal neurons in Section 5 are well suited to test
the iCSD approach, and to compare the accuracy of this method with the standard
CSD method. Here we consider the situation where the LFP is recorded by a laminar
electrode array oriented perpendicular to the cortical layers and penetrating the
population through its center [67], but these forward-modeling population results
have also been used for testing of the iCSD approach for recordings with multishank
laminar electrodes [38].

As discussed above the CSD should be considered as the average net transmem-
brane current within a particular volume element. In Fig. 11A we show the actual
CSD at the center of the columnar model population shown in Fig. 8, i.e., the
average transmembrane current of a centered cylindrical volume element of height
0.1 mm and radius 0.2 mm, plotted as a function of time. The spatial spread of this
CSD is illustrated in Fig. 11B. Here, the CSD at a particular time (t = 25 ms, cf.
Fig. 9A) was computed for cylindrical annuli with rectangular cross-sectional areas
of 0.05 mm×0.1 mm. It is seen that the CSD varies only moderately as a func-
tion of radial distance when inside the column. One further sees that even though
the somas are restricted to radial distances less than 0.2 mm, the dendrites gives
non-negligible CSD outside this boundary.

The next four panels in Fig. 11 illustrate the accuracy of the CSD estimation
methods in this model situation. The estimated CSD along the (virtual) laminar
electrode from the standard CSD method is shown in Fig. 11C. This CSD is esti-
mated by using Eq. (20) on model LFPs at the (virtual) electrode contacts at the
center axis of the column, cf. Fig. 8B, except at the top and bottom contacts were
the method of Ref. [87] is used. Comparison with Fig. 11A shows that the standard
CSD method predicts spurious sinks and sources below and above the actual CSD.
Further, the size (amplitude) of the actual sources and sinks are underestimated by
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Figure 11: Illustration of CSD of model population and CSD estimation errors for different
CSD methods. (A) Actual CSD within the column, i.e., average of CSD in centered
cylindrical volume of height 0.1 mm and diameter 0.4 mm. (B) Radial CSD distribution
at particular point in time (t = 25 ms) as a function of depth and radial distance from
population center. Computed by averaging over volume elements consisting of annuli with
rectangular cross-sectional area of 0.05 mm×0.1 mm. (C) CSD estimate from using the
standard CSD-method on the modelled LFPs along center axis of the population. Top
and bottom estimates are found by the using the method of Ref. [87]. (D) CSD estimate
from the step iCSD method. (E-F) Difference between the actual CSD and estimates from
the standard (E) and step iCSD methods (F), respectively. Both the actual CSD and the
estimated CSDs were normalized to have a maximum amplitude of unity prior to error
estimation and plotting [67].
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about a factor of two.
Fig. 11D shows the CSD estimated from the step iCSD method [67]. This method

assumes piecewise constant CSD distribution in the vertical direction. A columnar
diameter of 0.4 mm is assumed in the iCSD method, the diameter of the cylindrical
box to which the soma positions are restricted. This is clearly less than the spatial
extension of the actual CSD seen in Fig. 11B, but anyhow a natural parameter
choice. Despite the somewhat unnatural assumptions regarding the form of the
CSD, the step iCSD estimates are seen to be very similar to the actual CSD seen in
Fig. 11A. The much improved CSD estimates from the step iCSD method compared
to the standard CSD method is further illustrated in the panels E and F showing
the relative mean-square differences between the actual and estimated CSD for the
two CSD estimation methods (see Ref. [67] for detailed specification of the error
estimate); the error of the standard CSD method estimates is much larger than for
the iCSD step method. For further discussion see Pettersen et al. [67].

7 Concluding remarks
The main topic of this chapter has been the forward-modeling of extracellular po-
tentials, i.e., the calculation the extracellular potentials from activity in neurons
or populations of neurons. So far there has been relatively few modeling stud-
ies pursuing such calculations; in fact, the first full-fledged study of this type
using morphologically reconstructed neurons was done less than fifteen years ago
[29]. With the advent of new public databases of reconstructed neurons such as
http://www.neuromorpho.org/ and ever more powerful computers, we expect that
the relatively straightforward forward-modeling scheme for calculating extracellular
potentials will be more frequently used in the years to come.

An important set of applications of this forward-modeling scheme will be the
validation of methods for analysis of LFP and MUA data, as exemplified by the
testing of the iCSD method in Fig. 11 or the testing of the MUA as a measure
of population firing rate, cf. Fig. 9D and Ref. [67]. The forward-modeling scheme
will likewise be useful for testing and development of new methods for analysis of
multielectrode data such as the so called laminar population analysis (LPA) [14] or
spike-sorting algorithms [9, 40].

To improve the accuracy and reliability of the forward-modeling scheme it is
important to establish good, experimentally validated models for the impedance
properties of the extracellular media in all relevant types of neural tissue. Ideally one
could envision experimental setups and protocols allowing for in situ measurement
of the extracellular conductivity in conjunction with each multielectrode recording.
Further, a more detailed understanding and accurate model representation of the
electrical properties of the various types of multielectrodes are needed [24, 54, 58, 59].
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Abstract The local field potential (LFP) is among the
most important experimental measures when probing
neural population activity, but a proper understanding
of the link between the underlying neural activity and
the LFP signal is still missing. Here we investigate this
link by mathematical modeling of contributions to the
LFP from a single layer-5 pyramidal neuron and a
single layer-4 stellate neuron receiving synaptic input.
An intrinsic dendritic low-pass filtering effect of the
LFP signal, previously demonstrated for extracellular
signatures of action potentials, is seen to strongly affect
the LFP power spectra, even for frequencies as low as
10 Hz for the example pyramidal neuron. Further, the
LFP signal is found to depend sensitively on both the
recording position and the position of the synaptic in-
put: the LFP power spectra recorded close to the active
synapse are typically found to be less low-pass filtered
than spectra recorded further away. Some recording
positions display striking band-pass characteristics of
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the LFP. The frequency dependence of the properties
of the current dipole moment set up by the synaptic in-
put current is found to qualitatively account for several
salient features of the observed LFP. Two approximate
schemes for calculating the LFP, the dipole approxima-
tion and the two-monopole approximation, are tested
and found to be potentially useful for translating results
from large-scale neural network models into predic-
tions for results from electroencephalographic (EEG)
or electrocorticographic (ECoG) recordings.

Keywords Local field potential · Single neuron ·
Forward modeling · Frequency dependence · EEG

1 Introduction

Extracellular recordings have been, and still are, among
the most used methods for probing neural activity.
This popularity mainly stems from the spike-counting
abilities of sharp electrodes: when placed sufficiently
close to a particular neuronal soma, such electrodes
will measure a sequence of standardized extracellular
potential signatures, each signalling the presence of an
action potential in that particular neuron. Information
about spiking is commonly extracted from the high
frequency band (! 500 Hz) of the recorded extracel-
lular potentials. The interpretation of the local f ield
potential (LFP), i.e., the low-frequency part (" 500 Hz)
of extracellular potentials, is generally not so straight-
forward. The LFP appears to be dominated by dendritic
processing of synaptic inputs, not firing of action poten-
tials (Nunez and Srinavasan 2006; Einevoll et al. 2007;
Pettersen et al. 2008), and the LFP measured at any
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point will have sizable contributions from neurons
located many hundred micrometers away (Kreiman
et al. 2006; Liu and Newsome 2006; Berens et al. 2008;
Lindén et al. 2008, 2009a; Katzner et al. 2009; Xing
et al. 2009).

The advent of new silicon-based multicontact electri-
cal probes in various geometrical arrangements, such as
‘multi-shank’ (Buzsáki 2004) or ‘needlepad’ (Normann
et al. 1999), offers new exciting opportunities for mas-
sively parallel recordings of LFP. Thus LFP certainly
has the potential of becoming one of the most im-
portant experimental measures when probing neural
population activity (Mitzdorf 1985; Arieli 1992; Di et al.
1990; Einevoll et al. 2007; Kreiman et al. 2006; Nauhaus
et al. 2009). This will require, however, a substantial
improvement in our understanding of the link between
the underlying activity in neurons and the recorded
LFP signal. The present model study aims to add to this
understanding by investigating the contribution to the
LFP signal from individual neurons receiving synaptic
stimulation. Due to the linearity of electromagnetism, a
recorded LFP signal will be built up by a linear sum of
such contributions from individual neurons located in
the vicinity of the electrode contact. The insight gained
by studying the LFP signals generated by individual
neurons will thus be of great help when embarking on
the larger project of linking measured LFPs to activity
in populations of neurons or comprehensive neural
networks (Lindén et al. 2009a, b).

In the present study we particularly address the
question on the origin of observed frequency spectra
in LFP and EEG (electroencephalography) recordings
(Pritchard 1992; Freeman et al. 2003; Bedard et al.
2006b; Buzsaki 2006; Bedard and Destexhe 2009;
Milstein et al. 2009; Miller et al. 2009). In Pettersen and
Einevoll (2008) we described an unavoidable low-pass
frequency-filtering effect of the extracellular action-
potential signature due to the electrical cable properties
of the neuronal dendrites. In the present paper we find
for our example layer-5 pyramidal neuron that the same
intrinsic dendritic filtering effect also strongly affects
frequencies down to about 10 Hz, i.e., well into the typ-
ical LFP and EEG frequency bands. Moreover, we find
the detailed frequency-filtering effects to vary strongly
with recording position: for apical synaptic stimulation
the low-pass filtering effects are most prominent for
recording positions near the soma, and vice versa. We
also consider a spatially more compact layer-4 stellate
neuron. The same low-pass filtering effect is observed,
although with a higher cut-off frequency than for the
spatially more extended layer-5 pyramidal neuron.

The use of dipole and other multipole moments
in the modeling of bioelectric signals has a long his-

tory (Plonsey 1969; Plonsey and Barr 2007). The cur-
rent dipole concept has been particularly important
in the interpretation of EEG signals, but there one
has typically considered ‘mesoscopic’ current dipoles
representing the collective effect from large number
of activated neurons (Nunez and Srinavasan 2006).
In a recent study, however, we found the current di-
pole momentfrom a single neuron to be a very use-
ful concept for gaining thorough understanding of the
characteristics of extracellular signatures of action po-
tentials (Pettersen and Einevoll 2008). Likewise, we
here find the concept to be very useful for obtaining
better understanding of the results from our numeri-
cally comprehensive calculations of LFPs generated by
synaptic activation of individual neurons with complex
dendritic morphologies. Further, used in combination
with the standard far-field dipole approximation from
electrostatics (Jackson 1998; Plonsey and Barr 2007),
this quantity is even found to provide quantitatively
accurate predictions of the LFP a millimeter or more
away from the neuron. This dipole approximation, as
well as a two-monopole approximation also explored
here (Freeman 1980), may even find its use in ambitious
large-scale neural network modeling schemes aspir-
ing to predict results from EEG recordings or ECoG
recordings, i.e., recordings done at the cortical surface.

Preliminary results from this project were presented
earlier in poster format (Lindén et al. 2008).

2 Methods

2.1 Forward modeling of extracellular potentials

Extracellular potentials are generated by transmem-
brane currents, and in the presently used volume
conductor theory the system is envisioned as a 3-
dimensional smooth extracellular continuum with the
transmembrane currents represented as volume current
sources (Nunez and Srinavasan 2006). In volume con-
ductor theory the fundamental formula for the contri-
bution to the extracellular potential φ(r, t) from the
activity in an N-compartment neuron model is given
by (Nicholson and Freeman 1975; Holt and Koch 1999;
Pettersen and Einevoll 2008; Pettersen et al. 2008)

φ(r, t) = 1
4πσ

N∑

n=1

In(t)
|r − rn|

. (1)

Here In(t) denotes the transmembrane current in com-
partment n positioned at rn, and σ is the extracellular
conductivity. This formula relies on a set of assump-
tions and approximations: The first is the use of the
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quasistatic approximation of Maxwell’s equations. This
amounts to neglecting the terms with time derivatives
of the electric field E and magnetic field B from the
original Maxwell’s equations so that the electromag-
netic field effectively decouples into separate ‘quasi-
static’ electric and magnetic fields (Hämäläinen et al.
1993). Then the electric field E in the extracellular
medium is related to the extracellular potential φ via
E = −∇φ. For frequencies inherent in neural activity,
i.e., less than a few thousand hertz, the quasistatic
approximation seems to be well fulfilled (Hämäläinen
et al. 1993).

Further, the formula assumes an infinite volume con-
ductor where the electrical properties of the extracellu-
lar medium are assumed to be (1) linear and frequency
independent (Logothetis et al. 2007), i.e., j = σE where
j is the current density, (2) ohmic, i.e., no imaginary
part of σ (Nunez and Srinavasan 2006; Logothetis et al.
2007), (3) position-independent, i.e., σ is the same ev-
erywhere, and (4) isotropic, i.e., same σ in all directions
(Logothetis et al. 2007). For a more comprehensive
discussion of these assumptions regarding the extracel-
lular medium see Pettersen et al. (2010).

In a numerical scheme based on compartmental
neuron models, the formula in Eq. (1) can be used
directly with the position rn set to correspond to a
characteristic ‘mean’ position of compartment n, e.g.,
the center of a spherical soma compartment or the
mid-point of a cylindrical dendritic compartment. This
scheme corresponds to the so called point-source ap-
proximation since all transmembrane currents leaving
or entering the extracellular medium from a particu-
lar compartment are assumed to go through a single
point (Holt and Koch 1999; Pettersen and Einevoll
2008). Another scheme, the line-source approximation,
assumes the transmembrane currents from each cylin-
drical compartment to be evenly distributed along a
line corresponding to the cylinder axis (Holt and Koch
1999; Pettersen and Einevoll 2008; Pettersen et al.
2008). A line-source formula, analogous to the point-
source formula in Eq. (1), can be found in Eq. (2) of
Pettersen and Einevoll (2008) . All forward-modeling
calculations presented in this paper use the line-source
approximation with the extracellular conductivity set to
σ = 0.3 S/m (Hämäläinen et al. 1993).

2.2 Compartmental neuron modeling

All simulations were carried out using the NEURON
simulation environment (Carnevale and Hines 2006)
which was controlled via a Python interface (Hines
et al. 2009). We used two different reconstructed cell
morphologies, a layer-5 pyramidal cell and a layer-

4 stellate cell from cat visual cortex (Mainen and
Sejnowski 1996), both downloaded from ModelDB at
http://senselab.med.yale.edu/. To assure sufficient nu-
merical precision the length of each compartment of the
model neurons was chosen to be maximum one tenth
of the electrotonic length at 100 Hz. This gave a total
of 1,072 compartments for the layer-5 cell and 343 com-
partments for the layer-4 cell for our default choice of
passive membrane parameters (see below). Simulations
in NEURON were performed at a time resolution of
0.0625 ms. The default passive membrane parameters
of the cell models were: specific membrane resistance
Rm=30 k$ cm2, specific axial resistance Ra=150 $ cm,
and specific membrane capacitance Cm=1.0 µF/cm2

(Mainen and Sejnowski 1996). In the testing of the de-
pendence of LFP power spectra on model parameters
we also considered specific membrane resistances Rm

and specific axial resistances Ra corresponding to 1/10
and 10 times the default values.

In one application the synaptic input current Is(t)
was modeled as an α-function, that is,

Is(t) = I0
t
τs

e1−t/τs θ(t) , (2)

where θ(t) is the Heaviside unit step function. Note that
an excitatory synaptic input corresponds to a negative
value of the current amplitude I0. Simulations with
this stimulus was run for 100 ms prior to onset of the
α-current to avoid any possible inaccuracies from up-
start effects.

The input currents used for calculating LFP power
spectra were created as a sum of sinusoidal currents,

Is(t) = I0

1000∑

f=1

sin(2π f t + γ f ) (3)

where γ f represents a random phase for each frequency
contribution. This current contains all frequencies be-
tween 1 Hz and 1,000 Hz in steps of 1 Hz, has a flat
frequency spectrum, and is for the purpose of this study
equivalent to a ‘white-noise’ input current. The simula-
tions were run for 1,200 ms. The calculated LFP signals
from the last 1,000 ms were used in the evaluation of
the power spectra which were obtained by squaring
the Fourier amplitudes of the calculated LFP for each
frequency.

Since the cable equation describing the present
passive neuron is linear, the assumption of current
synapses and passive neuronal membrane model makes
the overall model linear. This means that all calcu-
lated extracellular and intracellular potentials will be
proportional to the current amplitude I0. Further, in
the case of a sinusoidal input current, all extracellular
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and intracellular potentials will also be sinusoidally
oscillating with the same frequency, although in general
with a different phase. The linearity of the model makes
it easier to analyze. However, we expect that most of
the observed qualitative features would remain if we,
e.g., instead had considered excitation by conductance-
based synapses.

2.3 Current dipole moments

Current dipole moments in the x-, y-, and z-directions
were calculated as follows:

px(t) =
N∑

n=1

xn In(t) , py(t) =
N∑

n=1

yn In(t) ,

pz(t) =
N∑

n=1

zn In(t) . (4)

where xn, yn, and zn are the x, y and z positions of
compartment n. When the synaptic input current is si-
nusoidal, i.e., Is(t) = I0 sin(2π f t), these dipole moments
will due to the linearity of the system be of the form

px(t) = p0x( f ) sin(2π f t + γ f x) ,

py(t) = p0y( f ) sin(2π f t + γ fy) ,

pz(t) = p0z( f ) sin(2π f t + γ f z) . (5)

In the special case when the phases are identical, i.e.,
γ f x = γ fy = γ f z ≡ γ f , the system simplifies to a sinu-
soidally oscillating dipole along a f ixed axis,

pfa(t) = p0( f ) sin(2π f t + γ f ) (6)

where p0( f ) is a frequency-dependent vector given by

p0( f ) ≡ p0x( f )ex + p0y( f )ey + p0z( f )ez . (7)

(Note that the system also reduces to a fixed-axis
oscillating dipole when one of γ f x, γ fy, or γ f z is off
by a factor π compared to the two others; then the
factor π can be eliminated by changing the sign of the
‘amplitude’ in front of the particular sinus function.)

In the application of the dipole approximation for
LFP generation in Sections 3.5 and 3.6 we assume the
phases of the three cartesian dipole-moment compo-
nents to be the same (modulo a factor π) so that a linear
dipole is obtained. In order to specify the direction of
this linear dipole, one also has to decide the directions
of the three components relative to each other. Here
we set these directions, for all frequencies considered,
to correspond to the current-dipole component direc-
tions found in the low frequency limit (1 Hz). With
such slowly oscillating input currents the phase shifts
between the dipole components are negligible, and the

assignment of directions follows directly from evalu-
ating the sign of, say, the x and y components of the
current dipole at the first peak for the z component.

3 Results

3.1 Example local field potentials

In Fig. 1 we show examples of patterns of extracellular
potential traces around reconstructed neurons. These
extracellular potentials are generated by single synaptic
inputs for various synaptic positions and neuronal den-
dritic morphologies. The synaptic input currents are in
all examples chosen as α-functions (cf. Eq. (2)) with a
time constant of 2 ms and a peak amplitude of 1 nA.
In the following we will denote such synaptically gen-
erated extracellular potentials as local f ield potentials
(LFPs).

In Fig. 1(a) we show results for a reconstructed layer-
5 pyramidal neuron, taken from Mainen and Sejnowski
(1996), receiving a single excitatory synaptic input at
an apical branch. The form of the injected synaptic
current is illustrated by the inset panel. An important
feature which is immediately apparent is that the shape
and amplitude of the LFPs depend strongly on the re-
cording position. Near the apical synaptic input the
LFP signature is generally negative, reflecting that the
excitatory current synapse providing a current sink
dominates the sum in the forward-model formula, cf.
Eq. (1). At positions close to the soma the LFP is always
positive, reflecting that return currents in the soma area
dominate the sum.

This characteristic dipolar structure is further illus-
trated by the contour plots shown in the figures as
grey solid and dashed lines. These logarithmic contour
plots show how the maximum value for LFP signal
amplitude, i.e., maximum positive or negative deviation
of LFP from baseline following the synaptic input,
varies with position. For spatial positions above and to
the left of the synaptic input in Fig. 1(a), this largest
deviation corresponds to a negative LFP peak, and the
dashed contour lines in this region thus corresponds
to ‘equi-LFP’ lines with negative numerical values of
the LFP. For spatial positions around the soma, posi-
tive LFP peaks dominate, and the solid contour lines
correspondingly represent ‘equi-LFP’ lines with posi-
tive values of the LFP. Regardless of the sign of the
maximum LFP amplitude, we generally observe a rapid
decay of the LFP signal amplitude with distance: when
moving away from the neuron, each new contour line
represents a reduction of the LFP amplitude by a factor
two compared to the previous contour line.
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Fig. 1 Examples of calculated local field potentials (LFPs) fol-
lowing an excitatory synaptic input into purely passive neu-
ron models. The synapse is current-based and modeled as an
α-function (Eq. (2)) with an amplitude of 1 nA, i.e., I0 = −1 nA,
and a time constant τs = 2 ms; see panel inset in (a) for il-
lustration of synaptic current. Neuron models are passive with
the following specific electric parameters: membrane resistivity
Rm = 30 k$ cm2, axial resistivity Ri = 150 $ cm, membrane
capacitance Cm = 1 µF/cm2. Extracellular potentials (thick solid
lines) at selected spatial positions (marked with dots on trace
starting points) are shown in 50 ms windows. Grey contour lines
illustrate maximal extracellular potential (LFP) amplitudes, i.e.,
maximum positive or negative deviation of LFP from baseline
following the synaptic input. Contour plots are logarithmic and

based on log2, i.e., the LFP amplitude decays by a factor 2 be-
tween each contour line. Solid contour lines are ‘equi-LFP’ lines
corresponding to positive values for the LFP amplitude, dashed
contour lines to negative values of the LFP amplitude. (a) Results
for reconstructed L5 pyramidal neuron (solid branch structure)
from Mainen and Sejnowski (1996) with single excitatory synapse
(solid dot) on apical branch. The neuron has been rotated so that
both the synapse and soma are in the 2D plane of the plot. (b)
Corresponding results as in (a) for a single excitatory synapse
in soma. (c) Results for reconstructed L4 stellate neuron from
Mainen and Sejnowski (1996) with single excitatory synapse on
distal branch. (d) Corresponding results for a single excitatory
synapse in soma

An excitatory synaptic input onto the basal dendrites
of the pyramidal neuron will typically give the opposite
pattern: negative LFPs around the basal synaptic input
and positive LFPs around the apical dendrites (results
not shown). However, due to the asymmetric dendritic
branching with a dominant apical dendrite, even an ex-
citatory input onto the soma gives a prominent dipolar

spatial pattern for the extracellular potentials. This is
demonstrated in Fig. 1(b). Here we show results from
injecting the same current used in Fig. 1(a) into the
soma instead of into the apical synapse, and a spatial
LFP pattern similar to what might be expected for an
excitatory basal input is indeed observed. In Fig. 1(b),
however, we see that the amplitudes of the LFP signal
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are generally much smaller than for the situation with
apical excitation depicted in Fig. 1(a). A qualitative
explanation is that presumably more of the injected
synaptic current returns to the extracellular medium
closer to the injection point in the case with somatic
input, than for input onto the apical dendrite. There will
thus be more cancelation of the contributions from the
various terms in the sum in Eq. (1).

A close inspection of the equipotential contour lines
in Fig. 1(b) reveals a deviation from the simple dipo-
lar pattern. In a region inside the basal dendritic tree
just below the soma, the LFP signals with the largest
magnitudes are seen to be positive, not negative as
expected from the dipolar structure. In this region the
early positive peak prominently seen in the potential
trace to the right of and below the soma, has a larger
magnitude than the peak of the following negative LFP
signal. If we instead had plotted equipotential contour
lines for the dominant, i.e., late, LFP peak, a clean
dipolar pattern would have been seen.

The layer-5 pyramidal neuron in Fig. 1(a) and (b) has
a characteristic ‘open-field’ dendritic structure where
the synaptic input currents and the bulk of the re-
turn currents may be substantially separated in space
(Johnston and Wu 1995). This will imply a sizable
current dipole and, in turn, a sizable contribution to the
experimentally recorded LFPs. For example, in panel
(a) the distance between the position of the apical
synaptic input and the soma, where a large part of the
return current exits, is about a millimeter.

In Fig. 1(c) and (d) we show corresponding results
for a layer-4 stellate neuron where the dendritic struc-
ture has a spherically symmetric appearance, implying
a more ‘closed-field’ structure (Lorente de Nó 1947;
Rall 1962; Johnston and Wu 1995). As shown in panel
(c), a distal synaptic input onto a dendritic branch will
nevertheless produce a dipolar LFP pattern around the
stellate neuron where the dipole axis will be oriented
along a line between the synaptic input and the soma.
Only when the set of distal inputs are distributed sym-
metrically around the soma can significant cancelation
effects on the resulting LFP be expected. However, the
cancelation can never be expected to be complete due
to unavoidable asymmetry in the dendritic structure.
The dendritic asymmetry as seen from the soma for the
present stellate neuron is illustrated in Fig. 1(d) where
the LFP pattern following a synaptic input into the
soma is shown. Also for this situation a dipolar pattern
of LFPs is observed, albeit generally with reduced am-
plitudes compared to the distal-excitation situation in
(c). A comprehensive investigation of the dependence
of sizes and shapes of the LFP patterns on the neuronal
morphologies and synaptic input positions is beyond

the scope of the present paper, but the results in Fig. 1
caution us that one must be careful before a priori
neglecting contributions to experimentally recorded
LFP from populations of neurons with stellate dendritic
structures.

Close inspection of Fig. 1(a) reveals another qualita-
tive feature: the LFP signals close to the synaptic inputs
positions have ‘narrower’ temporal traces compared to
signals further away. In other words, the LFPs recorded
close to the synaptic inputs have more power at higher
temporal frequencies than LFPs recorded further away.
This position-dependent temporal filtering of the LFP
is also revealed by the shift in the times of the peaks
of negative LFPs compared to the peak times for the
positive LFPs in Fig. 1(a): we find, for example, that the
peak of the purely negative LFP trace depicted immedi-
ately above the synaptic current-injection point, occurs
5 ms before the maximum of the purely positive LFP
trace depicted immediately below the soma. This effect
may at least partially underlie observed asynchronous
positive and negative peaks of LFPs found in depth-
resolved intracortical recordings in humans; in Fig. 2 in
Godey et al. (2001) the negative LFP peak at around
45 ms in electrode H’1 is, for example, seen to occur
about 5 ms prior to the positive LFP peak seen in
electrode H’3.

This intrinsic dendritic filtering effect is a generic
and unavoidable feature of spatially extended neuronal
structures (Pettersen and Einevoll 2008), but the de-
tailed characteristics of it will be determined by den-
dritic morphology, electrical cable properties of the
dendrites, positions of the current-injecting synapses, as
well as the recording position.

3.2 LFP power spectra depend on recording positions

In Fig. 2 we show calculated LFP power spectra, i.e.,
the square of Fourier amplitudes, for extracellular po-
tentials in the frequency range between 1 and 1,000 Hz.
Note the double-logarithmic axes. The same passive
layer-5 pyramidal neuron as in the upper panels of
Fig. 1 is considered, and we show LFP power spectra
found from white-noise current injection (Eq. (3)) into
the position of the synapse on the apical branch in
Fig. 1(a). For easy comparison we have also drawn lines
corresponding to 1/ f and 1/ f 2 power laws of the LFP
in an auxiliary panel.

An immediate observation is that the shape of the
spectra is very different at the different recording po-
sitions and consequently that no general power-law
behavior of the LFP spectra is found. The highest fre-
quencies are to a large extent retained at positions close
to the synaptic input, where the frequency at which
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Fig. 2 (a) Calculated power spectra of local field potentials
(LFPs) following injection of white-noise current into a purely
passive layer-5 pyramidal neuron (grey solid branch structure)
from Mainen and Sejnowski (1996). The current injection point
on the apical branch is marked with a circle. Same passive
parameters as in Fig. 1. Doubly logarithmic power spectra in the
frequency range 1–1,000 Hz of extracellular potentials (thick solid
lines) are shown at selected spatial positions (marked by f illed ar-
rows). The power spectra are normalized to the maximum value
in the range 1–1,000 Hz. See separate legend box in the upper
right part of panel (a) for description of the logarithmic frequency

and power axes. Logarithmic contour plot with grey solid lines
illustrate the decay of the 1-Hz power, i.e., square of Fourier
amplitude, of the extracellular potential with distance from neu-
ron. The power decays by a factor 4 between each contour line.
Grey dashed contour lines correspondingly illustrate the decay
of the 100-Hz power. (b) Normalized doubly-logarithmic power
spectra of transmembrane currents at three different positions
(synaptic current-injection point, circle; intermediate position,
triangle; soma, square) marked with corresponding symbols in
(a). (c) Same as (b), but for membrane potential

the power is reduced to one hundredth, is seen to be
substantially above 100 Hz. In fact, the position imme-
diately below the synaptic input shows a very modest
low-pass filtering effect, and the power at 1,000 Hz is
still as large as one tenth of the 1 Hz amplitude. The
low-pass filtering effect is seen to be much stronger at
the recording position closest to the soma where the
‘one-hundredth cut-off frequency’ is seen to be slightly
less than 100 Hz. At some positions outside the main
stalk of the apical dendrite one even observes a striking
band-pass effect: the largest LFP power is found for
frequencies between 10 and 100 Hz.

The above observations can be qualitatively un-
derstood by inspection of the corresponding power
spectra of the membrane currents in Fig. 2(b). The
membrane current at the synaptic injection point has
by construction a flat (white-noise) spectrum (marked
with a circle), and LFPs recorded in the vicinity of
this current-injection point will thus retain substantial
contributions from high frequencies. Due to the passive
electrical properties of the dendritic cable structure, the
somatic membrane current will be low-pass filtered as
seen in the power spectrum for the soma (marked with
a square). LFPs recorded in the vicinity of the soma
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will be dominated by this soma membrane current and
will thus exhibit similar power spectra. This is indeed
confirmed by visual comparison with the power spectra
of the LFPs recorded closest to the soma which shows
essentially the same power spectrum.

The membrane current at the intermediate posi-
tion on the dominant apical dendrite (marked with a
triangle) has a smaller low-pass filtering effect com-
pared to the soma membrane current, and the low-pass
filtering effect of the LFPs recorded in the vicinity of
this point is correspondingly smaller as well. Here a
somewhat poorer agreement between the LFP spec-
trum and the corresponding membrane-current spec-
trum is observed. This reflects that the membrane area,
and thus membrane current, around this intermediate
position is small compared to both the basal and apical
dendritic regions. Thus the recorded LFP signal will
get significant contributions from the apical and basal
parts of the dendritic tree, and the LFP power spectrum
will be determined by a mixture of membrane-current
contributions.

For comparison we also show in Fig. 2(c) the power
spectra for the membrane potential at the same three
positions on the pyramidal neuron. A much stronger
low-pass filtering effect is observed for the membrane
potentials compared to the membrane currents. Since
the LFPs are determined by a weighted sum over
membrane currents and not membrane potentials, the
membrane potential is expected to be a poor predictor
of the LFP. This is indeed confirmed by comparison of
the power spectra of the membrane potential and the
LFPs.

