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Abstract 
 

Many countries support electrification of the road transport in order to lower CO2 emissions. Norway has 

been a phenomenon in this area, with highest plug-in electric vehicle number per capita. This study 

analyses Norwegian policy contribution to the learning effect in the electric car industry for the year 

2010-2015. Model 1 with internal learning and Model 2 with internal and external learning are modelled. 

First, learning curves for the world battery electric vehicle market are estimated. Then prices are re-

calculated without Norwegian battery electric vehicle sales. Results show, that without Norway, prices for 

battery electric vehicles would have been higher by 1 to 23 percent, depending on the car model.  
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1 Introduction 
 

More and more evidence shows that current climate situation is the result of human activity (IPCC, 2014). 

Most governments and scientists across the world recognize the necessity of urgent emissions reduction 

worldwide. There is also an increasing recognition that the best way to internalize this damage is by 

switching away from dirty to clean technologies. Emission of carbon dioxide -CO2- gases is the biggest 

externality ever seen. In 2013 transport accounted for 23% of global CO2 emissions (IEA, 2015b). No 

surprise there is a big focus on how to reduce emissions from the road traffic.  

Currently, big debates are going on about the electrification of the road transport and alternative, less 

polluting fuels. Battery electric vehicles (BEV) with their current high prices need some help from the 

government to kick start its popularity. Countries with little support for BEVs from the government are 

not doing well with the number of BEVs on the road. To get certain share of the market BEVs has to 

become cheaper and more functional. For both of those conditions to be satisfied, technological progress 

is important. Research and Development and Learning by Doing could influence BEVs production costs 

and design. Due to spillovers, firms under invest in research and government intervention might be 

necessary to encourage developments in the market. Another argument for government support for BEVs 

is network effects. They appear when the utility of consumers is increasing in the number of owners of 

the same good (Greaker and Midttømme, 2014). This means that a certain network needs to be 

established before reaping the benefits. For example, a good charging infrastructure for BEVs.           

Several studies has been published about forecasting production costs, prices and the cost of ownership 

for hybrid electric vehicles (HEVs), PHEV and BEVs (i.e. Thiel et al. (2010), Delucchi et al. (2014), 

Weiss et al. (2012)). All studies consider electric vehicles (EV) together, although they are quite different 

in their technology. This might be due to the fact that considering only particular types of EVs one can 

run into data availability problem. Some of the previous studies have got high uncertainty in projection of 

production cost decline.  

In this thesis the learning curve approach was used to project ex-post learning rate for BEVs. Every 5
th

 

car registered in Norway in 2015 was electric car according to ZSW (2016). Norway is a special case in 

the BEVs market, as no other country can yet match Norway’s proportion of all-electric cars. They also 

are on the top of the table when it comes to the subsidies for BEVs. Therefore, a situation “world without 

Norwegian BEVs sale” was modelled.  Thus this thesis investigates the following research question:  

How much has Norwegian policy contributed towards the learning effects in the electric car industry?  
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The structure of this thesis is as follows: chapter 2 provides background information about current climate 

situation, global and Norwegian electric vehicle market and Norwegian governmental policy towards 

BEVs. Chapter 3 presents theoretical framework and literature review. Chapter 4 describes data collection 

and method. Chapter 5 presents results and discussion. Chapter 6 concludes the thesis. 
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2 Background 
 

In this section the background information for this thesis will be discussed. Recent information about 

climate change will be presented in the first part and a more detailed presentation of the electric vehicles 

with terminology will be presented in the second part. The third paragraph will summarize Norwegian 

governmental policy and look closer into Norwegian electric vehicle (EV) market.   

2.1 Recent numbers in Climate change  

2.1.1 Global perspective 

 

Despite the growing awareness of climate change in recent decades, greenhouse gas (GHG) emissions 

have continued to rise. Carbon dioxide (CO2) concentrations in the atmosphere have been increasing 

significantly over the past century. According to IEA (2015b) the 2014 concentration of carbon dioxide 

was about 40% higher than in the mid 1800 when it was 280 parts per million (ppm). In the last ten years 

an average growth of CO2 was 2 ppm/year in the last ten year. Global CO2 emissions reached 32.2 

GtCO2 in 2013, an increase of 2.2% of 2012 CO2 level. Although this growth was higher than in 2012, 

but it was lower than the average annual growth rate since 2000. The long going debate about the cause of 

climate change has quiet down after The Fifth Assessment Report from the Intergovernmental Panel on 

Climate Change (Working Group I) stated that human influence on the climate system is clear (IPCC, 

2014). According to the report, the use of energy among human activities represents by far the largest 

source of emissions. Two sectors produced close to two-thirds of global CO2 emissions in 2013: 

electricity and heat generation accounted for 42%, while transport accounted for 23% (IEA, 2015b). 

Figure 1 illustrates different sources for transport emissions. It is clear that emissions from road are 

driving the growth of transport emissions.   

Figure 1: World CO2 emissions from transport 

 

 

 

 

 

Data source: IEA (2015b).  
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2.1.2 Norwegian perspective 

 

Since this thesis is looking separately into Global and Norwegian EVs market, it is important to shortly 

mention the climate situation in Norway. According to SSB (2015), the two main sources of greenhouse 

gas (GHG) in Norway are oil and gas extraction and road transport. Table 1 below provides a short 

summary of how shares of emissions from these two sources have changed over the years. In 2014 they 

made up to 45% of total GHG emissions in Norway.  

Table 1: Two main sources of GHG emissions in Norway 1990-2014 

 
1990 2013 2014 

Oil and gas extraction - stationary combustion % of total emissions 15% 24% 26% 

Road transport % of total emissions 15% 19% 19% 

% of total emissions 30% 43% 45% 

Data Source: SSB (2015). 

 

Figure 2 shows road emissions only in Norway. In 2014 emissions from passenger cars slightly 

decreased, but total level of road emissions was still higher than previous years due to increase in other 

type of vehicle emissions. If in 1990 transport emissions was 7.8 million tonnes of GHG, in 2014 it 

increased to 10.2 million tonnes.   

 

Figure 2: Road GHG emissions in Norway 

 

Data source: SSB (2015).  

0 

1 

2 

3 

4 

5 

6 

Passenger cars Light duty 
vehicles 

Heavy duty 
vehicles 

Motorcycles and 
mopeds 

G
re

e
n

h
o

u
se

 g
as

 t
o

ta
l, 

m
ln

 t
 

Source of pollution 

1990 

2013 

2014 



5 
 

2.2 Battery electric vehicles (BEVs)  

2.2.1 BEVs overview 

 

In response to increasing pollution from traffic and government EV support policies, vehicle 

manufactures support the gradual electrification of road transport via the introduction of innovative 

transport that is an alternative to the conventional polluting cars. The innovative transport includes 

hybrid-electric vehicles (HEVs), plug-in HEVs, fuel-cell-electric vehicles (FCEVs) and battery-electric 

vehicles (BEVs) (Weiss et al., 2012). This work will focus on the latter. Although many countries have 

introduced various incentives to increase amount of HEVs and BEVs on the road, their current prospects 

are darkened by high vehicle prices together with limited payload, uncertainty regarding durability and 

safety and short driving range just to name a few. These vehicles will have to become cheaper and more 

functional in order to achieve substantial market shares.  

In this work BEVs are passenger cars that draw energy for mechanical propulsion from a rechargeable 

electric power storage device – battery (Weiss et al., 2012). BEVs history dates back to 19
th

 century 

(Bellis, 2010). In the last few decades BEVs were remembered again after the concerns about the security 

of fossil fuel supply and transport pollution grew. Some small producers have offered BEVs for several 

years now, but most major manufactures have only started few years ago with their all electric 

commercial vehicles. For example, Tesla Roadster introduced in 2008, Mitsubishi introduced their          

i-MiEV in 2010, the same year as Nissan introduced their Nissan Leaf.  After that every year there are 

numerous models of BEVs that are introduced into the market. Two figures below explain the global 

trends in the EV field. Figure 3 shows global sales of both BEVs and PHEVs for the last 5 years. Figure 4 

presents most popular BEVs brands in Europe between 2009 and 2014.  

Figure 3: Global annual sales perspective of electric cars  

 

 

 

 

 

Data source: (IEA, 2015a) 

 



6 
 

   Figure 4: BEV sales per model in Europe 2009 - 2014 

 

 

 

 

 

 

 

 

Data source: Witkamp (2015).  

