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Abstract 

Dielectric nanostructures, such as spherical nanoimprints, have emerged as a promising 

alternative for efficiency enhancement by light-trapping in thin solar cells. Some of the 

effectivity increase can be explained by resonant modes called Whispering gallery modes. 

The rationale of this increase is not fully understood and the hypothesis is that nanostructure 

parameters and coupled modes can be directly related to the absorption resonance. In order to 

study Whispering gallery modes and coupled modes in nanostructures in addition to the 

parameters of the nanostructures, a numerical algorithm was developed. The numerical 

algorithm was based on the Lippmann-Schwinger equation for the scattering of a two-

dimensional plane wave at multiple coupled disk arrays. The aim of this thesis was to verify 

the numerical algorithm using two analytical solutions, namely the scattering of a plane wave 

at a single disk and the scattering of a spherical wave at a single disk. All three solutions were 

solved for a simple and comparable problem, i.e. scattering at a single disk. The comparison 

between the analytical plane wave scattering solution and the numerical solution based on the 

Lippmann-Schwinger equation showed agreement. The appearance and type of resonance 

found in the numerical solution was highly dependent on the grid ressolution. Based on results 

of this thesis it is obvious that the numerical solution based on the Lippmann-Schwinger 

equation is a stable program converging to the exact result, when the grid resolution is 

increased. We further expected to find the resonance wavenumbers that were detected in the 

analytical plane wave scattering program, by considering the S-matrix of the analytical 

spherical wave scattering. However, a comparison between these solutions revealed no 

similarities. In order to study the analytical solution for the spherical wave in this thesis we 

considered only the real part of the S-matrix. An analysis of the real and imaginary part of the 

S-matrix seems to be required to study the resonances in the analytical spherical wave 

scattering. 
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Sammendrag 

Nanostrukturer med dielektriske egenskaper, slik som sfæriske nanoavtrykk, har vist seg som 

et lovende alternativ for effektivisering av lys-fangst i tynne solceller. Noe av den økte 

effektiviteten kan forklares med resonanser kalt Whispering gallery moder. Begrunnelsen for 

denne økningen er ikke fullt forstått, og hypotesen er at nanostrukturens parametere og 

koblede moder kan være direkte relatert til absorpsjon. En numerisk algoritme basert på 

Lippmann-Schwinger ligningen for spredning av en to-dimensjonal planbølge på flere 

koblede disksett, ble utviklet for å studere Whispering gallery moder og koblede moder i 

nanostrukturer samt parameterne av nanostrukturene. Målet for denne oppgaven var å 

verifisere den numeriske algoritmen ved hjelp av to analytiske løsninger, nemlig spredningen 

av en planbølge på en enkel disk og spredningen av en sfærisk bølge på en enkel disk. Alle tre 

program ble løst for et enkelt og sammenlignbart problem, dvs. spredning ved en enkelt disk. 

En sammenligning mellom den analytiske planbølge løsningen og den numeriske løsningen 

basert på Lippmann-Schwinger ligningen viste Whispering gallery resonanser på omtrent 

samme bølgenummer. Plasseringen av bølgenummer og type resonans som oppstår med den 

numeriske løsningen er sterkt avhengig av gitter oppløsningen. Basert på resultatene i denne 

oppgaven er det åpenbart at den numeriske løsningen basert på Lippmann-Schwinger 

ligningen er et stabil program som konvergerer til det nøyaktige resultatet, når gitteret 

oppløsningen økes. Det var også ventet noen likheter mellom den analytiske 

planbølgeløsningen og den analytiske sfæriske bølgeløsningen. En sammenligning mellom 

disse løsningene viste ingen likheter. For å studere den analytiske løsningen for den sfæriske 

bølgen i denne avhandling er det bare sett på den reelle delen av S-matrisen. En analyse av 

den reelle og imaginære delen av S-matrisen er nødvendig for å studere resonanser i den 

analytiske sfæriske bølgeløsningen.  
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1 Introduction  

Warming of the climate system is unequivocal, and since the 1950s, many of the 

observed changes are unprecedented over decades to millennia. The atmosphere and 

ocean have warmed, the amounts of snow and ice have diminished, and sea level has 

risen.        (Pachauri et al. 2014) 

The expanding global population and subsequent increasing demand for energy is aggravating 

the challenges related to climate change. According to the IPCC’s Fifth Assessment Report, 

burning fossil fuel is the primary driving factor in global warming. Thus, fossil fuels need to 

be replaced by green renewable energy. A very promising green energy is solar energy. 

Bells Labs presented in 1954 the first practical silicon solar cells with an efficiency of 5.7%. 

The cost to produce solar cells was high and therefore primary used in space applications to 

provide power to satellites (Chen 2011). In recent years, falling costs along with increased 

efficiency made solar cells one of the most common renewable energy systems. For 

commercial and private use, the market offers cost-effective solar cells with an efficiency of 

around 10-20%. The solar cell industry is striving to meet the demand in the market and to 

come below grid parity. Because raw materials are in short supply, and production costs are 

high, researchers started to investigate how to reduce materials of solar cells, for example by 

manufacturing thinner solar cells.  

Solar cells convert incoming sunlight into electrical energy. To achieve this, the cells need to 

absorb light. The thickness, that varies from around 150-300 𝜇𝑚, is usually proportional to 

light absorption inside the solar cell (Grandidier et al. 2011). Longer optical path length, i.e. 

the distance an unabsorbed photon travels inside the solar cell, enhances the light absorption. 

One of the most common methods used to increase the optical path length, is light-trapping in 

the photovoltaic material. By adding front and rear surface texturing, the probability for 

internal reflection is increased and light is trapped by multiple passes inside the solar cell. 

Another more advanced type of light-trapping is effective photon management. Light-trapping 

(spheres(Eisenlohr et al. 2014), cylinders(Wallentin et al. 2013), domes(Zhu et al. 2009)) are 

coated at the top of the absorbing layer of the solar cell to improve the efficiency 

enhancement. The idea is to achieve thinner and cheaper solar cells without reducing their 

effectiveness.  
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Grandidier et. al.’s experimental study (2013) created a promising platform for the potential 

of effective photon management. The results showed an efficiency increase from 11 %, using 

wavelength-scale resonant dielectric nanospheres. This increase can be explained by resonant 

modes called Whispering gallery modes, described by Mie electrical and magnetic modes. 

Grandidier et. al. verified the efficiency increase numerically by using a Finite Difference 

Time Domain (FDTD) technique. However, while the efficiency increase of light-trapping 

nanostructures has been demonstrated, the rationale behind is not understood. It is not clear, 

how nanostructure parameters such as refractive indices, sizes and forms of nanostructures are 

directly related to the absorption resonances and thus to increase in efficiency. It is unclear if 

WGMs or coupled modes, i.e. resonances in the near-field between the spheres, are mainly 

responsible for the enhanced absorption.  

In order to study WGMs and coupled modes in nanostructures, R. Blümel and A. Kohler 

developed a numerical algorithm based on the Lippmann-Schwinger equation for the 

scattering of a two-dimensional plane wave at multiple coupled disk arrays, and implemented 

it in MATLAB (Brandsrud 2015). With this method, different parameters such as sizes, 

refractive indices and geometrical arrangements of the disks can be investigated. The aim of 

this thesis was to verify the numerical scattering algorithm based on the Lippmann Schwinger 

equation by using analytical solutions of the scattering of a plane wave and a spherical wave 

at one disk. For this thesis, both analytical solutions were implemented numerically in order 

to compare absorption efficiency of a single disk and wave functions of a single disk for the 

analytical solutions and the numerical algorithm based on the Lippmann Schwinger equation.  