3.3 LFP power spectra depend on synaptic position,
neuronal morphology and neuron parameters

In Fig. 3(a) we show the corresponding LFP power
spectra for the situation where the synapse is at the
soma of the layer-5 neuron instead of at an apical
branch, cf. Fig. 1(b). Here the situation is reversed
compared to Fig. 2(a): a strong low-pass filtering effect
is now seen at the recording positions outside the apical
dendrite, while the high frequencies are to a large ex-
tent retained at the recording position immediately out-
side the soma. This confirms the rule that LFP power
spectra will exhibit less low-pass filtering close to the
synaptic input position than further away (in analogy
with the observation in Pettersen and Einevoll (2008)
that the extracellular spike signature will become more
low-pass filtered when moving away from soma).

In Fig. 3(b) we show LFP power spectra for the layer-
4 stellate neuron receiving synaptic input at a distal
part of a dendrite, in analogy to Fig. 1(c). Also here we

see prominent low-pass filtering effects, although with
a higher cut-off frequency and less variation of power
spectra with recording positions compared to the layer-
5 neuron. This illustrates that the dendritic morphology
of the neuron strongly affects their contribution to
the LFP signal, and in particular that the length of
the dendrites is an important parameter determining
the frequency dependence of the intrinsic dendritic
filtering (Pettersen and Einevoll 2008).

While Figs. 2 and 3 together illustrate the strong
dependence of the intrinsic dendritic filtering effect of
the LFP on recording position, synaptic input position
and dendritic morphology, Fig. 4 illustrates how this
filtering effect is affected by the passive electrical pa-
rameters in the neuron model. To highlight the qualita-
tive effects we look at the extreme and likely unrealis-
tic situations where the specific membrane resistance
Rm and specific axial resistance Ra are increased or
reduced by an order of magnitude compared to the
default parameter values.

In Fig. 4(a) and (b) we show how the power spectra
shown in Fig. 2(a) for the layer-5 neuron with api-
cal synaptic input are changed when Rm is reduced
(Fig. 4(a)) or increased (Fig. 4(b)) by a factor ten,
respectively, compared to the default value Rm=30
k$ cm2 used in Fig. 2(a). In Fig. 4(a) where the mem-
brane resistance Rm is reduced by a factor ten, we
see that the low-pass cut-off frequencies are shifted to
higher values compared to the results for the default
parameters in Fig. 2(a). This can be qualitatively under-
stood since the reduction of the membrane resistance
implies a corresponding reduction of the membrane
time constant τm = RmCm by a factor ten. This in
turns implies that the characteristic frequencies of the
system, such as low-pass cut-off frequencies, will be
increased. We also observe that the characteristic band-
pass spectra for positions outside the apical dendritic
stalk in Fig. 2(a) is absent in Fig. 4(a). This illustrates
that this resonance-like phenomenon depends on a de-
tailed interplay between the neuronal morphology and
its electrical cable properties. The inverse relationship
between the membrane resistance Rm, and thus mem-
brane time constant τm, and the characteristic frequen-
cies of the system is further illustrated by observations
of the depicted spatial pattern of equipotential contour
lines in Fig. 4(a). For this reduced membrane-resistance
case the 100-Hz contour line is much more spatially
extended and thus similar to the 1-Hz contour lines,
than for the default situation in Fig. 2(a).

The opposite effect is observed in Fig. 4(b) where the
specific membrane resistance is increased by a factor
ten, and the typical cut-off frequencies as expected are
shifted towards smaller values compared to the default
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Fig. 3 Calculated power spectra of local field potentials (LFPs)
following injection of white-noise current into (a) the soma of
the layer-5 pyramidal neuron considered in Fig. 2 and (b) and a

dendritic synapse of the layer-4 stellate cell (cf. Fig. 1(c)). The
current injection points are marked with circles. See caption of
Fig. 2 for detailed explanation of the plots

situation. But the change compared to the results in
Fig. 2(a) based on the default value of Rm, is less
compared to decreasing the value of Rm by a factor of
ten, cf. Fig. 4(a). This illustrates the fact that a change
of the membrane resistance not only changes the mem-
brane time constant, but also the frequency-dependent
length constant of the current dipole (cf. Eqs. 10–11 in
Pettersen and Einevoll 2008). The overall change of the
LFP spectra will thus depend on the detailed interplay
between these variables and morphological quantities
of the neuron and thus not follow a simple scaling
rule suggested by considering changes in the membrane
time constant alone.

The other key passive parameter is the specific axial
resistance Ra, and in Fig. 4(c) and (d) we correspondingly
show how the power spectra are altered when this para-
meter is reduced (Fig. 4(c)) or increased (Fig. 4(d)) by
a factor ten, respectively, compared to the default value
Ra=150 $ cm used in Fig. 2(a). In Fig. 4(c) where Ra is
reduced by a factor ten, we see that the 100-Hz equipo-
tential contour lines resemble the 1-Hz contour lines
much more than for the results for the default value of

Ra in Fig. 2(a). This can be qualitatively understood on
the basis of the length constant of the current dipole
for an infinite cable which is proportional to 1/

√
Ra

(Koch 1998; Pettersen and Einevoll 2008). A reduced
axial resistance implies a longer length constant, which
in turn implies that the neuronal dendrites become
electrically more compact. In analogy with the small
low-pass filtering effect observed for frequencies below
100 Hz for the short-stick stellate neuron in Fig. 3(b),
we see in Fig. 4(c) that the low-pass filtering cut-off
in general is shifted to higher frequencies compared
to the results for the default parameters in Fig. 2(a).
This general shift of salient spectral features towards
higher frequencies is also seen in the ‘band-pass’ spec-
tra outside the stalk of the apical dendrite. Here the
band-pass peak is shifted upwards by almost an order
of magnitude compared to the result for the default
value of Ra shown in Fig. 2(a). The opposite effect is
observed in Fig. 4(d) where the specific axial resistance
Ra is increased by a factor ten: since the length constant
is reduced, the neurons will be electrically less compact
and the typical low-pass cut-off frequencies reduced.
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Fig. 4 Calculated power spectra of local field potentials (LFPs)
for the same situation as in Fig. 2(a), but different passive neu-
ron parameters. (a) As in Fig. 2, but with specific membrane
resistance reduced by a factor ten to Rm=3 k$ cm2. (b) As in
Fig. 2, but with specific membrane resistance increased by a factor

ten to Rm=300 k$ cm2. (c) As in Fig. 2, but with specific axial
resistance reduced by a factor ten to Ra=15 $ cm. (d) As in
Fig. 2, but with specific axial resistance increased by a factor ten
to Ra=1,500 $ cm. See caption of Fig. 2 for detailed explanation
of the plots
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3.4 Frequency dependence of membrane-current
distribution

The previous subsections demonstrated the ubiquity
of an intrinsic dendritic low-pass filtering effect of the
LFP. They also demonstrated that the power spectra

vary strongly with recording position, and that the
details of the spectra are determined by an interplay
between neuronal morphology, synaptic input position
and passive cable parameters. Figure 2 also illustrated
the salient role of the transmembrane return currents
in determining the characteristics of LFPs. In Fig. 5 we
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Fig. 5 Illustration of frequency dependence of distribution of
transmembrane currents following sinusoidal current injection
into apical (upper row) or basal (lower row) synapse (thick arrow
in neuron f igures). The length of the rightward oriented arrows
in the neuron figures in panels (a), (b), (d), and (e) represents the
amplitude of transmembrane return currents following injection
of currents at apical (a, b) and basal (d, e) positions, see thick
leftward oriented arrow. The depth distributions of the trans-
membrane return currents for 1 Hz (solid), 10 Hz (dash-dotted),

and 100 Hz (dashed) are shown in panels (c) and (f) for apical
and basal excitation, respectively. Note that the lengths of the
arrows representing the return currents are normalized to have
the same maximum return current in panels (a), (b), (d) and (e).
In reality the amplitude of maximum transmembrane return
currents is much larger for 100 Hz than for 1 Hz, see panels (c)
and (f). The depth distribution of the total membrane area is also
shown in panels (c) and (f)
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illustrate further the core physical effect underlying this
observed intrinsic dendritic low-pass filtering. In panel
(a) the spatial distribution of transmembrane return
currents (rightward arrows) following injection of a
sinusoidal input current (1 Hz) in the apical dendrite
(single thick leftward-oriented arrow) is shown. The
length of the return-current arrows illustrates the am-
plitude of the corresponding sinusoidal return currents.
As seen in panel (a) a substantial part of the apically
injected current returns through the soma and basal
dendrites. The corresponding return-current pattern
for a 100 Hz sinusoidal current is shown in panel (b).
Here, essentially none of the injected current returns
through the basal region, all of it returns through the
apical dendrites.

The effect is more clearly quantified by the curves in
the panel (c) in Fig. 5, showing the depth distribution
of total return current along the vertical extension of
the pyramidal neuron. For the 1-Hz situation almost
half of the return current leaves through the basal
region where the depth distribution essentially follows
the depth distribution of the total membrane area, see
panel Fig. 5(c). For the 100-Hz case, on the other hand,
almost all return current leaves through the apical den-
drites. For 10 Hz an intermediate situation is observed.

In terms of generation of LFP both the 1-Hz and the
100-Hz situations depicted in Fig. 5(a)–(b) correspond
to ‘open-field’ situations; see, e.g., Johnston and Wu
(1995): the weighted mean position of the return cur-
rents is for both frequencies spatially displaced from the
current injection point. However, the spatial distance
between the current injection point and the mean po-
sition at which it returns to the extracellular medium,
i.e., the current dipole length (Pettersen and Einevoll
2008), is very different in the two cases. For 1 Hz this
dipole length is about half the distance between the
current injection point and the soma, while for 100 Hz
it is reduced to less than one tenth of this distance. The
current dipole strength, which essentially corresponds
to the absolute value of the current dipole moment
described in Eqs. (4)–(6), is determined by the injected
current multiplied by these current dipole lengths. Con-
sequently, the dipole strength will be much larger for
the 1-Hz situation than for the 100-Hz situation. At
positions some distance away from the neuron, the LFP
can be expected to be approximately proportional to
this current dipole strength (Pettersen and Einevoll
2008). On these grounds the large reduction of the
LFP in the 100-Hz situation compared to the 1-Hz
situation seen in the power spectra of Fig. 2, is thus not
unexpected.

The above example with apical synaptic inputs onto
a large pyramidal neuron is the textbook example of an

‘open-field’ situation which may generate large extra-
cellular potentials (Johnston and Wu 1995). However,
as seen in the panels (d–f) in Fig. 5, also a synaptic input
onto a basal dendrite provide a current dipole. As seen
in panels (d) and (f) a sizable fraction of the return
current crosses the membrane in the apical dendrites
for a 1 Hz sinusoidal current injected into the soma. For
a 100 Hz injection current, however, essentially all of
the return current leaves at the basal part of the neuron,
cf. panels (e) and (f) in Fig. 5.

3.5 Current multipole approximations for LFP
generation

In Pettersen and Einevoll (2008) it was found that
the extracellular potential signature of action potentials
could be well understood qualitatively, and to some
extent also quantitatively, on the basis of frequency-
dependent current dipoles accounting for the gross fea-
tures of the spatial pattern of transmembrane currents.
For action potential signatures the dominant frequen-
cies are typically a few hundred hertz. For such high
frequencies the relevant current dipole lengths are ex-
pected to be governed by the electrical cable properties
of the dendrites protruding from the soma (Pettersen
and Einevoll 2008). For the lower frequencies dom-
inating the LFP, the current dipole length will to a
larger extent be governed by the spatial extension of
the entire dendritic structure. In Fig. 5, for example, we
see for the apical-excitation case that roughly half of
the injected synaptic current returns through the basal
region, while the other half returns around the synapse.
This implies that the current dipole length will be about
half the vertical distance between soma and synapse.

Multipole expansions, where the electrical potentials
are built up as sums over contributions from the various
multipole terms (monopole, dipole, quadrupole, ...),
have a long tradition in electrostatics (Plonsey 1969;
Jackson 1998). Lately, this approach has also been used
to investigate the origin of the extracellular potential
signatures of action potentials (Pettersen and Einevoll
2008; Milstein and Koch 2008). In the present sec-
tion we will pursue a similar approach and investigate
to what extent simplified multipole expressions can
account for the results based on our comprehensive
multicompartment forward-modeling scheme. In panel
(a) of Fig. 6 we show the LFP-power contour plot
resulting from our multicompartment modeling scheme
for the situation where a 1 Hz sinusoidal current is
injected into a particular apical synapse (marked with
an open dot). This comprehensive multicompartment
line-source scheme will provide the ‘gold-standard’
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Fig. 6 Illustration of
various multipole (dipole,
two-monopole)
approximations for LFP
modeling. (a) Contour plot
illustrating the variation of
the 1-Hz power, i.e., square of
Fourier amplitude, of the
LFP with distance from
neuron following sinusoidal
current injection into an
apical synapse (circle). Full
multicompartment
forward-modeling scheme is
used, i.e., Eq. (1). The arrows
illustrate the ‘vertical’ and
‘horizontal’ directions
considered in detail in panels
(d)–(g). (b) Same as A for
dipole approximation, i.e.,
Eq. (8). (c) Same as (a)
for two-monopole
approximation, i.e., Eq. (10).
(d) LFP power along the
‘vertical’ direction (see panel
(a)) for multicompartment,
dipole, and two-monopole
modeling schemes,
respectively. Distance is
measured relative to apical
synapse (circle). Results for
1 Hz and 100 Hz sinusoidal
current injections are shown,
normalized to the
multicompartment value for 1
Hz. (e) Same as (d) for the
‘horizontal’ direction as
measured out from soma.
Results are normalized to the
multicompartment value for 1
Hz. (f) Frequency
dependence of the LFP
power for three particular
distances from the neuron
(0.1 mm, 1 mm, 10 mm) in the
‘vertical’ direction. The
spectra are normalized so
that the LFP power for the
multicompartment model for
1 Hz at the distance 10 µm is
unity. (g) Same as (f) for the
‘horizontal’ direction. Note
that also here the spectra are
normalized so that the
multicompartment LFP
power for 1 Hz at the distance
10 µm in the ‘vertical’
direction is unity
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results against which our multipole approximations will
be compared.

Due to current conservation there will be no current
monopole contribution to the LFP, and the first non-
zero contribution will in general come from current
dipoles. In the far-field limit, i.e., when the distance r
to the current dipole is much larger than the current
dipole length, the dipole LFP expression is given by
(Pettersen and Einevoll 2008):

φd(r, t) = 1
4πσ

|p(t)| cos θ

r2
. (8)

Here p(t) is a current dipole moment which in general is
given by

p(t) = px(t) ex + py(t) ey + pz(t) ez (9)

where px(t), py(t), and pz(t) are defined in Eq. (4).
Further, θ is the polar angle relative to the dipole axis
and r the radial distance to the dipole position (see, e.g.,
Fig 2(a) in Pettersen and Einevoll (2008) for an illus-
tration). With a sinusoidal input current it follows from
the linearity of the model that the individual compo-
nents, i.e., px(t), py(t), pz(t), also will vary sinusoidally
in time, cf. Eq. (5). In general the phases of the different
components (γ f x, γ fy, γ f z) in Eq. (5) will be different,
and the system will then not reduce to a dipole ori-
ented along a particular fixed spatial direction. In the
present application, however, we do the approximation
of assuming identical phases, i.e., γ f x = γ fy = γ f z = γ f .
We then obtain a sinusoidally oscillating dipole along
a f ixed axis with an oscillatory current dipole moment
given by pfa(t) = p0( f ) sin(2π f t + γ ), cf. Eq. (6).

In panel (b) of Fig. 6 we show the LFP-power con-
tour plots assuming this dipole approximation. This plot
is found by applying pfa from Eq. (6) in the dipole
expression in Eq. (8) to get the LFP signal. For this plot
the current dipole has been placed in the ‘middle’ of the
neuron, i.e., straight above the soma at a height corre-
sponding to halfway between the lowest and uppermost
points of the dendritic structure. A visual comparison of
the dipole-approximation results with the correspond-
ing multicompartment results in panel (a) reveals a very
good agreement at distances far away from the neuron.
Close to the neuron the agreement is as expected poor.

An obvious question to ask is how far away from
the neuron one has to be in order for the dipole-
approximation to work. As illustrated by panels (d) and
(e) in Fig. 6, this depends on direction. Here we focus
on two directions: (1) vertically up from the position
of the apical input current (labeled ‘vertical’, cf. panel
(a)), and (2) horizontally out from the soma (labeled
‘horizontal’, cf. panel (a)). The resulting LFP power
for the ‘vertical’ direction is shown in panel (d). For

the 1-Hz situation depicted in panels (a) and (b) we
see that the dipole approximation (dotted line) gives
predictions in excellent agreement with the multicom-
partment model (solid line) for distances larger than
about 1 mm. In panel (d) we also show the correspond-
ing comparison when the input current is oscillating at
100 Hz. Also here we observe agreement at distances
larger than about a millimeter or two. The same com-
parison for the ‘horizontal’ direction is shown in panel
(e), and the same excellent agreement is observed in the
far-field limit. However, the transition to the far-field
regime appears to occur for slightly larger distances
than in the ‘vertical’ direction.

The results in panels (d) and (e) of Fig. 6 clearly
demonstrate the expected inadequacy of the far-field
dipole approximation (Eq. 8) for positions close to the
neuron. The contour plot for the multicompartment
model in panel (a) shows that the 1-Hz LFP power
peaks both around the synaptic-input position and the
soma, in accordance with the observation of the plots of
the transmembrane currents in Fig. 5. This suggests an
alternative two-monopole approximation φtm(r, t) for
the LFP,

φtm(r, t) = Itm(t)
4πσ

(
1

|r − rsyn|
− 1

|r − rsoma|

)
, (10)

where the current is assumed to enter or exit the neu-
ron only at two positions: the synapse and the soma.
From current conservation it follows that the current
Itm(t) entering the neuron at the apical synapse (rsyn)
must leave at the soma (rsoma). In this two-monopole
approximation the current Itm(t) does not correspond
to the true synaptic input current. Rather, Itm(t) is set
to give the correct magnitude of the current dipole
moment, i.e.,

Itm(t) ≡ |pfa(t)|/λtm . (11)

Here λtm ≡ |rsyn − rsoma|, i.e., the distance between the
synapse and soma. Since the direction of the current
dipole moment pfa(t) in general will not exactly co-
incide with the direction from synapse to soma, the
two-monopole approximation will not converge to the
dipole approximation in the far-field limit. However,
with this choice of Itm(t) one may still hope to obtain
reasonably correct predictions for the LFP also for
large distances.

In panel (c) of Fig. 6 we show the LFP-power contour
plot for the 1-Hz situation assuming this two-monopole
approximation, i.e., Eq. (10) with (the sinusoidally vary-
ing) Itm(t) given by Eq. (11). A visual comparison of
the contour plots for the two-monopole approxima-
tion with the corresponding multicompartment plots in
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panel (a) reveals qualitatively similar spatial patterns.
And indeed, in panel (d) the two-monopole approxi-
mation is seen to follow the multicompartment results
closely when one moves along the ‘vertical’ direction
depicted in panel (a). The agreement is particularly
good for current modulations of 1 Hz, but also for
100 Hz the two-monopole approximation is seen to
give reasonable results for distances larger than a few
hundred micrometers.

As seen in panel (e) of Fig. 6 the performance of
the two-monopole model in the ‘horizontal’ direction is
much poorer. For one, this model significantly deviates
from the multicompartment results also for the largest
distances. This error stems from the deviation between
the direction of the true current dipole moment and the
line between the apical synapse and the soma. This de-
viation can also be seen directly by close inspection of
the contour plots in panels (a–c): the lines (in these 2D
plots) corresponding to zero LFP power have slightly
different directions for the dipole and two-monopole
approximations. This ‘direction error’ of course also
affects the LFP predictions in the ‘vertical’ direction,
but much less so.

Secondly, the two-monopole approximation predicts
much too large LFP power close to the soma, i.e., for
distances smaller than about 100 micrometers in the
‘horizontal’ direction. Such short distances corresponds
to positions well inside the bush of basal dendrites, and
as seen in panels (a) and (b) in Fig. 5, the transmem-
brane currents in the basal region appear to be spread
out all over the basal dendrites, rather than focused
in the soma. The point-like monopolar expression in
Eq. (10) representing the contribution from the trans-
membrane currents in the soma region thus clearly
provides a poor approximation, as demonstrated quan-
titatively by the curves in Fig. 6(e).

Further, while the soma region provides the dom-
inant contribution to the return current for the 1-Hz
situation as illustrated, e.g., by the LFP power contour
plots Fig. 2(a) and by the plot of the transmembrane
currents in Fig. 5(a), this is not generally the case for
higher frequencies. The corresponding results for the
100-Hz situation in Figs. 2(a) and 5(a) reveal that the
return currents are strongly shifted in the direction of
the apical synapse so that the ‘center-of-gravity’ of the
return current is far above the soma. This explains
the even larger overestimation of the LFP power by
the two-monopole models seen in Fig. 6(e) for 100 Hz
compared to 1 Hz, for horizontal distances from the
soma less than a few hundred micrometers.

Finally, in panels (f) and (g) of Fig. 6 we investigate
the power spectra due to the intrinsic low-pass filtering
effect at three different distances (0.1 mm, 1 mm,

10 mm) along both ‘vertical’ and ‘horizontal’ directions.
At all positions we observe sizable low-pass filtering
effects for frequencies above about 10 Hz. The exact
functional form of the dampening of high frequencies
vary, but for the largest distances (1 mm, 10 mm) a
decay of the LFP power approximately following 1/ f 2

relationships are commonly seen for frequencies above
50 Hz. For the largest distance (10 mm) the dipole
approximation is seen to predict the filtering character-
istics excellently. For the two-monopole approximation
the success is more mixed: it works well in the ‘vertical’
direction, but poorly in the ‘horizontal’ direction. For
the intermediate distance (1 mm) the success of both
approximations is more limited, and for the shortest
distance considered (0.1 mm) they essentially fail. For
example, in the ‘horizontal’ direction a sharp dip in the
amplitude spectrum is observed for frequencies around
200 Hz in the full multicompartment model. This effect
is likely due to details of the basal dendritic structure
providing subtle cancelation effects at these frequen-
cies. Such a phenomenon can clearly not be accounted
for by our two approximate models where the detailed
dendritic structure has been neglected. Further, in the
‘vertical’ direction the full multicompartment model
predicts a power-law behaviour close to 1/ f over a wide
frequency range for this shortest distance (0.1 mm).
This contrasts the predicted power laws for the two ap-
proximate schemes which have much steeper frequency
decays.

3.6 Current dipole approximation for LFP

In the previous section we focused on the special case
where the synaptic current was provided by a single
apical synapse. For this special case we found that
the dipole approximation in Eq. (8), combined with
the approximate current dipole moment pfa(t) given
by Eq. (6), predicted the LFP power accurately at
sufficiently large distances from the neuron, cf. Fig. 6.
With the proper incorporation of frequency-dependent
current dipole moments, the dipole approximation also
appeared to explain main features of the observed high-
frequency dampening in this far-field limit.

In the present section we investigate to what extent
this LFP dipole approximation also applies for synapses
positioned on other parts of the dendritic tree. In panel
(a) of Fig. 7 we first illustrate the magnitude and direc-
tion of the current dipole moments for synapses at a few
selected places on the dendritic tree. Sinusoidal input
current at three different frequencies, 1 Hz, 10 Hz,
and 100 Hz, are considered. The figures illustrate sev-
eral qualitative points: (1) the current dipole moments
are typically roughly directed along a straight line
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Fig. 7 Current dipole moments and the LFP dipole approxima-
tion for various synaptic positions. (a) Illustration of direction
and amplitudes of current dipole moments p0 (cf. Eq. (7)) for
a set of synaptic positions (black dots) superimposed on the
dendritic structure. The figure shows the projection of these
dipole moments into the 2D plane of the figure for the 1-Hz,
10-Hz, and 100-Hz situations. Lengths of line segments are pro-
portional to current dipole-moment amplitudes. Dot plots on the
right illustrates the magnitude of the vertical component p0z,
cf. Eq. (5), versus the vertical position of the synapse for the
full number of synapses (1,072; one for each compartment in
the multicompartment model). Dot plots above correspondingly
illustrate the magnitude of the horizontal component p0x for the
same group of synapses (for the 1-Hz and 100-Hz situations,
only). Color code: 1 Hz sinusoidal synaptic current: light grey,
10 Hz: darker grey, 100 Hz: black. (b) Illustration of frequency
dependence of power of current dipole moments, i.e., square of
Fourier amplitudes p0( f ) defined by Eq. (6), for four different
synaptic positions marked in (a) distal apical dendrite (circle),
main apical dendrite (triangle), soma (square), basal dendrite
(star). The same synaptic current is injected for all four situations,
and the results have been normalized to the power of the current
dipole moment for the distal apical-dendrite case for 1 Hz. (c)
Illustration of accuracy of LFP dipole approximation for full
group of 1,072 synaptic input positions considered in (a). Mean
values of logarithms of LFP values from full multicompartment

model φ (Eq. (1)) are illustrated by solid lines. Surrounding grey
bands above and below these lines correspond to the LFP values
within the standard deviation (of the logarithm of LFP) around
the mean. Results are shown as a function of radial distance
from the ‘mid-point’ of the neuron (i.e., straight above the soma
at a height corresponding to halfway between the lowest and
uppermost points of the dendritic structure). For each radial
distance r the LFP is evaluated separately for the 1,072 synaptic
positions considered. Further, for each of these synaptic positions
the LFP is calculated at a randomly selected spatial point with
the constraint that the vertical position, i.e., z-value, does not
go above or below the vertical extension of the neuron. The
mean value at each radial distance corresponds to the mean of
the logarithm of these 1,072 calculated LFP values. Likewise,
the standard deviation at each radial distance corresponds to
the standard deviation of the logarithm of these 1,072 calculated
LFP values. The dashed lines, with the surrounding grey bands,
correspondingly illustrate the mean and standard deviation of
the dipole-approximation values φd (Eq. (8)) found by using
the same averaging procedure. The current dipole is placed
in the ‘mid-point’ of the neuron as it is described above. The
inset figures show the same results with double-logarithmic axes
(log10). All results are normalized to the value of the LFP power
found at the smallest distance considered (50 µm) for the 1-Hz
situation in the full multicompartmental scheme
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connecting the synaptic input position and the soma,
and (2) the magnitude of the current dipole moments
is reduced from 1 Hz to 10 Hz, and even more so from
10 Hz and 100 Hz. Thus also the current dipole moment
exhibits a prominent intrinsic low-pass filtering effect.

Above and to the right of the neuron shown in
Fig. 7(a) a large collection of magnitudes of the hor-
izontal (p0x, cf. Eq. (5)) and vertical (p0z) compo-
nents of the current dipole moment are depicted. Each
point corresponds to a synapse placed in one of the
1,072 compartments representing the neuron in the
multicompartment calculation scheme. The horizontal
and vertical current dipole components are plotted as
functions of the horizontal and vertical positions of
the synapses, respectively. For the vertical component
(p0z) a main salient feature is immediately apparent:
for 1 Hz the magnitude of the current dipole moment
is roughly proportional to the distance from the soma
region. This applies for synapses both above and below
the soma. A closer inspection of the figure reveals that
for the 1-Hz input the ‘center-of-mass’-position, i.e., the
synaptic position for which a current input gives no
current dipole moment, is more than 0.1 mm above the
soma on the thick apical dendrite. Thus also a synaptic
current injected into the soma will give a sizable current
dipole moment, and consequently also a sizable LFP, cf.
Fig. 1(b).

The lack of generation of a current dipole moment
does in any case not mean that no LFP will be gener-
ated since higher order multipole moments will not be
zero. For example, injection of current at the synaptic
position about 0.1 mm above the soma resulting in a
negligible current dipole moment, gives a sizable cur-
rent quadrupole moment. We confirmed this by direct
numerical evaluations of an LFP power contour plot
for this situation which indeed revealed a ‘clover-like’
spatial pattern characteristic for quadrupoles (results
not shown).

The rough proportionality of the vertical component
of the current dipole moment with distance from soma
seen for the 1-Hz situation in Fig. 7(a), suggests that the
current dipole qualitatively can be pictured as a fixed
amount of net current entering in the synapse region,
i.e., the synaptic input current minus the return current
in the vicinity of the synapse, with the same net current
leaving from the soma region. Then the vertical compo-
nent of the dipole moment will be roughly proportional
to the vertical distance between synapse and soma, in
correspondence with what is observed in Fig. 7(a).

Qualitatively similar results are observed for the
current dipole moment in the 10-Hz situation. The mag-
nitude of the dipole moments are generally somewhat
smaller than for 1 Hz, reflecting that the net current

propagating from the synapse to the soma, thus setting
up the current dipole, is reduced due to the electrical
cable properties of the dendritic structure. For 100 Hz a
quite different picture is seen. Here a very small vertical
component of the current dipole moment is seen for
apical synapses, reflecting that most of the injected
current return to the extracellular medium in the apical
region, cf. Fig. 5(b). The distribution of the magnitudes
of the horizontal components p0x, shown above the de-
picted neuron in Fig. 7(a), is less characteristic. But also
here the 100 Hz dipole components are generally seen
to be much smaller than the 1 Hz dipole components.

In Fig. 7(b) we illustrate the frequency dependence
of the dipole moments further. Here we show the
power of the dipole moments, i.e., |p0( f )|2 where
p0( f ) is defined by Eq. (6), for frequencies between
1 and 1,000 Hz, generated by injecting currents at
four different synaptic positions. Prominent low-pass
filtering effects are observed for all situations, but the
detailed form of the power spectra vary. The strongest
low-pass filtering is seen for inputs at the apical synapse
(marked with a circle in panel (a)) and in the soma
(square in panel (a)). The low-pass filtering effect is
weaker and shifted to higher frequencies for inputs on
the main apical dendrite (triangle in panel (a)) and on
the basal dendrite (star in panel (a)). This further illus-
trates that the low-pass filtering effect seen in power
spectra of extracellular potentials not only depends on
the position of the recording electrode, but also on
the distribution of the synaptic inputs generating the
potentials.

Calculated current dipole moments, such as the ones
depicted in Fig. 7(a), can now be used to calculate
the LFP at various spatial positions using the dipolar
expression in Eq. (8). In panel (c) we compare results
for the LFP power calculated by this dipolar expres-
sion against the results from the full multicompartment
model for our three different frequencies (1 Hz, 10 Hz,
100 Hz). The panels compare, as a function of radial dis-
tance, the mean and the spread of the logarithms of the
LFP power calculated using the dipole-approximation
with the corresponding values found from using the full
multicompartment scheme. These statistical measures
are found by averaging over results from injecting cur-
rent at the 1,072 different synaptic positions considered,
see caption of Fig. 7 for details.

For the largest distances (∼1–2 mm) considered in
the plots in Fig. 7(c), one is approaching the far-field
regime, and the dipole approximation can be expected
to be fairly precise. This is indeed observed in the plots.
The averages of the observed dipolar LFP power are
seen to approach the multicompartment LFP power for
the largest distances for all three frequencies consid-
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ered (1 Hz, 10 Hz, 100 Hz). As illustrated by the inset
figures showing the same results in double-logarithmic
plots, the multicompartment results for the LFP power
indeed decay as 1/r4, characteristic for a current dipole,
for radial distances above ∼1 mm. Interestingly, the far-
field limit appears to be reached faster, i.e., for smaller
radial distances, in the 100-Hz situation than in the 1-
Hz situation. This can be understood on the basis of the
shorter effective current-dipole length for the 100-Hz
situation seen in Fig. 7(a): since the transition to the far-
field regime depends on the ratio between the current-
dipole length and the radial distance, a shorter current
dipole length implies an earlier transition to the the far-
field regime when moving away from the neuron.