 

According to Nykvist and Nilsson (2015) the single most important factor in achieving affordable mass-

market BEVs is their relative cost. The key difference in cost between BEVs and conventional vehicles 

(CV) is the power train, or the battery. Nykvist and Nilsson (2015) in their research found that in order to 

become cost-competitive with conventional vehicles BEVs battery packs needs to fall below $150 per 

kWh. In their research lowest battery costs were found for market leaders Nissan and Tesla, at around 

$300 per kWh. Although the number of BEVs on the road grows every year, they still make up only a 

small part of road transport. Investments in research and development in batteries is needed to encourage 

the growth of this market. Tesla Motors has introduced first fully electric sports car, Tesla Roadster, that 

could travel 320km per charge (Tesla, 2009). This is so far the longest travel per charge. Tesla also 

announced that they will allow to use their patented battery technology in order to spurt the development 

of the batteries for the electric vehicles (Gallucci, 2014).     

 

2.2.2 Norwegian BEVs market overview 

 

Norway is a special case in the BEVs market. No other country can yet match Norway’s proportion of all-

electric cars. According to Statens Vegvesen (2015) there were 3181130 road transport vehicles 

registered in Norway in 2015. Grønnbil.no (2016) reports that there were 66276 BEVs registered in 

Norway in 2016, which constitutes to 2% of all vehicles on the road. This percentage is not so big, but 
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Norway is a leader among other countries. For example, Netherlands is the next big country for BEVs, 

but they have only 1% (Jolly, 2015).  

Sometimes BEVs are called “zero emission” vehicles because driving one does not produce any direct 

tailpipe emissions. This is a significant difference from the conventional vehicles (CV). However, 

emissions might occur while generating electricity for electric vehicle charge. Norway is considered to be 

a place with clean energy because of its hydropower. This is why using BEVs in this country is 

considered to have zero emissions. If you compare it to other countries that use fossil fuels for electricity, 

then BEV charged with that kind of electricity has some pollution just by charging. This is important not 

only for global emissions, but local emissions, too. Even BEV charged with “dirty” electricity are 

beneficial for the city life as they have no emissions when driving.  

Large parts of the electricity used in Norway come from hydropower (Statkraft, 2016). Norway is the 

country with largest per capita hydropower production. A significant share of the total hydroelectricity 

production is consumed in the country and many of the hydroelectric plants in Norway can adjust and 

adapt well to the variations of demand for electricity. Government also constantly invests into renewable 

energy market (i.e. Nordic Power Supply System) in that way making sure Norway increases its ability to 

produce more energy and produce even a higher surplus of electricity.   

Figures below provide an overview of current BEVs situation in Norway.  

 

Figure 5: Registered EVs in Norway 2014-2016  

 

 

 

 

 

 

 

 

Data source: Grønnbil.no (2016).    . 
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    Figure 6: Market share of different stock of BEVs in Norway in 2016 

 

 

 

 

 

 

 

Data source: Grønnbil.no (2016). 

 

2.3 Policies for EVs 

2.3.1 Norwegian policy overview 

 

In Norway, government incentives towards electric car market makes electric car purchase price 

competitive with conventional cars (Holtsmark and Skonhoft, 2014). Due to this public subsidy, the 

number of electric cars on the Norwegian roads increased rapidly, especially in the last few years, when 

the better infrastructure for charging was developed.  

The Norwegian subsidies to electric vehicles (BEVs) started in the 90’s. The initial reason was the 

national companies Energi Norge and Think, who constructed small, environmentally friendly BEVs for 

government owned institutions, such as universities, and for local transport in urban areas. In 2011 and 

2012 both companies went bankrupt and were sold to foreign investors who stopped all production.  

Table 2 provides an overview of the Norwegian subsidy policy history. The subsidy policy includes non-

recurring taxes. This implies a no purchase fee and a reduced percentage of Value Added Tax (VAT). 

There are no public parking fees, no toll or ferry payments, no annual road tax and allowed use of bus 

lanes and free charging. In the Oslo-region, businesses and communities are encouraged to build charge 

stations, as up to 50% of the cost may be covered by the government (Oslo, 2016). The mix of generous 

economic incentives and supply of powerful EVs, made the market grow exponentially over the next 

years.  
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Table 2: Norwegian subsidy policy for EVs 

Year Government action 

1990 Abolishment of import tax 

1996 Reduced annual registration tax 

1997 Exemption from road toll 

1999 Free parking in public spaces 

2000 Reduced company car tax  

2001 0% VAT 

2005 Access to bus lanes nationwide 

2008 Oslo launches EV charging infrastructure program 

2009 Free access to road ferries 

Data source: EVNORWAY (2015). 

 

When the government announced the subsidies, they said that those will be in effect until there are 50,000 

registered “zero emission vehicles” in Norway or until the year 2018 – whichever comes first 

(Klimaforliket, 2011-2012). However, the subsidies have been so effective that 50,000 BEVs was reached 

already in 2015 and for now the subsidies stay in place.  

The political reasoning for the subsidies today is to reach the EUs emission reduction target for the 

transport sector in 2020 and make air quality better in the urban areas (EC, 2016).  

Around the time the Norwegian companies went out of business, other, major car-companies started 

producing their own BEVs. These cars were meant to compete with conventional vehicles and are, 

therefore, much more powerful than their Norwegian predecessors. Especially the battery-technology 

used made a big difference, as the newer BEVs have a reach of over 100 km before they need charging. 

An American analysis (Hawkins et al., 2012) of the production-emissions of BEVs and CVs shows that 

the production-emissions of BEVs is about double that of CVs. This is mostly because of the production 

of lithium batteries for BEVs and that an empty fuel tank for a CV has yet to pollute much. The BEV has 

already polluted 13600kgCO2 (30000 pounds) by the time it is ready for use, compared to 6350kgCO2 

(14000 pounds) for a CV – in the region they are produced.  

Although Norwegian policy is often cited as an example in the media across the World, there is some 

criticism to it, too. For example, Holtsmark and Skonhoft (2014) argue that Norwegian policy should be 
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eliminated as soon as possible. They conclude that BEVs subsidies are harmful to the economy and to the 

society for various unintended effects that it creates.  

2.3.2 Global policy overview 

 

Around the World, a few countries encourage usage and production of the BEVs. Figure 7 below shows 

value of tax breaks in Euros for purchasing BEVs in various countries. Norway, of course, is on the top 

with its generous subsidies.  

 

Figure 7: Tax breaks on purchase and use of electric cars 

 

 

 

 

 

 

 

 

 

 

Source: (Jolly, 2015).  

 

US Federal government also has incentives in place for production of BEVs (CBO, 2012). There are a 

few, just to mention some: grants to companies that manufacture batteries as well as subsidised loans to 

expand facilities that produce BEVs.   
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3 Theoretical framework and literature review 
 

Climate change is at the centre of the debate in research and in politics. Making sure that climate change 

is under control is a long-term issue, therefore, technological progress is at a core of both the climate 

change problem and the solution. The following section will cover some relevant literature review and 

theory of the technological progress and learning curve. It will also look closer at relevant studies within 

the electric vehicle field.  

 

3.1 Technological progress in literature 
 

Technological progress matters both for the whole economy and for a single firm. Solow (1956) in his 

economic growth model teaches that sustained economic growth cannot be reached without continuous 

technological progress, which in turn requires investment in research and development. Competitive 

markets, climate change policies (i.e. in energy sector) and regulations make single firms look for ways 

how to improve their product and offer better price for the customers. This can be done as well through 

technological progress: either by developing new technologies or by reducing the costs of the existing 

technologies.  Technological progress of existing technology can be measured by the learning curve (also 

called technology learning, experience curve, technology change). In general there are two ways for 

technology to progress: either by research and development (R&D) or by Learning by Doing (LbD).  

3.1.1 Research and development  

 

Research and development (R&D) activities can be used for both developing new technologies and 

improving existing ones. R&D can involve:  

 Research (basic or applied) by using such inputs as investments and highly skilled labour 

 Pilot and demonstration plants by using such inputs as investments and highly skilled labour 

The process of R&D requires investment and, therefore, is costly. Another issue with R&D is that 

knowledge markets are imperfect and very often new technologies has to be made available to the public 

for the inventor to benefit from what was created (Pizer and Popp, 2008). In certain industry areas private 

firms might have enough incentives to finance some R&D activities without support from the 

government, for example, cosmetics market. The spillover effects in this kind of market are smaller than 

for example in computer technology market. What is more, although incentives for R&D exist, due to 

spillovers companies would still invest not enough into R&D.  When the new technology is released into 
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the market, the knowledge spillover effects may lead to newer innovations. What is more, although there 

is patent protection, depending on the field of technology, small modification to it can count as not 

copying and market can also experience new versions or copies of already existing technology (Levin et 

al., 1987). Such problems as incomplete patent protection, knowledge spillovers to other firms and 

movement of skilled workers might make investment into R&D too little or unattractive to the private 

firms. The knowledge spillovers provide benefit to the society as a whole, but not to the innovator.  Pizer 

and Popp (2008) in their work reports that social rates of return from innovation research come between 

30% and 50%. However, private marginal rates of return range between 7% and 15%. This shows that 

firms do not have incentives to provide socially optimal level of R&D activity. Because society in 

general, rather than the individual innovators, may receive much of the benefit from basic research, 

government may need to support R&D activities in certain fields.   