The numerical plane wave scattering algorithm based on the Lippmann-Schwinger equation is 

presented in section 3.2 and the results from simulations are presented in section 4.2. In 

section 3.1, an analytical solution for a plane wave impinging at a disk is given. In section 4.1 

results of the numerical simulations are presented. The comparison of the analytical solution 

for a plane wave scatter solution with the numerical algorithm based on the Lippmann 

Schwinger algorithm is presented in 4.1. The analytical solutions for a spherical wave 

scattering at a disk are described in section 3.3. Numerical results are presented in section 4.3. 

The comparison of the analytical solution for a plane wave scatter solution with the analytical 

solution for a spherical wave scatter solution is presented in section 4.3. 
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2 Theory 

2.1 Spherical waves 

When light propagates from a point source into free space, the wave’s cross section expands 

with increasing distance from the source, as seen in figure 2.1. Therefore, further away from 

the source the intensity of the radiation decreases (Oraevsky 2002). This type of waves are 

called spherical waves. The waves create a wave front at the surface of maximum amplitude. 

Far away from the point source, the wave can be considered as a plane wave.  

 

Figure 2.1: Cross section view for spherical waves coming from a point source. One ray can be described with a sinus curve, 

acting like a plane wave. The waves create a wave front at the surface of maximum amplitude. 

Because of spherical symmetry, when a spherical wave impinges a disk, the outgoing 

scattered wave is also a spherical wave. In this case, the momentum and potential energy are 

preserved. 
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2.2 Plane wave 

Light is an electromagnetic plane wave that consists of a collection of electric and magnetic 

fields (Tipler & Mosca 2004; Townsend 2010). The vector product, �⃗� × �⃗� , of the electric and 

magnetic field points into the direction in which the EM-wave propagates with a constant 

speed, i.e. the speed of light. For a plane wave, propagating in an arbitrary direction, the wave 

function is given as  

A⃗⃗ (𝑥, 𝑡) = 𝐴 0cos (�⃗� ∙ 𝑟 − 𝑤𝑡) (2.1)

where 𝐴 0 is the amplitude, �⃗�  is the wave vector, which is the angular wavenumber with a 

direction and magnitude, therefore |�⃗� | = 𝑘. The positions vector 𝑟  gives the propagation 

direction in a two-dimensional space. The time t is a given point in time and 𝜔 is the angular 

wave frequency.  

In figure 2.2 a wave moves up and down along the x-axis with a repeated pattern every period 

𝑇. After one period 𝑇 the wave has moved one wavelength 𝜆. The speed of light c is given by  

𝑐 =
𝜆

𝑇
= 𝑓𝜆 

(2.2)

where the frequency is related to the period via 𝑓 =
1

𝑇
. The angular wavenumber 𝑘 is 

connected to the wavelength 𝜆 by 

𝑘 =
2𝜋

𝜆
 

(2.3)

Notice that 𝑘 has the unit 𝑟𝑎𝑑/𝑚. The wavenumber 𝜈 can be calculated by the relationship  

ν =
𝑘

2𝜋
=

1

𝜆
 

(2.4)

where 𝜈 has the unit 𝑚−1. 

Figure 2.2: Plane wave propagating in x-direction with speed 𝑣. 𝐴0 is the amplitude and 𝜆 is the wavelength.  
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As only two-dimensional problems are treated in this thesis, the algorithms are only solved for 

two-dimensional space (x- and y-direction) therefore it is only interesting to look at the 

electric field. For convenience, 𝐴 (𝑟 , 𝑡) can be written as a complex function

�⃗� (𝑟 , 𝑡) = �⃗� 0𝑒
𝑖(�⃗� ∙𝑟 −𝜔𝑡) = 𝐴 0 𝑐𝑜𝑠(�⃗� ∙ 𝑟 − 𝜔𝑡) + 𝑖𝐴 0𝑠𝑖𝑛(�⃗� ∙ 𝑟 − 𝜔𝑡) (2.5) 

Any physical quantity described by 𝐴 , is then given by the real part of �⃗� (𝑟 , 𝑡). The wave 

function can be separated into a product of two functions, �⃗� (𝑟 ) and 𝑇(𝑡), dependent on 𝑟  and 

t, respectively.  

E⃗⃗ (𝑟 , 𝑡) =  �⃗� (𝑟)𝑇(𝑡) (2.6)

where  

𝑇(𝑡) = 𝑒−𝑖𝜔𝑡 (2.7)

and  

�⃗� (𝑟 ) = �⃗� 0𝑒
𝑖�⃗� 𝑟  (2.8)

Equation (2.8) represent a time independent plane wave, with amplitude �⃗� 0.  
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2.3 Maxwell wave equation to Helmholtz equation 

According to Maxwell’s equation, the electric field satisfies the wave equation, which is a 

second-order partial differential equation (PDE) that describes the propagation of 

electromagnetic scalar wave in space given by   

(𝛻2 −
1

𝑐2

𝜕2

𝜕𝑡2
) �⃗� (𝑟 , 𝑡) = 0 

(2.9)

where 𝑐 is the speed of light, ∇2 is the Laplacian operator and �⃗� (𝑟 , 𝑡) is the wave function. 

When light propagates in a transparent medium with a refractive index 𝑛, the speed of light in 

the medium becomes 𝑐/𝑛. The Maxwell wave equation then becomes 

(𝛻2 −
𝑛2

𝑐2

𝜕2

𝜕𝑡2
) �̃�(𝑟 , 𝑡) = 0 

(2.10)

Further, we use the ansatz of separated variables �̃�(𝑟 , 𝑡) = �̃�(𝑟 )𝑇(𝑡) of the wave function 

into the wave equation (2.10) and after some simplification this equation can be rewritten 

∇2�̃�(𝑟 )

𝑛2�̃�(𝑟 )
=

1

𝑐2𝑇(𝑡)

𝑑2𝑇(𝑡)

𝑑𝑡2
 

(2.11)

where the left side is dependent of 𝑟  alone and the right side of 𝑡 alone. We can set the two 

sides equal to the same constant, −𝑘2, called the separation constant and obtain two wave 

equations, one solely for the 𝑟  dependent wave function �⃗� (𝑟 ) and the other solely for the time 

dependent part of the wave function 𝑇(𝑡), given as 

∇2�̃�(𝑟 )

𝑛2�̃�(𝑟 )
=  −𝑘2 

(2.12)

and 

1

𝑐2�̃�(𝑡)

𝑑2�̃�(𝑡)

𝑑𝑡2
= −𝑘2 

(2.13)

where 𝑘 now is the angular wavenumber,  ∇2 is the Laplacian operator.  
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From equation (2.12) we obtain the Helmholtz equation

(∇2 + κ2)�⃗� (𝑟 ) = 0 (2.14)

that represents the time-independent form of the wave equation, where 𝜅 is the angular 

wavenumber in the medium given as 𝜅 = 𝑘𝑛. Note that for a wave propagating in free space, 

𝑛 = 1. As an approximation we replace the plane vector wave �⃗� (𝑟 ), by the single component 

Ψ(𝑟 ) and use it as a wave function of a two-dimensional system. We will in the following 

examine the scalar wave function Ψ(𝑟 ) as an approximation for full 3-dimensional 

electromagnetic theory (Kirsch & Hettlich 2009). The Helmholtz equation becomes  

(∇2 + κ2)Ψ(𝑟 ) = 0 (2.15)

where Ψ(𝑟 ) is the wave function and  𝑟  is the position vector in the x- and y-plane. 

