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Laminar population analysis (LPA) is a method for analysis of electrical data recorded by

linear multielectrodes passing through all lamina of cortex. Like principal components

analysis (PCA) and independent components analysis (ICA), LPA offers a way to

decompose the data into contributions from separate cortical populations. However,

instead of using purely mathematical assumptions in the decomposition, LPA is based

on physiological constraints, i.e., that the observed LFP (low-frequency part of signal) is

driven by action-potential firing as observed in theMUA (multi-unit activity; high-frequency

part of the signal). In the presently developed generalized laminar population analysis

(gLPA) the set of basis functions accounting for the LFP data is extended compared to

the original LPA, thus allowing for a better fit of the model to experimental data. This

enhances the risk for overfitting, however, and we therefore tested various versions of

gLPA on virtual LFP data in which we knew the ground truth. These synthetic data were

generated by biophysical forward-modeling of electrical signals from network activity in

the comprehensive, and well-known, thalamocortical network model developed by Traub

and coworkers. The results for the Traub model imply that while the laminar components

extracted by the original LPA method overall are in fair agreement with the ground-truth

laminar components, the results may be improved by use of gLPA method with two

(gLPA-2) or even three (gLPA-3) postsynaptic LFP kernels per laminar population.

Keywords: LFP analysis, local field potential (LFP), model-based analysis, signal decomposition, computational

neuroscience, multi-unit activity, MUA, thalamocortical

1. INTRODUCTION

The rapid development of silicon-based multielectrodes allowing for simultaneous recording of
extracellular potentials at tens or hundreds of contacts in an in vivo setting, has revived the
interest in the local field potential (LFP; Bedárd and Destexhe, 2012; Buzsáki et al., 2012; Pettersen
et al., 2012; Einevoll et al., 2013a,b). In cortical recordings the LFP, i.e., the low-frequency part
(≤500 Hz) of the extracellular potential, is thought to largely reflect synaptic input currents
and their associated return currents (Pettersen et al., 2008; Einevoll et al., 2013a). While the
interpretation of the high-frequency part of the signal (i.e., the multiunit activity, MUA) in terms
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of spiking activity of neurons surrounding the contacts seems
well established (Buzsáki, 2004; Pettersen et al., 2008; Einevoll
et al., 2012), an interpretation of the LFP in terms of activity
in specific neurons or neuronal populations is much more
challenging (Einevoll et al., 2013a).

Current-source density (CSD) analysis has been a standard
tool for analysis of LFP (Nicholson and Freeman, 1975; Mitzdorf,
1985; Pettersen et al., 2006; Potworowski et al., 2012; Wójcik,
2015). From simultaneous recordings of LFPs at many different
spatial positions, the net volume density of current entering or
leaving the extracellular space, can be estimated. Due to the more
local nature of CSD compared to the LFP, the CSD may be easier
to interpret, but the CSD still does not give direct information
regarding what neurons or neural populations are involved in
generating the signal. Attempts have therefore been made to
decompose the LFP into a set of putative cortical populations
components by means of standard mathematical data analysis
tools like principal components analysis (PCA; Barth and Di,
1991) and independent components analysis (ICA; Leski et al.,
2010; Makarov et al., 2010; Glabska et al., 2014). Dynamical
causal modeling (DCM; David and Friston, 2003) represents
an alternative approach where neurophysiological data, also
LFP (Moran, 2011), is fitted to a set of differential equations
describing the dynamics of underlying neural-mass models
representing the neural populations.

Laminar population analysis (LPA; Einevoll et al., 2007)
takes a different approach and makes physiological, rather
than mathematical, assumptions to determine the population
decompositions. In particular, the recorded LFP is assumed to
be causally generated by the recorded spikes as measured in
the MUA. In LPA, the LFP and MUA data are thus jointly
modeled. In the orginal application, LPAwas applied to stimulus-
evoked linear (laminar) multielectrode data from barrel cortex
of anesthetized rats following single whisker flicks, and the
data was seen to be well accounted for by a model with four
cortical populations: one supragranular, one granular and two
infragranular populations (Einevoll et al., 2007).

The original LPA method made the assumption of a single
spatiotemporally separable LFP kernel following population
firing in each laminar population. In the present generalized
laminar population analysis (gLPA) we go beyond this and allow
for several independent postsynaptic LFP kernels per population,
each kernel consisting of a spatial (depth) profile multiplied
by a temporal kernel. The physical justification for multiple
kernels is that (i) given the multiple time scales involved in
synaptic activation and effects on the postsynaptic cells and
(ii) the different biophysical properties and morphologies in
the different postsynaptic cells, one cannot expect a priori a
single spatiotemporally separable kernel to fully account for
the LFP induced by action-potential firing even in a single
neural population. Further, there may also be LFP contributions
associated with the spike signature itself (Buzsáki et al., 2012;
Schomburg et al., 2012).

gLPA involves a larger set of basis functions compared to the
original LPA method and will thereby by design fit the LFP data
better. More basis functions increase the risk of overfitting, and
gLPA is thus tested against benchmarking data set for which

the “ground truth” is known. Such benchmarking techniques
are well established for evaluation of analysis methods, also in
neuroscience (Pettersen et al., 2008; Leski et al., 2011; Denker
et al., 2012; Glabska et al., 2014; Hagen et al., 2015; Ness et al.,
2015). Here we test the new gLPA method on virtual LFP found
from biophysical forward-modeling of electrical signals from
network activity in the comprehensive (3500 neurons), and well-
known, thalamocortical network model developed by Traub et al.
(2005) as modified by Glabska et al. (2014). In this virtual model
world the spike times for all neurons are known, facilitating
testing of the LFP-modeling part of gLPA before introducing
confounding effects from inaccurate estimates of the population
firing rates. The results for the Traub model imply that while
the laminar components extracted by the original LPA method
overall are in fair agreement with the ground-truth laminar
components, the results may be improved by use of the gLPA
method with two (gLPA-2) or even three (gLPA-3) postsynaptic
LFP kernels per laminar population.

