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Sammendrag 
 

Målet med studiet var å sammenligne genome-guided assembly og de novo assembly av transcriptomdata, for å 

finne ut hvilken metode som burde anbefales. De novo assembly er mye mere krevende angående datalagringsplass 

og tidsbruk, og resultatet av denne metoden bør være signifikant bedre for å rettferdiggjøre bruk av metoden.  

Gjennom en rekke dataanalyser og optimaliseringssteg ble metodene sammenlignet på tre ulike vis; read mapping 

ratio til genom og transkripter, BLAST hits av transkripter til genom og proteinsekvenser, samt antall og ratio av 

uttrykte gener i genom-guided assembly og BLAST-hits til proteinsekvenser.  

De novo assembly utvidet annoteringen signifikant, i vårt tilfelle med mer enn 20,000 transkripter. Genome-guided 

assembly ga bedre mapping, men metoden gir ingen nye oppdagelser i sekvensene. De novo assembly anbefales for 

utvidet annotering av gener.  

  



 

  



 

Abstract 
 

The aim of the study was to compare genome-guided and de novo assembly of transcriptomic data, to find out 

which method to recommend.  De novo assembly is much more demanding regarding computational storage and 

time, and the result of this method should be significantly better to justify using this method.  

Through a number of computational analysis and optimization steps, the methods were compared in three different 

matters; read mapping rate to genome and transcripts, BLAST hits of transcripts to the genome and protein database 

and number and ratio of expressed genes in genome-guided assembly and BLAST hits to protein database.  

De novo assembly extended the annotation significantly, in our case with more than 20,000 transcripts.  Genome-

guided assembly gave better mapping, but the method does not give novel discoveries. De novo assembly is 

recommended for an extended annotation of genes.  
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1. Introduction 
 

1.1. Objectives for the study 
 

Aim of the project  

The objectives for this study is to compare genome-guided assembly and de novo assembly in transcriptome analysis 

in Atlanic salmon (Salmo salar). By comparing the genetic information gained from these methods, the aim is to be 

able to give an answer the question: “Will de novo assembly be useful in future studies?”  

De novo assembly is the assembly of sequences without the use of a reference.  It can therefore provide new 

information about the organism we are studying, such as novel genes and isoforms. Genome-guided assembly does 

not have this opportunity, as it uses the genome as a reference for the mapping of the reads, and only familiar 

sequences will be assembled. De novo assembly undergoes challenging algorithms and involves several processing 

steps as compared to genome-guided assembly. It is therefore relatively demanding regarding time and computing 

resources, and we want to find out if it is worth the extra effort doing de novo assembly.  

 

The salmon genome 

Salmon has a highly duplicated genome, and studying the transcriptome of is therefore challenging. The salmon 
ancestors has gone through at least three rounds of whole-genome duplication some 80 million years ago (Lien et 
al., 2016). Salmon is considered being pseudo-tetraploid (Davidson et al., 2010), as they can have a quadruple set of 
chromosomes, and are in the constant process of reverting to a stable diploid state.  

 

  

Figure 1: Atlantic salmon (Salmo salar) (http://www.asf.ca/main.html) 

 

The Atlantic salmon RefSeq assembly; accession GCF_000233375.1 (ICSASG_v2), was used as a reference. The 

assembly has a total sequence length of 3 Gb, and consists of the 29 chromosomes, mitochondrial DNA (Chr MT; 

NC_001960.1) and unplaces scaffolds larger than 1,000 bases (http://www.ncbi.nlm.nih.gov/assembly/487001). The 

RefSeq protein database has 97,738 proteins, while the RefSeq annotation file used for the genome-guided assembly 

has 81,586 genes (http://www.ncbi.nlm.nih.gov/genome/369?genome_assembly_id=248466).  

 

 

http://www.asf.ca/main.html
http://www.ncbi.nlm.nih.gov/assembly/487001
http://www.ncbi.nlm.nih.gov/genome/369?genome_assembly_id=248466
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Figure 2: Illustration of the 29 salmon chromosomes. 

(http://www.ncbi.nlm.nih.gov/genome/369?genome_assembly_id=248466) 

 

Samples  

Illumina (1) short PE-reads of 16 individual transcriptomes of Atlantic salmon was used for the study. The samples 

were from different tissues (liver samples or whole fish), life stages (embryo, post smolt or adult fish) and treatments 

(different diets of fatty acids or pancreas decease (PD) virus infection). In the analysis, all samples were pooled 

together, as the objectives of the study is to compare expression in assembly methods rather than look at 

differential expression. It is therefore not put any emphasis on the sample type is this work.  

 

Bioinformatic methods and evaluation 

Several bioinformatics tools were used, and programs and program codes are further described in the Methods part. 

The programs are listed on page 28 and referred to by numbers in brackets.  

The raw reads were first quality checked in FastQC (6) and trimmed and filtered, using Trimmomatic (7). 

Preprocessing is essential due to validation of downstream analysis, and is therefore carefully described in this 

thesis.  

Trinity (8) was used to produce the splice variants in the de novo assembly. The splice variants were grouped into 

genes by Trinity, based on sequence similarity. These gene clusters are referred to as ‘Trinity-genes’ in this thesis.  

TopHat2 (10), which uses Bowtie2 (9) as an aligner, was used for mapping of the reads to the RefSeq genome and to 

the splice variants. The alignment rate of these two assemblies was compared and discussed.  

The read mapping information was also used for filtering out low expressed splice variants. Bedtools (11) was used 

for measuring the read depth. The expression, based on fpkm > 1 in at least two samples, was calculated using EdgeR 

(5). The dataset was further reduced by clustering, using CD-HIT-EST (12) on a 99% similarity threshold.  

BLAST (13) algorithms was used for alignment of the splice variants to the salmon genome and protein database. The 

results were compared and evaluated, and the issue regarding new discoveries is commented on in the Discussion 

part.  

Genome-guided assembly was done by assembling the RefSeq annotation file with the alignment files produced in 

the read mapping to the genome. Cufflinks2 (14), which was used for the assembly, outputs fpkm-files for genes and 

isoforms. The genes and isoforms with expression > 1 fpkm in two or more samples were reported as expressed 

genes and isoforms.    

Figure 3 describes an overview of the study.  

 

  

http://www.ncbi.nlm.nih.gov/genome/369?genome_assembly_id=248466
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Figure 3: The different analysis steps in the comparison of genome-guided assembly and de novo assembly. The 

different datasets or databases are shown as circles, and the analysis steps are shown as arrows. The analysis steps 

or data are described in black typing, and the programs used, are in red typing.  
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1.2. Transcriptome analysis 
 

The transcriptome 

Implementation of next generation sequencing (NGS) technologies has increased the possibilities for studying the 

genome and its functions, with data throughput increasing more rapidly than in any other science field.  