For the smallest radial distances considered
(<0.5 mm), we observe as expected that the dipole
approximation generally does a poor job of predicting
the LFP power. As seen for all three frequencies
considered in Fig. 7(c), the dipole approximation
following a 1/r4 dependence, tends to overestimate the
LFP in this regime. Note that in panels (d–e) in Fig. 6
it was found that the dipole approximation instead
underestimated the true LFP for the shortest distances.
The difference is simply due to the different origin and
directions of the axes considered, i.e., distance along
the ‘vertical’ and ‘horizontal’ directions starting in the
apical synapse and the soma, respectively, in panels
(d–e) in Fig. 6 versus the radial distance measured
from the dipole position at the middle of the neuron in
Fig. 7(c).

4 Discussion

4.1 Intrinsic dendritic low-pass filtering effect

The origin of the observed frequency spectra of EEG
and extracellularly recorded potentials in the brain
(LFP) has attracted considerable interest (Pritchard
1992; Beggs and Plenz 2003; Bedard et al. 2004, 2006a,
b; Buzsaki 2006; Pettersen and Einevoll 2008; Bedard
and Destexhe 2009; Miller et al. 2009; Milstein et al.
2009). We previously showed that there is an unavoid-
able low-pass frequency-filtering effect of the extra-
cellular action-potential signature due to the electrical
cable properties of the neuronal dendrites (Pettersen
and Einevoll 2008). In action potentials the dominant
frequencies are typically a few hundred hertz, but a
main finding in the present paper is that the same
intrinsic dendritic filtering effect also pertain to the
lower frequencies dominating in typical LFP and EEG
spectra, and is particularly prominent for large layer-
5 pyramidal neurons. Our model results have demon-

strated an omnipresent low-pass filtering effect on the
LFP spectra following synaptic activation. For our ex-
ample pyramidal neuron we generally observed sizable
filtering effects for frequencies above ∼10 Hz. The
magnitude and form of this filtering effect will naturally
depend on, e.g., the morphology of the dendritic struc-
ture and spatial distribution of activated synapses of the
neuron in question. However, all neurons will to some
degree exhibit such filtering of their contributions to
the overall LFP, and any theory aspiring to explain the
physical origin of measured LFP or EEG spectra must
therefore also consider this intrinsic dendritic filtering
effect.

In an important study Bedard et al. (2006b) at-
tempted to model observed LFP power spectra on
the basis of simultaneously recorded spiking activity
spectra. They concluded that a factor 1/ f was ‘missing’
to account for the observed LFP power spectra for fre-
quencies less than ∼70 Hz, and they suggested that this
missing factor could be due to frequency attenuation
in the extracellular medium itself. The present study
suggests as an alternative, or maybe supplementary,
explanation that the intrinsic dendritic-filtering effect
may contribute to a missing factor 1/ f in their model
for LFP power spectra. For the present large pyramidal
neuron the LFP signal is expected to be dominated
by contributions from neurons less than about 0.5 mm
away (Lindén et al. 2009a). For the ‘vertical direction’
in Fig. 6(f) we found that the LFP power spectra for
the shortest distance considered (0.1 mm) indeed are
in qualitative accordance with a 1/ f decay, at least
between 10 Hz and 100 Hz. In the ‘horizontal’ direction
in Fig. 6(g), however, a steeper decay with frequency
was observed for this short distance (0.1 mm), but this
observation may have been confounded by an observed
resonance phenomenon around 200 Hz for this particu-
lar modeling example. In any case, the conclusion from
our study is not the prediction of a a particular power-
law behaviour for the LFP, rather that the intrinsic den-
dritic filtering effect must be included when attempting
to model such spectra. Experimental LFPs stem from
a sum of numerous contributions from a population
of neurons in the vicinity of the recording electrode
(Liu and Newsome 2006; Berens et al. 2008; Katzner
et al. 2009; Xing et al. 2009). A more comprehensive
numerical investigation of the LFPs generated by such
populations of neurons is thus needed to draw firmer
conclusions on this (Lindén et al. 2008, 2009a).

A striking observation in our study is that the
recorded LFP signal from a single synaptic event varies
dramatically with the recording position. The extra-
cellular signature of a particular synaptic event will
vary not only in magnitude and temporal shape, but
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also in overall sign (cf. Fig. 1). Likewise, the form of
the LFP power spectra will depend strongly on the
recording position: a large variation in the typical low-
pass cut-off frequencies is seen, and band-pass prop-
erties are even observed at some spatial locations.
The experimental LFP observed will correspond to a
weighted sum over contributions from many different
types of neurons, located at different distances from
the recording electrode, receiving numerous synaptic
inputs targeting different parts of dendritic trees. As the
dominant contributions to the sum providing the LFP
cannot be expected to be independent of cortical area
and depth, one cannot a priori expect common power
laws for all observed LFP or EEG power spectra.

Our study revealed a systematic dependence of the
intrinsic dendritic-filtering effect on the distance from
the recording position to the synaptic input. In general,
the high-frequency attenuation of the LFP will be less
at positions close to the active synapse where the LFP
gets large contributions from the synaptic input current
itself. Farther away the LFP will get stronger contribu-
tions from the transmembrane return currents which in
general will be low-pass filtered versions of the synaptic
input current (due to the electrical cable properties
of the dendrites). In the present paper this was most
explicitly illustrated by the set of LFP power spectra in
Figs. 2–4, but the effect is generic and also applies to,
for example, extracellular action potential signatures
(Pettersen and Einevoll 2008; Pettersen et al. 2010).
This points to a way to infer the spatial distribution
of active synapses acting on a neural population from
recordings with linear (laminar) multielectrodes in-
serted perpendicularly on the cortical layers (Einevoll
et al. 2007): the current source-density (CSD) profile
informs about the vertical extension of an activated
population of, say, layer-5 pyramidal neurons, but may
not per se be able to distinguish the situations with
inhibitory synapses acting in the basal dendritic region
from excitatory synapses acting in the apical region. In
both cases one will observe a sink-source dipole with
the current sink in the apical region. However, the
present results suggest that in the former case there
will be more high-frequency components in the CSD at
vertical positions inside the basal bush than at vertical
positions at the level of the apical dendrites. In the
latter case the situation will be reversed.

4.2 Dipole and two-monopole approximations
to the LFP

The use of current dipoles in the modeling of bioelec-
tric signals, and in particular EEG signals, is not new

(Plonsey 1969; Freeman 1980; Nunez and Srinavasan
2006; Grech et al. 2008). In the application to EEG
signals one has typically aimed to account for the ob-
served signals in terms of contributions from a set of
‘mesoscopic’ current dipole sources, and the distances
between the current dipoles and the EEG recording
position have typically been assumed to be so large
that the far-field dipole approximation apply (Nunez
and Srinavasan 2006; Grech et al. 2008). Here we have
focused on the fundamental microscopic dipoles un-
derlying these mesoscopic dipole sources, namely the
current dipoles set up by individual neurons (Murakami
and Okada 2006; Pettersen and Einevoll 2008).

As in the analysis of the extracellular signature of
action potentials (Pettersen and Einevoll 2008) we find
the current dipole moment to be a crucial concept for
gaining both qualitative and quantitative understand-
ing of the relationship between the underlying activity
in the neuron and the generated extracellular poten-
tials. For the action-potential signature investigated in
Pettersen and Einevoll (2008) this dipole moment was
typically found to be determined by the electrical prop-
erties of the dendritic branches protruding out from
the soma. Consequently the current dipole length, a
measure of the distance between the soma and the av-
erage spatial position at which the return currents pass
the dendritic membrane, was found to depend mainly
on dendritic parameters such as diameter, capacitance,
and axial and membrane resistances. In contrast, for
the lowest frequencies considered in the present LFP
spectra (<10 Hz), we found here that the main den-
dritic feature determining the current dipole length,
and the current dipole moment, appeared to be the
spatial distance between the active synapse and the
soma (cf. Fig. 7(a)). At such low frequencies rough
estimates of the direction and relative magnitude of the
current dipole moments for various synaptic inputs can
thus be obtained by anatomical considerations alone.
However, in general the frequency-dependent current
dipole moment (cf. Fig. 7(b)) will be determined by a
combination of morphological and electrical membrane
properties.

Used in combination with the well-known far-field
dipole expression in Eq. (8), the current dipole moment
was shown to predict the ‘true’ LFP (found in our
comprehensive multicompartment scheme) accurately
at large distances, i.e., a few millimeters away from
the neuron. We also found that this dipole approx-
imation could account for salient features of the in-
trinsic low-pass filtering effect, i.e., that the low-pass
frequency filtering of the LFP could be traced back
to low-pass frequency filtering of the current-dipole
moment.
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As expected we found this far-field approximation
to break down close to the neuron, partially because
it does not explicitly represent the two dominant
contributions from the synapse and soma regions, re-
spectively. We thus also investigated a two-monopole
approximation, i.e., a 2-compartment model where all
transmembrane current is assumed to enter the neu-
ron at one point (the synapse) and leave at the other
(the soma). Further, the transmembrane current was
set to give the right magnitude of the current dipole
moment. For our example in Fig. 6 we found the two-
monopole approximation to give very good predictions
in the vicinity of the active synapse, much better than
the dipole approximation. However, for our example
with excitation of an apical synapse, we found the two-
monopole approximation to predict far too big LFPs for
positions inside the bush of basal dendrites. There are
likely two main reasons for this discrepancy: (1) For
situations where the return current indeed is focused
in the soma region (such as for low-frequency apical
synaptic inputs onto the layer-5 example neuron), the
true transmembrane current in the soma region is,
due to the extensive basal dendritic structure, much
more diffuse than what is implicitly assumed in the
two-monopole model. (2) For high-frequency synaptic
input the cable properties of the neuron will in general
reduce the amount of return current leaving from the
soma region, and the ‘center-of-gravity’ of the return
current will be positioned closer to the position of the
synaptic input, cf. Fig. 5. This will naturally violate
the assumption inherent in the two-monopole approx-
imation where the return monopole is set to be at
the soma.

An alternative version of the two-monopole model
would be to move the return-current monopole from
the soma to the position of the center-of-gravity for
the return current. This center-of-gravity position will
depend on frequency, and such a two-monopole ap-
proximation would likely yield more accurate results
than the present two-monopole model. However, the
calculation of the center-of-gravity position will involve
numerical solution of the full compartmental model
to obtain all transmembrane currents, making the im-
plementation of the approximation almost as cumber-
some as using the comprehensive line-source scheme.
A main advantage of the present two-monopole model
is that the position of the two monopoles is determined
solely by the neuronal morphology and thus easy to
specify (even though specification of the magnitude
of the monopole currents requires knowledge about
the dipole-moment magnitude, which in turn must be
calculated based on knowledge of all transmembrane
currents).

4.3 Network modeling of LFP, ECoG and EEG

A natural ambition of neural network modeling should
be to predict not only spike trains, but also extracellular
potentials. One approach for achieving this would be
to simulate networks of multicompartmental neurons
so that the generation of action potentials and the
transmembrane currents needed to evaluate extracel-
lular potentials, could be calculated simultaneously.
However, spiking neural networks are more commonly
modeled by means of 1-compartment neurons which
by design do not generate an extracellular potential:
a neuron model must have at least two compartments
to generate an extracellular potential (Pettersen et al.
2010). In such cases ad hoc formulas relating synaptic
currents to LFP have been used to provide LFP predic-
tions from network simulations, see, e.g., Mazzoni et al.
(2008).

The forward-modeling scheme offers a method for
testing of such putative add-on formulas for predict-
ing extracellular potentials. Our present work unfortu-
nately does not suggest any such simplifying formula
for prediction of LFPs recorded well inside the active
cortical tissue. For the present pyramidal neuron we
expect the LFP signal to get most of its contributions
from neurons within a radius of less than 0.5 mm
(Lindén et al. 2009a), an estimated spatial range of the
LFP in qualitative accordance with recent experimental
estimates (Katzner et al. 2009; Xing et al. 2009). As seen
in Fig. 6 both the dipole approximation (Eq. 8) and the
two-monopole approximation (Eq. 10) generally give
inaccurate results of the LFP for such small distances.
Simplifying formulas based on these approximations
thus appears ruled out. This observation thus clearly
questions the approach of interpreting intracortical
LFP recordings in terms of contributions from dipolar
sources (Church et al. 1985; Yvert et al. 2001).

The development of simplified schemes for predict-
ing contributions to extracellular potentials recorded at
the cortical surface (ECoG) is maybe more feasible.
As seen in Fig. 6(d) the two-monopole approximation
does fairly well, in particular for the 1-Hz situation, in
the vertical direction for positions more than 0.1 mm
or so above the apical synapse. This suggests that this
two-monopole approximation may be useful for pre-
dicting ECoG signals. In fact a similar two-monopole
approximation was suggested by Freeman (1980) to
interpret ECoG signals recorded by electrode arrays
placed on the brain surface. However, here we only
explored the two-monopole approximation for the sit-
uation with an apical synapse where the LFP recorded
immediately above is dominated by a rather focal sink.
Even in this situation, the agreement with the correct
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multicompartmental results was not more than fair.
With other synaptic inputs which generate more diffuse
patterns for transmembrane currents in the apical den-
dritic tree, a lesser performance of the two-monopole
approximation must be expected. A more compre-
hensive investigation also considering morphologies of
other neuron types expected to give large contributions
to the ECoG signal (e.g., supragranular pyramidal neu-
rons), is needed to evaluate this approximation scheme
further.

The prospect for developing simplified schemes
for predicting contributions to extracellular potentials
recorded at the scalp (EEG) seems much better. Here
the distances from the neural origin of the electrical
signal are sufficiently large for the dipole approxima-
tion described in Eq. (8) to give accurate results. This
formula describes the contribution to the recorded elec-
trical potentials at a particular electrode contact from
a particular neuron receiving synaptic input currents
through a particular synapse, information that in prin-
ciple may be calculated and predicted in large-scale
neural network modeling (Jirsa and Haken 1997; Jirsa
et al. 2002; Coombes 2005). However, the magnitude
and direction of the current dipole moment for the
various synaptic inputs, must either be assumed or cal-
culated using multicompartmental modeling, in order
for the formula to be workable. The two-monopole
approximation in Eq. (10) is an alternative. Here the
only spatial information needed is the positions of the
soma and the active synapse, but the magnitude of the
transmembrane current Itm must still be assumed or
calculated using multicompartmental modeling.

A caveat of the present work in the context of pre-
dicting EEG signals is that the extracellular conductiv-
ity σ has been assumed to be constant. This assumption
is clearly violated when the electrical contacts are po-
sitioned outside the cortical tissue as in EEG record-
ings, but our present approach can be generalized to
take into account such inhomogeneous electrical media
using the same techniques as in the well-established
forward modeling of EEG signals from mesoscopic
current dipoles (Nunez and Srinavasan 2006).

4.4 Assumptions in forward modeling scheme

Our present LFP forward modeling scheme based on
Eq. (1) assumes the extracellular conductivity σ to be
the same everywhere (‘homogeneous’), the same in
all directions (‘isotropic’), and also purely ohmic, i.e.,
no imaginary part from capacitive effects (Nunez and
Srinavasan 2006; Logothetis et al. 2007). Finally, σ is
assumed to be the same for all relevant frequencies.
The validity of this latter assumption is still debated:

while some studies have measured negligible frequency
dependence (Nicholson and Freeman 1975; Logothetis
et al. 2007), other investigations have suggested oth-
erwise (Gabriel et al. 1996; Bedard et al. 2004, 2006a,
b; Bedard and Destexhe 2009). However, if warranted,
the present modeling formalism can be generalized to
include also a frequency-dependent electrical conduc-
tivity σ ( f ). More discussion on the assumptions regard-
ing σ , and also ways of generalizing Eq. (1) when they
do not apply, can be found in Pettersen et al. (2010).
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Abstract. The cable equation is solved in frequency space for a ball and stick neuron
with noisy input currents spread homogeneously throughout the dendritic stick. The
power spectral densities (PSDs) of the soma potential and the soma current are related
to the single-neuron contribution to the electroencephalogram (EEG), and all PSDs are
shown to express 1/fα power laws for high frequencies.

For uncorrelated white-noise input the asymptotic high frequency limit gives α-values
of 0.5, 1.5 and 2.5 for the soma current, EEG and the soma potential, respectiviely.
For correlated white-noise input the respective values are 1, 2 and 3. However, for the
frequency range typically recorded in experiments, i.e., up to one or two hundred hertz,
log-log plots of the corresponding PSDs often express quasi-linear regimes with power
about 0.5 less than the asymptotic value.

The theory presented may not only give valuable insight to why neural recordings
often obey power laws, but might also be of importance to general 1/f -theory, as this
is an example of how a basic physics equation can transfer white noise input to colored
1/fα-noise where different physical entities express different powers α.

Keywords: 1/f, power law, power spectrum, power spectral density, soma potential,
electroencephalogram, EEG

1. Introduction

Ever since Hans Berger recorded the first human electroencephalogram (EEG) in 1924
[2] its features have been under extensive study, especially since many of them are directly
related to disease and to states of consciousness. In the last decades, the underlying
background spectra (the power spectral density, PSD) of the EEG has also attracted
great attention. The PSD is typically well fit by a 1/fα power law, with α typically
in the range from 1 to 2 [4, 8]. There are several theories with such a scale invariance
as its fingerprint, among the most popular are fractal geometry [15] and the theory of
self-organized critical states [1]. The origin of the 1/f -noise in EEG is, however, still not
known. Linking features seen in global recordings, such as the EEG, to features in the
underlying local activity, such as single neuron activity, is still a major challenge within
the field of neuroscience.

Power laws are recorded at both the macroscopic level, e.g., for the EEG, and at the level
of single neurons. The PSD of the sub-threshold soma potential of individual neurons are
shown to exhibit a 1/fα power law, however with a much larger power α than for the EEG.
For the sub-threshold soma potential α is typically ranging from 2 to 3 [7, 20, 11, 21, 5].
As for the EEG, this power law seems to be very robust; it has been observed across
species, brain regions and different experimental set-ups, such as cultured hippocampal
layer V neurons [7], pyramidal layer IV–V neurons from rat neocortex in vitro [11, 21] and
neocortical neurons from cat visual cortex in vivo [20, 5].

Here, we present an analytic solution of the ball and stick neuron model with white
noise input currents spread homogeneously throughout the dendritic stick. We show that
this model produces a 1/fα power law in the soma potential typically with 1.5 < α < 2.5
for uncorrelated white noise input (α = 2.5 in the asymptotic high-frequency limit) and

1
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2 < α < 3 for correlated white noise input (α = 3 in the asymptotic high-frequency limit),
in agreement with the range recorded experimentally [7, 20, 11, 21, 5]. A simulation of
a morphologically reconstructed pyramidal neuron with a constant density of white noise
input currents throughout the dendrites is also in agreement with this result.

We also show analytically that in a purely resistive extracellular medium the correspond-
ing single neuron contribution to the EEG will express a 1/fα power law with 1 < α < 2
for correlated input (α = 2 in the asymptotic high-frequency limit), and typically α ∼ 1.5
for uncorrelated white noise input (α = 1.5 is the asymptotic high-frequency limit), also
this in agreement with the range seen in experimental recordings [4, 8].

The analytical expressions derived for the ball and stick neuron link the apparent power
laws seen in the PSDs of the soma current, the soma potential and the single neuron con-
tribution to the EEG to underlying single neuron parameters, and show how the exact
power α is influenced by parameters like the dendritic length and diameter, soma diameter
and membrane impedance. Thus, the analytical expressions derived do not only explain
the 1/f background noise of the EEG as a possible intrinsic single-neuron effect, they also
link microscopic measures like single neuron recordings of the soma potential to macro-
scopic measures like the EEG. Although the main focus of the paper is the analytical ball
and stick neuron model, a morphologically reconstructed layer V neuron from cat visual
cortex [14] is also shown to express approximate power laws in the respective PSDs for
higher frequencies.

The theory presented may not only be an interesting analysis of the cable equation,
but may also be interesting with respect to 1/f -theory in general, as this is an example of
how a basic physics equation can transfer white noise input to colored noise with a PSD
approximated by 1/fα for high frequencies, where α have different values depending on
the physical entity under consideration and the coherence in the noisy input currents.

2. Theory and Methods

In the present paper both the ball and stick model and the reconstructed neuron model
are purely passive, ensuring that linear theory can be used. The input currents are white
noise currents and the density of input currents are constant throughout the dendrites.
The white noise currents are allowed to have a given coherence c = c(ω), i.e., any pair of
white noise input currents may have a frequency-depended correlation, described by c.

When allowing for coherence, the expressions for the PSDs are split into two terms with
different parameter dependency: one describing the contribution due to correlated input
currents and one describing the contribution due to uncorrelated input currents, with a
weighting of the two terms given by the coherence c.

The analytical considerations rest on the cable equation in frequency space, first solved
for a single synaptic input at an arbitrary position. The single-synapse solution is used
as a basis for the case of input currents spread evenly throughout the dendritic cable.
When the PSDs are computed for many inputs, we end up with Riemann sums where
the individual terms correspond to single input contributions. The input currents are
allowed to have a given correlation, and in the limit where the neuron is assumed to be
continuously bombarded throughout the dendrite, the Riemann sums goes to analytically
solvable integrals, one describing uncorrelated input currents and one describing correlated
input currents.

For the numerical simulations, the NEURON Simulation Environment [6] with the
supplied Python interface [9] was used.

2.1. Cable equation. For a cylinder the cable equation is given by

(1) λ2 ∂2V (x, t)
∂x2

= τm
∂V (x, t)

∂t
+ V (x, t) ,
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with the length constant λ =
√

1/gmri =
√

dRm/4Ri and the time constant τm = cm/gm =
RmCm. Rm, Cm and Ri are the specific membrane resistance, the specific membrane
capacitance and the inner resistivity, respectively, and have dimensions [Rm] = Ωm2,
[Cm] = F/m2 and [Ri] = Ωm. Lower-case letters are used to describe the electrical
properties per unit length of the cable: gm = 1/rm = πd/Rm, cm = πdCm and ri =
4Ri/πd2, with units [gm] = 1/Ωm, [cm] = F/m and [ri] = Ω/m. In frequency space, and
with dimensionless variables X = x/λ and T = t/τm, the general solution can be expressed
[19, 18]

(2) V̂ = C1 cosh(qL− qX) + C2 sinh(qL− qX) ,

where boldface denotes complex numbers and q2 = 1 + jωτm, see Appendix A. V̂ =
V̂(x, ω) is the complex membrane potential containing the amplitude and phase of the
signal, and the derivation is based on circuit theory with complex entities, where the
complex potentials are related to the measurable potential through the Fourier components
of the potential,

(3) V (x, t) =
∞∑

k=0

Re{V̂(x, ω)ejωkt} .

2.2. Single input current at arbitrary dendritic position. The solution of the cable
equation for a ball and stick neuron with a single input current at an arbitrary position
is derived by solving the cable equation separately for the neural compartment proximal
to the input current and for the neural compartment distal to the input current, and
combining them through a common voltage boundary condition V̂in at the connection
point. For the proximal stick, Ohm’s law in combination with the lumped soma admittance
will give the boundary condition at the opposite side, and for the distal stick a sealed end
boundary is applied at the opposite side. In this configuration the boundary condition V̂in

acts as the driving force of the system. The potential V̂in can, however, be transformed to
its corresponding current Îin by multiplying the potential V̂in with the total neuron input
admittance Ŷin.

Following this approach the complex soma current, Îs, is derived in Appendix A (see
Fig. 2A for an illustration of the ball and stick model),

(4) Îs(ω, X) =
(Ys/Y∞) cosh(qL− qX)

(Ys/Y∞) cosh(qL) + sinh(qL)
Îin ,

and by applying Ohm’s law V̂s = Îs/Ys, to the soma compartment the soma potential
becomes

(5) V̂s(ω, X) =
(1/Y∞) cosh(qL− qX)

(Ys/Y∞) cosh(qL) + sinh(qL)
Îin ,

where Ys is the somatic membrane admittance Ys = 4πd2
sq2/Rm, ds is the soma diameter,

ri is the inner (axial) resistance per unit length of the stick and Y∞ = q
λri

is the input
admittance of an infinite stick. The frequency dependence is through the variables Ys =
Ys(q(ω)), Y∞ = Y∞(q(ω)) and q = q(ω), with q(ω) =

√
1 + jωτ .

The single neuron contribution to the EEG is based on the dipole moment of the
neuron, which is the source both for the EEG and the MEG [17], as the far field limit is
reached in both measures. Although the properties of the conductivities within the brain,
dura matter, scull, scalp and the surrounding air may influence the EEG, these can be
accounted for by applying, e.g., a three- or four sphere model of the head [17]. If purely
resistive surrounding mediums are assumed within the EEG frequency range, the PSD of
the single-neuron dipole moment will express the same frequency dependence as the PSD
for the single-neuron contribution to the EEG [17]. The dipole moment is in general a
sum of currents weighted by the distance to a common reference. For continuous current
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source densities, as is the case for a neuronal cable, the sum is replaced by an integral,
and the dipole-moment contribution from the stick of length l is given by

(6) p̂(ω) =
∫ l

0
îm(x, ω)x dx ,

where p̂ and îm are the complex dipole moment and membrane return current, respectively,
and the dipole moment is directed along the x-axis. In Appendix A the dipole moment
for a ball and stick neuron with dimensionless length L = l/λ and a single synaptic input
at an arbitrary position X = x/λ is shown to be

(7) p̂(ω, X) = − Îin

Y∞ri

− cosh(qL− qX) + (Ys/Y∞) sinh(qX) + cosh(qX)
(Ys/Y∞) cosh(qL) + sinh(qL)

.

2.3. Evenly distributed input currents. The passive ball and stick neuron model is
linear, and Eqs. 5–7 can therefore be summed up for input currents at different positions.
When the input currents are evenly distributed throughout the stick, both the somatic
membrane current, Îin, the dipole moment, p̂, and the soma potential, V̂in, can be ex-
pressed as Riemann sums with the different input currents as driving forces. Thus, the
entities can be expressed by the following transfer functions,

(8) Îk
s = Îk

inT
k
I , p̂k = Îk

inT
k
p , V̂s = Îk

inT
k
V ,

where k is an index corresponding to an input current at position Xk, and the transfer
functions are denoted T with a lower index describing the entity, I for soma current, p for
dipole moment and V for soma potential, respectively.

The Riemann sums are the basis for the derivation of the total PSDs, which, through
the coherence, c(ω), of the signals, can be divided into separate terms for uncorrelated and
correlated input currents. For a general transfer functions Tk the PSD can be expressed,
(9)

PSD(ω) =
N∑

k=1

N∑

l=1

Îk
in(ω)Tk(ω)(̂Il

in(ω)Tl(ω))∗ = v

[
(1− c)

N∑

k=1

Tk(Tk)∗ + c
N∑

k=1

N∑

l=1

Tk(Tl)∗
]

,

where v = v(ω) is the PSD of the input currents and c = c(ω) is their coherence. In
the continuum limit we multiply the sums by ρdx, where ρ = N/l is the density of input
currents and dx is the infinitesimal length dx = l/N , and let the sums go to integrals,

(10) PSD(ω) = v(ω)

[
ρ(1− c(ω))

∫ l

0
|T(x, ω)|2dx + ρ2c(ω)

∣∣∣∣
∫ l

0
T(x, ω)dx

∣∣∣∣
2
]

.

Here v(ω) = v and c(ω) = c will be assumed to be constants. The first term of Eq. 10
describes the uncorrelated input, while the second term describes the correlated input,
as can be seen by putting the coherence c either to zero (for uncorrelated input) or to 1
(for correlated input). When the integrals are solved, the PSDs are typically expressed
as fractions, and for later convenience we denote the dimensionless numerators as N , the
dimensionless denominators as D, and we put the dimensions into an amplitude A, and
we express the solutions of Eq. 10 in the following form

(11) PSDn(W ) = AnNn(W )/Dn(W ) .

Here, we have introduced the dimensionless frequency W = ωτm, and n = 1 denotes the
PSD for uncorrelated soma current, n = 2 is the PSD for correlated soma current, n = 3 is
the PSD for uncorrelated dipole moment, n = 4 is the PSD for correlated dipole moment,
n = 5 is the PSD for uncorrelated soma potential and n = 6 is the PSD for correlated
soma potential, see Table 1. Hence, the PSD for the soma current for a given coherence
c will be PSD(W ) = (1 − c)A1N1/D1 + cA2N2/D2, and with similar PSD expressions
for the dipole moment and the soma potential, but with terms of n = 3 and n = 4 for
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the dipole moment and n = 5 and n = 6 for the soma potential. The amplitudes An

are defined in Table 1 , while the numerators Nn are constructed to give an asymptotic
high-frequency value of 1, and are given by
(12)

Nn =






(Re{q} sin(2Im{q}L) + Im{q} sinh(2Re{q}L))|q|/
√

2| sinh(qL)|2W for n = {1, 5}
1, for n = {2, 6}
N3, for n = 3
| coth(qL)− 1/ sinh(qL)|2, for n = 4

with
N3 =[−Re{q}(B2(Re{q}2 + Im{q}2)− 2) sin(2Im{q}L)

+ Im{q}(B2(Re{q}2 + Im{q}2) + 2) sinh(2Re{q}L)
+ 2Re{q}Im{q}B cos(2Im{q}L)
+ 2Re{q}Im{q}B(cosh(2Re{q}L)− 2)
− 4 sin(Im{q}L)[B(Re{q}− Im{q})
× (Re{q} + Im{q}) sinh(Re{q}L) + Re{q} cosh(Re{q}L)]
− 4Im{q} sinh(Re{q}L) cos(Im{q}L)]

/[2Re{q}Im{q}
√

Re{q}2 + Im{q}2(cos(2Re{q}L)− cosh(2Re{q}L))] .

(13)

The denominators Dn are given by

(14) Dn = |q|n−2 |q coth(qL) + 1/B|2 ,

see Appendix B. Here, B = d2
s/dλ is a dimensionless constant. One should note that both

Nn and Dn are dimensionless, as all the parameters q(W ), L, B and W are dimensionless.
When the PSDs are expressed according to Eqs. 11–14, the terms involved are particularly
simple in the high-frequencies limit: the asymptotic high-frequency value of Nn is one,
and the asymptotic high-frequency value of Dn is 1/Wn/2 (see Results).

Table 1. Parameters and powers in the amplitudes of the PSDs.

Case n An A′n = An/(2πτm)n/2

Uncorr. curr. 1 ρλ/
√

2 ρd/4π1/2R1/2
i C1/2

m

Corr. curr. 2 ρ2λ2 ρ2/8πRiCm

Uncorr. dipolemom. 3 ρλ3/
√

2 ρd3/2/32π3/2R3/2
i RiC

3/2
m

Corr. dipolemom. 4 ρ2λ4 ρ2d2/64π2R2
i C

2
m

Uncorr. pot. 5 ρλ(riλ/B)2/
√

2 ρd1/2/16π7/2Rmd2
sR

1/2
i C5/2

m

Corr. pot. 6 ρ2λ2(riλ/B)2 ρ2d/32π4Rmd2
sRiC3

m

The amplitudes An related to the different power spectral densities, PSDn, defined in
Eq. 11. The right column shows the weighted amplitude A′n related to the asymptotic

value of PSDn through lim
f→∞

PSDn = A′n/fn/2.