2. METHODS

2.1. Generalized Laminar Population
Analysis (gLPA)
The (virtual) LFP φ to be analyzed were obtained as Nch × Nt

arrays of data where Nch is the number of laminar electrode
channels, and Nt is the number of time points with data.

A general expression for decomposition of a two-dimensional
function φ(zi, tj) into spatiotemporally separable components
reads:

φ(zi, tj) =
∑

n

fn(zi) gn(tj) . (1)

Here zi denotes the depth of the electrode contact (i =

1, . . . ,Nch), and tj = j1t where j = 1, . . . ,Nt .
In principal component analysis (PCA), for example, the

expansion functions fn(zi) (called spatial loadings) and gn(tj)
(called temporal scores) are chosen so that the first component
picks up most of the data variance, the second component most
of the remaining variance, etc. (Gershenfeld, 1999).

The key idea of LPA, both the original (Einevoll et al., 2007)
and the present generalized version, is that that the observed LFP
is driven by the observed population firing rn(t). In Einevoll et al.
(2007) the population firing rates rn(tj) were obtained from fitting
of the experimental MUA data. In the present study the data is
model-based and we know all the spike times. Therefore, in the
majority of results (Sections 3.1–3.3) we find rn(tj) directly from
summing over the spikes of all excitatory neurons from layer
n (as described below). Only in Section 3.4 we check how the
estimation of firing rates from measurements affects the results
of gLPA.

In the original LPA (later referred to as gLPA-1 for reasons
explained below) we used the following decomposition (Einevoll
et al., 2007):

φm
gLPA-1(zi, tj) =

Npop
∑

n=1

Ln(zi) (h⊗ rn)(tj) . (2)
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Here (h⊗ rn)(tj) is the temporal convolution given by

(h⊗ rn)(tj) =

∞
∑

j′=−∞

h(tj′ )rn(tj − tj′ ) , (3)

where tj′ = j′1t.
In the new generalized LPA (gLPA) we assume the following

generalized form:

φm
gLPA-K(zi, tj) =

Npop
∑

n=1

K
∑

k=1

Lkn(zi) (h
k ⊗ rn)(tj) . (4)

This implies that (unless K = 1) the contribution to the LFP
from each population is no longer factorizable into a spatial and
a temporal component. The physical interpretation is that (i)
given the multiple time scales involved in synaptic activations
and (ii) the different biophysical properties and morphologies
in the different postsynaptic cells, one cannot expect a priori a
single spatiotemporally separable kernel to fully account for the
LFP induced by action-potential firing even in a single neural
population. This is reminiscent of the non-product nature of the
LFP and CSD generated by individual cell populations which
we reported in Glabska et al. (2014). Rather, the postsynaptic
contribution to the LFP induced by firing in each population
n may be described more adequately by K distinct components
with different spatial (Lkn) and temporal (hk) profiles. One or
more of the components could, for example, describe the LFP
following synaptic activation of the postsynaptic population
(identified as the main contribution for gLPA-1 in Einevoll
et al., 2007), while others could be LFP associated with the
extracellular signature of the spiking itself, for example, due to
spike afterhyperpolarization.

In the present paper we investigate several variations of gLPA
with different number of components K, and refer to the various
versions as gLPA-K. Thus, the orginal LPA version is labeled
gLPA-1, while a version with two LFP components for each
presynaptic population n is referred to as gLPA-2, and so on.

For convenience, we introduce new auxiliary variables for the
time-convolved firing rates:

Rkn(t) = (hk ⊗ rn)(t), (5)

so that Equation (4) can be written more compactly as

φm
gLPA-K(zi, tj) =

Npop
∑

n=1

K
∑

k=1

Lkn(zi)R
k
n(tj) . (6)

In the original LPA (gLPA-1) (Einevoll et al., 2007) the temporal
kernel was assumed to be a (normalized) exponentially decaying
function of the form

h(tj; τ,1) =
1

τ
e−(tj−1)/τ2(tj − 1) . (7)

where 2(tj) is the Heaviside unit step function [2(tj ≥ 0) = 1,
2(tj < 0) = 0], and τ and 1 are the time constant and a
time-delay parameter, respectively.

In gLPA-K (at least in the present application) we still use
exponential kernels, but we now have different values for both
the time constant and time-delay parameter for the K kernels
specified by τ k and 1k (k = 1, . . . ,K), giving a total of
2K parameters to be fitted against experiment. Note that one
could also make these time constants and time-delay parameters
different for each population n at the expense of adding many
new parameters to be determined when fitting the data.

2.2. Generation of Virtual LFP Data from
Network Model
To investigate the quality of the decomposition given by
Equation (4), as well as the interpretation of individual terms,
we used simulated data. The data were generated with a single-
column model for thalamocortical system published by Traub
et al. (2005). The model contains 3560 multicompartment cells
from four cortical layers (layer 2/3, 4, 5, and 6) and the thalamus
as described in Table 1. The somas of each population were
randomly placed in cylindrical boxes with radii of 200 µm and
vertical extensions as described in Table 2. More details of the
employed network model can be found in Glabska et al. (2014).

The simulations were run with the NEURON 7.3

simulator (Hines and Carnevale, 1997). The network was
driven by sinusoidal currents (amplitude of 2 nA) injected
into somas of all thalamocortical relay cells (TCR). For each
stimulation frequency the network was simulated for 650 ms.
The sinusoidal current stimulus was turned on 100 ms after the
start of the simulation and lasted for 500 ms, cf. middle panel
in Figure 1. This gives oscillatory firing responses both in the
thalamic and cortical populations (Figure 1, top panel). This
simulation procedure was repeated for a set of eight different
stimulus frequencies, i.e., 2, 4, 8, 12.5, 25, 50, 100, and 200Hz.