 

2.4 Whispering gallery modes 

In 1878 Lord Rayleigh visited St Paul´s Cathedral in London. Here Rayleigh experienced the 

phenomena that he later called “whispering-gallery waves”(Oraevsky 2002). At the bottom of 

the dome in the Cathedral lies an interior gallery, called the whispering gallery. The gallery is 

a concave cylinder shaped room. If a person whispers on one side of the room, another person 

can hear the whisper loud and clear on the other side of the room, 34 m away. Because of the 

concave surface of the gallery, the wave travels along the surface of the walls. As a result, the 

sound intensity remains high. This is explained by the fact that the wave cross-section 

expands much slower than it would in free space. The physical explanation of the phenomena 

was given analytically by Rayleigh. Later it was discovered that electromagnetic waves inside 

dielectric and highly symmetric structures also exhibit “Whispering galley modes”.  

When light is scattered by a homogenous and highly symmetric structure, e.g. a sphere, 

resonances in the interior of the sphere may be generated, which appear at distinct 

wavelengths. For simplicity, we consider scattering of an electromagnetic wave in two 

dimensions, i.e. at a disk.  These resonances typically appear when the size of the disk, is 

approximately at the same scale as the wavelength of the electromagnetic radiation. The exact 

wavelength that exhibits the resonance and the type of the resonance, depends on the 

refractive index ratio between the disk and the surrounding medium and the geometry/size of 

the disk. Whispering gallery modes (WGM) are resonances, that appear when light is trapped 

inside the disk and the disk is lightening brightly. In whispering gallery mode resonances, the 
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trapped wave travels around the inside of the disk. Bright nodes arranged in a regular order 

inside the disk are visible as illustrated in figure 2.3. The nodes are areas of high intensities 

and correspond to maxima of the absolute value of the electric field. Thus, the number of 

nodes is twice the number of wavelengths that fits into the inside of the disk denoted as the 

mode number of the Whispering gallery mode. The mode number is given by 

𝑁 =
𝑛𝑜𝑑𝑒𝑠

2
 

(2.16)

where the nodes is displayed in the plotted images.  

We can set up a quantization rule (Brandsrud 2015; Kokhanovsky 2011) that shows relates 

the refractive index of the disk, the resonance wavelength, the mode number and the length of 

the ray trapped inside the disk. It is given by 

𝑁 =
lgeo 𝑛 

𝜆𝑟
 , 𝑁 ∈ ℕ 

(2.17)

where 𝜆𝑟 is the wavelength of the trapped mode, n the refractive index of the disk, N the mode 

number and 𝑙𝑔𝑒𝑜  the geometrical length of the ray, i.e. the actual length of the ray that travels 

along the surface of the disk. When 𝑁 becomes very high, the geometrical length approaches 

the circumferences of the disk, given as  lim
𝑁→∞

𝑙𝑔𝑒𝑜 = 2𝜋𝑟.  

 

 

 

  

Figure 2.3: Whispering gallery modes occurs at specific wavelengths. Inside the disk bright nodes arranged in a regular order 

appears which corresponds to maxima of the absolute value of the electric field. In the disk to the left 6 nodes appear, which 

corresponds to 3 wavelengths inside the disk (N=3).  The disk to the left contains 12 nodes and therefore 6 wavelengths (N=6) 

is trapped inside the disk.  
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In order to find a geometrical length for smaller values of 𝑁. The length of the ray that 

bounces inside the disk can be compared with the circumference of a 𝑁-sided polygon 

inscribed in a circle, showed in figure 2.4 and given by   

𝑙𝑝𝑜𝑙𝑦 = 2𝑁 𝑠𝑖𝑛 (
𝜋

𝑁
) 𝑟 (2.18) 

 

 where 𝑁 is the mode number and 𝑟 is the radius to the disk. Notice that for this thesis the 

polygon length is approximated for a 𝑁-sided polygon and not a polygon with sides equal to 

the number of nodes. 

Solving equations (2.17) and (2.18) for the radius we obtain the radius of a circle that frame 

the polygonal whispering gallery ray, given as 

�̂� =
𝜆𝑟

2 sin (
𝜋
𝑁)𝑛

 
(2.19)

where is the resonant wavelength, 𝜆𝑟 with the corresponding mode number 𝑁 and 𝑛 is the 

refractive index to the disk.   

 

  

Figure 2.4: A 5-sided polygon inscribed in a circle. 
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2.5 Grid resolution 

In this thesis, we refer to the grid resolution as the number of lattice points used in x- and y-

direction for the square framing the disk. This is illustrated in figure 2.5, where a grid 

resolution of 8x8 lattice points is shown. 

 

Later we will show plots where the squared absolute value of the wave function |Ψ⃗⃗⃗ 𝑗|
2
is 

calculated at every lattice point.  

Figure 2.5: The disk with a square framing the disk. The square is discretize into a lattice structure with grid resolution 

of 8x8 lattice points.  
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3 Methods 

3.1 Analytical plane wave scattering method 

We consider a plane wave that impinges at a “soft disk”. As shown in figure 3.1, the soft disk 

is characterized by a constant potential 𝑉 = 𝑉0 inside the disk and the potential outside the 

disk is zero. In order to calculate solutions of the wave function for the problem of a plane 

wave scattering at a soft disk in two dimensions, we used the analytical solutions for the 

problem described in lecture notes of Reinhold Blümel from June 26, 2012.  

 

 

Figure 3.1: The plane wave is moving in the positive x-direction against the disk with a constant potential inside. 

In order to solve the problem analytically, we have to solve the Helmholtz equation in 

equation (2.15). Since n = 1 outside the disk and 𝑛 > 1  inside the disk, we define the 

wavenumber inside the disk as 

κ = 𝑘𝑛 (3.1)

where n is the refractive index to the disk. 
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The radial distance from origin is denoted by r and for the radius of the disk is expressed by a. 

Outside the disk i.e. 𝑟 > 𝑎, the potential is zero. The ansatz for the wave function outside the 

disk is as follows 

Ψout(𝑟, 𝜃) = ∑ 𝑖𝑙
+∞

𝑙=−∞

𝐽𝑙(𝑘𝑟)𝑒
𝑖𝑙𝜃 + ∑ 𝐴𝑙𝐻𝑙

(+)(𝑘𝑟)𝑒𝑖𝑙𝜃

+∞

𝑙=−∞

 
(3.2)

where the first term represents the incoming plane wave in the plane wave expansion with 

Bessel functions of first kind 𝐽𝑙 of order 𝑙 and the second term is presented as a superposition 

of outgoing wave spherical waves represented by Hankel functions 𝐻𝑙
(+)

 of first kind of order 

𝑙 with expansion parameters  𝐴𝑙. The polar angle is denoted by 𝜃. 

