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A fast Newton–Raphson based iterative 
algorithm for large scale optimal contribution 
selection
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Abstract 

Background: The management of genetic variation in a breeding scheme relies very much on the control of the 
average relationship between selected parents. Optimum contribution selection is a method that seeks the optimum 
way to select for genetic improvement while controlling the rate of inbreeding.

Methods: A novel iterative algorithm, Gencont2, for calculating optimum genetic contributions was developed. It 
was validated by comparing it with a previous program, Gencont, on three datasets that were obtained from practical 
breeding programs in three species (cattle, pig and sheep). The number of selection candidates was 2929, 3907 and 
6875 for the pig, cattle and sheep datasets, respectively.

Results: In most cases, both algorithms selected the same candidates and led to very similar results with respect to 
genetic gain for the cattle and pig datasets. In cases, where the number of animals to select varied, the contributions 
of the additional selected candidates ranged from 0.006 to 0.08 %. The correlations between assigned contributions 
were very close to 1 in all cases; however, the iterative algorithm decreased the computation time considerably by 90 
to 93 % (13 to 22 times faster) compared to Gencont. For the sheep dataset, only results from the iterative algorithm 
are reported because Gencont could not handle a large number of selection candidates.

Conclusions: Thus, the new iterative algorithm provides an interesting alternative for the practical implementation 
of optimal contribution selection on a large scale in order to manage inbreeding and increase the sustainability of 
animal breeding programs.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Advancements in genetic evaluation methods such as 
the use of best linear unbiased prediction (BLUP) have 
substantially increased response to selection in mod-
ern animal breeding programs. Selection programs are 
usually designed to optimize genetic gain with no or an 
implicit limitation on the rate of inbreeding (for example 
[1]). However, although inbreeding cannot be avoided in 
closed selection programs, rates of inbreeding need to be 
controlled to prevent long-term negative effects of selec-
tion [2–4].

Although the main goal in breeding programs is to 
maximize genetic gain, management of inbreeding is vital 
for the sustainability of breeding schemes. The optimal 
balance between rate of inbreeding (�F) and genetic gain 
(�G) is a core problem in practical animal breeding. In 
the late 1990s, a dynamic selection method, known as 
optimum contribution (OC) selection, was proposed to 
deal with this problem of optimization [5–7]. OC selec-
tion attempts to maximize genetic response for a given 
rate of inbreeding (i.e. as influenced by relationships 
among selection candidates) by considering the genetic 
contribution of candidates and using the numerator rela-
tionship matrix (A).

Simulation results showed that OC selection could 
achieve up to 60  % more genetic gain compared with 
truncation selection at the same rate of inbreeding [5, 6]. 
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The potential application of the OC selection method in 
practical breeding programs has also been studied, for 
instance, in dairy cattle [8, 9], in British sheep and beef 
cattle [10] and in salmon [11]. These studies reported 
greater genetic gain under OC selection at the same 
inbreeding rate compared to traditional truncation 
selection.

Several algorithms have been developed for the opti-
mization of genetic gain and rate of inbreeding, such as 
evolutionary algorithms [12, 13], genetic algorithms [14], 
and semi-definite programming [7]. Meuwissen [6, 15] 
presented an optimization algorithm using Lagrangian 
multipliers, i.e. Gencont, to calculate optimized genetic 
contributions of selection candidates that were con-
strained on a predefined rate of inbreeding (�F). The 
algorithm requires inversion of the relationship matrix of 
the selection candidates, which needs to be re-calculated 
several times since some candidates prove unfit for selec-
tion (i.e. candidates with poor breeding values). However, 
there are challenges for implementing this in practical 
breeding schemes, which have large numbers of selection 
candidates, due to computational limitations of repeated 
calculation of the inverses of large matrices.

Hinrichs et al. [11] developed an alternative algorithm, 
based on Meuwissen’s approach [6], called OCSelect. 
The algorithm avoids the actual setting up of the inverse 
of a relationship matrix between selection candidates 
by partitioning the matrix into a diagonal matrix and an 
inverse of a relationship matrix between parents of the 
candidates [11]. The main assumption is that the latter 
matrix has a relatively small size and it is easier to find 
the inverse. This might be the case in aquaculture breed-
ing schemes, where the OCSelect algorithm is developed 
and tested on; however, it might not be the case in dairy 
cattle and sheep breeding schemes, where large numbers 
of parents are involved.

An alternative approach considered here is to obtain 
optimum contributions iteratively without calculating the 
inverse of the relationship matrix. Therefore, this paper 
presents an iterative algorithm, referred as to Gencont2, 
for the calculation of optimized genetic contributions.

Methods
Theory
The main goal of selection schemes is to maximize the 
genetic level of the next generation. Let �G be the genetic 
level of the next generation, which can be expressed as:

where EBV is a vector of estimated breeding values of 
selected parents and c is a vector of genetic contributions 
of the selected parents to the next generation. The prob-
lem is to find the optimum contribution, c. Therefore, 

�G = cTEBV,

ci ≥ 0 for a candidate i, and with the total contribution 
summing to 1 (i.e. 

