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Abstract

One of the major challenges in neurobiology remains understanding the relationship between

complex neural network dynamics underlying spatially structured activity states and the corre-

sponding neural circuitry for which the electromagnetic field is macroscopically measurable via

electroencephalogram (EEG) or local field potentials. Such macroscopic electrical activity in the

neocortex is naturally studied in the framework of cortical networks. However, since the number of

neurons and synapses in even a small piece of cortex is immense, a suitable modeling approach is

to take a continuum limit of the neural networks and, thus, consider so-called neural field models

of the brain cortex. This modeling framework involves integro-differential equations or Volterra

integral equations and goes back to the seminal papers by Wilson, Cowan and Amari in the

1970’s. In recent years, such neural fields have been used to model a wide range of neurobiological

phenomena, including orientation tuning in primary visual cortex, short term working memory,

control of head direction, motion perception, geometric visual hallucinations, EEG rhythms, and

wave propagation in cortical slices and in vivo.

The aforementioned framework, however, does not take into account the heterogeneity in the

cortical structure. Recent works in neuroscience have drawn attention to homogenized neural field

models where the brain heterogeneity is captured by a special parameter. Such models are obtained

from heterogeneous neural field models by means of homogenization: the two scale convergence

method developed by Nguetseng. These investigations have been restricted to a one-dimensional

case though. We take a step in the direction of considering a more realistic two-dimensional

variation of the homogenized neural field model. We use pinning function technique and spectral

properties of Hilbert–Schmidt integral operators to establish existence and stability of localized

stationary activity states.

Various approximations and numerical approaches, which are frequently used in the mathemat-

ical neuroscience, need to be justified rigorously. Using the fixed point theorems and convergence

techniques in functional spaces, we investigate the well-posedness aspects of the homogeneous and

homogenized neural field models, thus justifying implementation of numerical schemes. We also

justify the approximations of continuous neural fields by network models, thus, proving the validity

of various disctetization methods. Using compactness in functional spaces and topological degree

theory, we justify the approximation of smooth activation functions by the Heaviside unit step

function in the case of localized stationary solutions for the n-dimensional homogenized neural

field model. The latter result is of particular importance in the aforementioned homogenization

procedure.

The present thesis illustrates that methods of functional analysis employed in mathematical

neuroscience may be very beneficial.
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Sammendrag

En av hovedutfordringene i nevrobiologi best̊ar i å forst̊a sammenhengen mellom den kom-

plekse nettverks-dynamikken som ligger under de romlige aktivitetstilstandene i hjernebarken

og makroskopiske målinger av den korresponderende elektriske kretsverk aktiviteten ved hjelp

av elektroencefalogram (EEG) og lokale felt potensialer. Slik makroskopisk elektrisk aktivitet

in neocortex beskrives gjerne ved hjelp av fyringsrate modeller. Men, siden antallet nevroner

og synapser i selv en svært liten del av hjernebarken er enormt stort, s̊a er det naturlig å ta kon-

tinuumsgrensen av disse fyringsrate modellene. Dette betyr at en studerer fyringsaktiviteten i

hjernebarken ved hjelp av s̊akalte nevrofelt modeller. Slike rammeverk for modellering baseres

p̊a integro-differensial likninger eller Volterra integral likninger. Disse rammeverkene g̊ar

tilbake til banebrytende arbeider av Wilson, Cowan og Amari p̊a 1970–tallet. I de senere

årene har en brukt nevrofeltmodeller til å beskrive ett vidt sett av nevrobiologiske fenomener,

som f. eks. inkludering av orientering tuning i den primære visuelle hjernebarken, korttids

hukommelse, kontroll av hode retning, persepsjon, visuelle hallusinasjoner, EEG rytmer og

bølgeforplantning i snitt av hjernebarken og i levende vev.

En svakhet med mange nevrofelt-modeller er at de ikke tar hensyn til heterogeniteten som

er til stede i den kortikale strukturen. I noen nylig publiserte arbeider i nevrovitenskap tar

en hensyn til heterogeniteten ved hjelp av en spesiell parameter. Slike modeller er utledet fra

heterogene nevrofelt modeller ved hjelp av en homogeniseringsmetode basert p̊a to-skala kon-

vergens metoden til Nguetseng. Disse studiene er imidlertid begrenset til en rom dimensjon.

I denne avhandlingen ser vi p̊a en realistisk to-dimensjonal situasjon for en en-populasjon ho-

mogenisert nevrofelt modell. Vi bruker pinning funksjonsteknikken til å avgjøre eksistens av

romlig lokaliserte tilstander og spektral egenskapene til Hilbert–Schmidt integral operatorer til

å bestemme stabiliteten til disse tilstandene. Det er viktig å rettferdiggjøre de ulike approksi-

masjonene og de numeriske skjemaene som brukes i matematisk nevrovitenskap rigorøst. Ved

å bruke fikspunkt teoremer of konvergensteknikker i funksjonsrom, studerer vi velformulerthet

av homogene og homogeniserte nevrofelt modeller. Vi rettferdiggjør ogs̊a implementering av

numeriske skjemaer. Vi begrunner ogs̊a approksimasjonen av kontinuerlige nevrofelt modeller

ved hjelp av diskrete nettverks modeller, hvilket innebærer at vi rettferdiggjør ulike diskretis-

eringsmetoder. Ved å bruke kompakthet resultat for funksjonsrom og gradteori, rettferdiggjør

vi approksimasjonen av glatte fyringsrate funksjoner med Heaviside-step funksjon n̊ar vi stud-

erer lokaliserte stasjonære løsninger av den n dimensjonale homogeniserte nevrofelt modellen.

Det sistnevnte resultatet er spesielt viktig i den tidligere nevnte homogeniseringsprosedyren.

Den foreliggende avhandlingen viser at det er svært fordelaktig å bruke funksjonalana-

lytiske metoder i matematisk nevrovitenskap.
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1. Introduction

The human brain cortex is the top layer of the hemispheres, of 2–4 mm thick, involving

about 109 neurons having 60×1012 connections [1]. The brain cortex is responsible for such

higher functions of the human brain as e.g. memory, reasoning, thought, and language

[2], [3]. The basic unit of the brain cortex is the neuron. It consists of dendrites, cell

body (soma), and axon. The dendrites receive electrical signals from other neurons and

propagate them to the soma. If the total sum of the input electrical potential in the soma

exceeds a certain threshold value, the neuron produces the burst of the output electrical

signal (fires an action potential), which then propagates along the axon to other neurons.

Thus, a natural way (see e.g [4]) of studying electrical activity in the neocortex is the

framework of cortical networks.

The most well-known representative of such models is the Hopfield network model [5].

A generalized version of that model is given by

żi(t) = −zi(t) +
N∑

j=1

ωijf
(
zj
(
t− τij(t)

))
,

t ≥ 0, i = 1, ..., N,

(1)

see e.g. [6]. The delayed Hopfield model 1 takes into account the finite speed of the

electrical signal propagation in the cortical network. Here zi is the electrical activity of

the i-th neuron in the network, ωij is the connection strength between the i-th and j-th

neurons, the non-negative function f gives the firing rate f(z) of a neuron with activity

z, and τij is a non-negative function denoting the time it takes for the signal to reach the

j-th neuron from the i-th neuron. The classical Hopfield network model has τij = 0 for

all i, j = 1, . . . , N .

However, since the number of neurons and synapses in even a small piece of cortex is

immense, a suitable modeling approach is to take a continuum limit of the neural networks

and, thus, consider so-called neural field models of the brain cortex (rigorous justification

of this limit procedure using the notion of parameterized measure is given in Paper IV).

The most well-known and simplest model describing the macro-level neural field dynamics

is the Amari model [7]

∂tu(t, x) = −u(t, x) +

∫

Ω

ω(x− y)f(u(t, y))dy,

t ≥ 0, x ∈ Ω ⊆ Rn.

(2)
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Here u(t, x) denotes the activity of a neural element u at time t and position x. The

connectivity function ω determines the coupling strength between the elements and the

non-negative function f gives the firing rate f(u) of a neuron with activity u. Neurons

at a position x and time t are said to be active if f(u(t, x)) > 0. Typically f is a smooth

function that has sigmoidal shape. Well-posedness of (2) was proved in [8]. Well-posedness

of (2) for the case, when the spatial domain is a Riemannian space, was investigated in

[9]. Faugeras et al [10] proved existence and uniqueness of the stationary solution to (2)

as well as obtained conditions for this solution to be absolutely stable, for the case of a

bounded Ω. The local and global structure of stationary solutions to neural field equations

(2) on a bounded Ω was studied in [11]. Well-posedness of the following delayed Amari

model

∂tu(t, x) = −u(t, x) +

∫

Ω

ω(t, x, y)f(u(t− τ(x, y), y))dy,

t ≥ 0, x ∈ Ω

(3)

in the space of square integrable functions was proved in [12].

A common simplification of (2) consists of replacing a smooth firing rate function by

the Heaviside function with some activation threshold θ > 0

H(u) =





0, u ≤ θ,

1, u > θ.
(4)

This replacement simplifies numerical investigations of the model as well as allows to

obtain closed form expressions for some important types of solutions (see e.g. [7], [13],

[14], [15]). Particular attention in the neural field theory is usually given to the localized

stationary, i.e., time-independent, solutions (so-called ”bumps”). It is caused by the

fact that steady localized activity states in the cortex are prevalent during the normal

functioning of the brain, encoding visual stimuli [16], representing head direction [17], and

maintaining persistent activity states in working memory [18], [19].

It is usually tacitly assumed that the approximation of a smooth firing rate function

f , which is sufficiently steep between the activation threshold value θ and the ”saturation

value” θsat = inf{u, f(u) = 1}, by the Heaviside function (4) preserves all properties

of the corresponding solutions. However, no rigorous mathematical justification of the

passage from a smooth to discontinuous firing rate functions in the framework of neural

field models was given until the work by Oleynik et al [20], where continuous dependence
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of the 1-bump stationary solution to (2) under the transition from a smooth firing rate

function to the Heaviside function was proved in the 1-D case.

1.1. One-dimensional Amari model

Amari [7] found analytical expressions for bump solutions and showed that there exist

stable and unstable bumps in the framework of the one-dimensional model (2) with the

Heaviside firing rate function (4). Later, Kishimoto and Amari [21] proved the existence

of stable bumps for the same model but with a firing rate function given as

f(u) =





0, u ≤ θ,

ϕ(u), θ < u < θsat,

1, u ≥ θsat,

(5)

where ϕ : [θ, θsat] → [0, 1] is an arbitrary differentiable increasing normalized function

such that ϕ(θ) = 0, ϕ(θsat) = 1. It was also shown in [21] that bump solutions to

the Amari model (2) with the firing rate function (5) have no closed form analytical

representation. Coombes and Schmidt [22] suggested an iterative scheme for construction

of these bumps. They, however, did not give a mathematical verification of their approach.

This verification was carried out in [23], where two iterative schemes for construction of

such bumps were introduced and the convergence of the schemes was proved.

The linear stability of bump solutions to the one-dimensional Amari model with the

Heaviside firing rate function is usually assessed by the Evans functions technique (see

e.g. [24], [25], [26], [27]).

The one-dimensional Volterra formulation of (3)

u(t, x) =

t∫

−∞

η(t− s)
∫

R

ω(x− y)f(u(s− |x− y|/v, y))dyds,

t ∈ R, x ∈ R

(6)

has been investigated by Venkov et al [28] in the study of axonal delay effects on Turing–

Hopf instabilities and pattern formation. Here the memory function (temporal convolu-

tion kernel) η(t) with η(t) ≡ 0 for t < 0 represents synaptic processing of signals within

the network, and the delayed temporal argument to u in the spatial integral represents the

axonal delay effect arising from the finite speed (denoted here by v) of signal propagation

between points x and y.
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1.2. Two-dimensional Amari model

Though most works are restricted to one spatial dimension, a more realistic modeling

framework of the electrical activity in cortical tissue makes use of neural field models in

two spatial dimensions. Yet, these models have been only occasionally studied in the

literature.

Rotationally symmetric bump solutions to the two-dimensional Amari model were

first considered by Taylor [29]. Laing and Troy [30] introduced PDE methods to study

symmetry-breaking of rotationally symmetric bumps and the formation of multiple bump

solutions. However, such methods can only be applied to connectivity kernels ω for which

the Fourier transforms are rational functions of the square of the radius. Stability of

rotationally symmetric bump solutions with respect to radial perturbations was examined

in [29], [31]. However, as shown by Folias and Bressloff [26], [32], and Owen et al [14],

in order to determine correctly the linear stability of radially symmetric solutions, it is

necessary to take into account all possible perturbations of the circular boundary. The

resulting spectral problem can be solved using e.g. Fourier methods. Existence and

stability of the solutions of the ring type were examined in [14]. The works [26], [32],

and [14] involve connectivity functions ω that can be represented as a sum of modified

Bessel functions. The advantage of such representation is the possibility to use analytical

expressions for the Hankel transform of the connectivity kernel and its integrals, which

appreciably facilitates the model analysis.

Faye et al [33] extended the results of the work [26] to Amari equations on a Rie-

mannian space, making them applicable to studying the electrical activity in the primary

visual brain cortex.

Numerical investigations of bump solutions in the aforementioned two-dimensional

frameworks involve Heaviside firing rate functions. A first step towards a rigorous study

of stationary radially symmetric solutions of neural field equations with smooth firing rate

function was taken in [34], where existence and stability of these solutions were examined.

1.3. Two-population Amari model

In the above models, both excitation and inhibition were incorporated into a one-

population neural field model. However, a two-population model, where excitatory and

inhibitory neurons are modeled separately may serve as a better approximation of excita-

tion and inhibition processes in the cerebral cortex (see e.g. [15], [35] and the references

4



therein). The two-population Amari model involves u(t, x) as a vector from R2 with the

components corresponding to the excitatory and the inhibitory populations of neurons.

Consequently, the firing rate function in (2) also has two components and the function ω

is represented by a 2×2 functional matrix reflecting the interactions between the popu-

lations. In the case of stationary solutions, the one-population model captures the basic

pattern forming instability. However, the two-population model supports a wider range

of dynamics and, in particular, can undergo a Turing–Hopf instability leading to the

formation of oscillatory patterns (see [36], [37], [35] and [38]).

1.4. Amari model with microstructure

The modeling framework (2) and its extensions cited above are proposed to capture

the features of the brain activity on the macroscopic level. However, they do not take

into account the heterogeneity in the cortical structure. In order to take into account the

microstructure of the brain media it is usually assumed that the connectivity kernel is

represented as ωε = ω(·, ·/ε), where the microstructure heterogeneity is parameterized by

ε > 0 (see e.g. [39], [40], [41]). Thus, (2) takes the form

∂tuε(t, x) = −uε(t, x) +

∫

Ω

ωε(x− y)f(uε(t, y))dy,

t ≥ 0, x ∈ Ω.

(7)

The powerful two-scale convergence method (see e.g. [42]) based on the theory of Banach

algebras with mean values has been applied by Svanstedt et al [40] to the neural field

models with spatial microstructure. It was shown [40] that if the microstructure is peri-

odic, then, as the heterogeneity parameter ε → 0, the solutions to (7) two-scale weakly

converge to the solution of the following homogenized problem:

∂tu(t, x, xf) = −u(t, x, xf) +

∫

Ω

∫

Y

ω(x− y, xf − yf)f(u(t, y, yf))dyfdy,

t ≥ 0, x ∈ Ω, xf ∈ Y ,
(8)

where xf is the fine-scale variable, belonging to some torus Y . Non-periodicity of the

microstructure in (7) leads to non-Lebesgue measure dµ(yf) in (8) [40].

The one-dimensional model (7) with periodic microstructure has extensively been

studied. The waves that travel trough a neural field with a periodically modulated mi-

crostructure were described in [43] and [39]. By using an interface dynamics approach, it

was showed (see [39]) that growth of the medium heterogeneity leads to the wave propa-

gation failure in the neural field. Existence and stability of the single bump and double

5



bump stationary solutions to (8) in 1-D were investigated in [41] and [44], respectively,

for the case of the Heaviside firing rate function. Numerical construction of these bump

solutions by using the iteration scheme technique was carried out in [45]. Existence and

stability of the radially symmetric single bump stationary solutions to (8) in 2-D were

investigated in Paper I. For the case of bump solutions, numerical analysis showed that

excitation/vanishing and splitting/merging of bumps as well as switching between their

stability/instability through continuous change of the heterogeneity parameter takes place

(see [41], [45] and Paper I).

2. Paper summaries

1.1. Paper I

We consider radially symmetric stationary single bump solutions to the two-

dimensional homogenized Amari model (8). It is assumed that the firing rate function is

approximated by means of the unit step function and that the solutions are independent of

periodic micro-variable. The existence of the solutions is carried out by pinning function

technique. We develop a stability method for the bump solutions obtained based on the

spectral properties of the Hilbert–Schmidt integral operators. The whole stability assess-

ment then concludes with a study of maximal growth rate of the perturbations imposed

on the bumps state, corresponding to the operator norm of the Hilbert–Schmidt operator.

We demonstrate the bumps construction procedure and the stability assessment in detail

by considering a concrete example of the connectivity kernel, which is typically used in

the neural field modeling.

1.2. Paper II

We extend the results of [20] to the n-dimensional homogenized Amari model (8) and,

in addition to the single bump solutions in 1-D, consider double bump solutions in 1-D

and single bump solutions in 2-D. We study existence and continuous dependence of the

stationary solutions to (8) under the transition from continuous firing rate functions to

the Heaviside function, and formulate and prove the corresponding two main theorems:

the theorem on continuous dependence of the stationary solutions to (8) under the tran-

sition from continuous firing rate functions to the Heaviside function and the theorem

on solvability of the equation (8) based on the topological degree theory. We apply the

theory developed to the following three types of solutions to (8):

a) Symmetric single bump solution in 1-D.

6



b) Symmetric double bump solution in 1-D.

c) Radially symmetric single bump solution in 2-D.

1.3. Paper III

We consider the following non-local integro-differential equations:

u(t, x) =

t∫

−∞

∫

Ω

W (t, s, x, y)f(u(s− τ(s, x, y), y))dyds,

t ∈ R, x ∈ Ω ⊆ Rm

(9)

and

u(t, x) =

t∫

a

∫

Ω

W (t, s, x, y)f(u(s− τ(s, x, y), y))dyds,

t ∈ [a,∞), x ∈ Ω;

u(ξ, x) = ϕ(ξ, x), ξ ≤ a, x ∈ Ω,

(10)

which generalize all homogeneous neural field models listed in the introduction and the

heterogeneous models with periodic microstructure. We define the notions of local, max-

imally extended and global solutions to (9) and (10). We first investigate well-posedness

of an abstract Volterra operator equation. Based on this theory, we establish conditions

for existence of unique global or maximally extended solutions to (9) and (10), study

continuous dependence of these solutions on the spatiotemporal integration kernel, delay

effects, firing rate and prehistory functions, and formulate the corresponding theorems.

We consider two special cases, which are highly relevant for the neural field theory, where

the assumptions of the main theorems can be appreciably relaxed. We also stress that the

case of the equation (9) requires more restrictions on the functions involved. The validity

of these restrictions is supported by an example, where a special case of (9) has infinitely

many solutions.

1.4. Paper IV

We utilize the theory of well-posedness of an abstract Volterra operator equation

developed in Paper III. We apply it to the following parameterized integro-differential

equation involving integration with respect to an arbitrary measure:

u(t, x, λ) =

t∫

−∞

ds

∫

Ω

W (t, s, x, y, λ)f(u(s− τ(s, x, y, λ), y, λ), λ)ν(dy, λ),

t > a, x ∈ Ω, λ ∈ Λ

(11)

7



with the initial (prehistory) condition

u(ξ, x, λ) = ϕ(ξ, x, λ), ξ ≤ a, x ∈ Ω, λ ∈ Λ. (12)

We show, that, in addition to the homogeneous neural field models and the heterogeneous

models with periodic microstructure, it covers the models with non-periodic media het-

erogeneity. We obtain conditions for existence and uniqueness of solution to (11)− (12).

We study continuous dependence of this solution on the spatiotemporal integration ker-

nel, delay effects, firing rate and measure. We construct connection between the delayed

Amari model and the delayed Hopfield network model (1). In addition, we offer a math-

ematical justification of two known discretization schemes used e.g. in [12] and [46]. We

also suggest an approach for investigation of the solutions to (7) with a non-periodic

perturbation of the periodic connectivity kernel.

3. Discussion

3.1. Contribution

In the present thesis we have applied methods of functional analysis for investigation

of the properties of the models in use in the neural field theory. Particular attention

has been paid to the recent modeling approach taking into account the brain medium

microstructure: the homogenized neural field models. Such models serve as a powerful

tool for studying electrical activity in the brain cortex possessing fine microstructure.

Within the mathematical neuroscience community, well-posedness aspect of the mod-

els under investigation is often tacitly assumed to hold true, even though no rigorous

mathematical justification is given for this assumption. Thus, it is of interest to study the

impact of model parameters on the well-posedness issue of these models i.e. existence,

uniqueness and continuous dependence on input data. Using the fixed point theorems

and convergence techniques in functional spaces, in Papers III and IV we established con-

ditions for existence of unique solutions to generalized neural field models and studied

continuous dependence of these solutions on all functions involved in the models. These

generalized models contain most of the models in use in the neural field theory as their

special cases.

We also reckon that one needs to justify rigorously various approximations and nu-

merical approaches, which are frequently used in the mathematical neuroscience, as a

lack of such justification may lead to ill-conditioning, numerical instabilities, or even di-
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vergence. In Paper IV we justified the approximations of continuous neural fields by

network models using the notion of parameterized measure and, thus, proved the validity

of various disctetization schemes. Using compactness in functional spaces and topological

degree theory, in Paper II we justified the approximation of smooth firing rate functions

by the Heaviside unit step function in the case of localized stationary solutions for the

n-dimensional homogenized neural field model.

In Paper I we supplemented the research on solutions to homogenized neural field

models, which was mostly restricted to 1-D (see [39], [41], [43], [44], [47] – [49]), with

investigation of existence and stability of the single bump stationary solution to the two-

dimensional homogenized neural field model. The study of the existence was carried

out by pinning function technique and the stability was examined by estimating the

growth/decay rates of the perturbations imposed on the bumps state, corresponding to

the operator norm of the Hilbert–Schmidt operator.

3.2. Future perspectives

In the future work the two-dimensional homogenized Amari neural field model can be

used as a starting point for studying the existence and stability of multi-bump and ring

solutions as well as traveling waves and fronts in 2-D.

In Paper IV we shed light on the possibility of using our knowledge about the het-

erogeneous neural field models possessing periodic microstructure when investigating the

models with microstructure, which is close to periodic in some sense. The detailed inves-

tigation of this possibility incorporates the theory of Banach algebras with mean values

and requires a separate research.

In Paper II we suggested an approach to the problem of existence and continuous de-

pendence of solutions to Amari neural field equation under the transition from continuous

nonlinearities in the corresponding Hammerstein operators to the Heaviside nonlinearity.

The approach involved compactness of the corresponding operators and methods of topo-

logical degree theory. Another possible way to treat such problems is representing the

Heaviside function as a multi-valued mapping. As the theory of multi-valued mappings

is rather well-developed (see, e.g. [50], [51]), we can expect that application of continu-

ous dependence techniques, or topological degree methods to the multi-valued mapping

obtained will improve the results of Paper II (e.g. allow to extend them to unbounded

spatial domains).
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Extension of the methods suggested in Paper II for studying stability of solutions to

homogeneous and homogenized neural field equations under the transition from continu-

ous firing rate functions to the Heaviside function can be considered as another further

development of our studies.

10
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a b s t r a c t

We investigate existence and stability of rotationally symmetric bump solutions to a homog-

enized two-dimensional Amari neural field model with periodic micro-variations built in the

connectivity strength and by approximating the firing rate function with unit step function.

The effect of these variations is parameterized by means of one single parameter, called the

degree of heterogeneity. The bumps solutions are assumed to be independent of the micro-

variable. We develop a framework for study existence of bumps as a function of the degree

of heterogeneity as well as a stability method for the bumps. The former problem is based on

the pinning function technique while the latter one uses spectral theory for Hilbert–Schmidt

integral operators. We demonstrate numerically these procedures for the case when the con-

nectivity kernel is modeled by means of a Mexican hat function. In this case the generic picture

consists of one narrow and one broad bump. The radius of the narrow bumps increases with

the heterogeneity. For the broad bumps the radius increases for small and moderate values of

the activation threshold while it decreases for large values of this threshold. The stability anal-

ysis reveals that the narrow bumps remain unstable while the broad bumps are destabilized

when the degree of heterogeneity exceeds a certain critical value.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cortical networks are often investigated in the framework of firing rate neural field models. The most well-known and sim-

plest model describing the coarse grained dynamics of such a network is the Amari model [1]

∂t u(t, x) = −u(t, x) +
∫

R 

ω(x − x′) f (u(t, x′))dx′

t ≥ 0, x ∈ R,

(1)

where the function u(t, x) denotes the activity of a neural element at time t and position x. The connectivity function (spatial

convolution kernel) ω(x) determines the coupling between the elements and the non-negative function f(u) gives the firing rate

of a neuron with activity u. Neurons at a position x and time t are said to be active if f(u(t, x)) > 0. Particular attention is usu-

ally given to the localized stationary, i.e. time-independent, solutions to (1) (so-called ”bumps”), as they are expected to corre-

spond to normal brain functioning. Existence and stability of these solutions have been investigated in numerous papers (see e.g.

[1–4]).

∗ Corresponding author. Tel.: +79537085580.

E-mail address: eb_@bk.ru, evgenii.burlakov@nmbu.no (E. Burlakov).
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Most works on bumps are restricted to one spatial dimension, however. A more realistic modeling framework of the coarse

grained activity in cortical tissue makes use of neural field models in two spatial dimensions. Yet, these models have been only

occasionally studied in the literature. For example, rotationally symmetric bump solutions to the two-dimensional Amari model

∂t u(t, x) = −u(t, x) +
∫

R2

ω(x − x′) f (u(t, x′))dx′

t ≥ 0, x ∈ R2,

(2)

were first examined in [5], [6]. Rigorous analysis of these solutions involving conditions for their existence and stability was given

in [7] and [8] for the case when the connectivity function ω is expressed as a sum of modified Bessel functions.

The modeling framework (1) and its extensions are proposed to capture the features of the brain activity on the macroscopic

level. However, they do not take into account the heterogeneity in the cortical structure. The first step in that direction has been

taken by Coombes et al. [9]. In that paper the heterogeneous nonlocal framework

∂t uε(t, x) = −uε(t, x) +
∫

R 

ωε(x − x′) f (uε(t, x′))dx′,
t > 0, x ∈ R,

(3)

in one spatial dimension was chosen as a starting point, where the connectivity kernel ωε(x) = ω(x, x/ε) by assumption is

periodic in the second variable. The powerful two-scale convergence method (see e.g. [10]) has been applied by Svanstedt et al.