3.1.2 Learning by doing 

 

Learning by doing (LbD) or learning by experience is used for development of already existing 

technologies. LbD is “free” as no high investment in knowledge is required, the only costs are current 

production costs. Technological learning is a concept that permits the evaluation of the decrease in unit 

production costs when the cumulative production increases (Kahouli-Brahmi, 2008). The technological 

change as a result of the accumulated experience has been used in economic theory. Manufacturing 

industries operating in the competitive markets use it for the projection of future costs of production 

(Martinsen, 2011).  First time learning effects on the production costs were described by aeronautical 

engineer Wright (1936) where he discussed the relationship between cost and quantity. He noticed that 

the amount of labour needed for completing a given operation, such as constructing the airframe, declined 

when the operation was repeated and the workers’ level of experience increased. In his work Wright 

(1936) suggested a mathematical model for the learning curve:  

Equation 1  C = X
E         

  

Where C is the cost of building an airplane, X is accumulated production and E is a technology specific 

constant.   

Arrow (1962) in his work tried to formulate the effects of learning by-doing more precisely and drew a 

number of economic implications from those formulations. Later, a variety of mathematical formulas has 

been developed to estimate the cost decline that occurs as a new good is produced in greater numbers. 

The original learning curves were describing the costs of individual inputs and Boston Consulting Group 

in their research decided to extend the learning curve theory by taking total costs (BCG, 1968). In this 
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extension they also introduced a new term “experience curves” which included total costs and cumulative 

quantity.   

The equation that generally describes the learning curve is stated below:  

Equation 2  C(Xcum)=C0(Xcum)
E
   

 

Where   C0 is normalisation parameter,  

E parameter represents learning and is negative if learning rate exists, or 0 if there 

is no learning 

    Xcum is the accumulated production and  

C (Xcum) are the resulting costs  

 

Large values of E indicate a steep curve with a high learning rate.  

General graphical representation of the learning curve is presented in Figure 8. Low values on the 

horizontal axis (units produced) represent a process or technology that experiences significant reductions 

in costs. As more units are produced, the process is slowly perfected and additional decrease in costs is 

marginal. At this point, the process or technology is considered mature (Withum and Babiuch, 2012). 

 

Figure 8: General graphical representation of learning curve.  

 

 

 

 

 

 

 

 

A technology learning curve is most often presented in a double-logarithmic diagram. This presentation 

allows easier to identify the experience effect as learning curve becomes a straight line (Figure 9). Each 

Learning phase 

Steady state phase 
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time cumulative output doubles, costs fall by a constant percentage equal to the learning rate (LR). The 

change in price is referred to as the progress ratio (PR) (IEA, 2000). The relation between the PR and E 

learning parameter is:  

Equation 3  PR = 2
E
  

where E is negative and the LR is calculated by  

Equation 4 LR= 1-PR  

 

Figure 9: Technology learning curve for PV power modules 1976-1992 

 

 

 

 

 

 

 

 

 

 

 

Data source: IEA (2000).  

 

The learning curve in Figure 9 has PR of 82%. This means that every time cumulative production is 

doubled, the price is reduced to 0.82 of its previous level after doubling of cumulative sales. Then the LR 

from Equation 4 is 100-82=18%. This means that every doubling of cumulative sales reduces the price by 

18%. 

Many recent studies have used LbD method to predict the future prices. The issue with this is that 

originally LbD was an empirical measurement of LbD in manufacturing and not a tool to predict future 

costs (Jamasb and Kohler, 2008). What is more, there might be issues with the choice of learning rate that 

is used within the model to predict future costs. Learning rates are usually calculated using models of 

historical learning curves of similar projects from the past. There have been a number of researches done 
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that shows that learning rates are different even for the same type of technology and, therefore, using 

specific learning rate from previous studies might give wrong predictions. This is especially important for 

the new energy technologies, as there has been some studies reported with very different learning rates 

(McDonald and Schrattenholzer, 2001). Table 3 shows how different learning rates can be even for the 

same type of technology. McDonald and Schrattenholzer (2001) found that most likely differences in the 

learning rates occur due to variability in experience depreciation, short-term pricing behaviour, varying 

intensities of R&D, economies of scale, differences in performance measures, definitional differences, 

and cost variability for factors such as land, wages, and interest payments. 

 

Table 3: Learning rates for different technologies 

 

Data source: McDonald and Schrattenholzer (2001). 

 

3.1.3 Economic modelling of learning curves 

 

There is a lot of discussion in the literature about R&D and LbD and whether they should be presented as 

an inseparable part of innovation, or they could stand alone and represent different forms of investment. 

When LbD is considered as an average price reduction due to learning (accumulated production), the one-

factor learning curve (OFLC) model is used. Many studies have used this OFLC model to forecast cost 

reduction (Klaassen et al., 2005, Söderholm and Sundqvist, 2007, Ibenholt, 2002). The OFLC model 
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advantage is relatively easily accessible data: investments and production volumes are often well recorded 

compared to other cost drivers (Wiesentahl et al., 2012). Thus, reliable learning curves can be found for 

economic modelling purposes. In practice it is difficult to distinguish technological advancement due to 

just learning by doing or just by research and development. Therefore, the Two-Factor-Learning Curve 

(TFLC) model was developed in order to separate the effects of learning-by-doing and research and 

development. The TFLC model takes into account cumulative R&D expenditures or knowledge stock 

with regard to that technology. Wiesentahl et al. (2012) describe the TFLC for a given technology t and 

time period y the following way:    

Equation 5  Ct,y = aQt,y
α 

KS t,y
β 

 

Where  C - Costs of unit production,  

Q - Cumulative Production,  

KS - Knowledge stock (approximated through R&D investments) 

α - Elasticity of learning by doing, negative sign 

 β - Elasticity of learning by researching, negative sign   

a - normalisation parameter with respect to initial conditions 

 

So the one-factor model analyses only LbD, whereas the two-factor model has both LbD and R&D. 

According to Wiesentahl et al. (2012) experience showed that supporting R&D without supporting 

deployment of the technology has proven to be a sub-optimal policy strategy. Equally, supporting 

deployment without supporting R&D will be sub-optimal, too. 

It is important to mention internal and external learning here. Internal learning takes place within the 

boundaries of the firm whereas external learning occurs outside of the firm. For example, for this thesis, 

internal learning is something company achieves through making more units of that specific model and 

maybe by in-house R&D for that specific technology. However, BEV battery developments could be 

external learning, as all BEVs has it and it is a battery company that makes ones, not the car manufacture, 

for example. Or as mentioned in Ch 2, Tesla agreed to share their battery technology with anyone 

interested, to encourage the development in the market.  

Few more factors are important to consider when choosing economic models for modelling technology 

development. One of them is whether technology learning is a global phenomenon or whether learning 

develops at different rates due to specific factors in different regions. Depending on the answer global, 
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regional or a combination of those two can be chosen for simulating technology learning. In this work, a 

global approach will be used for few reasons. First of all, although Norway has many battery electric 

vehicles, they are not produced locally. So even if Norwegian contribution to the learning effect in the 

BEVs is evident, it is not a local or regional learning, as production is performed in other parts of the 

world. Second, very often technology (i.e. batteries for EVs) is the same in all countries, therefore leading 

to a globally defined learning rate.  

Another important factor in the modelling is price or cost of the technology. As mentioned earlier, a 

learning curve presents a development of the production costs, as a function of accumulated production. 

Diffusion of technologies is however, determined by market prices (Wiesentahl et al., 2012). In real 

market prices can differ strongly from the actual production costs. Often in the modelling of learning 

curves the price data is used instead of cost data simply for the reason that the first one is more accessible. 

The price data will be used in this work, too. Companies are very reluctant to provide actual production 

costs or reveal any kind of pricing strategy from which one could determine the cost of production.     

3.2 Environmental policy and Technological change 
 

Our climate is changing and there is no doubt now that growing consumption of fossil fuels had a huge 

impact on that (IPCC, 2014). Scientists and policy makers look for various ways on how to make policies 

so they influence alternative energy advancement and would stop or at least take climate change under 

control.  