∑n
i=1 ci = 1). In diploid species, each 

sex contributes half of the genes to the gene pool (i.e. 
∑

ci = 0.5 where the sum is over all individuals of a sex). 
Then, the restriction on contribution per sex is:

where Q is a known incidence matrix for the sex of the 
candidates, and r is a vector of 0.5 s of length 2. Control 
of inbreeding is achieved by constraining the group co-
ancestry of selected candidates. For a set of genetic con-
tributions of selected candidates, the constraint on the 
group co-ancestry is:

where A is the additive relationship matrix of the selec-
tion candidates and K  is the value of the constraint. The 
co-ancestry constraint, K , was set to follow a path at a 
rate of inbreeding �F , i.e. K = Cp +�F(1− Cp), where 
Cp is the average co-ancestry of the current population or 
the co-ancestor constraint K  used in the previous genera-
tion, and �F  is the targeted rate of inbreeding.

The optimal c that maximizes �G under the above con-
straints [i.e. Eqs. (1), (2)] is then obtained by maximizing 
the following Lagrangian multipliers objective function:

where �0 and � are the LaGrangian multipliers (� is a vec-
tor of length 2). Maximizing the objective function for c 
yields:

From the constraint in Eq.  (2) follows an equation for 
�0:

where 1 is a vector of ones. For a more detailed deriva-
tion of Eqs. (3) and (4) see [6]. The procedure to find opti-
mal solutions iteratively is described in the following five 
steps.

Step 1: Calculate the starting values for �0 by solv-
ing Eq.  (4) (assuming A−1 = I) and initiate some 
starting values for � (for instance zeros). Then, cal-
culate optimal contributions, c, by solving Eq.  (3), i.e. 
Ac = (EBV −Q�)/2�0, using the Gauss–Seidel method.

Step 2: Update � by taking the gradient of Eq. (3) with 
respect to � and rearranging:

(1)cTQ = r,

(2)K =

(

1

2

)

(

cTAc
)

,

H = cTEBV − �0

(

2K − cTAc
)

− �

(

cTQ − r
)

,

(3)Ac = (EBV −Q�)/2�0,

(4)

�
2
0 =

EBVT
(

A−1 − A−1Q
(

QTA−1Q
)−1

QTA−1
)

EBV

8K − 1T
(

QTA−1Q
)−1

1
,

QT
∂c = −QTA−1Q∂�/2�0.
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Let �r be the derivation from the constraint QT c = r 
[Eq.  (1)], �r = r −QT c. We want to change c by ∂c 
such that �r −QT

∂c = 0 (i.e. �r = QT
∂c). Assuming 

A−1 = I, and rearranging:

and �new = �+ ∂�,
Step 3: Update �0, by taking the gradient of Eq. (3) with 

respect to �0 and rearranging:

Let �K  be the derivation from the constraint 
K = (1/2)

(

cTAc
)

 [Eq.  (2)], �K = 2K − cTAc. We want 
to change c by ∂c such that �K − 2

(

cTA
)

∂c = 0 (i.e. 
�K = 2

(

cTA
)

∂c). Thus, rearranging:

and �0new = �0 + ∂�0,
Step 4: Re-calculate optimal contributions using the 

updated values for �0new and �new by solving Eq. (3) for c , 
i.e. by solving Ac = (EBV −Q�)/2�0 using the Gauss–
Seidel method.

Step 5: Check for convergence and that the solutions 
are valid. The convergence indicator was the sum of the 
squares of the difference between consecutive iterative 
solutions for c:

where the subscript n represent the iteration number. 
Further steps to check that solutions are valid and the 
constraint is met are done by monitoring �r and �K  , 
respectively. Convergence was monitored after each 
round of iteration. If it does not converged (ssen > 10−6 
or �r > 10−4 or �K > 10−4), the algorithm will return 
back to step 2.

Due to the lack of a constraint that makes sure that all 
contributions are valid (i.e. ci ≥ 0), some of the solutions 
could be negative for some candidates with lower EBV. 
Meuwissen [6] solved this by fixing the contributions of 
these candidates to 0 and eliminating the animals from 
the optimization process and repeating the process until 
no solutions are negative. This might lead to suboptimal 
solutions under some circumstances [7]. In the iterative 
algorithm, while solving Eq.  (3) using the Gauss–Seidel 
method, solutions are constrained to be valid (i.e. solu-
tions are either zero or positive). This approach is simi-
lar to solutions that are subjected to a constraint ci ≥ 0. 
Unlike Gencont, this avoids the need to remove animals 
from the optimization process to obtain valid solutions. 

∂� = −2 ∗ (QTQ)−1
∗�r ∗ �0,

∂c = −
A−1(EBV −Q�)∂�0

2�20
.