[11] to the neural field models with spatial microstructure. It allows one to reduce (as ε → 0) the integro-differential equation

(3) with the heterogeneous connectivity kernel to

∂t u(t, x, y) = −u(t, x, y) +
∫

R

∫
[0,1)

ω(x − x′, y − y′) f (u(t, x′, y′))dy′dx′,

t > 0, x ∈ R,

(4)

where y is the periodic fine-scale variable. This limit procedure is known as the homogenization procedure and the corresponding

equation (4) is usually referred to as the homogenized Amari equation. Later on, this approach was applied in Svanstedt et al. [12]

and Malyutina et al. [13] to the investigation of existence and stability of the single-bump and symmetric two-bump solutions,

respectively, to the model (3).

This serves as a background and motivation for the present work. We consider the two-dimensional homogenized Amari

model analogue of (4). We first develop a framework for studying the existence of the rotationally symmetric single-bump

stationary solutions of this model. In the construction procedure we proceed in a way analogous to the method outlined in [12]

and [13]: It is assumed that the firing rate function is approximated by means of the unit step function and that the solutions

are independent of periodic microvariable. Next, we develop a stability method for the bumps based on the spectral properties

of the Hilbert–Schmidt integral operators, also by following ideas of Svanstedt et al. [12] and Malyutina et al. [13]. The whole

stability assessment then boils down to a study of maximal growth rate of the perturbations imposed on the bumps state,

corresponding to the operator norm of the Hilbert–Schmidt operator. We demonstrate the bumps construction procedure and

the stability assessment in detail when the connectivity kernel is modeled by means of Mexican hat function. The main challenge

in this study was the complexity of the numerical simulations caused both by the problem of dimensionality and the fact that

we were not able to use analytical expressions for the Hankel transform of the connectivity kernel (due to its heterogeneity) and,

consequently, of its integrals, as it was done in Folias et al. [14] and Owen et al. [8].

This paper is organized in the following way. In Section 2 we develop the framework for construction of the rotationally

symmetric single bumps solutions to the two-dimensional homogenized model with the unit step firing rate function and outline

the stability method for such structures. In Section 3 we illustrate the theory developed with the concrete example of the Amari

equation where the connectivity is modeled by the Mexican hat function. Concluding remarks and outlook are given in Section 4.

2. General theory

2.1. Existence of single bumps

The heterogeneous Amari neural field model

∂t uε(t, x) = −uε(t, x) +
∫

R2

ωε(x − x′) f (uε(t, x′))dx′,
t > 0, x ∈ R2,

(5)

in 2D serves as a starting point for our study. Here uε(t, x) is the electrical activity at the time t and the point x of the neural field,

f is the firing rate function, ωε(x) = ω(x, x/ε) is the connectivity kernel which by assumption is continuous, vanishing at infinity

with respect to the first argument and Y-periodic even function of the second argument y = x/ε (Y = [0, 1)2). Proceeding in the

way analogous to Svanstedt et al. [12], we get the following homogenized equation

∂t u(t, x, y, γ )=−u(t, x, y, γ )+
∫

R2

∫
[0,1)2

ω(x−x′, y−y′, γ ) f (u(t, x′, y′, γ ))dy′dx′,

t > 0, x ∈ R2,

(6)
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in the limit ε → 0 where y is the fine-scale variable. The heterogeneity is parameterized by γ ∈ �. Here � is some admissible

parameter set. Let us introduce polar coordinates (r, α) i.e. x = (x1, x2) = (r cos (α), r sin (α)). We are interested in existence and

stability of solutions U of (6) that are radially symmetric, independent of the fine - scale variable y and time - independent. In

polar coordinates this type of solution satisfies the following equation

U(r, γ ) =
∫ ∞

0

2π

0 [0,1)2

ω(x−x′, y′, γ ) f (U(r, γ ))dy′dα′dr′,

r ∈ [0, ∞), γ ∈ �, x′ = (r′ cos (α′), r′ sin (α′)).

In addition, we assume that the firing rate function is given by the unit step Heaviside function with the activation threshold h

i.e. f (u) = H(u − h). Moreover, we study stationary solutions U for which U(r, γ ) > h for r < a and U(r, γ ) < h for r > a, where the

bump radius a is determined by the equality U(a, γ ) = h. These solutions are referred to as single bump solutions. The formal

expression for these solutions is given by

U(r, γ ) =
∫ a

0

2π

0

ω〉(x − x′, γ )r′dα′dr′, (7)

where 〈ω〉 is the mean value

ω〉(x, γ ) =
∫

[0,1)2

ω(x, y, γ )dy

of the connectivity kernel over the period of the second variable y. We calculate the double integral in (7) using the two-

dimensional Fourier transform of the radially symmetric function 〈ω〉(r, γ ), expressed in polar coordinates,

ω〉(r, γ ) =
∫ ∞

0

ω〉(ρ, γ )ρJ0(rρ)dρ,

where Jν is the Bessel function of the first kind of order ν and 〈ω〉 denotes the Hankel transform of 〈ω〉. See Bochner et al [15] for

details. Following the procedure implemented in Folias et al.[14], we finally get the formal expression

U(r, γ ) = 2πa

∫ a

0

ω〉(r′, γ )J0(rr′)J1(ar′)dr′ (8)

for the bump solution. The bump radius a is determined by the threshold intersection condition

U(a, γ ) = h (9)

where

U(a, γ ) = 2πa

∫ a

0

ω〉(r′, γ )J0(ar′)J1(ar′)dr′ (10)

The function U(a, γ ) given by the expression (10) is called the pinning function while Eq. (9) is referred to as the pinning equation.

Hence, for a given threshold value of h, Eq. (10) defines a level curve in the a, γ - plane, showing the variation of the γ - dependent

bumps radius a. For each γ , one inserts the corresponding bumps radius a into the expression (8) for the bump. In Section 3 we

investigate this construction procedure when the connectivity function ω is expressed in terms of Mexican hat function.

2.2. Stability of single bumps

We study stability of the stationary bump state (8) in the standard way, i.e. by perturbing the stationary solution

u(t, x, y, γ ) = U(r, γ ) + �(t, x, y, γ ),

where �(t, x, y, γ ) = ϕ(x, y, γ )eλt (see e.g. [8], [13]). Expanding to first order in ϕ, we obtain

ϕ(x, y, γ ) = a

(λ+1)
∣∣∣
∂rU(r, γ )|r=a

∣∣∣ 2π

0 [0,1)2

ω(|x−a|, y−y′, γ )ϕ(a, y′, γ )dy′dθ,

a = (a, θ).

By inserting r = a in the above expression and introducing

μ = (λ + 1)|∂rU(r, γ )|r=a|,
we get the following operator equation

μϕ = H(a, γ )ϕ, (11)

where

ϕ = ϕ((a, α), y, γ ), H(a, γ )ϕ((a, α), y) = a

∫ 2π

0 [0,1)2

ω(
√

2a2 − 2a2 cos (α − θ), y − y′, γ )ϕ((a, θ), y′)dy′dθ .
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Fig. 1. The graph of the pinning function (10) in the case of the Mexican hat connectivity function (13) for different values of the degree of heterogeneity γ . The

activation threshold is kept constant and within the range of admissible values.

For each a ∈ (0, ∞), γ ∈ �, the operator H(a, γ ) is self-adjoint on the space L2([0, 2π ] × [0, 1)2) with the norm

ψ‖L2
=

√
ψ,ψ〉,

ψ,φ〉 =
∫ 2π

0 [0,1)2

ψ((a, α), y)φ((a, α), y)dydα.

Indeed, for each a ∈ (0, ∞), γ ∈ �, and any φ, ψ ∈ L2([0, 2π ] × [0, 1)2), using the properties of the connectivity function together

with an interchange of the integration order, we have

H(a, γ )φ,ψ〉 =
∫ 2π

0 [0,1)2

a

∫ 2π

0 [0,1)2

ω(
√

2a2 − 2a2 cos (α − α′), y − y′, γ )

×φ(α′, y′)ψ(α, y)dy′dα′dydα

=
∫ 2π

0 [0,1)2

a

∫ 2π

0 [0,1)2

ω(
√

2a2 − 2a2 cos (α′ − α), y′ − y, γ )

×ψ(α, y)φ(α′, y′)dydαdy′dα′ = 〈φ, H(a, γ )ψ〉.
In addition, for any a ∈ (0, ∞), γ ∈ �, the operator H(a, γ ) is compact as the integral operator having bounded continuous kernel.

Thus, as it follows from Hilbert–Schmidt’s theorem (see e.g. [16]), we have the following expressions for the eigenvalues μn and

the corresponding growth/decay rates, respectively:

μn = a

∫ 2π

0 [0,1)2

ω(
√

2a2 − 2a2 cos (α − θ), y − y′, γ )dy′cos(2nθ)dθ,

max
∀n

{μn} = ‖H(a, γ )‖L2
,

max
∀n

{λn} = λmax = ‖H(a, γ )‖L2

∂rU(r, γ )|r=a

∣∣∣ − 1. (12)

The stability of the single bumps (8)–(10) can thus be assessed by means of the operator norm ‖H(a, γ )‖L2
: When λmax < 0( >

0), then the bump is stable (unstable).

3. Example: Mexican hat connectivity function

In this section we illustrate the theory developed in the previous section by letting the connectivity kernel be given as

ω(x, y, γ ) = 1

σ(y, γ )
χ

(
x

σ(y, γ )
.

with

σ(y, γ ) = 1 + γ cos (2πy1) cos (2πy2), y = (y1, y2), γ ∈ � = [0, 1).
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Fig. 2. Level curves (9)–(10) in the case of the Mexican hat connectivity function (13) for different values of the activation threshold values. The curves are

labeled with these values.

Fig. 3. Magnification of the level curve description in Fig. 2 where the broad and the narrow bumps merge together. The curves are labeled with activation

threshold values.

and

χ(x) = 1

2π

exp (−|x|)
2

− exp ( − |x|/2)

4
. (13)

This connectivity kernel is referred to as the Mexican hat function. The bump radius a is then found by solving the pinning

equation (10) numerically. In Fig. 1 the graph of the pinning function is shown for selected values of the heterogeneity parameter

γ i.e. γ = 0, 0.2, 0.5, 0.9. The intersection between the fixed threshold value h and the graph of the pinning function yields

the bumps radius. In the figure we have put h = 0.1. From this plot we infer the following result: The generic picture consists

of one narrow and one broad bumps for each admissible activation threshold value, in a way analogous to single bumps in the

1D case. Moreover, we also observe that the bumps radius of both the narrow and the broad bump increases with the degree of

heterogeneity for the selected value of the threshold value. We finally notice that for the translationally invariant case (γ = 0),

our plot resembles the results obtained in Owen et al. [8]. In order to study the variation of the bumps radius with the degree of
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Fig. 4. The variation of the broad bump shape with the heterogeneity parameter γ .

Fig. 5. The variation of the narrow bump shape with the heterogeneity parameter γ .

heterogeneity in some detail, we conveniently make use of the level curve description (9)–(10). The result of this investigation is

summarized in Figs. 2 and 3. Figs. 2 and 3 support the conclusion that bumps radius a of the narrow bump increases with the

degree of heterogeneity γ . The bump radius for broad bump increases for small and moderate values of the activation threshold

h, while it decreases with γ for larger values of h. Variation of the broad and the narrow bump shapes with the degree of

heterogeneity parameter is shown in Figs. 4 and 5, respectively.

In order to investigate stability of the stationary solutions to (6) with the connectivity given by (13), we study the maximal

growth rate (12) as function of the threshold value h for different values of the degree of heterogeneity. In order to do that, we

need to estimate numerically the operator norm ‖H(a, γ )‖L2
in (12). The result of this investigation is summarized in Fig. 6.

One readily observes that the narrow bumps remain unstable for all values of the degree of heterogeneity. For the broad

bumps an increase in the degree of heterogeneity decreases the interval of activation threshold h for which the bumps are
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Fig. 6. The maximal growth rate of the perturbation as a function of the activation threshold for different values of the degree of heterogeneity parameter γ .

Fig. 7. The destabilization regime of the broad bump solution for the case of Mexican hat connectivity function.

stable. When the degree of heterogeneity exceeds a certain threshold value, the bumps will be unstable for all values of h. The

destabilization process is further detailed in Fig. 7. Notice that Fig. 6 (namely, the case γ = 0) reproduces qualitatively the same

results as in Owen et al. [8].

4. Conclusions and outlook

We have investigated the existence and stability of bump solutions in 2D of the homogenized Amari model. The starting

point of this study is the homogenized Amari neural field equation. This model has previously been obtained as the limit of the

parameterized heterogeneous neural field models by using the two-scale convergence technique.

The bumps solutions are assumed to be independent of the periodic microvariable and the firing rate function is modeled by

the Heaviside function. We use the pinning function technique to study the existence of the bumps while the stability method
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is based on spectral theory for Hilbert–Schmidt integral operators. The stability can be inferred from the maximal growth rate

which in turn depends on the operator norm of the actual integral operator.

We apply these procedures to the case when the connectivity kernel is modeled by means of a Mexican hat function. The

outcome of this analysis can be summarized as follows: The generic picture consists of one narrow and one broad bump for the

set of admissible threshold values. The bumps radius of the narrow bump increases with the degree of heterogeneity γ . In the

case of broad bumps the bumps radius increases for small and moderate values of the activation threshold h, while it decreases

with γ for larger values of h. Numerical analysis in this example indicates that increase of the degree of heterogeneity acts to

destabilize the broad bumps while the narrow bumps always remain unstable.

In future works we aim at proving existence and continuous dependence of the stationary bump solutions under transition

from the Heaviside to Lipschitz continuous firing rate functions. The transition to piecewise-linear firing rate functions is of

particular importance for the theory of neural fields possessing microstructure. The aforementioned continuous dependence

results link the neural field homogenization theory developed in Svanstedt et al. [11] for the case of convex firing rate functions

to the numerical results obtained for the Heaviside firing rate in e.g. [12,13], and also in the present study.
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Stationary solutions of continuous and discontinuous

neural field equations

Evgenii Burlakov1,∗, Arcady Ponosov1, John Wyller1

Abstract

We study existence and continuous dependence of the solutions to the Ham-
merstein operator equation under the transition from continuous nonlineari-
ties in the Hammerstein operator to the Heaviside nonlinearity in a vicinity
of the solution, corresponding to the discontinuous nonlinearity case. We
apply these results to corresponding problems arising in the neural activity
modeling.

Keywords: Discontinuous Hammerstein equations, solvability, continuous
dependence
47H30, 46T99, 47H11, 92B99

1. Introduction

We consider a special case of nonlinear operator equation with the Ham-
merstein operator, the nonlinear part of is either represented by the Heaviside
unit step function, or by a bounded continuous function. We are studying
existence and continuous dependence of the solutions to the Hammerstein
operator equation under the transition from continuous nonlinearities in the
Hammerstein operator to the Heaviside nonlinearity. To do this, we choose
an appropriate topology, where the Hammerstein operator with the Heaviside
nonlinearity becomes continuous in a vicinity of the solution, corresponding
to the case of the discontinuous Hammerstein operator nonlinearity. Then we
use methods of functional analysis and topological degree theory to establish
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the results needed. This study is strongly motivated by applications of some
problems arising in the neural activity modeling. Below we give a detailed
descriptions of these problems.

It is well-known (see e.g. [11], [9]) that electrical activity in the neocortex
is naturally studied in the framework of cortical networks. However, since the
number of neurons and synapses in even a small piece of cortex is immense,
a suitable modeling approach is to take a continuum limit of the neural
networks and, thus, consider so-called neural field models of the brain cortex
(rigorous justification of this limit procedure can be found in e.g. [4]). The
simplest model describing the macro-level neural field dynamics is the Amari
model [1]

∂tu(t, x) = −u(t, x) +

∫

Ξ

ω(x− y)f(u(t, y))dy, t ≥ 0, x ∈ Ξ ⊆ Rm. (1)

Here u(t, x) denotes the activity of a neural element u at time t and position
x. The connectivity function ω determines the coupling strength between the
elements and the non-negative function f(u) gives the firing rate of a neuron
with activity u. Neurons at a position x and time t are said to be active if
f(u(t, x)) > 0. Typically f is a smooth function that has sigmoidal shape.
Solvability of (1) in the case of a smooth firing rate function was proved
in [23], [3]. Particular attention in the neural field theory is usually given
to the localized stationary, i.e., time-independent, solutions to (1) (so-called
”bump solutions”, or simply ”bumps”), as they correspond to normal brain
functioning (see e.g [26]). Faugeras et al [8] proved existence and uniqueness
of the stationary solution to (1) as well as obtained conditions for this solution
to be absolutely stable, for the case of a bounded Ξ.

A common simplification of (1) consists of replacing a smooth firing rate
function by the Heaviside function. This replacement simplifies numerical
investigations of the model as well as allows to obtain closed form expres-
sions for some important types of solutions (see e.g. [1], [22] [17]). Existence
of the solution to (1) in the case of Heaviside firing rate function was proved
by Potthast et al [23]. Stability of the stationary solutions to (1) is usually
assessed by the Evans function approach (see e.g. [6], [22]). The analysis
of existence and stability of localized stationary solutions for a special class
of the firing rate functions, the functions that are ”squeezed” between two
unit step functions, was carried out in [13], [20], [15]. This analysis served
as a connection between stability\instability properties of the solutions to
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the models with the ”squeezing” Heaviside firing rate functions and the solu-
tion to the model with the ”squeezed” smooth firing rate function. However,
no rigorous mathematical justification of the passage from a smooth to dis-
continuous firing rate functions in the framework of neural field models was
given until the work by Oleynik et al [21], where continuous dependence of
the 1-bump stationary solution to (1) under the transition from a smooth
firing rate function to the Heaviside function was proved in the 1-D case.

On the other hand, more advanced neural field models have not been
studied in this respect. One example is the homogenized Amari model de-
scribing the neural field dynamics on both macro- and micro- levels

∂tu(t, x, xf) = −u(t, x, xf) +

∫

Ξ

∫

Y

ω(x− y, xf − yf)f(u(t, y, yf))dyfdy,

t ≥ 0, x ∈ Ξ, xf ∈ Y ⊂ Rk,

(2)

which was introduced in the pioneering work by Coombes et al [7]. Here xf is
the fine-scale spatial variable and Y is an elementary domain of periodicity
in Rk. As it was shown in [24], the solution to (2) is a weak two-scale limit
of solutions to the following family of heterogeneous neural field models

∂tu(t, x) = −u(t, x) +

∫

Ξ

ωε(x− y)f(u(t, y))dy,

ωε(x) = ω(x, x/ε), 0 < ε� 1,
t ≥ 0, x ∈ Ξ,

(3)

as ε→ 0, where ε corresponds to the medium heterogeneity.
The starting point for the investigation of the solutions to (2) was assum-

ing these solutions to be independent of the fine-scale variable, i.e. solutions
to the equation

∂tu(t, x) = −u(t, x) +

∫

Ξ

∫

Y

ω(x− y, xf − yf)f(u(t, y))dyfdy,

t > 0, x ∈ Ξ ⊆ Rm, xf ∈ Y .
(4)

This assumption was also supported by numerical evidence of non-existence
of the fine-scale-dependent solutions to (2) given in [19].

Existence and stability of the single bump and double bump stationary
solutions to (4) in 1-D were investigated in [25] and [18], respectively, for
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the case of the Heaviside firing rate function. Existence and stability of the
radially symmetric single bump stationary solutions to (4) in 2-D when f is
represented by the Heaviside unit step function were investigated in [5].

In the present research we extend the results of [21] to the homogenized
Amari model and, in addition to the single bump solutions in 1-D, consider
symmetric double bump solutions in 1-D and radially symmetric bump so-
lutions in 2-D. We formulate the following two main theorems: the theorem
on continuous dependence of the stationary solutions to (4) under the tran-
sition from continuous firing rate functions to the Heaviside function and the
theorem on solvability of the equation (4) based on the topological degree
theory. We emphasize here that the properties of existence of solutions to (4)
under the described transition and continuous dependence of these solutions
on the firing rate steepness do not depend on the stability\instability of the
solution to (4) with the Heaviside firing rate function. The latter remark
can be illustrated by comparison of the results of the papers [25], [18], and
[5] to the corresponding three special cases of (4), considered in the present
research:

1. Symmetric single bump solution to (4), m = k = 1.
2. Symmetric double bump solution to (4), m = k = 1.
3. Radially symmetric single bump solution to (4), m = k = 2.
We also stress that our results, in particular, mean that the approxi-

mation of the Heaviside function by piecewise linear firing rate functions
yields continuous dependence of the solutions to the corresponding neural
field equations. This property has particular importance for the theory of the
heterogeneous neural fields as the transition from the heterogeneous model
(3) to the homogenized model (2) can be justified for the piecewise linear
firing rate functions, but not for their Heaviside limit (see [24], [25]). Thus,
our results justify the usage of the Heaviside firing rate function in the frame-
works of [25], [18], and [5].

The paper is organized in the following way. In Section 2 we explain our
notations and state lemmas from functional analysis, which we refer to in the
subsequent sections. In Section 3 we study existence and continuous depen-
dence of the stationary solutions to (4) under the transition from continuous
firing rate functions to the Heaviside function, and formulate and prove the
corresponding two main theorems. Based on these theorems we investigate
in Section 4 the corresponding properties of the following types of solutions
to (4):

1. Symmetric single bump solutions in 1-D (Subsection 4.1).
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2. Symmetric double bump solutions in 1-D (Subsection 4.2).
3. Radially symmetric single bump solutions in 2-D (Subsection 4.3).

Section 5 provides concluding remarks and outlook.

2. Preliminaries

In this section we provide an overview of the notation, introduce the main
definitions and formulate the main theorems we refer to.

For a metric space M with the distance ρM, and arbitrary S ⊂M, ε > 0,
we denote BM(S, ε) =

⋃
s∈S
{m ∈M | ρM(m, s) < ε}.

Definition 2.1. Let S be an arbitrary subset of the metric space M.
Choose some ε > 0. The set E is called ε-net for S if for any s ∈ S, one can
find such e ∈ E that ρM(e, s) ≤ ε, see [14].

Let B be a real Banach space equipped with the norm ‖ · ‖B and D
be an arbitrary open bounded subset of B. We denote by ∂D and D the
boundary and the closure of D in B, respectively. We denote by deg(Φ, D, b0)
and ind(Φ, D) the degree and the topological index of an arbitrary operator
Φ : D → B, respectively (if they are well-defined).

Let µ be the Lebesgue measure on Rm, Ω be a compact subset of Rm,
Ξ ⊆ Rm, then:

Lq(Ξ, µ, R) be the space of functions η : Ξ → R with Lebesgue inte-
grable q-th power of the absolute value and the following norm ‖η‖Lq(Ξ,µ,R) =( ∫

Ξ

|η(x)|qdx
)1/q

, 1 ≤ q <∞.

Let Ck(Ω, R) be the space of functions ζ : Ω → R, whose first k deriva-
tives ζ(n) (n = 0, . . . , k, ζ(0) = ζ) are continuous, equipped with the norm

‖ζ‖Ck(Ω,R) =
k∑

n=0

max
x∈Ω
|ζ(n)(x)|.

Let Ck(Rm, R) be a locally convex space of functions ζ : Rm → R, whose
first k derivatives ζ(n) (n = 0, . . . , k, ζ(0) = ζ) are continuous, equipped with

the topology of uniform convergence of
k∑

n=0

max |ζ(n)| on compact subsets of

Rm.
We will not indicate q = 1 and k = 0 in the corresponding space notations.

Lemma 2.1. Let D be a open bounded subset of a real Banach space B,
Λ be a compact subset of R, and an operator T : Λ×D → B be continuous
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with respect to both variables and collectively compact (i.e., T (Λ, D) is a
pre-compact set in B). Assume that λn → λ0 and T (λn, bn) = bn. Then
the equation T (λ0, b) = b has at least one solution. Moreover, any limit
point of the sequence {bn} is a solution of this equation, i.e., if bn → b0 then
T (λ0, b0) = b0, see [21].

Definition 2.2. Let D be an open bounded subset of a real Banach
space B. The family {ht}, (t ∈ [0, 1]) of operators acting from D to B is
called homotopy if ht(b) is continuous with respect to (t, b) on [0, 1]×D, see
[12].

Lemma 2.2. (Homotopy invariance) Let D be an open bounded sub-
set of a real Banach space B. Suppose that {ht} is a homotopy of operators
ht : D → B and ht − I is compact for each t ∈ [0, 1]. If htb 6= b0 for any
b ∈ ∂D and t ∈ [0, 1], then deg(ht, D, b0) is independent of t, see [12].

Definition 2.3. Let D be an open bounded subset of D, where D is
an absolute neighborhood retract (see, e.g. [10]), D ⊂ B. The continuous
mapping ψ : D → D is called admissible provided that the fixed point set of
ψ is compact in B, see [10].

Lemma 2.3. (Topological invariance) Let ψ : D → D be an ad-
missible compact mapping and φ : D → D′ be a homeomorphism. Then
φ◦ψ◦φ−1 : φ(D)→ D′ is also an admissible compact mapping and

ind(ψ,D) = ind(φ◦ψ◦φ−1, φ(D)),

see [10].

3. Main results

In this section we study existence and continuous dependence of station-
ary solutions to (4) when approximating the Heaviside activation function
by continuous functions. In order to do that, we consider the following ho-
mogenized Amari neural field equation

∂tu(t, x) = −u(t, x) +

∫

Ξ

∫

Y

ω(x− y, xf − yf)fβ(u(t, y))dyfdy,

t > 0, x ∈ Ξ ⊆ Rm, xf ∈ Y ⊂ Rk,

(5)

parameterized by β ∈ [0,∞).
We assume that the functions involved in (5) satisfy the following as-

sumptions:
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(A1) For any xf ∈ Y , the connectivity kernel ω(·, xf) ∈ C2(Ξ, R).

(A2) For any x ∈ R, the connectivity kernel ω(x, ·) ∈ L(Y , µ, R).

(A3) For β = 0, the activation function is represented by the Heaviside
unit step function

f0(u) =

{
0, u ≤ θ,
1, u > θ

with some threshold value θ.

(A4) For β > 0, functions of the family fβ : R→ [0, 1] are non-decreasing,
continuous, and satisfying the following convergence conditions with respect
to the parameter β:

(i) fβ → fβ̂ uniformly on R as β → β̂, β̂ ∈ (0,∞);
(ii) for any ε > 0, fβ → f0 uniformly on R \BR(θ, ε) as β → 0.

Figure 1: Approximation of the Heaviside firing rate function (red) by continuous functions
(blue).

So, if the stationary solution to (5) exists, it satisfies the following equa-
tion

u(x) =

∫

Ξ

〈ω〉(x− y)fβ(u(y))dy,

〈ω〉(x) =

∫

Y

ω(x, xf)dxf ,

x ∈ Ξ ⊆ Rm, xf ∈ Y .

(6)

7



We are interested here in one particular type of solutions, which possesses
the following properties.

Definition 3.1. Let θ > 0 be fixed. We say that u ∈ C1(Ξ, R) satisfies
the θ-condition if

(B1) there is a finite set of open bounded domains Θi ⊂ Ξ such that

u(x) > θ on Θ =
N⋃
i=1

Θi;

(B2) for any point x of the boundary B =
N⋃
i=1

Bi of Θ, it holds true that

u′(x) 6= 0;
(B3) there exist σ > 0 and r > 0 such that u(x) < θ − σ for all x ∈

Ξ \BRm(Θ, r).