Economic analysis of environmental policy is based on the idea that certain economic activities can create 

harmful consequences, which are called “negative externalities”. Externality is an economically 

significant effect of an activity with the consequences that affect other parties, not just the one that 

controls the externality-producing activity (JAFFE et al., 2004). The firms do not have economic 

incentives to minimize the costs of pollution. This is where environmental policy becomes important – it 

attempts to raise the incentive for a firm to minimize negative externalities. In the short run, efficient 

environmental policy requires a comparison of the marginal costs (MC) of reducing pollution with the 

marginal benefit (MB) of a cleaner environment. The trade-off between MC and MB is altered when 

technology is taken into account. Especially if considering technology innovations - cleaner equipment, 

cleaner methods, substitutes for environmentally harmful products, etc. It typically reduces the MC of 

achieving a certain unit of pollution reduction. Better results are achieved with lower costs and this can be 

beneficial for the environment, therefore, society and the firm that must obey the environmental policy.  
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Since technological advancement is one of the most important things for successful pollution control, key 

consideration when picking the policy instruments should be the impact of different policies on firm 

incentives to develop cleaner production technologies (Fischer et al., 2001). It can sometimes be a tricky 

choice, as short run situation may have different effects when compared to long term results. When 

talking about the deployment of technology there is an ongoing debate in the literature whether the 

government intervention would do good or bad. Some papers argue that there is a connection between 

climate policies and the rate of technology improvement (Bovenberg and Smulders, 1995, Goulder and 

Mathai, 2000). Jaffe et al. (2003) in their overview of policy and technology explains few reasons why 

policy and technology advancement could be related. First of all, public policies affect the prices of 

carbon based fuels and private firms are interested in investing in R&D in order to find cheaper ways to 

provide their product and win market share. What is more, higher fuel prices may induce new production 

methods that would require less of any kind of fuel. Also, as mentioned before, technology could improve 

through LbD. Therefore, firm incentives to move from usual process towards more green process could 

be stimulated by public policy through subsidies or indirectly through taxing and this would stimulate 

technological growth (Rosendahl et al., 2004).        

General guideline is that if the positive externalities exist, then government support would be beneficial. 

As mentioned earlier, in case of positive externality the underinvestment by the firms would occur. No 

firm would be interested in spending its money to do research which can be used by others to claim the 

profits. However, one has to be careful because if private companies gets all the benefits from technology 

progress (as if there are no positive spill over effects) then government support could lead to over-

investment in technological progress.  Kneese and Schultz (1978) argued that the potential to spur 

technological innovation may be the single most important criteria for environmental policy in the long 

run. Pizer and Popp (2008) in their research found that Environmental innovation responds to 

environmental policies and energy prices. Polzin et al. (2015) finds that literature on previous research 

done in renewable energy supports an idea for renewable energy deployment.    

One of the big debate questions in the environmental policy and technology area is whether 

environmental technology should be supported more than other type of technology. Some believe that 

science and technology policies should be neutral and should not be targeted to environmental concerns 

(OECD, 2002). The argument is based on the assumption that if externalities are properly internalised, 

there will be no need to point technology towards the right direction. However, this assumption is very 

hard to fulfil. Another reason why support for the environmental technology is often argued against is 

because public R&D may crowd out private research efforts. Still some research articles strongly argue in 

favour of directed technical change. Acemoglu et al. (2012) in their paper introduce endogenous and 
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directed technical change in a growth model with environmental constraints and limited resources. They 

found out that optimal policy would include both carbon taxes and research subsidies directed towards the 

environmental technology. Model with endogenous technology, the one which is influenced by the 

policy, provided a more optimistic scenario than model with technology driven by the market.  

 

When talking about the electric vehicle market it is important to mention Network effects. These effects 

are also related to government intervention for deployment of technology. Network effects appear when 

the utility of consumers is increasing in the number of owners of the same good (Greaker and 

Midttømme, 2014). This means that a certain network needs to be established before reaping the benefits.   

A consumer who adopts a good today will both increase the utility of the consumers already in the 

network, but also increase the incentive future consumers have to adopt that same good (Greaker and 

Midttømme, 2014). One obvious example of network externalities is electric cars market which would 

greatly benefit from a network of fast charging stations, for example. When it comes to government 

intervention and network externalities, Greaker and Heggedal (2007) shows in their research that it is 

important to wait for market signal before providing government support.  Although the authors studied 

hydrogen car market, the results are important for the electric vehicle market, too. Analysis showed that 

public policy to encourage hydrogen technology in the personal car market would not do any good due to 

network externalities unless the market is ready (Greaker and Heggedal, 2007). The signal from the 

market could be some use of hydrogen technology in the personal transport market. Norwegian 

government abolished taxes for the BEV first time in 1990 (http://www.evnorway.no, 2015). And 

although there might be other reasons why market picked up only in 2008, one of them might as well be 

network externalities. Oslo municipal launched BEV charging infrastructure program in 2008. Although 

there was movement in the BEV market and Norway even made BEVs themselves, the infrastructure was 

not fully established and BEVs might have been more attractive for business than personal life. 

Developing charging station infrastructure, moving from two seats to family electric cars, developments 

in the battery charging times and driving distance all this contributed towards the rapidly growing BEV 

market. More and more users of the BEVs and private firms’ investments into the technology could have 

been accepted as a signal from the market. Therefore, Norwegian policy makers announced various 

subsidies for electric vehicles from 2005. It seems that it has been the right time to do that, as Norway is a 

leading country by the number of BEVs per capita (EVNORWAY, 2015). 
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4 Data and methods 
 

Now that background and most relevant theory have been covered, it is time to present some empirical 

analysis. This section will start with describing data used for statistical analysis. Then methods and 

models will be introduced.  

4.1 Data collection and description 
 

The main objective of this thesis is to find whether Norwegian government regulation for BEV subsidies 

anyhow influenced the technological change in the BEV market in the world. To analyse this, we need 

information about number of BEVs that were produced every year in the world in total as well as number 

for each car model. Accumulated production number will be used for each year and each car model. We 

also need prices for each car model for each year. For further analysis accumulated supply of each BEV 

brand for each year in Norway is needed. Because data involves the same type of car models observed 

over some years, this data is panel data.   

Accumulated amount of BEVs in the world was provided by International Energy Agency (IEA). Then 

amount of different BEV models for each year were taken from different sources: for Nissan numbers 

were reported in the manufacturing reports; same with Tesla. Mitsubishi, BMW and VW were taken from 

auto industry blogs. KIA Soul EV numbers were provided by personal communication with the factory.  

Table 4 has data for BEV world market. The results from this statistical analysis should be interpreted 

with caution, as data sample is very small. However, even this small sample can give an indication of 

what is going on in the market. It was a very big challenge to collect data. This is due to the fact that 

BEVs are relatively new in the market and not much data is yet available. Such challenges as different 

titles (i.e. talking about the same vehicle: EVs, BEVs, all electric vehicles, Plug-in EVs) when looking for 

amount of BEVs and such problems as reported price (is it with government support? Is it including 

delivery fee? Is it simple model or model with leather seats?) when collecting price of BEVs were 

difficult to overcome. World data needed to be coordinated with the Norwegian data (Table 5) for 

comparison. This means that only car models that are present in Norway with data on quantity and price 

could be picked for the world market, too. 
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Table 4: Data for the world BEV market 

Model 

Model 

index Year 

Price, 

USD* 

Acc. Supply by model 

World  

Acc. Supply BEV 

World total  

Mitsubishi i-MiEV 1 2010 47087 10206 16567 

Mitsubishi i-MiEV 1 2011 43569 25001 39648 

Nissan Leaf 2 2011 50524 22000 42649 

Mitsubishi i-MiEV 1 2012 33769 29065 92180 

Nissan Leaf 2 2012 44733 48976 72269 

Mitsubishi i-MiEV 1 2013 29069 31488 197582 

Nissan Leaf 2 2013 37947 96692 132378 

Tesla Model S 6 2013 87518 25092 203978 

Mitsubishi i-MiEV 1 2014 22400 34949 366554 

Nissan Leaf 2 2014 35176 158199 243304 

BMW i3 3 2014 40012 16052 385451 

Kia Soul EV 4 2014 31045 1437 400066 

VW E-Golf 5 2014 39788 3804 397699 

Tesla Model S 6 2014 78302 56747 344756 

Mitsubishi i-MiEV 1 2015 18566 35935 577160** 

Kia Soul EV 4 2015 25502 9887 603208** 

Nissan Leaf 2 2015 23941 201850 411245** 

VW E-Golf 5 2015 31509 19131 593964** 

Tesla Model S 6 2015 78302 107193 505902** 

BMW i3 3 2015 30952 40109 572986** 

Data sources: IEA (2016); Nissan (2012); Nissan (2013); Autotrade (2014); Nissan (2015);  

Left-Lane (2016); AW (2016); KIA (2016a); OFV (2016); TeslaMotors (2016b). 