The transcriptome a collection of RNA molecules produced in a cell. Most commonly they are produced in the 

process of gene expression, like messenger RNAs (mRNA), which are transcripts of the coding part of the gene (in 

eukaryots; the exons), and functions as a template in the production of a protein or peptide. It can also be other RNA 

molecules, like transfer RNA (tRNA) (http://www.ncbi.nlm.nih.gov/genome/annotation_euk/Salmo_salar/100/), 

which serves as a physical link between the mRNA and the amino acid sequence of proteins, 

(https://en.wikipedia.org/wiki/Transfer_RNA), or long non-coding RNA sequences (IncRNAs).  

The transcriptome gives real-time information on the processes going on in the organism. We can for example study 

the expression of genes in one tissue versus another, variation of gene expression over time or during decease or 

treatment. In these studies, differential expression is the measure normally used. A gene is differentially expressed 

when expression of the gene is significantly higher or lower.  

 

RNA sequencing (RNA-Seq) 

RNA-Seq is reading the order of the four building bricks of ribonucleic acids (RNA); adenosine (A), uracil (U), guanine 

(G) and cytosine (C), and using this information to determine the identity and abundance of the sequences, using 

experimental and computational methods (Korpelainen et al., 2015).  The transcripts are converted to cDNA libraries 

before sequencing, and every platform has its own library preparation method. RNA-seq is much more sensitive and 

specific than the traditional microarray method for measuring gene expression, as microarray has a lower detection 

range due to noise and a saturation problem when expression is high. RNA-seq also has the possibility to discover 

new genes and isoforms, as the reads can be assembled without the use of a template reference in de novo 

assembly.   

Sanger sequencing was the dominating sequencing method for decades, before the Next Generation Sequencing 

(NGS) methods were introduced, around 2005. It is quite accurate, but has low throughput compared to NGS. It uses 

FASTA-format, which is a text format consisting of two lines per sequence, one header which identifies the sequence 

and one with the sequence.  

The second generation sequencing methods, or NGS, uses sequencing by synthesis, and short fragments of 30-150 

bases are being amplified in massive parallel format. The expression ‘deep sequencing’ refers to the large overlap of 

reads that is produced during alignment. Popular second generation platforms are Roche 454 (water-oil emulsion 

PCR amplification), Illumina (bridge-amplification), SOLID (sequences by ligation) and Ion Torrent (measures change 

in pH as a result of change in electric current when incorporating a new base).  Longer fragments are produced by 

the third generation sequencing platforms, which also differs from second generation in the sequencing and 

detection chemistry (Korpelainen et al., 2015). The methods are able to detect one single molecule rather than 

amplified clusters (single-molecule sequencing by synthesis).  

The third generation sequencing platforms are Pacific Biosciences PacBio (SMRT – single molecule real time) and 

Nanopore Technologies (differences in electric current measured as a cDNA molecule is being passed through a 

membrane).  

 

  

http://www.ncbi.nlm.nih.gov/genome/annotation_euk/Salmo_salar/100/
https://en.wikipedia.org/wiki/Transfer_RNA
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1.3. Quality control 
 

Base quality score 

The NGS platforms introduced the FASTQ format, which is a file format based on FASTA format (which is described in 

the last section), but with two extra lines. The third line is an optional line for header, starting with +, and often not 

used. The last line shows the base quality score values in ASCII characters, one for each nucleotide in the sequence 

(https://en.wikipedia.org/wiki/FASTQ_format).  

The quality of sequence data is often measured using the Phred scale, which is a scale that measures the probability 

of a base being wrong (http://drive5.com/usearch/manual/quality_score.html).  

Each nucleotide in an alignment gets a Phred score, denoted Q: 

𝑄 = (−10) 𝑙𝑜𝑔10 𝑃 

,where P is the estimated probability of a nucleotide being wrong, i.e. probability of error. For instance:   

- If Q = 10, then P = 0.1 and estimated correctness is 90%   

- If Q = 20, then P = 0.01 and estimated correctness is 99%  

- If Q = 30, then P = 0.001 and estimated correctness is 99,9%  

The Phred scale is used differently for the different sequencing platforms. Illumina version 1.9 uses Phred+33 and 

the quality scale goes from 0.2 to 41. The quality values for Illumina 1.9 are:  

!”#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJ,    

where ! shows the lowest Q score and J shows highest possible Q score.  

 

Preprocessing and quality control 

Quality control of the reads sequences prior to further analysis is essential, as poor sequences will otherwise pass on 

the problems in the downstream analysis and end up giving the wrong conclusions. Often, the sequences contain 

errors, and preprocessing is needed. Preprocessing of reads can involve trimming, i.e. cutting off the part of the read 

with poor quality, or it can involve filtering, which is throwing away the whole read(Korpelainen et al., 2015).  

 

Sequencing bias 

Poor sequence quality is often caused by base incorporation problems, i.e. the wrong base has been added to the 

sequence during the sequencing reaction (Korpelainen et al., 2015) . Many NGS platforms, like Illumina, sequences 

clusters of fragments which origin from the same template. Theoretically, one cluster should give the same 

sequence. In practice, the sequencer makes mistakes, especially at the 5’ end. These mistakes can be discovered by 

aligning all sequences within a cluster, and, based on this information, calculate the probability of a base being 

wrong. This probability is background for calculation the Q score and the selection of the best possible sequence. For 

very poor sequences, the probability of each nucleotide is approximately the same. The sequence will therefore be 

impossible to decide, and these ambiguous bases are by most platforms denoted N. The poor sequences are usually 

found at one or both of the ends of the read, and should be removed, as they will infer with the alignment later in 

the process.  

 

Adapter sequence contamination  

Sequences that does not origin from the transcripts but from some other contaminate templates should be 

removed. These sequences could be adapters or primers used by the sequencing platform. Sequenced adapter 

occurs when the fragment is shorter than the pre-defined read length (7).  

https://en.wikipedia.org/wiki/FASTQ_format
http://drive5.com/usearch/manual/quality_score.html
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Contamination of rRNA  

Other unwanted sequences are fragments of ribosomal RNA (rRNA), which is the most redundant type of RNA 

molecule present in the cell. Contamination of rRNA can occur for instance when the washing step during library 

preparations has not been performed optimal.   

 

GC-content  

When checking the quality of the sequences, the ratio of Guanine and Cytocine should be calculated and compared 

with the expected ratios. GC content is generally higher for transcriptomes than for genomes, as non-coding DNA 

often has a larger ratio of A and T. For instance, the salmon genome has an estimated GC content of 43.9 % 

(http://www.ncbi.nlm.nih.gov/genome/?term=atlantic%20salmon), which is significantly less than the GC content 

for the salmon transcripts in this study, which is around 48% in the raw data and 47% in the splice variants produced 

in the de novo assembly. The GC content can be used as a quality indicator, e.g. rRNA has usually has more GC than 

mRNA, and therefore high GC content can indicate pollution of rRNA in the sample.  

 

Unprocessed mRNA (pre-mRNA)  

The extraction of total RNA might also pick up some unprocessed mRNA, which, in eukaryots, is mRNA still 

containing introns. This is difficult to control for, as there is apparently nothing wrong with the sequence when going 

through the regular QC steps. Library preparation methods typically use the polyA-tail, which is present in all mRNA 

molecules, as ligation sequence to extract mRNA from the other RNAs. Poly-A tails are also present in pre-mRNAs, so 

this step does not remove these sequences. Introns might have a lower GC content, and it might be possible to get 

an idea of the state of the sequencing sample by measuring GC. Still, the ratio of pre-mRNA versus spliced mRNA is 

assumingly too low to detect this.  