∂�0 = −
�K�

2
0

cT (EBV −Q�)
,

ssen =
(cn−1 − cn)

T (cn−1 − cn)

(cn)T (cn)
,

However, for computational reasons, animals with zero 
contributions were removed after 500 iterations for the 
first time and after every 100th iteration until conver-
gence (note: removal of individuals with 0 contribution 
is done only for computational purposes and one can 
implement the algorithm without this step).

In principle, it is possible that the contribution from 
a single candidate is very high. However, due to biologi-
cal limits to reproductive capacity or management poli-
cies, the maximum contribution per candidate may be 
restricted to a value less than 0.5. Let Cmax be a vector 
containing the maximum contribution for each candi-
date, where the maximum contribution Cmaxi may vary 
across candidates and Cmaxi = 0.5 for candidates with 
no maximum restriction. A restriction on the minimum 
contribution (Cmin) for each candidate can also be set 
where a selected animal gets contribution ≥Cmini (i.e. 
contribution is either zero or ≥Cmini). A predefined 
number of selected dams, Ndams is obtained by set-
ting Cmin = Cmax = 0.5/Ndams. An extension of the 
iterative algorithm to accommodate Cmin and Cmax is 
described in the Appendix.

The presented algorithm considers only discrete gen-
erations. It is extended to handle overlapping generations 
following the method presented in [16]. This iterative 
algorithm, referred to as Gencont2, was programmed in 
FORTRAN95 language. The program is available upon 
request.

Description of datasets
The performance of the program was tested on real data-
sets obtained from three practical breeding programs and 
results were compared with the original algorithm, Gen-
cont [15]. The datasets were obtained from Geno (a cat-
tle breeding organization for the Norwegian Red breed), 
Norsvin (a Norwegian swine breeding organization) 
and NSG (the Norwegian association of sheep and goat 
farmers). For the Cattle dataset, the number of selection 
candidates was 3907, the pedigree file contained 23,224 
animals and the EBV were estimated by BLUP. For the Pig 
dataset, the number of selection candidates was 2929, the 
pedigree file contained 11,945 animals and the EBV were 
based on index scores. For the Sheep dataset, the number 
of selection candidates was 6875, the pedigree file con-
tained 82,225 animals and the EBV were based on index 
scores (Table  1). In these datasets, all selection candi-
dates were males.

Initially, the datasets were analyzed without any 
restriction on the reproductive capacities of the selec-
tion candidates. However, subsequent analyses were 
carried out with restrictions Cmax and Cmin. Restric-
tion on the minimum contribution (Cmin) implies that, 
for the ith animal to be selected, it had to contribute at 
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least this amount (i.e. Cmini). However, restriction on 
the maximum contribution (Cmax) implies that an ani-
mal should not contribute more than the stated amount 
(i.e. Cmaxi). Cmin was set at 0.5 or 0.25  % and Cmax 
was set at 1, 2, 3, 4, and 5 %. The datasets were analyzed 
with different combinations of Cmin and Cmax. A sce-
nario where Cmin = Cmax was also tested by specify-
ing predefined numbers of candidates to select. For the 
cattle dataset, 120 bulls were defined to be selected, 
which gave Cmin = Cmax = 0.883%. For the pig data-
sets 110 boars were defined to be selected, which gave 
Cmin = Cmax = 0.9%. Attributes of the OC selection 
were examined including the optimal number of selected 
animals, the genetic merit of the selected parents, 
achievement of the imposed constraints, and computer 
time. All computations were done on the Abel clusters 
that are owned by the University of Oslo and the Norwe-
gian metacentre for high performance computing.

Results and discussion
This paper presents a novel iterative algorithm, Gen-
cont2, for calculating optimized genetic contributions 
with a predefined rate of inbreeding. Figure 1 shows the 
association between EBV and optimized genetic contri-
butions of selected bulls for the cattle dataset with a tar-
geted rate of inbreeding of 0.01 (left) and 0.05 (right). The 
algorithm was successful in constraining �F  to the prede-
fined levels. The number of selected bulls (with nonzero 
contributions) increased when more severe constraints 
were placed on �F  (Fig. 1). For example, the number of 
animals selected increased from 15 to 75 as the allowed 
rate of inbreeding decreased from 0.05 to 0.01. Conse-
quently, the expected genetic gain also decreased as the 
constraint became more stringent (Fig. 1). These results 
are expected because as more severe restrictions are 
placed on future inbreeding, contributions from superior 
animals will decrease and more animals are selected in 
order to achieve the average relationship constraint. For 
instance, the maximum percentage of progeny per indi-
vidual was well below 5 % when �F  was 0.01 compared 
with 10 % when �F  was 0.05 (Fig. 1). Similar results were 
reported in other OC selection studies [8, 11].