 

*adjusted to 2015-prices   **calculated 

 

 

Total accumulated supply data was available for the years 2010-2014 and is presented in the table 5 

below. The last column in table 4 was calculated by taking total world sales (table 5) and subtracting the 

specific car model. So, for example, for Mitsubishi i-MiEV last column a number of 2010 total world 

sales (26773 - from table 5) was taken and Mitsubishi i-MiEV total sales of that year were subtracted 

(26773 – 10206). This was important for Model 2, so total sales in the world represent external learning 

only.   
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Table 5: Total accumulated BEV number in the world 

Year TOTAL Number BEVs 

2010 26773 

2011 64649 

2012 121245 

2013 229070 

2014 401503 

2015 613095* 

Data source: IEA (2016). 

*calculated 

 

Total number of BEVs for the year 2015 is still not available; therefore, a decision to calculate prediction 

was taken. 2015 total BEV number in the world was calculated by first adding “Acc. Supply by model 

World” (table 4) for 2014, then doing the same for 2015:  

1. 34949 + 158199 + 16052 + 1437 + 3804 + 56747 = 271188 

2. 35935 + 201850 + 40109 + 9887 + 19131 + 107193 = 414105 

Then we check the % increase in year from 2014 to 2015:  

(414105/27118)*100 = 152,7% 

Then multiplying the “TOTAL number BEVs” (table 5) by 152.7%:  

401503*152, 7% = 613095 - calculated TOTAL number BEVs for 2015. 

To obtain data on world price of various models was very complicated. There was no one source that 

would provide this data, and different sources could have reported differently calculated data (for 

example, include subsidy). Therefore, the decision to keep Norwegian price data for the world market 

analysis was accepted. A detailed price data for Norwegian market was provided by the OFV (2016). 

However, since none of the vehicles are made in Norway, prices that originally were provided in 

Norwegian Kroner (NOK) were calculated into US dollars (USD) by using annual exchange rate for that 

year (NorgesBank, 2016). In price data with NOK some prices went up, but after converting it to USD, 

prices were declining every year. What is more, price data had to be adjusted to 2015-prices. Producer 

price index (PPI) for US was used (STATISTA, 2016). PPI measures the average price development of 

all goods and related services on both the domestic and the non-domestic markets, at all processing stages 

(Eurostat, 2014). 
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Table 6 presents data for Norwegian market only. This is the data by which car models were selected, as 

Grønnbil.no (2016) reports exact numbers of accumulated supply of cars in Norway only for those car 

models that represents biggest share of this market. Other type of car models just goes under the name 

“other”. It is important to mention Tesla Motors here. This is one of the most loved brands in Norway. 

However, it was difficult to obtain correct data, as Tesla makes many different car models that differ a lot 

in price. Amount of cars for each year is reported as a total of Teslas, not separated into different car 

models. Price data for Model S was in the dataset from OFV. Decision was made to take total of Teslas 

number and consider that they all were Model S.  

 

 

     Table 6: Data for Norwegian BEV market 

Model Year Price, USD* 

Acc. Supply by model 

Norway 

Mitsubishi i-MiEV 2011 43569 1050 

Nissan Leaf 2011 50524 381 

Mitsubishi i-MiEV 2012 33769 1722 

Nissan Leaf 2012 44733 2868 

Mitsubishi i-MiEV 2013 29069 2178 

Nissan Leaf 2013 37947 9081 

Tesla Model S 2013 87518 2018 

Mitsubishi i-MiEV 2014 22400 4127 

Nissan Leaf 2014 35176 16450 

BMW i3 2014 40012 2112 

Kia Soul EV 2014 31045 445 

VW E-Golf 2014 39788 2018 

Tesla Model S 2014 78302 6060 

Mitsubishi i-MiEV 2015 18566 7314 

Kia Soul EV 2015 25502 2069 

Nissan Leaf 2015 23941 20924 

VW E-Golf 2015 31509 10961 

Tesla Model S 2015 78302 10099 

BMW i3 2015 30952 3499 

Data source: Grønnbil.no (2016); OFV (2016);  

*adjusted to 2015-prices 
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Six different car manufactures and their BEVs are presented in this work. The choice of the car models 

was made according to data availability on the sales numbers and prices. These are the most popular BEV 

types in Norway and a short description of each is available below.  

4.1.1 Mitsubishi i-MiEV 

 

The i-MiEV is the first fully electrical car made by Mitsubishi Motors and was the first mass produced 

BEV in history (EVWORLD, 2015). It was first marketed in Japan in 2009. Performance of i-MiEV 

reaches 130km/h on motorways and is rechargeable at 80% within 30minutes on a quick charging station 

(Benders et al., 2014). On a 230V outlet it would take 6-8 hours to fully charge the battery. The car has 

two plugs: one on the right hand side and one on the left. Plug on the right is for usual charging, whereas 

the one on the left is for fast charge. The battery pack is fixed on the bottom of the vehicle, and the engine 

is fixed at the rear. Mitsubishi Motors i-MiEV model has been awarded with ‘Ecobest 2009’ award for 

efforts in green field by the Autobest. It has 16 kilowatt hours (KWH) battery and 100km driving range. 

New model is coming in 2017.   

4.1.2 Nissan Leaf  

 

Nissan is a leading corporation in the modern BEVs manufacturing, and Nissan LEAF stands for Leading 

Environmentally-friendly Affordable Family car (AFP, 2010). It was introduced to the European market 

in 2011 and to date is the world’s bestselling electric car (Economist, 2015). The Nissan Leaf is a five 

door hatchback, and its performance reaches 150km/h. The car can have its battery’s capacity recharged 

up to 80% in 30 minutes on fast charging stations. It takes up to 10 hours to fully recharge with a standard 

electrical socket. The battery is located beneath the seats, which provides stability to the car. Nissan Leaf 

has 4 models in the market: ACENTA and VISIA with the 24 KWH batteries and TEKNA and ACENTA 

with 30 KWH batteries.  

Models differentiate in batteries and prices. Most models have a setting that enables you to pre-heat or 

pre-cool the car while it is plugged in for charging. This reduces battery energy use of the car. There are 

two possible options for battery: 24 KWH with driving range of 135 km and 30 KWH with driving range 

of 172 km (Nissan, 2016). 

4.1.3 KIA Soul EV 

 

KIA Soul EV is a first fully-electric vehicle from KIA, and is a five-door hatchback. It takes 4-5 hours to 

charge a vehicle, or 33 minutes on a Public Rapid Charges for up to 80% battery charge (KIA, 2016b). 
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However, one of the downsides of KIA BEV is that it takes up to 13 hours to fully charge it on a domestic 

plug. KIA Soul EV can reach speed up to 145 km/h and has a 27 KWH battery with drive range of 150km 

(PlugInCars, 2016).   

4.1.4 Volkswagen E-Golf 

 

All electric vehicle produced by Volkswagen was introduced to the market in 2014. The design of the e-

golf is based on the multi-award winning Golf hatchback and looks almost exactly the same (PlugInCars, 

2016). E-Golf is named to be the most economical electric car in its class (Volkswagen, 2016), even 

though it is a conventional car remade to fit with electrical power, unlike its main rivals of Nissan and 

BMW that are BEV-only developments. E-Golf can reach up to 135 km/h speed. It takes up to 13 hours to 

be fully charged though the domestic plug, but takes only 30 minutes to be charged for up to 80% battery 

charge through a DC fast charging stations. It has 24.2 KWH battery and a driving range of 135km. New 

model is coming in 2017.   

4.1.5 BMW i3 

 

In 2013 a fully electrical vehicle from BMW was introduced to European market (BMWGroup, 2013a). It 

is the first ever vehicle from BMW released to the market for mass production to have an outer skin body 

made of thermoplastic – which is produced using 25% renewable or recycled materials, and the roof that 

is made of carbon-fibre-reinforced plastic (BMWGroup, 2013b). This lightweight and durable material 

allows some extra weight for the batteries and reduces overall weight of the vehicle by 10kg. The car can 

reach a maximum speed of 150 km/h. BMW i3 can be charged in 8 hours for up to 80% battery level; 

within 5 hours at a 230V; or within 3 hours at a 400V (Benders et al., 2014). Vehicle can also be charged 

using DC charger station which allows to charge up to 80% battery within 30 minutes. BMW i3 has 22 

KWH battery and driving range of 130km. New model is coming in 2017.  

4.1.6 Tesla Model S 

 

Tesla produces fully electrical all wheel vehicles reaching maximum speed of 200km/h. Vehicles are 

made of an aluminium and steel which reinforces zones that strengthens the car body during the crash. 