 

Trimming and filtering of reads 

A desired mean quality score (Q) for the sequence is commonly set as a threshold in the preprocessing. If the entire 

sequence is of such poor quality that that it does not reach the desired threshold, the whole sequence will be 

automatically thrown away. Sequences with mean Q fulfilling threshold will remain, but each nucleotide will in 

addition be tested for Q, and part of the sequence below this threshold will be trimmed off.   

Trimming involves cutting off the poor part of the sequence, either it be from the 3’ end or from the 5’ end. Poor 

base distribution is a typical bias which gives reason for trimming. Often, a random nucleotide hexamer is used as 

primer for the cDNA synthesis. Theoretically, this should give random binding and synthesis should give an even 

distribution of the bases over the sequence. In practice, the randomness is not perfect and this will appear as poor 

base distribution in the 3’end of the sequence. In FastQC this is shown in the diagram “Sequence content across all 

bases”, and the number of bases for trimming can easily be extracted from the diagram. Ambigous bases can appear, 

especially in the 5’ end of the sequence, and should be removed. The diagram “Per base N content” in the FastQC 

report shows how many bases to remove.  

There can be different reasons for filtering, i.e. removing the entire sequence. Short sequences should be filtered, as 

they are more challenging to align correctly and errors might occur. This is even more applicable for species with 

duplicated genomes, like for instance salmon. Other unwanted, short RNA sequences might be present in the 

sample, which is another argument for only keeping sequences of a certain length. Sequence with low complexity, 

for instance numbers of repetitive base structures, should be trimmed or filtered, as these might easily align to the 

wrong sequence.   

 

http://www.ncbi.nlm.nih.gov/genome/?term=atlantic%20salmon
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1.4. Sequence alignment 
 

Homology 

It is important to distinguish between sequence similarity and sequence homology. Homology means shared 

ancestry (https://en.wikipedia.org/wiki/Homology_(biology)), and homologue sequences are sequences which origin 

from the same genus or species. Orthologues are homologues caused by species divergence, i.e. the same sequence 

is found in different, but related species. Orthologue genes have therefore the same function, but in different 

species. Paralogues are homologues that are created by a duplication event within the genome. It is usually within 

the same species, but can be in different species if the duplication event has happened before the species 

divergence. It is common that paralogue genes have different functions, as changes in the genome might have 

happened after the duplication. Ohnologues are paralogues caused by whole-genome duplication, which is the case 

for Atlantic salmon (Lien et al., 2016).  When studying the genome and transcriptome, looking for homology is of 

great interest, as it can give information about the evolution of the species and changes of the genome over time, 

such as duplications, inversions and recombination. Homology is a matter of quality and cannot be measured, as 

sequences are either homologues or not.  Homology is rather the conclusion made after observing sequence 

similarity based on alignment, as significant similarity is often strong evidence of homology (wiki).  

 

Sequence similarity  

Sequence identity, the simplest form for similarity measure; is the number of matching nucleotides in a part of the 

sequences (sub-sequence) given an alignment. It can typically be explained as percent identity, i.e. the ratio of 

nucleotide matches over the sequences.  

Similarity score is another, frequently used measure for sequence similarity.  The sequence nucleotides are 

compared and scored according to a scoring matrix. Each match or mismatch gets a score, and the sum of scores 

gives a scoring value which identifies the similarity of the sequences. Gaps, which indicates indels or sequencing 

errors, always get negative scores, while mismatch can be given a positive score, depending on the scoring rules 

The log likelihood ratio score measures the probability of homology in a sequence pair as compared with the 

probability of homology for any independent sequence. When probability of homology between two sequences is 

larger the overall probability of homology in the independent sequences, the ratio is larger than one, which will give 

a positive log likelihood ratio score.  

Log likelihood ratio score: 

𝑠𝑐𝑜𝑟𝑒(𝑠𝑒𝑞𝐴, 𝑠𝑒𝑞𝐵) = 𝑙𝑜𝑔 10
𝑃(𝑠𝑒𝑞𝐴, 𝑠𝑒𝑞𝐵 | ℎ𝑜𝑚𝑜𝑙𝑜𝑔𝑦)

𝑃(𝑎𝑛𝑦 𝑝𝑎𝑖𝑟 |𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒)
 

  

https://en.wikipedia.org/wiki/Homology_(biology))
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2. Materials and Methods 
 

2.1. Computing resources 
Sequence data analyses was performed using resources at the Orion Computing Cluster at CIGENE-NMBU (Center of 

Intergrative Genetics, Norwegian University of Life Science). All bioinformatics tools were open source programs 

available on the cluster.  

Text editor GNU nano (2) version 2.0.9 was used for scripting.  

R version (3) 3.2.4 Revised (2016-03-16 r70336) was used as data editor and analysis tool on local computer, and 

RStudio (4) version 0.99.489 https://www.rstudio.com/ was used as integrated development environment (IDE). The 

R-packages micropan and data.table were used for handling FASTA files and very large files, respectively.  

MS Office 2013 was used as a tool for writing the thesis.  

 

2.2. Sequence data 
16 individual Atlantic salmon (Salmo salar) transcriptome sequences, provided by Nofima, was used for the 

comparative study. The samples were from different tissues (liver samples or whole fish), life stages (embryo, post 

smolt or adult fish) and treatments (different diets of fatty acids or PD (pancreas decease) virus infection), and were 

pooled together for the analysis.  

Llumina (1) HiSeq version 1.9 was used to produce the 100-101 nucleotides paired end (PE) reads. The size of the 

FASTQ files were in the range of 0.9 – 3.4 GB, with a total of 52.3 GB. The number of raw reads per sample was 19.1 

± 5.6 million, with a total of 305,535,951 reads for all samples. All sequences were of generally good quality, with GC 

content of 48 ± 1 %.  

 

2.3. Template files 
Illumina (1) HiSeq adapter sequences were supported by Trimmomatic (7), and were available on the cluster. The 

adapter.fa file is given in Appendix A.  

The Atlantic salmon ICSASG_v2 RefSeq assembly and protein database, accession GCF_000233375.1, were 

downloaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_000233375.1_ICSASG_v2.  

The RefSeq assembly has a total sequence length of approximately 3 Gb, and consists of the 29 chromosomes, 

chromosome MT (mitochondrial DNA) and all unplaced scaffolds of 1000 nucleotides or larger. The unplaced 

scaffolds are genes not yet mapped to a chromosome, and therefore does not yet have a chromosome number. The 

RefSeq protein database has 97,738 proteins.  