Results of the current algorithm were compared with 
Gencont [15] on the basis of the optimal number of 
selected animals, genetic gain, average relationship of the 
parents, and computer time. Analyses of the cattle data-
set using both algorithms at different rates of inbreeding 
are summarized in Table  2. Both algorithms suggested 
that equal optimal numbers of candidates at 0.05 and 
0.01 rates of inbreeding were selected and gave similar 
results with respect to genetic gain. The candidates that 
were selected by the two algorithms were the same and 
the assigned contributions had correlations very close to 
1 (Table 2). For inbreeding rates of 0.005 and 0.001, the 
iterative algorithm selected fewer candidates and yielded 
a slightly higher genetic gain. However, the additional 
selected candidates had very low assigned contributions 
that ranged from 0.006 to 0.03  % and both algorithms 
successfully met the constraints. The iterative algorithm 
considerably reduced the computer time by around 92 % 
compared to Gencont (Table 2).

The optimal number of boars selected, expected 
genetic gain and relative computer times using both algo-
rithms at different inbreeding rates for the pig dataset are 
in Table 3. The optimal number of selected boars ranged 
from 28 to 103 for different levels of constraints on 
inbreeding rate. Both algorithms gave very similar results 
with respect to the optimal number of boars to select and 
genetic gains when the predefined inbreeding rates were 
0.05 and 0.001 (Table 3). The iterative algorithm suggests 
that fewer boars would be selected when constraints 
on inbreeding rate were 0.01 and 0.005. The different 
selected candidates have contributions that ranged from 
0.02 to 0.08 % and the correlations between assigned con-
tributions by the two algorithms were higher than 0.98 
(Table 3). For all these analyses, both algorithms satisfied 
the imposed constraints. The iterative algorithm used 
only from 6.5 to 9.3  % of the computer time to obtain 
optimal solutions compared to Gencont (Table 3).

Both methods use the same approach to calculate 
genetic contribution (i.e. LaGrange multipliers). How-
ever, small variations were observed between solutions of 
the two algorithms. These differences might be attributed 
to the fact that the Gencont algorithm obtains solutions 

Table 1 Description of datasets

a Average relationship between selection candidates
b Average inbreeding of selection candidates

Dataset Number of selection  
candidates

Pedigree  
size

EBV Average  
relationshipa

Average 
inbreedingb

Min Mean Max

Cattle 3907 23,224 0.595 1.118 1.569 0.04234 0.01709

Pig 2929 11,945 88.50 111.8 134.0 0.1928 0.09269

Sheep 6875 82,225 63.00 123.6 156.0 0.14595 0.02771
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by directly inverting the relationship matrix among selec-
tion candidates. However, Gencont2 uses Newton–Raph-
son steps to update Lagrangian multipliers and to solve 
for genetic contributions [Eq.  (3)] with some degree of 
errors (10−6 convergence).

For the sheep dataset with 6895 selection candidates, 
Gencont could not be run because it could not han-
dle such a large dataset due to the algorithm requiring 
repeated calculations of the inverse of the relationship 
matrices for the selection candidates [6]. However, the 
iterative algorithm was successful in obtaining optimized 
solutions and achieving predefined constraints. Table  4 
presents the optimal number of rams to select and 
the genetic gain achieved at different rates of inbreed-
ing for the sheep dataset. The optimal number of rams 
selected ranged from 25 to 107 when the constraint on 
the inbreeding rate became more stringent from 0.05 to 
0.001 (Table 4).

These optimization analyses did not take any addi-
tional constraint on either the maximum or the mini-
mum genetic contribution of a particular candidate into 
account. In practice, achieving optimal genetic con-
tributions for all candidates may not be possible due to 
biological limitations and management policies. Such 
limitations can be incorporated in the optimization pro-
cess by applying further restriction on minimal (Cmin ) 
and maximal (Cmax) contributions (as shown in the 
Appendix). Table  5 summarizes the comparison of the 
two algorithms with the application of restrictions on 
minimal and maximal contributions for the cattle data-
set. Table 5 presents the optimal number of candidates to 
select and �G under different combinations of Cmax and 
Cmin restrictions. If there was any difference between 
the two methods, then the results in parenthesis belong 
to Gencont. Table  5 shows that, for the cattle dataset, 
restriction on the maximal genetic contribution has more 

Fig. 1 Association between EBV and optimized genetic contribution for the selected candidates in the cattle dataset by applying two levels of 
constraints on rate of inbreeding (�F)). �G = genetic gain

Table 2 Analysis of Cattle dataset using Gencont2 and Gencont

Different levels of rate of inbreeding with respect to genetic gain (�G), number of selected individuals relative necessary computation time and correlation between 
assigned contributions
a If there was difference between the two algorithms, the result obtained with Gencont is shown in parentheses
b Average relationship between selected candidates
c Amount of computation time necessary for Gencont2 expressed as the fraction of the time necessary for Gencont (in %)
d Correlation between assigned contributions

�F �G
a Ave_relationshipb Number of selected candidatesa Timec Rd

0.05 1.539 0.14057 15 8.1 0.999

0.01 1.471 0.06227 75 7.9 0.999

0.005 1.449 (1.448) 0.05249 104 (106) 7.9 0.998

0.001 1.424 (1.423) 0.04465 127 (128) 7.9 0.996
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influence on the optimal number of candidates to select 
and genetic gain than the given restrictions on the mini-
mal contribution.

