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Experiences worldwide reveal that degraded lands restoration projects achieve little
success or fail. Hence, understanding the underlying causes and accordingly, devising
appropriate restoration mechanisms is crucial. In doing so, the ever-increasing aspiration
and global commitments in degraded lands restoration could be realized. Here we
explain that arbuscular mycorrhizal fungi (AMF) biotechnology is a potential mechanism
to significantly improve the restoration success of degraded lands. There are abundant
scientific evidences to demonstrate that AMF significantly improve soil attributes,
increase above and belowground biodiversity, significantly improve tree/shrub seedlings
survival, growth and establishment on moisture and nutrient stressed soils. AMF have
also been shown to drive plant succession and may prevent invasion by alien species.
The very few conditions where infective AMF are low in abundance and diversity is when
the soil erodes, is disturbed and is devoid of vegetation cover. These are all common
features of degraded lands. Meanwhile, degraded lands harbor low levels of infective
AMF abundance and diversity. Therefore, the successful restoration of infective AMF can
potentially improve the restoration success of degraded lands. Better AMF inoculation
effects result when inocula are composed of native fungi instead of exotics, early seral
instead of late seral fungi, and are consortia instead of few or single species. Future
research efforts should focus on AMF effect on plant community primary productivity
and plant competition. Further investigation focusing on forest ecosystems, and carried
out at the field condition is highly recommended. Devising cheap and ethically widely
accepted inocula production methods and better ways of AMF in situ management for
effective restoration of degraded lands will also remain to be important research areas.

Keywords: AMF, ecological restoration, facilitation, inoculation, land degradation, mycorrhiza, monoxenic culture,
succession

INTRODUCTION

Ecological restoration has emerged to be the central theme of global environmental policies
(Aradottir and Hagen, 2013; Jacobs et al., 2015). Restoration of at least 15% of the world’s degraded
ecosystems is one of the 20 2011–2020 targets of the UN Convention on Biological Diversity (CBD,
20101). In 2011, world leaders endorsed the “Bonn challenge” which is a global commitment to

1https://www.cbd.int/sp/targets/
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restore 150 million hectares of deforested and degraded lands
by 2020 (Aradottir and Hagen, 2013). In 2014, the New York
Declaration on Forests put forward even a bigger global
commitment of restoring 350 million hectares of deforested and
degraded lands until 2030 (Jacobs et al., 2015). Most importantly,
in 2015, the UN concretized these global commitments by
adopting the 2030 Sustainable Development Goals which has one
of the 17 targets (Target 15) dealing on ecological restoration
(UN, 2015). However, restoration experiences so far show
that many restoration projects achieve limited success or fail
completely (Thomas et al., 2014) and therefore, extra effort is
needed to achieve the huge global restoration commitments put
on the table. Here we propose AMF inoculation and in situ
management for better restoration outcome of degraded lands.

About 93% of flowering plant families (Brundrett, 2009) and
92% of land plant families (Wang and Qiu, 2006) are estimated
to have mycorrhizal associations. These associations, based on
their structure and physiological relationship with symbionts, are
categorized in to seven; of which arbuscular mycorrhiza is one
(Brundrett et al., 1996; Barea et al., 2011). Arbuscular mycorrhiza
is the most predominant and evolutionarily the ancestor of
all the association types (Wang and Qiu, 2006). AMF produce
arbuscules, hyphae, and vesicles within host plants’ root cortical
cells (Brundrett and Abbott, 2002). However, some species within
the family Gigasporaceae do not form vesicles but instead, form
auxiliary cells of unknown function (Redecker and Raab, 2006).
In few other cases as well, arbuscules develop poorly or may be
absent (Koide and Mosse, 2004). AMF are; (1) obligate biotrophs
completely depending on host plants for organic carbon (File
et al., 2012), (2) evolutionarily intimately associated with plants
(Taylor et al., 1995), (3) multiple nucleated, and (4) asexually
reproducing eukaryotes (Schüßler et al., 2007).

Arbuscular mycorrhizal fungi are keystone organisms with
myriads of ecosystem roles. The external hyphae network
(extraradical mycelium) of the fungi permeate in to the microsites
of rocks and soils surrounding the plant roots (Finlay, 2008;
Barea et al., 2011) increasing the root absorbing surface area
100 or even 1000 fold (Larcher, 1995). Therefore, AMF increase
plants’ nutrient and water relation (e.g., Birhane et al., 2012,
2015; Banerjee et al., 2013), and can improve plants’ field survival
and establishment (e.g., Pouyu-Rojas and Siqueira, 2000; Habte
et al., 2001; Ouahmane et al., 2006; Dag et al., 2009; Kapulnik
et al., 2010; Karthikeyan and Krishnakumar, 2012; Manaut et al.,
2015). AMF improve soil structure, soil water relation, plants’
tolerance to biotic and abiotic stresses, increase plants’ nutrient
supply, plants’ growth, yield and reproductive success and reduce
fertilizer requirement (Finlay, 2008; Gianinazzi et al., 2010;
Simard and Austin, 2010; Barea et al., 2011; Al-Karaki, 2013; Soka
and Ritchie, 2014). AMF influence plant community structure
(Van der Heijden et al., 1998; Hartnett and Wilson, 1999; Renker
et al., 2004; Heneghan et al., 2008; Lin et al., 2015) and are
considered to have a pivotal role in plant community assembly
and succession (Janos, 1980; Renker et al., 2004; Kikvidze
et al., 2010). Therefore, AMF have significant role in ecological
restoration.

The potential role of AMF in ecological restoration has been
well recognized even before restoration ecology emerged as a

scientific field of study (see Janos, 1980 and the references there).
However, as of yet, there is no report available to confirm that
AMF inoculation has grown to be a biotechnological tool that
is widely applicable in ecological restoration. Review articles
dealing on the subject are also very few. To our knowledge,
those review articles that dealt on the subject are Skujins and
Allen (1986), Brundrett and Abbott (2002), Jeffries et al. (2002)
and Renker et al. (2004). Other reviews (e.g., Perry et al., 1987;
Quoreshi, 2008; Sanon et al., 2010; Al-Karaki, 2013) did not deal
on AMF specifically and the one by Koide and Mosse (2004)
allocated some paragraphs for the topic. Therefore, although
there is a large number of articles and sufficient knowledge
on the ecosystem role of AMF, their role in the restoration of
degraded lands is relatively little reviewed. Hence, the purpose
of this review article is to gather data from published articles and
assess the effects AMF have on measurable ecological restoration
attributes and ecological processes.