Inside the disk, i.e. 𝑟 < 𝑎, the wave function is given by 

Ψin(𝑟, 𝜃) = ∑ 𝐵𝑙 𝐽𝑙(κ𝑟)

+∞

𝑙=−∞

𝑒𝑖𝑙𝜃 
(3.3)

where the functions 𝐽𝑙 are the Bessel function of first kind of order 𝑙. The parameters 𝐴𝑙 and 

𝐵𝑙 are determined by boundary conditions. Since the Helmholtz equation is a second-order 

differential equation, the wave function its first derivative have to be continuous everywhere, 

including at the boundary between the region outside the disk and inside the disk. Therefore it 

follow:  

𝑖𝑙𝐽𝑙(𝑘𝑎) + 𝐴𝑙𝐻𝑙
(+)

(𝑘𝑎) = 𝐵𝑙 𝐽𝑙(κ𝑎) (3.4)

𝑖𝑙𝑘𝐽𝑙
′(𝑘𝑎) + 𝐴𝑙𝑘𝐻𝑙

(+)′
(𝑘𝑎) = 𝐵𝑙κ 𝐽𝑙

′(κ𝑎) (3.5)

where equation (3.4) represent the condition for continuity of the wave function at the 

boundary of the disk, while equation (3.5) represented the condition for continuity at the first 

derivative of the wave function. 
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Solving equations (3.4) and (3.5) for the parameters 𝐴𝑙 and  𝐵𝑙 we obtain 

𝐴𝑙 =
𝑖𝑙[ 𝐽𝑙

′(𝑘𝑎) 𝐽(κ𝑎) − 𝑛 𝐽𝑙
′(κ𝑎) 𝐽𝑙(𝑘𝑎)]

𝑛 𝐽𝑙
′(κ𝑎)𝐻𝑙

(+)(𝑘𝑎) − 𝐻𝑙
(+)′(𝑘𝑎) 𝐽𝑙(κ𝑎)

 
(3.6)

and 

𝐵𝑙 =
𝑖𝑙[𝐻𝑙

(+)′(𝑘𝑎) 𝐽𝑙(𝑘𝑎) − 𝐽𝑙
′(𝑘𝑎)𝐻𝑙

(+)(𝑘𝑎)]

𝐻𝑙
(+)′(𝑘𝑎) 𝐽𝑙(κ𝑎) − 𝑛 𝐽𝑙

′(κ𝑎)𝐻𝑙
(+)

(𝑘𝑎)
 

(3.7)

 

For the calculation of derivatives of Bessel and Hankel functions we used recurrence relations 

as given in (Abramowitz & Stegun 1972).  

The method described in this section is implemented as an algorithm in MATLAB by the 

author of this thesis. This program is presented as ProgramIII.m in Appendix A. From now 

on, this script is called program III. 

 Program 

For each wavenumber, the following parameters can be changed in program III.  

- Radius of the disk. 

- Refractive index of the disk. 

- Pixel resolution.  

- The frame outside the disk. 

- The minimum and the maximum order in the plane wave expansion.  
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3.2 Numerical plane wave scatter algorithm 

To solve the problem of the scattering of a two dimensional plane wave at one or more disks, 

the Green’s function method was used (Green 1828). Achim Kohler and Reinhold Blümel 

developed the method, called the plane wave scatter algorithm (Brandsrud 2015). The 

algorithm uses the Lippmann-Schwinger equation and solves it numerically by discretizing 

the equation in a lattice structure. 

We consider a system with multiple disks. The time-independent wave equation in equation 

(2.15) needs to be fulfilled for the area outside the disks and the area inside the disks 

𝑂𝑢𝑡𝑠𝑖𝑑𝑒: (∆ + 𝑘2)Ψ(𝑟 ) = 0 (3.8)

𝐼𝑛𝑠𝑖𝑑𝑒: (∆ + κ2)Ψ(𝑟 ) = 0 (3.9)

where Ψ(𝑟 ) is the wave function and 𝑟  is the position vector. In the area surrounding the disk 

we assume that the plane wave travels in free space, therefore the refractive index is equal to 

one and the angular wavenumber is 𝑘. As n is the refractive index of the disks the angular 

wavenumber inside the disk is 𝜅 = 𝑘𝑛. 

This type of problem can be solved with the Lippmann-Schwinger equation (Sharma & 

Sommerford 2006), given as 

Ψ(𝑟 ) =  𝜑(𝑟 ) − ∫𝐺(𝑟 , 𝑟 ′, 𝑘)𝑉(𝑟 ′)Ψ(r ′)𝑑2𝑟 ′ 
(3.10)

where Ψ(𝑟 ) is the solution to the wave function in the potential 𝑉(𝑟 ′), 𝜑(𝑟 ′) is the incoming 

wave, thus representing a solution of the free Schrödinger equation, 𝑟 ′ is the position vector 

of the source point and 𝐺(𝑟 , 𝑟 ′, 𝑘) is Green’s function.  

In order to prove that Ψ(𝑟 ) is a solution for the wave function in the potential 𝑉(𝑟 ′), we apply 

the Helmholtz operator, (∆ + 𝑘2) on the Lippmann-Schwinger in equation (3.10). We use that 

Helmholtz operator applied on Green’s function gives 

(∆ + 𝑘2)𝐺(𝑟 , 𝑟 ′, 𝑘) =  −𝛿(𝑟 − 𝑟 ′) (3.11)

where 𝛿(𝑟 − 𝑟 ′) is the delta Dirac function.  
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We use further that 𝜑(𝑟 ) is a solution for the free Helmholtz equation: 

(∆ + 𝑘2)𝜑(𝑟 ) = 0 (3.12)

thus we obtain from (3.10) becomes  

(∆ + 𝑘2)Ψ(𝑟 ) =  ∫𝛿(𝑟 − 𝑟 ′)𝑉(𝑟 ′)Ψ(r ′)𝑑2𝑟 ′ 
(3.13)

Solving the integral and rearranging equation (3.13) and after some rearranging, we obtain 

[−∆ + 𝑉(𝑟 )] Ψ(r ) = 𝑘2Ψ(𝑟 ) (3.14)

where the potential of the system, 𝑉(𝑟 ) is given by  

𝑉(𝑟 ) = 𝑘2𝑣(𝑟 ) (3.15)

with 𝑣(𝑟 )  

𝑣(𝑟 ) = {
1 − 𝑛, 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑑𝑖𝑠𝑘

0, 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑑𝑖𝑠𝑘
 

(3.16)

Thus, we have shown that equation (3.10) is equivalent to equation (3.14). Notice that the disk 

referred to above is homogenous with a constant refractive index. 

The solution for the Green’s equation defined by equation (3.11) is given as 

𝐺(𝑟 , 𝑟 ′, 𝑘) =
𝑖

4
𝐻0

(+)
(𝑘|𝑟 ′ − 𝑟 |) 

(3.17)

where 𝐻0
(+)

 is the Hankel function of the first kind of zero order, given by 

𝐻0
(+)(𝑥) = 𝐽0(𝑥) + 𝑖𝑌0(𝑥) (3.18)

where 𝐽0(𝑥) and 𝑌0(𝑥) is the Bessel function of respectively the first and the second kind of 

zero order. We use equation (3.17) together with the expression for the plane wave from 

equation (2.8), which leads to the equation  

Ψ(𝑟 ) = 𝑒𝑖�⃗� 𝑟 − 𝑖
𝑘2

4
∫𝐻0

(+)(𝑘|𝑟 ′ − 𝑟 |)  𝑣(𝑟 ′)Ψ(𝑟 ′)𝑑2𝑟 ′ 
(3.19)

To implement equation (3.19) numerically, the two-dimensional plane with the disks can be 

discretised into a lattice structure with 𝑁 number of squares and square area ∆𝐴.  
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The equation (3.19) is discretized on this lattice according to 

Ψ(𝑟 𝑗) = 𝑒𝑖�⃗� 𝑟𝑗⃗⃗  ⃗ − 𝑖
𝑘2

4
∑ 𝐻0

(+)
(𝑘|𝑟 𝑚 − 𝑟�⃗⃗� |)

𝑁

𝑚=1
 𝑣(𝑟 𝑚)Ψ(𝑟 𝑚)∆𝐴 

(3.20)

where the continuous position vectors are replaced with discrete position vectors, i.e. 𝑟 ′ →  𝑟 𝑚 

and 𝑟 → 𝑟 𝑗. We denote by 𝑁𝑥 the number of squares in x-direction, and by 𝑁𝑦 the number of 

squares in y-direction. The total number of squares is then given by 𝑁 = 𝑁𝑥 ∙ 𝑁𝑦. We write 

the identity matrix as 𝐼𝑗,𝑚 and obtain 

Ψ𝑗 = 𝐼𝑗,𝑚Ψ𝑚 = 𝑒𝑖�⃗� 𝑟 𝑗 −  𝑖
𝑘2

4
 ∆𝐴 𝐺𝑗,𝑚𝑣𝑚Ψ𝑚 

(3.21)

We write this in matrix notation 

𝐌Ψ⃗⃗⃗ = �⃗�  (3.22)

where �⃗�  is defined as  

𝑅 = (
𝑒𝑖�⃗� 𝑟 1

⋮

𝑒𝑖�⃗� 𝑟 𝑗

) 

(3.23)

The matrix 𝐌 is given by 

𝐌 = 𝐈 + 𝑖
 𝑘2∆A

4
 𝐆 

(3.24)

where every element in the matrix 𝐆 is given by 

G̃ = 𝐺𝑗,𝑚𝑣𝑚 (3.25)

 

The algorithm was implemented in MATLAB by Achim Kohler and Reinhold Blümel, as the  

script Disk_Scattering20082015.m, which can be found in M.A Brandsrud master thesis. 