 

2.4. Quality control and preprocessing 
Quality control - FastQC 

FastQC (6) version 0.11.3. was used for quality control of the sequences prior and post preprocessing. Based on the 

quality information in the FASTQ files, FastQC produces graphical reports in html format. The reports show basic 

statistics, such as total number of sequences, number of poor quality sequences, sequence length and GC content. It 

visualizes sequence quality per base and per tile, and shows the distribution of Q scores, nucleotides, GC content and 

sequence length. Sequence ambiguity, k-mers, adapter sequences and duplications are reported, and 

overrepresented sequences are being listed when exceeding 0.1 % of the total number of sequences. If a sequence is 

overrepresented, FastQC will make a search towards a built-in database containing possible sources, such as Illumina 

adapters and primers sequences.  

https://www.rstudio.com/
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF_000233375.1_ICSASG_v2
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Run FastQC:  

 
fastqc –t 8 –o Sample1.fastq.gz 
 

 

Based on the raw read reports, each sequence file was evaluated for further improvement. The reports are useful 

when deciding parameters for preprocessing, e.g. threshold Q value or weather the sequences need trimming or 

not.  The information on overrepresented sequences gives the opportunity to investigate these prior to 

preprocessing, and remove them if they appear to be unwanted sequences, like e.g. Illumina adapters, ribosomal 

RNA or other bias to the library preparation or sequencing method. Comparing reports of the processed reads contra 

raw reads reveals weather the preprocessing was successful or not. 

 

Preprocessing - Trimmomatic 

Trimmomatic (7) version 0.33 was used for the preprocessing of the reads. The program is fast and flexible, and uses 

quality score as a correction parameters (Bolger et al., 2014). It can crop off nucleotides at one or both ends of the 

read, and filter the reads based on read length.  It also has the opportunity to remove predefined, unwanted 

sequences, like e.g. Illumina adapters. In PE reads, it uses an algorithm called palindrome mode to remove the whole 

or part of the adapter sequences. This is done by using the information from one pairing read (e.g. forward) to match 

the corresponding information in the other pairing read (reverse of the same read) to decide what should be 

removed. Poor reads has less impact on the filtering, as the alignment score is relative to the base quality.  

The preprocessing step was optimized on a few representative samples to fit all samples. FastQC reports were used 

as background for the optimization, with a special emphasize on the parameters “Per base sequence quality”, “Per 

tile sequence quality”, “Per base sequence content”, “Per base N content” and “Overrepresented sequences”. 

Overrepresented sequences with no hits in the raw data were investigated by running NCBI-BLAST (13) with default 

settings. The sequences were first assembled to Atlantic salmon, and if no significant hit was gained it was assemble 

to the non-redundant database. If sequence had significant hit for ribosomal RNA in any organism, the sequence was 

added to the adapter file in Appendix A   

Run Trimmomatic:  

 
trimmomatic PE -phred33 input_seq_R1.fastq.gz input_seq_R2.fastq.gz 
output_seq_1P.fastq.gz output_seq_1U.fastq.gz output_seq_2P.fastq.gz 
output_seq_2U.fastq.gz ILLUMINACLIP: adapters.fa:2:30:10:3 SLIDINGWINDOW:4:20 
MAXINFO:70:0.7 *CROP:95 HEADCROP:15 MINLEN:70 
 

 

*CROP was used for sequences with ambiguous bases at the 5’ end only.  
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2.5. De novo assembly 
Trinity’s In silico Normalization  

A normalization step in order to validate and reduce the number of reads is supplied in the Trinity package, and 

normalized prior to de novo assembly is recommended for large datasets 

(https://github.com/trinityrnaseq/trinityrnaseq/wiki/Trinity-Insilico-Normalization). In silico read normalization 

works as a pre-filter to Trinity (http://dx.doi.org/10.6084/m9.figshare.98198). The program converts the sequences 

to FASTA format and makes nucleotide k-mers of 25 bases. It involves a program called Jellyfish, which counts the k-

mers and stores the count data in intermediate statistical files. The stat files are background for choosing the reads 

within a minimum coverage threshold of 20 reads. Low coverage reads are often created by sequencing errors, and 

the normalization step gives the opportunity to reduce data and get rid of sequencing errors.  

The script ‘insilico_read_normalization.pl’, which is part of Trinity package (8) version 2.0.2, was used for 

normalization of the preprocessed, paired reads. The script can handle both FASTA and FASTQ format, and outputs 

the same format as the input file. For our data, the normalization was done in two steps due to limited storage on 

the server.  

 

In the first run, all the reads were entered into the code:   

 
insilico_read_normalization.pl -—seqType fq -—JM 10G -—max_cov 30  
--left Sample_01_1P.fastq.gz, (etc., listing up all 1P files)  
--right Sample_01_2P.fastq.gz, (etc., listing up all 2P files)  
pairs_together—output Trinity_normalize—CPU 8 --PARALLEL_STATS 
 
 

The program run until the intermediate FASTA files, left.fa (all forward reads) and right.fa (all revers reads), were 

produced.  

 

Running the script for the second time, the FASTA files produced in the first round were entered into the code, and 

the script was run until finishing successfully:   

 
insilico_read_normalization.pl --seqType fa --JM 10G --max_cov 30  
--left left.fa --right right.fa --pairs_together  
--output Trinity_normalize_fa --CPU 8 --PARALLEL_STATS 
 

 

 

De novo assembly - Trinity 

Trinity (8) version 2.0.2 was used for de novo assembly. Trinity consists three programs modules; Inchworm, 

Chrysalis and Butterfly (Haas et al., 2013). First, Inchworm assembles the reads to longer contigs. It first decomposes 

the reads into k-mers of 25 nucleotides to make a k-mer dictionary. It starts with the most abundant and complex k-

mer as a seed to form the first contig, and extends the sequence on the 3’end based on the coverage of overlapping 

k-mers. It iterates to form new contigs until all k-mers has been processed. The Inchworm algorithm is greedy and 

efficient, and makes the splice variants, which are passed on to the next program. Chrysalis groups the contigs 

together via overlapping k-1 mers to forms de Bruijn graphs. One de Bruijn graph represents a gene with all its 

isoforms. At last, Butterfly compacts the de Bruijn graph to the most probable path, and then compacts the graph 

with the reads to reconstruct the isoforms. Unbranched structures are pruned to avoid sequencing errors. The final 

product is a reconstruction of the alternatively spliced isoforms, presented as sequences in a FASTA file. The Trinity 

algorithm can take several days to run, but is efficient regarding its sensitivity.  

https://github.com/trinityrnaseq/trinityrnaseq/wiki/Trinity-Insilico-Normalization
http://dx.doi.org/10.6084/m9.figshare.98198
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The normalized fasta files of left and right sequences produced the normalization step were entered into the Trinity 

code:  

 
Trinity --seqType fa --max_memory 10G  
--left left.fa.normalized_K25_C30_pctSD200.fa  
--right right.fa.normalized_K25_C30_pctSD200.fa  
--CPU 8 --no_bowtie  
 
 
 

The Trinity output file, Trinity.fasta, was imported into R for further processing. The number of splice variants, gene 

clusters (‘Trinity-genes’, with suffix _G in the header), nucleotides, GC content and sequence length distribution was 

extracted from the data and reported.  

 

2.6. Read mapping 
 

Version 2.0.12 of TopHat (10) was used for mapping of the reads to the genome and the splice variants.  