FEATURES OF DEGRADED LANDS

There is no single internationally approved definition of
land degradation (World Resource Institute, 20152). However,
land degradation is often defined as a long-term loss of
ecosystem function and productivity caused by disturbances
from which the land cannot recover unaided (e.g., Bai et al.,
2008). Meanwhile, reduction in net primary productivity
has commonly been used to measure the level of land
degradation and restoration (Bai et al., 2008). The Society
for Ecological Restoration (SER), however, recommends nine
attributes to measure restoration success (SER, 2004). Earlier,
Aronson et al. (1993) adapted Odum (1969) succession
traits to formulate their own restoration attributes. The SER
restoration attributes are excellent parameters (Ruiz-Jaen and
Aide, 2005), however, it is the Aronson et al. (1993) restoration
attributes that have commonly been used by restoration
ecologists (Choi, 2004; Ruiz-Jaen and Aide, 2005). Therefore,
in this article, the attributes listed by Aronson et al. (1993)
are adapted and used to safely characterize degraded lands
(Table 1).

Degraded lands are characterized by low levels of AMF
abundance and diversity. An experiment carried out in Brazil
(Cardozo-Junior et al., 2012) compared the abundance and
diversity of AMF on lands of differing degradation levels and
also determined the same on a young restoring site. The result
of the observation clearly showed that as the scale of degradation
increases, the abundance and diversity of AMF reduces and
when restoration presumes both AMF abundance and diversity
increase (Cardozo-Junior et al., 2012). Elsewhere also, it was
reported that an effective exclosure increased AMF abundance
(Birhane et al., 2010). These are in agreement to the remarks
by Abbott and Robson (1991) and Schnoor et al. (2011) which
indicated that although AMF are ubiquitous, the very few
conditions where a natural ecosystem can be devoid of AMF is
in areas that are severely eroded or disturbed.

2http://www.wri.org/faq/what-degraded-land
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TABLE 1 | Features of degraded lands compared to reference climax ecosystems (Based on Aronson et al., 1993).

Structural indicators of degraded lands Functional indicators of degraded lands

Low total plant cover Low biomass productivity

Low perennial and annual plant species richness Low soil organic matter

Low aboveground phytomass Poor soil water relation Lowered soil water reserves

Low beta diversity (species turnover along environmental
gradient)

Low coefficient of rainfall efficiency (the amount of
water infiltrating to middle and deep soil layers)

Decreased life form spectrum (Decreased number of
species with different modes of adaptation)

Reduced length of water availability period

Reduced number of keystone species Low rain use efficiency (RUE)

Low soil microbial biomass Poor nutrient cycling index (the ratio of the amount of nutrients mainly N&P
recycled to the amount leaching or lost)

Low soil microbial diversity Low nitrogen use efficiency (NUE)

A greenhouse experiment with simulated erosion was able
to demonstrate that erosion of soil beyond 7.5 cm could make
soil loose AMF completely (Habte, 1989). Likewise, Jasper
et al. (1989) were able to experimentally determine that, while
AMF maintained their infective potential in extremely dry soil
conditions, their infective potential was significantly lowered
when the soil was disturbed. Hyphae are important source
of inoculum but are highly susceptible to disturbance and
hence, disturbance leads to lowered infective potential of AMF
(Brundrett and Abbott, 2002).

Furthermore, several studies conducted in agricultural fields
have shown that disturbance not only reduces AMF abundance,
diversity and infectivity but also results in drastic shift in the
AMF community (Schnoor et al., 2011). Most species of the
most common AMF families (Glomeraceae, Acaulosporaceae,
and Gigasporaceae) have distinctive biomass allocation strategies
whereby species of the Glomeraceae allocate most of their
biomass in the intraradical hyphae while species of the
Gigasporaceae allocate most of their biomass in the extraradical
hyphae and species of the Acaulosporaceae produce low biomass
both intra and extraradically (Maherali and Klironomos, 2007).
Similarly, these distinctive fungal groups have distinctive life
history with most species of the Glomeraceae being ruderals
while that of Gigasporaceae and Acaulosporaceae are competitors
and stress tolerators respectively (Chagnon et al., 2013). Ruderal
AMF species are disturbance tolerant since they have shorter
extraradiacal mycelium and have the following life history
strategy viz., grow faster, have short life cycle and invest earlier
and more abundantly in spore formation, fuse fragmented
hyphae more readily, and form cross-walls that enable infected
root pieces and severed hyphal fragments to heal and re-
colonize host roots (Chagnon et al., 2013). Meanwhile, AMF
communities of disturbed sites are characteristically dominated
by disturbance tolerant species of the family Glomeraceae
and more specifically the genus Glomus (Chagnon et al.,
2013).

The number of surviving propagules of AMF in soils also
declines with time in the absence of host plants (Brundrett

and Abbott, 2002). Alexander et al. (1992) have reported that
heavy logging in a Malaysian forest significantly reduced (75%
reductions) the abundance and infectivity of AMF propagules.
Therefore, considering the fact that land degradation significantly
reduces plant cover, increases soil disturbance and erosion, low
levels of AMF abundance, diversity and infective potential can
be considered as a peculiar feature of degraded lands. Degraded
lands are also prone to invasion by exotic alien species. This is
because, the low level of native plants diversity can potentially
provide vacant niche for invasives (Mack et al., 2000).

WHAT IS ECOLOGICAL RESTORATION?

Ecological restoration, according to Hobbs et al. (2007) is a
process of assembly and succession mediated by disturbance.
Succession refers to the more or less regular and predictable
replacement of seral communities while community assembly
refers to the species dynamics of each seral community.
Community assembly is typically viewed as a hierarchical
process with local species assemblages representing subsets
of a larger species pool (Kikvidze et al., 2015). There are
three level filters that result in a particular seral community
assemblages viz. (1) speciation, extinction and migration,
(2) dispersal, and (3) habitat filters (abiotic factors) and
biotic filters like competition and facilitation (Gotzenberger
et al., 2011). A typical community assembly was observed by
Gleason (1927) whereby ponds at similar locality with similar
environmental condition formed different kinds of wetland
communities.

Restoration strategies of degraded terrestrial systems usually
center on manipulation of species order of arrival and
modification of filters to accelerate succession and/or jump
start succession (Young et al., 2001; Hobbs et al., 2007;
Gómez-Aparicio, 2009). The seral community assemblage is
very important in ecological succession since it can determine
the latter seral community assemblage and hence, succession
trajectory. Egler (1954), argued that ecosystem development
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can be accelerated by controlling initial species composition
and succession to achieve the desired end point. Some field
observations (e.g., Cortines and Valcarcel, 2009) have shown
that this has practical application in ecological restoration. This
phenomenon is known as the priority effect (Young et al.,
2005; Zedler, 2005). Hence, designing initial species composition
and ensuring their survival and establishment is an important
step in ecological restoration (Angelini et al., 2011). With the
growing appreciation to plant–plant facilitation interaction and
due to better adaptation to resource limited conditions, early/mid
successional shrubs are gaining preference to late successional
tree/shrubs to startup restoration process of degraded lands
(Gómez-Aparicio, 2009; Padilla et al., 2009).