Rozalia Lucaks vectorised the program as Disk_Scattering20082015vec.m presented in 

Appendix B. From now on, this script is called program I. 
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 Program 

For each wavenumber, the following parameters can be change in program I.  

- The amount of disks in x- and y-direction. 

- Radius of the disks. 

- Refractive index of the disks. 

- Grid resolution, i.e. the number of squares in the lattice structure in x- and y-direction. 

- Angle of incidence for the incoming plane wave.  

Greens function has a singularity at the zero argument. A simplification that were done in the 

program is that the Greens function were set to zero at a zero argument.  
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3.3 Analytical spherical wave scattering method 

For a spherical wave that impinges on a disk with constant potential, an exact analytical 

solution can be found. For the derivation of the exact solutions, lecture notes of Reinhold 

Blümel were used. For this special the radially symmetric and constant potential is given by

𝑣(𝑟 ) = {
𝑣0       𝑖𝑓 𝑟 ≤ 𝑅
0         𝑖𝑓 𝑟 ≥ 𝑅

  
(3.26) 

where 𝑅 is the radius of the disk and 𝑟 is the radial distance from the origin of the disk. The 

constant potential inside the disk, 𝑣0 can be written as  

𝑣0 = 1 − 𝑛2 (3.27)

where n is the refractive index of the disk. The angular wavenumber outside the disk is 𝑘 and 

the angular wavenumber inside the disk is defined as 

𝛽 = √𝑘2 − 𝑣𝑜 = 𝑘𝑛  (3.28)

A solution for the Helmholtz equation in equation (2.15) inside the disk is given by

𝜓𝑖𝑛(𝑟) = 𝐴𝑚(𝑘)𝐽𝑚(𝛽𝑟)𝑒𝑖𝑚𝜃 (3.29)

where 𝐴𝑚(𝑘) is not yet specified constant, 𝐽𝑚 is the Bessel function of first kind of order 

𝑚 and 𝜃 is the polar angle. In the space outside the disk, the potential is equal to zero. We 

write the solution to equation (2.15) in the form of a superposition of an incoming wave and a 

scattered, outgoing wave according to 

𝜓𝑜𝑢𝑡(𝑟) = 𝐻𝑚
(−)(𝑘𝑟)𝑒𝑖𝑚𝜃 + 𝑆𝑚(𝑘)𝐻𝑚

(+)(𝑘𝑟)𝑒𝑖𝑚𝜃 (3.30)

where and 𝑆𝑚(𝑘) defines the diagonal elements of the scatter matrix, which is a diagonal 

matrix. 𝐻𝑚
(+)

 and 𝐻𝑚
(−)

 are the Hankel functions of the first and second kind of m order, 

respectively and are given by 

𝐻𝑚
(±)

= 𝐽𝑚(𝑘𝑟) ± 𝑖𝑌𝑚(𝑘𝑟) (3.31)

where 𝑌𝑚 is the Bessel function of the second kind of order m.  The elements 𝑆𝑚(𝑘) can be 

found by the use of boundary conditions.  
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We require that the wave functions 𝜓𝑖𝑛 and 𝜓𝑜𝑢𝑡 and their derivatives are continuous at the 

boundary of the disk boundary. Thus, we obtain the following two conditions 

𝐴𝑚(𝑘)𝐽𝑚(𝛽𝑅) = 𝐻𝑚
(−)(𝑘𝑅) + 𝑆𝑚(𝑘)𝐻𝑚

(+)(𝑘𝑅) (3.32)

𝐴𝑚(𝑘)𝛽𝐽𝑚
′ (𝛽𝑅) = 𝑘 [𝐻𝑚

(−)′(𝑘𝑅) + 𝑆𝑚(𝑘)𝐻𝑚
(+)′(𝑘𝑅)] (3.33)

Solving equations (3.32) and (3.33) for 𝑆𝑚(𝑘), we obtain 

𝑆𝑚(𝑘) =  
𝑛 𝐽𝑚

′ (𝛽𝑅)𝐻𝑚
(−)(𝑘𝑅) − 𝐻𝑚

(−)′
(𝑘𝑅)𝐽𝑚(𝛽𝑅)

𝐽𝑚(𝛽𝑅)𝐻𝑚
(+)′(𝑘𝑅) − 𝑛 𝐽𝑚′ (𝛽𝑅)𝐻𝑚

(+)(𝑘𝑅)
 

(3.34)

Two properties of (3.34) are immediately apparent:  

i) Since the numerator is the complex conjugate of the denominator, 𝑆𝑚(𝑘) is a 

pure phase with absolute magnitude equal to 1.  

ii) For 𝑣0 = 0, which implies 𝛽 = 𝑘, we see immediately that 𝑆𝑚(𝑘) = 1. This is 

the expected results since it follows that 

 𝜓𝑜𝑢𝑡(𝑟) = [𝐻𝑚
(−)(𝑘𝑟) + 𝐻𝑚

(+)(𝑘𝑟)]𝑒𝑖𝑚𝜃.  Thus, 𝜓𝑖𝑛(𝑟) = 𝜓𝑜𝑢𝑡(𝑟), since 

𝐽𝑚(𝑘𝑟) = [𝐻𝑚
(−)(𝑘𝑟) + 𝐻𝑚

(+)(𝑘𝑟)]/2.  

Since 𝑆𝑚(𝑘) is a pure phase, we define the scattering phase shift 𝛿𝑚(𝑘) according to 

𝑆𝑚(𝑘) = 𝑒2𝑖𝛿𝑚(𝑘) (3.35)

The parameter 𝐴𝑚(𝑘) can be obtained by solving equations (3.32) and (3.33) for 𝐴𝑚(𝑘). We 

obtain 

𝐴𝑚(𝑘) =  
𝐻𝑚

(+)(𝑘𝑅)𝐻𝑚
(−)′(𝑘𝑅) + 𝐻𝑚

(−)(𝑘𝑅)𝐻𝑚
(+)′(𝑘𝑅)

𝑛 𝐽𝑚′(𝛽𝑅)𝐻𝑚
(+)(𝑘𝑅) − 𝐻𝑚

(+)′(𝑘𝑅)𝐽𝑚(𝛽𝑅)
 

For the calculation of derivatives of Bessel and Hankel functions we used recurrence relations 

for Bessel functions (Abramowitz & Stegun 1972). 

The algorithm was implemented in MATLAB by the author of this thesis. This program is 

presented as SpericalWave_Scattering.m in Appendix C. From now on, this script is called 

program II. 

  

(3.36) 
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3.3.1 Program  

In order to test program, the two properties described under section 3.3 as i) and ii) were 

checked to hold. 