TopHat (Trapnell et al., 2012) uses Bowtie as an alignment engine, and version 2 can handle gaps (Korpelainen et al., 

2015). It is therefore useful for assembly to eucaroyte genomes, as these contains exons and an aligner that can 

handle gaps is necessary. 

TopHat-index of the databases had to be build prior to the assembly. The bowtie2-build function in Bowtie2 version 

2.2.3 was used:   

 

 

bowtie2-build -f database.fa database 

 

 

For the TopHat assembly, this code was used:  

 
tophat -p 8 -o TopHat_Sample1 database_index/database.fa Sample1_1P.fastq 

Sample1_2P.fastq 
(etc, for all samples)   
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2.7. Filtering of splice variants 
 

Filtering was done to deduce low expressed genes and possible errors from the dataset. The Trinity output file 

carries no information on the expression of the splice variants. Read mapping to the transcripts will provide this 

information. By using an expression value based on read depth, transcripts with low expression will be filtered out.   

 

Assembly of the reads to the transcriptome – TopHat2 

The first step in this process is aligning the reads to the transcriptome. TopHat2 (10) was used as an aligner, and the 

method for the transcriptome-guided assembly is described in Chapter 2.6.  

 

Computation of read coverage - Bedtools 

The coverageBed option in Bedtools (11) version 2.23.0 was used for computation of the read coverage. The 

program computes the depth and breadth of coverage of features in the alignment files. 

Each samples was processes separately. The bam-format alignment files from the assembly and the Trinity result file, 

which was converted to bed-format, were entered into the code:  

 

 

coverageBed -abam TopHat_denovo_Sample1/accepted_hits.bam  

-b R_Trinity.bed > cov_sample1.txt 

 

The program produces text files with coverage information for all splice variants, e.g. number of reads and 

nucleotides covering each splice variant, the sequence length and the fraction of nucleotides covered in each splice 

variant.  
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Filtering - EdgeR 

EdgeR (5) is a Bioconductor software package for empirical analysis of gene expression in R (3).  It is designed to 

work for actual read counts, and was used for the evaluation and filtering of low expressed splice variants from the 

dataset.  

The files produced in the previous step were imported into R. A matrix consisting of the read counts was made, rows 

representing the contigs and columns representing the number of reads in each sample.  

The matrix was used as input in the DEGList function in R:  

mcount <- DGEList(counts = matrix_reads)  

The DGEList output consists of a matrix of the counts (similar to the input matrix), and a table describing the library 

size for each sample.   

The DEGList was used as input in the rpkm function, which calculates the expression values. Rpkm gives the same 

information as fpkm in PE reads, and is a frequently used as measuring unit for gene expression. An index vector for 

selection of the expressed contigs was made. The threshold for expression was set to fpkm > 1 in at least two 

samples:  

idx <- rowSums(rpkm(mcount)>1) >= 2 

The reason for selecting 1 fpkm as minimum expression, is because it is a commonly used threshold, and, in most 

cases, represents a reasonable expression level (Hooman M, personal communication). Expression in at least two 

samples was set as a minimum to reduce bias.  

The index vector was used to make a new dataset. The dataset was matched with the Trinity data to make a new 

dataset. This dataset, consisting of Trinity headers and sequences representing splice variants, was saved in FASTA 

format and exported back to the server to be used for further analysis.  

 

Clustering – CD-HIT-EST 

To reduce the dataset even more, CD-HIT-EST in the CD-HIT (12) software package version 4.6.1 was used.  

CD-HIT-EST clusters nucleotide sequences (Li and Godzik, 2006) by using a greedy incremental algorithm.  The 

sequences are first sorted on length, and the longest sequence forms the first cluster. The remaining sequences are 

compared to the cluster and being grouped into it if the similarity is above a certain threshold. If it is below the 

threshold, it forms a new cluster. The program goes through the list of sequences several times until all sequences 

have been clustered.  

A high similarity threshold was desired on our clustering, as we did not want to lose too much information in the 

data. The settings were set to 99% sequence similarity, and a word length of 10 nucleotides.   

 

cd-hit-est -i Trinity_filtered.fa -o denovo99_rpkm.fa -c 0.99 -n 10 
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2.8. Alignment of splice variants to RefSeq databases - BLAST  
 

Blast+ (13) version 2.3.0 was used for comparing the splice variants to the RefSeq genome and the RefSeq protein 

database. BLAST (Altschul et al., 1990) is a popular tool for comparing nucleotide- and amino acid sequences. It can 

be used on-line on the NCBI web site or by scripting, which was done in this case. The rapid and heuristic algorithm 

performs local alignment between sequences by using a maximum segment pair (MSP) score. It also produces an 

expectation value (e-value), which estimates how many matches would have occurred at a given score by chance. E-

value is useful for filtering out low confidence hits, and is often used as a threshold parameter in the alignments. 

BLAST has different tools for different use, depe type of sequence that is being compared (nucleic acids or amino 

acids), or the aim of the assembly. In alignment search within the same species, high similarity is required to give 

significant hits, while searching for orthologues will require less similarity to give hits of interest.  

(http://www.ncbi.nlm.nih.gov/books/NBK153387/)                                                        

Indexing of database prior to BLAST  

The RefSeq databases (genome and proteins) were indexed prior to the BLAST assembly, using the makeblastdb tool 

in Blast+:  

 
makeblastdb -in RefSeq_database.fa -parse_seqids -dbtype nucl 

 

Assembly of reference genome - Megablast 

Megablast was selected for alignment of the splice variants to the genome, as this algorithm is more sensitive to 

sequence alignments in sequences with high similarity than regular BLAST. For better specificity of the BLAST, a 

maximum e-value of 10-6, which is a commonly accepted threshold.   

 

blastn -task megablast -db RefSeq_genome.fa -query Trinity_filtered.fa  

-out results_megablast_genome -outfmt 6 -evalue 0.000001 
 

 

Assembly to protein sequences – blastx 

The blastx algorithm compares nucleotide sequences to amino acid sequences. To be able to compare sequences of 

different formats, it translates the nucleotide sequences to amino acids in all six reading frames. The blastx is 

therefore more time consuming than the blastn algorithms. The same threshold e-value as in Megablast was used 

for the alignment:  

 
 
blastx -db RefSeq_proteins.fa -query Trinity_filtered.fa  
-out results_blastx_proteins -outfmt 6 -evalue 0.000001 -num_threads 16 
 

 

2.9. Genome-guided assembly 
Version 2.2.1 of Cufflinks (14) was used for the assembly of hits from the read mapping to the RefSeq annotation file.  

Run Cufflinks:  

 
 
cufflinks -p 8 -G GCF_000233375.1_ICSASG_v2_genomic.gff  
-o Cufflinks_Sample1 TopHat_Sample1/accepted_hits.bam 
 

http://www.ncbi.nlm.nih.gov/books/NBK153387/
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3. Results 
 

3.1. Preprocessing 
 

Descriptive Statistics 

The total number of reads before and after preprocessing is given in Table 1. All raw and preprocessed reads were 

flagged as good quality sequences in the FastQC reports.  