Following well-established volume conductor theory, the
extracellular potentials were computed by summing over
weighted contributions from all transmembrane currents in the
vicinity of the (virtual) recording electrode (Rall and Shepherd,

TABLE 1 | Cell types used in the model, numbers of sections in each cell,

and numbers of cells in each population, cf. Glabska et al. (2014).

Soma Population name Number of Number

location sections of cells

Layer 2/3 Pyramidal regular spiking (RS) 74 1000

Layer 2/3 Pyramidal fast rythmic bursting (FRB) 74 50

Layer 2/3 Superficial interneurons—basket (BASK),

axoaxonic (AX), low-threshold spiking (LTS)

50 3 × 90

Layer 4 Spiny stellate (SS) 59 240

Layer 5 Pyramidal tufted intrinsic bursting (IB) 61 800

Layer 5 Pyramidal tufted regular spiking (RS) 61 200

Layer 5/6 Deep interneurons—basket (BASK),

axoaxonic (AX), low-threshold spiking (LTS)

59 3 × 100

Layer 6 Pyramidal non-tufted regular spiking (RS) 59 500

Thalamus Thalamocortical relay (TCR) 139 100

Thalamus Reticular nucleus (NRT) 59 100

Total 3560
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TABLE 2 | Layer organization of cortical column model showing the

layer-depth intervals of the soma positions of the neuronal populations.

Layer Layer depth (µm) Model populations gLPA pop. no.

2/3 450–850 RS, FRB, BASK, AX, LTS 1

4 850–1150 SS 2

5 1150–1650 IB, RS, BASK, AX, LTS 3

6 1650–2150 RS, BASK, AX, LTS 4

Cortical depths are measured compared to a reference point (i.e., zero depth) set 450 µm

above the top of the layer containing the somas of the layer 2/3 cells, cf. Glabska et al.

(2014). Spikes from neurons in the populations shown in bold are used to compute the

laminar population firing rates used in gLPA. gLPA laminar population numbers are listed

in the rightmost column.

FIGURE 1 | Generation of virtual LFP data. (Top) Raster plot of the

network activity for the simulation with oscillatory current with frequency 12.5

Hz injected to the thalamus for times between 100 and 600 ms (Middle). Blue

dots indicate spikes of excitatory neurons, red dots indicate spikes of inhibitory

cells. For figure clarity, only activity of 10 randomly selected cells from every

population is shown (representative of the populations). Layer 5 and layer 6

pyramidal cells were additionally depolarized by injecting 1 and 0.75 nA

currents into their somas, see Traub et al. (2005). (Bottom) Depth-resolved

LFP generated by the network model in the same time period.

1968; Holt and Koch, 1999; Lindén et al., 2014). Here we assumed
a homogeneous, isotropic and Ohmic extracellular medium so
that the extracellular potential φ at a position r in the presently
used point-source approximation (Lindén et al., 2014) can be
computed according to the formula:

φ(r, t) =
1

4πσ

∑

n

In(t)

|r− rn|
. (8)

The sum here goes over all compartments of all neurons in the
model network, and In is the transmembrane current from the n-
th current source positioned at rn. Further, σ is the extracellular
conductivity, here assumed to have the value σ = 0.3 S/m.

To mimic the data recorded by linear (laminar)
multielectrodes in the typical in vivo setting (e.g., Einevoll
et al., 2007), we computed the extracelluar potentials at a set
of equidistant contact positions (100 µm intercontact distance)
along the cylindrical axis of the cortical model network using the
point-electrode approximation where effects from the physical
extention of the metal contact are neglected (Lindén et al.,
2014; Ness et al., 2015). Extracellular potentials φ(r, t) were
computed and stored with a time resolution of 0.1 ms. To
obtain the LFP the potential was low-pass filtered below 100 Hz
with a second-order Butterworth filter and decimated to give a
time resolution of 0.5 ms. The computation of the extracellular
potentials from the transmembrane currents extracted from the
NEURON simulation, as well as all postprocessing, was done in
Python and MATLAB.

In addition to the full network simulations of spikes and LFPs,
we also did separate LFP calculations for a disconnected network
driven by spiking activity from a full simulation, to probe the
accuracy and applicability of gLPA. We first recorded the spike
times driving every cell in the simulation of fully connected
network. Then the spike times originating from a particular
population of neurons were used to generate synaptic inputs onto
their normal postsynaptic targets in an otherwise disconnected
network. Therefore, in this situation the computed LFPs stem
only from transmembrane currents in the postsynaptic target
neurons of the presynaptic population of interest.

2.3. Estimation of Population Firing Rates
Implementation of generalized LPA, just like the original
LPA (Einevoll et al., 2007), consists of two steps. One first needs to
estimate the firing rates of cell populations from individual layers.
Then one needs to estimate the parameters of the kernel hk and
spatial profiles Lkn.

2.3.1. Population Firing Rates from Ground-Truth

Spike Times
In Einevoll et al. (2007) the population firing rates rn(tj) were
obtained from the MUA, that is, the high-frequency part of the
recorded extracellular potentials. Here we know all the spike
times, and so in the majority of results (Sections 3.1–3.3) we
find rn(tj) directly from summing over the spikes of all excitatory
neurons in a layer. In the present network model, four distinct
layers are considered, i.e., layer 2/3, layer 4, layer 5, and layer
6, cf. Tables 1–2. We thus consider four (Npop = 4) laminar
populations in our gLPA analysis as in Einevoll et al. (2007),
cf. Table 2. For the layer-2/3 laminar population (n = 1) the
population firing rate r1(t) is found by summing all spikes of
the layer-2/3 RS neurons and the layer-2/3 FRB neurons (cf.
Table 1) using binning intervals of 0.5ms. For the layer-4 laminar
population (n = 2) the firing rate r2(t) is correspondingly
found by summing over all layer 4 SS neurons. For the layer-5
laminar population (n = 3) the pyramidal IB and RS neurons
are summed over to get the firing rate r3(t), while the layer-6
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laminar population firing rate r4(t) is found by summing over
the pyramidal non-tufted RS cells.