For each wavenumber, the following parameters can be change in program II.  

- Radius of the disk. 

- Refractive index of the disk. 

- Pixel resolution. 
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4 Results and discussion 

4.1 Program based on analytical solution for plane wave scattering 

(program III) 

In the following we evaluate the analytical program of the scattering of a plane wave at a 

single disk (MATLAB script ProgramIII.m, called program III), described in section 3.1. In 

figure 4.1 the integral of the squared absolute value of the wave function |Ψ⃗⃗⃗ |
2
 over a square 

covering the disk is plotted for the wavenumber region from 500 𝑐𝑚−1 to 1400 𝑐𝑚−1 for the 

analytical plane wave scattering at a disk (program III). The integration was done by 

discretizing a square that just covers the disk into 200 grid point in both x- and y- direction 

and calculating the intensity at every element |Ψ⃗⃗⃗ 𝑗|
2
. As radius of the disk and as refractive 

index R=10 𝜇𝑚 and n=1.9 were chosen, respectively. In figure 4.1, nine distinct peaks appear 

at nine different wavenumbers. The nine images corresponding to the nine peak wavenumber 

are displayed in the same figure. As long as not stated otherwise, the color intensity scale for 

the wave function plots was autoscaled in MATLAB. Because the solution is analytical, the 

simulations were not very time consuming, and could be done on the author’s computer.  
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The peak in the graph figure 4.1 correspond to maxima in the total intensity of the wave 

function and represent resonances at the nine wavelengths. The images of the resonance 

wavenumbers show the typical pattern of Whispering galley modes. The displayed pattern 

shows a ring of nodes. The number of nodes is approximately twice the number of 

wavelengths that fit along the inside of the boundary of the disk as illustrated below. At the 

first peak, 𝜈 = 596 𝑐𝑚−1, 10 nodes appear as shown in the wave function plot in figure 4.2. 

These correspond to five wavelengths that fit into the inside of the disk as a standing wave 

that is located at the inside of the boundary. We defined the number of wavenumbers fitting 

into the disk as the mode number of the Whispering gallery mode. The mode number of the 

Whispering gallery mode in figure 4.2 is N = 5 from equation (2.16). 

 

Figure 4.2: The squared absolute value of the wave function is plotted. The wave function corresponds to a Whispering 

gallery mode displaying 10 nodes that correspond to five wavelengths inside the disk. The plotted region covers the disk 

exactly. At the axes, the grid pixel number used for the plotting is shown. 
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At the following peaks, e.g. higher wavenumber, the nodes increased with two nodes for 

every peak. At the last peak 𝜈 = 1375 𝑐𝑚−1 26 nodes were counted. This corresponds to 

mode numbers ranging from 𝑁=5 to 𝑁 = 13, as shown in table 4.1. This result shows that the 

program III is highly stable and therefore a good confirmation that the method was 

successfully implemented as an algorithm. 

Table 4.1:  The table shows the wavenumber positions and the wave function plots for the resonances in figure 4.1. The nodes 

in the wave function is counted and displayed in the second column and the mode number in third column is calculated with 

equation.(2.16). 

Wavenumber  Nodes N  

596  cm−1 10 5 

 

701  cm−1 12 6 

 

801  cm−1 14 7 
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899  cm−1 16 8 

 

996  cm−1 18 9 

 

1092 cm−1 20 10 

 

1187  cm−1 22 11 
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1282  cm−1 24 12 

 

1375  cm−1 26 13 
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The quantization rule of equation (2.17) shows the mathematical relationship between the 

refractive index of the disk, the resonance wavelength, the mode number and the geometrical 

length of the ray that corresponds with Whispering gallery resonances. In order to test the 

quantization rule of equation (2.17), we calculated the length of corresponding polygonal 

whispering gallery rays as illustrated in figure 2.4 for each Whispering gallery mode shown in 

table 4.1. At each resonance, the resonance wavelength was calculated as λr =
1

vr
. Equation 

(2.19) was used to calculate �̂�, which is the radius of a circle that frame the corresponding 

polygonal whispering gallery ray. The result is shown in table 4.2. The calculated radius �̂� is 

further compared to the actual radius of the disk R by calculating the difference between �̂� 

and R. In addition, the geometrical length of the polygonal ray, 𝑙 calculated according to 

equation (2.18) is presented. Notice that the mode number, 𝑁 is equivalent to the mode 

number calculated by the quantization rule of equation (2.17) using the geometrical length 𝑙.  

Table 4.2: The table shows the wavenumber and mode number for the Whispering gallery resonances from table 4.1. Notice 

that the mode number, 𝑁 is equivalent to the mode number calculated by the quantization rule of equation (2.17) using the 

geometrical length 𝑙. The calculated radius �̂� is the radius of a circle that frame the polygon whispering gallery ray, 

calculated according to equation (2.19). The calculated radius �̂� is compared to the actual radius of the disk 𝑅 by 𝑅 − �̂� 

where R = 10 𝜇𝑚 . The geometrical length 𝑙 is the length of polygonal ray inside the disk, calculated according to equation 

(2.18). The geometrical length of the polygonal ray 𝑙 is compare to the circumference of the disk 2𝜋𝑅, where 2𝜋𝑅 =
62, 8 𝜇𝑚.  

𝑾𝒂𝒗𝒆𝒏𝒖𝒎𝒃𝒆𝒓, 𝝂𝒓 

[𝑐𝑚−1] 

𝑵 �̂� 

[𝜇𝑚] 

𝑹 − �̂� 

𝑅 = 10.0 𝜇𝑚 

�̂� 

[𝜇𝑚] 

𝟐𝝅𝑹 − �̂� 

2𝜋𝑅 = 62.8 𝜇𝑚 

596 5 7.51 2.49 44.2 18.7 

701 6 7.51 2.49 45.0 17.8 

801 7 7.57 2.43 46.0 16.8 

899 8 7.65 2.35 46.8 16.0 

996 9 7.73 2.27 47.6 15.3 

1092 10 7.80 2.20 48.2 14.6 

1187 11 7.87 2.13 48.8 14.1 

1282 12 7.93 2.07 49.3 13.6 

1375 13 8.00 2.00 49.8 13.1 

 

Another way to test the quantization rule in equation (2.17) is to use the approximation that 

for a high mode number the geometrical length of the polygonal ray is approximately the 

circumference of the disk. The geometrical length calculated as circumference of a 𝑁-sided 

polygon inscribed in the disk, 𝑙𝑝𝑜𝑙𝑦 according to equation (2.18) is presented in table 4.3. In 
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addition, the table presents the mode number 𝑁𝑝𝑜𝑙𝑦 calculated from quantization rule in 

equation (2.17) with 𝑙𝑝𝑜𝑙𝑦 as the geometrical length.  

Table 4.3: The table shows the wavenumber and mode number for the Whispering gallery modes from table 4.1. The 

geometrical length, 𝑙𝑝𝑜𝑙𝑦 is calculated according to equation. (2.18) as the circumference of a polygon inscribed inside the 

disk.  The geometrical length 𝐿𝑝𝑜𝑙𝑦 is compare to the circumference of the disk 2𝜋𝑅, where 2𝜋𝑅 = 62.8 𝜇𝑚. The mode 

number 𝑁𝑝𝑜𝑙𝑦 is calculated from quantization rule in equation. (2.17) with 𝑙𝑝𝑜𝑙𝑦 as the geometrical length. 