Figure 2: Example of function U ∈ C1(R,R) satisfying θ-condition. Here Θ = (x1, x2) ∪
(x3, x4) ∪ (x5, x6), B = {x1, x2, x3, x4, x5, x6}.

Remark 3.1. Definition 3.1 implies Bi
⋂Bj = ∅ for any i, j = 1, . . . , N ,

i 6= j.

In this section we assume existence of the stationary solution U ∈ C1(Rm, R)
to (6), (Ξ = Rm), which corresponds to β = 0 and satisfies θ-condition. We
are interested here in conditions, which guarantee existence of solutions uβ
to (6) for β > 0 (i.e. in the case of continuous function fβ) and convergence
of these solutions to U as β → 0.

The following theorem provides conditions for convergence of the solutions
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uβ to (6), β > 0, (if these solutions exist) to the stationary solution U to (6)
at β = 0.

Theorem 3.1. (Continuous dependence) Let the assumptions (A1)−
(A4) hold true, θ > 0 be fixed and U ∈ C1(Rm, R) satisfies the θ-condition.
Then there exists ε > 0 such that for any (sufficiently large) closed Ω ⊂ Rm,
if we assume existence of solutions uβ ∈ BC1(Ω,R)(U, ε) to the equation (6)
for any β ∈ (0, 1] (Ξ = Ω), then there exist a solution to (6) at β = 0 and
it is a limit point of the set {uβ}. Moreover, if the solution of (6) at β = 0
(Ξ = Ω), say u0, is unique then ‖uβ − u0‖C1(Ω,R) → 0.

Proof. We are going to apply Lemma 2.1, so we represent (6) in terms
of the parameterized operator equation

u = Fβu,

where
Fβ =W ◦Nβ. (7)

Here, for any β ∈ [0,∞), the Nemytskii operator

(Nβu)(x) = fβ(u(x)), (8)

and the linear integral operator

(Wu)(x) =

∫

Ξ

〈ω〉(x− y)u(y)dy. (9)

We introduce some important notations. For an arbitrary ε > 0, we
denote the open sets Θ+ε ⊂ Rm and Θ−ε ⊂ Rm such that U(x) > θ + ε

on Θ+ε =
N+ε⋃
i=1

Θ+ε
i and U(x) > θ − ε on Θ−ε =

N−ε⋃
i=1

Θ−εi , respectively. The

boundaries of these sets we denote as B+ε =
N+ε⋃
i=1

B+ε
i and B−ε =

N−ε⋃
i=1

B−εi ,

respectively.
By the virtue of the conditions (B1)− (B3) imposed on U ∈ C1(Rm, R)

and Remark 3.1, there exists ε0 ∈ (0, σ/2) such that

N+ε0 = N−ε0 = N, B ⊂ Θ−ε0 \Θ+ε0 ,

B−ε0i

⋂B−ε0j = ∅ for any i, j = 1, . . . , N, i 6= j.
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Choosing an arbitrary compact Ω, Θ−ε0 ⊂ Ω, for any u ∈ BC1(Ω,R)(U, ε0),
we get the conditions (B1), (B2) fulfilled and the following condition holding
true instead of (B3):

(B3(Ω)) u(x) < θ − σ/2 for all x ∈ Ω \Θ−ε0 .
Now we show that Nβ : BC1(Ω,R)(U, ε0) → L(Ω, µ, R) defined by (8) is

continuous at any β̂ ∈ [0,∞) uniformly on BC1(Ω,R)(U, ε0). For β̂ ∈ [0,∞),

and u ∈ BC1(Ω,R)(U, ε0), we estimate ‖Nβu − Nβ̂u‖L(Ω,µ,R), as β → β̂. The

case β̂ ∈ (0,∞) is trivial, as by the virtue of (A4), we immediately get

∫

Ω

|fβ(u(x))− fβ̂(u(x))|dx→ 0, β → β̂

uniformly with respect to u ∈ BC1(Ω,R)(U, ε0). So, we focus on the more

involved case β̂ = 0.

∫

Ω

|fβ(u(x))− f0(u(x))|dx =

=

∫

Θ+ε0
⋃

(Ω\Θ−ε0 )

|fβ(u(x))− f0(u(x))|dx+

∫

Θ−ε0\Θ+ε0

|fβ(u(x))− f0(u(x))|dx.

(10)
For all x ∈ Θ+ε0

⋃
(Ω \ Θ−ε0) and any u ∈ BC1(Ω,R)(U, ε0), u(x) belongs

to R \ BR(θ, ε0). Taking into account (A4), we get the first summand on
the right-hand side of (10) converging to 0 uniformly on BC1(Ω,R)(U, ε0), as
β → 0. Next,

∫

Θ−ε0\Θ+ε0

|fβ(u(x))− f0(u(x))|dx < 1

c0

‖U‖C1(Ω,R)∫

−‖U‖C1(Ω,R)

|fβ(s)− f0(s)|ds,

where 0 < c0 < |u′(x)| for all x ∈ Θ+ε0
⋃

(Ω\Θ−ε0) and any u ∈ BC1(Ω,R)(U, ε0)
(We assume here that ε0 < min

x∈Θ−ε0\Θ+ε0

|U ′(x)|, otherwise we repeat the pro-

cedure above with the new ε0 = ε1 < min
x∈Θ−ε1\Θ+ε1

|U ′(x)|). Finally, we notice

that assumption (A4) guarantees convergence to 0 of the expression on the
right-hand side of the latter inequality, as β → 0.
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Thus, for any compact Ω ⊂ Rm, Nβ : BC1(Ω,R)(U, ε0) → L(Ω, µ, R) is

continuous at any β̂ ∈ [0,∞) uniformly on BC1(Ω,R)(U, ε0), which means that
for all β ∈ [0,∞), the Nemytskii operator Nβ is a bounded mapping from
BC1(Ω,R)(U, ε0) to L(Ω, µ, R). We also notice that the operatorW defined by
(9) (Ξ = Ω) is a linear and continuous mapping from L(Ω, µ, R) to C1(Ω, R)
provided that assumptions (A1) and (A2) hold true.

Thus, for any β ∈ [0,∞), Fβ : BC1(Ω,R)(U, ε0)→ C1(Rm, R) and

‖Fβu−Fβ̂û‖C1(Ω,R) → 0, β → β̂, ‖u−û‖C1(Ω,R) → 0, where û ∈ BC1(Ω,R)(U, ε0).

Next, we prove that Fβ : BC1(Ω,R)(U, ε0) → C1(Ω, R) (β ∈ [0,∞)) are
collectively compact.

By the virtue of (A3), (A4), it suffices to show that for an arbitrary ε > 0,
the set {

∫
Ω

〈ω〉(x − y)κdy, κ ∈ [0, 1]} possesses a finite ε-net in C1(Ω, R).

We represent 〈ω〉 = (〈ω〉l), where 〈ω〉l ∈ C2(Ωl, R), Ωl is the orthogonal
projection of Ω to the axis OXl (l = 1, . . . ,m).

Choose an arbitrary l̂. Suppose that Ωl̂ = [a, b],

∫

[a,b]

〈ω〉l̂(a− s)ds = A,

∫

[a,b]

〈ω〉′
l̂
(a− s)ds = A′,

max
t∈[a,b]

∫

[a,b]

〈ω〉′′
l̂
(t− s)ds = M.

Then, for example, the set
{
αi + κjt, αi = i

A+ (b− a)(A′ + (b− a)M))

[(A+ (b− a)(A′ + (b− a)M)))/ε] + 1
,

κj = j
A′ + (b− a)M

[(A′ + (b− a)M)/ε] + 1
,

i = 0, 1, . . . , [(A+ (b− a)(A′ + (b− a)M))/ε] + 1,

j = 0, 1, . . . , [(A′ + (b− a)M)/ε] + 1, t ∈ [a, b]

}
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serves as the ε-net for {
∫
Ω

〈ω〉l̂(x − y)κdy, κ ∈ [0, 1]} ([z] denotes here the

integer part of z ∈ R). Due to arbitrary choice of the component
∫
Ω

〈ω〉l̂(x−
y)dy of

∫
Ω

〈ω〉(x−y)dy (l = 1, . . . ,m), we proved collective compactness of the

whole composition Fβ =W ◦Nβ (β ∈ [0,∞)) as acting from BC1(Ω,R)(U, ε0)
to C1(Ω, R).

Now, if we keep in mind the properties proved and put T (λ, b) = Fβu,

Λ = [0, 1], D = BC1(Ω,R)(U, ε1), ε1 < ε0, by using Lemma 2.1, we complete
the proof. �

It is often easier to study existence of solutions satisfying θ-condition to
(6) when β = 0. The corresponding closed form expressions for the particular
types of solutions (satisfying θ-condition) to special cases of (6) can be found
e.g. in [1, 17, 22, 18, 25, 5].

The next theorem provides a tool for proving existence of solutions to (6)
for β ∈ (0,∞) using some knowledge about the solution to (6) at β = 0.

Theorem 3.2. (Existence) Let the conditions of Theorem 3.1 be
satisfied, the set Ω and the constant ε1 be taken from Theorem 3.1. As-
sume that there exists solution U ∈ C1(Rm, R) of (6) at β = 0, which
satisfies θ-condition and which is unique in BC1(Ω,R)(U, ε2) (ε2 < ε1), and
deg(I−F0, BC1(Ω,R)(U, ε2), 0) 6= 0, where the operator F0 : BC1(Ω,R)(U, ε1)→
C1(Ω, R) is given by (7). Then for any β ∈ (0, 1], there exists solution
uβ ∈ BC1(Ω,R)(U, ε2) to the equation (6).

Proof. We prove that the family {hβ}, β ∈ [0, 1],

hβ = I − Fβ (11)

is homotopy. Continuity of h(·)(·) on [0, 1]×BC1(Ω,R)(U, ε1) follows from the
proof of Theorem 3.1. It remains to prove that hβ(u) 6= 0 for any β ∈ [0, 1]
and u ∈ ∂BC1(Ω,R)(U, ε2).

Collective compactness of Fβ : BC1(Ω,R)(U, ε1) → C1(Ω, R) (β ∈ [0,∞)),
shown in the proof of Theorem 3.1, imply the following two possibilities for
any sequence {uβn} ⊂ BC1(Ω,R)(U, ε1) (βn → 0) of solutions to (6):

1) uβn converges to U , as βn → 0;
2) there exists such n̂ that for any n > n̂, ‖uβn −U‖C1(Ω,R) > ε2 (without

loss of generality we can assume that βn̂ > 1).
This proves that (I−Fβ)(u) 6= 0 for any β ∈ [0, 1] and u ∈ ∂BC1(Ω,R)(U, ε1).
Finally, we apply Lemma 2.2 to the homotopy (11) and get existence of

solutions to (6) for any β ∈ (0, 1]. �
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Remark 3.2. The choice of the space C1(Ω, R) as a basic functional
space in this research is caused by the fact that even in the space of absolutely
continuous functions, any ball, centered at a function satisfying θ-condition,
contains functions, which do not satisfy θ-condition. The corresponding ex-
ample can be found in [21], in the proof of Lemma 3.7.

4. Bumps in neural field models

In this section we apply the theory developed to the stationary bump
solutions to the neural field model (5) in the following three special cases:

1. Symmetric single bump in 1-D.
2. Symmetric double bump in 1-D.
3. Radially symmetric single bump in 2-D.
Each subsection concludes with a theorem on existence and continuous

dependence of the stationary solutions of the corresponding type to the equa-
tion (5) when approximating the Heaviside activation function by continuous
functions.

4.1. Symmetric single bump in 1-D

We consider here the one-dimensional homogenized Amari model, i.e. the
model (5) with m = k = 1:

∂tu(t, x, xf) = −u(t, x, xf)+

∫

Ξ

∫

Y

ω(x−y, xf−yf)fβ(u(t, y, yf))dyfdy,

t > 0, x ∈ Ξ ⊆ R.

(12)

Here Y is some one-dimensional torus, the family of functions fβ : R→ [0, 1]
satisfies assumptions (A3), (A4), and the function ω is typically decomposed
in the following way (see e.g. [25], [18]):

ω(x, xf) =
1

σ(xf)
χ
( |x|
σ(xf)

)
, (13)

where the function σ ∈ C(Y , (0,∞)) is Y-periodic and the function χ ∈
C2([0,∞), R)

⋂
L([0,∞), µ, R) satisfies the property:

lim
x→∞

χ(x) = 0. (14)

Thus, assumptions (A1), (A2) are also satisfied. We emphasize here that the
class of connectivity functions ω described above is rather wide. It contains

13



all typical connectivity functions in use in the neural field theory (see e.g. [25],
[18] for the heterogeneous media case, and the review [2] for the homogeneous
media case).

Definition 4.1.1. Let θ > 0 be fixed. We define a symmetric single bump
solution to (12) to be a stationary solution U ∈ C1(Ξ, R) to (12), satisfying
the following properties:

• U(x) = U(−x) for all x ∈ R;

• the equation U(x) = θ has exactly two solutions x = −a, x = a, a > 0;

• U(x) > θ for all x ∈ (−a, a) and U(x) < θ for all x ∈ Ξ \ [−a, a].

The stationary symmetric single bump solution to (12) in the case β = 0
can be determined by the following expression (see e.g. [25]):

U(x) = W (x+ a)−W (x− a), (15)

where

W (x) =

x∫

0

〈ω〉(y)dy,

〈ω〉(x) =

∫

Y

ω(x, xf)dxf .

Due to the assumptions on the functions χ ∈ C2(R,R)
⋂
L(R, µ,R) and

σ ∈ C(Y , (0,∞)), and the corresponding properties of the connectivity ω
defined by (13), we get the following condition fulfilled:

lim
|x|→∞

〈ω〉(x) = 0. (16)

Using the latter expression, we easily obtain

lim
|x|→∞

U(x) = 0.

Thus, the bump solution U satisfies θ-condition.
We investigate existence and continuous dependence of stationary bump

solutions to (12), which are symmetric with respect to the ordinate axis, when
approximating the Heaviside activation function in (12) (the case β = 0) by
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continuous functions (β > 0). Indeed, due to the translational invariance
of the integration kernel ω with respect to the spatial variable x, the corre-
sponding operators Fβ (β ∈ [0, 1]) defined by (7) map even functions to even
functions. We, thus, consider solutions belonging to the space C1

e (Ξ, R) =
{u ∈ C1(Ξ, R), u(x) = u(−x) for all x ∈ Ξ}.

Lemma 4.1.1. Let the following condition be satisfied:

〈ω〉(2a) 6= 0. (17)

Then for any compact set Ω, Ω ∈ R, there exists such ε > 0 that the
symmetric single bump U defined by (15) is a unique solution to (12) in
BC1

e (Ω,R)(U, ε) when β = 0.
Proof. From the definition of the single bump solution it follows that

W (2a) = θ.

Thus, the condition (17) guarantees uniqueness of the solution U inBC1
e (Ω,R)(U, ε)

for some ε > 0. �
We emphasize that U is not an isolated solution to (12) in C1(Ξ, R) due

to the translation invariance of bumps in the homogenized neural field (12).
We now express (15) in terms of operator equality just as it was done in

Section 3:
U = F0U.

In order to apply Theorem 3.2, we need to calculate deg(I−F0, BC1
e (Ω,R)(U, ε), 0).

By the definition of the topological fixed point index, we get

deg(I − F0, BC1
e (Ω,R)(U, ε), 0) = ind(F0, BC1

e (Ω,R)(U, ε)).

Without loss of generality we assume that the fixed point U of the operator F0

is unique in BC1
e (Ω,R)(U, ε). Thus, F0 maps BC1

e (Ω,R)(U, ε) into some manifold
M⊂ C1(Ω, R),M = {v = W (·+c)−W (·−c), c ∈ M ⊂ Ω}, where compact
set M is chosen in a such way that it contains cu for all u ∈ BC1

e (Ω,R)(U, ε)
(One can e.g. choose M to be a segment). We define the mapping φ : M→M
as

φ(c) = v(x), v(x) = W (x+ c)−W (x− c), x ∈ Ω. (18)

Lemma 4.1.2. The mapping φ : M → M defined by (18) is a homeo-
morphism, and M is an absolute neighborhood retract.
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Proof. First, we note that φ : M→M is a surjection by definition. In
order to prove that φ : M→M is an injection, we use the expression for the
Frechet derivative of φ taken at an arbitrary c ∈ M:

φ′(c) = 〈ω〉(·+ c)− 〈ω〉(· − c).

For sufficiently large set Ω = [−X,X], X � a, the condition (16) implies
the following relation:

max
x∈[X−2a,X]

|〈ω〉(x)| < max
x∈[0,2a]

|〈ω〉(x)|. (19)

Thus, we have φ′(a) 6= 0, because assuming the contrary, we get 〈ω〉(x+
a)−〈ω〉(x−a) = 0, for all x ∈ Ω, which contradicts with (19). Summarizing
the described above properties of φ, we conclude that φ : M → M is a
homeomorphism. We also note that the set M is an absolute neighborhood
retract, since it is a compact convex subset of R. Thus, by properties of
homeomorphism, M = φ(M) is an absolute neighborhood retract, too. �

We now define F to be the restriction of F0 on M⋂
BC1

e (Ω,R)(U, ε), i.e.

F = F0|M⋂
B

C1
e (Ω,R)

(U,ε),

F :M⋂
BC1

e (Ω,R)(U, ε)→M.

Due to its definition, the mapping F :M⋂
BC1

e (Ω,R)(U, ε)→M is compact
and admissible. Using the properties of the topological fixed point index (see
e.g. [10]), we get

ind(F0, BC1
e (Ω,R)(U, ε)) = ind(F ,M⋂

BC1
e (Ω,R)(U, ε)).

Next, we apply Lemma 2.3 and obtain

ind(F ,M⋂
BC1

e (Ω,R)(U, ε)) = ind(φ−1◦F◦φ, φ−1(F(M⋂
BC1

e (Ω,R)(U, ε))).

Lemma 4.1.3. There exists such δ > 0 that the operator Ψ = φ−1◦F◦φ
maps BR(a, δ) to M.

Proof. Let u(x) = W (x+ c)−W (x− c), c ∈ M. Using the mean value
theorem, we estimate

‖u− U‖C1(Ω,R) ≤ 4‖〈ω〉‖C1(Ω,R)|c− a| < ε
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for all c ∈ BR(a, δ), where δ < ε/4‖〈ω〉‖C1(Ω,R). From the latter estimate we
conclude that

BR(a, δ) ⊂ φ−1(M⋂
BC1

e (Ω,R)(U, ε))

which, in turn, implies

Mδ = {v = W (·+ c)−W (· − c), c ∈ BR(a, δ)} ⊂ F(M⋂
BC1

e (Ω,R)(U, ε)).

Thus, we finally get

φ−1(Mδ) = BR(a, δ) ⊂ φ−1(F(M⋂
BC1

e (Ω,R)(U, ε))),

which concludes the proof. �
It is easy to see that a is a fixed point of the operator Ψ : BR(a, δ)→ M.

Moreover, a is an isolated fixed point of Ψ due to the fact that U is an
isolated fixed point of F and topological invariance property of the index.
The topological index of a finite dimensional map can be calculated as

ind(Ψ, φ−1(F(M⋂
BC1

e (Ω,R)(U, ε))) = sgn(1−Ψ′(a)),

see e.g. [16].
It follows from the definition of the operator Ψ = φ−1◦F◦φ that

W (Ψ(c) + c)−W (Ψ(c)− c) = θ for all c ∈ BR(a, δ).

Using the implicit function theorem and the chain rule for differentiation, we
get

Ψ′(a) =
〈ω〉(0) + 〈ω〉(2a)

〈ω〉(0)− 〈ω〉(2a)
.

Thus, deg(I − F0, BC1
e (Ω,R)(U, ε), 0) 6= 0 as soon as the following inequality

takes place:
〈ω〉(0) + 〈ω〉(2a)

〈ω〉(0)− 〈ω〉(2a)
6= 1.

Summarizing the results above and using Theorem 3.2 and Theorem 3.1,
we get the main result of the subsection.

Theorem 4.1.1. Let the family of functions fβ : R→ [0, 1] (β ∈ [0,∞))
satisfy assumptions (A3) and (A4). Let also the connectivity kernel ω be
given by (13), where the function σ ∈ C(Y , (0,∞)) is Y-periodic and the even
function χ ∈ C2(R,R)

⋂
L(R, µ,R) satisfies (14). Finally, let the inequality

(17) be fulfilled. Then, for any sufficiently large Ω, Ω ⊂ R, and for each
β ∈ (0,∞), there exists solution uβ ∈ C1

e (Ω, R)) to (12) (Ξ = Ω). Moreover,
‖uβ − U‖C1(Ω,R)) → 0, as β → 0, where U ∈ C1

e (R,R)) is the stationary
bump solution to (12) (Ξ = R, β = 0), defined by (15).
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4.2. Symmetric double bump in 1-D

We keep here the modeling framework (12) under the same assumptions
on the functions involved as in the previous subsection.

Definition 4.2.1. Let θ > 0 be fixed. We define a symmetric double
bump solution to (12) to be a stationary solution U ∈ C1(Ξ, R) to (12),
satisfying the following properties:

• U(x) = U(−x) for all x ∈ R;

• the equation U(x) = θ has exactly four solutions x = −b, x = −a,
x = a, x = b, b > a > 0;

• U(x) > θ for all x ∈ (−b,−a)
⋃

(a, b) and U(x) < θ for all x ∈
(−a, a)

⋃
Ξ \ [−b,−a] \ [a, b].

The stationary (symmetric) double bump solution to (12) (β = 0) can be
written as

U(x) = W (x+ b)−W (x+ a) +W (x− a)−W (x− b), (20)

(see e.g. [18]).
Using the expression (16), we obtain

lim
|x|→∞

U(x) = 0.

It is easy to see now that the double bump solution U satisfies θ-condition.
Just as in the previous subsection, we investigate here existence and con-

tinuous dependence on the steepness of the function fβ : R → [0, 1] of the
stationary double bump solutions to (12) belonging to C1

e (Ξ, R).
Lemma 4.2.1. Let the following condition be satisfied:

{
〈ω〉(b− a)− 〈ω〉(2a) 6= 0,
〈ω〉(b− a) + 〈ω〉(b+ a) 6= 0.

(21)

Then for any compact set Ω, Ω ∈ R, there exists such ε > 0 that the
symmetric double bump U defined by (20) is a unique solution to (12) in
BC1

e (Ω,R)(U, ε) when β = 0.
Proof. From the definition of the single bump solution it follows that

{
W (b− a)−W (b+ a) +W (2b) = θ,
W (2b) +W (2a)− 2W (b+ a) = 0.

(22)
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Differentiation of this expression with respect to the parameter a gives us
{
〈ω〉(b− a)− 〈ω〉(b+ a) = 0,
〈ω〉(2a)− 〈ω〉(b+ a) = 0,

from where we get
〈ω〉(b− a)− 〈ω〉(2a) = 0.

Differentiating (22) with respect to the parameter b, we obtain
{
〈ω〉(b− a)− 〈ω〉(b+ a) + 2〈ω〉(2b) = 0,
〈ω〉(2b)− 〈ω〉(b+ a) = 0,

which implies
〈ω〉(b− a) + 〈ω〉(b+ a) = 0.

Thus, the condition (21) guarantees uniqueness of the solution U in
BC1

e (Ω,R)(U, ε) for some ε > 0. �
We express (20) in terms of the operator equality

U = F0U.

Without loss of generality we assume that the fixed point U of the operator F0

is unique in BC1
e (Ω,R)(U, ε). Thus, F0 maps BC1

e (Ω,R)(U, ε) into some manifold
M⊂ C1(Ω, R),M = {v = W (x+d)−W (x+c)+W (x−c)−W (x−d), (c, d) ∈
M ⊂ R2}, where compact set M is chosen in a such way that it contains the
points (cu, du) for all u ∈ BC1

e (Ω,R)(U, ε) (One can e.g. choose M to be a
rectangle). We define the mapping φ : M→M as

φ((c, d)) = v(x),
v(x) = W (x+ d)−W (x+ c) +W (x− c)−W (x− d), x ∈ Ω.

(23)

Lemma 4.2.2. The mapping φ : M → M defined by (23) is a homeo-
morphism, and M is an absolute neighborhood retract.

Proof. First, we note that φ : M → M is a surjection by definition.
In order to prove that φ : M → M is an injection, we use the following
expressions for the Frechet derivatives of φ:

φ′c((c, d)) = 〈ω〉(· − c)− 〈ω〉(·+ c)
φ′d((c, d)) = 〈ω〉(·+ d)− 〈ω〉(· − d)

Assuming φ′c((a, b)) = 0, we get 〈ω〉(x − a) − 〈ω〉(x + a) = 0, for all x ∈ Ω,
which contradicts with (19). We, thus, have φ′c((a, b)) 6= 0. By the same
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way we obtain φ′d((a, b)) 6= 0, which concludes the proof of the fact that
φ : M→M is a homeomorphism. As the set M is an absolute neighborhood
retract, then by properties of homeomorphism, the set M = φ(M) is an
absolute neighborhood retract, too. �

Just as in the previous subsection, we define

F = F0|M⋂
B

C1
e (Ω,R)

(U,ε),

F :M⋂
BC1

e (Ω,R)(U, ε)→M.

The mapping F :M⋂
BC1

e (Ω,R)(U, ε)→M is compact and admissible by its
definition. Using the properties of the topological fixed point index, we get

ind(F0, BC1
e (Ω,R)(U, ε)) = ind(F ,M⋂

BC1
e (Ω,R)(U, ε)).

Applying Lemma 2.3, we obtain

ind(F ,M⋂
BC1

e (Ω,R)(U, ε)) = ind(φ−1◦F◦φ, φ−1(F(M⋂
BC1

e (Ω,R)(U, ε))).

Lemma 4.2.3. There exists such δ > 0 that the operator Ψ = φ−1◦F◦φ
maps BR2((a, b), δ) to M.

Proof. Let u(x) = W (x + d) − W (x + c) + W (x − c) − W (x − d),
(c, d) ∈ M. Using the mean value theorem, we estimate

‖u− U‖C1(Ω,R) ≤ 4‖〈ω〉‖C1(Ω,R)(|c− a|+ |d− b|) < ε

for all (c, d) ∈ BR2((a, b), δ), where δ < ε/8
√

2‖〈ω〉‖C1(Ω,R). From the latter
estimate we conclude that

BR2((a, b), δ) ⊂ φ−1(M⋂
BC1

e (Ω,R)(U, ε))

which implies

Mδ ⊂ F(M⋂
BC1

e (Ω,R)(U, ε))
Mδ = {v = W (·+ d)−W (·+ c) +W (· − c)−W (· − d),

(c, d) ∈ BR2((a, b), δ)}.