2.3.2. Population Firing Rates from (Virtual) MUA
In Section 3.4 we study the application of gLPA when population
firing rates are not a priori known, but rather must be estimated
the high-frequency part of the generated extracellular potentials,
i.e., the MUA (multi-unit activity). To obtain the MUA we
applied to φ the same procedure to the virtual electrical data
(cf. Section 2.2) as in the original LPA paper (Einevoll et al.,
2007), that is, φ was filtered between 750 and 5000Hz using
a zero phase-shift second-order Butterworth filter and rectified
along the time axis and decimated by a factor 10 along the time
axis to provide the same time resolution as the LFP data. In the
estimation of the population firing rates from MUA data, the
same procedure as in the original LPA paper (Einevoll et al.,
2007) is used: The MUA data is decomposed into a sum over
spatiotemporally separable contributions from several neuronal
populations

φMUA(zi, tj) =

Npop
∑

n=1

Mn(zi)rn(tj), (9)

where Mn(zi) is a MUA spatial depth profile for action-potential
firing in population n. This profile will depend on the spatial
spread of the extracelluar spike of the individual neurons in the
population as well as the distribution of their spatial positions
in the cortical lamina. As in Einevoll et al. (2007) we assumed
trapezoidal forms ofMn(zi) specified by three parameters. These
parameters were fitted to minimize the mean square difference
between the decomposition assumed in Equation 9 and the
(virtual)MUA recordings, see Appendix 1 in Einevoll et al. (2007)
for details.

2.4. Estimation of Laminar LFP
Components in gLPA
The second step of fitting the gLPA-models to the LFP data given
the population firing rates rn(t), was done largely as described in
Appendix 1 of Einevoll et al. (2007). Given the population firing
rates rn(t), the time constants τ and delays 1 of the temporal
kernels and the LFP profiles were fitted to the virtual LFP data
(Note that in the case where the population firing rates were
found from fitting to the MUA data, a better procedure could
have been to fit the model to the MUA and LFP data in a
single integrated step, rather than in the present simpler two-step
procedure. However, we used the same method as in the original
LPA paper, Einevoll et al., 2007).

The concatenated virtual LFP data from all eight data sets
with sinusoidal stimulation was used in the analysis to fit a single
set of model parameters (1’s, τ ’s and laminar LFP profiles). As
in Einevoll et al. (2007) the mean LFP prior to stimulus onset
was taken as a baseline and subtracted from the raw LFP before
application of gLPA. This baseline was computed and subtracted
for each channel separately, with the baseline computed as the
mean LFP on the interval between 50 and 100 ms after the start
of the simulation.

As in Einevoll et al. (2007) the relative mean square deviation
between the LFP predicted by gLPA and the “true” (ground-
truth) LFP is used as error measure, i.e.,

eL =

∑Nch
i= 1

∑Nt
j= 1

(

φ(zi, tj)− φm
gLPA(zi, tj)

)2

∑Nch
i= 1

∑Nt
j= 1

(

φ(zi, tj)
)2

, (10)

where φ is the “true” LFP data and φm
gLPA the gLPA prediction.

Here Nch = 28 is the number of virtual recording channels
(contacts), and Nt is the number of time events (0.5ms between
each). Unlike in Einevoll et al. (2007), the de solver (differential
evolution algorithm) was used in the fitting procedure to
minimize the error (downloaded from openopt.org). In the
optimization the upper bounds of the allowed values of the
delay and time constants were set to: (i) gLPA-1: 1max

1 =

50 ms, τmax
1 = 10 ms, (ii) gLPA-2: 1max

1 = 50 ms,
τmax
1 = 10 ms, 1max

2 = 100 ms, τmax
2 = 300 ms, (iii) gLPA-

3: 1max
1 = 50 ms, τmax

1 = 10 ms, 1max
2 = 50 ms, τmax

2 = 10 ms,
1max

3 = 100 ms, τmax
3 = 300 ms. Lower bounds were always

zero.

2.5. CSD Analysis
We also analyzed the resulting LPA laminar LFP profiles by
means of CSD analysis (Nicholson and Freeman, 1975; Mitzdorf,
1985; Pettersen et al., 2006; Potworowski et al., 2012; Wójcik,
2015). The kCSD-method (Potworowski et al., 2012) was used
assuming a cylindrical CSD column with a radius of 0.4 mm,
which takes into account the region covering the dendrites
protruding from all the cells in the column. Note that the radius
assumed in reconstruction did not affect the results significantly
as observed in Potworowski et al. (2012).

3. RESULTS

3.1. Virtual Data from Network Simulations
While concatenated model data resulting from use of the full
stimulus protocol (i.e., the full set of oscillatory thalamic input
outlined in Methods) was used in the gLPA analysis, we will,
for presentational clarity in the following, focus on the results
for the case with 12.5-Hz oscillatory thalamic input. The spike
raster plots and corresponding (virtual) LFP data for the full
500 ms period when the thalamic input is on, are shown in
Figure 1. Generally, the responses to each of the seven depicted
synaptic input volleys look similar. However, the response to
the first volley is somewhat different due to transient network
activation effects, while the response to the last volley is different
due to the abrupt abortion of thalamic input at 600 ms in our
simulation.

In the following we will illustrate the outcome of the LPA
analysis by showing results from the sixth response volley,
i.e., from t = 500 to 580 ms, where transient network
activation effects are clearly absent. Note, however, that the LPA
analysis is based on the full data set, as are the reported error
measures.
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3.2. Results from Laminar Population
Analysis
Here we first describe results from using the original LPAmethod
(gLPA-1, Einevoll et al., 2007), and then move on to investigate
the situation with two (gLPA-2) or three (gLPA-3) separate
postsynaptic LFP components for each laminar population. As
in Einevoll et al. (2007), in all cases we assume four laminar
populations, i.e., Npop = 4, cf. Table 2.