2.4. Numerical simulations. For comparison with the analytical results a ball and stick
neuron model and a layer V pyramidal neuron from cat visual cortex [14] were simulated
using the NEURON Simulation Environment [6] with the supplied Python interface [9].
Both models had a purely passive membrane, with a specific membrane resistance Rm =
3 Ωm2, specific axial resisitivity Ri = 1.5 Ωm and specific membrane capacitance Cm =
0.01 F/m2. Simulations were performed with a time resolution of 0.0625 ms and resulting
data used for analysis had a time resolution of 0.25 ms. Simulations were in all applications
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run for a time period of 1200 ms were the first 200 ms were removed before analysis to
avoid transient upstart effects in the simulations.

2.4.1. Morphologies. A digital cell reconstruction of the layer 5 pyramidal cell was down-
loaded from ModelDB (http://senselab.med.yale.edu/) and the axon compartments were
removed. To ensure numerical precision compartmentalization was done so that no den-
dritic compartment was larger than 1/30 of the electrotonic length at 100 Hz (using the
function lambda f(100) in NEURON), which resulted in 3214 compartments. The soma
was modeled as a single compartment.

The ball and stick neuron was modeled with a total of 201 segments, one segment was
the iso-potential soma segment with length 20 µm and diameter 20 µm, and 200 segments
belonged to the attached dendritic stick of length 1 mm and diameter 2 µm.

2.4.2. Input currents. Simulations were performed with the same white-noise current in-
jection into each compartment separately. The white-noise input current was constructed
as a sum of sinusoidal currents

(15) I(t) = I0

1000∑

f=1

sin(2πft + ϕf )

where ϕ represents a random phase for each frequency contribution. Due to linearity of
the cable equation the contributions of individual synapses could be combined to compute
the PSD of the soma potential, the soma current and the dipole moment resulting from
current injection into all N compartments. In correspondence with Eq. 9, the weighting of
the input currents from different segments i with membrane areas Ai was done differently
for uncorrelated and correlated input currents. The uncorrelated PSDs, PSDu, were
computed according to

(16) PSDu(ω) =
N∑

i=1

(
ρiAi|xi(ω)|2

)
,

while the correlated PSDs, PSDc were computed according to

(17) PSDc(ω) =

∣∣∣∣∣

N∑

i=1

(ρiAixi(ω))

∣∣∣∣∣

2

.

Here, xi(ω) denotes the Fourier components of the signal x(t) (either soma potential,
soma current or dipole moment due to input in one segment), the product ρiAi gives
the total number of input currents into one segment i, and for a homogeneous density of
input currents with respect to membrane area the density ρi is assumed to be constant
throughout the neuron.

2.4.3. Calculation of dipole moment. The total dipole moment )p was in the numerical
computations assumed to equal the dipole moment in one direction only: the direction
along the stick for the ball and stick model, and the direction along the apical dendrite
for the pyramidal neuron model, both denoted as the x-component, px. For the ball
and stick neuron this is exact, but for the pyramidal neuron this is an approximation.
However, both the asymmetry of the pyramidal neuron and the fact that the component
perpendicular to the surface of the scalp dominates the EEG [17, 16] ensures that this is
a good approximation. The dipole moment is then given by

(18) px =
N∑

i=1

xiIi(t) ,

where xi is the position and Ii is the transmembrane current of compartment i.
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3. Results

Expression for the soma current, the dipole moment and the soma potential for a single
input current at an arbitrary position is derived for the ball and stick neuron, Eqs. 5–7, as
well as analytical expressions for the PSDs of the same entities when the input currents
are evenly distributed throughout the dendritic stick, Eqs 11–14. Eq. 11 describes PSDs
for uncorrelated input currents (n = {1, 3, 5}) and correlated input currents (n = {2, 4, 6})
separately, which can be combined to form an expression with any given coherence in the
input currents.

Fig. 1 shows typical PSDs of the soma current, dipole moment and the soma poten-
tial both for a layer 5 pyramidal neuron (right) and for the ball and stick neuron model
(left) when correlated or uncorrelated white noise input currents are spread with a con-
stant density throughout the dendrites. A striking observation from these plots is the
linear or quasi-linear appearance of the PSD slopes seen for high frequencies in the log-log
plots. This indicates that there might be an underlying 1/fα power law, and the values
for different α’s are printed in the figure based on a negative discrete log-log derivative,
−∆(log PSD)/∆(log f), within a small frequency interval close to 1000 Hz. In general one
can see that the α’s are highest for the soma potential, a bit lower for the dipole moment
and lowest for the soma current. For the soma potential and the soma current it is also
seen from the α values that the frequency dependence of the PSD is about half a power
less for uncorrelated input than for correlated input both for the ball and stick neuron and
the pyramidal neuron. For the dipole moment the relation is less clear: for the ball and
stick neuron the uncorrelated- and correlated dipole moment are almost indistinguishable,
while for the pyramidal neuron the difference in powers α is more than one.

However, even though the reconstructed pyramidal neuron is very different from the ball
and stick neuron in that it has both a highly branched structure and a varying diameter
along its neural sections with a pronounced tapering, both models produce linear or quasi-
linear slopes for high frequencies in the log-log plot. Although the slopes are a bit different
between the two neuron models for the dipole moment, they are very similar for the soma
current and the soma potential. With this as a motivation we here present a further study
of the analytical expressions derived for the ball and stick neuron.

3.1. Series expansion of the PSDs. Due to the frequency- and position-dependent
membrane filtering of the input currents illustrated in Fig. 2B, the PSDs shown in Fig. 1
possibly express power laws with different α’s for high frequencies. To further study this
the numerators Nn and denominators Dn will be asymptoticly expanded for W →∞. For
the numerators the four first terms in an asymptotic series expansion of Eq. 12 then gives
(see Appendix C)
(19)

Nn =






1, for n = {2, 4, 6}
1 + 1/2W + 3/8W 2 + 1/16W 3 + . . . , for n = 1
1 + 1/

√
2W + (4−B2)/23/2W + (3B2/8− 1)/

√
2W 2 + . . . , for n = 3

1 + 1/2W + 3/8W 2 + 1/16W 3 . . . , for n = 5 .

The corresponding series expansion of the denominator of Eq. 14 gives

(20) Dn = Wn/2 +
√

2
B

W (n−1)/2 +
1

B2
W (n−2)/2 +

1√
2B

W (n−3)/2 + . . . .

All six numerators have 1 as their asymptotic high-frequency value, whereas different
powers are dominating the six denominators. Note, however, that the dominating power
of the denominator is related to n through lim

W→∞
Dn → Wn/2, and the asymptotic value
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Figure 1. Normalized PSDs of the soma current (row 1), the dipole moment (row
2) and the soma potential (row 3) of the ball and stick neuron (left) and the pyramidal
neuron (right). The neuron models have a constant density (with respect to membrane
area) of white noise input currents onto the dendrites. The whole, colored lines show the
uncorrelated case, while the broken colored lines show the correlated case. A cascade of
PSDs from 20 single current inputs for the ball and stick neuron and 107 single current
inputs for the pyramidal neuron is shown in grey, with the most distal synapses in dark
grey and the proximal in light grey, with corresponding greyscale for the filled circles
at the respective neuron morphology. The α values printed in the legends describe the
powers of the power laws for the slope going through the two points at 950 Hz and
1000 Hz. The ball and stick neuron is simulated with 200 dendritic segments, while the
pyramidal neuron is simulated with 3214 dendritic segments. Note that for the ball and
stick dipole moment the uncorrelated case almost perfectly overlie the correlated case.

for the PSDs will be

(21) lim
W→∞

PSDn → An/Wn/2 .

Thus, for high frequencies the six PSDs considered express asymptotic power laws with
powers α = {1/2, 1, 3/2, . . . , 3}.

A re-inspection of the slopes for ball and stick model PSDs in Fig. 1 and a comparison
to the asymptotic values of Eq. 21 tells us that although the curves might look linear in the
log-log plot for high frequencies, the expressed powers α are still quite a bit off from their
asymptotic values, possibly with an exception for the uncorrelated dipole moment. Fig. 3
shows the the first four terms of the numerator (left) and denominator (right) for default
parameters (Rm = 3 Ωm2, Ri = 1.5 Ωm, Cm = 0.01 F/m2, l = 1 mm, d = 2 µm and
ds = 20 µm). It is clear from the left column that in all cases except for the uncorrelated
dipole moment (n = 3) the numerator is dominated by the highest order term, 1, for
frequencies f ! 10 Hz. Actually, for the correlated cases the numerator exactly equals 1
(see Eq. 12). For the uncorrelated dipole moment the highest order term is not the largest
term before f ! 300 Hz.

For all the denominators it is clear that the highest order term only becomes the largest
term for frequencies f ! 300 Hz. However, even though the highest order term is the
largest term for frequencies larger than about 300 Hz, it is clear from the left panels of
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Fig. 1 that even at 1000 Hz the PSDs typically have α values smaller than their asymptotic
value.
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Figure 2. (A) Schematic illustration of the ball and stick neuron model with input at
a given position X = X ′. The lumped soma is assumed to be iso-potential and located at
X = 0. (B) The densities of the return-current envelopes for a ball and stick neuron with
input at X = 0.8 for different frequencies. The somatic return currents are illustrated
as current densities from a soma section with length 20 µm placed below the stick. For
1 Hz, 10 Hz, 100 Hz and 1000 Hz the amplitudes of the somatic return currents are about
1/7.3, 1/7.5, 1/22 and 1/3100 of the input current, respectively. Default parameters are
used for the ball and stick neuron model: a stick diameter d = 2 µm, somatic diameter of
ds = 20 µm, stick length of l = 2 mm, specific membrane resistance of Rm = 3 Ωm2, inner
resistivity of Ri = 1.5 Ωm and a specific membrane capacitance of Cm = 0.01 F/m2. (C)
Schematic illustration of the log-log plot of a PSD, illustrating the intermediate frequency
regime (if -regime) and the high frequency regime (hf -regime), which is defined relatively
to the asymptotic value of the slope α.

3.2. Apparent power laws in the PSDs. To further study the log-log decay rate of the
PSDs given by the power α, a negative log-log derivative of the PSDs, −d(log PSDn)/d(log W )
is computed and plotted in Fig. 4. This derivative is independent on the amplitude An

and the slopes, α, of the PSDs are therefore completely described by the three parameters
B, L and the dimensionless frequency W . Thus, for a given dimensionless length L, the
power α can be mapped out in a color plot with W and B along the axis. Fig. 4 shows
such a mapping, and a special attention has been given to the region where the power is
about 1/2 below the asymptotic values: the black lines in each panel defines a interval
around this power, as the left/lower black line is for α = n/2 − 3/4 and the right/upper
black line is for α = n/2 − 1/4. The three columns of the figure correspond to different
dimensionless lengths L, where the left column corresponds to an electrotonically compact
dendrite of L = 0.25, the middle column is a cable of length equal to the length constant,
L = 1, while the right column is an electrotonically non-compact dendrite of length L = 4.
Electrotonic lengths greater than L = 4 gave plots that were indistinguishable by eye (not
shown). The horizontal white line defines the B corresponding to our default parameters,
and the three vertical lines in each panel correspond to 10 Hz, 100 Hz and 1000 Hz for
our default time constant of τm = 30 ms.

It is interesting to see how the width of the region restricted by the black curves varies
between the different entities and for different values of B. For simplicity we will refer to
this frequency interval as the intermediate frequency interval (if -interval) or intermediate
frequency regime (if -regime), see Fig. 2C. The PSD within this frequency interval may
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often appear to be linear, especially if the interval is wide. Correspondingly, we will refer
to the interval to the right of this interval as the high frequency interval (hf -interval).
Here the PSD is approaching its asymptotic value.

For the soma potential PSDs, the if -interval is in general quite wide, especially for B
around the default value chosen here. The exception is for correlated input currents onto
very compact neurons, where the if -interval typically is more narrow. However, when the
neuron becomes electrotonically less compact, as for L = 1 and L = 4, the if -intervals
of the soma potential PSDs become similar between the correlated and uncorrelated case,
and the overall color plots become almost indistinguishable by eye. Note, however, that
the scales of the color plots are different, so that the non-compact neuron models express
a log-log slope which is half a power steeper for the correlated case compared to the
uncorrelated case. This means that for the less compact neurons the PSDs should be
easily distinguishable due to the different steepness of the log-log slopes, while this might
be harder for more compact neurons, as the PSD has quite a wide range where the slope
α is about 2 both for the case of correlated- and uncorrelated input currents.

Similarly, we see that it might also be hard to distinguish the PSDs for the dipole mo-
ments on the basis of their log-log slopes, at least for values of B in the range of the default
value used here. This is due to the very narrow if -interval for the case of uncorrelated
input currents and the wide if -interval for the case of correlated input currents, which
makes the PSD for uncorrelated input currents approach its asymptotic value of 1.5 for
quite low frequencies, and for the same frequencies the PSD for correlated input currents
is typically within its if -interval. This effect is also seen for the ball and stick neuron in
Fig. 1, where the normalized PSDs are indistinguishable for the two cases. However, this
seems to be a very model-specific effect, as the pyramidal neuron of Fig. 1 expresses very
different PSDs for the two cases.

For the PSDs of the soma currents, correlated versus uncorrelated input currents might
in some cases be easily distinguishable, as the uncorrelated PSDs typically have a region
with a positive slope in the log-log plot (negative α) when the neuron is not too compact
and B is not too large. However, if the frequency is large enough, also the PSD for
uncorrelated input currents express a more regularly decaying slope in the log-log plot, as
it approaches its asymptotic α value which is 1/2.

It is striking that for default parameters all PSDs shown in the figure, except for
the dipole moment with uncorrelated input currents, first enter the hf -interval at about
1000 Hz. This means, that for the frequency range typically considered in experiments,
the PSDs are likely in the if -regime or below.

3.3. Variation with biophysical parameters. The dimensionless parameters used in
Fig. 4 nicely plot out the parameter space for the slope α. In Figs. 5–6, however, we plot
the PSDs when measurable biophysical parameters are varied. The PSDs are plotted for
the ball and stick neuron when all parameters except one are held at default values, while
the last parameter is given different values. The parameters varied are the ones believed
to change substantially from neuron to neuron; the soma diameter ds, the stick diameter
d, the stick length l and the specific membrane resistance Rm. The specific membrane
resistance might not only change between neurons, but also between states, i.e. between
low- and high-conductive state.

In Fig. 5 the soma diameter is varied in the two columns to the left and the stick
diameter is varied in the two columns to the right. Although the biophysical parameters
varied in Figs. 5–6 may appear in several of the dimensionless variables, the soma diameter
only appears in the parameter B, where it appears with power two, B = d2

s/dλ. Fig. 4
showed that the parameter B is important for defining the width of the if -interval, and is
therefore important for the decay rate of the quasi-linear log-log slopes expressed in the
PSDs. This is clearly seen in the left columns of Figs. 5, as the different soma diameters
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Figure 3. The first four terms of the asymptotic high-frequency series expansion of
the numerator Nn (left) and the denominator Dn (right) for the ball and stick neuron
with default parameters, see Eqs. 19 and 20. The rows correspond to uncorrelated
soma current (row 1), correlated soma current (row 2), uncorrelated dipole moment
(row 3), correlated dipole moment (row 4), uncorrelated soma potential (row 5) and
correlated soma potential (row 6). The grey lines are the sums of the three first terms
in the expansions, while the broken line in the N3 panel indicates that this term is
plotted with inverted sign, i.e., for default parameters the term is negative, see N3 in
Eq. 19. The default parameters used for the ball and stick neuron model: stick diameter
d = 2 µm, soma diameter ds = 20 µm, stick length l = 2 mm, specific membrane
resistance Rm = 3 Ωm2, inner resistivity Ri = 1.5 Ωm and specific membrane capacitance
Cm = 0.01 F/m2.
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uncorrelated and correlated soma potential (row 5 and 6) for the ball and stick neuron
model with dimensionless parameters. The dimensionless parameter B is plotted along
the vertical axes, while the dimensionless frequency W is plotted logarithmically along
the horizontal axes. The left column is for dimensionless length L = 0.25, the middle for
L = 1 and the right for L = 4. The horizontal white lines correspond to the default value
of the parameter B, B = 0.2, while the vertical white lines correspond to frequencies of
10 Hz, 100 Hz and 1000 Hz for the default membrane time constant τm = 30 ms. The
black lines within each panel indicate the two powers α = n− 3/4 and α = n− 1/4. The
plots within each row express the same color scale for α, given by the color-bar to the

right.
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Figure 5. PSDs of the soma current (row 1), dipole moment (row 2) and soma
potential (row 3) for the ball and stick neuron for different values of the soma diameter
(the two left columns) and stick diameter (the two right columns), with their values
indicated in the legends below the panels. All other parameters of the ball and stick
neuron have their default values; a stick diameter d = 2 µm, somatic diameter of ds =
20 µm, stick length of l = 2 mm, specific membrane resistance of Rm = 3 Ωm2, inner
resistivity of Ri = 1.5 Ωm and a specific membrane capacitance of Cm = 0.01 F/m2.
The values of α printed inside the panels describe the powers of the power laws for the
slope going through the two points at 966 Hz and 1000 Hz. The upper α corresponds
to the low value of the parameter varied (lightest grey), the middle α corresponds to
the default parameter (black curve), while the lower α corresponds to the high value
of the parameter varied (dark grey). The first and third columns show the PSDs for
uncorrelated input currents, while the second and fourth columns show the PSDs for
correlated input currents.

give very different values of α. The α values printed in Figs. 5–6 are the values for the slope
when they are approaching 1000 Hz. In Fig. 4 the panels showed that for about 1000 Hz
all slopes approached the hf -interval for the default parameters, with an exception for
the PSD for the dipole moment with uncorrelated input currents, which approached the
hf -interval for a much lower frequency. This is also seen for the values of α here for the
default soma diameter of 20 µm. For a soma diameter of 5 µm, the value of α is much
smaller, typically almost one whole power less than its asymptotic value, while for the
larger soma dimeter, the slope is very close to its asymptotic value. An exception for this
is the PSD for the dipole moment with uncorrelated input currents, which is very similar
for all three values of the soma diameter, with a value of α just above 1.5 .

When the stick diameter is varied, the relations are inverted compared to the variation
of the soma diameter: a smaller diameter gives a larger value for α around f = 1000 Hz.
This is due to the parameter B, which relates inversely to d with the power 3/2, as d is in
the denominator of the parameter B, both explicit and also implicit through λ. However,
the stick diameter is also implicit in L, and thus influences the cut-off frequency as well, i.e.,
the frequency for which the slope has a transition from a flat region (’α ∼ 0’) to a region in
which the PSD is decaying in the log-log plot. All amplitudes An shown in Table 1 are also
dependent on the stick diameter, thus the PSD amplitudes are different for different stick
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Figure 6. PSDs of the soma current (row 1), dipole moment (row 2) and soma
potential (row 3) for the ball and stick neuron for different values of the stick length
(the two left columns) and specific membrane resistance (the two right columns), with
their values indicated in the legends below the panels. All other parameters of the ball
and stick neuron have their default values; a stick diameter d = 2 µm, somatic diameter
of ds = 20 µm, stick length of l = 2 mm, specific membrane resistance of Rm = 3 Ωm2,
inner resistivity of Ri = 1.5 Ωm and a specific membrane capacitance of Cm = 0.01 F/m2.
The values of α printed inside the panels describe the powers of the power laws for the
slope going through the two points at 966 Hz and 1000 Hz. The upper α corresponds
to the low value of the parameter varied (lightest grey), the middle α corresponds to
the default parameter (black curve), while the lower α corresponds to the high value
of the parameter varied (dark grey). The first and third columns show the PSDs for
uncorrelated input currents, while the second and fourth columns show the PSDs for
correlated input currents.

diameters as the PSDs are approaching their respective asymptotic expressions. Contrary
to this, only the amplitudes for the soma potential were depending on the soma diameter.

Fig. 6 shows the impact of stick length l in the left columns, and the specific membrane
resistance, Rm, in the right columns. In all cases the slopes of the PSDs approach the
same α value for 1000 Hz. For variation of l this might be rather obvious, as the only
dimensionless parameter influenced is the dimensionless length L, which is not decisive for
the slope of α except for low frequencies around the cut-off frequency. This is also seen in
the left columns, as variation of l influences the cut-off frequency and therefore also the
amplitude of the PSD for lower frequencies. A shorter stick clearly gives a higher cut-off
frequency for the PSDs of the dipole moments and for the PSD for the soma current with
correlated input currents. For the latter, the cut-off frequencies are also reflected in the
corresponding PSD for the soma potential, but as the soma current cut-off frequencies are
quite high these are reflected for high frequencies also in the PSD for the soma potential,
and rather decide the width of the different frequency regimes, i.e., the width of the if -
regime. This observation is also in accordance with Fig. 4, where the PSD for the soma
potential with correlated input currents have a much narrower if -regime for L = 0.25 than
for L = 1 . For the PSD for the soma potential for uncorrelated input currents we have
a rather opposite situation, where larger L gives a narrower if -interval. This is due to
the effect seen in the corresponding PSD for the soma current, where long sticks have a
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positive slope for the mid-frequencies in the log-log plot, reflected in a corresponding less
negative slope for the PSD of the soma potential, and hence a wider if -interval, as seen
in Fig. 4.

When the specific membrane resistance is varied in the right columns of Fig. 6 the
PSDs for the soma current with correlated input currents as well as the PSDs for the
dipole moments are similar to when the stick length was varied; a higher membrane
resistance gives a lower cut-off frequency. It is, however, important to note that a large Rm

influences L inversely compared to how a long stick would influence (through λ), although
a higher Rm also results in a lower cut-off frequency. This is because Rm only influences
the dimensionless L inversely with the square root L ∝ 1/

√
Rm, while it influences the

dimensionless frequency stronger, through W = ωτ = 2πfRmCm, and a high specific
membrane resistance will therefore give a large W for a smaller frequency f . So, although
a higher Rm results in a more compact neuron through the dimensionless electrotonic
length L, this does not lead to a higher cut-off for the dipole moments and the soma
current with correlated input currents, but actually the opposite. This effect is even more
visible for the PSDs for the soma potential, where the cut-off frequency for the high Rm

is for such low frequencies that it lies outside the plot. Although the effect of Rm and
l might look similar for the dipole moment and the soma current with correlated input
currents, there is a striking difference for the soma potential PSDs. This is because l only
influences the cut-off frequency through the hyperbolic functions which are functions of
qL, while Rm influences the parameter q, which is not only appearing inside the hyperbolic
functions, but which is also appearing separately, and which has the highest power for the
soma potentials.

In summary Figs. 5–6 show that soma and stick diameter influence the slope α as well
as the overall amplitude of the PSDs, while l and Rm do not influence the value of α,
but may influence the cut-off frequency and hence the PSD amplitude for low frequencies.
An exception is the PSDs for the dipole moment with uncorrelated input currents, where
variations of the different parameters has very little impact on the value of α, but all
parameters except for the soma diameter influence the cut-off frequency and where the
stick diameter also influences the overall amplitude.

4. Discussion

The cable equation was solved in frequency space for the ball and stick neuron with a
single input current at an arbitrary position along the stick. The PSD was computed for
the soma current, soma potential and the dipole moment when white noise input currents
were distributed evenly throughout the dendritic stick. The dipole moment is directly
proportional to the single neuron contribution to the EEG if no frequency filtering through
the extracellular medium, dura matter, scull and scalp is assumed [17].

All PSDs express an asymptotic high-frequency power law 1/fα. For uncorrelated white
noise input currents α is 0.5, 1.5 and 2.5 for the soma current, EEG and the soma potential,
respectiviely. For correlated white-noise input the respective values are 1, 2 and 3.

4.1. PSD dependence on functional form of noise sources. Throughout this paper,
the input currents are assumed to have a white noise distribution. This is contrary to other
recent studies, e.g., in [21] the noise sources were assumed to be conductance-based, two-
exponential synapses with a rise time of 0.4 ms and a decay time of 2 ms, while in [5] the
noise sources were assumed to be current-based exponentially decaying synapses with a
decay time of 10 ms. In both studies [5, 21] the synapses were spread evenly throughout the
dendrites and were triggered according to an underlying Poissonian distribution. However,
due to the linearity assumed here, the formalism is general with respect to the functional
form of the input current: in Eq. 10 it is shown that the PSD for the input current, v =
v(f), is simply a pre-factor in the expression. Thus, for Poissonian triggered current-based
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synapses with the functional form of a decaying exponential, the expressions derived here
for the PSDs can simply be multiplied with the PSD of the exponentially decaying function.
The PSD for an exponentially decaying function is given by v(f) ∝ 1/(1+(f/fc)2), which,
for frequencies much higher than the cut-off frequency fc = 1/(2πτs), decays as 1/f2.
This would give an additional power of two in the slopes α, and the PSDs would not be
in agreement with PSDs derived from experimental recordings [7, 20, 11, 21, 5], which
typically express powers α in agreement with the powers computed for white noise input
evenly distributed throughout the dendrite of a ball and stick neuron model.

However, if the synaptic time constant is small enough, and the recordings only treat
rather low frequencies, the synaptic PSD may not influence the overall recorded soma
potentials much. For example, a time constant of τs = 2 ms will give a cut-off frequency of
about 80 Hz, while a time constant of τs = 10 ms gives a cut off frequency of about 16 Hz.
Although both these time constants would result in a PSD for the synaptic current which
has a substantial impact on the overall PSD within the frequency interval discussed here,
τs = 2 ms would have a much smaller impact when the frequency interval under study is
up to 100 Hz, as in [21], and if the synaptic time constant is even smaller, its PSD might
be approximately white for recordings within such a low frequency interval.

However, for typical synaptic time constants and soma potential recordings that are
reliable up to a few hundred herz, it seems inevitable that the synaptic PSD will influence
the soma potential PSD. If so, the PSD of the synapse has to be compensated for with a
mechanism which has the opposite effect on the PSD. In [5] it is shown that a non-ideal
membrane capacitance can have such a compensatory effect, while in [3] it is shown that
correlations in the network due to delay distributions directly can influence the power α
through the resulting non-Poissonian pre-synaptic spike train statistics.

The simplest explanations may, however, be that the large number of small currents
going through the membrane ensures that shot-noise (white noise due to statistical fluc-
tuations in small currents) is dominating the membrane currents, at least for higher fre-
quencies, and that the different PSDs are reflections of this shot noise.

4.2. Power laws for EEG. The PSDs for the EEG are quite different when comparing
results from the ball and stick and the pyramidal neuron, see Fig. 1. The power laws seen
experimentally typically express a power α between 1 and 2 [8], which is in agreement with
the ball and stick neuron both with correlated and uncorrelated input currents and for
uncorrelated input currents onto the pyramidal neuron, see Fig. 1. The large discrepancy
between the ball and stick neuron and the pyramidal neuron PSDs for the EEG may be due
to the pyramidal neuron’s non-homogenous distribution of total neuronal membrane area
along the the apical direction, as the branching increases the surface area of the apical part
of the neuron dramatically [13]. The pyramidal neuron also has an increased membrane
area basally due to the basal dendrites. In addition, also the pronounced tapering along
the apical dendrite may have an impact on the PSDs.

Although Fig. 1 shows that the cut-off frequency is lower for the pyramidal neuron than
for the ball and stick neuron, the cut-off frequency is still too high compared to EEG
recordings, where the power law typically seems to extend down to about 1 Hz [8]. It is
still unknown which types of neurons or neural structures dominate the PSD of the EEG,
but from Fig. 4 one sees that long sticks (large L) and large membrane time constants τm

will lower the cut-off frequencies for the EEG.
In addition, a non-homogeneous membrane resistance, e.g., a different membrane resis-

tance in soma than in the dendrites, will impact the cut-off frequency dramatically (results
not shown). There is also a possibility that the extracellular potentials are filtered through
the extracellular medium, dura matter, scull and scalp, however, according to impedance
measurements this is not very likely for the relatively low frequencies typically recorded
in the EEG [17].
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4.3. Power laws for soma potential. For experimental recordings, the soma potential
typically expresses a power law in the PSD with α close to 2.5 [7, 20, 11, 21, 5]. The
underlying sources for the soma potential PSD is found to be related to noisy input
currents homogeneously spread throughout the dendrites [11, 21], and in [11] it was shown
that for the higher frequencies of the recordings, i.e., from 5 Hz to 100 Hz, the amplitude
of the 1/f noise was reduced when synaptic blockers (DNQX and gabazine) were used. In
the same paper it was shown that the sodium channel blocker TTX did not influence the
high frequency part of the spectrum, however, blocking of the sodium channels had great
impact on the lower frequencies in the range 0.2 Hz to 2 Hz.

In the formalism presented here, a power α close to 2.5 corresponds to the asymptotic
value of the ball and stick neuron with uncorrelated input currents spread evenly through-
out the dendrites. However, a power 2.5 can also appear within the intermediate frequency
regime of a ball and stick neuron where the correlated input currents dominate. A key
parameter that might decide whether correlated or uncorrelated input currents dominate
the soma potential PSD is the density ρ of input currents, which appear with power 2 in
front of the term consisting of correlated activity, but with power 1 in front of the term
consisting of the uncorrelated activity, see Eq. 10. This implies that a high density of input
currents will lead to a strengthening of the contribution from correlated activity relative
to uncorrelated activity. Here, ρ is assumed to be 1/µm, which is roughly in agreement
with the anatomical synaptic density along a dendrite, which is estimated to be about
7800 synapses along 4 mm of dendrites in an average nerve cell in mouse cortex [12]. With
the value of ρ used here, the lower frequencies of the soma potential PSDs are about three
orders of magnitudes larger for the PSDs resulting from correlated input currents than for
the PSDs resulting from the uncorrelated input currents, see lower rows of Figs. 5 and 6.

The input current PSD used here was chosen to match the PSD amplitudes seen in the
experimental data of [7, 11, 21]. Thus, a PSD of v = (1 fA)2/Hz was used, which resulted
in PSDs that are about one order of magnitude larger than experimental results [7, 11, 21]
for the PSDs based on correlated input currents and about two orders of magnitudes
smaller than experimental results [7, 11, 21] for the PSDs based on uncorrelated input
currents. Although the given choice of ρ only requires a very small coherence in the input
for the correlated input to dominate over the uncorrelated input PSD, see Eq. 10, it is
hard to imagine how the input currents could be correlated throughout the neuron if one
assumes that the origin of the white noise currents is shot noise or stochasticity within the
gating properties of ion channel currents or synaptic currents. Therefore, it is still likely
that experimental results should be compared to the results computed for uncorrelated
input currents. If that is the case, the typical soma potential PSD with α = 2.5 found
in experiments [7, 20, 11, 21, 5], would imply that the high-frequency asymptotic value
is reached. This is not the case for the default ball and stick parameters used here,
even at 1000 Hz. Note, however, that the simulation of the pyramidal neuron in Fig. 1
with uncorrelated white noise input has a slope α of exactly 2.5. This may be due to
an effectively larger soma diameter for the pyramidal neuron compared to the ball and
stick neuron model, possibly in combination with effectively smaller dendritic diameters
in the pyramidal neuron than the default diameter used for the ball and stick neuron.
The morphology of the pyramidal neurons may therefore lead to a transition towards
the asymptotic value for a much smaller frequency. It might also be that such realistic
morphologies in general have high-frequency asymptotic values α that are higher than for
the ball and stick neuron.

In addition, all results here are based on a purely passive membrane, which is a prereq-
uisite to be able to solve the cable equation analytically. By introducing active channels
in the model, the analytical derivations would be impossible. Further, for the pyrami-
dal neuron simulations the active mechanisms would introduce non-linearities, and the
PSDs based on white-noise inputs could not simply be generalized to any input current
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just by multiplying the white-noise based PSD with the PSD of the input current. How-
ever, other studies have incorporated active ion channels and conductance based synapses
[7, 11, 21], and active channels have been shown to change the PSDs. For example, in
[21] sodium channels in soma are shown to influence the cut-off frequency and the PSD
for low frequencies (below 2 Hz), but not the higher frequencies.