Table 6 presents the optimal number of candidates to 
select and �G under different combinations of Cmax and 
Cmin restrictions for the pig dataset. It also shows that 
restriction on the maximal genetic contribution has more 
effect on genetic gain than given restrictions on mini-
mal contributions for the pig dataset. Scenarios where 
Cmin = Cmax were also tested by fixing the number of 
individuals to select (Tables 5, 6).

Comparing results with and without restrictions on 
the maximal and minimal contributions (i.e. Table  2 
vs. Table 5 and Table 3 vs. Table 6 for the cattle and pig 
datasets, respectively) shows that restriction on mini-
mal contributions has very small or no effect on genetic 
gain. The main difference between these results is that 
candidates with the lowest contributions in the case of 
optimization without restriction are given zero contri-
butions in the case of optimization with restriction on 
minimal contribution. However, restriction on maximal 
contribution has a notable effect on genetic gain and 
optimal number of individuals to select. These results are 
in agreement with Hinrichs et al. [11], who also reported 

that restriction on the minimal contribution has a lim-
ited effect on genetic gain compared with restriction on 
maximal contribution. However, the effect of restriction 
on minimal contribution could be significantly greater if 
a higher level of restriction was used.

Inbreeding is a growing concern in animal breed-
ing programs. Advancements in statistical methods for 

Table 3 Analysis of the Pig dataset using Gencont2 and Gencont

Different levels of rate of inbreeding with respect to genetic gain (�G), number of selected individuals relative necessary computation time and correlation between 
assigned contributions
a If there was a difference between the two algorithms, the result obtained with Gencont is shown in parentheses
b Average relationship between selected candidates
c Amount of computation time necessary for Gencont2 expressed as the fraction of the time necessary for Gencont (in  %)
d Correlation between assigned contributions

�F �G
a Ave_relationshipb Number of selected candidatesa Timec Rd

0.05 129.55 0.28481 28 6.8 0.999

0.01 125.43 (125.39) 0.21259 73 (77) 6.5 0.986

0.005 124.37 (124.42) 0.20356 84 (90) 8.2 0.986

0.001 123.40 (123.44) 0.19634 103 9.3 0.990

Table 4 Analysis of  the Sheep dataset using Gencont2 
at  different levels of  rate of  inbreeding (�F) with  respect 
to  genetic gain (�G), number of  selected individuals 
and computer time

a Average relationship between selected candidates
b Amount of computation time necessary to find optimal solutions in minutes

�F �G Ave_relation-
shipa

Number of selected 
candidates

Timeb

0.05 146.11 0.14922 25 8:27

0.01 140.03 0.07129 70 8:27

0.005 138.86 0.06156 89 8:12

0.001 137.70 0.05376 107 7:14

Table 5 Analysis of  the Cattle dataset with  3907 male 
selection candidates under  different combinations 
of restrictions on the minimal and maximal contributions 
with respect to genetic gain and optimal number of candi-
dates to select

Cmin = minimum contribution

Cmax = maximum contribution

�F = 0.01

a If there was a difference between the two algorithms, the result obtained with 
Gencont is shown in parentheses

Cmin Cmax �G
a Number of selected 

animalsa

0.0025 – 1.471 62 (65)

0.0050 – 1.471 51 (57)

– 0.01 1.437 100

– 0.02 1.464 (1.463) 76 (77)

– 0.03 1.470 74

– 0.04 1.472 (1.471) 75 (76)

– 0.05 1.472 (1.471) 75

0.0025 0.01 1.437 100

0.0025 0.02 1.462 68

0.0025 0.03 1.471 (1.470) 61 (62)

0.0025 0.04 1.471 64 (65)

0.0025 0.05 1.472 (1.471) 63 (65)

0.0050 0.01 1.437 100

0.0050 0.02 1.462 61

0.0050 0.03 1.470 (1.469) 53 (55)

0.0050 0.04 1.471 55 (56)

0.0050 0.05 1.471 57

0.0083 0.0083 1.429 120
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genetic evaluation, such as BLUP, have increased the 
accuracy of estimated breeding values. This increase in 
accuracy comes with a cost of increasing the probabil-
ity of co-selection of related individuals, which in turn 
increases the inbreeding level of a population (e.g. [1]). 
In the last decades, tools for genetic contribution optimi-
zation have been developed to manage rate of inbreed-
ing in breeding programs [5, 6]. The use of OC selection 
has provided a useful tool to control the rate of at which 
inbreeding accumulates in a population. However, more 
importantly, OC selection has resulted in a higher genetic 
gain at the same level of inbreeding or in lower rate of 
inbreeding at the same level of genetic gain than tradi-
tional truncation selection [6].