 

Table 1. Total number of reads before and after preprocessing with Trimmomatic, including the survival rates (or 

death rate, for the dropped reads).  

Reads Total number Survival (or death) rate 

Raw 305,535,951  

Total Surviving 280,628,529 91,8 % 

Paired Surviving 226,987,777 74,3 % 

Forward Only Surviving 38,345,699 12,6 % 

Reverse Only Surviving 15,295,053 5,0 % 

Dropped 42,741,420 14,0 % 

 

 

Sequence length 

The read lengths were reduced, from 100-101 nucleotides in the raw reads to 70-86 nucleotides in the preprocessed 

reads. The majority of the reads were at the length maximum, as shown in Figure 1.  

 

Figure 4. The FastQC diagram shows the sequence length distribution for a representative sample after 

preprocessing.  

 

GC content 

The mean GC content was 47.3 ± 1.0 % for the paired reads and 48.7  ± 1.7 % for the unpaired reads .  
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Sequence quality  

The raw sequences were generally of good quality, with a median Q score larger than 30 for all samples. Still, some 

reads had bases with Q score between 2 and 20, with the poor quality mainly located at the 5’end. After filtering and 

trimming, the minimum Q score was no lower than 28. Some examples of per base sequence quality are presented 

in Figure 2.  

     

A. R1 raw sequences    B. Sequences in A preprocessed 

  

C. R2 raw sequences    D. Sequences in C preprocessed 

  

E. R2 raw sequences    F. Sequences in E preprocessed 

Figure 5. The FastQC diagrams shows per base sequence quality, represented by Q values (Phred score). The 

diagrams show quartiles (yellow boxplots), mean (blue graph) and median (red graph).  

A – D shows per base sequence quality from one representative sample. A and C are the raw sequences, where R1 is 

the forward sequence and R2 is the reverse. B and D shows per base sequence quality after preprocessing in the same 

samples as in A and C, respectively. E and F shows a sample with poorer quality than the previous one.  
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A. R1 raw sequences    B. Sequences in A preprocessed  

   

C. R1 raw sequences    D. Sequences in C preprocessed  

   

E. R2 raw sequences    F. Sequences in E preprocessed  

Figure 6. The FastQC diagrams show the sequence quality per tiles for each position of the reads. Blue color indicates 

good sequence quality, while other colors indicates a decline in quality. For example, red color can indicate an air 

bubble being present on the chip (ref manual).  

Figure 3A represents a typical sample in the data set, and B is the same sample after preprocessing. C – F represents 

another sample, with the lowest per tile sequence quality in the data set. C and E are the raw sequences, R1 is 

forward and R2 is reverse sequence, and D and F are the same samples as in C and E after preprocessing, 

respectively.  
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All raw sequences had poor distribution in the first approximately 15 nucleotides from the 3’end. Seven of the 

samples had poor distribution in the last four nucleotides from the 5’end. This problem was identified in the “Per 

base sequence content” diagrams in the FastQC reports, as shown in Figure 4. The “Per base N content” diagrams in 

the same reports revealed that the poor distribution at the 5’end was due to base ambiguity. After the 

preprocessing, all diagrams showed good quality.  

            

A. Raw sequences           B. Preprocessed sequences  

Figure 7. The FastQC diagrams show the distribution of the four nucleotides over the positions in the sequences. 

Figure 4A shows the raw sequences from a typical sample, while B shows the preprocessed reads from the same 

sample as in A.  

 

Overrepresented sequences 

19 FastQC reports from the raw sequence files showed overrepresented sequences, described as sequences 

representing more than 0.1% of the total number in the sample. There were 12 unique overrepresented sequences, 

and the overrepresented sequences in the raw data are presented in Table 3.  

Five of the sequences were TruSeq adapters (ref D701-712 adapter in ‘Illumina Adapter Sequences Document # 

10000000000002694 v00), and one was possibly Illumina PCR primer. The remaining six sequences had no hits in the 

FastQC reports. From NCIB-BLAST results, three of these had hits to rRNA (two from salmon and one orthologue), 

and three had hits to coding genes in salmon. For further details about the BLAST hits, see Table 4.  

The trimmed and filtered sequences were also controlled for overrepresented sequences. In the paired reads, there 

were 16 unique overrepresented sequences, as presented in Table 5. In the unpaired reads, there were 105 unique 

overrepresented sequences. NCBI-BLAST hits showed ribosomal RNA in most of these sequences.  

 

Selection of quality assured reads for downstream analysis  

The 226,987,777 preprocessed, paired reads (see table…) were used for any further analysis.  
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Table 2. Overrepresented sequences (> 0.1% of the total number of sequences in sample) in the raw data.  

No Sequence Possible source 
1 CCGACATCGAAGGATCAAAAAGCGACGTCGCTATGAACGCTTGGCCGCCA No Hit 

2 CCTCACCCGGCCCGGACACGGAAAGGATTGACAGATTGATAGCTCTTTCT No Hit 

3 CCTGCCAGTAGCATATGCTTGTCTCAAAGATTAAGCCATGCAAGTCTAAG No Hit 

4 CGAGAGTAAAGGTTACCTGCTTCAACAGTGCTTGAACGGCAACCTTCTAC No Hit 

5 CTCACCCGCTCCTAAAAATTGCTAATGACGCACTAGTCGATCTCCCAGCA No Hit 

6 CTCACAACTAGGATTCCAAGACGCGGCCTCCCCTGTAATAGAAGAACTCC No Hit 

7 GATCGGAAGAGCACACGTCTGAACTCCAGTCACACAGTGATCTCGTATGC TruSeq Adapter, Index 5 

8 GATCGGAAGAGCACACGTCTGAACTCCAGTCACATGTCAGAATCTCGTAT TruSeq Adapter, Index 15 

9 GATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGC TruSeq Adapter, Index 2 

10 GATCGGAAGAGCACACGTCTGAACTCCAGTCACGGCTACATCTCGTATGC TruSeq Adapter, Index 11 

11 GATCGGAAGAGCACACGTCTGAACTCCAGTCACTGACCAATCTCGTATGC TruSeq Adapter, Index 4 

12 GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCG Illumina Single End PCR Primer 1 

 

 

Table 3. NCBI-BLAST hits of overrepresented sequences (> 0.1 % of the total number of sequences in the sample) in 

the raw data. The sequence numbers represents the sequences in Table 3.  

No NCBI-BLAST hits  Species Total Score Query Cover E-value 

1 rRNA, 18S Bandit angelfish 93.5 100 % 2e -16 

2 rRNA, 18S Atlantic salmon 99,6 100 % 1e -20 

3 rRNA, 18S Atlantic salmon 97,6 97,60 % 5e -20 

4 Ferritin, heavy subunit Atlantic salmon 97,6 100 % 1e -20 

5 COX2 gene Atlantic salmon 99,6 100 % 1e -20 

6 Cytochrome b Atlantic salmon 99,6 100 % 1e -20 

 

 

Table 4. NCBI-BLAST hits in overrepresented sequences (> 0.1 % of total number of sequences in the sample) in 

preprocessed paired sequences.  