3.2.1. gLPA-1: One Postsynaptic LFP Profile
The results for gLPA-1, i.e., the original LPA method, for an
80ms excerpt of the data are shown in Figure 2. Visual inspection
of Figure 2A reveals that the fitted LPA-model results (middle
panel) is quite similar to the “true LFP” (top panel), that is, the
computed virtual LFP data used as basis for the LPA analysis. The
overall relative error for the full data set is 0.093 (while the relative
error for the depicted time window shown in the lower panel is
0.095).

The four identified LPA components are shown in
Figures 2B–E. The curves in the panels below the 2D plots
show both the population firing rates rn(t), and the time
profile of the postsynaptic LFP contribution R1n(t) found by
convolution of the firing rate with the fitted exponential kernel
h1(t) (Equation 5). As seen in these panels, the jaggedness of the
population firing rates (rn(t)) is largely smoothed out in LFP
time profiles (R1n(t) = h1 ⊗ rn) due to the low-pass filtering
properties of the convolution operation.

The panels to the left of the 2D plots depict the corresponding
spatial LFP profiles L1n. Not only are the shapes different, also
the amplitudes are seen to vary substantially between the laminar
components. Firing of an action potential by a neuron in the L4
population (n = 2) is, for example, predicted to give about a five
times larger LFP signal compared to firing of a neuron in the L23
population (n = 1).

3.2.2. gLPA-2: Two Postsynaptic LFP Profiles
The corresponding results for gLPA-2 (K = 2), i.e., with two
postsynaptic LFP profiles assumed for each laminar population,
are given in Figure 3. With two LFP postsynaptic profiles (and
twice as many free parameters to vary) the relative error is
reduced to 0.059 (0.062 for the depicted time window). The
associated component profiles in Figures 3B–E reveal that gLPA-
2 in particular appears to better account for the LFPs at the onset
of strong synaptic activation, for example, around t = 510 ms
for the LFP generated by the L4 population (n = 2) and around
t = 520 ms for the LFP generated by the L5 population (n =

3). For example, unlike gLPA-2, gLPA-1 fails to account for the
initial superficial LFP negativity (for depths down to ∼0.5 mm)
and the simultaneous LFP positivity immediately below (for
depths between ∼0.5 and ∼0.8 mm) for the onset at ∼510 ms.
This reflects that while gLPA-1 assumes strictly spatiotemporally
separable postsynaptic LFP contributions, gLPA-2 does not
(since it involves a sum over two spatiotemporally separable
contributions). With a sharp onset of strong synaptic input such

FIGURE 2 | gLPA-1 decomposition of LFP data. Results from fitting gLPA-1 (K = 1; Equation 2) to LFP data for a time segment where the network is driven by

12.5 Hz oscillatory input in the thalamic relay cells. (A) Comparison of ground-truth LFP (“true” LFP; top) with LPA prediction (middle) with difference shown in bottom

panel. (B–E) Estimated contributions from the four laminar components (color plots) with spatial profiles (L1n ) shown left and temporal profiles [green:rn (t);

black:Rn (t) = h1 ⊗ rn ] below. Fitted parameters: 11 = 0.40 ms, τ1 = 5.32 ms.
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FIGURE 3 | gLPA-2 decomposition of LFP data. Results from fitting gLPA-2 (K = 2; Equation 4) to LFP data for a time segment where the network is driven by

12.5 Hz oscillatory input in the thalamic relay cells. (A) Comparison of ground-truth LFP (“true” LFP; top) with LPA prediction (middle) with difference shown in bottom

panel. (B–E) Estimated contributions from the four laminar components (color plots) with spatial profiles (black:L1n , red:L
2
n ) shown left and temporal profiles [green:rn (t);

black:R1n (t) = h1 ⊗ rn, red:R
2
n (t) = h2 ⊗ rn] below. Fitted parameters: 11 = 0.48 ms, τ1 = 3.85 ms, 12 = 4.80 ms, τ2 = 4.15 ms.

violation of spatiotemporal separability is expected due to the so
called intrinsic dendritic filtering effect (Pettersen and Einevoll,
2008; Lindén et al., 2010; Pettersen et al., 2012). As the high-
frequency parts of the LFP will stem from shorter current dipoles
than the low-frequency parts, the LFP immediately after the sharp
onset of synaptic input will have a different spatial profile than
later. This lack of spatiotemporal separability in the LFP from
individual populations was also observed in previous applications
of the current network model (Glabska et al., 2014), as well as in
the original LPA analysis of the stimulus-evoked LFP data from
rat barrel cortex (Einevoll et al., 2007).

The fitted time constants of the two postynaptic LFP
contributions are similar: τ1 = 3.85 ms and τ2 = 4.15 ms,
respectively (This is also similar to the fitted time constant
τ1 = 5.32 ms found with gLPA-1). The fitted delay parameters
are different, however. While the delay of the first component
is 11 = 0.48 ms (similar to the value 11 = 0.40 ms
found for gLPA-1), the second component starts more than four
milliseconds later, i.e., 12 = 4.80 ms.

3.2.3. gLPA-3: Three Postsynaptic LFP Profiles
With three postynaptic LFP profiles, i.e., gLPA-3, the relative
error is reduced further from 0.093 for gLPA-1 and 0.059 for
gLPA-2, to 0.049 (Figure 4; For the depicted time window
only, the error is 0.056). Thus, the relative reduction in error
by going from two (gLPA-2) to three (gLPA-3) postsynaptic
LFP contributions is smaller (17%) than when going from one

(gLPA-1) to two (gLPA-2) contributions (37%). We also observe
that the addition of a third LFP kernel in gLPA-3 does not
simply add a new component compared to the two components
identified by gLPA-2. The two fitted components in gLPA-2 had
similar time constants τ1 and τ2 of about 4 ms, but delays 11

and12 differing by more than 4 ms. The three fitted components
in gLPA-3, on the other hand, have three rather different time
constants (τ1 = 6.85 ms, τ2 = 4.70 ms, τ3 = 12.01 ms), and
delays 1 varying from 0 to more than 10 ms.