Thus, we finally get

φ−1(Mδ) = BR2((a, b), δ) ⊂ φ−1(F(M⋂
BC1

e (Ω,R)(U, ε))),
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which concludes the proof. �
Due to the fact that U is an isolated fixed point of F and topological

invariance property of the index, (a, b) is an isolated fixed point of Ψ. Thus,
we get

Ψ((a, b)) = (Ψ1((a, b))Ψ2((a, b))),
Ψ((a, b)) = W (Ψ2((a, b)) + b)−W (Ψ1((a, b)) + a)+

+W (Ψ1((a, b))− a)−W (Ψ2((a, b))− b).
We calculate the topological index of a two-dimensional mapping as

ind(Ψ, φ−1(F(M⋂
BC1

e (Ω,R)(U, ε))) =

= sgn

(
det

(
(Ψ1)′a((a, b))− 1 (Ψ1)′b((a, b))

(Ψ2)′a((a, b)) (Ψ2)′b((a, b))− 1

))
.

The definition of the operator Ψ = φ−1◦F◦φ yields

W (Ψ2((c, d))+d)−W (Ψ1((c, d))+c)+W (Ψ1((c, d))−c)−W (Ψ2((c, d))−d) = θ

for all (c, d) ∈ BR(a, δ). We use the expressions

(U(a))′a = 0, (U(a))′b = 0, (U(b))′a = 0, (U(b))′b = 0.

Applying the implicit function theorem and the chain rule for differentiation,
we get

(Ψ1)′a((a, b)) =
〈ω〉(2a) + 〈ω〉(0)

〈ω〉(b+ a)− 〈ω〉(2a) + 〈ω〉(0)− 〈ω〉(b− a)
;

(Ψ1)′b((a, b)) =
−〈ω〉(b+ a)− 〈ω〉(b− a)

〈ω〉(b+ a)− 〈ω〉(2a) + 〈ω〉(0)− 〈ω〉(b− a)
;

(Ψ2)′a((a, b)) =
〈ω〉(b+ a) + 〈ω〉(b− a)

〈ω〉(2b)− 〈ω〉(b+ a) + 〈ω〉(b− a)− 〈ω〉(0)
;

(Ψ2)′b((a, b)) =
−〈ω〉(2b)− 〈ω〉(0)

〈ω〉(2b)− 〈ω〉(b+ a) + 〈ω〉(b− a)− 〈ω〉(0)
.

Thus, deg(I−F0, BC1
e (Ω,R)(U, ε), 0) 6= 0 if the following inequality takes place:

2〈ω〉(b+a)〈ω〉(b−a)−2〈ω〉(2a)〈ω〉(2b)+
(
〈ω〉(2a)+〈ω〉(2b)

)(
〈ω〉(b+a)−〈ω〉(b−a)

)

(
〈ω〉(b+a)−〈ω〉(2a)+〈ω〉(0)−〈ω〉(b−a)

)(
〈ω〉(2b)−〈ω〉(b+a) + 〈ω〉(b−a)−〈ω〉(0)

) 6= 0.

(24)
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The following statement is obtained by summarizing the results above
and by using then Theorem 3.2 and Theorem 3.1.

Theorem 4.2.1. Let the family of functions fβ : R→ [0, 1] (β ∈ [0,∞))
satisfy assumptions (A3) and (A4). Let also the connectivity kernel ω be
given by (13), where the function σ ∈ C(Y , (0,∞)) is Y-periodic and the even
function χ ∈ C2(R,R)

⋂
L(R, µ,R) satisfies (14). Finally, let the inequalities

(21) and (24) be fulfilled. Then, for any sufficiently large Ω, Ω ⊂ R, and for
each β ∈ (0,∞), there exists solution uβ ∈ C1

e (Ω, R)) to (12) (Ξ = Ω).
Moreover, ‖uβ − U‖C1(Ω,R)) → 0, as β → 0, where U ∈ C1

e (R,R)) is the
stationary double bump solution to (12) (Ξ = R, β = 0), defined by (20).

4.3. Radially symmetric single bump in 2-D

We now consider the two-dimensional homogenized Amari model, i.e. the
model (5) with m = k = 2:

∂tu(t, x, xf) = −u(t, x, xf)+

∫

Ξ

∫

Y

ω(x−y, xf−yf)fβ(u(t, y, yf))dyfdy,

t > 0, x ∈ Ξ ⊆ R2.

(25)

Here Y is some two-dimensional torus, the family of functions fβ : R→ [0, 1]
satisfies assumptions (A3), (A4), and the connectivity function ω : R2×Y →
R is decomposed in the following way (see e.g. [5]):

ω(x, xf) =
1

σ(xf)
χ
( |x|
σ(xf)

)
, (26)

where σ ∈ C(Y , (0,∞)) is Y-periodic and χ ∈ C2([0,∞), R)
⋂
L([0,∞), µ, R).

Thus, assumptions (A1) and (A2) are also satisfied.
Definition 4.3.1. Let θ > 0 be fixed. We define a radially symmetric

single bump solution to (25) to be a stationary solution U ∈ C1(Ξ, R) to
(25), satisfying the following properties:

• U(x) = U(|x|), where x ∈ R2, x = |x| exp(iα), α ∈ [0, 2π);

• the equation U(x) = θ has only the solutions belonging to the set
{x, |x| = r} for some r > 0;

• U(x) > θ for all x ∈ BR2(0, r) and U(x) < θ for all x ∈ Ξ \BR2(0, r).
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The stationary radially symmetric single bump solution of the radius a
to (25) in the case β = 0 can be determined by the following expression (see
e.g. [5]):

U(x) = 2πa

∞∫

0

〈̂ω〉(r)J0(|x|r)J1(ar)dr, (27)

where 〈̂ω〉 is the Hankel transform (of order 0) of 〈ω〉,

〈ω〉(x) =

∫

Y

ω(x, xf)dxf ,

Jn is the Bessel function of the first kind of order n.
Let us assume that the following condition is satisfied:

∞∫

0

|〈̂ω〉(r)|r2dr <∞. (28)

For an arbitrary γ > 0, using the properties of Jn, we have

|U(x)| ≤ 2πa

γ∫

0

|〈̂ω〉(r)|dr + 2πa
∣∣∣
∞∫

γ

〈̂ω〉(r)J0(|x|r)J1(ar)dr
∣∣∣.

Due to the assumptions on the functions χ ∈ C2(R2, R)
⋂
L(R2, µ, R) and

σ ∈ C(Y , (0,∞)), and the corresponding properties of the connectivity func-
tion ω defined by (26), for an arbitrary ε > 0, we obtain:

2πa

γ(ε)∫

0

|〈̂ω〉(r)|dr < ε/2

for some γ(ε) > 0. By the properties of the Bessel function J0, for any γ > 0,
we have J0(sr)→ 0 uniformly with respect to r ∈ [γ,∞), as s→∞. Using
these facts and the estimate (28), we finally get

|U(x)| ≤ 2πa

γ(ε)∫

0

|〈̂ω〉(r)|dr + 2πa
∣∣∣
∞∫

γ(ε)

〈̂ω〉(r)J1(ar)dr
∣∣∣|J0(|x|r)| < ε
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for some γ(ε) > 0 and sufficiently large |x| ∈ R. Thus, we obtain

lim
|x|→∞

U(x) = 0, (29)

which means that the radially symmetric single bump solution U satisfies
θ-condition.

Remark 4.3.1. For the proof of (29) it is sufficient to assume that

∞∫

0

〈̂ω〉(r)J1(ar)dr <∞.

instead of the more strict condition (28). However, we will need the condition
(28) in the proofs below. We also stress here, that (28) is fulfilled for all
typical connectivity functions used in neural field modeling.

We introduce the space

C1
rs(Ξ, R) = {u ∈ C1(Ξ, R), u(x) = u(|x|) for all x ∈ Ξ}.

Lemma 4.3.1. Let the following condition be satisfied:

∞∫

0

〈̂ω〉(r)
(
J0(ar)J1(ar)+

ar

2
(J2

0 (ar)−2J2
1 (ar)−J0(ar)J2(ar))

)
dr 6= 0. (30)

Then for an arbitrary sufficiently large compact set Ω, Ω ⊂ R2, there exists
such ε > 0 that the symmetric single bump U defined by (27) is a unique
solution to (25) in BC1

rs(Ω,R)(U, ε) when β = 0.
Proof. From the definition of the radially symmetric single bump solu-

tion it follows that

2πa

∞∫

0

〈̂ω〉(r)J0(ar)J1(ar)dr = θ.

Thus, the condition (30) guarantees uniqueness of the solution U inBC1
rs(Ω,R)(U, ε)

for some ε > 0. �
We now express (27) in terms of operator equality just as it was done in

Section 3:
U = F0U.
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In order to apply Theorem 3.2, we calculate deg(I − F0, BC1
rs(Ω,R)(U, ε), 0).

By the definition of the topological fixed point index, we get

deg(I − F0, BC1
rs(Ω,R)(U, ε), 0) = ind(F0, BC1

rs(Ω,R)(U, ε)).

Without loss of generality we assume that the fixed point U of the operator F0

is unique in BC1
rs(Ω,R)(U, ε). Thus, F0 maps BC1

rs(Ω,R)(U, ε) into some manifold
M⊂ C1(Ω, R),

M = {v = 2πc

∞∫

0

〈̂ω〉(r)J0(· r)J1(cr)dr, c ∈ M ⊂ R},

where compact set M is chosen in a such way that it contains cu for all
u ∈ BC1

rs(Ω,R)(U, ε) (One can e.g. choose M to be a segment). We define the
mapping φ : M→M as

φ(c) = v(x), v(x) = 2πc

∞∫

0

〈̂ω〉(r)J0(|x|r)J1(cr)dr, x ∈ Ω. (31)

Lemma 4.3.2. Let the following condition be satisfied:

∞∫

0

〈̂ω〉(r)J0(· r)
(
J1(ar) +

ar

2
(J0(ar)− J2(ar))

)
dr 6≡ 0. (32)

Then the mapping φ : M → M defined by (31) is a homeomorphism, and
M is an absolute neighborhood retract.

Proof. First, we note that φ : M→M is a surjection by definition. In-
jectivity of φ : M→M follows from the expression for the Frechet derivative
of φ taken at an arbitrary c ∈ M:

φ′(c) = 2π

∞∫

0

〈̂ω〉(r)J0(· r)
(
J1(cr) +

cr

2
(J0(cr)− J2(cr))

)
dr

and the condition (32). We also note that the set M is an absolute neighbor-
hood retract, since it is a compact convex subset of R. Thus, by properties
of homeomorphism, M = φ(M) is an absolute neighborhood retract, too. �
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We define F to be the restriction of F0 on M⋂
BC1

rs(Ω,R)(U, ε), i.e.

F = F0|M⋂
B

C1
rs(Ω,R)

(U,ε),

F :M⋂
BC1

rs(Ω,R)(U, ε)→M.

Due to its definition, the mapping F :M⋂
BC1

rs(Ω,R)(U, ε)→M is compact
and admissible. We use the properties of the topological fixed point index
and get

ind(F0, BC1
rs(Ω,R)(U, ε)) = ind(F ,M⋂

BC1
rs(Ω,R)(U, ε)).

Next, we apply Lemma 2.3 and obtain

ind(F ,M⋂
BC1

rs(Ω,R)(U, ε)) = ind(φ−1◦F◦φ, φ−1(F(M⋂
BC1

rs(Ω,R)(U, ε))).

Lemma 4.3.3. Let the condition (28) be satisfied. Then there exists
such δ > 0 that the operator Ψ = φ−1◦F◦φ maps BR(a, δ) to M.

Proof. Let

u(x) = 2πc

∞∫

0

〈̂ω〉(r)J0(|x|r)J1(cr)dr, c ∈ M.

Using the mean value theorem and the properties of the Bessel function J1,
we estimate

‖u− U‖C1(Ω,R) ≤

2π
∥∥∥c

∞∫

0

〈̂ω〉(r)J0(| · |r)J1(cr)dr − a
∞∫

0

〈̂ω〉(r)J0(| · |r)J1(ar)dr
∥∥∥
C(Ω,R)

+

2π
∥∥∥− c

∞∫

0

〈̂ω〉(r)rJ1(| · |r)J1(cr)dr + a

∞∫

0

〈̂ω〉(r)rJ1(| · |r)J1(ar)dr
∥∥∥
C(Ω,R)

≤

2π
∥∥∥
∞∫

0

〈̂ω〉(r)J0(| · |r)(cr
2

(J0(ξr)− J2(ξr)) + aJ1(ar))dr(a− c)
∥∥∥
C(Ω,R)

+

2π
∥∥∥
∞∫

0

〈̂ω〉(r)rJ1(| · |r)(cr
2

(J0(ξr)− J2(ξr)) + aJ1(ar))dr(a− c)
∥∥∥
C(Ω,R)

,
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where ξ ∈ BR(a, |a− c|). The condition (28) implies that

‖u− U‖C1(Ω,R) ≤ N|c− a| < ε

for some N ∈ R and all c ∈ BR(a, δ), where δ < ε/N. From the latter
estimate we conclude that

BR(a, δ) ⊂ φ−1(M⋂
BC1

rs(Ω,R)(U, ε))

which, in turn, implies

Mδ ⊂ F(M⋂
BC1

rs(Ω,R)(U, ε))

Mδ =
{
v = 2πc

∞∫

0

〈̂ω〉(r)J0(| · |r)J1(cr)dr, c ∈ BR(a, δ)
}
.

Thus, we finally get

φ−1(Mδ) = BR(a, δ) ⊂ φ−1(F(M⋂
BC1

rs(Ω,R)(U, ε))),

which concludes the proof. �
Remark 4.3.2. The condition (28) is redundant for the the proof of the

statement in Lemma 4.3.3. However, the condition it can be relaxed to is
more cumbersome and harder to check.

It is easy to see that a is a fixed point of the operator Ψ : BR(a, δ)→ M.
Moreover, a is an isolated fixed point of Ψ due to the fact that U is an
isolated fixed point of F and topological invariance property of the index.
The topological index of a finite dimensional map can be calculated as

ind(Ψ, φ−1(F(M⋂
BC1

rs(Ω,R)(U, ε))) = sgn(1−Ψ′(a)).

The definition of the operator Ψ = φ−1◦F◦φ implies that

2πc

∞∫

0

〈̂ω〉(r)J0(Ψ(c)r)J1(cr)dr = θ for all c ∈ BR(a, δ).

Using the implicit function theorem and the chain rule for differentiation, we
get

∞∫

0

〈̂ω〉(r)J0(ar)J1(ar) + ar
(
J ′0a(ar)J1(ar)Ψ′(a) + J0(ar)J ′1a(ar)

)
dr = 0.
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From the latter expression we obtain the following sufficient condition for
Ψ′(a) 6= 1:

∞∫

0

〈̂ω〉(r)J0(ar)J1(ar) + a
(
J0(ar)J1(ar)

)′
a
dr 6= 0. (33)

Thus, deg(I − F0, BC1
rs(Ω,R)(U, ε), 0) 6= 0 provided that the inequality (33) is

fulfilled.
Summarizing the results above and using Theorem 3.2 and Theorem 3.1,

we get the main result of the subsection.
Theorem 4.3.1. Let the family of functions fβ : R→ [0, 1] (β ∈ [0,∞))

satisfy assumptions (A3) and (A4). Let also the connectivity kernel ω be
given by (26), where the function σ ∈ C(Y , (0,∞)) is Y-periodic and the
function χ ∈ C2(R2, R)

⋂
L(R, µ,R) is radially symmetric. Finally, let the

conditions (28), (30), (32), and (33) be fulfilled. Then, for any sufficiently
large Ω, Ω ⊂ R, and for each β ∈ (0,∞), there exists solution uβ ∈ C1

rs(Ω, R))
to (25) (Ξ = Ω). Moreover, ‖uβ − U‖C1(Ω,R)) → 0, as β → 0, where U ∈
C1
rs(R

2, R)) is the stationary bump solution to (25) (Ξ = R2, β = 0), defined
by (27).

5. Conclusions and outlook

Using the methods of functional analysis and topological degree theory,
we proved theorems on existence and continuous dependence of the stationary
solutions to nonlinear operator equation with the operator of the Hammer-
stein type on the steepness of the Hammerstein nonlinearity. We applied
the theorems obtained to the m-dimensional homogenized Amari neural field
model (4) and proved theorems on existence and continuous dependence of
its stationary solutions under the transition from continuous firing rate func-
tions to the discontinuous Heaviside limit. These results serve as a justifica-
tion of the transition from the heterogeneous model (3) to the homogenized
model (4) in the case of the Heaviside firing rate function. We investigated
the following three types of stationary solutions to (4): symmetric single
bump solution in 1-D, symmetric double bump solution in 1-D, and radially
symmetric single bump solution in 2-D in the respect of their existence and
dependence on the firing rate steepness.

The present research can be considered as an extension to m-dimensional
homogenized neural field models of the results of the paper by Oleynik et
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al [21]. This extension was achieved by generalization of the model keeping
the methods of proofs similar to the ones used in [21]. The main distinction
in the proofs foundations is the choice of the basic spaces: we employ the
spaces of continuous functions on compact domains instead of the spaces of
integrable functions on R used by Oleynik et al. Our choice of the basic
spaces was conditioned by the possibility to facilitate and shorten the proofs
required and to obtain at the same time the results of [21] concerning single
bump solutions as a special case of our theorems.

The models of mathematical biology, in particular, the models arising
in genetics, incorporate approximation of the rapid switching between two
states of the model elements. This approximation is often modeled by means
of Heaviside function. Extension of the methods suggested in Section 3 to
other problems of mathematical biology can be considered as a further de-
velopment of the present study.
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1 Introduction

Firing rate models are used in the investigation of the properties of strongly interconnected cortical 
networks. In neural field models the cortical tissue has in addition been modeled as continuous lines 
or sheets of neurons. In such models the spatiotemporally varying neural activity is described by a 
single or several scalar fields, one for each neuron type incorporated in the model. These models are 
formulated in terms of differential, integro-differential equations and integral equations. The most 
well-known and simplest model in that respect is the Amari model (see e.g. [2])

ut (t, x) = -u (t, x) + ш( x -  y) f  (u(t, y))dy + I  (t, x) + h,
R (1 Л)

t > 0, x e R.

Here the function u(t, x) denotes the activity of a neural element at time t and position x. The con
nectivity function (spatial convolution kernel) w(x) determines the coupling between the elements 
and the non-negative function f (u) gives the firing rate of a neuron with activity u . Neurons at a 
position x and time t are said to be active if f  (u(t, x)) > 0. The function I(t, x) and the parameter h 
represent a variable and a constant external inputs, respectively.

The literature on the Amari model (1.1) and its extensions is vast. The key issues in most of the 
published papers on these models are existence and stability of coherent structures like localized 
stationary solutions (so-called bumps) and traveling fronts/pulses, pattern formation as the outcome 
of a Turing type of instability and issues like wellposedness of the actual models. See e.g. the 
reviews [12], [9] and [8] (and the references therein) for more details.

For example, Blomquist et al [7] investigated the existence and stability of bumps within the 
framework of the two population neural field model

Aut (t, x) = -u (t, x) + J  W(x - y)f(u(t,y))dy, t > 0, x e R, (1 2 )
R

A  = n , W(x) = .
'0  a )  \  Uie(x) -^ ii(x )

ue(t, x ) fe(ue(t, x))
u(t-x) ^  u ,( ,;x )) , f ( u( >,x ) )= \  f l(ui(t,x))

Here ue(x, t) and ui(x, t) represent the activity of an excitatory and an inhibitory neural elements, 
respectively, and a  e R represents the inhibitory time constant (measured relative to the excitatory 
time constant). The model (1.2) was used as a starting pointin [26] for the study of pattern formation 
through a Turing type of instability.

Faye et al [13] established conditions for the existence and uniqueness of solutions to the neural 
field model with delay

ut(t, x) = -Lu(t, x) + o>(t, x, y )f(u (t -  t (x , y), y))dy + I(t, x),
a  (1.3)

t e [a, m), x e а  с  Rm

in the space of square integrable functions. Here L = diag(l1, . . . ,  ln), li > 0 characterize the dynamics 
of the i-th population, and non-negative function t ( x,y) denotes the time it takes for the signal at the 
position x  to reach the position y .
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Although the modeling framework given by (1.1) and its extensions (including (1.2) and (1.3)) 
qualitatively are expected to capture the essential features of the brain activity on the macroscale 
level, they do not account for the heterogeneity in the cortical structure. Thus they represent a 
simplification of the actual situation. Hence it is a pressing need to develop mathematical tools for 
the study of waves and stationary activity patterns in heterogeneous media that can be used in brain 
modeling. One common tool which could be useful in the study of such problems is homogenization 
techniques (see e.g. [27]). Coombes et al [10], Svanstedt et al [19] and Malyutina et al [16] have 
taken a step in that direction by considering the parameterized Amari model

uf(t, x) = - u E(t, x) + f  a f(x  -  y ) f  (uE (t, y))dy,
Rr (14) 

t > 0, x e R,

where the connectivity kernel ws(x) = <±>(x, x /s )  by assumption is periodic in the second variable. 
It is proved (see e.g. [19]) by means of Nguetsengs multiscale convergence technique [17, 15, 25] 
that, as s  ^  0, the solution of the model (1.4) converges to the solution of the homogenized Amari 
model

ut(t, xc, x f)  = -rn(t, xc, x f)  + M xc -  yc, x f  -  у f  ) f  (u(t, yc, yf))dycdyf,
(1.5)Rm Y  v '

t > 0, xc e Rm, x f  e Y  с  Rm.

Here xc and x f  are coarse-scale and fine-scale spatial variables, respectively, ш is a connectivity 
kernel which by assumption is periodic in the second variable.

The Volterra formulation
t

u(t, x) = J  n(t -  s ) f  w(x -  y)f(u(s -  |x -  y\/v, y))dyds, ^ )
-m R

t e R, x e R.

has been investigated by Venkov et al [24] in the study of axonal delay effects on Turing-Hopf 
instabilities and pattern formation. Here the memory function (temporal convolution kernel) n(t)
with n(t) = 0 for t < 0 represents synaptic processing of signals within the network, and the delayed
temporal argument to u in the spatial integral represents the axonal delay effect arising from the 
finite speed (denoted here by v) of signal propagation between points x  and y . Notice that we obtain 
(1.1) with h = I(x, t) = 0 from (1.6) by means of the differentiation when n(t) = exp(-t), t > 0 and 
v ^  m.

A common feature of the aforementioned nonlocal neural field models is the dependence on 
several biologically important parameters. Within the mathematical neuroscience community, the 
structural stability aspect of the models under investigation is often tacitly assumed to hold true, even 
though no rigorous mathematical justification is given for this assumption. Thus, it is of interest to 
study the impact of these parameters on the wellposedness issue of these models i.e. existence, 
uniqueness and continuous dependence on input data. The study of continuous dependence on 
parameters in the solutions is indeed related to the property of structural stability of such complex 
systems, which is of fundamental importance in systems biology.

The question which then naturally arises is how to deal with this problem for nonlocal systems 
like (1.1) -  (1.6). The continuous dependence of solutions to various classes of operator equations
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on parameters is studied in many papers (see e.g. the review [22], as well as very important results 
obtained for functional differential equations [4], pp. 29-40 and the references therein). These 
results cannot be applied directly to study of continuous dependence/structural stability of nonlocal 
neural field models, however.

Two basic approaches to the analysis of continuous dependence on a parameter have emerged. In 
the framework of the first approach it is assumed that for some value of the parameter, which is often 
referred to as the limit value, the modeling equation has a solution. The aim is to find conditions 
which guarantee that for the values of the parameter, which are sufficiently close (in a certain sense) 
to the limit value, the equation is also solvable and this solution is a continuous function of the 
parameter. This approach was implemented e.g. in [1] and [3]. In the second approach solvability 
for the limit value of the parameter is to be proved first, so the conditions needed are usually more 
strict in this case (see e.g. [28]).

The literature on Volterra equations is vast. A detailed review of the integral Volterra equations 
theory is given by Tsalyuk [21]. The theory of both abstract and integral Volterra operators and 
many useful references are presented in Corduneanu [11]. The general formulations of Volterra 
property for abstract operators was introduced in Zhukovskiy [28].

This serves as a background and motivation for the present study: Our aim is to establish con
ditions for existence and uniqueness of solutions to a nonlinear integral equation which generalizes 
all the models listed above as well as the continuous dependence of the solutions on parameters by 
using the ideas developed by Zhukovskiy [28]. We do this by studying the following equation:

t

u(t, x) =
-m П

t e R, x e П с  Rm

and its important truncated special case

t

u(t,x) = I W(t, s, x ,y )f(u (s  -  t (s ,x,y),y))dyds,
a a  (1.8)

t e [a, m), x e П;
u(g, x) = 0, g < a, x e П.

We do not consider external inputs I(t, x) and h (unlike [2], [13]) in our models, as they do not 
involve any nonlinearities and, hence, only make statements and proofs more cumbersome. We 
stress, however, that all the results below remain valid in the presence of the external inputs as well.

Note that we get (1.2) from (1.8) by taking

W (t, s, x, y) = n(t, s)w(x -  y)

with
n(t, s) = diag( exp ( -  (t -  s )) ,a exp ( -  a(t -  s))j and T(t, x,y) = 0.

If we neglect I(t, x) in (1.3), we can obtain (1.3) from (1.8) with

W (t, s, x, y) = n(t, s)a>(t, x, y),

n(t, s) = diag^h exp( - 11 (t -  s)) , . . . ,  ln exp( -  ln(t -  s))}, T(t, x, y) = t (x , y).

Taking П = Rm x  Y  (Y  is some m-dimensional torus [25]),

f f w  f t ., ,x,y).f  (u(s -  Tfc X, Л  y))iyis,

x = (xc,x f ), y = (yc,yf),
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W (t, s, x, y) = exp( -  (t -  s))o>(xc -  yc, x f  -  y f)

in (1 .8) with
T(t, x, y) = 0,

we get the model (1.5). Finally, with

W(t, s, x, y) = n(t -  s)w(x -  y)

and
T(t, x, y) = \x -  y|/v

in (1.7), we obtain (1.6), which covers, in turn, the model (1.1) without the external inputs.
Our results generalize the results obtained by Potthast et al [18] and Faye et al [13] concerning 

existence of a unique solution to the Amari model (1.1) in the Banach space of continuous bounded 
functions and to the model (1.3) in the space of square integrable functions on a bounded domain, 
respectively. Here we also study dependence of solutions on the parameters.

The paper is organized in the following way. Section 2 is devoted to the study of local solvability, 
extendability and continuous dependence of solutions to operator Volterra equations on parameters. 
Building on these general results we investigate the models (1.7) and (1.8) in Section 3. Section 4 
contains conclusions and an outlook.

We stress that one of the challenging parts of out study is application of the general theory of 
Volterra operators to the integral equations (1.7) and (1.8), which are defined on unbounded spatial 
and temporal domains. This general setting requires some conditions which are difficult to verify 
(see main theorems in Section 3). In two special cases, which are highly relevant for the neural 
field theory, we can however relax these conditions. The analogues of the main theorems for these 
special cases are formulated as remarks in Section 3 and their proofs are given in Appendix.