Model S was introduced to the market in 2012. Vehicle can be charged in many different ways ranging 

from up to 29 hours for a full battery charge in a domestic plug to 40 minutes for up to 80% charge in fast 

charging stations (TeslaMotors, 2016a). Tesla developed a Type 2 Mennekes plugs, that matches the 

public plug-ins, however also enables a DC fast charging. Tesla charging stations are implemented all 
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over Europe and their number is increasing to make it easier for BEV drivers to travel around. Tesla 

Model S comes in 60, 70, 85 or 90 KWH batteries and driving range from 335 to 500km. 

4.2 Methods 
 

As mentioned in the previous section, the data used in this analysis is panel data. Panel data is a type of 

data that includes observations from multiple cross sectional units (i.e. firms, countries, models) that are 

observed for at least two time periods (i.e. years, months, days) (Waldinger, 2015). Panel data are most 

useful when outcome variable depends on explanatory variables which are not observable but correlated 

with the observed explanatory variables (Schmidheiny, 2015). If such omitted variables are constant over 

time, panel data estimators allow to consistently estimate the effect of the observed explanatory variables. 

That is, it accounts for individual heterogeneity. Panel data can be studied using several techniques, three 

of most commonly used are pooling independent cross sections across time (pooled OLS), using fixed 

effects model or using random effects model. 

In pooled OLS model all observations are estimated together, neglecting both, cross section and time 

series character of the data (Gujarati and Porter, 2009). The intercept is common for all units in this 

model. Since for data used in this thesis a different intercept is expected for each vehicle model, fixed 

effect model with dummy variables was used to analyze the data.  

4.2.1 Model 1 

 

First model was considering internal learning effect. Equation for this model:  

Equation 6 X i ,t = ai * Y
E

i,t  

Where   X i ,t is price of the model i in the year t 

ai is normalisation parameter with respect to initial conditions that is common for that 

model across all the years of observed data 

Yi,t is accumulated production of that model i for the year t 

  E is learning parameter assumed to be the same across all models due to small data sample 

 

We estimate logarithm of the above equation:  

Equation 7 lnXi,t = lnai  + E*lnYi,t + ui,t 
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Where   ui,t is the error term 

Expected sign of E for Model 1 is negative (E<0) if learning rate exists or zero if there is no learning. 

This is important, because with this analysis we are looking for the learning rate parameter. What we 

want to see is that the price is falling with accumulated production, therefore, downwards sloping 

exponential curve.  

This model is considering only internal learning and no external learning. This means, that companies 

producing the BEVs learns from its own production over time, but no learning from the BEV market.  

Since one of the ways to estimate separate intercepts for each BEV is to use dummy variables, the 

estimated equation then is:  

Equation 8 lnXi,t = lna + E*lnYi,t + ɣ2D2,i + ɣ3D3,i + ...  + ɣnDn,i + ui,t 

 

Where lna , ɣ2, ɣ3, ɣn are coefficients to be estimated. Relationship between parameters:  

a1 = a, a2 = a+ ɣ2, a3 = a+ ɣ3, etc.  

Where  ai is normalisation parameter with respect to initial conditions that is common for that model 

across all the years of observed data but differs across models.  

4.2.2 Model 2 

 

Model 2 is more complicated and assumes both internal and external learning, which seems more 

plausible for the real world situation. Equation for model 2:  

 

Equation 9 X i ,t = ai * Y
E

i,t * Z
F

t 

Where   X i ,t is price of the model i in the year t 

ai is normalisation parameter with respect to initial conditions that is common for that 

model across all the years of observed data 

Yi,t is accumulated production of that model i for the year t 

  E is internal learning parameter that is assumed the same across all models  
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Zt is accumulated production of all BEVs minus that particular model in the world for the 

year t (So “Total number BEVs” (Table 5) for that year - Yit = Zt). This is necessary as 

otherwise total number includes both internal and external learning.   

  F is external learning parameter that is the same across all models   

 

Again, a logarithm of the above equation is needed for the estimation:  

Equation 10 lnXi,t = lnai + ElnYi,t + FlnZt + ui,t 

Where   ui,t is the error term 

Expected sign of E and F for Model 2 is negative (E<0 and F<0) if learning rate exists or zero if there is 

no learning. Of course, it can be that one is negative whilst the other one is zero. This would indicate that 

only one type of learning exists: internal (E) or external (F).   

Model with dummy variables:  

Equation 11 lnXi,t = lna + ElnYi,t + FlnZt + ɣ2D2,i + ɣ3D3,i + ...  + ɣnDn,i + ui,t 

 

4.2.3 Estimation issues 

 

The main problems with estimation can arise due to the small data sample. In statistics, usually bigger 

samples make for statistically better results. Since BEVs have not been long on a market, there were 

certain issues with data collection (see Chapter 4). Fixed effect model statistical analysis was done for 

Model 1 and Model 2. Model 2 includes both internal and external learning and the data here can be 

highly correlated and multicollinearity phenomenon can arise. It occurs when one variable can be linearly 

predicted from another with a substantial degree of accuracy. In this dataset production of every model 

BEV increases each year and so does the total BEV number.  
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5 Results and discussion  
 

In this section the results from a fixed effect model will be discussed first. Model 1 will be discussed in 

detail and Model 2 results will be reported. In the third part, the results from Model 1 and Model 2 will be 

used to construct learning curves for the world and for the world without the Norwegian BEV sales. The 

discussion part will provide some insights on what could be done as a further research and what other 

options could be considered.   

5.1 Statistical analysis results 
 

To know which effect model, fixed or random, to use with the data, the Hausman test must be performed. 

In this test H0 is that random effect model should be used. If P value is higher than 0.05 then H0 would be 

accepted and random effect model would be used. When ordinary Hausman test is run for this panel data, 

the test returns negative test statistic (chi2(2) = -13.95). According to statistics theory, negative sign can 

arise for two reasons: if the data sample is too small and/or if different estimates of the error variance are 

used in forming variance for the fixed and random coefficients. In the latter case, one needs to use the 

sigmamore option, which specifies that both covariance matrices are based on the (same) estimated 

disturbance variance from the efficient estimator (STATA, 2016). After performing Hausman with 

sigmamore the test statistic is positive and P-value is 0.0209 which is < 0.05. Therefore, we reject the H0 

and choose fixed effect model for estimating results.   

 

5.2 Model 1 
 

Table 7 shows regression results for Model 1 using fixed effect model. Learning parameter E is                          

-0.241. This parameter appears to be statistically significant with the P value of 0.001 < 0.05. Now PR 

and LR can be calculated (see Equation 3 and Equation 4):  

Equation 12 PR = 2
-E 

= 2
-0.241

 = 0.846 

 

and the LR then is:  

 

Equation 13 LR= 1- PR = 1 - 0.846 = 0.154 = 15%     
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Table 7: STATA results for fixed effect Model 1 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: * p<.1; ** p<.05; *** p<.01; robust standard error/t-value in parenthesis. 

 

The Mitsubishi i-MiEV coefficient is reported as constant and coefficients for other models are dummy 

variables. Constant values for other models are calculated by adding their constant to the Mitsubishi i-

MiEV constant. Table 8 below shows constant numbers calculated and transformed from log to constant 

ai for each vehicle model. The P-value for Mitsubishi shows that its constant is significantly different 

from 0 and the P-value for dummy variables shows its relation to the constant. The coefficients for 

Nissan, Kia and Tesla models are statistically significant at the 0.05 level. This indicates that their 

constant value is different from Mistubishi i-MiEV price, whereas BMW and VW models have constant 

value which is not statistically different from Mitsubishi model. Coefficients indicate the initial costs of a 

BEV producer when log production is zero in the learning curve. From table 8 we can see that KIA has 

the lowest initial costs whereas Tesla has the highest. These two cars are very different so no surprise 

their prices differ a lot. Tesla is a luxury car with batteries from 60 to 90 KWH and long driving range of 

up to 500km, whereas KIA is a family car and has only 27 KWH battery and 150km driving range. Not 

only technical specifications can have influence on price (costs) – labor costs and business environment in 

the country of origins can matter, too.      