Wavenumber 

[𝑐𝑚−1] 
𝑵 

𝒍𝒑𝒐𝒍𝒚 

[𝜇𝑚] 

𝟐𝝅𝑹 − 𝒍𝒑𝒐𝒍𝒚 

2𝜋𝑅 = 62.8 𝜇𝑚 

𝑵𝒑𝒐𝒍𝒚 

 

596 5 58.8 4.05 6.70 

701 6 60.0 2.83 8.00 

801 7 60.7 2.09 9.20 

899 8 61.2 1.60 10.5 

996 9 61.6 1.27 11.7 

1092 10 61.7 1.03 12.8 

1187 11 62.0 0.85 14.0 

1282 12 62.1 0.72 15.1 

1375 13 62.2 0.61 16.3 

 

From table 4.2 it is obvious that the geometrical length of the polygonal ray, 𝑙 is getting closer 

to the circumference of the disk when the mode number increases. We can further see in table 

4.3 that the geometrical length of the inscribed polygon 𝑙𝑝𝑜𝑙𝑦 also is getting closer to the disk 

circumference as the wavenumber increases. A comparison between the geometrical length of 

the polygonal ray 𝑙 from table 4.2 and the circumference of a polygon inscribed in the disk 

𝑙𝑝𝑜𝑙𝑦 from table 4.3 shows a large degree of difference. The mode number calculated with the 

quantization rule in equation (2.17) using the geometrical length of the polygonal ray 𝑙 from 

table 4.2 gives the mode number 𝑁. A comparison between the mode number 𝑁 in table 4.2 

and the mode number 𝑁𝑝𝑜𝑙𝑦 from table 4.3 calculated with the quantization rule in equation 

(2.17) with circumference of a polygon inscribed in the disk 𝑙𝑝𝑜𝑙𝑦 (table 4.3), also shows a 

large degree of disagreement. Hence, the circumference of an inscribed polygon 𝑙𝑝𝑜𝑙𝑦, is not a 

good approximation for the geometrical length for a mode number up to 𝑁 = 13. 

Furthermore, it is interesting to see if the pixel resolution changes the characteristics of the 

wave function plots. Figure 4.3 show plots of the absolute value of the wave function for the 
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whispering gallery mode corresponding to the peak at 801 𝜇𝑚 in figure 4.1c using a grid pixel 

resolution of 50x50 and 200x200, in (a) and (b), respectively.  

 

Visually the two wave function plots are very similar, except dark spots that appear in the plot 

with the lower pixel resolution of 50x50. The colorbars, had similar color intensity scales (0-

20) for both wave function plots (a) and (b) in figure 4.3. We further investigated the 

wavenumber position of the resonances in the plot of the integral over the absolute value of 

the wave function in the square area framing the disk (graphs corresponding to the graph of 

figure 4.1). It turned out that the resonances appeared at the same position 𝜈 = 801 𝑐𝑚−1 for 

both pixel resolutions. Thus, the pixel resolution does not seem to have a big effect on the 

wavenumber position where the resonance appears.  

b. a. 

Figure 4.3: Two wave function plots for the Whispering gallery mode corresponding to the peak found at 801 𝑐𝑚−1 in figure 

4.1. At right side of the plots, a colorbar with the range of intensity values 0 to 20 is displayed. At the axes, the grid point 

number used for the plotting is shown. a) shows the wave function plot with pixel resolution 50x50 and b) shows the wave 

function plot with pixel resolution 200x200.  
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4.2 Evaluation of program based on Lippmann-Schwinger equation 

(program I) 

In the following we evaluate the program based on the Lippmann Schwinger equation for the 

scattering of a plane wave at a single disk (MATLAB script Disk_Scattering20082015vec.m 

called program I) described in section 3.1. We also compare the results from the numerical 

algorithm based on the Lippmann Schwinger equation with the results from the plane wave 

scatter solution (section 4.1). The parameters chosen in this thesis is based on earlier results 

for a two-disk and one-disk system from M.A. Brandsrud thesis (Brandsrud 2015). The 

comparisons in this thesis are based on calculations done for the scattering at one disk. The 

disk radius is set to 𝑅 = 10 𝜇𝑚 and the refractive index of the disk to 𝑛 = 1.9. Program I was 

used to calculate the wave function for every wavenumber in the interval 500 𝑐𝑚−1 to 

1400 𝑐𝑚−1 for a plane wave impinging on the disk from the left. For the obtained wave 

functions, we calculated the integral of the squared absolute value of the wave function, |Ψ⃗⃗⃗ |
2
, 

over the area of the square framing the disk. The results are plotted for grid resolutions of 

50x50, 75x75 and 100x100 as described in section 2.5 in figure 4.4, figure 4.5 and figure 4.6, 

respectively. As previously, peaks with increased total intensities appear. Plots of the absolute 

value of the wave functions for the peak wavenumbers are plotted in the same figure. Since 

the numerical calculations were very time consuming, program I was vectorised by Rozalia 

Lukacs which increased the speed from four hours to about 2,5 minutes for a grid resolution 

of 100x100. Most of the simulations were done at the compute cluster at UiT – The Arctic 

University, the Linux Cluster Stallo, one of the Notur hardware resources, located in Tromsø. 
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As we can see from the results in figure 4.4, figure 4.5 and figure 4.6, the numerical method 

used in this thesis is stable. In each of the graphs, eight distinct peaks appear and they are 

located in the same distance from each other. Each peak corresponds to an increase in the 

intensity caused by a resonance. In some of the wave function plots belonging to the first 

peaks with the lowest wavenumber, we can observe the typical pattern of Whispering gallery 

modes resonances. The nodes are areas of high intensity and as explained in section 2.4, the 

number of nodes is twice the number of wavelengths that fit into the inside of the disk, i.e. 

mode number. As the wavenumber increases, the ring of nodes that is characteristic for 

Whispering gallery modes cannot be observed in every wave function plot and we can 

therefore not conclude that the intensity increase was due to Whispering gallery resonances. 

As previously, we denote the modes of all resonances in figure 4.4, figure 4.5 and figure 4.6 

with a mode number which is twice the number of nodes visible in the wave function plots. 

The wave function plots without visible nodes is given one mode number higher than the 

previous resonance with lower wavenumber. In table 4.4 the modes are listed according to 

their mode number and the wavenumber position of the resonances is given for the three grid 

resolutions used. The table shows that the resonances appear at almost the same wavenumbers 

for the three grid resolutions, while the discrepancy between the three grid resolutions 

increases with increasing wave numbers. For each resonance we can observe, that the 

resonances moves to smaller wavenumbers as the grid resolution increases. It is interesting to 

note that the resonances appear at almost the same distance from each other, with a 

displacement of 100 wavenumbers.  

Table 4.4 Modes are listed according to their mode number and the wavenumber position of the 

resonances is given for the three grid resolutions used in program I. 

 Wavenumber [𝑐𝑚−1] 

Mode number Grid res. 50x50 Grid res. 75x75 Grid res. 100x100 

5 606  604  603  

6 710  707  704  

7 812  808  805  

8 913  909  904  

9 1019  1008  1003  

10 1132  1113  1102  

11 1241  1225  1215  

12 1339  1331  1320  
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For comparison, the wave function plots (a) to (f) in figure 4.4, figure 4.5 and figure 4.6 with 

the corresponding mode number are plotted in table 4.5. As we can see for mode number 5, 6 

and 7 the images of the wave function plots shows the typically Whispering gallery mode 

pattern. For mode number 8, the WGM pattern cannot be seen in the image from grid 

resolution of 50x50, but in the images for the two higher resolutions. This is also the case for 

mode number 9, where the WGM pattern appears for the grid resolution 100x100, but is not 

visible when a grid resolution of 50x50 and 75x75 is used. For mode number 10 and higher, 

the WGM pattern has disappeared for all three grid resolutions. This can be seen in figure 4.4, 

figure 4.5 and figure 4.6. Thus, we expect that by applying a higher grid resolution, the WGM 

pattern will appear for mode number 10 and higher. This shows clearly that the program I 

becomes more stable at a higher grid resolution. 
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Table 4.5: Wave function plots with corresponding mode number of the first five resonances from program I with grid 

resolution 50x50, 75x75 and 100x100 from figure 4.4, figure 4.5 and figure 4.6, respectively. 