Here, we have focused on the analytical solution of the ball and stick neuron, and a full
study of how realistic neuron morphologies and active ion channels may impact the soma
potential PSD is beyond the scope of this paper. However, a simulation study in combi-
nation with experimentally recorded soma potentials and morphological reconstructions
of the same neuron, preferably executed for several neurons of different morphological
classes, would indeed be a very interesting set-up for a future study.
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Appendix A. Ball-and-stick neuron with input at arbitrary position

The ball-and-stick neuron with current input at arbitrary position is derived by com-
bining (i) a solution to the ball and stick neuron with an input current input at the end
of the stick and (ii) a solution of a sealed end stick with an input current at its end.

For both cases, the expression for the axial current is used as a boundary condition.
The axial current is proportional to the derivative of the membrane potential,

(22) Ii(x, t) = − 1
ri

∂V (x, t)
∂x

.

In complex notation and with dimensionless units this becomes

(23) Îi(X, ω) = − 1
riλ

∂V̂(X, ω)
∂X

.

Similarly, the transmembrane current density is given by

(24) im = −∂Ii(x, t)
∂x

=
1
ri

∂2V (x, t)
∂x2

,

with its complex counterpart,

(25) îm(X, ω) = − 1
λ

∂Î(X, ω)
∂X

=
1

riλ2

∂2V̂(X, ω)
∂X2

.

In dimensionless variables, X = x/λ and T = t/τ , the cable equation, Eq. 1, can be
expressed

(26)
∂2V (X, T )

∂X2
− ∂V (X,T )

∂T
− V (X,T ) = 0 .

Due to the linearity of the cable equation, each frequency of the input signal can be treated
individually. It is then convenient to express the membrane potential in a complex form,

(27) V = V̂(x, ω)ejωt ,

where V̂ is a complex number containing the amplitude and phase of the signal.
Within this framework the cable equation be simplified to

(28)
d2V̂
dX2

− q2V̂ = 0 ,

where q2 = 1 + jωτ , see [19] and [18].
The general solution to Eq. 28 can be expressed as

(29) V̂ = C1 cosh(qL− qX) + C2 sinh(qL− qX) .

A.1. Sealed end boundary. The part of the ball and stick neuron which is distally to the
synaptic input is a stick where we apply the boundary condition V̂0 at the synaptic site,
and a sealed end boundary at the very distal tip. For simplicity we now use coordinates so
that the synapse is placed in Xd = 0, hence the boundary condition become V(Xd = 0) =
V̂0. We then define the distal stick to have length ld, and the distal tip is positioned at
x = ld, in dimensionless length expressed Xd = Ld. The boundary condition at the distal
end corresponds to setting the axial current equal to zero in Eq. 23. From the boundary
conditions the specific solution to the cable equation now becomes [19, 18],

(30) V̂(Xd, ω) =
V̂0 cosh(qLd − qXd)

cosh(qLd)
.

The current Îi(Xd, ω) is then given by

(31) Îi(Xd, ω) =
V̂0q
riλ

sinh(qLd − qXd)
cosh(qLd)

,
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and the dendritic input admittance, Yin(ω) = Îi(Xd = 0, ω)/V̂(Xd = 0, ω) = −Î0/V̂0, is

(32) Yin(ω) =
q

riλ
tanh(qLd) .

Since lim
L→∞

tanh(qL) → 1, see Appendix C, the infinite stick admittance is expressed as

Y∞(ω) = q
riλ

and the finite stick admittance can here be expressed Yin(ω) = Y∞(ω) tanh(qLd).
From Eq. 25 the transfer function from an applied voltage V̂0 in the dendritic end to a
transmembrane current density expression can be expressed as [18]

(33) H(Xd, ω) =
q2

riλ2

cosh(qLd − qXd)
cosh(qLd)

,

with îm(Xd, ω) = H(Xd, ω)V̂0.
The complex dipole moment of the stick with a sealed end is given by the integral

(34) p̂(ω) =
∫ l

0
îm(x, ω)x dx =

V̂0

ri
(1− 1/ cosh(qLd)) .

A.2. Lumped soma boundary. Here we find the solution to a ball and stick neuron with
a synaptic input at the end of the stick. Similarly to the distal stick we apply a boundary
condition V̂0 to the synaptic site and put this in Xp = 0, so that V(Xp = 0) = V̂0.
The open end/lumped soma boundary condition means that the leak current out of the
dendritic end is proportional to the leak admittance at the end (i.e., the soma admittance),
see Fig. 2A. The stick is assumed to have length lp and the soma site is at Xp = Lp. The
voltage drop over the soma compartment is related to the somatic current through Ohm’s
law Îi(Lp, ω) = Îs = YsV̂(Lp, ω) = YsV̂s.

The boundary conditions then become

(35) Xp = 0 : V̂(0, ω) = V̂0 ,

and, through Eq. 23,

(36) Xp = Lp : Îi(Lp, ω) = − 1
riλ

∂V̂(Xp, ω)
∂Xp

∣∣∣∣∣
Xp=Lp

.

From Eq. 36 C2 is then found to be

(37) C2 =
YsV̂sλri

q
,

which, combined with Eq. 35, gives C1:

(38) C1 =
V̂0

cosh(qLp)
− YsV̂sλri

q
tanh(qLp) .

Note that ri = 4Ri
πd2 and λ =

√
dRm
4Ri

gives Y∞(ω) = πd3/2q
2
√

RmRi
= q

λri
. By substituting for Y∞

as well as the constants C1 and C2, Eq. 29 gives

(39) V̂0/V̂s = cosh(qLp)(1 + (Ys/Y∞) tanh(qLp)) ,

where we have also used V̂s = V̂(Lp, ω).
By using Eq. 39 to substitute for V̂s in the constants C1 and C2 we will after some alge-

braic manipulations arrive at the solution for the cable equation with the given boundary
conditions,

(40) V̂(Xp, ω) = V̂0
cosh(qLp − qXp) + (Ŷs/Ŷ∞) sinh(qLp − qXp)

cosh(qLp) + (Ŷs/Ŷ∞) sinh(qLp)
.
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The axial current is through Eq. 23 given by,

(41) Îi(Xp, ω) = V̂0Y∞
sinh(qLp − qXp) + (Ys/Y∞) cosh(qLp − qXp)

cosh(qLp) + (Ys/Y∞) sinh(qLp)
,

and the input admittance is through Ohm’s law Yin = Îi(0, ω)/V̂0

(42) Yin = Y∞
sinh(qLp) + (Ys/Y∞) cosh(qLp)
cosh(qLp) + (Ys/Y∞) sinh(qLp)

.

The axial current at Xp = Lp, i.e., the somatic transmembrane current, will then be

(43) Îs = Îi(Lp, ω) =
V̂0Ys

cosh(qLp) + (Ys/Y∞) sinh(qLp)
,

and the axial current at Xp = 0, i.e., the negative synaptic input current, Îi(0, ω) =
−Î0(ω), will be

(44) Îi(0, ω) = V̂0Y∞
sinh(qLp) + (Ys/Y∞) cosh(qLp)
cosh(qLp) + (Ys/Y∞) sinh(qLp)

.

The transfer function between the synaptic input current and the somatic membrane
current will become,

(45) Îs(ω) = − Ys

Y∞

Î0(ω)
sinh(qLp) + (Ys/Y∞) cosh(qLp)

,

and the transmembrane current density of the lumped soma neuron model is, through
Eq. 25, found to be

(46) îm =
q
λ
V̂0Y∞

cosh(qLp − qXp) + (Ys/Y∞) sinh(qLp − qXp)
cosh(qLp) + (Ys/Y∞) sinh(qLp)

.

By an integration similar to Eq. 34 the dipole moment for the stick becomes

(47) p̂stick(ω) = V̂0

[
1/ri −

lpYs + 1/ri

cosh(qLp) + (Ys/Y∞) sinh(qLp)

]
.

The dipole moment due to the somatic return current is the product of the somatic
current, Eq. 43, and the fixed synapse-soma dipole length, here assumed to equal the stick
length lp,

(48) p̂s = lpÎs =
lpV̂0Ys

cosh(qLp) + (Ys/Y∞) sinh(qLp)
.

The total dipole moment for a ball-and-stick neuron with synaptic input at the end of
the stick is therefore

(49) p̂ = p̂s + p̂stick =
V̂0(−1/ri)

cosh(qLp) + (Ys/Y∞) sinh(qLp)
+

V̂0

ri
.

Expressed relative to the synaptic input current this becomes

(50) p̂ = − Î0

Y∞ri

[
−(Ys/Y∞)2 cosh(qLp) + cosh(qLp)− 1

(Ys/Y∞) cosh(qLp) + sinh(qLp)
+ Ys/Y∞

]
.
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A.3. Arbitrary input position. Input at arbitrary position is achieved by superposition
of the sealed end solution and the lumped soma solution, where the sealed end describes
the dynamics in the stick distal to the synapse, and the lumped soma solution describes the
solution proximal to the synapse. Note that we now use the same notation and coordinate
system as in Fig. 2, i.e., Xp = −X + Lp and Xd = X − Lp, and the sum of the stick
lengths is L = Lp + Ld. The ball and stick dipole moment now becomes

(51) p̂general = −V̂0

ri

[
1

cosh(qL− qX)
+

−1
cosh(qX) + (Ys/Y∞) sinh(qX)

]
.

The total input admittance of the ball and stick neuron is given by the sum of the
proximal admittance and the distal admittance

(52) Yin = Yin,p + Yin,d = Y∞

[
sinh(qLp) + (Ys/Y∞) cosh(qLp)
cosh(qLp) + (Ys/Y∞) sinh(qLp)

+ tanh(qLd)
]

.

The synapse was put in Xp = 0 for the lumped soma solution and Xd = 0 for the distal
stick solution. Substituting so that Lp = X, Ld = L−X and L = Lp + Lf gives

(53) Yin = Y∞

[
sinh(qX) + (Ys/Y∞) cosh(qX)
cosh(qX) + (Ys/Y∞) sinh(qX)

+ tanh(q(L−X))
]

.

By substituting for V̂0 in Eq. 51 and using the result in Eq. 53, the dipole moment
becomes

(54) p̂general = − Î0

Y∞ri

cosh(qL− qX) + (Ys/Y∞) sinh(qX) + cosh(qX)
(Ys/Y∞) cosh(qL) + sinh(qL)

.

Similarly, by substituting for V̂0 in Eq. 43 and using the result in Eq. 53 the somatic
current becomes

Îs =
1

Yin

Î0Ys

cosh(qLp) + (Ys/Y∞) sinh(qLp)
(55)

=
(Ys/Y∞) cosh(qL− qX)

(Ys/Y∞) cosh(qL) + sinh(qL)
Î0 .

Appendix B. Ball and stick with uniform input

The PSD for the soma current, dipole moment and the soma potential is given by

(56) PSD(ω) = v(ω)

[
ρ(1− c(ω))

∫ l

0
|T(x, ω)|2dx + ρ2c

∣∣∣∣
∫ l

0
T(x, ω)dx

∣∣∣∣
2
]

,

where T is a transfer function from an input current at an arbitrary position x to either
soma current, dipole moment or soma potential. The transfer function for the soma current
is, from Eq. 4, given by

(57) TI =
(Ys/Y∞) cosh(qL− qX)

(Ys/Y∞) cosh(qL) + sinh(qL)
,

and the transfer functions for the soma potential is simply TV = TI/Ys. The transfer
function for the dipole moment is from Eq. 7

(58) Tp = − 1
Y∞ri

− cosh(qL− qX) + (Ys/Y∞) sinh(qX) + cosh(qX)
(Ys/Y∞) cosh(qL) + sinh(qL)

.

The PSDs of the soma current with uncorrelated white noise input only (c = 0) is de-
noted PSD1 and is then given by PSD1 = A1|q||csch(qL)|2

∫ l
0 | cosh(qL−qX)|2dx/D1 =

A1N1/D1, where A1 is found in Table 1 and D1 is defined in Eq. 20. Similarly, the soma
current with correlated white noise input only (c = 1) is given by PSD2, the dipole mo-
ment with uncorrelated white noise input only is given by PSD3, the dipole moment with
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correlated white noise input only is given by PSD4, the soma potential with uncorrelated
white noise input only is given by PSD5 and the soma potential with correlated white noise
input only is given by PSD6, all defined according to Eq. 11 as PSDn = AnNn/Dn. The
amplitudes An and denominators Dn are defined in Table 1 and by Eq. 20, respectively,
and the expressions for the numerators Nn are then
(59)

Nn =






|q||csch(qL)|2
∫ l
0 | cosh(qL− qX)|2dx, for n = {1, 5}

|qcsch(qL)
∫ l
0 cosh(qL− qX)dx|2, for n = {2, 6}

(|csch(qL)|2/|q|)
∫ l
0 | cosh(qL− qX)− qB sinh(qX)− cosh(qX)|2dx, for n = 3

|csch(qL)
∫ l
0 cosh(qL− qX)− qB sinh(qX)− cosh(qX)dx|2, for n = 4 ,

where csch(qL) = 1/ sinh(qL). To manipulate the expressions and solve the integrals in
Eq. 59 we have used following algebraic relations

cosh(qL− qX) = cosh(qL) cosh(qX)− sinh(qL) sinh(qX) ,(60)
| cosh(qX)|2 = [cosh(2Re{q}X) + cos(2Im{q}X)]/2 ,(61)
| sinh(qX)|2 = [cosh(2Re{q}X)− cos(2Im{q}X)]/2 ,(62)

cosh(qX) sinh(q∗X) = [sinh(2Re{q}X)− j sin(2Im{q}X)]/2 ,(63)

and the following integral solutions
∫ l

0
cosh(ax/λ)dx = λ sinh(al/λ)/a ,(64)

∫ l

0
sinh(ax/λ)dx = λ[cosh(al/λ)− 1]/a ,(65)

∫ l

0
cos(ax/λ)dx = λ sin(al/λ)/a ,(66)

∫ l

0
sin(ax/λ)dx = λ[1− cos(al/λ)]/a ,(67)

where a is a constant. In addition, Mathematica [10] was used as a guide when computing
the long algebraic expression N3. The full solutions of Nn are given in Eq. 12.

Appendix C. Power-law approximations

From Eq. 14 the denominators, Dn, can be written

(68) Dn = |q|n−2(|q|2 coth(qL) coth(q∗L) + [q∗ coth(q∗L) + q coth(qL)]/B + 1/B2) .

To arrive at approximate power laws for the other terms of Eq. 68 the following relations
were used:

(69) tanh(x + y) =
tanhx + tanh y

1 + tanhx tanh y
,

and

(70) tanh(jx) = j tanx ,

which gives

(71) coth(qL) =
1 + j tanh(Re{q}L) tan(Im{q}L)
tanh(Re{q}L) + j tan(Im{q}L)

.

By using the identity

(72)
1 + tanh(Re{q}L)2 tan(Im{q}L)2

tanh(Re{q}L)2 + tan(Im{q}L)2
=

2 cos(2Im{q}L)
cosh(2Re{q}L)− cos(2Im{q}L)

+ 1 ,
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it can be shown that
D2 = −[(B2(Re{q}2 + Im{q}2)− 1) cos(2Im{q}L)

+ (B2(Re{q}2 + Im{q}2) + 1) cosh(2Re{q}L)
+ 2Re{q}B sinh(2Re{q}L) + 2Im{q}B sin(2Im{q}L)]

/[B2(cos(2Im{q}L)− cosh(2Re{q}L))] .

(73)

By multiplying both the numerator and denominator by 1/ cosh(2Re{q}L), the terms in
Eq. 73 will either contain tanh(2Re{q}L) or 1/ cosh(2Re{q}L). By using the approxima-
tions lim

x→∞
tanh(x)→ 1 and lim

x→∞
1/ cosh(x)→ 0, Eq. 73 approximates to

(74) D2 ≈ (Re{q}2 + Im{q}2) + 2Re{q}/B + 1/B2 ,

and in general

(75) Dn ≈ |q|n−2(Re{q}2 + Im{q}2) + 2Re{q}/B + 1/B2 ,

when Re{q}L is large. By similar eliminations of the hyperbolic functions it can be shown
that the numerators are approximated to

(76) Nn =






23/2|q|Im{q}j/(q2 − (q∗)2), for n = {1, 5}
1, for n = {2, 4, 6}
(Re{q}2 + Im{q}2 + 2Re{q}/B + 2/B2)/(

√
2Re{q}|q|), for n = 3,

The frequency dependence is given by the complex quantity q, which can be written (see
Appendix C in [18] for a derivation of this)

(77) q =
√

1 + jωτ = (1+ω2τ2)1/4[
√

1 + 1/
√

1 + ω2τ2/
√

2+j

√
1− 1/

√
1 + ω2τ2/

√
2] ,

and Eqs. 75 and 76 can be expanded asymptoticly for high frequencies by Taylor expansions
of the square roots. The four first terms of the expansions are shown in Eq. 19 and 20.
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[4] György Buzsáki. Rythms of the brain. Oxford University Press, 2006.
[5] Claude Bédard and Alain Destexhe. A modified cable formalism for modeling neuronal membranes at

high frequencies. Biophys J, 94(4):1133–1143, Feb 2008.
[6] N. T. Carnevale and M. L. Hines. The NEURON Book. Cambridge University Press, 2006.
[7] Kamran Diba, Henry A Lester, and Christof Koch. Intrinsic noise in cultured hippocampal neurons:

experiment and modeling. J Neurosci, 24(43):9723–9733, Oct 2004.
[8] Walter J Freeman, Mark D Holmes, Brian C Burke, and Sampsa Vanhatalo. Spatial spectra of scalp

eeg and emg from awake humans. Clin Neurophysiol, 114(6):1053–1068, Jun 2003.
[9] Michael L Hines, Andrew P Davison, and Eilif Muller. Neuron and python. Front Neuroinformatics,

3:1, 2009.
[10] Wolfram Research Inc. Mathematica version 7.0. Champaign, Illinois, 2008.
[11] Gilad A Jacobson, Kamran Diba, Anat Yaron-Jakoubovitch, Yasmin Oz, Christof Koch, Idan Segev,

and Yosef Yarom. Subthreshold voltage noise of rat neocortical pyramidal neurones. J Physiol, 564(Pt
1):145–160, Apr 2005.

[12] Christof Koch. Biophysics of Computation, Information Processing in Single Neurons. Oxford Uni-
versity Press, 1999.

[13] Henrik Lindén, Klas H Pettersen, and Gaute T Einevoll. Intrinsic dendritic filtering gives low-pass
power spectra of local field potentials. J Comput Neurosci, May 2010.

[14] Z. F. Mainen and T. J. Sejnowski. Influence of dendritic structure on firing pattern in model neocortical
neurons. Nature, 382(6589):363–366, Jul 1996.

[15] B. B. Mandelbrot. The Fractal Geometry of Nature. New York: W. H. Freeman and Co., 1977.
[16] Shingo Murakami and Yoshio Okada. Contributions of principal neocortical neurons to magnetoen-

cephalography and electroencephalography signals. J Physiol, 575(Pt 3):925–936, Sep 2006.
[17] Paul L. Nunez and Ramesh Srinivasan. Electric fields of the brain. Oxford University Press, Inc., 2nd

ed. edition, 2006.
[18] Klas H Pettersen and Gaute T Einevoll. Amplitude variability and extracellular low-pass filtering of

neuronal spikes. Biophys J, 94(3):784–802, Feb 2008.
[19] Wilfrid Rall and Hagai Agmon-Snir. In Methods in Neural Modeling: From Ions to Networks, second

edition. Christoph Koch and Idan Segev (editiors), MIT Press, 1998.
[20] Michael Rudolph, Joe Guillaume Pelletier, Denis Paré, and Alain Destexhe. Characterization of synap-
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Abstract

The local field potential (LFP) reflects activity of many neurons in the vicinity of the recording
electrode and is therefore useful for studying local network dynamics. Much of the nature of
the LFP is however still unknown. There are, for instance, contradicting reports on how large
the region generating the LFP signal is. Here, we use a modeling approach to investigate the
size of the contributing region by simulating the LFP as a summed signal from a large number
of neurons. We found that the size of the region contributing to the measured LFP depends
on the neuron morphology, the synapse distribution and the correlation in synaptic activity.
For uncorrelated activity, the LFP represents cells in a small region (within a radius of a few
hundred micrometers). If the synaptic input between different cells is correlated, the size of
the contributing region is determined by the spatial extent of the correlated activity.

Introduction

The local field potential (LFP) usually refers to the low-frequency part (<200-500 Hz) of an
extracellular voltage signal recorded inside the brain and has been widely used to investigate
cortical mechanisms involved in sensory processing (Henrie and Shapley, 2005; Belitski et al.,
2008), motor planning (Scherberger et al., 2005; Roux et al., 2006), and higher cognitive
processes including attention, memory and perception (Kreiman et al., 2006; Liu and Newsome,
2006; Pesaran et al., 2002; Womelsdorf et al., 2006). In combination with multi-unit activity
(MUA), the high-frequency (>500 Hz) part of the extracellular voltage, it has been found
useful for inferring properties of network dynamics (Denker et al., 2010; Kelly et al., 2010)
and population-specific laminar activity (Einevoll et al., 2007). In addition, the LFP has been
suggested as a candidate signal for steering motor prosthetic devices (Andersen et al., 2004;
Mehring et al., 2003; Rickert et al., 2005) as it is relatively easy to record and more stable
than single-unit activity.

Despite its wide use, there is still only limited knowledge about the relation between the
LFP and the underlying neural activity. The LFP is believed to primarily reflect synaptic
activity in a neural ensemble in the vicinity of the recording electrode (Mitzdorf, 1985) and
to represent a weighted sum of all transmembrane currents following synaptic activation. The
details of the extracelullar field from a single synapse depend on cell morphology as well as
the relative spatial positions of the synapse and recording electrode (Lindén et al., 2010).
The LFP most likely reflects the activity of several populations of different cell types, but due
to their so-called ”open-field” arrangement dendritic synapses on pyramidal cells have been
hypothesized to be a major contributor to the LFP signal (Johnston and Wu, 1995; Mitzdorf,
1985). The interpretation of the LFP is further complicated by the fact that, in contrast to
the MUA which represents the spiking output of a local population, the LFP represents the
combined input to the population which might originate both from local recurrent connections
as well as other more distant brain regions.

One key question for the interpretation of the LFP is how large the cortical region is that
generates the LFP, or in other words, the spatial ”reach” of LFP recordings. Several recent
experimental studies have addressed this question (Kreiman et al., 2006; Liu and Newsome,
2006; Berens et al., 2008a; Katzner et al., 2009; Xing et al., 2009) but have presented different
results ranging from a few hundred micrometers (Katzner et al., 2009; Xing et al., 2009) to
several millimeters (Kreiman et al., 2006). One possible reason for this descrepancy is that the
neuronal LFP generators may differ across species, resulting in different measures of the LFP
reach. Moreover, in experimental setups it is difficult to precisely control the neural activity, and
different stimulation paradigms may activate different patterns of activity in different neuronal
populations. It has been suggested that the LFP is dominated by synchronous dendritic input
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on pyramidal cells (Mitzdorf, 1985), but it has until now been unclear how the amount and
spatial extent of correlations in synaptic activity influences the reach of the LFP.

We were interested in the biophysical principles determining how large the region is that
an LFP electrode can ”see” and to what extent the size of this region is dependent on neural
activity. We used a biophysical forward-modeling approach to address these questions (Holt
and Koch, 1999; Pettersen et al., 2008; Lindén et al., 2010) and simulated the LFP signal
from synaptically activated populations of morphologically reconstructed cortical cells. We
determined the region generating the LFP by increasing the population radius until the LFP
amplitude no longer increased and defined this radius as the reach of the LFP. We investigated
how the LFP reach depends on cell morphology, depth position of the recording electrode,
synaptic distribution and level of correlation in synaptic activity. We found that the LFP from
particular cell types and synaptic distributions depends strongly on the level of correlation
in the synaptic input, both in terms of LFP amplitude as well as the size of the generating
population. Moreover, the LFP is limited only by the spatial scale of the correlated activity,
suggesting that the LFP reach could in some situations be substantially larger than recent
experimental studies have shown (Katzner et al., 2009; Xing et al., 2009). These findings
were supported by analytical results using a simplified model of LFP generation.

Results

We investigate the ”reach” of an extracellular electrode by studying the amplitude σ of the
measured compound potential φ(t) generated by a neuron population surrounding the electrode
(see Methods). As with increasing population size (radius) R more and more cells contribute to
the compound signal φ(t), the amplitude σ(R) generally increases with R. On the other hand,
the potential φi(t) generated by a single cell i decreases with its distance r from the electrode.
Intuitively, one might therefore expect that σ(R) saturates if the population radius approaches
a certain horizon. Neurons beyond this horizon would not be visible for the electrode. This
intuition, however, can be misleading. A priori, it is not clear that such a ’horizon’ exists1.
In the following section, we will therefore consider a simplified model to demonstrate which
general system properties determine the reach for a population signal and to illustrate under
which conditions the reach is finite. In the remainder of the paper, we will numerically study
the system properties determining the reach in more detail for the case of a population of
cortical neurons with realistic morphologies.

Existence of a finite reach

The amplitude σ of the compound signal φ(t) generated by a population of senders (neurons)
surrounding the receiver (electrode) is essentially controlled by 3 factors:

• the attenuation f(r) of the single-source signal with increasing distance r (Fig. 1B),

• the increase in the number N(r) of sources with increasing population radius r (Fig. 1C),

• the correlation cφ between the signals generated by individual sources.

The distance dependent attenuation f(r) of the extracellular potential generated by a neuron
is determined by the shape of the underlying current-source density (Lindén et al., 2010). The
potential generated by a pure dipole source, for example, decreases in amplitude as 1/r2 with
distance r at a fixed angle to the center of the dipole (in the far-field limit, i.e. for r !

1We are not referring to the limit imposed by the finite size of the brain here.
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dipole length; blue curve in Fig. 1B). A hypothetical point source, in contrast, would generate
a potential amplitude which decays as 1/r (red curve in Fig. 1B). The decrease in amplitude
is competing with the increase in the number of neurons with increasing population radius r.

In this article, we consider a population of neurons symmetrically distributed around the
electrode in a 2D plane with a homogeneous (constant) density ρ. The number N(r) = 2πrρ
of cells at distance r (circumference, Fig. 1C) grows linearly with the population radius. If the
single-cell potentials are uncorrelated, the variance σ2

r of the compound signal generated by
all cells positioned on a ring of radius r is proportional to N(r)f(r)2. This number decreases
with distance for both monopole (N(r)f(r)2 = 1/r) and dipole sources (N(r)f(r)2 = 1/r3).
Integrating over all rings up to a radius R leads to a function σ2(R) which saturates with
increasing R for a population of dipoles (solid blue curve in Fig. 1D). For a population of
monopoles, however, σ2(R) grows unbounded (solid red curve in Fig. 1D). If the single-cell
potentials are correlated, the total variance for neurons on a ring of radius r is given by
σ2

r = [N(r)f(r)]2. In this case, both the monopole and the dipole population lead to diverging
compound amplitudes σ(R) (dashed curves in Fig. 1D).
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Figure 1. The reach of LFP recordings (A) Sketch of model setup. If cells are placed in a cylindrical
volume V , how is the amplitude σ of the LFP signal expected to increase with the radius R of the cylinder?
(B) Different neuronal current source density distributions give different distance dependence in the electric
potential; monopoles (point sources) decrease as r−1 (red) whereas dipoles scale as r−2 (blue) as described
by the shape function f(r). (C) In a disk-like population the number of cells N(r) at distance r increases
approximately linearly with r. (D) Results from the simplified model; the amplitude σ of the compound LFP
signal depends on the single-cell decay described by f(r) and the level of correlation cφ between single cell
LFP contributions (cφ=0 : solid lines, cφ=1 : dashed lines).

In Methods, we derive a simplified model from biophysical principles to describe σ(R)
and its dependence on the shape of f(r) and the correlation cφ more rigorously. In this
framework, the potential φi(t) = ξi(t)f(ri) generated by a single neuron i factorises into
a purely time-dependent part ξi(t) reflecting the temporal structural of the total synaptic
input and a purely distance dependent part, the shape function f(·), which is determined by
the morphological and electrical properties of the neuron, its position and orientation with
respect to the electrode tip and the distribution of synapses. The distance ri denotes the
radial distance of the cell soma from the electrode. Assuming a homogeneous population of
neurons symmetrically surrounding the electrode tip, the variance σ2(R) of the compound
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cφ = 0 cφ "= 0

γ ≤ 1 diverging diverging

1 < γ ≤ 2 converging diverging

γ > 2 converging converging

Table 1. Convergence behaviour of the compound amplitude limR→∞ σ(R) for a power-law
shape function f(r) ∼ 1/rγ. Dependence on decay exponent γ and correlation cφ.

signal φ(t) =
∑

{i|ri≤R} φi(t) is found to be

σ2(R) = (1− cφ)g0(R) + cφg1(R) . (1)

Here, the two functions

g0(R) :=

R∫

0

dr N(r) f(r)2 and g1(R) :=




R∫

0

dr N(r) f(r)




2

. (2)

describe the competition between f(r) and N(r) = 2πrρ for the uncorrelated and correlated
case, respectively (see (18)). To illustrate that the convergence behaviour of σ(R) is essentially
determined by f(r) and the correlation cφ, we summarise the results for a power-law shape
function f(r) ∼ 1/rγ in Tab. 1 (see Methods, (21)). In the presence of correlations, σ(R)
approaches a finite value for increasing R only for decay exponents γ > 2.

Note that the contributions for uncorrelated and correlated input g0(R) ∼ ρ and g1(R) ∼ ρ2,
respectively, are differently scaled by the neuron density ρ. For sufficiently high densities, the
second term in (1) will dominate even for tiny correlations cφ.

Distance dependence of single-cell contributions

To determine how the amplitude of a single cell LFP contribution varies with the cell’s position
within a population, we placed reconstructed morphologies of L3 pyramidal, L4 stellate and
L5 pyramidal cells (Mainen and Sejnowski 1996) (Fig. 2A) at different radial distances r from
a set of virtual recording electrodes (one in each cortical layer) and computed the mean LFP
amplitude from 100 cells at each distance as the cells received synaptic input (see Methods).
To resemble a scenario with a laminar cortical population all cells of a particular cell type were
placed at the same cortical depth (according to cortical layer), but each cell was randomly
rotated along its vertical axis. Synapses were randomly placed either homogeneously over
the whole dendritic structure or only apically or basally (Fig. 2A). Each cell received 1000
stationary uncorrelated spike trains with an individual firing rate of 5 spikes/sec.