 

Variable Coefficient 

E -0.2406929*** 

  (0.056/ -4.29) 

lna (Mitsubishi i-MiEV) 12.77684*** 

  (0.566/22.56) 

ɣ2  (Nissan Leaf) 0.468071** 

  (0.156/3.01) 

ɣ3  (BMW i3) 0.1326989 

  (0.134/0.99) 

ɣ4  (KIA Soul EV) -0.5499719** 

  (0.198/-2.79) 

ɣ5  (VW E-Golf) -0.1235537 

  (0.154/-0.8) 

ɣ6  (Tesla Model S) 

 

1.176901*** 

(0.163/7.23) 
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Table 8:  Constants ai for car models  

Model ln ai 

a1  Mitsubishi i-MiEV 12.777 353925 

a2  Nissan Leaf 13.245 565187 

a3   BMW i3 12.910 404149 

a4  KIA Soul EV 12.227 204203 

a5  VW E-Golf 12.653 312790 

a6   Tesla Model S 13.954 1148240 

 

Results from table 8 and learning parameter E results from regression (table 7) were used to construct 

learning curves for each type of car model. Figures below show learning curves (predicted price) and real 

price (in US dollars, adjusted for inflation) for each car model.   

From figures 10-15 it is clear that real prices more or less follows the predicted price path. Nissan Leaf is 

especially close, whereas Mitsubishi i-MiEV has more differences, as at first the real price was higher 

than predicted, but now it is quite a bit lower than the predicted one. Prices for all car models are 

declining. The observed price declines could be explained in part by declining battery costs. Substantial 

improvements in battery performance and technology makes BEVs more attractive for everyday life and 

customer number is growing (Weiss et al., 2012). 

Figure 10: Learning curve and real price for Mitsubishi I-MiEV, LR = 15% 
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Figure 11: Learning curve and real price for Nissan Leaf, LR = 15% 

 

 

 

 

Figure 12: Learning curve and real price for BMW i3, LR = 15% 
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Figure 13: Learning curve and real price for KIA Soul EV, LR = 15% 

                  

 

 

Figure 14: Learning curve and real price for VW E-Golf, LR = 15% 

                  

 

 

 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

45000 

50000 

0 2000 4000 6000 8000 10000 12000 

A
ve

ra
ge

 p
ri

ce
 p

e
r 

u
n

it
, U

SD
 

Accumulated supply 

KIA Soul EV 

Predicted price 

Real price 

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

80000 

0 5000 10000 15000 20000 25000 

A
ve

ra
ge

 p
ri

ce
 p

e
r 

u
n

it
, U

SD
 

Accumulated supply 

VW E-Golf 

Predicted price 

Real price 



34 
 

Figure 15: Learning curve and real price for Tesla Model S, LR = 15% 

 

 

5.2 Model 2 
 

Table 9 shows fixed effect analyses results for Model 2. Learning parameters, internal (E) and external 

(F), have negative signs, which was expected. Only the external learning rate is significant at 0.05 level.  

Calculations of the LR rate shows that external LRex=17% and internal LRin=2%. LRin is quite small and 

the P-value (0.571) is non-significant, which could indicate that LRin might not be significantly different 

from 0. Nagelhout and Ros (2009) identified a learning rate of 17% for lithium-ion batteries. Looking at 

Model 2 results and previous research done (Nagelhout and Ros, 2009, Weiss et al., 2012, Nykvist and 

Nilsson, 2015), we could consider that there is a possibility that over last 5 years prices for BEVs mostly 

decreased due to the learning effects in battery manufacturing (external learning).  Previous research on 

battery learning rate included only battery price, whereas research on BEVs should include price for the 

whole vehicle. Although, one of the main differences in design and cost between BEVs is the power train 

- in particular the battery, there are many other things that separates the models (interior, technology, 

motor, etc.) and the same learning rate could not be applied to batteries and vehicles. 
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Table 9: STATA results for fixed effect Model 2 

Variable Coefficient 

E -0.0191083 

  (0.033/-0.58) 

F -0.2635897*** 

  (0.04/-7.37) 

lna (Mitsubishi i-MiEV) 13.60165*** 

  (0.375/36.27) 

ɣ2  (Nissan Leaf) 0.2498*** 

  (0.057/4.41) 

ɣ3  (BMW i3) 0.5032845*** 

  (0.083/6.09) 

ɣ4  (Kia Soul EV) 0.2548163** 

  (0.11/2.43) 

ɣ5  (VW E-Golf) 0.4974286*** 

  (0.091/5.46) 

ɣ6   (Tesla Model S) 

 

1.288357*** 

(0.068/18.89) 
 

Legend: * p<.1; ** p<.05; *** p<.01; robust standard error/t-value in parenthesis. 

One of statistical reasons why E variable appears non-significant can be multicollinearity. This 

phenomenon appears when predictor variables are highly correlated with each other (Gujarati and Porter, 

2009). This means that one variable can be linearly predicted from another with a substantial degree of 

accuracy. In this specific case, production of every model BEV increases each year and so does the total 

BEV number. Multicollinearity does not reduce the reliability of the model as a whole but affects 

calculations regarding individual variables.  

5.3 Further data analysis 
 

5.3.1 Calculated Learning rate 

 

In this section results from Model 1 and Model 2 will be used to present how the world would look 

without Norwegian BEVs sale. The figures were modeled by taking learning parameters E and F results 

from statistical analysis and intercepts for each car model. The accumulated supply of each car model was 

changed by subtracting Norwegian accumulated supply of that model. Model 1 considers individual BEV 

models, therefore, the results of price change without Norwegian subsidy will be highly dependable on 

the amount of that particular BEV model in Norway.  
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Figure 16: Mitsubishi i-MiEV total world VS world without Norwegian sales, LR=15% 

 

 

Figure 17: Nissan Leaf total world VS world without Norwegian sales, LR=15% 
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Figure 18:  VW E-Golf total world VS world without Norwegian sales, LR=15% 

 

 

Figure 19: KIA Soul EV total world VS world without Norwegian sales, LR=15% 
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Figure 20: Tesla Model S total world VS world without Norwegian sales, LR=15% 

 

 

Figure 21: BMW i3 total world VS world without Norwegian sales, LR=15% 

 

 

 

 

65000 

70000 

75000 

80000 

85000 

90000 

95000 

100000 

105000 

2012 2013 2014 2015 2016 

A
ve

ra
ge

 T
e

sl
a 

M
o

d
e

l S
 p

ri
ce

 p
e

r 
u

n
it

, U
SD

 

Years 

Tesla Model S 

Current world situation 

No Norwegian sales 

20000 

25000 

30000 

35000 

40000 

45000 

50000 

55000 

2013 2014 2015 2016 

A
ve

ra
ge

 B
M

W
 i3

 p
ri

ce
 p

e
r 

u
n

it
, U

SD
 

Year 

BMW i3 

Current world situation 

No Norwegian sales 



39 
 

From figure 16 we can see that the Mitsubishi i-MiEVs popularity in Norway is growing. There is a 

bigger share of this model cars registered in Norway every year and therefore, the price would be affected 

more and more by the Norwegian sales.  

Nissan Leaf is a popular brand in Norway but also it is the most popular electric vehicle brand in the 

world and we see in figure 17 that Norwegian sales has least effect on it when compared to other car 

models in this analysis.  

Figure 18 shows the biggest price difference for the most popular BEV model in Norway, the VW E-

Golf. It increased by nearly 20% in 2014 and nearly 23% in 2015. It has been extremely popular in 

Norway, nearly 57% of produced VW E-Golf are registered in Norway (Grønnbil.no, 2016).  

From figure 19 we see that KIA Soul EV would be affected less than VW, but more than the other 4 

models. The % increase in price is lower in 2015 than in 2014. This suggests that the proportion of KIA 

Soul EV in Norway decreased in relation to the total world production of this model.  

Tesla is a popular brand in Norway. Figure 20 shows a consistent distance between the lines. This shows 

that Norwegian sales proportionally keep up with world production of this model.     

BMW i3 % increase in price is lower in 2015 than in 2014, as can be seen in figure 21. This suggests that 

the proportion of BMW i3 in Norway decreased in relation to the total world production of this model.   

4 BEV models, Mitsubishi, BMW, Nissan and Tesla, would have around similar effects without 

Norwegian sales – a price increase of 2.2% on average.  

Table 10 below indicates % increase in price every year for every type of car model if there were no 

Norwegian sales given there has been an internal learning rate of 15%.  

Table 10: % increase in price for each model without Norwegian sales, Model 1, LR = 15% 

  
Model/Year 2011 2012 2013 2014 2015 

Mitsubishi i-MiEV 1.04 1.48 1.74 3.07 3.37 

Nissan Leaf 0.42 1.46 2.40 2.68 2.67 

BMW i3 N/A N/A N/A 3.45 2.22 

KIA Soul EV N/A N/A N/A 9.33 5.81 

VW E-Golf N/A N/A N/A 19.96 22.73 

Tesla Model S N/A N/A 2.04 2.76 2.40 
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Model 2 represents world situation where external learning is most important according to the data 

results. Parameter F (external learning) was used to calculate % change in price if there were no 

Norwegian sales. Results are presented in table 11.  