One practical challenge in the use of the current exist-
ing OC selection algorithms, specifically Gencont, is the 
heavy computing requirements that arise from inverting 
the relationship matrix for large numbers of selection 
candidates repeatedly. To overcome this practical chal-
lenge, Hinrichs et  al. [11] proposed an improvement to 
the Gencont algorithm. The main assumption in their 

method (OCSelect) is that finding the inverse of the rela-
tionship matrix between parents of the selection candi-
dates is easier than between the candidates themselves 
because the size is relatively smaller. This might be true 
in some breeding programs; however, it might not be the 
case in dairy cattle and sheep breeding schemes, where 
the number of parents is large. Furthermore, the pres-
ence of overlapping generations (i.e. both parents and 
offspring could be selection candidates) in these spe-
cies, may cause some computational problem in OCSe-
lect. Methods such as that of Henderson [17] and Quaas 
[18] are available to derive directly the inverse of very 
large relationship matrices. These methods assume that 
the A−1 of all animals in the pedigree are required. How-
ever, in optimal contribution selection only the inverse 
of the relationship matrix between selection candidates 
is required. In addition, following the setup of Gencont, 
the A−1 had to be recalculated several times because can-
didates with invalid assigned contributions are rejected 
from the optimization process.

We present an alternative approach that uses an itera-
tive algorithm and that can be applied to calculate opti-
mal contributions. The iterative algorithm replaced the 
procedure that requires inversion of the relationship 
matrix repeatedly by obtaining solutions iteratively. In 
general, the results of the comparison between the two 
algorithms (i.e. Gencont2 and Gencont) showed that, in 
most of cases, both algorithms gave very similar solutions 
with respect to genetic gain and optimal number of can-
didates to select. In cases where the optimal number of 
candidates to select varied, differently selected candidates 
had very low contributions that ranged from 0.006 to 
0.08 %. Furthermore, both algorithms constrained �F  to 
the predefined levels. In agreement with previous stud-
ies [8, 10], the number of animals selected increased and 
genetic gain decreased as more severe constraints were 
placed on �F . To satisfy the more stringent constraints, 
the degree of relationship among selection candidates 
needs to be reduced which is achieved by reducing the 
variance of c. This means selecting more animals (assign-
ing nonzero contributions to animals with lower EBV) 
and reducing the contribution of superior animals.

The setting up of constraints in Gencont can result in 
some individuals that have low breeding values being 
assigned invalid negative contributions. This problem 
is solved by fixing the contributions of these candidates 
to zero and repeating the optimization process without 
these candidates [6]. This process is repeated with fewer 
and fewer candidates until no negative contributions are 
found. Note that once a candidate is eliminated from the 
optimization process, it is no longer considered in the 
next iterations. This shows that Gencont does not guar-
antee that the solutions are always optimal and, under 

Table 6 Analysis of  the Pig dataset with  2929 selection 
candidates under  different combinations of  restrictions 
on the minimum and maximum contributions with respect 
to  genetic gain and  optimal number of  candidates 
to select

Cmin = minimum contribution

Cmax = maximum contribution

�F = 0.01

a If there was a difference between the two algorithms, the result obtained with 
Gencont is shown in parentheses

Cmin Cmax �G
a Number of selected 

animalsa

0.0025 – 125.42 (125.39) 62 (68)

0.0050 – 125.34 (125.36) 48 (55)

– 0.01 123.77 (123.76) 102

– 0.02 124.97 (124.90) 84 (86)

– 0.03 125.19 (125.18) 81

– 0.04 125.34 (125.32) 78 (79)

– 0.05 125.37 77

0.0025 0.01 123.754 101

0.0025 0.02 125.05 (124.90) 76 (78)

0.0025 0.03 125.24 (125.18) 71 (73)

0.0025 0.04 125.33 (125.32) 70 (71)

0.0025 0.05 125.37 69

0.0050 0.01 124.97 100

0.0050 0.02 125.05 (124.90) 71

0.0050 0.03 125.24 (125.27) 66 (67)

0.0050 0.04 125.32 62

0.0050 0.05 125.54 (125.36) 56 (58)

0.0090 0.009 122.45 (122.36) 110
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some circumstances, it might yield suboptimal solutions. 
Pong-Wong and Woolliams [7] worked out some numeri-
cal examples and demonstrated that Gencont does not 
guarantee that the final solutions are global maximum, 
but rather suboptimal under some scenarios. The same 
example is worked out here (see Appendix 2) to test Gen-
cont2 in a similar situation. For the tested scenarios, Gen-
cont2 found global maximum solutions that were similar 
to the solutions found by the semi-definite programming 
(SDP) method [7]. This is because Gencont2 does not rely 
on the elimination of candidates with assigned negative 
contributions, but rather implements some sort of con-
straint (i.e. ci ≥ 0) to make sure all solutions are valid.

There are other alternative algorithms for solving the 
optimization problem presented in this paper (i.e. objec-
tive function H) such as evolutionary algorithms [12], 
differential evolution [13] and semi-definite program-
ming [7]. Evolutionary algorithms are more flexible 
and have the benefit of accommodating many practical 
constraints that would be challenging to deal with the 
Lagrangian multiplier approach. Semi-definite program-
ming is well suited in optimization problems where the 
restrictions of the objective function are convex [7]. Dif-
ferential evolution algorithms are a family of evolution-
ary algorithms and it has been shown that it is powerful 
to optimize diverse objective functions and is feasible for 
practical applications [13].