We found that for all combinations of cell type and recording position the amplitude of the
LFP contribution from a cell placed sufficiently far away from the electrode decayed as ∼ 1/r2

with cell position r, with a less steep decay at the center of the population (Fig. 2B-D). The
position where the transition to 1/r2-decay occured varied with recording position (Fig. 2D) as
well as with the distribution of synapses over the dendrites (Fig. 2C). When we compared the
three different cell types recorded in their respective cortical layer the differences were however
rather small (Fig. 2B). The large variation with recording position for the L3 cell (Fig. 2D)
can largely be attributed to the fact that cells at small radial distances, at the center of the
population, are in fact relatively far from the electrode. As we will se next, this however has
consequences for the size of the region of summation when recording the LFP from a laminar
population above or below the active cortical layer.
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Figure 2. Distance-dependence of amplitude of single cell LFP contributions. (A) Reconstructed
cell morphologies used in simulations: L3 pyramidal cell (red), L4 stellate cell (green) L5 pyramidal cell (blue)
in relation to layer boundaries used for choosing electrode positions (black). Cells were placed at different
radial positions r and the shape function f(r) describing the amplitude of single cell LFP contributions was
calculated for cells receiving either homogenous (solid), apical (dashed) or basal (dotted) synaptic input. (B)
LFP amplitude for the three different cell types, recorded in the soma layer for each cell type. (C) LFP
amplitude for L5 cell for different synapse distributions. (D) LFP amplitude at different recording depths for
L3 cell with homogenous inputs. In B-D dashed lines indicate decay proportional to r−2.

Dependence of LFP reach on cell morphology, synapse distribution
and electrode depth

We next simulated laminar populations consisting of 10000 reconstructed cells placed in a
cylindrical volume with a 1 mm radius (Fig. 1A) (see Methods). All cells in a population were
positioned at the same cortical depth, with the depth position of the soma in the cortical layer
corresponding to cell type (same as in Fig. 2, see Methods) but each cell was randomly rotated
around its vertical axis. We first used uncorrelated spike trains as input and computed the
amplitude σ of the LFP generated by cells positioned within a population radius R centered
around a vertical recording electrode. Increasing the radius of the population quickly increased
the LFP amplitude up to a constant value that did not change when the population radius
was further increased. We defined the ”reach” of the LFP as the population radius where
the LFP amplitude had reached 95 % of the maximum value found for R = Rmax =1000 µm
(Fig. 3A2). Plotting the reach as a function of depth position of the electrode revealed that
the LFP reach was smallest in the soma layer of the corresponding population when synapses
were homogeneously distributed over the dendrites, independent of cell type (Fig. 3C). For all
three cell types 95% of the amplitude of the signal came from a region with a radius smaller
than ∼200 µm when recording the population at the soma level. However, the soma layer
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Figure 3. Depth-dependence of the LFP reach for uncorrelated activity (A1) LFP amplitude σ as a
function of population radius R for a population of L3 cells receiving uncorrelated input. LFP was recorded
at the soma level of L23. (A2) Normalized LFP amplitude for the same population as in (A1). LFP reach
R∗ was defined as the radius for which the LFP amplitude reaches 95% of the value for Rmax=1000 µm.
(B) Cell morphologies and their vertical placement according to cortical layers. (C) LFP amplitude σ (gray
scale: predictions from simplified model) and LFP reach (circles: simulations, white lines: simplified model)
for uncorrelated homogenous synaptic input as a function of electrode depth z. (D) LFP reach R∗ for different
synaptic distributions. (E) LFP amplitude σ(Rmax) for different synaptic distributions. (symbols: simulation
results, lines: simplified model)

was also the recording positions where the LFP amplitude was highest (Fig. 3E). When the
synaptic activity was uncorrelated the LFP was thus rather local, both in terms of horizontal
reach and amplitude in the vertical direction.

We next compared the numerical simulations with predictions of the simplified model;
by using the detailed single-cell decay functions f(r) obtained in previous section (Fig. 2)
we numerically integrated the simplified model. The numerical population simulations and
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the simplified model with numerical estimates of single-cell decay gave very similar results.
Changing the synaptic distributions to either only apical or basal dendrites gave a slightly
different depth dependence for both the reach and amplitude of the LFP for the L5 population
whereas the L3 population was largely unaffected (Fig. 3D-E).

Dependence on correlations in synaptic activity

How would these results change if the synaptic inputs to different cells in the population were
correlated? We used the same simulation setup as in previous section with the difference
that spike trains to different cells were drawn from the same pool of presynaptic spike trains
(Fig. 4A). This induced a mean correlation cξ between the synaptic input currents to different
cells due to common input. By varying the size of the pool of presynaptic spike trains npool

we could vary the input correlations cξ (see Methods).
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Figure 4. Reach of LFP depends on level of input correlations (A) Illustration of simulation setup.
(B-D) LFP amplitude σ as a function of population radius R (C) and LFP reach R∗ (D) for population of L5
pyramidal cells receiving synaptic input at apical dendrites (B1), homogenously distributed (B2) or at basal
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input correlation cξ (E1,F1) or resulting mean pairwise correlation between single cell LFP contributions cφ

(E2,F2). (G) Relation between input correlation cξ and cφ. In (E-G) lines represents results the from simplified
model using numerically derived shape functions f(r) and numerical values of correlation transfer (cξ to cφ)
and symbols represent simulation results.

As predicted by the simplified model, inducing correlations between single cell LFP contri-
butions changed the total LFP amplitude in three respects: 1) the LFP amplitude σ became
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higher (Fig. 4C,F1), 2) the reach R∗ of the LFP (as before defined as the population ra-
dius where the amplitude had reached 95% of the value for R=1000 µm) generally increased
(Fig. 4D,E1), and 3) the LFP amplitude σ no longer converged to a fixed constant value with
increasing population radius. Performing population simulations for different cell types (L3
pyramid, L4 stellate and L5 pyramidal cells) and synaptic distributions (apical, homogeneous
or basal) revealed that the extent to which correlations had an effect on the total LFP ampli-
tude was highly dependent on cell type and spatial distribution of synapses on the dendritic
structure. The effects were largest when the population consisted of L5 pyramidal cells whereas
the LFP amplitude from L4 stellate cells was largely unaffected (Fig. 4E1,F1). However, it also
depended on the distribution of synapses; there were pronounced effects for apical or basal
input, but almost no effect for homogeneous synaptic distributions (Fig. 4E1,F1).

To explore these differences further we computed the mean pairwise correlation cφ (see
Methods, (26)) between single cell LFP contributions as a function of input correlation for
the different cell types and input scenarios (Fig. 4G). This provided an explanation for why
the effect of correlations was found to be so different for the different cell types and synaptic
distributions; again the same trend was found: LFP contributions were more correlated for
L5 pyramidal cells than the other cell types, and apical input gave higher correlations than
basal or homogenous input. Thus, whether or not input correlations have an effect on the
reach of LFP depends on how reliably the input correlations cξ are translated into correlations
between LFP contributions cφ. Again plotting the resulting LFP reach and amplitude, but
now as function of the resulting LFP correlations, further emphasized this interpretation as all
simulation results then falls on the same curve (Fig. 4E2,F2) demonstrating that the level of
correlation between LFP contributions is the main determining factor for both the reach and
amplitude of the LFP.

Spatial scale of correlations

Until now we have implicitly assumed that the synaptic input to different neurons are equally
correlated througout the whole population, independent of the distance to the electrode. How
would the results change if the level of correlation between LFP contributions were dependent
on the radial distance to the electrode? We studied a simple case were LFP contributions
were assumed to be homogeneously correlated only within a certain radius Rc < R (Fig. 5A),
outside this region the correlation was zero. We used the same simulation data as shown above
but computed the LFP amplitude outside of the correlated region under the assumption of
independence between LFP contributions (see Methods). Fig. 5B shows the LFP amplitude for
a population of basally activated L5 pyramidal neurons for different values of Rc where input
correlation c+ξ in the correlated region was set to 0.1. We found, for the chosen example
values of Rc, that the LFP amplitude increased up to radius Rc and then quickly converged
to a fixed value. This gave values of LFP reach (defined as before) slightly smaller than the
values for Rc (Fig. 5C). Thus, neurons outside the region of correlated activity contribute only
very little to the LFP amplitude, instead both the shape of LFP amplitude as a function of
population radius and the reach of the LFP was largely determined by the spatial scale of the
correlated activity. If other levels of input correlations were chosen, the LFP reach changed
(Fig. 5D), due to the shape of the LFP amplitude as a function of population radius (compare
Fig. 4D). Results also varied with synaptic distribution: as before the observed effects of
correlations were large for apical and basal activation and almost negligible for homogeneous
synaptic activation (Fig. 5E).
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Figure 5. Reach of LFP depends on spatial range of input correlations (A) A situation was considered
where the synaptic inputs to neurons within a radius Rc were uniformly correlated with correlation coefficients
cξ and the inputs to neurons outside of this region were uncorrelated. (B) LFP amplitude σ for population
of L5 cells with synapses distributed on basal dendrites for different values of Rc=[0,300,700,1000] µm (as
indicated in A) while total population radius R was 1000 µm. Input correlation cξ was 0.1 (C) Same as in B
but normalized to amplitude σ(Rmax=1000 µm). Reach R∗ was defined as the radius R where the amplitude
σ had reached 95% of the maximum value σ(Rmax=1000 µm) (blue triangles). (D) LFP reach for different
values of cξ for population of L5 cells with basal activation. (E) LFP reach for different synaptic distributions
when cξ=0.1 In (C-D) gray lines correspond to R∗ = Rc.

Consistency with in vivo-like activity

Cortical populations in vivo receive a variety of inputs. These can be categorized as local inputs
from the various cell types within the local cortical network and external long-range inputs
from other cortical regions. The synaptic inputs to a single neuron are both excitatory and
inhibitory, and may target different dendritic regions. Furthermore, spike trains from different
neurons are potentially correlated, providing additional input correlation to that from shared
input. We embedded the single-cell reconstructions in an in vivo-like environment to test if
the range of input correlations cξ used so far were realistic, and if the results would pertain
in situations where populations received a combination of excitatory, inhibitory and external
(distant) inputs.

We developed a novel simulation framework to confirm that the obtained results generalize
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Figure 6. Using spiking input from laminar network simulations LFP from population simulations
where input spike trains were generated by a laminar network of integrate-and-fire neurons. (A) Cell types
of populations of L3 (A1), L4 (A2) and L5 (A3) cells. (B-C) Reach R∗ and amplitude σ(Rmax=1000 µm)
of LFP as a function of electrode depth z for the three neuronal populations. Reach R∗ was defined as the
radius for which the LFP amplitude had reached 95% of the value of the amplitude σ(Rmax=1000 µm). (C)
LFP amplitude σ as function of population radius R at the soma level of each population. (D) Resulting
correlation between single cell LFP contributions cφ and input correlations cξ for the three different neuronal
populations (indicated by colour). Different dots represent recording positions in the different cortical layers.

to a more realistic scenario: We simulated populations of reconstructed cells receiving spike
trains generated by a laminar network of integrate-and-fire neurons representing a local cortical
microcircuit (Potjans and Diesmann, 2008, 2010) (Fig. 6A). The network consisted of in total
80000 neurons divided into four layers, each with one excitatory and one inhibitory population.
The number of neurons in each population was based on anatomical data from cat visual cortex.
The size of the network was sufficiently large to incorporate the majority of local synapses.
Most notably, the data based connectivity structure of the network (see Methods) resulted
in cell-type specific firing rates consistent with in vivo data from rat cortex (e.g. de Kock
and Sakmann (2009); Sakata and Harris (2009), equivalent activity data from cat cortex is to
the best of our knowledge not available). In addition, we generated uncorrelated Poissonian
spike trains representing background acitivity from distant cortical areas. The populations of
reconstructed neurons received a selection of input spike trains from the laminar network and
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background activity based on the morphology and connectivity of each cell type. In this way,
each cell in the population of reconstructed cells had on average the same number of incoming
connections as a cell in the laminar network resulting in the same mean synaptic input (see
Methods). Synapses were distributed differently onto the dendritic tree of the reconstructed
cells depending on the origin of the presynaptic cell type (see Methods). This resulted in input
correlations cξ and correlations between single cell LFP contributions cφ, that were specific for
each population.

This setup produced input correlations cξ between total input currents and LFP correlation
cφ comparable with previous simulations (compare Fig. 4G). We computed the LFP amplitude
for three different populations consisting of L3, L4 or L5 cells (of the same types as before,
Fig. 6B)) for different cortical depths. As seen also previously for the generic input scenarios
and uncorrelated activity (Fig. 3), we found both the reach and amplitude to vary with cortical
depth with a minimum reach R∗, but largest amplitude σ in the soma layer of each population.
Further, we found that the level of input correlations provided by the stationary spiking activity
of laminar network was sufficient to substantially increase both the reach and amplitude of the
LFP for the L3 and L5 populations as compared to the situation where the LFP contributions
from different cells would have been uncorrelated (Fig. 3C-D, dashed lines, by setting Rc = 0,
see Methods (24)). The reach of the LFP from the L4 population was similar to the situation
with uncorrelated synaptic input.

So far, we assumed that all cells throughout the whole population received the same input
correlation. We next calculated the LFP reach assuming that only LFP contributions from
cells within a radius of Rc were correlated and contributions from cells outside this region
were uncorrelated (see Methods (24)). Also here we found that the LFP reach was largely
determined by the spatial scale of correlated activity except for the L4 population for which
the reach was largely unaffected by correlations (Fig. 6B2).

Discussion

We report results from a biophysically detailed model of LFP generation and provide a math-
ematical framework to interpret these results. We found that the size of the region that is
generating the LFP is primarily determined by the spatial decay of single cell LFP contributions
and by the amount and spatial extent of correlations in synaptic activity. While the spatial
footprint of a single cell’s LFP contribution is more or less fixed and independent of cell type,
the reach of the population LFP is not fixed as it depends on whether LFP contributions
from different cells add up constructively or cancel out. How well synaptic input correlations
are translated into correlations between LFP contributions of different cells depends however
on the morphology of the neurons in the population; asymmetric inputs onto L5 cells gave
strongly correlated LFP contributions while the contributions from more symmetric L4 stellate
cells were uncorrelated, independent of correlations in the synaptic input.

Our model suggests several possible explanations of the discrepancy between previously
reported experimental results regarding the reach of the LFP (Berens et al., 2008a; Katzner
et al., 2009; Kreiman et al., 2006; Liu and Newsome, 2006; Xing et al., 2009). First, these
experimental studies were done using different stimulation paradigms that may induce very
different patterns of neural activity. For instance, when using visual gratings Nauhaus et al.
(2009) reported that high contrast stimuli results in more local activity than for low contrast
stimuli. Our results indicate that the size of contributing region is highly dependent on the
spatial scale of correlated synaptic activity. Therefore, if the synaptic activity patterns activated
in the different stimulation paradigms have different spatial extent, our model reconciles these
differing results.
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Second, the above experimental studies were based on recordings in different species (cat,
monkey) in different cortical areas (V1, MT, IT) where different neural populations may dom-
inate the LFP signal. According to our model, that may also influence the LFP reach, as the
cell type and synaptic distributions determines to which degree correlations in synaptic activity
translates into correlations between LFP sources from different cells.

Third, depending on in which cortical layer the dominating neuronal populations are lo-
cated, the LFP reach may differ for LFP recordings in different cortical layers. We found
that the radius of the generating neuronal population is smallest the soma layer of the active
cortical population. This is consistent with the findings by Xing et al. (2009) who found the
spatial spread to be smallest in layer 4, if one assumes that this is were the visual input evokes
the largest response.

When the electrode was placed below the generating population, as for recordings in L6 of
an active L23 population, the reach was found to be substantially larger than for recordings
in L23, but the amplitude was reduced. When the electrode was placed in a layer where a
cell from a different layer has substantial dendritic processes (e.g. recordings in L23 of an
active L5 population), the reach and the amplitude were comparable to the cortical layer of
the active population. Therefore, we conclude that in an experimental setting, where the LFP
consists of contributions from several populations, the recorded signal can be expected to
be dominated by populations that have substantial dendritic processes in the recording layer.
Future work is required to understand how the contributions from different cell types shape
the laminar-specific LFP.

It has been established that tuning properties in the LFP in V1 is stronger at or above
gamma frequencies (Liu and Newsome, 2006; Berens et al., 2008b) and as a possible expla-
nation for this has been suggested that the contributing region to the LFP is larger for lower
frequencies than for high frequencies due to capacative filtering in the extracellular medium
(Bédard et al., 2004). This view is however problematic in light of a recent experimental
study by Logothetis et al. (2007) who concluded that the extracellular medium has negligble
capacative properties for biologically relevant frequencies. In the present study we modeled
the extracellular medium as being purely resistive and did not perform any frequency-resolved
analysis. It should be noted however that the mathematical framework presented here could
alternatively be formulated for specific frequency components separately and thereby be ex-
tended to the case of a capacitive medium. Also in a purely resistive medium, there could
be differences in the spatial footprint of different frequency components and in the coherence
between LFP contributions in different frequency bands. In a recent study (Lindén et al., 2010)
we found a substantial frequency filtering in the LFP due to dendritic filtering in the neuron.
We found the frequency-dependence of the current dipole moment (Pettersen and Einevoll,
2008) to be a useful concept to qualitatively explain both this frequency filtering and spatial
dependence of single cell LFP contributions. To understand how these frequency dependences
influence the LFP reach of different frequency components is a topic that requires further
investigation.

Simultaneously recorded LFP signals at different sites have been found to be highly cor-
related up to several millimeters apart with a spatial fall-off that depends on cortical state
(Destexhe et al., 1999; Nauhaus et al., 2009). How should these correlations between LFP
signals be interpreted? Does correlation betwen the recorded LFP signals imply an overlap in
the LFP generating regions or does it reflect correlations in the neural activity at the recording
sites? Even though we did not specifically model this scenario our results provides some hints
towards an answer: we have shown that in the presence of correlations the LFP reach can be
as large as the spatial scale of the correlated activity. Therefore, if two nearby LFP signals
are correlated it is likely an indication that there is partial overlap between the regions gener-
ating the two signals. It should be added however that this depends on the cell type of the
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dominating neural populations; if the two signals stem mainly from symmetric cells, like the
L4 stellate cells studied here, and the electrodes are placed more than a couple of hundreds
of micrometers apart, the generating region of each signal is rather local but may be part of
a larger region of correlated activity.
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Methods

Simplified model

Single-source potential

Consider a population of N neurons i = 1, . . . , N within a cortical volume V . Neuron i
receives Mi inputs through its synapses {ij} (j = 1, . . . ,Mi). A synaptic input current ξij(t)
at synapse {ij} causes a current-source density csdij(t,'r) which, in turn, gives rise to an
extracellular electrical potential φij(t) measured by an electrode at position 'r = 0. In a purely
resistive medium with homogeneous conductivity κ, φij(t) is –in the quasistatic approximation–
given by (Nicholson and Freeman, 1975; Nunez, 2006)

φij(t) = (4πκ)−1

∫∫∫
d'r

csdij(t,'r)

|'r| . (3)

For linear synapses and dendrites, the time-dependence of csdij(t,'r) can be described by a
linear convolution2

csdij(t,'r) = (ξij ∗ hij(·,'r))(t) (5)

between the synaptic input current ξij(t) and a current-source impulse response hij(t,'r) which
is determined by the synapse position 'rij and the morphology and electrical properties of the
postsynaptic cell i. In general, the Fourier transform Hij('r,ω) = Ft [hij('r, t)] (ω) of the kernel
hij('r, t) exhibits low-pass characteristics (Lindén et al., 2010). For the sake of simplicity, we
will ignore its frequency dependence here and assume

hij(t,'r) = hij('r)δ(t) . (6)

The results obtained in this subsection can however easily be generalised to frequency-dependent
filters Hij('r,ω) (not shown here). Under the assumption (6), the potential

φij(t) = fijξij(t) (7)

decomposes into a time dependent part ξij(t) reflecting the temporal structure of the synaptic
input and a time-independent shape factor

fij := (4πκ)−1

∫∫∫
d'r

hij('r)

|'r| (8)

describing the dependence of the potential on the position of synapse j, the morphological
and electrical properties of neuron i, as well as its position and orientation with respect to the
electrode tip.

Single-cell potential (mean-field model)

Due to the linearity of Maxwell’s equations, the extracellular potential φi(t) generated by
neuron i is the linear superposition

φi(t) =
Mi∑

j=1

φij(t) =
Mi∑

j=1

ξij(t)fij = MiEj [ξij(t)fij] (9)

2 The “∗” operator denotes the convolution integral

(g ∗ h)(t) :=
t∫

−∞

ds g(s)h(t− s) . (4)
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of the potentials φij(t) caused by its inputs at the synapses j = 1, . . . ,Mi. The expectation
operator Ej [·] in (9) corresponds to the average across the ensemble of synapses. For a
homogeneous synapse ensemble, i.e. if the synaptic inputs ξij(t) are independent of the shape
factors fij, the expectation

Ej [ξij(t)fij] ≈ Ej [ξij(t)] Ej [fij] (10)

factorises approximately and (9) can be written as

φi(t) = ξi(t)fi (11)

(mean-field approximation). Here, ξi(t) = MiEj [ξij(t)] denotes the total input to neuron i
and fi = Ej [fij] the ensemble-averaged shape factor.

For a heterogeneous ensemble of synapses, the above assumption (10) can, in general, not
be justified. If, for example, different types of synapses (e.g. excitatory and inhibitory) system-
atically target different regions of the postsynaptic cell (e.g. distal or proximal dendrites), the
synaptic input is not independent of the corresponding shape factor fij. In the present study,
we investigate only homogeneous synapse ensembles (excitatory synapses with identical synap-
tic weights), such that (10) serves as a good approximation. For a more general description,
one could split the sum in (9) into different contributions corresponding to different synapse
types, and apply the mean-field approximation (10) to each of these contributions separately.

Distance dependence of the single-cell potential

The average shape factor fi is determined by the morphology of the postsynaptic neuron i,
the spatial distribution of the synapses across this neuron and the position and orientation of
the cell relative to the electrode tip. For a homogeneous population of cells with identical
morphologies and synapse distributions, fi can be uniquely described by a function f('ri) of
the (soma) position 'ri = (xi, yi, zi)T of neuron i. In the present study, we investigate the
extracellular potential generated by a population of cells homogeneously distributed around
the electrode tip on a circular plane parallel to the cortex surface. As all cells have identical
vertical positions z = zi (∀i), we consider only the horizontal distance ri =

√
x2

i + y2
i of the

soma of neuron i from the electrode at position 'r = 0, i.e. fi = f(ri). The dependence of fi

on the vertical position z of the cell is captured by the shape of f(ri).
Given the above assumptions, the single-cell potential reads

φi(t) = ξi(t)f(ri) . (12)

In this framework, its time dependence is determined by the total synaptic input ξi(t) alone.
The shape function f(ri) describes the attenuation of the potential with increasing horizontal
distance ri between the cell body and the electrode tip. In the present study, f(ri) is obtained
by single-cell simulations for different neuron morphologies (layer 2/3, 4, 5), input distributions
(homogeneous, basal, apical) and electrode depths (vertical neuron positions).

Power of the compound potential

Let us now consider the compound signal, i.e. the sum

φ(t) =
∑

{i|$ri∈V}

φi(t) =
∑

{i|$ri∈V}

ξi(t)f(ri) (13)

of the potentials φi(t) generated by a population of neurons {i|'ri ∈ V} within a certain volume
V . For simplicity, we assume homogeneity of the input statistics such that all input variances
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and correlations are identical:

σ2
ξ := Et

[
ξi(t)

2
]

∀i (input variance)

cξ :=
Et [ξi(t)ξj(t)]

σ2
ξ

∀i "= j (input correlation coefficient) .
(14)

Here, we assume–without loss of generality–that the synaptic inputs ξi(t) have zero mean,
Et [ξi(t)] = 0 (Et [·] denotes the time average). With the homogeneity assumption (14), the
variance

σ2 = Et

[
φ(t)2

]
=

∑

{i|$ri∈V}

Et

[
φi(t)

2
]
+

∑

{i|$ri∈V}

∑

{j '=i|$rj∈V}

Et [φi(t)φj(t)]

=
∑

{i|$ri∈V}

Et

[
ξi(t)

2
]
f(ri)

2 +
∑

{i|$ri∈V}

∑

{j '=i|$rj∈V}

Et [ξi(t)ξj(t)] f(ri)f(rj)

= σ2
ξ




∑

{i|$ri∈V}

f(ri)
2 + cξ

∑

{i|$ri∈V}

∑

{j '=i|$rj∈V}

f(ri)f(rj)





= σ2
ξ



(1− cξ)
∑

{i|$ri∈V}

f(ri)
2 + cξ




∑

{i|$ri∈V}

f(ri)




2



= σ2
ξ [(1− cξ)g0 + cξg1]

(15)

of the compound potential φ(t) is a superposition of two terms (1 − cξ)g0 and cξg1 cor-
responding to uncorrelated (cξ = 0) and correlated input (cξ = 1), respectively. The two
coefficients

g0 := σ2
ξ

∑

{i|$ri∈V}

f(ri)
2 and g1 := σ2

ξ




∑

{i|$ri∈V}

f(ri)




2

(16)

describe how these two contributions are weighted by the spatial distribution of neurons, their
morphological and electrical properties and the distribution of synapses. For convenience, we
will for the rest of this article assume that the input variance is σ2

ξ = 1. In the present study,
we consider a population of neurons homogeneously distributed on a disc of radius R with the
electrode in the center. For high cell densities ρ, the sums in (16) can be approximated by
integrals 3

g0(R) := 2πρ

R∫

0

dr r f(r)2 and g1(R) := 4π2ρ2




R∫

0

dr r f(r)




2

. (18)

The variance of the compound potential generated by neurons within a range R is thus given
by

σ2(R) = σ2
ξ [(1− cξ)g0(R) + cξg1(R)] . (19)

3

∑

{i|#ri∈V}

. . . =
∑

{i|ri≤R}

. . . −→ 2πρ

R∫

0

dr r . . . (17)
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Power-law shape function

The current source density of a neuron can, to first order, be approximated by a current
dipole (Lindén et al., 2010). For large distances, this typically results in a shape function
f(r) decaying as ∼ 1/r2. In Results (Fig. 2), this is confirmed for neurons with realistic
morphologies. Closer to the cell, the shape function typically becomes shallower. To illustrate
how the shape of f(r) determines the (existence of a) reach of a population signal, let us
consider a power-law shape function

f(r) =

{
r−γ r ≥ ε

ε−γ = const. r < ε
(20)

with a decay exponent γ ≥ 0 and a minimal distance ε. Introducing the minimal distance ε is
necessary to avoid a singularity at r = 0. For convenience, all lengths (r, ε, R) are considered
dimensionless here (i.e. measured in units of some length scale r0). With (20), the functions
g0(R) and g1(R) in (19) read

g0(R) = 2πρ

(
ε−γ+1 +

{
ln

(
R
ε

)
γ = 1

(ε2−2γ −R2−2γ)/(2γ − 2) γ "= 1

)

g1(R) = 4π2ρ2

(
ε−2γ+1 +

{[
ln

(
R
ε

)]2
γ = 2

(ε2−γ −R2−γ)2/(γ − 2)2 γ "= 2

)
.

(21)

Consider first the case cξ = 0 (uncorrelated input): If γ > 1, g0(R) converges with increasing
population size R to a constant value. The variance σ2(R) of the compound signal saturates.
For a population of current dipoles (γ = 2, in far-field approximation), the reach of the
electrode can therefore be well defined. For γ < 1, however, g0(R) and, in turn, the compound
variance σ2(R) diverge as R approaches infinity. In this case, a ’reach’ doesn’t exist. It is
infinite. If the input is correlated (cξ > 0), the second term in (19) converges only for γ > 2.
Here, even the potential of a population of dipoles diverges with increasing population size.
Note that for large neuron densities ρ, the second term in (19) dominates even for small
correlations cξ.

Comparison with simulation results

The simplified model presented here illustrates that the variance of the compound extracellular
potential of a population of neurons depends essentially on the distance dependence f(r) of
the single-cell potentials and the statistics of the synaptic input given by σ2

ξ and cξ. For
simplified cell morphologies (e.g. current dipoles), the shape function f(r) can be calculated
analytically. In the present study, however, we investigate the compound signal of a population
of neurons with realistic morphologies. To compare the predictions of the simplified model with
simulation results, we therefore extract the shape functions f(r) for different morphologies,
synapse distributions and electrode depths in single-neuron simulations (see Results, Fig. 2)
and compute the corresponding functions g0(R) and g1(R) according to (18). For known
input statistics σξ and cξ, we can, by means of (19), predict the compound variance σ2 for
different population sizes R.

As a consequence of assumption (6), the synaptic input current ξi(t) is proportional to the
single-cell potential φi(t). The correlation coefficient cξ is therefore identical to the correlation

cφ = Et [φi(t)φj(t)] /
√

Et [φ2
i (t)] Et

[
φ2

j(t)
]

of the potentials φi(t). This would not hold if the

filtering of the input currents by the synapses and dendrites was taken into account, i.e. if
we dropped assumption (6) (see Tetzlaff et al., 2008). To compensate for the simplification
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(6), we will therefore regard the ’input’ ξi(t) as the time-dependent part of the single-source
potential φi(t) rather than as the total synaptic input current, and replace the correlation
coefficient cξ in (19) by the correlation cφ between single-cell potentials:

σ2(R) = (1− cφ)g0(R) + cφg1(R) . (22)

The transfer of correlations cξ → cφ from input currents to potentials is, in a realistic setting
(i.e. for frequency dependent current-density filters Hij(ω)), non-trivial. A rigorous mathe-
matical treatment of this is beyond the scope of this work. Instead, we investigate the current-
potential correlation transfer for different neuron types and synapse distributions numerically
(see Results, Fig. 4G).

Numerical simulations

Populations, geometrical arrangement

Multi-compartment neuron models with morphologies from digital cell reconstructions (see
below) were randomly positioned in a cylindrical volume with radius 1000 µm. Each population
consisted of 10000 cells with identical cell morphology but each cell was randomly rotated along
the z-axis. The somata of all cells in a population were placed at the same cortical depth.
This depth positioned was chosen as the midpoint of the corresponding cortical layer except
the L5 cells which were shifted 25 µm upwards to assure that the apical dendrites reached
into layer 1 (see Fig. 2). Layer boundaries were derived from (Stepanyants et al. (2008), A.
Stepanyants, personal communication). We considered exclusively single populations. The
same x- and y- coordinates were used for the three different populations to remove variability
due to the exact cell positioning when comparing the populations of different cell types.

Neuron model

We used digital cell reconstructions of L3 pyramidal, L4 stellate and L5 pyramidal neurons
(Mainen and Sejnowski, 1996) downloaded from ModelDB (http://senselab.med.yale.edu/ )
from which we removed axon compartments. Segmentation was done so that the length of
each compartment was smaller than one tenth of the electrotonic length at 100 Hz resulting in
549 compartments for the L3 cell, 343 compartments for the L4 cell and 1072 compartments for
the L5 cell. Passive parameters of the cell models were: specific membrane resistance Rm=30
kΩ cm2, specific axial resistance Ra=150 Ω cm and specific membrane capacitance Cm=1.0
µF/cm2. Simulations were performed with a time resolution of 0.0625 ms and resulting data
was stored with a time resolution of 1.0 ms. Simulations were in all applications run for a time
period of 1200 ms were the first 200 ms were removed before analysis to avoid any upstart
effects in the simulations.

Synapse model

Synaptic input currents were modeled as α-currents where the injected current into each
synapse followed

I(t) = I0
t

τ
e1−(t−ti)/τθ(t− ti)

where θ is the Heaviside step function and ti is the arrival time of presynaptic spike i. Synaptic
time constant τ was set to 1 ms and current amplitude I0 was set to +50 pA for excitatory
synapses and -200 pA for inhibitory synapses to give the same ratio between the amplitude
of excitatory and inhibitory input currents as in the laminar network simulation (see below).
Since the neuron model is linear with respect to amplitude of current injection results would
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not change qualitatively with other values of I0 (as long as the relative values for excitatory
and inhibitory synapses is contant) except a rescaling of the resulting LFP amplitudes (see
below). For results shown in Fig. 2-5 only excitatory synapses were used while both excitatory
and inhibitory synapses were used when presynaptic spike trains were generated in laminar
network simulations (Fig. 6) (see below).