3.3. Interpretation of gLPA Components
Proper assessment of the performance of data analysis methods
is much easier when benchmarking data for which the ground
truth is known, is available (Denker et al., 2012). In the context
of laminar population analysis this will mean benchmarking
data where the postsynaptic LFP contribution following action-
potential firing in a specific laminar population is available.While
such benchmarking data are very difficult, if possible at all, to
come by by experimental means, they can straightforwardly be
constructed in the present model world.

The benchmarking data was constructed in two steps. First,
the spike times from each excitatory population were recorded
from the normal network simulations. Results for the case with a
12.5 Hz stimulation are shown in the panels in the left column of
Figure 5. Second, the spikes from each populations were used to
generate synaptic inputs (and thus LFPs) onto their postsynaptic
targets in an otherwise disconnected network. The resulting
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FIGURE 4 | gLPA-3 decomposition of LFP data. Results from fitting gLPA-3 (K = 3; Equation 4) to LFP data for a time segment where the network is driven by

12.5 Hz oscillatory input in the thalamic relay cells. (A) Comparison of ground-truth LFP (“true” LFP; top) with LPA prediction (middle) with difference shown in bottom

panel. (B–E) Estimated contributions from the four laminar components (color plots) with spatial profiles (black:L1n , red:L
2
n , cyan:L

3
n ) shown left and temporal profiles

[green:rn (t); black:R
1
n (t) = h1 ⊗ rn, red:R

2
n (t) = h2 ⊗ rn, cyan:R

3
n (t) = h3 ⊗ rn] below. Fitted parameters: 11 = 0.02 ms, τ1 = 6.85 ms, 12 = 0.05 ms, τ2 = 4.70 ms,

13 = 10.34 ms, τ3 = 12.01 ms.

LFPs are shown in the four panels in the rightmost column of
Figure 5. These spatiotemporal LFP patterns, each reflecting the
LFP contribution from a particular laminar population, can then
be compared with estimates from gLPA decompositions of the
LFP data stemming from the full simulations, cf. Figures 2–4.

In Figure 6 we compare the predicted spatiotemporal LFP
components generated by the various gLPA methods with the
LFP found by single-population activation of the disconnected
network (“true” LFP). The best agreement is observed for the
layer-4 population (n = 2, second column in Figure 6) where
visual comparison reveals very similar patterns and a relative
mean square deviation <24 for all three gLPA methods (Note
that only the 12.5Hz data is included in this error measure). The
predictions for the layer-5 population (n = 3, third column) are
also fairly accurate both for gLPA-2 and gLPA-3, with gLPA-3
also picking up the abrupt “inversion” of the LFP pattern around
t = 540 ms which is probably due to afterhyperpolarization of
the layer-5 neurons following the spiking (Buzsáki, 1988). gLPA-
2 predicts a qualitatively accurate postsynaptic LFP pattern for
the layer-2/3 population (n = 1, 1. column in Figure 6), while
gLPA-3 makes a poorer prediction for this population. For the
layer-6 population all gLPA methods essentially fail in predicting
accurate postsynaptic LFP patterns.

Comparison of the corresponding CSD patterns is shown
in Figure 7, revealing that both gLPA-2 and gLPA-3 in general
predict quite accurate spatiotemporal CSD components for the

layer 2/3, layer-4, and layer-5 populations, while they largely fail
for the layer-6 population.

3.4. gLPA Decomposition with Population
Firing Rates Estimated from MUA
So far we have taken advantage of being in a simulated model
world where every spike, in fact every minute detail of the system,
can be tracked. This has allowed us to investigate the second step
of gLPA analysis, i.e., the estimation of LFP profiles given a set
of time-resolved population firing rates rn(t), in detail. When
analysing experimental data, these population firing rates must
instead be estimated from the data itself.

Population firing rates may be estimated from experiments
in several ways. Multielectrodes with small electrode contacts
record sharp spikes from neurons close to the contacts (Buzsáki,
2004). These can detected from MUA recordings by some
thresholding procedure and pooled to provide estimates of
population firing rates. In the original LPA analysis of Einevoll
et al. (2007) the multielectrode contacs were relatively large
(40 µm in diameter) and as a result sharp spikes were less
prominent, presumably due to spatial averaging effects (Ness
et al., 2015). Thus, the population firing rates were instead
estimated by rectification of the high-pass filtered extracellular
signals, a procedure that has been shown to give results similar
to the spike-detection method in an experimental setting (Ulbert
et al., 2001) and to ground-truth spike-train results in a detailed
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FIGURE 5 | Ground-truth LFPs activated by single laminar populations. (A,C,E,G) Raster plots of network activity from excitatory populations used in gLPA

analysis for simulation with oscillatory current with frequency 12.5 Hz injected to the thalamus for times between 100 and 600 ms. (A) layer 2/3 (n = 1), (B) layer 4

(n = 2), (C) layer 5 (n = 3), (D) layer 6 (n = 4). (B,D,F,H) Corresponding LFP profiles from synaptic activation of an otherwise disconnected network with spikes from

individual populations (left column).
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FIGURE 6 | Comparison of gLPA components with “ground-truth” LFP components from disconnected network. Top panels: Ground-truth LFP

(“true-LFP”) from selective synaptic activation by recorded spikes in neurons belonging to a particular laminar population, to an otherwise disconnected network.