2 Existence, uniqueness and continuous dependence of solutions on 
parameters: the case of Volterra operator equations

Let us introduce the following notation:

Rn is the space of vectors consisting of n real components with the norm | ■ |;

П is some closed subset of Rm;

B  is some Banach space with the norm || ■ ||®;

Y([a, b], B) is a Banach space of functions y : [a, b] ^  B  with the norm || ■ || Y;

В(П, Rn) is some Banach space of functions v : П ^  Rn with the norm || ■ ||s(n,R«);

Л is some metric space;

U is the Lebesgue measure;

Lp(Q,/u, Rn) is the space of all measurable and integrable with p-th degree functions x  : П ^  Rn

with the norm IMlLP([fi],u,R") = ( f  lx(s)|pds)1/P, 1 < p  < m;
a

B C (a, Rn) is the space of all continuous bounded functions $ :  П ^  Rn with the norm ||$||sc(a ,Rn) = 
sup |$(x)|;
xeQ.
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C0(H,Rn) is the space of all continuous functions $  : П — Rn satisfying the additional condition
lim |$(x)| = 0 in the case if  П is unbounded, with the norm ||$||Co(n,R”) = max |$(x)|;

|x|— ’ xeQ

C([a,b], $ (П ,Rn)) is the space of all continuous functions v : [a,b] — $ (П ,Rn), with the norm
yv||c([a,b],s(n,Rn)) = max ||v(0lls(n,Rn).t€[a,b]

C ((-m ,b] ,$ (П ,Rn)) is the space of all continuous functions v : (-m ,b ] — $ (П ,Rn) such that
lim ||v(t)||s(n,Rn) = 0, with the norm ||vIC((-«>,b],8 (n,Rn)) = max ||v(t)||s(n,Rn).t—-M te(-M,b\

In the notation for functional spaces we will not indicate the definition domains and the image 
sets of functions, provided that this leads to no ambiguity.

Definition 2.1. An operator ¥  : Y — Y is said to be a Volterra operator (in the sense of A.N. 
Tikhonov [20]) if for any ? e (0, b -a )  and any yi ,y2 e Y the fact that yi (t) = y2(t) on [a, a+?] implies 
that (¥yi)(t) = (¥y2)(t) on [a, a+?].

In what follows we assume that in the space Y the following condition is fulfilled:

V-condition [28]: For arbitrary y e Y, {y,} с  Y such that ly  - y||Y — 0 and for any ? e (0,b -a )  if 
yi(t) = 0 on [a, a+?], then y(t, x) = 0 on [a, a+?].

For any ? e (0, b -a )  let Y? = Y([a, a+?], B) denote the linear space of restrictions y? of functions 
y e Y to [a, a+?] which implies that for each y? e Y? there exists at least one extension y e Y of the 
function y?. Then we can define the norm of Y? by ||y?||Y? = inf ||y||Y, where the infimum is taken 
over all extensions y e Y of the function y?. Hence, the space Y? becomes a Banach space.

For an arbitrary ? e (0, b -a )  let an operator P? : Y — Y takes each y? e Y? to some extension 
y e Y of y?. Moreover, we define the operators E? : Y — Y? by (E?y)(t) = y(t), t e [a, a+?] and 
¥ ?  : Y? — Y? by ¥?y? = E?¥P?y?, respectively. Note that for any Volterra operator ¥  : Y — Y the 
operator ¥?  : Y? — Y? is also a Volterra operator and it is independent of the way y = P?y? extends

y?.

Definition 2.2. A Volterra operator ¥  : Y — Y is called locally contracting if  there exists q < 1 
such that for any r  > 0 one can find 8 > 0 such that the following two conditions are satisfied for all 
y i,y2 e Y, such that ||yi||Y < r, M y < r:

qi) l|E8¥y i -  E8¥ y 2lY < q lE y i  -  E8y2||Y8,

q2) for any у e (0, b - a - 8], the condition EYyi = EYy2 implies that

llEr +8¥ yi -  EY+8¥ y2IIYr+8 < qllE7+8yi -  Er +8yi llYr+8.

The class of locally contracting operators is rather wide. It includes not only contracting opera
tors, but also, e.g. т -Volterra operators.

Definition 2.3. An operator ¥  : Y — Y is called т -Volterra if for any y i ,y2 e Y the condition 
(¥yi)(t) = (¥y2)(t) holds true on [a, a +т] and for any ? e [0 , b - a -т ] , if yi (t) = y2(t) on [a, a+?], then 
(¥yi)(t) = (¥y2)(t) on [a, a+^+т].
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Notice that т -Volterra operators satisfy conditions q1) and q2) with q = 0 and 5 = t , which are 
independent of a choice of r.

Let us now consider the equation

y(t) = (¥y)(t), t e [a,b], (2 .1)

where ¥  : Y ^  Y is a Volterra operator.

Definition 2.4. We define a local solution to Eq. (2.1) on [a,a+y], у  e (0,b -a )  to be a function 
yY e Yy that satisfies the equation ¥ ryr = yY on [a, a +у]. We define a maximally extended solution to 
Eq. (2.1) on [a, a+Z), Z e (0, b -a ] to be a function yz : [a, a+Z) ^  B, whose restriction yY to [a, a+y] 
is a local solution of Eq. (2.1) for any у  < Z and lim ||yr  ||v = m. We define a global solution to

y ^ Z-0
Eq. (2.1) to be a function y e Y that satisfies this equation on the entire interval [a,b].

Let us now consider the equation

y(t) = (F(y,A))(t), t e [a, b] (2.2)

with a parameter A e Л, where for each A e Л  a Volterra operator F (■, A ) : Y ^  Y satisfies the property: 
F(■,A0) = ¥  for some A0 e Л. Our aim is to formulate conditions for existence and uniqueness of 
solutions to Eq. (2.2) on a certain fixed set [a, a + g] с  [a, b] (We, naturally, also apply Definition 4 
to Eq. (2.2) at each fixed A e Л); and convergence of these solutions to solution to Eq. (2.1) in the 
norm of Yg as A approaches A0. This means, that the problem (2.2) is wellposed.

Definition 2.5. For any A e Л0 с  Л, let the Volterra operator F^,A) : Y ^  Y be given. This
family of operators is called uniformly locally contracting if there exist q > 0 and 5 > 0, such that
for each A e Л0 с  Л the operator F (■, A ): Y ^  Y is locally contracting with the constants q and 5.

The following theorem represents our main tool to study of the wellposedness of the models 
(1.7) and (1.8). Minding future applications, we formulate this theorem here in a more general form 
than it is needed for the classical neural field theory.

Theorem 2.1. Assume that the following two conditions are satisfied:

1) There is a neighborhood U0 o f A0 where the operators F(^,A): Y ^  Y, A e U0 are uniformly 
locally contracting;

2) For arbitrary y e Y, the mapping F  : Y x  Л ^  Y is continuous at (y, A0).

Then fo r  each A e U0, Eq. (2.2) has a unique global or maximally extended solution, and each 
local solution is a restriction o f this solution.

IfEq. (2.2) has a global solution y0 at A = A0, then fo r  each A (sufficiently close to A0) it also 
has a global solution y = y(A), and ||y(A) - y0||Y ^  0 as A ^  A0.

IfEq. (2.2) has a maximally extended solution y0z defined on [a, a+Z) at A = A0, then fo r  any 
у  e (0,Z) one can find a neighborhood o f A0 such that fo r  any A in this neighborhood Eq. (2.2) has 
a local solution yY = yY(A) defined on [a, a+y] and ||yr (A) -  y0r  ||Yr ^  0 as A ^  A0.

Proof. Choose a fixed A e U0. Let r > 0, g e (0, b-a), yg e Yg, "y e Y . Let BY(y, r) denote the set of 
functions y e Y such that ||y - y | |Y < r and Y([a,b],B,yg) denote the set of functions y e Y such that 
Egy = yg. Put BY(laMyg)(y,r) = By (y , r ) f |  Y([a,b],B,yg).
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We construct the solution in the following way. We set r i = (i -  q) i ||F (0 ,i) ||Y + i and find all 
8 > 0 that satisfy the condition i)  with r  = r i . For 8i = 2 sup{8}, we have

HE8i F(y ,Л) -  E8i F(u, Л) H Y8i < q |E 8i y -  E8i u| | Y8i

at any y, u e BY(0, r i ). Then F((BY(0, r)), Л) с  BY(0, r) for BY(0, r) with r  > r i . By the Banach fixed 
point theorem ( [i4], p. 43) the mapping F 8i (-,i) has a fixed point y8i in the ball BŶ  (0, r i ). This 
fixed point is a local solution to Eq. (2.2). Using the Banach theorem, one can also prove that 
for arbitrary $ i e (0,8i ) and any local solution 'y$1 to Eq. (2.2) defined on [a ,a+ $ i ] it holds that 
5’$i (t) = y8i (t) at all t e [a, a+ $ i ].

Choose r2 = (i -  q)- i |F (P 8iy8i ,Л)|^ + i and find all possible 8 > 0 that satisfy the condition i) 
with r  = r2. For 82 = 2 sup{8} at any y, u e BY([a,b],y8i )(P8iy81, r2) we have

HE8i+82F (y ,i)P 8iy8i -  E8i+82F ^ ) ^ ^  < q |E 8i+82y -  E8i+82uHY8i+82 .

According to the Banach theorem there exists a fixed point y8i+82 of the mapping F 8i+82(-,i) in 
BY([a,a+8i+82],ŷ )(E8i+82P8iy8i , r2). This fixed point is a local solution to Eq. (2.2) defined on 
[a, a+ 8i +82]. It is an extension of the local solution y8i. For any $ 2 e (0 ,82) and any local solution 
y8i+$2 to Eq. (2.2) defined on [a, a+ 8i +$2], it holds thaty8i+$2(t) = y8i+82(t) for all t e [a, a+ 8i +$2]. 
Next, let us choose r3 = (i -  q)- 1||F(P8i+82y8i +82,^)||Y + i, find all possible 8 > 0 that satisfy the 
condition i)  with r  = r3 and repeat the procedure, etc.

If the norms of the obtained local solutions are uniformly bounded by some TO e R, then for 
r  = Ш + i due to the local contractivity of the operator F(-, Л ): Y — Y we find 8 such that 8  > 2 at 
each of the steps described above. Therefore, in a finite number of steps we will obtain a unique 
global solution to Eq. (2.2). But if such Ш does not exist, then the number of steps becomes infinite. 
As a result, we obtain a unique maximally extended solution to Eq. (2.2).

We now prove the continuous dependence of solutions on a parameter Л. Consider the case 
when, Eq. (2.2) has global solution y0 = у(Л0) e Y at Л = Л0. Let us find 8 > 0 satisfying the 
condition i)  at r  = ||y0||Y + i, and any Л e U0. For k = [ ]  + i denote Al = l8, l = i , 2 , . . . ,k. Since 
the condition 2) holds true, for any e > 0 one can find ^ i > 0 and a neighborhood Ui such that for 
each Л e Ui we have

HF{u,X) - F ( y ^ 0)||Y <
6

for all u e Y such that ||u - y||Y < <хь Assume that ^ i < (i~6q)e. Let us find <x2 > 0 and U2 such that 
for arbitrary Л e U2 it holds that

llF Ak-i (uAk-i,Л) -  F Ak-i (yAk-i ^ I I Y â  < ^

for all uAk-i e YAk-i, |uAk-i - yAk-1 H YAk-1 < ̂ 2  Assume that <X2 < ^-T^ 1 , U2 с  U i. There exist ^3 > 0
and U3 such that for any Л e U3 it holds true that

llF Ak-2(uAk-2,Л) -  F Ak-2(yAk-2 , ̂ )HYAk-2 < 6

for any uAk-2 e YAk-2, ||uAk-2 - yAk-2|Ц _ 2 < ^ 3; ^3 < (i-6)̂ 2, U3 с  U2 etc. We perform k iterations 
and at the last step find <xk and Uk, 0 < <xk < f iz ^ p -1, u k с  Uk-i.

Let y0Ai denote a local solution to Eq. (2.2) at Л = Л0, that is a fixed point of the operator 
Fai (■, Л0) : Yai — Yai . If HuAi -y 0Ai Hya1 < ^ k , then

llF Ai (uAi,Л) -  F Ai(y0Ai ,Л0)HYA1 < -̂Г) k 1



for all A e Uk. Taking into account the condition 1), we get for any natural number m that

IIFА1(У0А1 ,A )- У0А1 IIya1 <1^(У0А1 ,A) - Fm- 1(y0A1 ,A)|ya1 + .. .

I, и w  m- 1 1N(1 -  q)&k-1 ^ Ok-1
... + llF A1(y0A1,A) -  y0A1 IIYa1 < (q + ... + q + 1)------ 6---------  < 6 .

Due to the convergence of the approximations F m (y0A1, A) to the fixed point yA1 = yA1 (A) of the 
operator F A1 (■, A ): YA1 — YA1 we obtain that ||yA1 - y0A1 ||Ya < for each A e Uk. Further, le ty 0A2 
be a local solution to Eq. (2.2) at A = A0 defined on [a, a+A2] x Rn. Then, for all A e Uk с  Uk-1 and 
any ua2 e BY([a,a+A2],yA1)(y0A2,&k-\) we get

|F A2(uA2 ,A) -  У0А2 | YA2 = |F A2(uA2 ,A) -  FA2(y0A2 ,A0) |YA2 < (-q) k 2 .

Then
(1 q) k 2 (1 q) k 2

|F A2(uA2 ,A ) -u A2 IIYa2 < O'k- 1 + 6-------  < ------ 3------ .

For all m = 1 , 2 , . . . we have

l|Fm2(uA2 ,A) -  ua2 |ya2 < l|Fm2(uA2 ,A) -  Fm2-1(uA2 ,A)|ya2 + ...

... + |F A2(uA2 ,a) -  uA2 IIya2 < (qm 1 + .. .  + q + 1)----- q ------ < 3 .

Taking into account the convergence of the approximations FA2 (uA2, A) to yA2 = yA2(A) we obtain

llyA2 -  y0A2 W Ya2 < |yA2 -  F A2 (uA2 ,A) W Ya2 +

+ WFA2(uA2,A) -  uA2\Ya2 + WuA2 - y 0A2\Ya2 < ~ 3 "2 + °"k-1 < O - 2 .

Using the convergence of sequential approximations F m (uA3 ,A) to a fixed point yA3 = yA3(A) of the 
operator Fa3(-,A) : YA3 — YA3 for any ua3 e BY([a,a+A3],yA2)(y0A3, Ok-2) and each A e Uk C Uk-1 C Uk-2, 
we obtain the estimate WyA3 -  y0A3 ||Ŷ  < ^ j 3. We, then, repeat this procedure. At the k-th step we 
prove in an analogous way that the inequality Wy(A) - y0||Y < s  holds true for all A e Uk. Therefore, 
Wy(A) - y0WY ^  0 as A ^  A0.

Let now a solution y0n to Eq. (2.2) at A = A0 be maximally extended. Fix arbitrary у  e (0, rf) and 
let y0r denote the restriction of the solution y0n to [a, a+y] x Rn. For the equation uY = F r (ur ,A0) 
the function y0r e Y([a, a+y] x П, Rn) is a global solution. As is shown above, for all A from some 
neighborhood of A0 the equations uY = Fy(u7,A) have global solutions yY(A), and WyY(A)-y0rWYr ^  0 
as A —* A0. n

The proof of Theorem 1 has several corollaries which are summarized in the following remarks:

Remark 2.2. If the constant 5 in the condition 1) of Theorem 2.1 is independent of r, then Eq. (2.2) 
has a global solution. This is the case e.g. for т-Volterra operators.
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Remark 2.3. In case of a priori boundedness of the solution, it is possible to extend the solution 
beyond the point b in the same way as it was done in the proof of Theorem 2.1. This will give a 
unique solution defined on [a, m).
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Notice that the existence of a maximally extended solution to Eq. (2.2) at Л = Л0 does not 
guarantee the existence of maximally extended solutions to eq (2.2) at Л arbitrarily close to Л0. The 
following example illustrates this fact.

Example 2.1. Let operators Ф(-, Л ): ^ ( [ 0 ,^ ] ,^ ,R) — ^ ( [0 ,  n],ju,R), Л e [0, п], be defined as

(Ф(у,л))(0 =
0, if t e [0,Л);

t-Л 2
( f  y(s)ds) + 1, if t e [Л,п].

0

These operators are Volterra operators and satisfy the condition 1) of Theorem 2.1: For q = 2 
and any r  > 0 one can choose 8 = 47, and condition 1) becomes fulfilled for all t e [0,п) and any 
Л e [0, п]). Condition 2) of the Theorem 2.1 is also fulfilled. The equation y(t) = (Ф(у, 0))(t), t e [0, п] 
has a unique maximally extended solution y(t) = d t  defined on [0, |) .  Now, since for any Л e (0, п] 
the operator Ф(-,Л) is a т -Volterra operator, the equation y(t) = (Ф(у,Л))(0, t e [0,п] is globally 
solvable for each Л e (0, п].

When analyzing Theorem 2.1, it is natural to ask the question whether the maximally extended 
solutions to Eq. (2.2) are defined on time intervals with arbitrarily small length. The following two 
remarks give answers to that question:

Remark 2.4. Let the assumptions of Theorem 2.1 be fulfilled and let there exist some neighborhood 
U C U0 of Л0 such that Eq. (2.2) has maximally extended solutions у^Л defined on [a, a+Zi) for any 
Л e U. Then i n f £Л > 0. Since for all Л e U0 operators F (-^ )  are uniformly locally contracting, we

VieU
get i n f  £л > 0 .

VieU

Remark 2.5. Let the assumptions of Theorem 2.1 be fulfilled and let for Л = Л0 and some se
quence Лi с  U0 equation (2 .2) have maximally extended solutions y0z and y^ defined on [a, a+Z) 
and [a, a+Zi), respectively. Then в  = min{Z, inf Zi} > 0, and either в  = Z, or в  = Zi0 at some i0.

Vi

The positivity of в  follows from Remark 3. Next, we choose arbitrary e > 0 and a sequence 
j j  e (0,в), Yj — в , 1 — “ . For each j j  e (0,в) there exists a finite sup ||yiYj||Y otherwise в  = Yj.

Vi 1
Let us associate the number j 1 with the corresponding local solution yi1Y1 to Eq. (2.2) at Л = Л^, 
where ii is the least number such that max{||y0ri | Yj , sup ||yiY1 ||Yy } -  ||yi1 Y1 HYj < e; we associate the

1 Vi 1 1
number j 2 with the corresponding local solution yi2Y2 to Eq. (2.2) at Л = Л^, where i2 is the least 
number such that max{^|y0y2 HyY2 , sup Цу^ HY[a,a+Y2]} -  Hyi2Y2 HyY2 < e etc. We obtain a subsequence {ij}

2 Vi 2 
of numbers of local solutions yiYj to Eq. (2.2) such that Н у.. ||y — ra as j  — to. If the subsequence 
{ij} is bounded, then one can find a number il0 such that lim^ HyijoyHYy = TO, i.e. Zijo = в. Otherwise,

using the fact that ||yilY - y0j HYj — 0 as j  — to for any j  e (0 ,Z) we obtain lim |y 0j HYj = TO, i.e.
y—в-0

Z = в.
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3 Existence, uniqueness and continuous dependence of solutions on 
parameters: the case of neural field equations

In this section we apply the results obtained in the previous section to a class of nonlinear integral 
equations, typical representatives of which can be found in the neural field theory. For the sake of 
convenience, we consider the following generalization of the model (1.8):

t

u(t, x) = p(a, x) + I W(t, s, x ,y )f(u (s  -  t(s, x,y),y))dyds,
a  a  (3 .1)

t e [a, m),x e a ;  
u(g, x) = p(g, x), g < a, x  e a .

under the following assumptions on the functions involved:

(A1) For any b > a, (t, x) e [a, b] x a ,  the function W(t, ■, x, ■): [a,b] x a  — Rn is measurable.

(A2) For any b > a, at almost all (s,y) e [a,b] x a ,  the function W (■, s, ■,y ) : [a,b] x a  — Rn is 
uniformly continuous.

(A3) For any b > a, t e [a,b], f  sup|W ( t,s ,x ,y)|dy < G(s), where G e L^[a,b],ju,Rn).
a  xea

(A4) The function f  : Rn — Rn is measurable and for any r > 0 one can find fr > 0, such that for 
all u e Rn, |u| < r, it holds true that | f  (u)| < fr.

(A5) The delay function т : R x a  x a  — [0, m) is continuous on R x a  x a .

(A6) The prehistory function p  belongs to C ((-m ,a ],B C (a ,R n)).

The model (3.1) with p(g, x) = 0 can be obtained from (1.7) by taking W(t, s, x,y) = n(t, s)w(x,y), 
where, e.g.

к exp ( -  K(t -  s)), if  t > a;
^  s) = ( 0 , if t < a;

or
K(t -  s)exp ( -  K(t -  s)), if t > a;

n(' , s) = ' 0 , if t < a

and w can be represented by the ”Mexican hat”

w( x, y) = M  exp(-m |x -  y|) -  K  exp(-k|x -  y|)

or the ”wizard hat”

and

w(x, y) = M(1 -  |x -  y |)exp(-m |x -  y|), 

ык/(вк + uK), if u > 0 ;
f(u ) 4 0, if u < 0,

for some к>  0, в>  0, M  > K  > 0, and m > k > 0. These functions satisfy the conditions (A1) -  (A4). 
The condition (A4) is also fulfilled e.g. for the sigmoidal functions

f  (u) = 1  (1 + tanh (k(u -  в)))
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or

f  (M) 1 + exp ( -  к(и -  9))

with some positive к and 9. We do not assume in (A4) that function f  is bounded (as in the classical 
neural field theory), because it allows us to obtain more general results which may have other 
applications. If we take the delay functions T(t,x,y) = |x -  y |/u  for some positive velocity и or 
T(t,x,y) = d(x,y) with continuous function d : R x R ^  [0, ra) from [24] and [13], respectively, we 
find out that the condition (A5) is also satisfied.

We introduce the definition of local, maximally extended and global solutions just as in the 
previous section (Definition 2.4).

Definition 3.1. We define a local solution to Eq. (3.1) on [a, a+y] x Rn, у  e (0, ra) to be a 
function uy e C ([a,a+y],BC(Q,Rn)) that satisfies the equation (3.1) on [a,a+y] x Rn. We define a 
maximally extended solution to Eq. (3.1) on [a,a+Z) x Q, Z e (0, ra) to be a function иz : [a, a+Z) x  
Q ^  Rn, whose restriction uy to [a,a+y] x Q for any у < Z is a local solution of Eq. (3.1) and 
lim \\ur \\C([a,a+r],BC(Q,,Rn)) = ra. We define a global solution toEq. (3.1) to be a function и : [a, ra) x

7 ^ Z-0
Q ^  Rn, whose restriction uy to [a, a+y] x Q is its local solution for any у e (0, ra).

Theorem 3.1. Let the assumptions (A1) -  (A6) hold true. I f  fo r  a n y r  > 0 there exists f r e R 
such that fo r  all u1, u2 e Rn, |u1| < r, |u2| < r, we have |f (u 1) -  f (u 2)| < f r |u1 -  u2|, then Eq. (3.1) 
has a unique global or maximally extended solution and each local solution is a restriction o f this 
solution.

Proof. We will use Theorem 2.1, namely, the condition 1), which is responsible for solvability of 
the Eq. (2.2)) and Remark 2.2 of the previous section to prove the solvability of (3.1).

First, we choose an arbitrary b e (a, ra), define the following operator

(3.2)
a Q

F  : C ([a, b], BC(Q, Rn)) ^  C([a, b], BC(Q,Rn)). 

For any t e [a, b] and и e C([a, b], BC(Q., Rn)) we have

|(Fu)(t, x1) -  (Fu)(t, x1)| <

t

a Q
t

a Q

< |^(a, x1) -  <p(a, x2)|+
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1 1
a a

W (t, s, x1, y) -  W (t, s, x2, y) / (  (S тИ)( s, x1, y)ndyds+

t

+ Я I W (t, s, X2, y ) ||/  ((S tM)(s, xi, y)) -  /  ((S тМ)( s, X2, y))|dyds.
a a

By the virtue of the assumption (A6), the first term goes to 0 as |x1 -  x2| — 0. The assumptions 
(A2) -  (A4) and (A6) guarantee convergence to 0 of the second term on the right hand side of this 
inequality as |x1 -  x2| — 0. The superposition / ( (STu)(s, ■,y)) is continuous as the assumptions (A4) 
-  (A6) hold true. This fact and the assumption (A3) imply convergence of the last term to 0 as 
|xi -  x2| — 0. This proves continuity of (Fu)(t, ■).

For each t e [a, b] and any u e C([a, b], B C (a, Rn)) the function (Fu)(t, ■) is bounded by the virtue 
of the assumptions (A3), (A4) and (A6).

Finally, we choose an arbitrary и e C([a,b],BC(H,Rn)) and, assuming that t2 > t1, check that 
(Fu)G, x) is continuous:

sup |(Fu)(ti, x) -  (Fu)(t2, x)| <
xe a

< sup
xg a

ti

S  S  W (t1, s, x, У)/ ((S ти)( s, x, y))dyds-
a a

t2

J '  J '  W (t2, s, x, y ) /( (S tU)( s, x, y))dyds <

a a

< sup
xea

S  S  (w  (t1, s, x, У) -  W (t2, s, x, y ))/((S  Tu)(s, x, y))dyds +

a a

+ sup
xea >

t2
llllW (t2, s, x, y )/((S  Tu)( s, x, y))dyds <

ti a

<
ti

jT /
a a

sup
xea

W (t1, s, x, y) -  W (t2, s, x, y) sup
xea

/ (STu)(s, x ,y^  dyds+

j t2 j/ /
ti a

sup
xe a

W(t2, s, x,y) sup
xe a

/ (STu)(s, x ,y^  dyds.

We note that by the virtue of the assumptions (A2) -  (A4) and (A6), the first term converges to 0 as 
t1 - 12 — 0. The second summand goes to 0 as the assumptions (A3), (A4) and (A6) hold true and 
ti - 12 — 0 .

Thus we proved that F  : C ([a,b],B C (a,R n)) — C ([a,b],B C (a,R n)).
Next, we examine the fulfilment of Theorem 2.1 condition for the defined above operator 

F  : C([a, b], B C (a,R n)) — C([a, b], B C (a,R n)). Choose an arbitrary q0 < 1, r  > 0. Let j e  (0, b -  a)
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and ui(t, ■) = U2(t, ■), t e [a, a + j ], where ||ui ||c([a,b],BC(a,R”)) < r  and ||u2||c([a,b],BC(a,R”)) < r. By as
sumption, we get the estimates

sup
te [a, a+ +8] , xe a

j t j

S  S  W (t, s, x, У) /  ((S r ui)(s, x, y))dyds-
a a

j t j

- ^  J '  W (t, s, x, y )/((S  T?u2)(s, x, y))dyds <

a a

< sup
fe[a+j ,a+j+8],xea

t

J  J  W(t, s, x ,y ) |/( (ST’u i)(s, x ,y ))-
a+j a

/  ((S t?U2)( s, x, y))j dyds <

< sup
t e [a + j, a+j +8], xe a

j t j  / /
a+ a

W(t, s, x,y) /rHui -  U2Hc([a,b],BC(a,R”))dyds <

Here

< sup
t e [a + j, a+j +8], xe a

j t j  

f f W(t, s, x,y) / rdyds||ui -  U2||c([a,b],BC(a,R”)) <
a+ a

< q |u i -  u2llc([a,b],BC(a,Rn)).

q = //r sup
te [a+ , a+ +8] , xe a

j t j  / /
a+ a

W(t, s, x, y) dyds

Thus, we can always find 8 > 0 such that q < q0. Hence, the property q2) for the mapping F , given 
by (3.2), holds true. The verification of the property q1) is analogous. Taking into account Remark 
2 .2 , we prove the theorem. □

Remark 3.1. If in the Theorem 3.1 condition / r = /  is independent of r  (as e.g. in classical neural 
field models, where 0 < / (u) < 1), then according to Remark 2.1 we will get a global solution to 
the Eq. (3.1). In this case, if we take r(t, x,y) = 0, Theorem 3.1 becomes analogous to the results 
concerning solvability of the Amari model obtained by Potthast et al. [18].