Restoration ecologists not only provide appropriate
conditions for desired species to establish but they also, in
the meantime, devise ways of preventing the establishment
by invasives (Zedler, 2005). Disturbance is also an important
factor in ecological restoration since it can modify filters and
community assemblage (Choi, 2004). Restoration ecologists have
observed that some low level of natural disturbance (e.g., logging,
fire, flooding, etc.) can enhance biological diversity and hence,
ecological restoration (Palmer et al., 1997).

Based on the scope and complexity of intervention, ecological
restoration ranges from species reintroduction to population
restoration to community restoration (Young et al., 2001).
Based on the restoration goal, it ranges from reclamation
to rehabilitation to true restoration. An ecosystem that is
slightly disturbed can restore back to its pre-disturbance status
(true restoration). As the magnitude of disturbance increases
the return to pre-disturbance status may be impossible and
hence, return to an intermediate successional status of the
given community (an alternative steady state) may be achieved
(rehabilitation). When the disturbance is severe, the threshold
of irreversibility is passed and the return to pre-disturbance
community status or intermediate successional status will be
completely impossible and hence, restoration can only result
in a novel community stature (reclamation) (Aronson et al.,
1993). In the advent of climate change, to have reclamation
as a restoration goal is considered to be relevant since
novel climatic conditions are anticipated in the future (Choi,
2004).

Considering the wide range of concepts embedded in
ecological restoration, as shown above, a comprehensive
definition is crucial. Hence, the SER defined ecological
restoration as, the process of assisting the recovery of an
ecosystem that has been degraded, damaged, or destroyed (SER,
2004). This is the most widely accepted definition of ecological
restoration (Harris et al., 2006; Higgs et al., 2014). Likewise, for
this article, this definition is adopted.

In tropical lands ecological restoration, tree planting
(Lamb et al., 2005; Holl et al., 2010; Aerts and Honnay,
2011) and re-vegetation/reforestation (Cortines and Valcarcel,
2009; Al-Karaki, 2013) are known to be the most effective
and widely used biological measures. Accordingly, in this
article ecological restoration is considered to be the re-
vegetation of degraded sites mainly through tree/shrub
planting.

AMF AND THE MYCORRHIZOSPHERE
ECOLOGY

The rhizosphere is a narrow zone of soil affected by the
presence of plant roots (Hrynkiewicz and Baum, 2011). It
is extremely important and active area for root activity and
metabolism (Saharan and Nehra, 2011). Roots release a multitude
of organic compounds (e.g., exudates and mucilage) derived from
photosynthesis and other plant processes making the rhizosphere
a hot spot of microbial activities mainly that of fungi and
bacteria (Hrynkiewicz and Baum, 2011). The physical, chemical
and biological environment of the rhizosphere is hence, clearly
distinct from the bulk soil (Barea et al., 2002).

Similarly, the rhizosphere of the mycorrhizal plant can
be referred to as the mycorrhizosphere (Barea et al., 2002).
Mycorrhizosphere comprises both the root and hyphae influence
zones or the rhizosphere and hyphosphere (Timonen and
Marschner, 2006). Mycorrhizal hyphal growth in soils is
extensive, with mycelial lengths reaching 111 m cm−3 or 0.5 mg
g−1 or 900 kg ha−1 of soil (Simard and Austin, 2010). Hence,
the mycorrhizosphere provide a critical link between plants, other
microorganisms and the soil (Hrynkiewicz and Baum, 2011).

Intricate interactions take place within the mycorrhizosphere.
The most important ones could be interactions between; AMF
and the plant, AMF and bacteria, AMF and other fungi, and
among AMF themselves. These interactions commence when
plant roots exude strigolactones (SLs) (Parniske, 2008; Gutjahr,
2014). Under phosphate or nitrogen limiting conditions plants
exude elevated amounts of SLs into the rhizosphere (Gutjahr,
2014). SLs are carotenoid-derived plant hormones (Gutjahr,
2014) that induce AMF spore germination and hyphal branching
(Parniske, 2008). They are also known to induce seed germination
in parasitic plants, such as Striga (Parniske, 2008) and are also
involved in suppression of shoot branching and shaping root
architecture (Gutjahr, 2014).

The AMF on their part, produce mycorrhiza (Myc) factors.
Myc-factors induce calcium oscillations in root epidermal
cells and also activate plant symbiosis-related genes (Parniske,
2008). Then the AMF form special type of appressoria called
hyphopodia which develops from mature hyphae (Parniske,
2008). As a consequence of sequential chemical and mechanical
stimulation, plant epidermal cells produce a pre-penetration
apparatus (PPA) (Parniske, 2008). Subsequently, a fungal hypha
that extends from the hyphopodium enters the PPA, which guides
the fungus through root cells toward the cortex. The fungus then
leaves the plant cell and enters the apoplast, where it branches and
grows laterally along the root axis (Parniske, 2008; Gutjahr, 2014).
These hyphae induce the development of PPA-like structures in
inner cortical cells, subsequently enter these cells, and branch to
form arbuscules (Parniske, 2008). Upon getting nourished via the
arbuscules the fungi will develop extraradical mycelium whose
leading tips form new spores to continue the lifecycle of the fungi
(Parniske, 2008). Vesicles, which are proposed to function as
storage organs of the fungus, when applicable, are formed in the
apoplast (Parniske, 2008).

Arbuscular mycorrhizal fungi have a significant role in
plants’ P nutrition and sometimes, 100% of the P may be
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provided by the AMF (Smith et al., 2011). In return, plants
allocate, according to most authors, 4–20% of the photosynthate
to the AMF (Lerat et al., 2003). It has been shown that
plants preferentially allocate more carbon in favor of the more
beneficial fungi (e.g., Bever et al., 2009). Moreover, plants
allow the arbuscules to live in their cells as long as the
AMF is delivering phosphorous and maybe other nutrients
efficiently (Parniske, 2008). The observation that mutation of
the arbuscule specific phosphate transporter PT4 results in
premature degradation of arbuscules suggests that the lifetime
of arbuscules is influenced by their ability to deliver phosphate
and probably other nutrients (Parniske, 2008). This provides
the plant with a means to maintain efficient arbuscules and
penalize inefficient ones with early degradation. Conceptually,
this mechanism allows the plant not only to discriminate between
efficient and inefficient fungal species but also allows to remove
potentially ‘good’ fungal symbionts that are attached to a poor
phosphate source. This concept allows fungal clones and species
to compete for arbuscule formation, which allows succession
in an established root system (Parniske, 2008). Meanwhile,
the formation of fungal colonization structures and the extent
of root colonization are largely under plant control (Gutjahr,
2014).