(Continued)
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FIGURE 6 | Continued

Middle panels: Corresponding gLPA components. Bottom panels: Difference between ground-truth (top) and gLPA prediction (middle) panels. First column

corresponds to layer 2/3 (n = 1), second column to layer 4 (n = 2), third column to layer 5 (n = 3), fourth column to layer 6 (n = 4). (A) Top section of 12 panels

corresponds to gLPA-1, (B) middle section to gLPA-2, and (C) bottom section to gLPA-3. Stimulus and time segment correspond to Figures 2–4. The origin of the

inversion of the LFP pattern around 540 ms is probably due to afterhyperpolarization of the layer-5 neurons following the spiking (Buzsáki, 1988).

model study (Pettersen et al., 2008).While a comprehensive study
of the applicability and accuracy of the procedures for estimating
population firing rates are beyond the scope of the present
study, we here briefly investigate the effect on the estimated LFP
profiles when replacing ground-truth population firing rates with
population firing rates estimated fromMUA signals.

In the topmost panel in Figure 8A we see the high-pass
filtered and subsequently rectified MUA for the same time slot
as considered above for the LFP signals. In the panel immediately
below we see the best fit of Equation 9 when assuming Npop =

4 populations in the optimization, illustrating that the MUA
model accounts well for the MUA data. The corresponding
fitted spatial (Mn(z)) and temporal profiles [rn(t), black lines]
are shown in Figure 8B. Note that these MUA-based estimates
for the population firing rates (rn(t)) do not predict absolute
magnitudes of firing rates, only the relative time course (Einevoll
et al., 2007; Pettersen et al., 2008).

Comparison with the ground-truth firing rates (green lines)
reveals some interesting differences. First, the estimated firing
rate for population 1 (r1(t)) is seen to be in poor agreement
with the ground-truth firing rate of population 1. However, the
estimated firing rate for population 2 (r2(t)) is instead seen to
be in good agreement with the population-1 ground-truth rate.
Inspection of the estimated spatial profiles M1 and M2 explains
why: While the excitatory neurons of layer 2/3 (1000 RS and 50
FRB cells with somas at depths 450–850 µm, cf. Table 1) and
layer 4 (240 SS cells with somas at depths 850–1150 µm) were
assumed to be separate laminar populations in the above gLPA-
analysis using the ground-truth firing-rates, these populations
have been effectively merged in the MUA-based analysis. This
is not surprising since there are only 240 SS cells compared to
1050 RS+FRB cells, so that the spike signals from the population
of layer-4 SS cells are evidently too small to be identified as a
separate laminar population. However, the sum of the population
firing rates of populations 1 and 2 are seen to be quite well
estimated from the MUA signal. The depth profiles of the layer-
5 (800 IB and 200 RS cells with somas at depths 1150–1650
µm, cf. Table 1) and layer-6 populations (500 RS cells with
somas at depths 1650–2150 µm) are identified quite accurately
by the MUA-based analysis, cf. M3(z) and M4(z) in Figure 8B.
The depicted population firing rates of these populations only
reproduce the overall gross features of the temporal firing-rate
profiles, though.

If the goal per se is to estimate the time-resolved population
firing rates as accurate as possible, the above comparisons point
to further explorations of questions such as whether, say, three
populations (Npop = 3) should be assumed instead of four,
whether the MUA-estimated firing rates is better compared
with ground-truth population firing rates where also inhibitory
neurons are included, or whether spatial profiles Mn(z) with

other shapes than trapezoids should be considered. However, the
key question here is how much the LFP profiles predicted by
gLPA is affected by inaccuracies in the estimated population firing
rates.

The results for gLPA-1, i.e., the original LPA method, when
using the MUA-derived population firing rates are depicted in
Figure 9. While the relative LFP fitting error is about twice as
large as that for the results with ground-truth firing rates in
Figure 2 (0.2 vs. 0.09), the fitted spatial profiles L1n are generally
very similar. When comparing the spatial profiles for the two
methods in Figures 9B–E, we see that they are almost identical
for populations 3 (L13) and 4 (L14), and mainly differ by a scaling
factor for population 2 (L12). Only for population 1 (L11), the
predictions are substantially different, but this population in any
case carries very little of the total LFP signal in the resulting
fit (cf. the spatiotemporal plot in Figure 9B). Thus, despite the
inaccuracies in the prediction of the population firing rates (cf.
Figure 8), we find the predicted LFP profiles to overall be quite
accurate in the present Traub-model example.

4. DISCUSSION

In the present paper we have introduced the generalized laminar
population analysis (gLPA) for analysis of multielectrode data
from cortex, and possibly other brain structures with a laminar
organization. gLPA extends the original LPA method (Einevoll
et al., 2007) in that it allows for a larger set of basis functions in
which the postsynaptic LFP contribution generated by a single
population can be expanded. To test the various versions of
gLPA, that is, gLPA-1 (original LPA), gLPA-2 and gLPA-3 with
one, two, and three separate LFP basis functions, respectively, we
have generated model-based benchmarking data. In particular,
we have used a biophysical forward-modeling scheme based on
volume-conductor theory to compute virtual LFP data from
network activity in the comprehensive thalamocortical network
model developed by Traub and coworkers (Traub et al., 2005).

We first investigated how much of the LFP data the various
gLPA versions could account for. The benchmarking data set was
based on oscillatory network activation by means of the thalamic
neurons receiving sinusoidal currents for a set of eight different
frequencies between 2 and 200 Hz. For the original LPA method
(corresponding to gLPA-1) the error, that is, relative mean square
deviation between the true LFP and the LPA prediction, was
0.093. For gLPA-2 this was reduced by 37% to 0.059. For gLPA-
3 an error of 0.049 was found, implying a more moderate error
reduction of only 17% compared to gLPA-2.

While the gLPAmethods were all found to account well for the
“true” LFP data, that is, the fitting errors were all small, a close
inspection of the gLPA-predicted LFP reveals small temporal
“ripples” not present in the “true” LFP. These ripples, with ridges
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FIGURE 7 | Comparison of CSD profiles from gLPA components with profiles from “ground-truth” LFP components from disconnected network.