Synapse placement

Distributions and number of synapses onto the dendrites of the neurons were different in sim-
ulations with uncorrelated input spike trains or spike trains using the common-input model
(Fig. 2-5) as compared to if input spike trains were generated by the laminar network model
(Fig. 6) (see below). Synapses were, depending on input model, randomly assigned to com-
partments within certain cortical depths where the probability for a synapses being placed on
a specific compartment was proportional to the relative membrane area of that compartment
compared to the total membrane area within allowed cortical depths. This resulted in homo-
geneous synapse densities with respect to membrane area of the dendrites. No synapses were
placed on the soma.

Uncorrelated spike trains and common-input model: Each cell received a total of 1000
synapses that based on the input scenario were distributed onto the dendrites in the following
cortical layers (see also Fig. 2A):

cell type apical input region homogeneous input region basal input region

L3 upper half of L23 L1 and L23 lower half of L23

L4 - L4 -

L5 L1 and L23 all layers L5 and L6

Input from laminar network: In some simulations we generated the input spike trains by
the laminar network model (see below) (Fig. 6). The inputs to each cell were placed specifically
(in terms of cortical depth) for every presynaptic cell type. The number of inputs that every
cell receives from the populations in the network model as well as from external sources was
set to correspond to the mean number of incoming connections for a corresponding cell in
the network simulation (Potjans and Diesmann, 2010). The distribution to the target layers
corresponds to the modification of Peters’ rule of Binzegger et al. (2004) (numerical values
given in Izhikevich and Edelman (2008)).

L3 population: Each cell received in total 5048 excitatory and 1548 inhibitory synapses.
For every presynaptic population, the synapses were assigned to dendritic compartments in
the following cortical layers (regions):

from excitatory population from inhibitory population

presynaptic layer nsyn → region nsyn → region

L23 24 → L1 106 → L1

2175 → L23 974 → L23

L4 980 → L23 468 → L23

L5 159 → L23 -

L6 110 → L23 -

external 1600 → 2xL1 -
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where ”2xL1” denotes the region from the cortical surface to twice the cortical depth of
L1 which was chosen to avoid very high synapse densities in L1.

L4 population: Each cell received in total 4074 excitatory and 828 inhibitory synapses. For
every presynaptic population, the synapses were assigned to dendritic compartments in the
following cortical layers (regions):

from excitatory population from inhibitory population

presynaptic layer nsyn → region nsyn → region

L23 159 → L4 34 → L4

L4 1116 → L4 794 → L4

L5 32 → L4 -

L6 667 → L4 -

external 2100 → L4 -

L5 population: Each cell received in total 6244 excitatory and 901 inhibitory synapses. For
every presynaptic population, the synapses were assigned to dendritic compartments in the
following cortical layers (regions):

from excitatory population from inhibitory population

presynaptic layer nsyn → region nsyn → region

L23 221 → L1 86 → L1

539 → L23 161 → L23

18 → L4 9 → L4

1412 → L5 and L6 118 → L5 and L6

L4 5 → L1 -

248 → L23 4 → L23

238 → L4 26 → L4

645 → L5 and L6 1 → L5 and L6

L5 252 → L23 -

4 → L4 -

365 → L5 and L6 496 → L5 and L6

L6 16 → L23 -

151 → L4 -

130 → L5 and L6 -

external 1354 → 2xL1 -

482 → L4 -

164 → L5 and L6 -

where ”2xL1” denotes the region from the cortical surface to twice the cortical depth of
L1 which was chosen to avoid very high synapse densities in L1.
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Input models

Uncorrelated input

For the cases when cells received independent (uncorrelated) input, each synapse received
a stationary Poissonian spike train with a rate of 5 spikes/sec. These were generated by
first drawing the total number of spikes to each synapse from a Poissonian distribution and
then distributing the spike times randomly (with uniform distribution) in the simulation time
interval.

Common-input model

In simulations where cells received correlated input a pool of npool number of Poissonian spike
trains with individual firing rates 5 spikes/sec was generated as above. Each cell received a
random selection of nsyn spike trains from the pool of presynaptic spike trains which were
distributed on to the dendrites (see above). This setup induced a correlation between the
total synaptic input current to different cells with correlation coefficient cξ = nsyn/npool due to
common input. The input spike trains to each cell were drawn from the pool without resampling
to make sure that each cell received uncorrelated input. This allowed for comparisons between
uncorrelated and correlated input scenarios where the only difference was correlation between
cells and not effects due to correlation in input to single cells.

Laminar network simulation

The spiking cortical network model consisted of one excitatory and one inhibitory popula-
tion in layers 2/3, 4, 5 and 6. The populations consisted of current-based integrate-and-fire
neurons with exponential synaptic currents and were randomly connected. The connection
probabilities corresponded to a connectivity map that integrates a major part of the current
knowledge on the cortical microcircuitry (Potjans and Diesmann, 2008, 2010); see below for
more details). Every population received Poissonian background spike trains in addition to
the specific sensory and attentional inputs. The firing rates of these inputs (Table 2) were
based on layer-specific estimates of the number of long-range inputs (Potjans and Diesmann,
2010). Synaptic parameters were chosen such that the average shape (rise time and width) of
an excitatory postsynaptic potential resembled the in vivo situation (Fetz et al., 1991). The
synaptic weights and delays were drawn from a Gaussian distribution (prohibiting a change of
sign of the synaptic weights and forcing delays to be positive and multiples of the simulation
stepsize). The comprehensive model description according to Nordlie et al. (2009) is given in
Table 1. The number of neurons, the connection probabilities and the Poissonian background
firing rates as well as all neuronal and synaptic model parameters are given in Table 2.

The connectivity map of the layer-specific microcircuit was based on the integrated data
set compiled by Potjans and Diesmann (2008, 2010). It is primarily based on the data derived
from anatomical reconstructions by Binzegger et al. (2004) and the electrophysiological hit
rate estimates from Thomson et al. (2002). Furthermore, it includes data from further elec-
trophysiological studies (see references in Thomson and Lamy (2007)) as well as information
from photostimulation studies (Dantzker and Callaway, 2000; Zarrinpar and Callaway, 2006)
and electron microscopy (McGuire et al., 1984). The derivation of the integrated connectivity
map takes into account specific differences of the underlying experimental procedures. The
derived excitatory map is consistent with the recently published map by Lefort et al. (2009).
The activity in the model, most notably with respect to the cell-type specific firing rates, is
to a large extent consistent with experimentally observed in vivo activity (e.g. de Kock and
Sakmann (2009),Sakata and Harris (2009)).
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A: Model summary
Populations eight cortical populations
Topology —
Connectivity random connections
Neuron model cortex: leaky integrate and fire, fixed voltage threshold, fixed absolute

refractory period (voltage clamp)
Synapse model exponential-shaped postsynaptic currents
Plasticity —
Input independent fixed-rate Poisson spike trains
Measurements spike activity

B: Populations
Type Elements Number of populations Population size
Cortical network iaf neurons eight, two per layer N (type-specific)

C: Connectivity
Type random connections with independently chosen pre- and postsynaptic

neurons; see Table 2 for probabilities
Weights fixed, drawn from Gaussian distribution
Delays fixed, drawn from Gaussian distribution multiples of sim. stepsize

D: Neuron and synapse model
Name iaf neuron
Type leaky integrate-and-fire, exponential-shaped synaptic current inputs

Subthreshold
dynamics

dV
dt = − V

τm
+ I(t)

Cm
if (t > t∗ + τref)

V (t) = Vreset else
Isyn(t) = w e−t/τsyn

Spiking If V (t−) < θ ∧ V (t+) ≥ θ
1. set t∗ = t, 2. emit spike with time stamp t∗

E: Input
Type Target Description
Background iaf neurons independent Poisson spikes (see Table 2)

F: Measurements

Spiking activity of all neurons in every population

Table 1: Model description of the laminar network simulation after Nordlie et al.

(2009).



B+E: Populations and Inputs
Name L2/3e L2/3i L4e L4i L5e L5i L6e L6i
Population size N 20683 5834 21915 5479 4850 1065 14395 2948
External inputs kext 1600 1500 2100 1900 2000 1900 2900 2100
Background rate νbg 8 Hz

C: Connectivity
Connectivity Map L2/3e L2/3i L4e L4i L5e L5i L6e L6i
L2/3e 0.101 0.169 0.044 0.082 0.032 0.0 0.008 0.0
L2/3i 0.135 0.137 0.032 0.052 0.075 0.0 0.004 0.0
L4e 0.007 0.006 0.050 0.135 0.007 0.0003 0.045 0.0
L4i 0.069 0.003 0.079 0.160 0.003 0.0 0.106 0.0
L5e 0.100 0.062 0.051 0.006 0.083 0.373 0.020 0.0
L5i 0.055 0.027 0.026 0.002 0.060 0.316 0.009 0.0
L6e 0.016 0.007 0.021 0.017 0.057 0.020 0.040 0.225
L6i 0.036 0.001 0.003 0.001 0.028 0.008 0.066 0.144
Name Value Description
w ± δw 87.8± 8.8 pA Excitatory synaptic strengths
g −4 Relative inhibitory synaptic strength
d± δd 1.5± 0.75 ms Synaptic transmission delays

D: Neuron Model
Name Value Description
τm 10 ms Membrane time constant
τref 2 ms Absolut refractory period
τsyn 0.5 ms Postsynaptic current time constant
Cm 250 pA Membrane capacity
Vreset −65 mV Reset potential
θ −50 mV Fixed firing threshold

Table 2: Parameter specification for the laminar network simulation. The cate-

gories refer to the model description in Table 1.



Calculation of LFP

We computed the LFP using the line-source method described by Holt and Koch (1999) (but
see also (Holt, 1998) for method description). This involves summing over all transmembrane
currents weighted with distance between the recording electrode and compartment of the
multi-compartment neuron model. LFP for populations of neurons was computed by first
calculating the contributions from single neurons separately and then summing over these
contributions from alls cells within the population. Cells were assumed to be surrounded by
a purely resistive infinite extracellular medium with conductivity set to 0.3 S/m. No filtering
was applied to the resulting LFP signal.

Data analysis

LFP amplitude

The amplitude σ of the LFP signal from a population was computed through the variance over
time in the 1000 ms simulation time interval:

σ2(R) = Et

[
(φ(t)− Et[φ(t)])2

]
(23)

where Et[·] denotes time average and φ =
∑

{i|ri<R} φi is the sum of single cell LFP contri-
butions φi within population radius R. In situations were LFP contributions were assumed to
be correlated only within a region Rc < R (Fig. 5, 6) the standard deviation σ was computed
from

σ2(R) = Et

[
(φRc(t)− Et[φRc(t)])

2
]
+

∑

{i|Rc<ri<R}

Et

[
(φi(t)− Et[φi(t)])

2
]

(24)

where φRc =
∑

{i|ri<Rc} φi is the summed LFP signal from cells within radius Rc.

LFP reach

The spatial reach of the LFP was defined as

R∗ := min({R|σ(R)/σ(Rmax) = 0.95}) . (25)

Correlation coefficient

The mean correlation coefficent c between N signals xi (being either total input currents ξi

or LFP contributions φi) was computed by

c =
σ2

norm −N

N(N − 1)
(26)

where σ2
norm = Var

[∑N
i=1(

xi(t)−Et[xi(t])
σ[xi(t)]

)
]
, from the relation σ2 = N +cN(N−1) for a sum

of N signals, each with zero mean and variance 1 (assured through the above normalization).

Software

Simulations of reconstructed cells were performed with NEURON (Carnevale and Hines,
2006)(http://www.neuron.yale.edu) using the supplied Python interface (Hines et al., 2009).
The laminar network of integrate-and-fire neurons was simulated using NEST (Gewaltig and
Diesmann, 2007) (http://www.nest-initiative.org). Data analysis and plotting was done in
Python (http://www.python.org) using the IPython, Numpy, Scipy and Matplotlib packages.
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Notation

Variable / Op-
erator name

Description

csdij(t) current-source density generated by synapse j on postsynaptic neuron i

cξ correlation coefficient of input-currents

cφ correlation coefficient of single-cell potentials

fij shape factor of synapse {ij}
fi shape factor of neuron i (average over all synapses)

φij(t) extracellular potential caused by synaptic input current at synapse {ij}
φi(t) extracellular potential generated by neuron i

φ(t) compound extracellular potential (generated by all neurons)

g0 =
∑

{i|$ri∈V} f(ri)2, factor describing the contribution of uncorrelated input to
the compound variance σ2

φ

g1 = [
∑

{i|$ri∈V} f(ri)]2, factor describing the contribution of correlated input to
the compound variance σ2

φ

hij(t,'r) impulse-response of current-source density for synapse {ij}
Hij(ω,'r) transfer function of current-source density for synapse {ij}
κ conductivity of the extracellular medium

Mi number of (incoming) synapses of neuron i (in-degree of neuron i)

N number of neurons

ω (angular) frequency

'r = (x, y, z)T distance vector with horizontal components x, y and vertical component z

R spatial extent of neuron population (disc radius)

ρ neuron density

σ2 variance of the compound potential (population signal)

σ2
ξ (total) input variance

t time

V volume of described neuron population

ξij(t) synaptic input at synapse {ij}
ξi(t) total synaptic input current of neuron i

Ft [g(t)] (ω) Fourier transform of g(t) with respect to t

Ei [qi] expectation of qi across ensemble {i}
Et [·] time average
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Abstract
The oscillatory nature of the cortical local field potential (LFP) is commonly interpreted

as a reflection of synchronized network activity, but its relationship to observed transient
coincident firing of neurons on the millisecond time-scale remains unclear. Here we present
experimental evidence to reconcile the notions of synchrony at the level of neuronal spiking
and at the mesoscopic scale. We demonstrate that only in time intervals of excess spike
synchrony, coincident spikes are better entrained to the LFP than predicted by the locking
of the individual spikes. This effect is enhanced in periods of large LFP amplitudes.
A quantitative model explains the LFP dynamics by the orchestrated spiking activity in
neuronal groups that contribute the observed surplus synchrony. From the correlation
analysis, we infer that neurons participate in different constellations but contribute only a
fraction of their spikes to temporally precise spike configurations, suggesting a dual coding
scheme of rate and synchrony. This finding provides direct evidence for the hypothesized
relation that precise spike synchrony constitutes a major temporally and spatially organized
component of the LFP. Revealing that transient spike synchronization correlates not only
with behavior, but with a mesoscopic brain signal corroborates its relevance in cortical
processing.

Introduction

It is common belief that the local field potential (LFP), a population signal obtained from
electrophysiological recordings of the brain, should reflect the synchronized spiking activity of
neurons in the vicinity of the recording electrode. This assumption is rooted in the widely
accepted biophysical explanation of the LFP as a spatially weighted average of the synaptic
transmembrane currents (Mitzdorf, 1985; Viswanathan and Freeman, 2007). Indeed, the aver-
age postsynaptic effect in the LFP at a given recording site triggered on spikes initiated across a
patch of cortex is predictive of the LFP (Nauhaus et al., 2009). In consequence, the oscillatory
structure observed ubiquitously in the LFP is hypothesized to reflect predominantly oscilla-
tory synchronized input (Logothetis and Wandell, 2004). Indeed, the LFP has been shown to
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correlate with membrane potential oscillations of nearby neurons (Poulet and Petersen, 2008)
independent of the spiking activity (Okun et al., 2010). However, although the extension from
membrane potential dynamics to coincident spiking activity is on everybody’s mind, the hypoth-
esis that synchronized action potentials are reflected in LFP oscillations has not been directly
shown.

A large body of literature investigates the relationship of spikes and the LFP. To date, it
has been established that neural spiking activity may become transiently coupled to the LFP
in a rhythmic or non-oscillatory fashion (Eckhorn and Obermueller, 1993; Murthy and Fetz,
1996b). The degree of phase locking between neurons and the LFP depends in general on
the strength of beta/gamma LFP oscillations (Denker et al., 2007), and both auto-correlations
and cross-correlations between simultaneously recorded neurons tend to show an oscillatory
structure during strong oscillatory episodes (Murthy and Fetz, 1996b). Such oscillatory periods
are correlated with stimulus features (Engel et al., 1990) as well as top-down processes, such as
attention (Fries et al., 2001), and are thus believed to be computationally informative (Fries et
al., 2007). Indeed, firing rate profiles correlate with gamma band LFP power when the level of
interneuronal rate correlation is high (Nir et al., 2007), and the power correlation between the
spiking activity of different neuronal groups depends crucially on their phase relationship with
the LFP (Womelsdorf, 2007). In addition, a number of studies indicate that across brain areas,
inhibitory neurons play a crucial role in the generation of fast oscillations (Klausberger et al.,
2003; Hasenstaub et al., 2005; Cardin, 2009). Excitatory-inhibitory loops (Berens et al., 2008)
gate the temporal structure of activity projecting onto pyramidal cells (Buzsáki and Draguhn,
2004).

Despite the fact that oscillatory activity in the LFP is reflected on the level of membrane
potentials and rate co-modulations, it remains unclear how the LFP oscillation is related to
the precise synchronization of individual action potentials. Recent studies succeeded to directly
relate synchronized slow subthreshold membrane potential oscillations to LFPs, but did not
find such a relationship for synchronized action potentials of the same neurons (Poulet and
Petersen, 2008). This discrepancy between subthreshold dynamics and spiking activity is in
agreement with theoretical work linking subthreshold and suprathreshold dynamics (Tetzlaff
et al., 2008). In consequence, the findings of Poulet and Petersen (2008) indicate that the
occurrence of action potentials is governed by strong, precisely timed, and specific inputs
to the cells suggesting these as independent activity riding on the co-modulating oscillations.
Moreover, a recent study by Okun et al. (2010) questions the idea that network-wide population
events dominate the LFP, suggesting that precise firing occurs in smaller groups of neurons,
and therefore might only be subtly represented in the LFP.

One hypothesis that is compatible with such input characteristics states that specific com-
mon inputs force the precise synchronous discharge within a defined group of cells, termed the
Hebbian cell assembly (Hebb, 1949). Early on, it has been conjectured that LFP oscillations
may represent an alternative network-averaged signature of assembly activations (Donoghue et
al., 1998; Singer, 1999) and enable the binding of features coded by different assemblies (Eck-
horn et al., 1988). Indeed, distinct spike patterns across neurons and their phase relationship
to LFP oscillations encode a substantial amount of surplus of information about the stimulus
compared to information contained in the firing rate alone (Kayser et al., 2009). Nevertheless,
the critical link between the dynamics of precise interneuronal spike correlations and the LFP
on a trial-by-trial basis is missing. In particular in motor cortex, there is no intuitive correspon-
dence between spatially extended (Fig. 1A; cf. also Rubino et al., 2006) LFP oscillations and
spike synchronization in the absence of a network oscillation in the spiking activity (Fig. 1B-E;
cf. also Nawrot et al., 2008).

On the spiking level, the hallmark signature of an activated assembly is the functionally
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Figure 1: Characteristics of LFP and spiking dynamics. (A) Two single-trial LFPs recorded simultaneously
(gray) at different electrodes (during long trials with movement to the right in the SELF task). Superimposed are
the beta-filtered (10-22 Hz) signals (red) and their instantaneous oscillation phase (black lines). The histogram
visualizes the phase differences between the two signals across all time bins. (B) Spike raster of one example
neuron recorded in parallel to the LFP shown above. (C and D) Neither the trial-averaged inter-spike interval
distribution (C) nor the normalized auto-correlograms (D) indicate an oscillatory nature of the neuron. (E)
The cross-correlogram with a different neuron recorded in parallel (neuron 1 in supplemental Fig. S1) remains
flat. Red lines indicate mean (solid) and 5% confidence intervals (dashed) of cross-correlograms obtained from
surrogate spike trains where each spike was jittered uniformly in window of ±20 ms around its original position.

coordinated synchronous spiking with millisecond precision observed in parallel recordings of
neuronal activity (Gerstein et al., 1989) that exceeds the expectation based on the neuronal
firing rates (Aertsen et al., 1989). It is shown that not only LFP oscillations correlate with
external stimuli (e.g., Montemurro et al., 2008), behavioral aspects (e.g., Scherberger et al.,
2005), and internal processes (e.g., Murthy and Fetz, 1996a; Donoghue et al., 1998; Roux et
al., 2006), but also precise spike synchrony is observed (Riehle et al., 1997; Vaadia et al., 1995)
and modulated (Kilavik et al., 2009) in a functional context. For beta/gamma oscillations it
remains an open question if LFPs reflect more than synchronization due to an underlying rate
modulation, and if these oscillations may provide a framework for the occurrence of precisely
coordinated spiking as predicted by an active assembly (Buzsáki, 2004; Jensen, 2006). Here,
we uncover this missing link between observed spike synchrony and LFP oscillations by directly
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relating these observables.

Materials and Methods

Ethics Statement

Care and treatment of the animals during all stages of the experiments conformed to the
European and French government regulations, according to the Weatherall report (‘The use of
non-human primates in research’, December 2006).

Experimental design and electrophysiological recordings

All data were taken from recordings partially presented elsewhere (Roux et al., 2006; Kilavik
et al., 2009). Two rhesus monkeys (monkey K and monkey O) were trained to perform arm
movements from a center position to one of two possible peripheral targets left and right of
the center in two different tasks involving an instructed delay. In the first, a choice reaction
time task (chRT), both peripheral targets were presented simultaneously as a preparatory signal
(PS), one in red and the other in green. The animal learned to attribute to each color one
of two possible delay durations. If the (directionally non-informative) auditory response signal
(RS) occurred after a short delay, the monkey had to select the red target, after a long delay the
green one. Both the laterality of the colored targets and the presentation of the two durations
were varied at random with equal probability. In contrast, in the second self-paced movement
task (SELF), the presentation of only one peripheral target, either in red or green, either at
the left or the right, required a self-initiated response after estimating one of the two delays
as coded by PS. In both tasks (Roux et al., 2006), four different timing patterns were used to
identify the short and long delay, respectively: (i) 500 ms and 1000 ms (monkey K); (ii) 500
ms and 1200 ms (monkey K); (iii) 600 ms and 1200 ms (monkey O); (iv) 1000 ms and 1400
ms (monkey O).

In this study we exclusively analyzed the delay activity, i.e. activity recorded during the
preparatory period (PP) starting at PS and ending with either RS in the chRT task or the
earliest allowed response time (AT) in the SELF task. Therefore, the trials were aligned to
PS occurrence for the analysis. The neural activity related to movement execution, i.e. after
RS or AT, respectively, is not analyzed. For both tasks, only correct trials were considered, in
which the monkey responded within a time window (after the end of PP) of maximally 300 ms
(monkey O) and 500 ms (monkey K) and in which movements were performed in the required
movement direction.

In order to exclude effects due to pooling of neuronal activities of different behavioral con-
texts and different tasks, their activity was analyzed separately for the four possible behavioral
conditions (combinations of short or long delay duration and left or right upcoming movement
direction) and each experimental session. For the sake of simplicity, we refer in this manuscript
to a recorded neuron by the combination of its identity and the behavioral context during which
it was recorded. In this sense, data recorded from the same neuron may enter a population
average up to eight times (maximum of four different conditions in two tasks).

Data acquisition and data analysis

LFPs and spikes were recorded simultaneously in primary motor cortex using a multielectrode
device of 2-4 electrodes (MT-EPS, Alpha Omega). Spikes of single neurons were detected
by an online sorting algorithm (MSD, Alpha Omega, Nazareth, Israel). The inter-electrode
distance was on the order of 400 µm. LFPs were sampled at a resolution of 250-500 Hz and

4



hardware filtered (band pass, 1-100 Hz). In total, we analyzed 53 recording sessions (monkey
K: 25; O: 28), which yielded 143 single neurons or 570 combinations of neurons and behavioral
conditions. On average 33±11 trials were recorded per experimental condition. In analyses
that combine spikes and LFP, each neuron enters only once, and we never combined LFP and
spikes that were recorded on the same electrode to exclude the possibility of spike artifacts
in the signal. We confirmed that simultaneously recorded LFPs are highly synchronous in the
frequency regimes of interest. Likewise, coincident activity between neurons was analyzed only
from neurons recorded from different electrodes, totaling 123 analyzed pairs of neurons. All data
analysis was performed using the Matlab software environment (The Mathworks Inc., Nattick
MA).

Coincidence detection and Unitary Event Analysis

From simultaneously recorded spike data of individual sessions we extract all unique pair com-
binations of spike trains that are recorded from distinct electrodes. In a first step, we compute
the number of coincident spike occurrences of the pairs of neurons in a time-dependent manner
(compare supplemental Fig. S1). To allow coincidences with a temporal jitter up to a maximal
coincidence width of b=3 ms, we apply the ’multiple-shift’ approach (Grün et al., 1999; Gram-
mont and Riehle, 2003). In this method exact coincidences (within the time resolution h=0.1
ms of the data) are detected for a range of shifts between -b to +b of the second spike train
against the first (reference) spike train. To account for the non-stationarity of the neurons’
firing rates, and to capture the dynamics of correlation, we perform the Unitary Event (UE)
analysis in a sliding window fashion (Grün et al., 2002b). This is done by moving a window
of fixed duration (here: Tw=100 ms) along the data to cover the duration of a trial, i.e. the
duration of the PP. The length of the time window is chosen large enough to include at least
one complete cycle of the beta oscillation. The window is advanced in steps corresponding to
the time resolution h of the data. The first window position is centered at trial onset, and the
last window at the end of the delay period.

Within each window position the total number of empirical coincidence counts nemp is
derived by summing the exact coincident spike events from each shift l and from all M trials j:

nemp =
M∑

j=1

L∑

l=1

= nj,l
emp

with L = 2(b/h) + 1. To derive UEs this count is compared to the number of coincidences
that would occur by chance given the firing rates of the neurons. This involves the following
calculations. To account for non-stationary rates across trials (Grün et al., 2003), the relevant
measures are obtained from the single trial and only subsequently summed across trials. Thus,
within the analysis window the expected number of coincidences is calculated on the basis of
the trial by trial firing probabilities pi,j which are estimated by the spike count ci,j of neuron
i in trial j divided by the number of bins N within a window: pi,j = ci,j/N with N = Tw/h.
The joint probability for finding a coincidence by chance per trial is calculated by the product
of the single neuron firing probabilities p12,j = p1,jp2,j . The expected number of coincidences
per trial j results from multiplying this probability with the number of bins N that are included
in the analysis window and the number of shifts L: nj

exp = NLp12,j . The total number of
expected coincidences within the window is derived from the sum of the expected numbers per
trial: nexp =

∑M
j=1 nj

exp.
Finally we compare the empirical nemp to the expected number nexp of coincidences to

detect significant deviations. To this end, we calculate the joint-p-value jp, i.e. the probability
of measuring the given number of empirical coincidences (or an even larger number) under the
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null-hypothesis of independent firing. The distribution under this null-hypothesis representing
the probability to find a given number of coincidences is given analytically assuming Poisson
processes (Grün et al., 1999). The latter assumption is shown to yield a conservative estimate
for cortical spike trains considering their non-Poisson and non-renewal properties (Grün, 2009).
Then the significance of nemp yields (Grün et al., 2002a):

jp(nemp|nexp) =
∑ nr

exp

r!
e−nexp

If its value is below an a priori threshold (here chosen as 5%) coincident firing is classified as
significant and identified as Unitary Events. Spikes are labeled as UE if they are part of at
least one sliding window identified to contain significant excess synchrony (for an illustrated
summary of this analysis approach, see Maldonado et al., 2008). In addition, we require such
time windows to exhibit a minimum firing rate of 5 Hz for each neuron. Spikes that are part
of coincident events but not identified as UE with respect to any of the neurons recorded in
parallel are labeled as chance coincidences (CC), all remaining spikes as isolated spikes (ISO).

Spectral analysis

Power spectra are used to assess the dominant frequencies in the LFP during the task. All
power spectra are calculated using a Hamming window as taper. To illustrate the temporal
modulation of power in different frequency bands, we use a time-resolved spectral analysis using
200 ms windows with a 50 ms overlap.

Spike-triggered averages

Spike-triggered averages (STAs) are computed by averaging LFP segments from time windows
of 200 ms centered at each spike time. For the STA analysis, LFPs are filtered between 2-80
Hz to remove DC components. To compare STAs across recordings, in which electrode signals
often differ in their absolute amplitude values, we z-transform each LFP before further analysis
by subtracting its mean (calculated across trials) and dividing by its standard deviation. In order
to quantify the magnitude (or size) of an STA, we calculate the total area the STA encloses with
the time axis. Similar results to those presented here (not shown) are obtained using alternative
measures of the STA magnitude, such as the area under its envelope, or the maximum of its
absolute value. The magnitude of the STA is in general dependent on the number of trigger
spikes. In order to compare STAs obtained from two sets of trigger spikes of different number
of spikes n1 and n2 (n1 > n2) we construct 1000 STAs of set 1, each computed from n2

randomly selected spikes. We define the STA of set 2 to be larger than that of set 1 if the
magnitude of set 2 exceeds 50% of the re-computations of set 1, and significantly larger (at a
level of 5%) if it exceeds 95% of the re-computations.

Peak-triggered spike histograms

We evaluate the population-averaged spiking discharge triggered on the peaks of the LFP
oscillation (Destexhe et al., 1999). To this end we detect maxima of the LFP separated by
a minimum time interval of 33 ms, which corresponds to a maximal oscillation frequency of
30 Hz. The spike histogram is calculated from data within a window of 200 ms around each
peak, and averaged across all individual peaks in all neurons (see Eeckman and Freeman,
1990 for a different technique to relate spike times to EEG time course based on amplitude).
Simultaneously, we also compute the peak-triggered LFP by averaging the z-transformed LFP
aligned on its peaks.
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Rate-amplitude correlation

To assess the degree of correlation between LFP oscillation strength and spike rates, we calculate
the mean value of the rectified, z-transformed LFP along each trial with sliding windows of 200
ms length and 100 ms overlap. These values are then correlated with the rate profile of the
neuron estimated as the spike count across trials in the same windows. Similar results as those
shown here are obtained using alternative measures of LFP strength, including the mean value
of the envelope of the beta-filtered signal (compare phase-locking analysis), or by using the
total signal power in the beta range (10-22 Hz).

Phase analysis

After examination of the dominant beta frequencies on a session-by-session basis, LFPs of
both monkeys are filtered with a zero-phase 10-22 Hz band pass filter (Butterworth, 8-pole).
Short filter transients in the time domain allow for good estimates of the instantaneous LFP
amplitude. In a subsequent step, we calculate the instantaneous phase of the LFP from the
analytic signal ξ(t) = x(t) + ix̃(t) obtained via the Hilbert transformation

x̃(t) =
1
π

P.V.
∫

x(t)
t− τ

dτ

of the original signal x(t), where P.V. denotes that the integral is to be taken as Cauchy principal
value (Le Van Quyen et al., 2001). In this formalism, troughs of the LFP are identified by a
phase of π. The calculation of the analytic signal can be applied to arbitrary signals, but its
interpretation as instantaneous phase is difficult where either the signal amplitude becomes too
small to discriminate the oscillation from background noise, or where the regular oscillation
is disrupted (Boashash, 1992). To account for these effects, we discard phase values which
violate the monotonicity of the phase time series or exhibit instantaneous phase jumps. To
further corroborate our results, we exclude from our analysis those 10% of spikes per neuron
that occur at the lowest LFP amplitudes.