Arbuscular mycorrhizal fungi are known to play role in
plant nutrition as long as they collaborate with other soil
microbes. It was experimentally proven that mechanisms
underlying the increased P-uptake in arbuscular mycorrhizal
plants were solely due to AMF synergistic interactions with
P-solubilizing microorganisms and/or greater soil volume
explored by the AMF hyphae (Antunes et al., 2007). Otherwise,
the AMF unlike ectomycorrhiza are not able to neither
solubilize phosphate nor decompose organic matter (Simard
and Austin, 2010). The well-known activities of nitrogen-
fixing bacteria and P-solubilizing microorganisms improving
the bioavailability of the major plant nutrients N and P are
very much enhanced in the mycorrhizosphere where synergistic
interactions of such microorganisms with mycorrhizal fungi
have been demonstrated (Barea et al., 2002). In particular,
mycorrhizal inoculation improved the establishment of both
inoculated and indigenous P-solubilizing rhizobacteria and,
again P-solubilizing rhizobacteria usually behave as mycorrhiza-
helper-bacteria, promoting mycorrhiza establishment by both the
indigenous and the inoculated mycorrhizal fungi (Barea et al.,
2002).

Arbuscular mycorrhizal fungi also interact with decomposer
fungi (Soka and Ritchie, 2014) and phosphate solubilizing fungi
(PSF) synergistically (Osoria and Habte, 2001). Accordingly,
presence of mycorrhizal fungi is known to alter the rates of above
and below ground litter decomposition due to chemical changes
in the roots and interactions with the decomposer fungi (Soka
and Ritchie, 2014). PSF were also observed to have lesser effect
in plant nutrition when applied alone and maximum effect took
place when both AMF and PSF were inoculated showing the
synergistic interaction between the AMF and PSF (Osoria and
Habte, 2001). In the meantime, AMF are also known to have
antagonistic relationship with root pathogens (Soka and Ritchie,
2014) and even leaf pathogens (Parniske, 2008).

Arbuscular mycorrhizal fungi may also interact with each
other synergistically. It was experimentally found out that
AMF effects are greater when AMF consortia inoculums
are applied than single AMF (Banerjee et al., 2013). After
long years of observation, Barea et al. (2011) concluded that
the use of native AMF consortia has the maximum effect.
A meta-analysis on 306 studies also indicated that plant
response was substantially lower when plants were inoculated
with single AMF species, compared with inoculations with
multiple AMF species (Hoeksema et al., 2010). This could
be due to synergistic interaction between the various AMF
species. Different species of AMF have different hyphal growth
patterns, anastomoses and branching frequencies (Parniske,
2008). These differences probably reflect different strategies and
the occupation of different niches within the soil (Parniske,
2008).

AMF AND MEASURABLE RESTORATION
ATTRIBUTES

Improved plant fitness (survival, growth and reproduction),
nutrient uptake and accumulation, tolerance of adverse
conditions (biotic and abiotic stresses) and altering plant
community structure [competition/facilitation, diversity
(richness and evenness) and succession] and that of animal
communities (Direct effects on organisms which feed on
fungi and indirect effects due to changes in plant fitness)
were identified to be the pivotal role AMF play in ecological
restoration (Brundrett and Abbott, 2002).

Based on Aronson et al. (1993), the functional and structural
attributes to measure ecological restoration include; soil organic
matter, soil water relation, nutrient cycling index, plant
diversity and soil microbial diversity and abundance, and plant
productivity. Therefore, the role of AMF in soil organic matter
content, soil water relation, nutrient cycling index, plant stress
tolerance, plants survival, establishment and growth on degraded
soils, plant diversity, soil microbial diversity and abundance,
and plant succession, competition/facilitation and productivity is
highlighted below.

AMF Improve Soil Aggregation; Hence
Increase Soil Organic Matter and Soil
Water Relation
Fungi and most importantly AMF may be the most effective soil
organisms in stabilizing soil structure (Augé, 2004). AMF hyphae
grow into the soil matrix to create the skeletal structure that holds
primary soil particles together to form soil aggregates (Augé,
2004; Al-Karaki, 2013). AMF also improve soil aggregation
by influencing bacterial communities that can improve soil
aggregate formation (Rilling, 2004). Furthermore, the dead AMF
hyphae produce glomalin which is hydrophobic stable aggregate
former (Barea et al., 2002; Simard and Austin, 2010). Hence, AMF
increase both soil aggregation and stability. AMF may stabilize
soils up to 5 months after their host’s death (Soka and Ritchie,
2014).
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Meanwhile, as a result of the significant amount of mycorrhiza
derived soil carbon (Rilling, 2004) and improved soil aggregation
and stability, AMF increase soil organic matter content and
stability (Rilling, 2004; Leifheit et al., 2014). Improved soil
aggregation also increases soil water relation. It was observed
that a naturally non-mycorrhizal plant planted in mycorrhizal
soils tolerated drought more than the ones planted in a non-
mycorrhizal soils indicating that AMF hyphae improves water
holding capacity of soils (Marschner, 1995).

AMF Improve Plant Nutrition and
Nutrients Cycling Index
The most important role of AMF is their role in phosphorous
nutrition (Skujins and Allen, 1986). There are also data indicating
that AMF can transfer nitrogen from one plant to another (e.g.,
Requena et al., 2001), increase the utilization of different forms
of nitrogen by plants and can also take up nitrogen directly and
transfer it to host roots (Govindarajulu et al., 2005). However,
there is considerable doubt as to the cost-benefit of AMF in plant
N nutrition (Smith and Smith, 2011). Although few data exist,
AMF were observed to improve potassium nutrition in plants
(Dag et al., 2009; Garcia and Zimmermann, 2014). AMF can also
increase the uptake of other macro and micro nutrients by plants
(Birhane et al., 2012). Generally, the external mycelium of AMF
establishes an underground network that links the different plants
and hence sequester carbon, nitrogen, and phosphorous and also
allow the transfer of these nutrients among plants (Rodriguez-
Echeverria et al., 2007). These important roles of AMF therefore
play great role in nutrient cycling where the need for further
nutrient inputs is significantly reduced (Gianinazzi et al., 2010;
Al-Karaki, 2013).