Table 11: % increase in price without Norwegian sales, Model 2, LR=17% 

 

2010 2011 2012 2013 2014 2015 

BEVs 0.4 1.00 1.5 1.8 2.3 2.8 

 

This model does not consider separate BEV types. Instead it takes the whole market. Here is the overall 

number of BEVs that matters both in the world and in Norway. The price difference is smaller than in the 

Model 1.  

 

5.3.2 30% learning rate  

 

There are many limitations of this research that could give an underestimated or an overestimated LR, for 

example, too small data sample or usage of prices instead of costs for the statistical analysis. Therefore, it 

would be interesting to see what kind of results we would get by using LR from other studies on this data. 

Unfortunately, no other study for BEVs LR was done yet. Weiss et al. (2012) in their research found that 

the learning rate for all HEVs in USA on average is 7% for year 1999-2010. In their research they also 

mention previous studies that show LR for energy-demand technologies to be 18± 9%. When they 

calculate price prediction for BEVs, they use LR for CV which they found to be 42±27%. As mentioned 

in the Chapter 3, LR even for the same type of technologies can be very different. In this research 

calculated internal LR is 15%, but it is interesting to see how results would change if we double it. Table 

12 below indicates % increase in price every year for every type of car model if there were no Norwegian 

sales given there has been an internal learning rate of 30%.  
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Table 12: % increase in price without Norwegian sales, Model 1, LR=30% 

  
Model/Year 2011 2012 2013 2014 2015 

Mitsubishi i-MiEV 2.27 3.30 3.82 6.80 7.46 

Nissan Leaf 0.9 3.21 5.30 5.92 5.90 

BMW i3 N/A N/A N/A 7.67 4.90 

KIA Soul EV N/A N/A N/A 21.41 13.10 

VW E-Golf N/A N/A N/A 48.56 56.12 

Tesla Model S N/A N/A 4.49 6.09 5.32 

  

Obviously, increased LR increased the gap between the prices with Norwegian sales and without. As was 

expected, models with highest % of total production ending up in Norway would be most affected. If 

arranged by total world production, with 1
st
 place for highest accumulated supply in 2015 and 6

th
 place 

going to lowest accumulated supply in 2015, the rating by models would look like this:  

1. Nissan Leaf 

2. Tesla Model S 

3. BMW i3 

4. Mitsubishi i-MiEV 

5. VW E-Golf 

6. KIA Soul EV 

Table 12 results show that the first three models with highest accumulated supply in 2015 would be least 

affected by absence of Norwegian BEVs sales. This could mean that biggest producers of BEVs are very 

popular in other countries, too. There is also possibility that since Norwegian passion for BEVs is quite 

often discussed in the media and some companies focus on the Norwegian market to push their sales 

through.  

5.4 Discussion 
 

This thesis developed learning curves for BEVs for the year 2010-2015 by taking reported price and 

accumulated supply. Calculated statistical results were used in modeling situation “world without 

Norwegian BEVs sale”. This analysis provides insight into how important government support for the 

BEVs could be in the long term perspective.  
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The accuracy of the results depends on the reliability of the collected input data and its size. The amount 

of data used in this study was very small and, therefore, is important more for illustrative point than actual 

statistical results. Another issue with the data arises when we look into the learning curve theory. The 

learning curve approach theoretically should be used for modeling production costs. However, since 

manufacturers are very careful about this sensitive data, in this analysis vehicle prices were used. Another 

big issue with price data is that it is different across the world. Also, some reported prices are with 

delivery fees and some without. The best thing is to use the same source for all data, however, this was 

not possible. The same source was used for each type of BEV model, but not across models. The problem 

with using prices and not costs arise when market situation is considered. At the point of the vehicles 

introduction to the market, prices can be lower than production costs because manufacturers try to open 

markets for innovative products (IEA, 2000). Then with increasing technological learning production 

costs may decline below the actual market price. Only later prices tend to parallel costs. This limitation 

can be leading to underestimation of LR and could be solved by using longer time series in the future 

when more data will be available.  

Different BEV models are made in different countries. Most parts of particular BEV model are made in 

different countries, too. These things are important when considering what kind of currency should be 

used in analysis. In this case, both Euros and US dollars were considered. LR with Euros was 13% and 

with US dollars 15%. Model 2 with Euros gave positive sign of E due to multicollinearity problem. 

However, when Model 2 was run with US dollars, the results for both internal and external LR were 

negative, as expected. Therefore, US dollars were picked for the main analysis. This only shows how 

much uncertainty there is in the calculation of the learning rate. In Model 2 LRexternal is 23%. BEVs differ 

a lot in design and other specific things, but nearly all of them run on the lithium-ion battery. One could 

argue that R&D in battery field gives this quite high external LR.    

Methodological issue with this research is related to constant rate of cost decline in the learning curve. 

Economies of scale and innovation tend to reduce costs of labor and capital in manufacturing. However, 

prices could increase due to change in prices of raw materials, energy and other components that are used 

in the production (Weiss et al., 2012). Therefore, forecasting based on experience curves can be limited 

by the changes in the price of production factors.  

Another important point to mention is that accurate learning rates require that analyzed products remains 

homogenous throughout the analysis period. This requirement is not valid for BEVs as manufacturers add 

constant improvements to their produced models, such as better air condition systems, various safety 

improvements, etc. The absence of homogeneity may lead to an underestimation of actual learning rates.  
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Finally, it is important to mention that this analysis was done only on some chosen BEV models. Data 

that was provided by IEA reports total BEV number for 17 countries only (Electric Vehicle Initiative 

partners) but IEA considers that they represent 95%+ of the global BEV stock (IEA, 2016).   

Learning curve analysis can cause a lot of uncertainty because of issues discussed above. It would be 

interesting to see what kind of results would be given if different theoretical approach was taken. For 

example, Weiss et al. (2012) in their research calculates the costs of electrification for the BEVs. First, 

they divide the price of BEVs into two components: electrification costs and ancillary costs. They first 

calculate ancillary costs for conventional vehicles (share of 82% of CV price) and then assume that the 

calculated ancillary costs apply to BEVs, too. Then the difference between the calculated ancillary costs 

and the average BEV price represents the costs of electrification.  Because BEV models involve so much 

more than just battery, it is difficult to estimate learning parameter. Especially if Tesla is taken, a 

premium sports car, that offers more than just transport run by battery. It includes special interior, 

computerized control of the vehicle, you can even start it by using a Tesla application on your phone. 

This all ads extra costs to the vehicle. If electrification price would be calculated, then it could be possible 

to get data set which will not be model related (since it would be from average price of BEVs). From 

electrification costs one could calculate price/kWh that could be applied to any kind of model. However, 

this need more complicated calculations and could be considered for future research.  
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6 Conclusion 
 

In this thesis learning curve approach was used to project ex-post learning rates for BEVs. A special focus 

was on the Norwegian BEV market and whether Norwegian environmental policy has had any effect on 

the LR in the BEV market. A small sample of BEV models with accumulated production and price was 

used to perform a small statistical analysis. 2 models were used for the analysis and their results were 

used to model “the world without Norwegian BEV sales”. The same learning rate was applied but 

accumulated production was adjusted by the amount of registered BEVs in Norway.  

The results of this analysis can provide a valuable input for:  

i) Market projections for BEVs; 

ii) Support the establishment of subsidy programs and tax allowances that facilitate the 

electrification of road transport.  

From the results in this research it is clear that Norwegian environmental policy had effects on the BEV 

market. The size of those effects is another question. When taking into account separate models of BEVs, 

the effect is higher depending on the share of total production that ends up in Norway for that particular 

model. For example, more than 50% of VW E-Golf produced vehicles were registered in Norway. 

Therefore, the effect of Norwegian BEV sales for this model is very high. On the other hand, the rest of 

the models vary between 1-10%. Effects are even lower when calculations are done with model 2 results. 

Still, in the long run Norwegian policy is important for the BEV market.  

Even being a phenomenon in the BEV market, Norway cannot win it alone. Good news is that there could 

be some indirect effects of the Norwegian environmental policy. There are quite a few media publications 

about Norway’s success with BEVs and how other countries should take an example. One successful 

story makes others believe in their success, too.  

There are advantages and disadvantages in the topic of electrification of the road transport. Although it 

seems that there is a long way to go to make BEVs attractive to every family, we need to continue looking 

for solutions. Road traffic is responsible for a huge amount of CO2 and we do not have all that much time 

to carefully consider available alternatives before going for them. It is not clear yet whether the BEVs 

will be a big part of emissions reductions but acting, not just talking, is important. And that is what 

Norway is doing.      
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