In step 1 of the iterative algorithm, it is assumed 
that A−1 = I to calculate initial values for �0. At first 
look, this assumption seems very strong, however, it 
has limited or no impact on the final optimal solu-
tions because in consecutive iterations the value of �0 is 
updated (i.e. in step 3) using c values obtained by solving 
Ac = (EBV −Q�)/2�0. In addition, the iterative process 
will not converge before stabilizing the �0 value between 
consecutive iterations. The results also showed that the 
final solutions of the two algorithms are virtually similar 
with correlations being very close to 1 (Tables 2, 3). Thus, 
the iterative algorithm finds optimal contributions with-
out inverting the relationship matrix A.

In the case of genomic selection (GS), selection may 
concentrate on some chromosomal segments from gen-
eration to generation, because there are some genes with 
a larger effect on these segments [19]. It may be noted 
that the objective function H could be extended to con-
strain several (genomic) relationship matrices, which may 
be relevant if inbreeding is to be constrained at several 
positions in the genome. This would require updating 
several �0 values in step 3 of the algorithm. As indicated 
by Sonesson et al. [20], when genomic selection is used, 
the pedigree relationship matrix A should be replaced 
by the marker-based (genomic) relationship matrix, G, 
to constraint inbreeding in OC selection. The presented 

OC algorithm does not require the inverse of G, which is 
often computationally difficult to obtain.

Conclusions
The management of inbreeding in a breeding scheme 
requires that the average relationship between selected par-
ents be managed. Optimal contribution selection is a useful 
tool to control rate of inbreeding while improving genetic 
gain. An iterative algorithm based on Meuwissen’s dynamic 
selection algorithm for calculating optimal contributions 
was developed. The presented iterative algorithm achieved 
a reduction in computer time of 90 to 93 % compared to 
the original algorithm and was able to handle datasets with 
a large number of selection candidates. The main advan-
tage of the iterative algorithm is that it avoids (repeatedly) 
inversion of the relationship matrix. Thus, this iterative 
algorithm makes the implementation of optimal contribu-
tion selection for large-scale practical data possible, and 
thus enables the management of genetic diversity in breed-
ing programs and increases their sustainability.
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Appendix 1: Calculation of optimized genetic 
contributions with restriction on maximal 
and minimal contributions
The Appendix in Meuwissen [6] extended the dynamic 
optimal contribution algorithm for cases where some 
candidates have fixed contributions due to biological 
limitations and management policies. Here, the iterative 
algorithm is extended to handle such cases. The main 
purpose of this modification is to calculate the optimal 
contributions of the remaining candidates in the optimi-
zation process if the contributions of some candidates are 
set to fixed values. Let the remaining candidates in the 
optimization processes termed group 1 and candidates 
with fixed contribution termed group 2.

The objective function H for this case is:

H = cT1 EBV1 − �0

(

cT1 A11c1 + 2cT1 A12c2 − K

)

− �

(

cT1 Q1 − sT
)

,
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where c1 is a vector of the genetic contributions of 
group 1 candidates that are to be optimized, c2 is a vec-
tor of known contributions of group 2 candidates, EBV1 
is a vector of breeding values of group 1 candidates, 
K = 2C̄ − cT2 A22c2, C̄ is the required average coeffi-
cient of co-ancestry for all candidates (i.e. C̄ = CTACT ), 
A11, A12 and A22 are part of the additive relation-
ship matrix belonging to the candidates in group 1 and 
2, s = r −QT

2 c2; r is a vector of 0.5  s of length two, Q1 
and Q2 are known incidence matrices for the sex of can-
didates in group 1 and 2, respectively, and �0 and � are 
Lagrangian multipliers.

Taking the gradient of H with respect to c1 and equat-
ing to 0 yields:

From the constraint K = 2C̄ − cT2 A22c2 follows an 
equation for �0:

(5)c1 =
A−1
11 (EBV1 − 2�0A12c2 −Q1�)

2�0
,

(6)�
2
0 =

1
4
EBVT

1 PEBV1

K + cT2 A21PA12c2 − sT
(

QTA−1Q
)−1

s− 2sT
(

QTA−1Q
)−1

QT
1 A

−1
11 A12c2

where P = A−1
11 − A−1

11 Q1

(

QT
1 A

−1
11 Q1

)−1

QT
1 A

−1
11 . For a 

more detailed derivation of Eqs.  (5) and (6) see Appen-
dix of Meuwissen [6]. The procedure to calculate optimal 
contributions iteratively is described below.

Step 1: Calculate �0 by solving Eq.  (6) (assum-
ing A−1

11 = I) and initiate some values for � (for 
instance zero). Calculate optimal contributions 
for group 1 individuals, c1, by solving Eq.  (5), i.e. 
A11c1 = (EBV1 − 2�0A12c2 −Q1�)/2�0, using the 
Gauss–Seidel method.