Arbuscular mycorrhizal fungi not only improve nutrient
cycling but also reduce nutrient leaching from the soil
(Rodriguez-Echeverria et al., 2007). In a comprehensive
assessment done by Bender et al. (2015), it was possible to
determine the role AMF have in nutrient cycling and leaching.
Accordingly, it was determined that while AMF inoculation
increased nutrient uptake by plants it also reduced leaching of
dissolved organic N and un-reactive P (Bender et al., 2015).

AMF Increase Plants’ Abiotic Stress
Tolerance
It was, several times, demonstrated that AMF can increase plants’
tolerance to drought and salinity (Al-Karaki, 2013). AMF are also
known to alleviate heavy metal stress in plants (Leyval et al., 1997;
Hildebrandt et al., 2007; Soares and Siqueira, 2008; Amir et al.,
2013). By inoculating plants with drought tolerant AMF, up to
42% reduction in plants’ water requirement could be achieved
(Gianinazzi et al., 2010). Also, Navarro et al. (2013) found out
that, Citrus rootstocks inoculated with AMF showed significantly
increased growth than non-inoculated individuals despite the fact
that inoculated individuals were irrigated with saline water and
the non-inoculated ones got irrigated with non-saline water.

The mechanism by which AMF increase plants’ tolerance to
drought, salinity and heavy metal stresses is mainly nutritional
(Marschner, 1995; Soares and Siqueira, 2008; Birhane et al., 2012;

Al-Karaki, 2013; Navarro et al., 2013). Soares and Siqueira (2008)
demonstrated that both P fertilization and AMF inoculation
of plants significantly improved plants’ growth on heavy metal
polluted soils. Hence, they concluded, AMF increase plants’ heavy
metal stress tolerance mainly through P nutrition.

The non-nutritional mechanisms by which AMF increase
plants’ tolerance to drought include; hormonal changes, hyphal
soil improvement (delayed soil drying), hyphal ability to scavenge
water from micro-pores, increased plants’ photosynthetic rate,
and accumulation of compatible osmolites (Marschner, 1995;
Birhane et al., 2012; Al-Karaki, 2013). Likewise, immobilizing
heavy metals in their biomass mainly cell wall, vesicles and in
the glomaline is the non-nutritional mechanism by which AMF
improve plants’ tolerance to heavy metals stress (Hildebrandt
et al., 2007).

The positive AMF effects on plants’ drought tolerance can
improve plants’ salinity tolerance as well. Better water intake
by plants can effectively dilute salts within the plants’ cells
(Larcher, 1995). Other non-nutritional mechanisms by which
AMF improve plants’ salinity tolerance include; exclusion of
salt from plant cells by accumulating the salt within the fungal
hyphae, production of enzymes involved in antioxidant defense,
and change in cell wall elasticity and membrane stability (Al-
Karaki, 2013).

AMF Increases Plants’ Resistance and
Tolerance to Pathogens and Herbivores
There are several published articles showing the role of AMF
in increasing plant tolerance against biotic stressors. The meta-
analysis of 144 published papers clearly reveals that (Yang
et al., 2014). Considering the role AMF have in bioprotection,
Gianinazzi et al. (2010) described AMF as ‘health insurance’ of
plants. One mechanism by which AMF increase plants’ pathogen
tolerance could be the synergistic interaction of AMF have with
plant growth promoting rhizobacteria (PGPR). PGPR have a very
well documented role in plant pathogen inhibition (Figueiredo
et al., 2010). The fact that AMF stimulate the synthesis of plant
secondary metabolites (Gianinazzi et al., 2010) may also explain
why AMF inhibit herbivory. Plants’ secondary metabolites are
known to have role in plants’ defense against herbivores (Larcher,
1995). The other reason by which AMF increase plants’ herbivory
tolerance is compensatory growth. A microcosm investigation
revealed that mycorrhizal plants did not show a reduction in
total above ground biomass despite their leaves being fed by
grasshoppers indicating that mycorrhiza helped the plant to
compensate in growth after herbivory (Kula et al., 2005).

AMF Increase Tree/Shrub Seedlings
Growth, Productivity, Field Survival and
Establishment on Degraded Lands
Lekberg and Koide (2005), carried out a meta-analysis based on
290 published experiments to determine the role of AMF on plant
growth and productivity. The analysis also determined the effects
of three common AMF management methods; inoculation, short
fallow, and reduced soil disturbance. The result of the meta-
analysis revealed that AMF generally increase individual plant’s
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growth and productivity. Inoculation and short fallow resulted in
significantly positive effects on plants’ growth and productivity
(Lekberg and Koide, 2005). A recent meta-analysis on 304 papers
also concluded that AMF inoculation increases the growth and
productivity of plants grown alone (Lin et al., 2015). A similar
result was also reported by Birhane et al. (2014). Huante et al.
(2012) also did experiment on six tree species and found out
that AMF inoculation has significant effect on seedlings growth
and most significantly slow growing tree species. Figure 1 below
shows how AMF inoculation can significantly increase tree
seedlings growth.

Tree survival and field establishment is an important factor
in the restoration of degraded lands. Hence, AMF are important
since they can significantly improve tree seedlings field survival
and establishment. Pouyu-Rojas and Siqueira (2000), Habte et al.
(2001), Ouahmane et al. (2006), Dag et al. (2009), Kapulnik et al.
(2010), Karthikeyan and Krishnakumar (2012), and Manaut et al.
(2015) have demonstrated the positive effect AMF have in these
regards. Pouyu-Rojas and Siqueira (2000) investigated the AMF
effect on seven tree species seedlings survival and establishment
on degraded pot soils. They found out that AMF inoculation
in the nursery or during transplanting have equally significantly
positive effect on trees survival and establishment. Later on Habte
et al. (2001) determined the effect AMF nursery inoculation

FIGURE 1 | Acacia koa A. Gray grew significantly tall in a low-P soil
when inoculated with AM fungus (adopted from Miyasaka et al., 2003).

has on field establishment of Acacia koa and accordingly,
AMF was shown to improve transplanted tree seedlings growth
and establishment by increasing seedlings P nutrition. The
role of native AMF inoculation was also demonstrated to
have a significant positive effect on the field survival and
establishment of Cupressus atlantica Gaussen seedlings on a
degraded Moroccan field site (Ouahmane et al., 2006).