NCBI-BLAST hits Species Number of unique sequences 

Actin Atlantic salmon  2 

Ferritin, heavy subunit Atlantic salmon  3 

Cytochrome oxidase subunit II   Atlantic salmon  3 

Cytochrome b Sea trout 1 

Zink finger protein pseudogene Rainbow trout  4 

rRNA, 18S Atlantic salmon  1 

rRNA, 18S Lenok 1 

rRNA, 18S Bandit angelfish 1 
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3.2. De novo assembly 
 

In silico Normalization 

Prior to running de novo assembly, Trinity’s In silico normalization was performed. This was done in order to validate 

and reduce the number of reads.  The total number of reads post normalization was 22,179,600, which is 9.77 % of 

the original processed paired reads.  

 

De novo assembly 

The total number of splice variants produced in de novo assembly was 279,969. The number of genes defined by 

Trinity was 195,236. The length of the splice variants were in the range of 224 – 16,549 bases, as illustrated in 

Figures 8 and 11. The mean length was 870 bases and the median was 449 bases. The GC content was 46.7 %, and 

the total number of nucleotide was approximately 243 million.  

Size distribution of splice variants in de novo assembly 

A B  

Figure 8. The diagrams shows the legnth distribution of the splice variants produced in de novo assembly. Figure 4A 

shows the distribution of all splice variants, while B shows the splice variants shorter than the mean product size.  

 

3.3. Read mapping  
 

Both genome-guided assembly (gga) and transcriptome-assembly (tga) was performed, using the 226,987,777 paired 

reads, which were selected for downstream analysis. The reads were mapped to the RefSeq genome and to the 

splice variants.  The results of the read assembly is presented in Table 5.  

 

Table 5: Mapped and unmapped reads in the assembly to the salmon RefSeq genome and the transcripts from de 

novo assembly.   

 N,  
mapped reads 

N,  
Unmapped reads 

 
Mapping rate 

Genome-guided assembly (gga) 219,116,097 7,871,680 96.5 % 

Transcriptome-guided assembly (tga) 205,048,572 21,939,205 90.3 % 
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3.4. Filtering of splice variants 
 

The read depth information gained in the transcriptome-guided assembly (see last section) was used for filtering out 

low expressed splice variants. The cut off level for expression was set to fpkm > 1 in at least two samples. After 

filtering, the total number of splice variants went down to 110,666, and number of ‘Trinity-genes’ down to 54,507. 

More statistics on the filtered dataset is located in Table 6, and the distribution of the product size is illustrated in 

Figures 9 and 11.    

 

Size distribution of filtered splice variants  

A B  

Figure 9. The diagrams shows the size distribution of the filtered splice variants. Figure 5A shows the distribution of 

all filtered splice variants, while B shows the filtered splice variants shorter than the mean size in the filtered dataset.  

 

 

Clustering  

The expressed spliced variants were clustered, based on a 99% similarity threshold. Post clustering, there were 

102,333 splice variants, grouped into 51,056 genes (‘Trinity-genes’). This dataset was used for the BLAST assemblies. 

Mores statistics is located in Table 6, and the distribution of the product size is illustrated in Figures 10 and 11  

 

Size distribution of filtered and clustered splice variants  

A B  

Figure 10. The diagrams shows the size distribution of the filtered and clustered splice variants. Figure 6A shows the 

distribution of all the splice variants in the clustered dataset, while B shows the splice variants shorter than the mean 

size product in the dataset.  
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Table 6. Statistical measures of the splice variants produced in de novo assembly. Denovo represents the unfiltered 

dataset produced by Trinity. The filtered dataset involves only the splice variants with an expression of > 1 fpkm in 

two samples or more. The clustered dataset was reduced by clustering after the filtering was done.   

 

 

 

 

 

Figure 11. Size distribution of the splice variants up to 4000 nucleotides in the unfiltered (de novo), filtered and 

clustered datasets.   
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3.5. BLAST  
 

The dataset containing 102,333 splice variants and 51,056 ‘Trinity-genes’, as described in the previous section under 

‘Clustering’ in Ch. 3.4, was used as query for the BLAST search.   

1) This dataset was aligned to the RefSeq genome, using the Megablast algorithm.  

The result was 99,893,169 hits.  

101,974 splice variants and 50,882 ‘Trinity-genes’ were expressed.  

359 splice variants and 174 ‘Trinity-genes’ were not aligned to the salmon reference. 

2) The same dataset was also aligned to the RefSeq protein database, using the blastx algorithm. The RefSeq 

protein database has 97,555 genes.  

The result was 7,734,116 hits.  

64,727 splice variants and 23,183 ‘Trinity-genes’ were expressed.  

37,249 splice variants and 27,669 ‘Trinity-genes’ were expressed in the genome alignment but not in the 

protein alignment.  

 

To get a better picture of these numbers, the results are given in Table 7.  

Table 7: Total number of BLAST hits from alignment of splice variants and ‘Trinity-genes’ to the salmon RefSeq 

genome and the protein database.  

 N, hits N, splice variants N, ‘Trinity-genes’ 

Query data (filtered splice variants)  102,333 51,056 

Total hits to the genome 99,893,169 101,974 50,882 

No hits to the genome  359 174 

Total hits to the proteins 7,734,116 64,727 23,183 

Hits to the genome but not to the 
protein db.  

 37,249 27,669 

 

 

 

3.6. Genome-guided assembly 
 

The RefSeq.gff annotation file had 81,586 genes and 136,264 isoforms.  

50,267 genes and 74,860 isoforms were expressed at an expression level of > 1 fpkm in at least two samples.  
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4. Discussion 
 

4.1. Preprocessing 
Most part of the raw sequences had high quality score, as shown in Figure 5. Still, there were some improvements to 

be done, like getting rid of poor sequences at the ends. By cropping off at both ends of the reads, the whole 

sequences seemed to be of highly good quality, see Figures 5 and 7.  

The ‘Per tile sequence quality’ diagrams, as shown in Figure 6, showed varying sequence quality, from good to poor, 

in the raw sequences. The quality was quite consistent for forward and reverse sequences, and for samples within 

the same project. After preprocessing, the quality improved, from poor (red flag) to acceptable (yellow flag) or from 

acceptable to good (green flag).  

The decrease in sequence length was acceptable, as it was more important to get rid of the poor sequence ends to 

avoid poor alignments. Distribution of read length post trimming showed that most sequences were at a maximum, 

and the minimum threshold could have been set even higher, though this was probably not so important, as very 

few were at a minimum of 70 bases.   

BLAST results of overrepresented sequences showed contamination of Illumina adapter and primer sequences. 

These were efficiently removed in the preprocessing step. Ribosomal RNA was also a source of contamination, and 

the most abundant rRNA sequences were added in the ILLUMINACLIP FASTA file and filtered in the preprocessing. 

Trimmomatic outputs paired and unpaired sequences in separate files. By quality checking these files, it appeared 

that the unpaired sequences had significant amounts of rRNA, these were therefore left out of downstream analysis. 

The GC content in paired versus unpaired sequences supported the decision to leave these sequences out from the 

study. When doing BLAST in the overrepresented sequences, some orthologues from related species were 

discovered, see Table 4.   