Step 2: Update � by taking the gradient of Eq. (5) with 
respect to � and rearranging:

We want to change c1 by ∂c1 such that �s−QT
1 ∂c1 = 0 

(i.e. �s = QT
1 ∂c1). From the constraint QT

1 c1 = s, 
�s = s−QT

1 c1 and assuming A−1
11 = I:

Step 3: Update �0. Equation (5) can be also written as:

∂c1/∂� = −A−1
11 Q1/2�0,

QT
1 ∂c1 = −

QT
1 A

−1
11 Q1∂�

2�0
,

(7)
∂� = −2 ∗

(

QT
1 Q1

)−1

∗�s ∗ �0,

�new = �+ ∂�

(8)A12c1 =

[

(EBV1 −Q1�)

2�0
− A12c2

]

,

Taking the gradient of Eq.  (8) with respect to �0 and 
rearranging:

We want to change c1 by ∂c1 such that �K− 
cT1 A∂c1 − 2∂cT1 A12c2 = 0 (i.e. that �K = cT1 A∂c1+ 
2∂cT1 A12c2). Based on the constraint K = cT1 A11c1 
+2cT1 A12c2, �K = K − cT1 A11c11 − 2cT1 A12c2. Taking 
gradient of �K  with respect to c1 and rearranging:

The term A−1
11 A12c2 in Eq. (9) is obtained iteratively.

∂c1 = −
A−1
11 (EBV1 −Q1�)∂�0

2�20
,

(9)∂�0 = −
�K�

2
0

(

c1 + A−1
11 A12c2

)

(EBV1 −Q1�)
,

�0new = �0 + ∂�0,

Step 4: Re-calculate optimal contributions for the 
updated values for �0new and �new by solving Eq. (5) for c1 , 
i.e. by solving A11c1 = (EBV1 − 2�0A12c2 −Q1�)/2�0.

Step 5: Check for convergence and that the solutions 
are valid. The convergence was monitored after each 
round of iteration. If convergence is not achieved, then 
the algorithm will return back to step 2.

When solving Eq. (5) in steps 1 and 4 using the Gauss–
Seidel method, solutions are constrained to be valid (i.e. 
ci ≥ 0). For computational reasons, animals with 0 con-
tributions were removed after 500 iterations for the first 
time and after every 100th iteration until convergence.

Appendix 2: A simple numerical example 
to demonstrate a scenario where Gencont gives 
suboptimal solutions and to compare results 
with Gencont2
Pong-Wong and Woolliams [7] demonstrated scenarios 
where suboptimal solutions are given by Gencont using 
simple numerical examples (Fig.  2). Here, we use the 
same example to demonstrate that the new algorithm (i.e. 
Gencont2) had improved the suboptimal solution prob-
lems in certain situations.

The example contains six candidates: three males and 
three females (Fig.  2). To simplify the illustration, only 
the contributions of the male candidates are optimized 
(female contributions are fixed to 1/6). The assumption 
is that similar behaviour may also be observed when 
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optimizing a larger set of candidates. The authors cal-
culated genetic contributions of the candidates using 
the semidefinite programming [7] method and Gencont 
method. Here, we compared the genetic contributions 
calculated by Gencont2 with the other two methods.

Breeding values of the candidates and pedigree infor-
mation were from the example presented in Pong-Wong 
and Woolliams [7]. The example is designed to mimic a 
closed population in which external sires are introduced. 
The relationship between candidates was derived from 
the pedigree in Fig.  2. The methods were tested under 
the restriction of K   ≤  0.29. The optimization process 
using Gencont2 assigned the contributions to 0.0495, 
0.000, and 0.4505 for sires 1, 2, and 3, respectively, with 
an expected genetic gain of 0.935. This was the exact 
solution and expected genetic gain obtained by SDP [7]. 
They also tested all possible combinations and confirmed 
that this was the optimal solution. Gencont, on the other 
hand, assigned the contributions to 0.000, 0.000, 0.500 
for sires 1, 2 and 3, respectively, with an expected genetic 
gain of 0.90 (3.7 % less than the gain obtained with SDP 
and Gencont2 methods). This is mainly because Gencont 
eliminates individuals with negative contributions at each 
iteration by assigning zero contributions. For this exam-
ple, suboptimal solutions could be avoided if one can-
didate with the most negative solution is eliminated per 
iteration. However, in  situations where the set of candi-
dates is very large, the elimination of one candidate at a 
time may have some practical limitations.

Testing of the programs in other scenarios where there 
is restriction on the maximum and minimum contri-
butions per individual, Gencont failed to find optimal 
solutions for some cases (see [7]). However, Gencont2 

provided solutions similar to the SDP solutions for these 
cases. This can be attributed to the fact that Gencont2 
does not remove animals with invalid solutions from the 
optimization process after each iteration but rather uses 
the Gauss–Seidel step to constrain the solutions to be 
valid.
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