Similarly, Kapulnik et al. (2010) determined AMF nursery
inoculation effect on seedlings field establishment and growth
of Olea europaea L. Meanwhile, they were able to observe
that AMF inoculation improved seedlings field performance
significantly and most importantly for the first 2.5 years from
transplanting. They also observed that AMF effect decreased
with increasing seedlings age. Karthikeyan and Krishnakumar
(2012) also determined AMF effect on survival and establishment
of Eucalyptus tereticornis Sm. on pot soil of highly degraded
origin (mine spoils). Meanwhile, they were able to observe
that AMF inoculation almost doubled seedling survival and
significantly increased establishment. Recently, Manaut et al.
(2015) demonstrated that native AMF consortia inoculation
of Ceratonia siliqua L. seedlings more than doubled seedlings’
survival and significantly improved seedlings’ height and collar
diameter.

AMF Drive Succession and Influence
Plant Community Structure
According to Janos (1980), the mycorrhizal fungus status and
the fertility of soil influence the occurrence of plant species. It is
also hypothesized that AMF are drivers and as well, passengers of
plant community succession (Zobel and Öpik, 2014). Meanwhile,
the AMF status of a site determines the composition of a seral
plant community, and the composition of that particular seral
plant community determines the composition of infective AMF
communities which will further influence the composition of the
next seral plant community (Janos, 1980; Renker et al., 2004).
Thus, if specific compatible relationships between certain AMF
and plant taxa are required for mutual symbiont survival, the
loss of compatible AMF species or individuals may limit the
distribution of a particular plant species (Renker et al., 2004).
Plant-soil feedback (plant-AMF feedback) is also an important
concept explaining the role AMF have in succession (Kikvidze
et al., 2010). Positive feedbacks promote the development of early
successional communities and negative feedbacks promote plant
species replacement to drive succession (Kikvidze et al., 2010).

Arbuscular mycorrhizal fungi could also potentially influence
plant community structure by affecting richness or evenness of
coexisting plants (Brundrett and Abbott, 2002). Only some 240
AMF morphospecies have been described forming associations
with 80% of terrestrial plants (Lee et al., 2013). This indicates
that AMF have no host specificness. Meanwhile, a single
mycorrhizal fungus can link different plants together, thus
forming mycorrhizal networks (Simard and Austin, 2010; Song
et al., 2014). These networks have been shown to facilitate
regeneration of new seedlings, alter species interactions, and
change the dynamics of plant communities therefore, increasing
plant diversity (Simard and Austin, 2010). Sowing seeds of
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plant species in microcosms that resembled the grassland
community of the temperate zone, on soils of AMF inoculated
and non-inoculated, Van der Heijden et al. (1998), Vogelsang
et al. (2006), and Schnitzer et al. (2011) were able to observe
that AMF inoculation improved plant community diversity by
mainly increasing plants’ fitness and evenness. AMF may also
be important organisms to inhibit invasion by alien species.
This could be indirectly by reducing the vacant niche through
increased native plants survival, establishment and diversity or
can be by direct inhibition of invasives. Janos et al. (2013)
reported that the presence of established extraradical mycelium
prevented the survival and establishment of seedlings migrating
from another ecosystem.

AMF Increase Soil Microbial Diversity
and Abundance
Arbuscular mycorrhizal fungi hyphae and root litter are the
most abundant carbon source in the soil (Brundrett and
Abbott, 2002). Therefore, AMF provide increased supply of
energy for soil microbes to flourish. The fact that AMF
influence plant communities is also considered to be one of the
potential mechanisms by which AMF influence soil microbial
communities (Rilling, 2004). Furthermore, AMF hyphal exudates
may also stimulate microorganisms present in the mycorrhizal
hyphosphere. However, the effect is variable: AMF hyphal
exudates may stimulate some microorganisms but still inhibit
others (Herman et al., 2012). Hence, AMF may increase the
diversity and abundance of microorganisms that are beneficial to
plants’ growth and health.

AMF Effects on Plant Community
Primary Productivity and Plant
Competition
Arbuscular mycorrhizal fungi inoculation increases plant
productivity at community level and the effect increases with
increase in plant species richness following the common
ascending but asymptotic diversity-productivity pattern
(Schnitzer et al., 2011). At low plant diversity soil microbes
suppress plant productivity since their pathogenic effect
increases and as the plant diversity increases, plant productivity
can increase up to fivefold (Figure 2; circle and triangle). In the
absence of soil microbes plant productivity has a weak positive
linear relationship with plant diversity (Figure 2; square).

Sowing seeds of plant species that resembled the grassland
community of the temperate zone on AMF inoculated and non-
inoculated soils, Van der Heijden et al. (1998) and Vogelsang et al.
(2006) were able to determine AMF effect on plant productivity at
community level. Accordingly, AMF improved plant community
productivity (Van der Heijden et al., 1998; Vogelsang et al.,
2006). Furthermore, Van der Heijden et al. (1998) observed
that increasing AMF richness resulted in increased productivity
while Vogelsang et al. (2006) observed although AMF species
richness increased productivity, the effect was not significant
compared to single AMF inoculums effect. So, the former
observation is Van der Heijden et al. (1999) argued, due to
niche complementarity while the latter is Vogelsang et al. (2006)

FIGURE 2 | The role of microbes and AMF in plant
diversity-productivity relationship (adopted from Schnitzer et al.,
2011).

argued, due to sampling effect. The “niche complementarity”
theory argues that the presence of many species and functional
types results in more complete utilization of resources because
different species specialize on different resources, resulting in
higher overall productivity while the “sampling effect” theory
argues species identity is more important than diversity and
asserts that productivity increases with diversity solely due to
an increased probability that communities with more species
contain a few very productive species that disproportionately
contribute to community-wide productivity (Schnitzer et al.,
2011).

Despite the fact that the above research observations reveal
that AMF increase plant productivity at community level,
the recent meta-analysis based on 304 study results, which
also cited the above research observation, found out that, at
community level, AMF inoculation either has no effect on plant
productivity or even has a negative effect (Lin et al., 2015).
AMF inoculation increases plant productivity at community level
only when experiments were conducted in the green house (Lin
et al., 2015). Klironomos et al. (2000) were, in a greenhouse
setting, able to determine the AMF effect on plant diversity and
that of productivity. Accordingly, it was observed that AMF
inoculation increased plant productivity but not for all AMF
species. Inoculating Glomus intraradices N. C. Schenck and G. S.
Sm. even lowered productivity compared to the non-inoculated
plant community (Klironomos et al., 2000).