Remark 3.2. If in Theorem 3.1 the condition / r = /  is independent of r, Theorem 3.1 can be com
pared to the theorem on solvability of Eq. (1.3) in C([a, b], L2(a , Rn)) for any b > a proved in Faye et 
al. [13] Here we obtained the same result for the more general model (3.1) in C ([a,b],B C (a,R n)). 
We note that in case when the delay r(t, x, y) = t(x , y) is independent of t, it is possible to prove 
Theorem 3.1 for the space C([a,b],L2(a ,R n)) using our technique as well thus getting the main 
theoretical result of [13].
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Note that the remarks 3 and 4 on maximally extended solutions are valid for the problem (3.1) 
as well.

It is also worth mentioning that our approach to delayed functional-differential equations is 
based on the idea to include the prehistory function in the inner superposition operator. It allows us 
to consider the operator equation (2.1) with the operator (3.2) defined on [a,b] instead of (-ra , b]. 
The same approach to functional-differential equations with delay was implemented e.g. in [5], [6].

Next we complete the study of wellposedness of the problem (3.1) by investigating continuous 
dependence of solutions to the associated problem

t

u(t, x) = ^ ( a ,  x) + I Wx(t, s, x,y)fx(u(s -  ta(s, x,y),y))dyds,
Ja Q (3.3)

t e [a, ra),x e Q; 
u(g, x) = ^ A(g, x), g < a, x  e Q

on a parameter A e Л.
The assumptions (Aa 1) -  (Aa6) imposed on the functions in the model (3.3) for each A e Л 

repeat the assumptions (A1) -  (A6), respectively.

We will naturally apply Definition 3.1 to the model (3.3) at each A e Л.
The following theorem gives conditions that guarantee wellposedness of the problem (3.3).

Theorem 3.2. Let the assumptions (Aa1) -  (Aa6) hold true. Assume that the following condi
tions are satisfied:

1) There is a neighborhood U0 o f  A0 such that fo r  any r > 0 there exists f r e R (independent o f 
A e U0) such that fo r  which |fA(u1) -  f A(u2)| < f r |u1 -  u2| fo r  all u1, u2 e Rn, |u1| < r, |u2 | < r.

For any {Ai} с  Л, Ai ^  A0 it holds true that:

2) For any b > a,

t

sup
te[a,b], xeQ

If Wa (t, s, x, y)dyds -  If WA0 (t , s, x , y)dyds
a Q a Q

3) For any b > a, if  |u;G, •) -  u(-, -)| ^  0 in measure on [a,b] x Q as i ^  ra, then |f Ai(u;G, •)) -  
f A0(u(-, •)) ^  0 in measure on [a, b] x Q as i ^  ra;

4) For any b > a, sup |tA;(•, x, •) -  t a„G,x, •) ^  0 in measure on [a,b] x Q;
xeQ

5) IÎ A; -  ^A0llC((-ra,a],BC(Q,Rn)) ^  °.

Then there is a neighborhood U o f  A0, such that fo r  each element A e U, Eq. (3.3) has a unique 
global or maximally extended solution, and each local solution is a restriction o f this solution. 
Moreover, i f  at A = A0 Eq. (3.3) has a local solution u0y defined on [a,a+y] x Q, then fo r  any
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{д,} с  Л, д, ^  д0 one can find number /  such th a t/o r  all i > I  Eq. (3.3) has a local solution 
Uj = Uj(д,) defined on [a, a + j ] x a  and ||Uj(д,) -  U0jHc([a,a+j],sc(a,Rn)) ^  0.

Proo/ Choose an arbitrary b e (a, ra). In order to use Theorem 2.1, we need to bring the Eq. (3.3) 
to the form u(t, ■) = (F (u,i))(t), t e [a, b]. Using the same technique as in the proof of Theorem 3.1 
and the corresponding assumptions (Ад1) - (Ад 6), we get here

F ( - , i ) : C ([a,b],B C (a,R n)) ^  C ([a,b],B C (a,R n)),

t

(F (u ,i))(t, x) = ^ ( a ,  x) + J  J  Wi(t, s, x ,y ) / ( (S адд u)(s, x,y))dyds,
a a

t e [a,b], x e a ,  

ад ,v . ^  _ J Ou(t -  Ti(t, x,y),y), if t -  Ti(t, x,y) < a;
(S-a u)(t, x,y) |  u(t -  r i (t, x,y),y), if t -  r i (t, x,y) > a

for all Д e Л.
The condition 1) of this theorem allows us to verify the assumption 1) of Theorem 2.1 for each 

Д e U0 by the same procedure as we used in the proof of Theorem 2. So, we only need to verify the 
condition 2) of Theorem 1.

Choose an arbitrary u e C ([a,b],B C (a,R n)). Let Hu -  u||Y ^  0, i.e, Hu -  u||C([a,b],BC(a ,Rn)) ^  0, 
i ^  ra, and Д ^  Д0.

We have the following estimates:

|(Sаддui)(t, x,y) -  (Sад0 u)(t, x,y)| < |(Sаддui)(t,x,y) -  (SТДДu)(t,x,y)|+

+I(S тдд u)(t, x, y) -  (S ̂  u)(t, x, y)| + |(S ̂  u)(t, x, y) -  (S 0 u)(t, x, y)|.

If д ^  д0, then the first term on the right-hand side of this inequality goes to 0 uniformly as 
Hu -  u||C([a,b],BC(a ,Rn)) ^  0. By the virtue of the condition 4), the second term on the right-hand side 
goes to 0 in measure on ([a,b] x a ) ,  uniformly in x e a ,  as д ^  д0. The third term on the right-hand 
side of the inequality goes to 0 uniformly when д ^  д0 as the condition 5) holds true. Thus, we 
have

l(Sадu )0 , x, ■) -  (S5  u)(-, x , - ) |^  0

in measure, uniformly in x e a ,  as Hu -  u||C([a,b],BC(a ,Rn)) ^  0 and д ^  д0.
Using this convergence, we can make the following estimates

sup
te[a,b], xea

J "  J  Wд(t, s, x, y ) / ( (S адд ui)( s, x, y))dyds-
a a

t

J  J  W^,(t, s, x,у)/д,0((S T̂ 0 u)(s, x,y))dyds <д0
a a

sup
te[a,b], xea

t

J  J  Wд(t, s, x ,y ) / ( (S Ui)(s, x,y))dyds-
a a
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+ sup
te[a,b], xeQ

t

J  J  W (t, s, x, y)fx0 ((S ̂  u)( s, x, y))dyds
a Q

t

J  J  Wx(t, s, x, y)fxo ((S ̂  u)(s, x, y))dyds-

+

a Q
t

J  J  Wxo(t, s, x, y)fxo ((S ̂  u)( s, x, y))dyds
a Q

Taking into account the condition 3), we conclude that the first term on the right-hand side of the 
inequality goes to 0 as x ^  x0. The second term on the right-hand side of the inequality goes to 0 
by the virtue of the condition 2) as x ^  x0.

Thus, the condition 2) of Theorem 2.1 is satisfied and Theorem 3.2 is proved. □

We emphasize here that our aim was to formulate the assumptions on the functions involved in 
the model (3.3) (see conditions 2) -  5) of Theorem 3.2) as general as it possible. Of course, we can 
strengthen these assumptions in order to make them more conventional e.g. in the following way.

Remark 3.3. If the estimate in the assumption (Ax3) holds true uniformly with respect to x e Л, then 
it is possible to get the conclusion of Theorem 3.2 by claiming that for any b > a the functions

W0  : Л x [a, b] x [a, b] x Q x Q ^  Rn,

f 0 : Л x Rn ^  Rn,

T (): Л x [a, b] x Q x Q ^  [0, ra),

^(•): Л x ( -ra , b] x Q ^  Rn 

are continuous instead of claiming the conditions 2) -  5) of Theorem 3.2.

We now consider two important special cases of the model (3.3).
As the neural field theory studies processes in cortical tissue, it is realistic to assume that Q is 

bounded (see e.g. [13]). The following remark represents the result, analogous to Theorem 3.2 for 
this case.

Remark 3.4. If Q is bounded, we can substitute (Ax6) by

(Ax6) For any a* < a and each ^ x e C([a*,a], C0(Q,Rn)), x e Л.
In order to get the conclusion of Theorem 3.2, we need the following conditions instead of the 
conditions 3), 4), and 5), respectively:

For any {Ai} с  Л, Ai ^  x0 it holds true that:

3*) For any u e Rn we have |fxi (u) -  f x0(u)| ^  0;

4*) For all x e Q, |Txi( •,x, • ) -  t x0( •, x, • )| ^  0 in measure on [a,b] x Q;

5*) For any a* < a and all (t,x) e [a*,a] x Q, |^xi(t,x) -  yx0(t,x)| ^  0.
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Proof of the statement in Remark 3.4 is given in Appendix A.

In neural field modeling special attention is paid to spatially localized solutions, so-called 
”bumps”. If Q is unbounded, but the solution to (3.3) is spatially localized, we can relax Theo
rem 3.2 conditions in the following way.

Remark 3.5. If we replace (Ax6) by

(Ax6) For each x e Л, the prehistory function ^ x e C ((-ra ,a], C0(Q,Rn)); 
and impose the additional condition, corresponding to localization in the spatial variable,

then, in order to get the conclusion of Theorem 3.2 holds true for spatially localized solutions, we 
need the following conditions, instead of 2), 3), 4), and 5)respectively:

For any {xi} с  Л, xi ^  x0 it holds true that:

2') For any b > a, r > 0, and each t e [a, b], x e Q, |x| < r it holds true that

3') For any u e Rn we have |fxi(u) -  f x0(u)| ^  0;

4 ') For all x e Q, |Txi( •, x, • ) -  tx0( •, x, • )| ^  0 in measure on [a,b] x Q;

5') For any (t,x) e (-ra ,a ]  x Q, |^xi(t,x) -  ^ x0(t,x)| ^  0.

Proof of the statement in Remark 3.5 is given in Appendix B.

As Theorems 2 and 3 are valid for each a e R in the model (3.1), it is natural to address the 
question, what happens in the case when a = - r a  (i.e., when (3.1) becomes (1.7)).

Remark 3.6. Solution to (1.7) is not necessarily unique.

The following example illustrates this fact.

Example 3.1. Consider the equation

with some Gaussian function w. Define the function u e C ((-ra ,b ],BC(R,R)) as follows:

(A x7) For each x e Л and any b > a, lim |Wx(t, s, x ,y)| = 0 for all (t, s,y) e [a, b] x [a, b] x Q,
^  I -V-l 4ЛЛ I I

a Q

u(t, x) = v(t)w(x),
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where
v(t) = V exp ( -  exp(-t)), V e R,

is a solution to
V(t) = exp(-t)v(t),

satisfying the property v(t) ^  0 as t ^  - ra . Thus, for any V e R we get a solution to (1.7) which 
belongs to C((-ra,b],BC(R,R)).

Nevertheless, it is possible to find conditions, which guarantee wellposedness of the model (1.7). 
The last part of the present paper is devoted to this problem. We have the following assumptions on 
the functions involved:

(A1) For any a ,b  e R, a < b, t e [a,b], x e a ,  the function W(t, ■, x, ■): [a,b] x a  ^  Rn is measur
able.

(A2) For any a ,b  e R, a < b, at almost all (s,y) e [a,b] x a ,  the function W(■, s, ■,y ) : (-ra ,b ] x 
a  ^  Rn is uniformly continuous.

(A3) For any b e R, t e (-ra ,b ], f  sup|W (t,s,x,y) dy = G(s), where G e L1((-ra,b],ju,Rn).
a  xea

Assumptions (A4) and (A5) are the same as the corresponding assumptions (A4) and (A5).

Now, we need to give the definitions of local, maximally extended and global solutions to Eq. 
(1.7).

Definition 3.2. We define a local solution to Eq. (1.7) on (-ra , j ]  x a ,  j  e R, to be a function 
uY e C ((-ra ,j] ,B C (a ,R n)) that satisfies the equation (1.7) on (-ra , j ]  x a .  We define a maximally 
extended solution toEq. (1.7) on (-ra ,Z ) x a ,  Z e R to be a function uz : (-ra ,Z ) x a  ^  Rn, whose re
striction uY to ( - r a , j ]  x a  is a local solution to Eq. (1.7)forany j < Z  and lim HuYHC((-ra,Y],BC(a ,Rn)) =

j ^ Z-0
ra. We define a global solution to Eq. (1.7) to be a function u : R x a  ^  Rn, whose restriction uY to 
( -ra , j ]  x a  is its local solution for any j  e R.

Theorem 3.3. Let the assumptions (A4) -  (A5) hold true. / / o r  any r  > 0 there exists / r e R 
such th a t/o r  all u1, u2 e Rn, |u1| < r, |u2| < r, we have |/ (u 1) -  / ( u 2)| < / r |u1 -  u2|, then Eq. (1.7) 
has a unique global or maximally extended solution and each local solution is a restriction o / this 
global or maximally extended solution (all types o / solutions are meant in the sense o / Definition 
3.2).

Proo/. First, we prove existence of a unique local solution to (1.7). Choose arbitrary b e R. Using 
the same estimation technique as in the proof ot Theorem 3.1 and the corresponding assumptions 
(A1) -  (A5), we rewrite Eq. (1.7) as the operator equation u(t, ■) = (Fu)(t), and consider it on 
( -ra , b], where

F  : C ((-ra ,b ],B C (a ,R n)) ^  C ((-ra ,b ],B C (a ,R n)),

t

x ) = / / r n  *  x,y)/ (u(s - T(s, *  л  y ))dyds,, e [а, « , x . a .
-ra a

Choose arbitrary q0 < 1, r  > 0, Hui HC((-ra,b],BC(a,Rn)) < r  and Hu2llC((-ra,b],BC(a,Rn)) < r. In order to 
prove existence of a unique local solution to (1.7) using the Banach fixed point theorem, we need to
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find 6 e R such that

max ||(Fu1)(t) -  (Fu2)(t)||BC(Q,R«) < q0 max ||(u1)(t) -  (u2)(i)||bc(q,r«).te(-ra,6] te(-ra,6]

For any 6 < b, we get the estimates

t

IfW (' , s ,x y )  f  (u ,(s -  T(s, x -y ) y )>tyds-
sup

te(-ra,6],xeQ
-ra Q

f f W (t, s , I ,y )f (u2(s -  T( s, x,y), ф * <

-ra Q

< sup
te(-ra,6],xeQ

t

J  J  W (t, s, x, y ) | f  (u1 (s -  T(s, x, y), y))
-ra Q

- f  (u2( s -  T(s, x, y), y) \dyds <

< sup
te(-ra,6],xeQf I W(t, s,x,y) frd y d s iu  -  u2||BC((-ra,6]xQ,R«) <

-ra Q

< q |u 1 -  u2yBC((-ra,6]xQ,Rn).

Here

q = ffr sup
te(-ra,6],xeQ

i

f I
-ra Q

W  (t, s, x, y) dyds.

Using the assumption (A3), we can find 6 > 0 such that q < q0. Thus, the equation (1.7) has a unique 
local solution, defined on (-ra , 6] x Q. Now, regarding this solution as a prehistory function for the 
model (3.1) and taking a = 6, we use Theorem 3.1 and obtain the conclusion of the theorem. □

In order to approach the problem of wellposedness of (1.7), we consider its parameterized ver
sion:

u(1, x ) = / / W  ^ x,y)fx (u( s -  Tx (s," , y ),y M y d s ,
-ra Q

t e R, x e Q, (3.4)

with a parameter x e Л.
For each x e Л, the assumptions (A x 1) -  (A x5), imposed on the functions involved in the model 

(3.4) repeat the assumptions (A1) -  (A5), respectively.

At each x e Л we define the types of solutions to (3.4) according to Definition 3.2.

Theorem 3.4. Let the assumptions (A x 1) -  (A x 5) hold true. Assume that the following condi
tions are satisfied:
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1) There is a neighborhood U0 o / д0 such that/o r any /or any r  > 0 there exists / r e R (indepen
dent o /д e U0) ,/o r  which |/ д(и1) -  / д(и2)| < / r |u1 -  u2|/o r  all u1, u2 e Rn, |u1| < r, |u2| < r;

2) For any b e R, sup | J  /  W^ (t, s, x, y)dy - f  f  WДo(t, s, x, y)dy
(-ra,b], xea -ra a  -ra a

For any {Д,} с  Л, Д, ^  д0 it holds true that:

t
^  0 ;

3) For any b e R, г/ |ui(-, ■) -  u(-, -)| ^  0 in measure on (-ra ,b ] x a  as i ^  ra, then |/ д (ui(-, ■)) -  
/ д„(и(-, -))| ^  0 in measure on (-ra , b] x a  as i ^  ra;

4) For any b e R, sup |тд(■, x, ■) -  тД0(-, x, -)| ^  0 in measure on ( -ra , b] x a ;
xea

Then there is a neighborhood U o / д0, such tha t/o r each д e U, Eq. (3.4) has a unique global 
or maximally extended solution, and each local solution is a restriction o / this solution. Moreover 
i /a t  д = д0 Eq. (3.4) has a local solution u0j defined on ( -ra , j ]  x a ,  then/or any {Д,} с  Л, Д, ^  д0 
one can find number /  such th a t/o r all i > I  Eq. (3.4) has a local solution uY = иДДО defined on 
( -ra , j ]  x a  and ||^(Д ) -  U0jHC((-ra,j],BC(a,Rn)) ^  0 as д ^  д0.

Proo/ Choose an arbitrary b e R. Consider the following operator equation

u(t,■) = (F (и,Д))(0, t e (-ra ,b ], 

where at each д e Л, by the virtue of the assumptions ( A ^ )  -  (A ^ ) ,

F ( - ^ ) : C ((-ra ,b ],B C (a ,R n)) ^  C ((-ra ,b ],B C (a ,R n)),

t

(F (u,Д))(t, x) = J  J  Wд(t, s, x, y ) /(u ( t  -  тд(t, x, y), y))dyds,.
-ra a

t e (-ra ,b ], x e a

Note that by Theorem 3.3 we have a unique solution to Eq. (3.4) defined on ( - r a ,8] x a  for 
each Д e U0. We need to prove continuous dependence of these solutions on Д. First, we prove that 
the operator F  is continuous in (и,Д0) for any fixed и e C ((-ra, b], B C (a,R n)).

Choose an arbitrary и e C ((-ra ,b ],B C (a ,R n)). Let Hu -  u||C((-ra,b],BC(a ,Rn)) ^  0, i ^  ra, and
Д ^  Д0.

We have the following estimates:

|Ui(t -  Tд(t, x,y),y) -  u(t -  T^(t, x,y),y)| <

< |Ui(t -  Tд(t, x,y),y) -  u(t -  ТД(t, x,y),y)| +

+|u(t -  Tд(t, x, y), y) -  u(t -  T^(t, x, y), y)|.

If Д ^  Д0, then the first term on the right-hand side of this inequality goes to 0 uniformly as 
Hu -  u||C((-ra,b],BC(a ,Rn)) ^  0. By virtue of the condition 4), the second term on the right-hand side 
goes to 0 in measure on ((-ra ,b ] x a ) ,  uniformly in x e a ,  as Д ^  Д0. So,

|Ui(- -  Тд(*, x, ■), ■) -  u(t -  T^G, x, ■), -)| ^  0

in measure, uniformly in x e a ,  as Hu -  u||C((-ra,b],BC(a ,Rn)) ^  0 and Д ^  Д0.
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Using this convergence, we obtain

J  J  Wx (t, s, x, y)fx (ui(t -  Tx (s, x, y), y))dydssup
te(-ra,b], xeQ

-ra Q

J  J  Wx 0(t, s, x, y)fx0 (u(t -  Tx0(s, x,y), y))dyds <

-ra Q

sup
te(-ra,b], xeQ

J  J  Wx(t, s, x,y)fx(ui(t -  Tx(s, x,y),y))dyds-
-ra Q

t

J  J  Wx (t, s, x, y)fx  0 (u(t -  Tx0( s, x, y), y))dyds
-ra Q

+ sup
te(-ra,b], xeQ S I  Wx(t, s, x,y)fx0(u(t -  Tx0(s,x,y),y))dyds-

-ra Q
t

J  J  Wx 0(t, s, x, y)fx  0 (u(t -  Tx0(s, x, y), y))dyds
-ra Q

Taking into account the condition 3), we conclude that the first term on the right-hand side of the 
inequality goes to 0 as x ^  x0. The second term on the right-hand side of the inequality goes to 0 by 
the virtue of the condition 2) as x ^  x0. Thus, the operator F  is continuous in (u, x0) for any chosen 
u e C ((-ra,b],B C (Q ,R n)). Using this fact, for any e > 0 we can find such e 1 > 0 and neighborhood 
U1 of x0, that

l|F(u6,x) -  F (u06,x)yC((-ra,b],BC(Q,Rn)) < e 

for all x e U1 and any u6 e C ((-ra,6],B C (Q ,Rn)), satisfying the estimate

llu6 -  u06lC((-ra,6],BC(Q,Rn)) < e 1.

As the mapping F ( •, x) is contracting with the constant q0 < 1 (see Theorem 3.3) for any x e U0, 
for any m = 1 , 2, . . . we have

llFm(u06,x) -  u06lC((-ra,6],BC(Q,Rn)) <

< llFm(u06, x) -  Fm 1(u06, x )lC((-ra,6],BC(Q,Rn)) + ...

... + ||F(u06,x) -  u06||C((-ra,6],BC(Q,Rn)) <

< (qm 1 + . . . + q0 + 1)(1 -  q0)e < e .

Due to the convergence of the approximations F m(u06, x) to the fixed point u6 = u6(x) of the operator 
F ( •,x ) : C ((-ra ,6],BC(Q,Rn)) ^  C ((-ra ,6 ],BC(Q,Rn)) we get H^U) -  u06lC((-ra,6],BC(Q,R”)) < e for 
each x e U0 П U1 and e ^  0 as x ^  x0.

Now, addressing the model (3.3) and Theorem 3.2, and taking ^ x = u6(x) and a = 6, we prove 
this theorem. □

+
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We note here that the remark, analogous to Remark 3.3, is valid for Theorem 3.4 as well.

Remark 3.7. If a  is bounded, we can get the conclusion of Theorem 3.4 replacing 3) and 4) by the 
following conditions:

For any {Д,} с  Л, Д, — Д0 it holds true that:

3*) For any u e Rn we have | Д  (u) -  /д0(и)| — 0;

4*) For all x e a ,  |тд;(■,x, ■) -  тд0(-, x, -)| — 0 in measure on (-ra ,b ] x a .

Proof of the statement in Remark 3.7 is given in Appendix C.

In case of spatially localized solutions to the (1.7) and (3.4), we have the following remark to 
Theorem 3.4.

Remark 3.8. If in (3.4) we add the condition, corresponding to localization in the spatial variable, 

(A', 6) For each Д e Л and any b e R, lim |W^(t, s, x,y)| = 0 for all (t, s,y) e ( -ra , b] x ( -ra , b] x a ,
|x|—»ra

then, in order to get the conclusion of Theorem 3.4 for spatially localized solutions, we need the 
following conditions instead of 2), 3), and 4), respectively:

For any {Д,} с  Л, Д, — Д0 it holds true that:

2') For any b e R, r  > 0 and each t e (-ra ,b ], x e a ,  |x| < r  it holds true that

S I  (W^i (t, s, x, У) -  W 0(t, s, x, y))dyds — 0 ;
-ra a

3') For any u e Rn we have |Д  (u) -  /д0(и)| — 0;

4') For all x e a ,  |тд;(■, x, ■) -  тд0(-, x, -)| — 0 in measure on (-ra ,b ] x a .

Proof of the statement in Remark 3.8 is given in Appendix D.

4 Conclusions and Outlook

For the nonlinear Volterra integral equations (1.7) and (3.1), which generalize the commonly used 
in the neural field theory models (1.1) -  (1.6), we have defined the notions of local, global and 
maximally extended solutions. We have obtained conditions which guarantee existence of a unique 
global or maximally extended solution and its continuous dependence on the equation parameters. 
These results can also serve as a starting point for the development of numerical schemes for a broad 
class of neural field models. A key word in this context is justification of such schemes. We will 
emphasize that our results shed light on the problem of structural stability in nonlocal field models 
in, e.g. systems biology.
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The question of applicability of our results in case of solutions belonging to C([a, b], L2(Q, Rn)) 
(see Remark 3.2) gives rise to the problem of extension of our results for solutions from an abstract 
space C([a, b], B(Q,Rn)). The difficulties in this case are caused by intrinsic properties of the inner 
superposition operator in the abstract functional Banach space B(Q,Rn).

A further development of the present study consists of studying the solvability and continuous
dependence on parameters in the Volterra model with an abstract parameterized measure

u(t, x, x) = rx(a, x) + I I Wx(t, s, x,y)fx(u(s -  Tx(s, x,y),y, x))vx(dy)ds,
a  q (4.1)

t e [a, ra),x e Q; 
u(g, x, x) = rx(g, x), g < a, x  e Q.

This formulation of the problem will allow us to approach the homogenized Amari model with 
non-Lebesgue measure, which can be derived from the parameterized Amari model (1.4) in case 
of non-periodicity of the connectivity kernel in the fine-scale variable (see [19]). Considering the 
model (4.1) will also allow us to investigate e.g. the delayed Hopfield model model (see e.g. [23])

N ( ) 
u i(t) = -au i(t)  + ^  M ijf(ui(t -  t(i))) + Ii(t), t e [a, ra), i = 1, . . . ,  N. 

j=1

Appendix A. Proof of The Statement in Remark 3.4

We refer here to the proof of Theorem 3.2 and note that conditions in Remark 3.4 imply that

|(S ^ u ) ( •, x, • ) -  (S5  u)(•, x, • ) | ^  0 

uniformly on (([a, b] x Q) \ 0 x) x Rn (u (0x) ^  0), for each x e Q, as ||ui -  u||C([a,b],C0(Q,R”)) ^  0 and
x ^  x0.