We analyze the distributions of extracted phase values at the times of spike occurrences
(Denker et al., 2007) using tools from circular statistics (Mardia and Jupp, 2000). The mean
phase φ is obtained via the circular average

Reiφ = N−1
∑

eiφ(ti)

where φ(ti) indicates the phase of the field potential at time ti of spike i. Furthermore, we utilize
the transformation of the vector strength R to the circular standard deviation σ =

√
−2logR

as a measure of the concentration of the phase distribution. For small values, σ relates to the
standard deviation of a normal distribution, whereas for flat distributions it behaves as σ →∞.
In all phase analysis, we discard neurons that fire in total (across trials) less than 25 spikes.

Additionally, we employ two measures to quantify whether spikes recorded from individual
neurons show a significant phase preference to the LFP. For the first, we test against the
null hypothesis that the phase sample is taken from the uniform circular distribution (Rayleigh
test, cf. Mardia and Jupp, 2000), which is expected by assuming a regular (e.g., filtered)
field potential and independent random spiking. However, spike trains that have a certain
regular structure in time may display intrinsic locking to the LFP. To measure the degree of
genuine locking that is not explained by the regularities of the two signals, we calculate as the
second measure the degree of locking R in 1000 surrogates, each created by shuffling the inter-
spike intervals of the spikes on a trial-by-trial basis (random placement of the first spike). This
procedure preserves to first order the regularity manifested in the inter-spike interval distribution.
A comparison with the measured value R yields the p-value for this surrogate test. Since the
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construction of such surrogates can only be performed on the complete spike train, this measure
could not be sensibly applied to the subsets of spikes in our analysis (i.e., ISO, CC, UE, as well
as Lo and Hi used in the amplitude analysis).

The phase distribution of spike coincidences may be trivially sharpened due to a preferred
phase occurrence of individual spikes. To correct for this effect we calculated the expected
phase distribution of coincident spikes (compare black curve in Figs. 5 and 6). To this end,
we calculate the joint phase probability distribution of a neuron pair by the phase-by-phase
multiplication of the occurrence probabilities of spikes at these phases. The predictor for the
whole population is the average of the pair-wise phase distributions weighted by the relative
number of coincidences between the two neurons.

In contrast to this predictor which considers the phase of spikes irrespective of the spike
interval distribution, we also construct a predictor based on the reverse scenario. For each pair
of simultaneously recorded neurons the inter-spike intervals of the spike trains of each neuron
are shuffled on a trial-by-trial basis to create a set of 1000 surrogate pairs. For each surrogate,
the variance σ is evaluated separately for the resulting sets of non-coincident and coincident
spikes. Thus, we obtain for each neuron the variances σ of phase locking of coincident and
non-coincident spikes for the original data and for the 1000 surrogates, allowing us to compare
their distributions (Fig. 4).

Results

Synchrony based spike classification

We analyze spike data of 143 single units and simultaneously recorded LFP data from motor
cortical areas in two monkeys during the instructed delay (preparatory period, PP) of two motor
tasks (see Methods). Both spike synchrony (Kilavik et al., 2009) and LFP oscillations in the
beta band (Murthy and Fetz, 1996a) have been shown to be behaviorally relevant to movement
preparation. LFPs and spikes were recorded from different electrodes spaced at 400 µm (for
a schematic illustration, see Fig. 2) to exclude trivial signal correlations induced by volume
conductance effects (cf., e.g., Katzner et al., 2009). Using the Unitary Events analysis (Grün et
al., 2002a,b), we identify transient periods where the spiking activity of simultaneously recorded
sets of neurons shows a surplus of coincidence events compared to the number expected on
the basis of the firing rates. During these periods we attribute the excess synchrony to the
synchronous firing of both observed neurons as part of a network process that activates a
specific subset of neurons: the assembly (Fig. 2 depicts the spikes of two different assemblies
in green and blue). Based on this detection of precise spike synchrony (Grün et al., 1999)
between all neuron pairs of a given neuron we classify the spikes recorded from each neuron
(all spikes) exclusively into one of three sets: isolated spikes (ISO), chance coincidences (CC),
and Unitary Events (UE). Spikes involved in pairwise coincidences (within 3 ms) are classified
as CC if they occur during time periods where the observed coincidence rate is explained by
the instantaneous trial-by-trial rates of the two involved neurons, and as UE if their number
significantly exceeds the expectation (see Methods). In a given UE period a distinction between
coincidences stemming from the activation of the assumed assembly and those due to chance is
not possible. Therefore, a substantial fraction (see Discussion for an estimate) of coincidences
in the UE group may be due to chance coincident spiking (e.g., the rightmost UE coincidence
in Fig. 2). Spikes not classified as CC or UE with respect to any of the simultaneously recorded
neurons (2-5) are classified as ISO. Consequently each spike is labeled according to the type
of event it belongs to, and an individual spike train may contain spikes of different categories
(compare gray, cyan, and red boxes in Fig. 2, respectively).
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Figure 2: Sketch of the analysis. Spikes of two neurons (yellow background) and an LFP are recorded from
electrodes separated by approximately 400 µm (right). Spikes are classified as isolated (ISO, gray), chance
coincidence (CC, cyan), or Unitary Event (UE, red) depending on their precise synchronization with a spike of a
second neuron recorded in parallel. In contrast to CCs, UEs identify coincidences in transient epochs where the
high number of observed coincidences (top left) significantly exceeds the prediction based on the firing rates (in
practice, coincidences are counted across trials, which is omitted here for illustrative purpose). In UE epochs,
synchrony between both neurons in excess of the chance contribution is explained by their specific co-activation
in a neuronal ensemble, termed assembly. Two assemblies are sketched in green and blue but the recorded
neurons participate only in the green one. We investigate the relationship of the two types of observed spike
synchrony (CC and UE) to the LFP population signal as a monitor of brain processing.

The magnitude of spike-triggered LFP averages increases with synchrony

As a first step, Fig. 3A compares the spike-triggered averages (STAs) of the LFP for the three
sets, where each STA is pooled across all neuron-LFP pairs. We observe that the magnitude of
the STAs of both chance coincidences (left, cyan) and Unitary Events (middle, red) significantly
exceed that of the isolated spikes (gray). Moreover, the spike-triggered average of UE is larger
than that of CC (right). The oscillatory structure of the STAs exhibits a strong beta frequency
component, and the STAs are typically centered on the downward slope of the oscillation
cycle. Non-averaged, single-neuron STAs also exhibit these differences, but to a lesser degree
(see supplemental Fig. S2A for a typical example). The reason for this is two-fold: First,
individual pairs have a substantially higher sampling variance, especially considering the typically
low number of UE spikes. Second, STA shapes result from the combination of three effects:
instantaneous LFP frequency, spike-LFP phase locking and oscillation amplitude. Nevertheless,
the STA increase, in particular for UE spikes, is observed in a significant number of single
neurons of both monkeys (Fig. 3B) and is consistently more pronounced for experiments where
we were able to evaluate a larger number of partner neurons Np for potential coincidences (Fig.
3C), thus better separating the CC and UE groups.

Two mechanisms could underlie the differences in the STAs: changes in LFP amplitude or
changes in the locking between LFP and spikes. However, the LFP amplitude does not co-vary
with spike rate (Fig. 3D). Therefore increased amplitudes and the disproportionate increase of
the chance coincidence count during periods of elevated rates is an improbable cause of the STA
increase for CC. In addition, spike histograms triggered on the peaks of the LFP oscillations
(supplemental Fig. S2B) reveal that spikes do not only tend to prefer the falling phase, but
also avoid the rising phase of the LFP. This suggests that the three sets of spikes differ in the
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Figure 3: The magnitude of the spike-triggered average (STA) depends on the occurrence of synchronized
spiking activity. (A) STA of the LFP averaged over all 123 neurons (n=297484 spikes total) for the three
disjunct sets of spikes. The left panel compares STAs of ISO (dark gray curve, n=240455) to CC (cyan curve,
n=44867). To account for the difference in variability due to sample sizes, the STA of ISO is repeatedly
recomputed using only 44867 random trigger spikes. The light gray band encloses at each point in time 95% of
all recomputed STAs. The middle and right panel compare STAs of UE (red curve, n=12162) to ISO and CC,
respectively. (B) Relative number of neurons per animal (vertical) with the STA of one spike set exceeding (in
area) the STA of the other set (horizontal, color codes). The STA of the first set qualifies as larger if it exceeds
the other STA in 50% of 1000 recomputations (superimposed darker bars: 95%, i.e. α=5%). (C) The four
bars distinguish STAs obtained for neurons with the same number Np of partner neurons used in coincidence
detection. Same criteria (50%, both animals) as in B. (D) The correlation of LFP amplitude and spike rate is
not significant (α=0.01, coefficient R).

degree of phase coupling to the LFP rather than in the accompanying amplitude of the LFP.

Increased spike synchrony improves spike-LFP phase coupling

Nevertheless, in order to clearly differentiate between these mechanisms, it is necessary to
formally disentangle the dependence of spike timing on the amplitude of the LFP from its
dependence on the phase. Fig. 4A explains the procedure (for details see Methods). For both
monkeys we consistently observe a prominent beta oscillation (in both monkeys around 15 Hz)
of the LFP during the preparatory period that stops with movement onset (Mvt). Therefore we
focus on the beta frequency band and extract the instantaneous phase and amplitude (envelope)
of the field potential for each spike time. Compared to the STA analysis, even individual neurons
exhibit clear and specific differences between ISO, CC, and UE in both measures (Fig. 5, same
example neuron as in Figs. 1 and 4). We are now prepared to study the two contributions in
detail across the population.

Fig. 4B shows that across the population of neurons CC are systematically better locked
(decreased circular standard deviation σ of the phase distribution) than ISO, and UE better
than CC. As a suitable reference value to compare the fraction of locked neurons in the 3
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Figure 4: LFP-spike phase coupling reveals locking increase for coincidences. (A) Determination of phase
and amplitude (example neuron). Top: single LFP trial; middle: trial-averaged power spectrogram. The beta
activity during the preparatory period (PP, between PS and AT) disappears with movement (Mvt). Bottom:
Phase (green) and amplitude (blue) of the beta-filtered LFP (upper trial shown in the top graph) extracted at
the spike times (ticks). Resulting spike-triggered phase distributions (green) are characterized by their circular
standard deviation σ. Same neuron as in Fig. 1. (B) Percentage of neurons in ISO (gray curve), CC (cyan),
and UE (red) with a circular standard deviation of the phase distribution below σ (horizontal axis). For the
average σl=1.97 of the set of significantly locked neurons (all spikes, α=0.05) the percentages are also shown
as bars. (C) Comparisons of the circular standard deviations σ of the three sets in the individual neurons: ISO
vs. CC (top, n=291), ISO vs. UE (middle, n=142), and CC vs. UE (bottom, n=136). Each dot represents one
neuron in one experimental configuration. The percentages show the relative number of data points above the
diagonal. The light (dark) gray ellipse covers 2 (1) standard deviations of the sample variance (outlined ellipse:
surrogate data ISO vs. CC with shuffled ISIs).

sets we extracted the average locking strength σl=1.98 obtained for those neurons that are
significantly locked if all spikes are considered (surrogate test). In the following we investigate
how the systematic differences in locking strength between the three sets of spikes are affected
by the intrinsic spike-LFP relationship of the neurons, i.e. if a neuron in general tends to lock well
to the LFP or not. Differentiating groups of strongly (39%) and weakly (61%) locked neurons
(i.e., significantly locked and unlocked neurons considering all their spikes) does not introduce
a bias by affecting the percentage of neurons that exhibit CC and UE (supplemental Fig. S3A).
Both groups exhibit the same general pattern of locking in the three groups (supplemental Fig.
S3B) shown in Fig. 4B. As expected, the percentage of neurons better locked than σl in the
ISO group differs considerably (53% vs. 6%, gray bars in supplemental Fig. S3B) between
strongly and weakly locked neurons. However, this difference between strongly and weakly
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locked neurons is less pronounced for CCs (63% vs. 32%) and further decreases for UEs (65%
vs. 46%). The conservation of the locking of UE spikes in strongly and weakly locked neurons
compared to the declines for ISO and CC hints at different dynamical origins of the spikes in
CC and UE.
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trough of the LFP oscillation. The black curve in the middle and the right panel is the expected phase
distribution of coincidences predicted from the phase distributions of the contributing neurons (see Methods).
(B) Simultaneously to the increased locking, the amplitude distribution shifts to higher values.

Fig. 4C confirms that individual neurons are consistent with the findings for population
ratios (Fig. 4B). The scatter plots of the circular standard deviation reveal that in 71% of
the recorded neurons CC spikes are better locked than ISO spikes, and in 85% of the neurons
UE spikes are better locked than ISO spikes. Finally, in 68% of all neurons UE spikes are
better locked to the LFP than CC spikes. In contrast to the experimental data, only 58% of
surrogate spike trains that retain the original inter-spike interval statistics show an increase in
phase locking for coincident spikes (outlined ellipse).

Because of the consistency in the population, in the following we focus on the phase locking
of strongly locked neurons. The rationale is to reduce the differences in locking between
the three sets of spikes to obtain a conservative estimate of the locking (supplemental Fig.
S3B). Comparable results are obtained for the complete set of recorded neurons. The phase
distributions in the top panels of Fig. 6A show that locking of spikes to the LFP is strongest
for Unitary Events, and weakest for isolated spikes.

The phase distribution exhibited already by isolated spikes modulates the spiking probability
in time. Given the high level of synchrony between LFPs (Fig. 1A), one may therefore argue that
the increased modulation of the phase distribution of CC trivially results from the individual
phase locking distributions of the two neurons forming the coincidence (predictor assuming
independence of neurons, see Methods). Interestingly, the phase distribution of CC is indeed
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largely in agreement with this predictor (black curve in Fig. 6A), while that of UE is not.
Hence, despite the impossibility to remove the substantial fraction of chance coincidences from
the UE group, the locking of UE cannot be explained on the basis of the intrinsic phase locking
of the neurons forming the coincidences.
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Magnitude of global oscillations influences spike locking

Earlier studies (Murthy and Fetz, 1996b; Denker et al., 2007) demonstrate that spikes occurring
during periods of high LFP amplitudes exhibit a stronger locking to the LFP. At a given time
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the amplitude of the LFP oscillation is defined by its envelope (blue curves in Fig. 4A). To
examine the dependence of spike locking on the amplitude of the LFP (Denker et al., 2007),
we form two exclusive sets of spikes, termed ’Hi’ and ’Lo’, based on whether a spike occurs
at an amplitude above or below a certain value, respectively (Fig. 7A). We account for the
session-by-session variability of the LFP amplitude by defining the threshold θ in terms of the
fraction of spikes an individual neuron contributes to the Lo category (Fig. 7B).

For threshold ranges between 0.2 and 0.8 we observe that the percentage of significantly
locked neurons (Rayleigh test, α=0.05) of the Hi set is only decaying slightly from 41% to
36% (Fig. 7C). This percentage is in the same range as the percentage of locked neurons
considering all spikes (Fig. 4B). We emphasize that even for high thresholds, where only few
spikes are included, the locking of neurons can be explained using Hi spikes only. In contrast,
when considering spikes of the Lo set, the percentage of locked neurons starts at 9% and
increases approximately linearly with θ at a much steeper slope, meaning that at increasingly
higher amplitudes more and more spikes are included in the Lo set. This shows that locking of
spikes to the local field potential is largely due to spikes that occur at high LFP amplitudes.

Combined effects of synchrony and LFP amplitude

Combination of the previous results raises the question of whether coincidences, and in particular
Unitary Events, predominantly occur at high LFP amplitudes. Fig. 6A (density plots) shows
the number of spikes as a function of both LFP phase and amplitude for each of the three
sets ISO, CC, and UE. Here, CC and UE occur at similar amplitudes as ISO, even though the
amplitude distributions (left) reveal a small shift towards high amplitudes for CC and UE. The
phase distributions (top panels), however, clearly show a progressive increase in the degree of
phase locking from ISO to CC to UE. Finally, observing that UEs exhibit similar amplitudes as
CC, we can ask the reverse question of whether at high amplitudes ISO, CC and UE still exhibit
the systematic increase in locking. Fig. 6B shows that for the 50% of the spikes occurring at
the largest LFP amplitudes (above black dashed line in Fig. 6A) the effect of improved phase
locking for the UE group is strongly amplified. In contrast, the ISO and CC phase distributions
do not change. This finding reveals that those coincidences in UE periods that are responsible
for the increased locking of UE are those that occur during strong LFP oscillations.

Discussion

In this report we explicitly reveal how the local field potential relates to precise excess spike
synchrony in motor cortex. Spikes which are emitted at the same time as spikes of other neurons
exhibit a better phase locking to the dominant beta-range LFP oscillation than those which
occur in isolation. However, in time periods where the number of spike coincidences is at chance
level, the quality of the locking is explained by a predictor assuming independence of the spikes
constituting a coincidence. In contrast, the pronounced locking to the LFP in time periods
with a significant excess of coincident spikes (Unitary Events) cannot be explained in this way.
The probability of the occurrence of coincident spikes is only weakly coupled to changes in
the magnitude of the LFP signal. Nonetheless, spikes that coincide with episodes of high LFP
amplitudes are on average better locked to the LFP than those at low amplitudes. A separate
analysis of these two factors, identified spike synchrony and LFP magnitude, demonstrates that
both affect the strength of the spike-LFP coupling largely independent of each other. What
conclusions about network dynamics and possible coding mechanisms do these results imply, in
particular in the light of the distinctive role of Unitary Events?

Features of the LFP signal correlate with external stimuli (O’Leary and Hatsopoulos, 2006),
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Figure 7: Influence of oscillation magnitude on locking of spikes to LFP. (A) Spikes in periods with an
LFP magnitude (i.e. envelope of LFP, light gray curve) above a certain threshold (dashed line) are termed
the ’Hi’ set (light gray ticks) and the remainder the ’Lo’ set (dark gray ticks). (B) Separation of spikes into
Hi and Lo for the same example neuron as in Figs. 1, 4, and 5. Spikes are rank ordered according to LFP
magnitude; the histogram on the right shows the distribution of the respective magnitudes. The threshold θ
is defined as the relative number of spikes labeled as Lo. The dark gray arrow illustrates a threshold choice of
θ=0.5, and corresponds to a data dependent relative amplitude (light gray arrow). Spikes at extremely low LFP
amplitudes (lowest 10%) do not enter the analysis. (C) Percentage of neurons with significant (Rayleigh test,
α=0.05) phase-locking of the Hi spikes (light gray curve) and of the Lo spikes (dark gray curve) as a function
of magnitude threshold. Even for large θ (0.8) the set of Hi spikes shows significant locking in 36% of the
neurons, although it consists of only few spikes. The dashed line shows as a reference the percentage (39%)
of locked neurons computed if spikes are not separated into Hi and Lo (i.e. all spikes). Thus the locking of
neurons is mainly explained by the locked Hi spikes, and their locking is approximately independent of θ.

behavioral aspects (Scherberger et al., 2005), internal processes (Murthy and Fetz, 1996a;
Poulet and Petersen, 2008; Roux et al., 2006), and attentional modulation (Fries et al., 2001).
In particular, several authors have elucidated the functional role of LFP oscillations in motor
cortex in the beta and lower gamma range. These oscillations are only loosely correlated across
trials, i.e. their phase is not time-locked to any external (e.g. stimulus) or internal (e.g.
movement onset) event. Oscillatory beta range LFP activity in motor cortex is a unique feature
of experimental protocols including a waiting period before movement execution and has been
described in relation to attentional processes, movement preparation and motor maintenance
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(Donoghue et al., 1998; O’Leary and Hatsopoulos, 2006; Murthy and Fetz, 1992, 1996a; Baker
et al., 1997; Sanes and Donoghue, 1993). The oscillations terminate at movement onset and
may well represent a top-down modulatory input from higher sensory areas (e.g., Lebedev and
Wise, 2000). Furthermore, there is a large body of knowledge about delay-related spiking
activity in motor cortical areas and its functional implication in sensorimotor integration and
movement preparation (for a review, see Riehle, 2005). Finally, transient spike synchrony
observed among individual neurons is remarkably well related to timing-related aspects of the
behavioral task (Riehle et al., 1997; Kilavik et al., 2009) but does not depend on the mean
firing rate of the participating neurons (Grammont and Riehle, 2003). However, only a few
studies relate LFP oscillations to correlations of the spiking activity (Murthy and Fetz, 1996b;
Nir et al., 2007). Reports in various brain areas demonstrate single neurons which selectively
participate in oscillatory periods of the LFP by phase locking (Fries et al., 2001; Eckhorn
and Obermueller, 1993; Baker et al., 1997; Destexhe et al., 1999), where occasionally the
autocorrelations of the spike trains become oscillatory (Murthy and Fetz, 1996b; Lebedev and
Wise, 2000). In conclusion, the apparent complexity of the simultaneous coding of neuronal
activity for different aspects of motor cortical processing challenges the idea that LFP oscillations
and the emergence of transient UEs are two reflections of only one single functional process
performing the planning and preparation of movements.

We interpret the observed excess synchrony as a result of the specific activation of the
observed neurons. An alternate hypothesis indicates that strong non-stationarities of the firing
rates are the cause for false-positive detections of UE periods, which could explain the observed
phase locking of UE if rates were co-modulated with the LFP oscillations cycles. To investigate
this possibility, we reanalyzed the data by replacing the parametric distribution implementing
the null hypothesis in the original UE analysis by a distribution derived by surrogates. The
employed surrogate method (spike train dithering, see Grün, 2009) closely preserves the rate
profiles and the inter-spike interval distributions, and leads to a conservative (Louis et al., 2010)
classification of excess synchronous events. Despite the decreased sensitivity of the surrogate
based method to detect excess synchrony, our analysis confirms the phase distributions for ISO,
CC, and UE that are the essential finding of our study. Thus, they are not explained as a
consequence of rate co-variations, but express excess synchrony as a reflection of coordinated
network activity.

It is reasonable to assume that synchrony on a spike-by-spike level, and population oscil-
lations expressed by the LFP both originate from network processes that involve the pulsed,
synchronous co-activation of specific subsets of neurons. One may argue that in this case we
should observe an even more distinct relationship between the two measures. However, our
techniques to detect synchrony related to the activation of neuronal assemblies are limited.
The Unitary Event analysis assesses indirectly which coincidences are more likely to originate
from such activations based on the comparison of the time-resolved rate of observed and ex-
pected coincidences. Nevertheless, the set of UEs may be composed of coincidences resulting
from assembly activation and a considerable fraction of chance coincidences (see estimate be-
low). Therefore, although the difference in locking precision between significant (UE) and
non-significant (CC) time segments seems small at first glance, in this light it is even more
surprising that we are able to observe an enhanced phase locking for the UEs. The argument
implies that the subset of coincidences caused by assembly activation has a tight locking to
the LFP. This conclusion is supported by previous work demonstrating that coherent membrane
potential oscillations do not generate synchronized output spikes, and that brief, simultaneous
synaptic inputs to a cell are the likely drive for action potential generation (Poulet and Petersen,
2008).

Unitary Events prefer a particular phase of the LFP oscillation, a signal which is rather
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homogeneous across the motor cortex (Murthy and Fetz, 1996a; Rubino et al., 2006). This
finding renders unlikely a model of processing where assemblies can be simultaneously active
and still distinguished (multiplexed) by locking to different phases of the oscillatory cycle (e.g.,
Womelsdorf et al., 2007). Moreover, in such a model the waxing and waning of the LFP
oscillation would likely show phase shifts as different assemblies become active. Our results
insinuate that neurons participate in different assemblies at different times (see also Riehle et
al., 1997), but predominantly at the same phase of the LFP (cf., Singer, 1999). We observe the
phenomenon in 20-30% of the neurons in agreement with estimates from other studies (e.g.,
Murthy and Fetz, 1996b). However, even in this category of neurons we can attribute only a
fraction of spikes to assembly activation. One hypothesis is that the motor cortex is involved
in parallel coding schemes, where synchronous assembly activity can be dissociated from the
rate-based continuous-time coding.

Figure 8: A conceptual model relating increased LFP locking and assemblies. (A) Sketch of the LFP
(top) and the simultaneous spiking activity of five neurons (middle), of which only two are recorded (yellow
background). Based on the latter, time periods where coincidences occur at chance level (non-UE, left) are
distinguished from those with excess synchrony (UE, right). Each spike is either part of an assembly of co-active
neurons (green) or not (black). In this simplified scenario, one assembly is active on the left, and a different one
on the right; both observed neurons contribute to the latter. Only assembly spikes exhibit locking to the LFP,
expressed by a non-uniform phase distribution p(ϕ) (green). (B) Two ratios β and γ determine the composition
of the phase distributions for ISO, CC, and UE (left) of assembly and non-assembly spikes. γ determines the
overall probability that a spike is part of an assembly activation (top, ISO). pCC(ϕ) (middle) results from the
combinatorics of two independent spike trains (ISO). pUE(ϕ) (bottom) differs from pCC(ϕ) by the relative
excess β of assembly spikes in UE periods. A conservative (minimal) estimate of β, i.e., maximally locked p2ϕ,
is obtained by substituting pUE(ϕ) and pCC(ϕ) in the bottom equation by the experimental distributions. γ is
determined from either of the top two equations by using p(ϕ).

To better understand the implications for the organization of cortical processing we consider
a conceptual model where spikes of a neuronal assembly are locked to the LFP (Fig. 8) based
on (i) the assumption that UEs reflect assembly activity (Riehle et al., 1997) and (ii) our
observation that UEs have the strongest locking to the LFP. A potential mechanism is that
assembly spikes originate from synchronous synaptic input to local groups of neurons. The
simplest explanation for the finding that ISO and CC also exhibit locking, albeit weaker than
UE, is that the spikes of a neuron are composed of a mixture of non-assembly (unlocked) and
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assembly spikes (locked). The latter are not identified as UE due to the lack of corresponding
partner neurons in the recording (Fig. 8A). Consequently, the phase histogram of the ISO
spikes is a superposition of the histograms of non-assembly and assembly spikes, with a factor
γ determining their ratio (Fig. 8B, top row). Chance coincidences are composed of spikes from
independent sources (Fig. 8B, middle row) but the combinatorics of non-assembly and assembly
spikes enhances the locking. Finally, periods identified as UE contain excess coincidences
(Fig. 8B, bottom row) resulting from the activation of an assembly in which both neurons
participate. Their relative contribution β leads to an enhanced locking of UE compared to CC.
The structure of the model allows us to derive minimal estimates of the parameters γ and β from
the experimental phase histograms. We find that outside of UE periods γ=13% of the spikes of
a neuron participate in an assembly, and β=24% of the coincidences in UE periods result from
the joint participation in an assembly. Even though this is clearly a highly simplified model, it
provides a first quantitative bridge between functionally relevant spike synchrony (Riehle et al.,
1997; Singer, 1999; Maldonado et al., 2008) and the LFP as a robust mesoscopic measure of
brain activity (Mehring et al., 2003).

Our results show that neuronal mass signals like the LFP convey specific information about
network processes. We directly demonstrate in the brain of a behaving animal that the LFP is
related to excess spike synchronization. Nevertheless, there is a substantial fraction of spikes
without an apparent relationship to the LFP. Thus the two measures are observables of the
same neuronal network but do not necessarily carry the same information. Taken together, we
interpret our results as evidence that LFP (beta) oscillations, especially at high amplitudes,
are reflections of the activation of neuronal assemblies which propagate a synchronous volley
through the network. Complementing recent advances in tackling the experimental (Euston et
al., 2007; Fujisawa et al., 2008; Nicolelis et al., 1997) and theoretical (Brown et al., 2004; Grün,
2009) difficulties in finding signatures of coordinated activity in spike data alone, these findings
indicate how the LFP may provide a valuable additional source of information to characterize
the neuronal population dynamics. With massively parallel recordings becoming available we
may be able to disambiguate the superposition of multiple neuronal assemblies. This gives us
confidence that by improving our understanding of the various components of the LFP signal we
will eventually be able to use the LFP as an antenna delivering news from several communicating
network stations.
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Supplementary Figures
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Figure 1: Detection of Unitary Events. (A) Spike rasters for the same neuron (neuron 6) shown in Figs. 1,
4, and 5 and one simultaneously recorded neuron (neuron 1). Each line in the rasters corresponds to one trial.
Simultaneously recorded activities of the two neurons are shown on lines of the same height in the respective
raster. Spikes are indicated by black dots, coincident spikes and Unitary Events are surrounded by a cyan or red
square, respectively. Data shown are recorded during the self-paced task with long time delay (see Methods for
experimental details). The corresponding behavioral events are marked in the rasters with differently colored
filled circles: occurrence of the preparatory stimulus PS (dark red), allowed movement time AT (light blue),
movement initiation (dark blue) and end of movement (dark green). (B) Firing and coincidence rates. The
firing rates of the two neurons are shown in dark gray (neuron 6) and light gray (neuron 1), together with the
rate of the empirical coincidences (light cyan) and the coincidence rate expected from the neurons’ firing rates
(dark cyan), calculated as the sum of the trial-by-trial rates. All rates are estimated in sliding windows of 100 ms
width shifted by 0.1 ms. (C) Significance of empirical coincidences. The joint surprise (dark gray curve) results
from the comparison of the empirical and the expected coincidence counts. Significant excess coincidences (i.e.
UEs) are detected if the joint surprise is larger than the 5% level (dashed line). For comparison, the 1% level
is also indicated (dotted line). UEs are found during a short period before PS occurrence, shortly after PS, and
at 600 ms after PS. The latter is one of the short delay times that monkey was exposed to in parallel to the
shown delay scheme. Note that although there is a considerable increase of coincident events in relation to the
arm movement, they occur at chance level.
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Figure 2: Relationship of LFP and synchronized spiking behavior in a single neuron and LFP-triggered
PSTHs of synchronized activity. (A) STA of the LFP (filtered between 2-80 Hz to remove DC components) of
one neuron (same neuron as in Figs. 1, 4, 5, and S1) for three disjunct sets of trigger spikes: not coincident with
spikes from simultaneously recorded other neurons (isolated spikes, ISO, gray), involved in coincidences (within 3
ms) predicted by rate (chance coincidences, CC, cyan), and involved in significant coincidences (Unitary Events,
UE, red). The left panel compares the STA of ISO (dark gray curve, n=4098) to the STA of CC (cyan curve,
n=506). To account for the difference in variability due to sample sizes, the STA of ISO is recomputed using
only 506 random trigger spikes. The light gray band results from the superposition of 1000 re-computations
of which 95% are enclosed by the dashed curves at each point in time. Similarly, the middle and right panel
compare the STA of UE (red curve, n=177) to the STA of ISO and CC, respectively. (B) Bottom: Population-
averaged LFP-triggered histogram of ISO (left), CC (middle), and UE (right). The trigger times are the largest
local maxima of the LFP that are separated by a minimum distance of 33 ms. The spikes of a neuron are
triggered on exactly one LFP channel. Top: LFP averages for each neuron contributing to the histogram (light
gray curves) based on the same trigger. The dark gray curve is the average of the single neuron LFP averages.
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Figure 3: The increased locking of UEs is independent of the overall degree of locking of the neuron. (A)
Fraction of neurons exhibiting (threshold of 25 spikes) ISO, CC and UE separately for the sets of strongly (left)
locked and weakly (right) locked neurons (criterion: surrogate test (α=0.05) on original spike train containing
all spikes). (B) Percentage of neurons with a locking stronger than σl in each of the two groups (strongly and
weakly locked). For the selected value of σl=1.98 (average locking strength of strongly locked neurons) the
percentages are shown as bars.
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