Similarly, variable AMF effect is observed in plant
competition. Plant species competitive ability response to AMF
inoculation depends on plants’ functional group, mycorrhizal
status, plants’ life history (Scheublin et al., 2007; Lin et al., 2015),
and also maybe below ground functional traits of the plant
species (Birhane et al., 2014). The meta-analysis conducted by
Lin et al. (2015) also concludes, AMF inoculation significantly
increases N-fixing forbs, decreases C3 grasses and non-N-
fixing forbs and woody plants, and has no effect on C4 grasses
competitive ability whether these functional groups compete
intra or inter-specifically (Lin et al., 2015). According to Birhane
et al. (2014), in a pot experiment, AMF inoculation did not have
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positive effect on the competitive ability of both Acacia etbaica
Schweinf. and Boswellia papyrifera Hochst. seedlings grown
together. In other instances, mycorrhizal networks may result in
asymmetric competition by favoring strong carbon-donor roots
(Weremijewicz and Janos, 2013) or vice-versa (Walder et al.,
2012).

AMF BIOTECHNOLOGY FOR THE
RESTORATION OF DEGRADED LANDS

Degraded lands have low level of infective AMF and nursery
seedlings around degraded sites may less likely be infected with
sufficient AMF (e.g., Michelsen, 1992). Therefore, these sites
can support the growth of late successional tree species when
appropriate AMF inocula are reintroduced. Late successional
tree species are obligately mycotrophic and may necessarily
require AMF for their survival and fitness (Janos, 1980). More
importantly, at the early stages of seedlings growth, mycorrhizal
early/mid successional tree/shrub species can be even more AMF
dependent than the late successional ones (Kiers et al., 2000).
Therefore, AMF inoculation could potentially be considered as
an important biotechnological tool in degraded lands restoration.

Arbuscular mycorrhizal fungi show no host specificity to forge
symbiotic relationship with plants and are very ubiquitous, found
almost in every soil (Abbott and Robson, 1991; Brundrett and
Abbott, 2002; Barea et al., 2011; Al-Karaki, 2013). Hence, many
researchers argue that AMF inoculation is likely to be valuable in
only few conditions such as mine fields where indigenous AMF
inoculum is surely little or none available (Brundrett and Abbott,
2002). Koide and Mosse (2004) suggested instead of going for
AMF inoculation it would be quite economical and appropriate
to focus on managing the indigenous AMF population of a site.
According to Renker et al. (2004), inoculation is an important
but the last option. However, contrary to having several dispersal
agents such as; wind, water, rodents, birds, worms, and ants
(Brundrett and Abbott, 2002), AMF were observed to have poor
dispersal. Accordingly, Hailemariam et al. (2013) were able to
observe that within a single piece of farm land, soil AMF status
and infectiveness can vary in short distances indicating poor
dispersal. Similarly, Friese and Allen (1991), also indicated that
AMF have poor dispersal. Therefore, to overcome the dispersal
limitation of AMF, inoculation may be a worthily intervention.

Meanwhile, AMF inoculation has proved to be effective
under wide range of soil conditions (Janos, 1980; Brundrett and
Abbott, 2002) including on soils with good AMF abundance
(e.g., Banerjee et al., 2013). Positive AMF effect is not ensured
by the presence of abundant indigenous AMF but by both
abundance (quantity) and efficiency (quality) of indigenous
fungal populations (Onguene and Kuyper, 2005). Veiga et al.
(2011) also demonstrated that AMF inoculation suppressed
weeds and, interestingly enough, hypothesized that AMF
inoculation could suppress ruderal plants which are known to
invade degraded sites (Veiga et al., 2011). This is particularly
important in ecological restoration since ruderal plants could
invade degraded lands and compete with tree/shrub seedlings
planted.

If the importance of AMF inoculation in the restoration of
degraded lands is agreed, the next question to ask will be; what
kind of inocula should be prepared? AMF show wide range
of functional diversity (Johnson et al., 1997; Klironomos, 2003;
Smith et al., 2011) and their effect is within the mutualism-
parasitism continuum (Johnson et al., 1997). Likewise, Hoeksema
et al. (2010) summarized that certain plants functional groups viz.
non-N-fixing forbs and woody plants and C4 grasses show more
positive responses to AMF inoculation. Klironomos (2003) also
demonstrated that exotic-native AMF strain-host or vice-versa
combination results in highly parasitic interaction. Therefore,
deciding on the type of inoculum to prepare is a very important
step. Based on the currently available data, the use of native
inocula should be preferred to the use of exotic inocula. Early
seral AMF should be used when seedlings are inoculated for
restoration, even for late seral tree species (Allen et al., 2003). Late
seral AMF have big spores and demand much carbon and hence,
seedlings may not benefit from them. Instead, seedlings benefit
from early successional AMF which are usually having small
spores and smaller carbon demand (Allen et al., 2003). Likewise,
the use of inocula from grasslands is promoted. AMF abundance
in grasslands can be more than tenfold than that of in the
forestlands and AMF from grasslands do have significantly high
inoculation effect (Fischer et al., 1994). That was why Onguene
and Kuyper (2005) applied fresh grassland whole-soil inoculum
on various soils and three tree species seedlings. According
to the result Onguene and Kuyper (2005) obtained, although
early successional grassland inoculum had positive effect for
most of the cases (80%), the fact that it is an inoculum from
grassland resulted in significantly negative effect on Terminalia
superba Engl. and Diels seedlings grown on agricultural and
early successional forest soils. Hence, Onguene and Kuyper
(2005) concluded; allochthonous AM inocula may not be always
effective. Hence, the use of planting site adapted AM inocula
may be recommended. The other reason for the observed
negative effect may also be related to host plant’s fungi preference
(Onguene and Kuyper, 2005). There are data to demonstrate that
inocula from conspecific source show better affinity to the host
plants’ root (e.g., Kiers et al., 2000). Similarly, there are data
to show that plant species even that do co-occur may prefer
to associate with distinct AM fungi communities (e.g., Wubet
et al., 2006; Davison et al., 2011). There are also data to show
that distinctively different AMF communities colonize seedlings’
and adults’ roots of a single tree species (e.g., Wubet et al.,
2009). Therefore, one has to ask; does inoculating seedlings with
AM inocula from seedlings’ rhizosphere or adults’ deliver better
positive effect? Kiers et al. (2000) have found out that although
conspecific inocula from adults had better affinity to inoculated
seedlings, the effect on their growth was mostly relatively small
showing that, inocula even from conspecific adults, may not be
suited for seedlings inoculation.

Selecting few of the dominant planting site adapted AMF
species, multiplying them and applying as inocula may not
be also a very good idea specially when there are established
AMF in the planting site. Increasing the density of few of the
dominant AMF species and applying as inocula had resulted in
negative effects on plant growth by disrupting indigenous AMF
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FIGURE 3 | Simplified schematic model showing degraded lands restoration through AMF manipulation.

community structure and thereby creating competition among
AMF to ultimately result in inoculum failure (Janoušková et al.,
2013). Therefore, in areas with low levels of indigenous AMF
abundance, multiplying all not only the dominant AMF species
and applying all may be the best option.