Choose arbitrary e > 0. For the b chosen in the proof of Theorem 3.2 we find

a* = min (t -  t x (t, x, y)).
te[a,b]; (x,y)eQ2

Define the piecewise constant functions u : [a, b] x Rn ^  Rn and r x0 : [a*, a] x Rn ^  Rn as u(t, x) e Rn 
for t e [a,b], g e [a*,a], x e Q such that

|u(t,x) -  u(t,x)| < e /2 , if |u(t,x)| > |u(t,x)|;
|u(t,x) -  u(t,x)| < e /2 , if |u(t,x)| < |u(t,x)|;

We get the estimate

|rx0(g,x) - rx 0(g,x)| < e /2 , if | ^ 0(g,x)| > |^ (g ,x ) |;  
|?x0(g,x) -  rx 0(g,x)| < e /2 , if |rx0(g,x)| < |^ (g ,x ) |.

fx ((S ̂  m)(t, x, y)) -  fx ^  (S ̂  u)(t, x, y)) 

fx((S ̂  ui)(t, x,y)) -  fx((S ̂ 0 u)(t, x,y)) +

+ fx ( (S ̂  u)(t, x,y)) -  fx 0((S ^  u)(t, x,y)) +



On Wellposedness of Generalized Neural Field Equations with Delay 75

+ A  ((S 3  u)(t’ x  у)) -  Л , ((S ̂  u)(t> x  y))

Using the functions U and ^ Лс, it is easy to conclude that the first and the third terms on the right- 
hand side of this inequality are less or equal to 2e and e, respectively, on (([a, b] x П) \ 0 Л) x П, 
where ju(0^) — 0 as Л — Л0. In addition, the condition 4*) provide convergence to 0 of the second 
term on the right-hand side of the inequality as Л — Лс.

Using the convergence obtained above, we get

max
te[a,b], хеП

t

J  J  W (t, s, x ,y ) / ( (S Mi)(s, x,y))dyds-
а П

max
te[a,b], хеП

+ max
te[a,b], хеП

t

J  J  Wo(t, s, x , y /  ((S ̂ лс u)(s, x,y))dyds
а П

t

S I  ̂ л (?, s, x, y / (S £  W,)( s, x, y))dyds-
а П

t

J  J  W (t, s, x , y / ( (S ̂ 0° m)(s, x,y))dyds
а П

t

J  J  W (t, s, x , y / ( (S ̂ лЛ00 w)(s, x,y))dyds-

<

+

а П
t

J  J  Wo(t, s, x , y / ( (S ̂ 0 u)(s, x,y))dyds
а П  
i*\Taking into account the condition 3*), we have the first term on the right-hand side of this inequality 

going to 0 as Л —— Л0. The second term on the right-hand side of the inequality goes to 0 by the 
virtue of the condition 2) as Л — Л0. Thus, the statement in Remark 3.4 is valid.

Appendix B. Proof of The Statement in Remark 3.5

Conditions in Remark 3.5 imply the following changes in the proof of Theorem 3:

|(S £  Mi)(', x, ■) -  (S 5  и)(-, x, -)| — 0

uniformly on (([a, b] x П) \ 0 Л) x (^ (0 Л) — 0), for each x е П, as ||м -  м||с([а,Ь],с0(П„ки)) — 0 and 
Л — Ло.

Choose arbitrary e > 0. Define the piecewise constant functions U : [a, b] x and ^ Лс :
(-ra ,a ]  x as U(t,x) е for t е [a,b], £ е (-ra ,a ] , x е П such that

( |U(t,x) -  w(r,x)| < e /2 , if |U(t,x)| > |M(t,x)|;
\  |U(t,x) -  w(r,x)| < e /2 , if |U(t,x)| < |M(t,x)|;

f |£ i0(£ x ) - ^Лс(^,x)| < e /2 , if |^Л0(£,x)| > |^o(£,x)|;
\  |^л0(^,x) -  ^Лс(^,x)| < e /2 , if |^л0(^,x)| < №л,(£x)|.
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We get the estimate

<

+

fx ((S ui)(t, x, y)) -  fx ^  (S rx00 u)(t, x, y)) 

fx((S ui)(t, x,y)) -  fx((S rxx0 u)(t, x,y)) 

fx((S rx0 u)(t, x,y)) -  fx0((S ^ u )(t, x,y)) 

f x0((Sri0 u)(1, x,y)) -  f x0((S^  u)(1, x,y))

Using the functions u and r x0, it is easy to conclude that the first and the third terms on the right- 
hand side of this inequality are less or equal to 2e and e, respectively, on (([a, b] x Q) \ 0 x) x Q, 
where ju(0x) ^  0 as x ^  x0. In addition to that, the condition 4 ') provide convergence to 0 of the 
second term on the right-hand side of the inequality as x ^  x0.

Using the convergence obtained above, (Ax3), (Ax5 ), and conditions 2') and 3'), we get

max
te[a,b], xeQ

J  J  Wx (t, s, x, y)fx ((S ui)( s, x, y))dyds-
a Q

t

J  J  Wx 0(t, s, x, y)fx  0 ((S rx0 u)(s, x, y))dyds <

a Q

max
te[a,b], xeQ f  f  Wx (t, s, x, y)fx ((S rxx ui)(s, x, y))dyds-

a {xeQ,|x|<r'} 

t

I  I  Wx (t, s, x, y)fx0 ((S ̂ 00 u)(s, x, y))dyds
a {xeQ,|x|<r'}

+ max
te[a,b], xeQ f  f  Wx (t, s, x, y)fx0 ((S ̂ 00 u)(s, x, y))dyds-

a {xeQ,|x|<r'} 
tI I Wx0(t, s, x, y)fx  0 ((S rx0 u)(s, x, y))dyds| + 6r' (t, x).

a {xeQ,|x|<r'}

Here 6r'(t,x) ^  0 uniformly as r ' ^  ra. Taking into account the condition 3'), we have the first term 
on the right-hand side of this inequality going to 0 as x ^  x0. The second term on the right-hand 
side of the inequality goes to 0 by the virtue of the condition 2') as x ^  x0. Thus, the statement in 
Remark 3.5 is valid.

+

Appendix C. Proof of The Statement in Remark 3.7

The following changes in the proof of Theorem 3.4 stem from the conditions of Remark 3.7:

|ui(t -  Tx(t, x,y),y) -  u(t -  Tx0(t, x,y),y)| ^  0



On Wellposedness of Generalized Neural Field Equations with Delay 77

uniformly on (((-ra , b] x П) \ 0л ) x Rn (и(0л) — 0) for each x е П, as ||u  -  M Ic^-ra^sc^R ”)) — 0 
and — 0.

Choose an arbitrary e > 0. Define the piecewise constant function U : (-ra ,b ] x Rn — Rn as
U(t,x) е Rn for t е (-ra ,b ], x е П such that

|U(t,x) -  w(r,x)| < e /2 , if |U(r,x)| > |M(t,x)|;
|U(t, x) -  w(f, x)| < e /2 , if |U(t,x)| < |M(t, x)|.

Using the function introduced above, we get the estimate

/л(мг(г -  тл(t, x,y),y)) -  / „ ( M(t -  тло(г, x,y),y)) <

/л(мг(г -  ТЛ (t, x, y), y)) -  / ( u ( f  -  ТЛс(г, x, y), y)) +

/ ( u ( f  -  ГЛс(Г, x, y), y)) -  Д,(й(г -  ГЛс(Г, x, y), y)) +

Д,(й(г -  тло(г, x,y),y)) -  Д ,( M(t -  гло(г, x,y),y)) .

Here, the first and the third terms on the right-hand side of this inequality are less or equal to 2e and 
e, respectively, on (((-ra ,b ] x П) \ 0 Л) x Rn, whereуи(0Л) — 0 as Л — Л0. In addition, the condition 
4*) provide convergence to 0 of the second term on the right-hand side of the inequality as Л — Л0. 

Using the convergence obtained above and (А Л4), we get

<

+

max
t€(-ra,b], xеП

t

S I W  (t, s, x, У)/л (ui(t -  ТЛ (t, x, y), y))dyds-
-ra П

t

J  J  Wao(t, s, x,у)/Лс(w(f -  ТЛо(Г, x,y),y))dyds <
-ra П

max
ts(-ra,b], xеП

t

J  J  W (t, s, x,у / (w,(f -  ТЛ(t, x,y),y))dyds-
-ra П

t

J  J  W (t, s, x,у /  (м(г -  TAo(t, x,y),y))dyds
-ra П

+ max
ts(-ra,b], xеП

J  J  W (f, s, x,у)/ло(w(f -  тло(г, x,y),y))dyds-
-ra П

t

J  J  Wo(f, s, x ,y ) /o (м(г -  TAo(t, x,y),y))dyds
-ra П

Taking into account the condition 3*), we have the first term on the right-hand side of this inequality 
going to 0 as — 0. The second term on the right-hand side of the inequality goes to 0 by the 
virtue of the conditions 2) as Л — Л0. Thus, the statement in Remark 3.7 is valid.

+

t
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Appendix D. Proof of The Statement in Remark 3.8

Referring to the proof of Theorem 3.4 we get the following changes caused by conditions of Remark 
3.8:

|ui(t -  Tx(t, x,y),y) -  u(t -  Tx0(t, x,y),y)| ^  0

uniformly on (((-ra , b] x Q) \ 0x ) x Rn (u(0x) ^  0) for each x e Q, as ||u  -  u|C((-ra,b],BC(Q,R”)) ^  0 
and x ^  x0.

Choose an arbitrary e > 0. Define the piecewise constant function u : (-ra ,b ] x Rn ^  Rn as
u(t,x) e Rn for t e (-ra ,b ], x e Q such that

|u(t,x) -  u(t,x)| < e /2 , if |u(t,x)| > |u(t,x)|;
|u(t, x) -  u(t, x)| < e /2 , if |u(t,x)| < |u(t, x)|.

Using this function, we get the estimate

<

+

f  x[ui(t -  Tx(t, x,y),y)) -  fx ^ u(t -  Tx0(t, x,y),y)) 

fx(ui(t -  Tx(t, x,y),y)) -  fx(w(t -  Tx0(t, x,y),y)) 

f  x{u(t -  Tx0 (t, x,y),y)) -  fx ^ u(t -  Tx0(t, x,y),y)) 

fx ^ u (t  -  Tx0(t, x,y),y)) -  fx^u ( t  -  Tx0(t, x,y),y))

<

+

Using the function u, it is easy to conclude that the first and the third terms on the right-hand side 
of this inequality are less or equal to 2e and e, respectively, on (((-ra , b] x Q) \ 0 x) x Rn, where 
ju(0x) ^  0 as x ^  x0. In addition, the condition 4 ') provide convergence to 0 of the second term on 
the right-hand side of the inequality as x ^  x0.

Using the convergence obtained above, (Ax3), (A x4), and conditions 2') and 3'), we get

max
te(-ra,b], xeQ

t

J  J  Wx(t, s, x,y)fx(ui(t -  Tx(t, x,y),y))dyds-
-ra Q

max
te(-ra,b], xeQ

J  J  Wx 0(t, s, x , y f  (u(t -  Tx0(t, x, y), y))dyds
-ra Q

t

f  f  Wx(t, s, x,y)fx(ui(t -  Tx(t, x,y),y))dyds-

<

-ra{xeQ,|x|<r'}
t

I  I  Wx (t, s, x, y)fx  0 (u(t -  Tx0(t, x, y), y))dyds|
-ra{xeQ,|x|<r'}

+ max
te(-ra,b], xeQ f  f  Wx (t, s, x, y)fx  0 (u(t -  Tx0(t, x, y), y))dyds-

-ra{xeQ,|x|<r'}

/  /  Wx 0(t, s, x, y)fx  0 (u(t -  Tx0(t, x, y), y))dyds| + 6r' (t, x).

-ra{xeQ,|x|<r'}

+
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Here 6r'(t,x) ^  0 uniformly as r ' ^  ra. Taking into account the condition 3'), we have the first term
on the right-hand side of this inequality going to 0 as x ^  x0. The second term on the right-hand
side of the inequality goes to 0 by the virtue of the conditions 2') as x ^  x0. Thus, the statement in
Remark 3.8 is valid.
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I n t r o d u c t io n

The main object o f our study is the following parameterized integral 
equation involving integration with respect to an arbitrary measure:

u(t, x, X)
t

=  j  ds j  W ( t ,  s , x , y , X ) f  (u(s — т(s ,x ,y,  X),y, X), X)v(dy, X)

— <X> Q

+ I  (t, x, X), t >  a, x  G X G Л  (1)

with the initial (prehistory) condition

u(£, x, X) =  ф(£, x, X), £ <  a, x  G Q, X G Л. (2)

Here, the function u represents the activity o f a neural element at time 
t and position x . The generalized spatio-temporal connectivity kernel W  
determines the time-dependent coupling between elements at positions x  
and y . The non-negative activation function f  gives the firing rate o f a 
neuron with activity u . The non-negative function т represents the time- 
dependent axonal delay effects in the neural field, which require a prehistory 
condition given by the function ф. The function I ( t ,  x )  represents a variable 
external input. A ll the above functions involve a parametrization by the 
parameter X which, as well as introducing of an arbitrary parameterized 
measure v (■ ,X),  gives us some investigation advantages.

The equation (1) covers a wide variety of neural field models:
The most well-known Amari model [1]

S M t , =  —u ( t, x ) +  J  u (x  -  y ) f  M t , y) )dy + 1  x ) , t  >  x  g  R ,

R

can be obtained from the equation ( 1 ) by taking

W (t ,  s, x, y, X) =  exp ( — (t — s ) )u ( x  — y), 

т(t, x, y, X) =  v (£ , x ,X )  =  0 .

The two-population Amari model (see [2], [16])

+  [  ( шее —^ei\ ( x _ y ) ( f e(ue( t , x ) ) \
V  W e  —^ i i )  V f i  ( U i ( t , x ) ) )

R

+  (t, x) ,  t >  0, x G R,
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can be obtained from the equation ( 1 ) by taking

W (t ,  s ,x ,y ,X )

=  diag  ̂exp ( — (t — s)), exp ( — (t — s )/a )/a j  ( ^ ее Ше1̂  (x — y),

т ( t , x , y,X)  =  <p(£, x , \ ) =  0 .

The delayed Amari model (see e.g. [5])

dfu(t, x )  =  —Lu( t ,  x )  +  J  oj(t, x, y ) f  (u ( t  — т(x, y), y ) )  dy +  I ( t ,  x) ,  

n

— m a x т(x,y ) ,  т о ) , x £ Q С B R  i ( 0 , r ) ,  L  =  d ia g (li, . . .  , l n), li > 0
х,уЕП '

t

with a time-dependent connectivity kernel is also a special case o f the model 
( 1 ) with

W  (t, s ,x,y,  X) =  diag ( l i  exp ( — h ( t —s ) ) , . . . ,  In exp ( — ln ( t—s )^ u j ( t , x , y ) ,

т( t , x , y , X ) =  т( x , y), <f(£,x ,X )  =  0 .

Another special case o f the equation (1) arises in models that take into 
account the microstructure o f the neural field (see [4, 9, 13])

dtu ( t , x )  =  —u ( t , x ) +  coE(x — y ) f  (u ( t , y ) )  dy,

Rm (3)
ojE(x )  =  lo(x, x/e), 0 <  e ^  1 ,

t >  0, x £ R m.

I f  the microstructure is periodic, then, as the heterogeneity parameter e ^
0, the above model converges (see e.g. [12]) to the homogenized Amari 
model

dtu(t, x c, x f )

=  —u ( t , x c, x f  ) + J  J  oj (xc—yc,x f  —yf ) f  ( u ( t , y c ,y f ) )  dyc dyf , (4)

Rm у

t >  0, x c £ R m, x f  £ У С  R k,

where xc and x f  are the coarse-scale and fine-scale spatial variables, respec
tively. Taking

Q =  R m x У  (У  is some fc-dimensional torus [15]), 

x = ( x c , x f  ), y = ( y c , y f  ),

W (t ,  s, x, y, X) =  exp ( — (t — s))uj(xc — yc, x f  — y f )

in ( 1 ) with

т(t, x, y, X) =  <p(£,x,X) =  0,
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we get the model (4). It should be pointed out here that the case of 
non-periodic microstructure in the model (3) that leads (see [12]) to non- 
Lebesgue measure in (4) is also covered by (1). It is more realistic to assume 
some small deviations from the periodicity in the neural networks structure 
reflected in the properties o f the connectivity kernel with respect to the 
second argument. Hence, it is natural to ask whether the solution o f the 
model (3) with a non-periodic perturbation o f the periodic connectivity ker
nel in some sense is “ close” to the solution in the non-perturbed case. One 
possible answer to this question is suggested in Appendix. The answer is 
based on the main result of the paper which is the existence, uniqueness 
and continuous dependence o f solutions to ( 1 ) on the model parameters.

Another application o f the main result is the possibility to connect the 
models in use in the neural field theory to the well-known Hopfield net
work model [8] utilizing the parameterized measure involved in (1). As the 
network models o f the Hopfield type are used for numerical simulations of 
the neural fields, our results thus justify implementation o f such numerical 
schemes.

The paper is organized in the following way. In Section 1 a special case 
(that is relevant in the neural field theory) o f the general statement on 
the solvability and continuous dependence on a parameter of solutions to 
the Volterra operator equation from the paper [3] is given. Based on this 
theorem, analogous results are obtained in Section 2 for the generalized 
neural field model (1). Section 3 is devoted to the connection between the 
delayed Amari and Hopfield network models. In addition, a mathematical 
justification o f the two known numerical schemes is offered, which illustrates 
a generality o f the methods suggested in the paper. Finally, Appendix 
contains a short informal description o f the homogenization procedure for 
the neural field equations with non-periodic microstructure based on the 
convergence o f Banach algebras with mean value.

1. P r e l im in a r ie s

In this section we provide an overview o f the notation used in the pa
per, introduce the main definitions and formulate a fixed point theorem for 
locally contracting Volterra operators.

Let us introduce the following notations:

-  R m is the m-dimensional real vector space with the norm | ■ |;

-  Л  is some metric space;

-  B a (Xq, r )  is the ball in the space Л  o f the radius r  >  0 centered at 
the point X0 G Л;

-  Q is a closed subset o f R m ;

-  dQ is the boundary of the Q;

-  Qr =  Q П B Rm(0,r ) ;
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-  BC (Q ,  R n) is the space o f bounded continuous functions $ : Q ^  
R n with the norm ||$||bc(q,r-) =  sup |$(x)|;

x£Q

-  C comp(Q, R n) is the locally convex space o f continuous functions 
$ : Q ^  R n, with a compact support, equipped with the topology 
o f uniform convergence on compact subsets;

-  Y ( I )  =  C ( I , B C ( Q , R n))  consists o f all continuous functions и :
I  ^  B C ( Q , R n), with the norm ||u||Y (j) =  max ||u(t) ||£c(Q,R™) if

I  is compact; if I  is not compact, then Y (I ) is a locally convex 
linear space equipped with the topology of uniform convergence on 
compact subsets o f I;

Let [a, b] be a compact subinterval o f the real line. In the three forth
coming definitions we use the following notation: Y  =  Y ([a, b]), Y^ =  
Y( [a ,  a +  £]) for any £ G (0, b—a).

D efin it ion  1. An operator Ф : Y  ^  Y  is said to be a Volterra operator 
if for any £ G (0,b—a) and any y 1 ,y2 G Y  the equality y 1 ( t )  =  y2 ( t ) on 
[a, a+£] implies that (^ y 1)(t )  =  ( ^ y 2 ) ( t )  on [a, a+£].

Choosing an arbitrary £ G (0,b—a), we introduce the following three 
important operators. Let E^ : Y  ^  Y^ be defined as (E^y) ( t )  =  y^(t), 
t G [a, a+£], where y  ̂( t )  is a restriction o f the function y(t )  to the subinterval 
[a, a +  £]; conversely, to each y  ̂ G Y^ the operator : Y^ ^  Y  assigns one 
o f the extensions y G Y  of the element y  ̂ (P \ may not be uniquely defined); 
the operator Ф^ : Y^ ^  Y^ is given by Ф^y  ̂ =  E^^P^y^ . Note that for any 
Volterra operator Ф : Y  ^  Y  the operator Ф^ : Y^ ^  Y^ is also a Volterra 
operator and is independent o f the choice o f P^ .

D e fin it ion  2. A  Volterra operator Ф : Y  ^  Y  is called locally contracting 
if there exist q <  1, в >  0, such that for all elements y1 ,y2 G Y  the following 
two conditions are satisfied:

qi ) ||E eфУ1 — E eфУ2 ||г0 <  q||E eyi — E eУ2||уе,

q2) for any 7  G \0,b—a—e], the equality E Yy 1 =  E Yy2 implies that

\\E Y+eФУ1 — E Y+eфУ2 \\у <  q\\E i+ e У1 — E i+ e У1 \\у  ̂ • (5)

D e fin it ion  3. I f  there exists 7  G (0, b—a] and a function yY G Yy , which 
satisfies the equation Ф7yY =  yY, then we call yY a local solution o f the 
Volterra equation

y( t)  =  (Ф у ) ( , ) ,  t G [a, b]. (6 )

In the case if 7  =  b — a, we call this solution global (relative to the interval 
Ц  b]) .

To study continuous dependence on a parameter, we need some more 
definitions.
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D efin it ion  4. Let F (• ,  •) : Y  x Л ^  Y  be a family of Volterra operators 
depending on a parameter X £ Л. This family is called uniformly locally 
contracting if for each X £ Л  the operator F (•,  X) is locally contracting and 
the constants q >  0 and в >  0 from Definition 3, are independent o f X £ Л.

The following theorem concerning the well-posedness o f the operator 
equation

y( t)  =  ( F ( y , X ) ) ( t ) ,  t £ [a,b], X £ Л, (7)

is a special case o f Theorem 1 in Burlakov, et al [3]. It represents the main 
theoretical tool for the problems to be studied in this paper.

T h eo rem  1. Assume that fo r  some Xo £ Л and ro >  0, the family of 
Volterra operators F (•,  X) : Y  ^  Y  (X £ B\(Xo , ro ) )  is uniformly locally 
contracting and the mapping F (•,  •) : Y  x Л ^  Y  is continuous at (y, Xo) 
fo r  all y £ Y .

Then there exists r  >  0, such that the equation (7) has a unique global 
solution y (t ,X)  fo r  all X £ B\ (Xo, r ) ,  and

l|y( •, X) — y ( • ,x o)I|f ^  0 as X ^  Xo.

Moreover, fo r  each X £ B \ ( X o , r ) y any local solution of the equation (7) is 
also unique and is a restriction of the corresponding global solution.

2. T he M a in  R esult

In this section we justify the property o f well-posedness for the general
ized neural field equation ( 1 ).

The following assumptions will be imposed on the functions involved:

(A 1 ) The function f  : R n х Л  ^  R n is continuous, bounded and Lipschitz 
one in the first variable uniformly with respect to X £ Л .

(A 2 ) For any b £ R  and r  >  0, the delay function т : ( —ж,  b] x Q x Qr x 
Л c ^  [0 , ж )  is uniformly continuous, where Л c is some compact 
subset o f Л .

(A 3 ) The initial (prehistory) function ф : ( —ж , a] x Q x Л c ^  R n is 
uniformly continuous.

(A 4 ) The external input function I  : [a, ж )  x Q x Л ^  R n generates a 
continuous mapping X ^  I ( • ,  •, X) from Л  to the space Y[a, ж ) .

(A 5 ) For any b >  a and r  >  0, the kernel function W  : [a, b] x [—r, r] x 
Q x Qr x Л c ^  R n is uniformly continuous.

(A 6 ) The complete a-additive measures v (• ,X) (X £ Л )  are finite on 
compact subsets o f Q and weakly continuous with respect to X £ Л 
i.e. the measures can be interpreted as linear functionals on the 
separable locally convex space C comp(Q, R n).



42 E. B urlakov , E . Zhukovskiy, A . Ponosov , and J. W y lle r

(A 7 ) For any b >  a,

ma^  / ds sup / |W (t, s , x ,y ,A )\v (dy ,A )\ <  t o .
te[a,b] \ J xen,\eAJ J

— oo Q

(A 8 ) For any b >  a,
t

lim sup ds \W(t, s , x , y , A ) \ v ( d y , A ) = 0 .
г ^ ж t£[a,b], x£Q, \£Л J J

— oo Q — Qr

D efin it ion  5. Let A G Л. We define a local solution to the problem (1), (2) 
on [a, a+ Y ] x R n, Y G (0, to ), to be a function uY G Y ([a, a + 7 ]) that satisfies 
the equation (1) on [a,a+Y ] and the prehistory condition (2). We define 
a global solution to the problem (1), (2) to be a function u G Y ([a, to )), 
whose restriction uY to [a, a+Y ] is its local solution for any y  G (0, to ).

T h eo rem  2. Suppose that the assumptions (A 1 ) - (A 8 )  are fulfilled. Then 
the initial value problem (1), (2) has a unique continuous solution u(  ■, ■, A) G 
Y ([a, t o ) )  fo r  any A G Л , and the correspondence A ^  u(  ■, ■, A) is a con
tinuous mapping from Л to Y ([a, t o ) ) . Moreover, fo r  each A G Л, any local 
solution of the problem ( 1 ), (2 ) is also unique and it is a restriction of the 
corresponding global solution.

Proof. Due to the definition of the topology in Y ([a, to )),  it suffices to prove 
this result for the case o f an arbitrary compact interval [a,b] С [a, t o ). In 
what follows we therefore keep fixed an arbitrary b >  a and keep the notation
Y  for the space Y ([a, b ]).

For each A G Л  and ф(£, x, A) satisfying the assumption (A 3 ) we define 
the following integral operator

( F (u ,  A) ) ( t ,  x )  =  I i ( t ,  x, A) +  I 2 (t, x, A) 

t

+  I  ds J  W ( t , s , x , y , A ) f  ( ( S (u ,A ) ) ( t , s , x , y , A ) ,A ) v (d y ,A ) ,  (8 )
a Q

where

( S ( u , A ) ) ( t , x , y ,A)

{
ф(t — т(t, x, y, A), x, A) if t — т(t, x, y, A) <  a, 

u( t  — т(t, x, y, A), y, A) if t — т(t, x, y, A) >  a,

and

I i ( t ,  x, A) =  < (̂a, x, A) +  I ( t ,  x, A),

(9)

a

I 2 (t, x ,A )  =  J  ds j w ( t ,  s, x, y, A ) f  (ф(s — т(s, x, y, A), x, A), A)v(dy, A).

— ж Q
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Below we assume that \f (u)| <  M  for all u £ R n .
We have to apply Theorem 1. Towards this end, we need to show that the 

operator family F (•,  X) (X £ Л )  satisfies the assumptions o f this theorem.
A t the first step o f the proof we will show that F ( u ,X )  £ Y  for each 

u £ Y , X £ Л. Applying the assumption ( A 8 ) for the given e >  0, we find 
r  >  0 such that

t

sup ds \W (t, s, x, y, X)\v (dy, X) < e . (10)
te[a,b], xen, xeA J J M

— ж n—nr

For this r  and a fixed X £ Л, we find a positive 6 =  S(X) (u is kept fixed) 
such that

W (t ,  s, x, y, X ) f  ( (S (u ,  X) ) (s,  x, y, X), X)

— W(to ,  so, xo, yo, X ) f  ( (S (u ,  X)) (so, xo, yo, X) ,X)

e

<  ((b — a)v (Qr ,X ) )  (11)

for all t, t o, s, so £ [a, b], x, x o £ Q, y, yo £ Qr , satisfying

\t — to\ < 6 , \s — so\ <  6 , \x — xo\ < 6 , \y — yo\ < 6 .