(A–C) CSD components computed from the LFP components in Figures 6A–C by means of the kCSD method (see Methods).
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FIGURE 8 | Population decomposition of MUA signals. (A) Comparison of ground-truth MUA (“true’ MUA; top) with MUA signal predicted by best fit to MUA

decomposition model in Equation 9 (middle) with difference shown in bottom panel. Data corresponds to the time segment where the network is driven by 12.5 Hz

oscillatory input from the thalamic relay cells as in Figure 2. Mean square error of the predicted MUA across the entire simulation protocol is 0.14. (B–E) Estimated

contributions to the MUA signal from the four laminar components (color plots) with spatial profiles (Mn (z)) shown left. Population firing rates [black:rn (t)] are shown

below together with corresponding ground-truth firing rates used in previous gLPA analysis (green). Note the different units for the two firing-rate estimates as the

MUA-based estimates (black) do not predict absolute magnitudes of firing rates, only the relative time course (see text).

FIGURE 9 | Population decomposition of LFP signals with MUA-based firing-rate estimates. Results from fitting gLPA-1 (K = 1; Equation 2) to LFP data for a

time segment where the network is driven by 12.5 Hz oscillatory input in the thalamic relay cells with MUA-based firing-rate estimates, cf. Figure 8. (A) Comparison of

ground-truth LFP (“true” LFP; top) with LPA prediction (middle) with difference shown in bottom panel. (B–E) Estimated contributions from the four laminar

components (color plots) with spatial profiles (L1n ) shown left and temporal profiles [black:Rn (t) = h1 ⊗ rn] below. Fitted parameters: 11 = 0.63 ms, τ1 = 12.65 ms. To

facilitate comparison with LPA decomposition results from using ground-truth firing rates depicted in Figure 2 (green spatial and temporal profiles), the time-convolved

firing rates Rn (t) are scaled to have a maximum value of one in the depicted time interval, while L1n is scaled correspondingly to keep the product L1n · Rn (t) fixed.
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typically a couple of milliseconds apart, stem from the similarly
rippled temporal structure of the population firing rates (see
e.g., green lines in panels D and E in Figure 2) combined with
the choice of the sharp onset exponentially decaying temporal
kernels h(t). With temporal kernels with a smoother onset, for
example a so-called α-function (Dayan and Abbott, 2001), or
a temporally more smoothed firing rate, these ripples would
expectedly be reduced.

Both experiments (Einevoll et al., 2007) and modeling
studies (Glabska et al., 2014) have revealed transient
spatiotemporal LFP patterns following strong synaptic activation
that are not separable in space and time, i.e., not describable by
a product of single spatial and temporal functions. Such patterns
are expected from the so called intrinsic dendritic filtering
effect (Pettersen and Einevoll, 2008; Lindén et al., 2010; Pettersen
et al., 2012) since high-frequency parts of the LFP originate from
shorter current dipoles than the low-frequency parts. gLPA-2
with two postsynaptic (spatiotemporally separable) LFP kernels
can account for these effects, while gLPA-1 with a single LFP
kernel by construction cannot.

When comparing with ground-truth results for the
postsynaptic profiles, gLPA-1, gLPA-2, and gLPA-3 all predict
qualitatively correct postsynaptic LFP and corresponding CSD
profiles for the three topmost laminar populations (layer 2/3,
layer 4, layer 5). The agreement with generally better for CSD
than LFP, however. Overall, both gLPA-2 and gLPA-3 are seen
to give more accurate results than gLPA-1. The comparison of
gLPA-2 vs. gLPA-3 is less clear-cut, and it is difficult to make a
clear general recommendation from this study alone regarding
what method to use in other situations.

In fact, while we have presented some compelling evidence
that the gLPA methods give fairly accurate results, we have
not pursued a systematic study of the expected relative merit
of the candidate gLPA methods, i.e., gLPA-1, gLPA-2, and
gLPA-3, when comparing with experiments. While gLPA-3
gives the smallest fitting errors, it also has the most free
parameters and thus the highest risk of overfitting. In this
case the prediction accuracy will not improve, or even be
reduced despite the better data fit (This was exemplified
above by the similar prediction accuracy of postsynaptic CSD
and LFP profiles for gLPA-2 and gLPA-3, despite the better
fit of gLPA-3 to model data). To select among different
candidate models with different number of model parameters,
it is customary when comparing to experimental data to
augment the present error term with a model-complexity

penalty based on the number of free model parameters.
This is typically achieved using Akaike (AIC) or Bayesian
(BIC) information criteria (Akaike, 1974; Schwartz, 1978). In
dynamical causal modeling (DCM) (David and Friston, 2003)
where neurophysiological data is fitted to a set of differential
equations representing the dynamics of underlying neural-mass
models, a more general Bayesian model selection scheme is
used (Marreiros et al., 2010). A detailed inquiry into the best
gLPA scheme to use in various experimental settings is not
pursued here, however.

In this work we have rather concentrated on conceptual
aspects of LPA analysis, namely how the addition of components

changes the description of the observed LFP signal. In the context
of experimental data analysis, however, one must also address
the other element of LPA analysis, namely the estimation of
population firing rates from data. In an in vivo setting such
population firing rates may be estimated from the high-frequency
part (MUA) of extracellular recordings either by counting spikes
detected by a suitable spike-detection method (Ulbert et al., 2001;
Buzsáki, 2004) or by rectification of the MUA signal (Ulbert
et al., 2001; Einevoll et al., 2007; Pettersen et al., 2008). For the
present Traub-model example we found that despite differences
in the predicted population firing rates, the spatial LFP profiles
predicted from LPA analysis (gLPA-1) were generally similar.

Finally, the present model-based approach for developing and
testing methods for LFP analysis is an open-ended approach that
should be pursued further as new, even more comprehensive and
detailed network models become available (Denker et al., 2012;
Einevoll et al., 2013a).
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