The AMF richness in AM inocula is considered to improve
inocula effectiveness. Plant response is substantially lower when
inoculated with single AMF species and the response keeps
increasing from multiple fungal species to whole-soil inoculums
(Hoeksema et al., 2010). Likewise, Barea et al. (2011) compiling
long years of experience in AMF research recommend the use of
autochthonous foundation shrub inoculated with autochthonous
AMF consortia inoculums to best restore degraded lands of
the Mediterranean. The shrub not only acts as a foundation
species but also serves as a resource island for AMF (Barea et al.,
2011). However, not all ecologists agree by the application of
AMF species rich inocula; some argue that better results due
to inocula with better AMF species richness is due to sampling
effect and selecting single effective AMF species should get the
attention of restoration ecologists. Sampling effect is discussed
earlier.

The other challenge associated with AMF biotechnology is
related with inocula production for large-scale application. This

is due mainly to the obligate nature of AMF. Meanwhile,
AMF cannot be cultured axenically (Azcón-Aguilar et al., 1999;
Fortin et al., 2005) and host plant based AMF multiplication
is mandatory. These host plant based conventional inocula
production methods (substrate based pot culturing and substrate
free methods of hydroponics and aeroponics techniques) are
costly and large scale production of AMF inocula may hardly
be possible. Effective monexenic in vitro culturing of AMF has
been made possible few decades ago (Bécard and Fortin, 1988)
and in India, using this method, large-scale industrial production
of biologically clean AMF inocula was possible (Adholeya et al.,
2005). Readers are directed to read Adholeya et al. (2005)
and Cranenbrouck et al. (2005) to grasp the potential and the
technique of monoxenic in vitro AMF culture production for
large-scale application. Readers are also directed to read Azcón-
Aguilar et al. (1999) to get proper definitions of axenic and
monoxenic cultures.

However, until now, monexenic in vitro culturing is not
widely practiced. This is due mainly to the fact that; (1)
undesired contamination is hardly avoidable and the technique
is technology and skill demanding (Bago and Cano, 2005), (2)
there are ethical and legal concerns, and (3) it is rather very
hard to identify each genotype (even morphotype) hence, most
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if not all, AMF are not readily culturable (Fortin et al., 2005).
AMF momoxenic in vitro culturing uses transformed [using
Rhizobium rhizogenes (Riker et al.) Young et al.] hairy roots as
host owing to the fact that these hairy roots are better suited than
the non-transformed hairy roots since they grow on hormone
free media and without developing shoots and leaves (Puri and
Adholeya, 2013). Meanwhile, AMF monoxenic culture as it is
practiced now could potentially be challenged with biosafety
related issues.

Due to the lack of cheap and easy AMF inocula production
for large scale application, managing the in situ AMF is
sometimes considered to be an effective AMF biotechnology for
the restoration of degraded lands. The meta-analysis by Lekberg
and Koide (2005) showed that short fallow could be as good
as inoculation to improve plants growth and productivity. It
was shown that an obligately arbuscular mycorrhizal pioneer
nurse shrub Lavandula stoechas L. improved the field survival
and establishment of Cupressus atlantica Gaussen seedlings by
increasing, among others, in situ infective AMF abundance
(Duponnois et al., 2011). Kumar et al. (2010) also compared
different plant composition effects on in situ management
of AMF on a degraded coal mine spoil. Accordingly, they
demonstrated that using cover crops mainly grasses and N-fixing
shrubs in the plant composition, significantly enhanced AMF
abundance, diversity and infectiveness. Hence, AMF can be
manipulated by fallowing or/and by designing the plant species
composition to ultimately result in increased AMF abundance
which intern facilitates restoration. However, some investigations
indicated that grass cover can significantly suppress individual
tree/shrub seedlings-saplings growth (Riginos, 2009) or may
have variable seasonal effects (Good et al., 2014). Therefore,
investigation on cover plant management options to effectively
manage AMF and facilitate tree/shrub seedlings growth can be
an important research topic.

Nowadays, substrate free inocula preparation methods and
in vitro production on excised plant roots are being intensively
researched to make AMF inoculation less costly (Ijdo et al.,
2011). The pot culture inocula preparation method, although it
is labor intensive and costly, can be a source of employment
especially in developing countries. Therefore, pot culture based
AMF biotechnology will remain to be a feasible way of degraded
lands restoration in most parts of the world. Figure 3 shows the
simplified schematic model of degraded lands restoration using
AMF.

CONCLUSION

This review paper has compiled facts regarding the AMF role
in the above and belowground ecosystem processes relevant to
ecological restoration. Accordingly, it is possible to conclude
that AMF; have a well documented positive role in nutrient
cycling and improved soil attributes. AMF also improve plants’
tolerance to biotic and abiotic stresses, and significantly increase

tree/shrub seedlings survival, establishment and growth. AMF
play pivotal role in plant community succession and may directly
or indirectly prevent invasion by alien plant species. At plant
community level, AMF increase both above and below ground
biodiversity but their effect on primary productivity maybe
low. The AMF effect on plant competition is also variable and
mostly negative. Available data as of yet, indicate that there
are very few outfield experiments done on AMF effects on
tree/shrubs seedlings survival and establishment. This review
was not also able to clearly trace a research result showing the
AMF effect on the competitive ability of tree seedlings planted
with annual and perennial grass and/or herbaceous weeds. Based
on the currently available data, however, it can be concluded
that AMF inoculation can significantly increase the success
of degraded lands restoration and for better results reducing
competitors and seedlings density (increased seedling spacing) is
recommended.

Based on the data reviewed in this article, we recommend
for future AMF effect researches to give emphasis to outfield
experiments. The AMF effect on the competitive ability of
tree seedlings compared with annual and perennial herbaceous
weeds should be investigated. Data reviewed here showed that
almost all research observations conducted on AMF effect at
community level are on microcosms of grasslands; and mainly
temperate grasslands. Future researches should focus on forest
communities of both the temperate and tropics. For an effective
large scale application of AMF inocula biotechnology, pot
based inocula multiplication will remain to be significantly
cost ineffective. Therefore, investigating and researching on cost
effective multiplication methods of substrate free and in vitro
culture and/or optimization of the effects of low-cost fresh
AMF inoculation techniques like using grassland top soil or
managing AMF in situ using several cover crops including
grasses need further attention in the future. Optimization of
monoxenic in vitro AMF culture products and using non-
transformed hairy root organ could also be an important research
area until axenic in vitro AMF culturing is ultimately made
possible.
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