We show first that F (•,  X) : Y  ^  Y  for each X £ Л. In other words, we 
have to prove that the mapping t ^  ( F (u ,  X) ) ( t ,  •) is a continuous function 
from [a, b] to B C (Q ,  R n).

As the assumptions (A 3 ),  (A 4 ) imply ф ( о, • ,X)  £ B C ( Q , R n) and 
I ( • ,  • ,X) £ Y  (X £ Л ), we only need to check that I 2( •, •, X) £ Y  and 
Fo (u, X) £ Y  for all u £ Y  and X £ Л , where 

t

( F o (u ,X ) ) ( t , x )  =  j  ds j  W  (t, s, x, y, X ) f  ( (S (u ,  X) ) (s,  x,y,  X), X)v(dy, X).

a П

The proofs are similar, so we concentrate on the more involved case o f Fo. 
For any t £ [a, b], we have

\(Fo(u, X) ) ( t ,  x )  — (Fo(u,X) ) ( t ,xo )\  
t

<  I  ds J  W ( t ,  s, x, y, X ) f  ( (S (u ,  X) ) (s,  x, y, X), X)
a Пг

— W ( t ,  s, xo , y, X ) f  ( (S (u ,  X) ) (s,  xo, y, X), X) v(dy, X) 

b

+  j  ds J  ^\W (t, s, x,y,  X)\ +  \W (t, s,xo,y, X)\̂ j v (dy,X) <  3e

a П—Пг

as long as \x — x o\ < 6  =  6 (X) due to the estimates (10) and (11). This 
proves the continuity of ( F o(u, X) ) ( t ,  x )  in x.
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The boundedness of this function for each t G [a, b] follows from the 
assumption (A 7 ) and boundedness o f the function f  : R n ^  R n.

Finally, we check that t ^  ( F 0 (u , A ) ) ( t , •) is a continuous mapping from 
[a, b] to BC (Q ,  R n) if u G Y :

sup |(Fo(u, A )) ( t ,x )  — (F o (u ,A ))(to ,x )j
xEQ

<  sup
x£Q

to

a Q

ds J  W ( t , s , x , y , A ) f  ( ( S ( u ,A ) ) ( s , x , y , A ) ,A )

a Q

-  I  ds J  W( to ,  s , x , y , A ) f  ( ( S ( u , A ) ) ( s , x , y , A ) , A )  v(dy,A)

t

<  / ds sup / |W(t, s, x,y,  A ) lMv(dy,  A) < £
J x£Q J

as long as t —1 0 <  S. (Here we have assumed that t > t 0 and again used the 
assumption (A 7 ). )  We have therefore proved that F 0 ( • , A ) , F (•,  A) : Y  ^  Y  
for each A G Л.

At the second step o f the proof we show that the Volterra operator (8 ) 
is a local contraction in the first variable, uniformly with respect to the 
parameter A .

We choose arbitrary constants q <  1, y G [0, b — a) and A G Л. Let f  
be the Lipschitz constant for the function f . Since the space Y  consists 
o f continuous functions, we can unify the two properties from Definition 2 
into a single one and prove that u 1 (t, •) =  u 2 (t, •), t G [a, a + Y ), where 
ui, u2 G Y , implies the inequality (5) for the chosen q <  1 and some в >  0. 
Indeed,

I I F ( u 1 , A) — F ( u 2 , A) | | y -

sup
t£[a,a+Y+@]i xEQ

a Q

<  sup
t£[a+Y,a+Y+@]i xEQ

J  ds J W ( t ,  s, x, y, A ) f  ( ( S (u i ,A ) ) ( s ,  x, y, A) )v(dy,  A)

a Q

— J  ds J  W ( t , s , x , y , A ) f  ( ( S ( u 2 ,A ) ) ( s , x ,y ,A ) ) v (d y ,A )

ds J  W (t , s , x , y ,A )  ( f  ( ( S ( u i , A ) ) ( s , x , y , A ) )

a+-y Q

f  ( ( S ( u 2 , A) ) (s,  x, y, A ) ) j  v(dy, A)

t

t
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<  sup ds \W(t, s,x,y,X)\fv(dy,X)\\u i — u2||Y
te [a+Y,a+Y+@], хеП J  J  

a+Y П

<  q\\ui — u 2 \\y ,

where
t

q =  f  sup ds \W(t, s,x,y,X)\v(dy,X) .
te [a+Y,a+Y+@], хеП J  J  

a+Y П

Using the assumption (A 7 ),  we can always find a в >  0 such that q <  q <  1. 
This proves the property o f local contractivity o f the operator F (■, X) : Y  ^
Y  for any X £ Л. Moreover, we easily obtain from 7  £ [0, b — a) the estimate 
on q that this property is uniform with respect to 7  and X, i.e. в >  0 and 
q <  1 can be chosen to be independent of 7  £ [0, b — a) and X £ Л.

A t the third and final step of the proof we show the continuity of the 
mapping F  : Y  x Л ^  Y . We pick arbitrary Xo £ Л, uo £ Y , where 
continuity will be examined, and arbitrary sequences XN ^  Xo, uN ^  uo 

( N  ^  to ).
We start with estimation o f the following difference:

\(S(un  ,Xn  ) ) (s,  x, y, Xn  ) — ( S ( u o ,Xo))(s,x ,y,Xo)\

<  \ ( S (u n  ,X n  ) ) (s,  x, y, Xn  ) — (S (uo ,X n  ) ) ( s , x , y , X o )\

+  \(S (uo, Xn ) ) (s ,x ,y ,X o) — (S (uo,X o)) (s ,x ,y ,X o)|.

The first term on the right-hand side o f this inequality is less than e/2 for 
all s £ ( —to,  b], x,y  £ Q, N  >  N 1 as uN ^  uo ( N  ^  to ). By virtue of 
the assumptions (A 2 ) and (A 3 ), the second term on the right-hand side is 
less than e/2 for all s £ ( —to, b], x £ Q, y £ Qr , N  >  N 2(r) . Thus, for any 
r  >  0 , we have

\(S(un ,Xn  ) ) (s,  x, y, Xn  ) — ( S ( u o , Xo ) ) ( s ,x ,y ,  Xo )\ <  e ( 1 2 )

for all s £ ( —to, b], x  £ Q, y £ Qr , N  >  N 3(r) .
Then, choosing e >  0, we find a number r o >  0 such that the estimate 

(10) holds true. Increasing, if necessary, the value o f r o , we may, in addition, 
assume without loss o f generality that v (Q r0, Xo) >  0 and v (dQr0, Xo) =  0, 
so that

lim v (Q r0 ,Xn ) =  v (Q r0, Xo )
N

(see e.g. [7, Chapter V I, Theorem 2]).
Using this r o , we estimate the following difference:

f  ( ( S ( u N , XN ) ) (s,  x , y ,X N ) ,X n ) — f  { (S  (uo,X o))(s ,x ,y ,X o),X o

< f  ( ( S ( u n , Xn ) ) ( s, x, y, Xn ), Xn ) — f  ( ( S ( u n , Xn ) ) ( s, x, y, Xn ), Xn )

+ f  ( ( S ( u n , Xn ) ) ( s, x, y, Xn ), Xo) — f  ( (S(uo,  Xo)) (s, x, y, Xo), Xo)

t
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By virtue of the assumption (A 1 ), the first term on the right-hand side of 
the inequality is less than e for all s G ( —ж,  b], x G Q, y G Qro, N  >  N 4 ( r 0 ). 
Using the assumption (A 1 ) and the estimate (12), we get that the second 
term on the right-hand side o f the inequality is less than e for all s G ( —ж,  b], 
x G Q, y G Qro, N  >  N 3 ( r 0 ). Thus, taking into account (A 1 ) and (A 7 ),  we 
obtain the inequality

ds J  W ( t ,  s, x, y, An ) f  ( ( S ( u N ,AN ) ) ( s , x , y , A N ) ,A N )

f  ( (S(v,0 , A0 ) ) (s,  x, y, A0 ), A ^ j  v(dy, A n ) <  e (13)

for all t G [a,b], s G ( —ж,  b], x  G Q, y G Qro, N  >  N 5 ( r 0 ).
The assumption (A 5 ) yields

i i e
|W4 , s  x,v ,  A n ) — W (t, s, x , y , A°)| <  M ( ( b  — a ) v Q , A ) )  (14)

for all t G [a,b], s G ( —ж, b], x  G Q, y G Qro, N  >  N 6 ( r 0 ).
Using the assumptions (A 3 ), (A 4 ), and (A 6 ), we find a natural number 

N 7 ( r 0 ) such that

sup
tE[a,b], xEQ

J  & ( t , x ,y ) ( v (d y ,  A n ) — v (dy,A0 ) )

v (Q ro , AN ) <  2 v (Q ro , A0^

<  e,

sup l^(a, x, An ) — ф(a, x, A0) | <  e,
xEQ

sup |l( t , x ,A N ) — I ( t , x , A 0 )l < e ,  \An — A01 < S
tE[a,b], xEQ

for all N  >  Nr(r-0 ). Here, the function 

t

^ ( t , x , y ) =  J  W ( t , s , x , y , A 0 ) f  ( ( S ( u 0 ,A 0 ) ) ( s , x , y , A 0 ) ,A 0 ) ds

—  OO

is uniformly continuous on the set [a, b] x Q x Qro, so that

J  &( t ,x ,y )v (dy,  A n ) — > J  ф(t , x ,y ) v (d y ,A 0 )

Qro Qro

as n ^  ж  uniformly with respect to the variables t G [a,b], x  G Q.

(15)

— Ж Q
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Next, we estimate

sup \I2 (t, x, X n ) — I 2 (t, x, Xo)\
te[a,b], xen

<  sup
te[a,b], xen

—ж n

<  sup
te[a,b], xen

ds W ( t ,  s, x, y, XN)

-ж n

X f ( p ( s  — T(s, x, y, Xn ), x, Xn ) ,Xn )  v(dy, Xn )

— J  ds f  W ( t , s , x , y , X o ) f  ( p (s  — t ( s,x ,y ,Xo ) ,x ,Xo ) ,Xo )v (dy,Xo )

t

ds W ( t ,  s, x, y, XN)

-ж n—ПГо

x f ( p ( s  — T(s, x, y, Xn ), x, Xn ), Xn ) v(dy, Xn )

t

— J  ds f  W ( t , s , x , y , X o ) f  ( p (s  — t ( s,x ,y ,Xo ) ,x ,Xo ) ,Xo )v (dy ,Xo )

ds W  (t, s, x, y, Xn  ) ( f ( p ( s  — T ( s , x ,y ,X N  ) , x ,X n ) ,Xn )

Пго

f ( p ( s  — T(s, x, y, Xo), x, Xo), Xo)' ) v(dy, Xn ) 

t

J  ds J  ( W ( t ,  s, x, y, Xn ) — W ( t ,  s,x,y,  Xo))

-ж Пго

x f ( p ( s  — t ( s, x, y, Xo), x, Xo), Xo) v(dy, Xn ) 

t

J  ds J  W ( t ,  s, x, y, Xo)

-ж ПГо

X f ( p ( s  — T(s, x, y, Xo) ,x,  Xo), Xo)v(dy, Xn )

J  ds J  W  ( t , s , x , y , X o ) f  ( p (s  — t  ( s ,x ,y ,X o ) ,x ,X o ), Xo)v(dy, Xo)

+  sup
te[a,b], xen

—ж n

+  sup
te[a,b], xen

+  sup
te[a,b], xen

-ж nr

The first term on the right-hand side of the inequality is less than 2e as 
the estimate (10) and the assumption (A 1 ) hold true. Each of the second 
and the third terms on the right-hand side o f the inequality is less than

0
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e due to (13) and (A 1 ), (A 7 ), (14), respectively, for all N  >  N 8 ( r o) =  
m a x { N 5 ( r o), N 6 ( r o) }.  The estimate (15) yields the last term on the right- 
hand side o f the inequality is less than e for all N  >  N 7 ( r o).

Thus, we get that

sup \l2 ( t , x ,X N ) — I 2 (t,x , Ao)| <  5e
te[a,b], xen

(16)

for all N  >  N 9 ( r 0 ) =  m a x { N 7 ( r o), N 8 ( r o)}.
Finally, taking into account the estimates (10), (11), (13)-(16) and the 

assumption (A 7 ),  we obtain

IlF (uN , An ) — F (uo ,  Ao)|L  <  sup ' î ( g, x ,A n ) — ф (a ,x , Ao)1
xen

+  sup |l ( t , x ,A N ) — I  ( t ,x ,Ao) l
te[a,b], xen

+  sup lI 2 ( t , x , A N ) — I 2 ( t , x ,A o ) 1
te[a,b], xen

+  sup
te[a,b], xen

ds W ( t ,  s, x, y, AN)

a n

x f  ( ( S ( u n , An ) ) ( s, x, y, An ), An ) v (dy, An )

a n

— J  ds J  W ( t , s , x , y ,  A o ) f  ( (S (uo ,A o ) ) ( s , x ,y ,A o ) ,A o ) v (dy,Ao) 

t

J  ds J  W ( t ,  s,x,y,  An )<  7e +  sup
te[a,b], xen

a nr

x f  ( ( S ( u n , An ) ) ( s, x, y, An ), An ) v (dy, An )

+  2 e

a Пг

<  9 e +  sup
te[a,b], xen

— I  ds J  W  (t, s, x, y, A o ) f  ( ( S (u o , Ao)) (s, x, y, Ao) ,Ao )v (dy, Ao) 

ds W ( t ,  s, x, y, AN)

a Пго

x f  ( ( S ( u n ,An ) ) ( s,x,y,  An ) , A n )

— f  ( (S(uo,  Ao)) (s, x, y, Ao), Ao ) )  v(dy, An )

t

J  ds J  (W ( t ,  s, x, y, An ) —W ( t, s ,x,y,  Ao))+  sup
te[a,b], xen

a nr

t

o

t

o
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+  sup
tE[a,b],xEQ

x f  ( ( S ( u 0 , A0 ) ) (s,  x, y, A0 ), A0 )v(dy,  A n ) 

t

J  ds J  W ( t ,  s, x, y, A0 )

a Qr0

x f  ( ( S ( u 0 , A0 ) ) (s,  x, y, A0 ), A0 )v(dy, A n )

- J  ds J  W  ( t , s , x , y ,A 0 ) f  ( ( S  (u 0 ,A 0 ) ) ( s , x , y , A 0 ) ,A 0 ) v  (dy, A0 )

a Qro

<  10e +  (b — a)v (Q ro, AN )

+  sup
tE [a,b], xE^

( (b — a ) v (Qro, A0 ) )

&(t, x, y) (v(dy, A n ) — v(dy, A0 ) ) <  13e

for all N  >  N 9 ( r 0).
The proof is complete. □

Remark 1. I f  Q is compact, then the assumption (A 8 ) is fulfilled automati
cally and can therefore be omitted, while the assumptions (A 2 )- (A 5 )  only 
require continuity o f the corresponding functions instead of their uniform 
continuity in the variable x.

3. T he H o p f ie ld  M o d el  w it h  D e l a y

In this section we prove convergence o f the generalized Hopfield network 
to the Amari neural field equation.

Consider the following delayed Hopfield network model (see e.g. [14])

N
Z i ( t , N ) =  - a z i ( t , N ) + J 2  и ц ( N ) f ( z j  (t — тц( t , N ) , N ) )  +  J i ( t , N ), (17)

j = i
t >  a, i =  1,. . . ,  N,

parameterized by a natural parameter N . Here at each natural N , Zi( ■, N )  
are n-dimensional vector functions, uij  ( N ) are real n x n-matrices (connec
tivities), Tij  (■, N )  are nonnegative real-valued continuous functions (axonal 
delays), f  : R n ^  R n are firing rate functions which are Lipschitz and 
bounded and Ji ( ■ , N ) are continuous external input n-dimensional vector 
functions.

The initial conditions for (17) are given as

Zi( £ , N ) =  V i ( Z , N ), e <  a, i = 1 , . . . , N .  (18)

We use the general well-posedness result from the previous section to 
justify the convergence o f a sequence of the delayed Hopfield equations (17)
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(with the initial conditions (18)) to the Amari equation involving a spatio- 
temporal delay

d‘ “ ( t ’ x > =  - а ^ , * ) + 1 ф М  ( a ( s - T  ( t , x y ) , y ) M dy )  +  J ( t , x ) , ( W )

Q
t >  a, x  G Q,

with the initial (prehistory) condition

u (e ,x )  =  p (£ ,x ) ,  e <  a, x  G Q. (20)

On the above functions we impose the following assumptions:

(B 1 ) The function f  : R n ^  R n is continuous, bounded and Lipschitz 
one.

(B 2 ) The spatio-temporal delay t  : R  x Q x Q ^  [0, ж )  is continuous.

(B 3 ) The initial (prehistory) function ф : ( —ж , a] x Q ^  R n is continu
ous.

(B 4 ) For any b >  a, the external input function J  : [a,b] x Q ^  R n 
is uniformly continuous and bounded with respect to the second 
variable.

(B 5 ) The kernel function и : Q x Q ^  R n is continuous.

(B 6 ) v(  ■) is the Lebesgue measure on Q.

(B 7 ) For any b >  a,

sup / \u(x,y)\v(dy) <  ж.
xEQ

Q

(B 8 ) For any b >  a,

lim sup / \u(x,y)\v(dy) =  0 .
r^ ^  xEQ JxE Q Qr

The following theorem represents the main result o f this section.

T h eo rem  3. For each natural number N  let [ A i ( N ), i =  1, .. ., N }  be a 
finite family of open subsets of Q satisfying the conditions 

N
|̂ J A i ( N ) =  Qn  and lim mesh { A i ( N ), i =  1 , . . . ,  N }  = 0 .
i= 1

Let yi ( N ) ( i  =  1, .. ., N )  be arbitrary points in A i ( N ). Finally, let the 
assumptions (B 1 )- (B 8 ) be fulfilled. Then the sequence of the solutions 
zi ( t , N ) (t G R )  of the initial value problem (17), (18), where the coefficients 
are defined by

U i j ( N )  =  P i ( N ) u ( y i ( N ) , y j ( N ) ) ,  where f r ( N )  =  v ( A i ( N ) ) ,  ( )

Tij(t,  N ) =  t ( t , y i ( N ) , y j ( N )),  J i ( t , N ) =  J ( t , y i ( N )), 21
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converges fo r  any b >  a to the solution u ( t , x )  (t £ R, x  £ Q) of the initial 
value problem (19), (20) as N  ^  t o , in the following sense:

lim sup ( sup ( sup \u(t,x) — zi ( t , N ) \ ) )  =  0. (22)
N te [a ,b ] ' l< i<N  ' x e A i (N ) '  '

In order to prove this theorem, we will need to use the following state
ment.

L em m a  1. Assume that fo r  each natural number N  we have a finite family 
of open subsets { A i ( N ), i =  1,. . . ,  N }  of Q satisfying the conditions 

N
|̂ J A i ( N ) =  Qn  and lim mesh { A i ( N ), i =  1 , . . . ,  N }  = 0 .
i=l

Let yi ( N ) ( i  =  1, .. ., N )  be arbitrary points in A i ( N ), D i ( N ) be the Dirac 
measures at yi ( N ) and e i ( N ) =  v ( A i ( N ) ) .  Then the sequence of  the discrete 
weighted measures

N

VN =  Y ,  0 i ( N ) D i ( N ) (23)
i = 1

weakly converges ( in the sense of the weak topology on the dual space to 
Ccomp(Q))  to the Lebesgue measure on Q.

Proof. We simply observe that for any continuous and compactly supported 
function Ф ф ,  x £ Q, we get

N
Ф(x )vN (dx) =  E Ц y i ( N ) ) fr( N )

Q i = 1

N r
=  ^ Ф Ы . Ю ) v ( A i ( N ) )  —̂ J  Ф ^ ) и (dx), (24)

i = 1  Q

as N  ^  t o , due to the properties o f the Riemann-Stiltjes integrals (see e.g. 
Chapter 2 in [11]). □

Proo f  of the Theorem 3. In order to apply Theorem 2, we first of all define 
the metric space Л =  |AN , N  =  0 ,1, 2 , . . . } ,  where Ao =  to, Xn  =  N  for 
natural numbers N , and the distance is given by d(AN , AM ) =  \1 / N  — 1 /M\ 
( N , M  =  0) and d(AN , A0 ) =  1/N ( N  =  0), so that AN ^  A0 sim
ply means that N  ^  t o . Multiplication by the function n(t — s), where 
n(a)  =  exp (—aa ), followed by integration, converts the equation (19) into 
the equation ( 1 ), where f , т,

W (t ,  s, x, y) =  exp (—a( t  — s))w(x, y),
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are all independent o f A, and the measures are defined as v (■ ,AN ) =  vN 
(see (23)) and v (■, A0) =  v , respectively.

The assumptions (A 1 )- (A 5 )  o f Theorem 2 are trivial, the assumption 
(A 6 ) is fulfilled due to Lemma 1 and the above definition o f convergence 
in Л.

Taking into account that

max
t£[a,b]

t
f  1exp(—a( t  — s)) ds =  — . 

J а

it is straightforward to check the assumptions (A 7 ) and (A 8 ).
From Theorem 2 it now follows that the solutions u ( t , x, N )  o f the initial 

boundary value problems

dtu(t, x, N )  =  —au(t,  x, N )

+  j  u ( x , y ) f  (u(s — т( t , x , y ) , y , N ) ) v n (dy) +  J ( t , x ) ,  t >  a, x  £ Q, (25)

Q

with the initial (prehistory) condition

u ( £ , x , N ) =  p (£ , x ) ,  £ <  a, x  £ Q, (26)

converge to the solution u ( t , x )  (t £ R , x £ Q) o f the initial value problem 
(19), (20), as N  —— ж , uniformly on [a,b] x Q for any Ъ >  a. Evidently, 
replacing x  by y i ( N ) in the equation (25) and in the initial condition (26) 
yields the initial value problem (17), (18). It remains therefore to notice 
that the set zi ( t , N ) =  u ( t ,y i ( N  ) , N ) ( i  =  1, . . .  , N ) is a (unique) solution 
of the latter problem. □

The theoretical results o f this section can be applied to justify numerical 
integration schemes. For example, Faye et al [5] considered discretization 
o f the following delayed Amari model

dtu ( t , x )  =  —a u ( t , x )  +  J  u)(\x — y\) f(^u( t    ------— , y ^ j  dy (27)

Q

in the cases

I. u ( t , x )  £ R, Q =  [—L ,L ] ,  

II. u ( t , x )  £ R 2 , Q =  [—L , L ] ,  

III. u ( t , x )  £ R, Q =  [—L , L ] 2 .

Faye et al have justified their numerical schemes using convergence o f the 
trapezoidal integration rule and the rectangular method to the correspond
ing integrals. We will show how our results can be applied for the more
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involved case III:

M M

dtuij ( t  — auij ( t  +  \(x1,x2)  — ( x k , x 2 ) \)
k=1 l= 1

Here,
x =  ( x 1 , x 2), uij  ( t )  =  u( t,  (x 1 ,x'2) ) ,  i , j  =  ! , . . . ,  M .

Denoting

in (28), we get the Hopfield network model (17). Applying Theorem 3, we 
prove convergence o f the numerical scheme (28) to the equation (27). 

Rankin et al [10] discretize the Amari model (27) for

also by substituting Q with the grid { ( x 1 , x ‘2 ), i , j  =  1 , . . .  , M }  and then use 
a combination o f the Fourier transform and the inverse Fourier transform 
to obtain the solution numerically. Discretization of the Amari model on 
a hyperbolic disc Q =  { x  =  ( r , 6 ), r  £ [0 ,r0], r 0 £ R, в £ [0, 2n) }  using 
the rectangular rule for the quadrature { ( r i , e j ), i =  1 , . . . , M , j  =  i =  
1 , . . . ,  N }  was implemented in [6] to study of the localized solutions. As it 
easy to conclude from Theorem 3, the solutions obtained in both these cases 
converge to the corresponding analytical solutions as M  ^  to and N  ^  t o .

We emphasize here that Theorem 3 also allows one to justify discretiza
tion schemes on unbounded domains for equations involving spatio-temporal- 
dependent delay as well.

In this section we consider the following neural field model with a general 
(i.e. non-periodic) microstructure:

which is a parametrized version o f (3).
Question: W hat can we say about behavior o f the solutions un to the 

equation (29) as u f  ^  uf  uniformly ( i  ^  t o ), where uf  is periodic with 
respect to the second argument?

u(t, x )  £ R, Q =  [—L, L ] 2, v =  t o ,

A p p e n d ix

dtu( t ,x )  =  —u ( t , x ) +  u i ( x  — y ) f  (u ( t , y ) )  dy,

Rm
u f ( x )  =  u i (x,x/e) ,  0 <  e ^  1 , 

t >  0, x £ R m.

(29)
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Following the idea o f homogenization o f the equation (3) (see [12])), we 
first look at the family of homogenized problems

dtu ( t , x c, x  f ) =  - u ( t , x c, x f )

+  j  J  U ( x c -  Vc, x f — yf ) f  ( u ( t , yc,y f ) )  dyc Vn ( dyf ) , (30)

Rm K n

t >  0, x c € R m , x f € K i с  R k 

and the corresponding limit problem as i ^  ж

dtu ( t , x c, x f ) =  —u ( t, x c, x f )

+  j  J  u o( x c — yc, x f — yf ) f ( u ( t , y c,y f ) )  dyc vo ( dyf ) , (31)

Rm Ko

t >  0, x c e  R m , x f € K 0 с  R k.

As in [12], we assume that for each i =  0 ,1, 2, . . . , the connectivity kernel 
u i ( x, • )  ( x e  R m)  belongs to A i , where A i =  C ( K i )  are some Banach
algebras o f continuous functions defined on the compact sets K i с  R k and
equipped with the mean values M i (which give rise to the finite measure vi 
defined on K i ). Further, we assume that there is a compact K  such that
OO _
U K i C K , so we can extend the measures vi corresponding to the mean

i=0 ___ ___

values M i ( i =  0 ,1, 2, . . . ) , to the compact K  by putting vi ( K  \ K i ) =  

0. Finally, we assume that convergence o f the connectivity kernels is a 
consequence o f a convergence o f the associated Banach algebras with mean. 
More precisely, we suppose that:

1) the compacts K i converge to the compact K 0 in the Hausdorff met
ric;

2 ) M n ( x\Kn ) ^  M o ( x\Ko)  for any function x  € C ( K )  (here x|K . 

denotes the restriction of the function x  € C ( K )  to the set K i ).

Thus, we get

J  x ( x ) vn ( dx )  — > J  x ( x ) vo ( dx )

Kn Ko

for any x  € C ( K ) , which means that the sequence o f measures vn weakly 
converges to the measure v0. Hence, we can apply Theorem 2 to the prob
lems (30) and (31) and get uniform convergence of the corresponding solu
tions. This approach can serve as a possible answer to the above-formulated 
question.
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