 

4.2. De novo assembly 
Normalization of reads prior to the de novo assembly had big effect on the number of reads, and seemed to be very 

important due to data being very large and difficult to handle. The normalization removes all reads that are on top of 

the 20 read depth threshold (http://ivory.idyll.org/blog/trinity-in-silico-normalize.html). At this threshold, the 

number of reads should be sufficient for doing a good assembly.  

The de novo assembly output a good number of splice variants. The size distribution showed a large number of short 
reads, i.e. below 300 bases. Longer reads require larger read depth to guarantee the overlap (Li et al., 2010), 
therefore the short reads are likely to be low expressed.  

Clustering was done mainly to reduce the amount of data. Setting the threshold is a tradeoff between too much data 

and possibly loosing important data. Because of the high level of duplicated sequences in salmon, the similarity 

threshold was set quite high, to 99 %.  

Appendix B shows that the main reduction of short reads was done in the filtering, while reduction of the long reads 

was done in the clustering. This makes sense, as short transcripts are expected to have low expression, and long 

transcripts are expected to be highly expressed genes.   

 

4.3. Mapping rate 
The mapping rate of reads to the genome was higher than the mapping rate of reads to the transcripts.  Mapping to 

the genome is less demanding than doing de novo assembly regarding complexity of the algorithms. In Trinity, the 

transcripts are dependent on a minimum coverage to be assembled, but in mapping to the genome requires less 

read depth. More unmapped reads in the de novo assembly is therefore expected.  

 

http://ivory.idyll.org/blog/trinity-in-silico-normalize.html
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4.4. Expression of splice variants  
Most splice variants and ‘Trinity-genes’ from the de novo assembly dataset were aligned to the genome sequence. 

This indicates good quality of the transcripts, as there is a good match to the reference of the species. Still, a few 

‘Trinity-genes’ (174) and splice variants (359) did not get hits, and these should be further investigated, e.g. by doing 

BLAST on the non-redundant database.  

A large number of splice variants were expressed in the genome but not to the annotated genes. It is not likely to 

believe all these are coding genes, and it is expected that some of the transcripts are long non-coding RNA. Still, it is 

reason to believe that some are new discovered genes. Considered our samples are from different life stages and 

treatment, there is most probably some genes expressed that are not normally expressed.     

 

4.5. Comparison of the assemblies 
There were about twice as many expressed genes in the genome-guided assembly (50,267) than in the BLAST of the 

splice variants to the protein database (23,183). The number is quite significantly higher, and if we look at ratio of 

expressed genes in the database, the difference is even higher; 24% of the proteins in the protein database are 

expressed and 62 % of the proteins in the annotation file used in genome-guided assembly are expressed.  This 

supports the results from the mapping rate comparison, where genome-guided assembly had a higher mapping rate 

than the mapping of reads to the transcripts.   

The mapping in genome-guided assembly is of a highly acceptable level, and can here be recommended as a method 

for transcriptome analysis if new discoveries are not the main issue, but rather look at expression of annotated 

genes.  

 

4.6. Future studies 
This section mentions things that could have been explored in the data if time had not been a limitation. The 174 

‘Trinity-genes’ and 359 splice variants that were not aligned to the salmon reference are obviously expressed 

sequences, but not identified in the salmon genome. These are possible orthologues, i.e. new discovered genes or 

isoforms in salmon, derived from other species.  A BLAST search to the non-redundant database, which contains 

sequences from a number of species, could give an answer to this question.  

Duplication has not been considered in this study. The fact that salmon is a highly duplicated species (Lien et al., 

2016) gives uncertainty to the results, especially regarding the number of hits and findings in the BLAST searches, as 

one query sequence could easily match several loci. Reciprocal best hits (RBH) is when two genes codes for one 

protein. Reciprocal BLAST can be used to find this information (Ward and Moreno-Hagelsieb, 2014).  

 

4.7. Conclusion 
By using de novo assembly, we can extended the gene annotation of Atlantic salmon with up to 27,000 genes. There 

are many uncertainties to the exact number, but the extension is significant when analyzing for treated samples. De 

novo assembly is recommended for extended results in transcriptome analysis.  
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Computer programs and analysis platforms used in the thesis:  
 

 
1) Illumina http://www.illumina.com/  

2) GNU nano http://www.nano-editor.org/download.php 

3) R  https://cran.r-project.org/ 

4) RStudio  https://www.rstudio.com/ 

5) EdgeR  https://bioconductor.org/packages/release/bioc/html/edgeR.html   

6) FastQC  http://www.bioinformatics.babraham.ac.uk/projects/fastqc/  

7) Trimmomatic  http://www.usadellab.org/cms/?page=trimmomatic  

8) Trinity  https://github.com/trinityrnaseq/trinityrnaseq/wiki 

9) Bowtie  http://bowtie-bio.sourceforge.net/index.shtml 

10) TopHat  https://ccb.jhu.edu/software/tophat/index.shtml 

11) Bedtools http://bedtools.readthedocs.io/en/latest/index.html 

12) CD-HIT-EST http://weizhongli-lab.org/cd-hit/ 

13) BLAST  https://blast.ncbi.nlm.nih.gov/Blast.cgi 

14) Cufflinks http://cole-trapnell-lab.github.io/cufflinks/  
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Appendix A 
 

Illumina adapter and primer sequences, used in the ILLUMINACLIP-function in Trimmomatic.  

 

 

>PrefixPE/1 

TACACTCTTTCCCTACACGACGCTCTTCCGATCT 

>PrefixPE/2 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT 

>PE1 

TACACTCTTTCCCTACACGACGCTCTTCCGATCT 

>PE1_rc 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTA 

>PE2 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT 

>PE2_rc 

AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC 

>SE_PCRprimer 

GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCG 
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Appendix B 
 

Number of splice variants in the unfiltered (denovo), filtered and clustered datasets. The left column is the maximum 

product size, down to the product size in the previous row.  

 

size - denovo - filtered - clustered 
600   169644    36797     34194 
1000   38362    19066     18169 
1400   21034    13970     13347 
1800   14351    10684     10001 
2200   10635     8458      7749 
2600    7395     6008      5434 
3000    5337     4476      3907 
3400    3817     3225      2761 
3800    2599     2276      1952 
4200    1844     1589      1370 
4600    1406     1207      1057 
5000     973      837       684 
5400     667      596       492 
5800     476      438       362 
6200     304      271       224 
6600     227      203       168 
7000     176      153       130 
7400     137      120        96 
7800      81       71        59 
8200      44       39        35 
8600      29       29        22 
9000      56       54        40 
9400      36       36        32 
9800       8        8         7 
10200     14       13         9 
10600      4        4         4 
11000      6        4         3 
11400      2        2         1 
11800     16       16        11 
12200      3        3         3 
12600      2        2         2 
13000      2        2         2 
13400      3        3         3 
13800      0        0         0 
14200      0        0         0 
14600      0        0         0 
15000      2        2         1 
15400      0        0         0 
15800      0        0         0 
16200      1        1         1 
16600      3        3         1 
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