N Grid res. 50x50 Grid res. 75x75 Grid res. 100x100 

5 

   

6 

   

7 

   

8 

   

9 
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The program and the simulations of grid resolution of 50x50 and 75x75 were done with 

success, while the simulations were initially, i.e. before the MATLAB program was 

vectorised, quite problematic for a grid resolution of 100x100. For each of the wavenumbers, 

the calculations took four hours at Stallo. Stallo has a limited walltime. Therefore, the interval 

containing 900 wavenumbers was divided into 20 wavenumbers intervals. The jobs with 20 

wavenumbers were expected to give results after four days. A bug in the shell script made the 

jobs swap and used up the CPU hours given to the project at Stallo. Because of these 

obstacles and the limited time for a master thesis, a higher grid resolution then 100x100 could 

not be checked. Finally, the project was given more CPU hours and the remaining results 

were done with the modified vectorised program.  

In figure 4.7, the integral of the squared absolute value of the wave function, |Ψ⃗⃗⃗ |
2
, over the 

area of the square framing the disk for the analytical solution (program III, figure 4.1) is 

compared to the integral of the squared absolute value of the wave function of the numerical 

solution (program I, figure 4.4). As grid resolution of 50x50 was used for program I. The 

wave function for the analytical program was plotted with a pixel resolution of 200x200. It is 

important to remember that the grid resolution defines the numerical accuracy of program I, 

while for program III, the pixel resolution only defines the resolution of the plot, since the 

solution is analytical. The wave function plots that correspond to the peaks of both graphs in 

figure 4.7 are plotted for comparison including their corresponding mode number in table 4.6. 

The difference between the wavenumber positions where the resonances appear for program I 

and program III, respectively are given as ∆𝜈 = 𝜈𝐼 − 𝜈𝐼𝐼𝐼, where 𝜈𝐼 is the wavenumber 

position of the respective peaks in the graph obtained by program I, while 𝜈𝐼𝐼𝐼 is the 

wavenumber position for the peaks in the graph obtaned by program III. As we can see from 

the table, the discrepancy ∆𝜈 increase as the wavenumber increases. Figure 4.8 and figure 4.9 

show the same graphs as figure 4.7 but with grid resolution 75x75 and 100x100, respectively. 

For comparison, the graph of the numerical solution (program I) was scaled. Table 4.7 and 

table 4.8 show the same wave function plots as table 4.6, but for grid resolution 75x75 and 

100x100, respectivetly. 
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Table 4.6: The wave function plots for the wavenumber positions of the resonances obtained by program I and III in figure 

4.7 are shown in the columns in the middle and to the right, respectively. The mode number is displayed in the left column 

together with the discrepancy ∆𝜈 = 𝜈𝐼 − 𝜈𝐼𝐼𝐼 of the wavenumber positon at which the resonances appear for the two 

programs. For the numerical program (program I) a grid resolution of 50x50 was used. 

Mode number 

∆𝜈 = 𝜈𝐼 − 𝜈𝐼𝐼𝐼 

Program I – Numerical plane wave 

scatter solution with grid 50x50 

Program III – Analytical plane 

wave scatter solution 

10 

∆𝜈 = 10 𝑐𝑚−1 

  

12 

∆𝜈 = 9 𝑐𝑚−1 

  

14 

∆𝜈 = 11 𝑐𝑚−1 

  

16 

∆𝜈 = 14 𝑐𝑚−1 
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18 

∆𝜈 = 23 𝑐𝑚−1 

  

20 

∆𝜈 = 40 𝑐𝑚−1 

  

22 

∆𝜈 = 54 𝑐𝑚−1 

 
 

24 

∆𝜈 = 57 𝑐𝑚−1 
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Table 4.7: The wave function plots for the wavenumber positions of the resonances obtained by program I and III in figure 

4.7 are shown in the columns in the middle and to the right, respectively. The mode number is displayed in the left column 

together with the discrepancy ∆𝜈 = 𝜈𝐼 − 𝜈𝐼𝐼𝐼 of the wavenumber positon at which the resonances appear for the two 

programs. For the numerical program (program I) a grid resolution of 75x75 was used. 

Mode number 

∆𝜈 = 𝜈𝐼 − 𝜈𝐼𝐼𝐼 

Program I – Numerical plane wave 

scatter solution with grid 75x75 

Program III - Analytical 

5 

∆𝜈 = 8 𝑐𝑚−1 

  

6 

∆𝜈 = 6 𝑐𝑚−1 

  

7 

∆𝜈 = 7 𝑐𝑚−1 

  

8 

∆𝜈 = 10 𝑐𝑚−1 
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9 

∆𝜈 = 12 𝑐𝑚−1 

  

10 

∆𝜈 = 21 𝑐𝑚−1 

 
 

11 

∆𝜈 = 38 𝑐𝑚−1 

  

12 

∆𝜈 = 49 𝑐𝑚−1 
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Table 4.8: The wave function plots for the wavenumber positions of the resonances obtained by program I and III in figure 

4.7 are shown in the columns in the middle and to the right, respectively. The mode number is displayed in the left column 

together with the discrepancy ∆𝜈 = 𝜈𝐼 − 𝜈𝐼𝐼𝐼 of the wavenumber positon at which the resonances appear for the two 

programs. For the numerical program (program I) a grid resolution of 100x100 was used. 

Mode number 

∆𝜈 = 𝜈𝐼 − 𝜈𝐼𝐼𝐼 

Program I –Numerical plane wave 

scatter solution with grid 100x100 

Program III - Analytical 

5 

∆𝜈 =  7 𝑐𝑚−1 

  

6 

∆𝜈 =  3 𝑐𝑚−1 

  

7 

∆𝜈 =  4 𝑐𝑚−1 

  

8 

∆𝜈 =  5 𝑐𝑚−1 
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9 

∆𝜈 =  7 𝑐𝑚−1 

  

10 

∆𝜈 = 10 𝑐𝑚−1 

  

11 

∆𝜈 =  28 𝑐𝑚−1 

  

12 

∆𝜈 = 38 𝑐𝑚−1 
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In table 4.9, the wavenumber positions for the resonances obtained by the numerical solution 

based on the Lippmann Schwinger (program I) are compared to the wavenumber positions of 

the resonances obtained by the analytical solutions (program III). In the first column, the 

Mode number of the respective resonance is given, the second column shows the wavenumber 

position obtained according to the analytical solution, while column 3-5 show the 

displacement of the respective resonance wavenumber obtained by program III for a grid 

resolution of 50x50, 75x75 and 100x100, respectively.   

Table 4.9: The wave number position for the resonances obtained by the numerical solution based on the Lippmann 

Schwinger (program I) are compared to the wavenumber positions of the resonances obtain by the analytical solutions 

(program III). The first column the mode number to the respective resonances is given, the second column shows the 

wavenumber position obtained according to the analytical solution. Column 3-5 shows the displacement of the respective 

resonance wave numbers obtained by program III for a grid resolution of 50x50, 75x75 and 100x100, respectively. 

Mode 

number 

Program III 

wavenumber 

Wavenumber displacement for program I 

(relative to wavenumbers from program III ) 

50x50   75x75   100x100   

5 596 𝑐𝑚−1 + 10 𝑐𝑚−1 + 8 𝑐𝑚−1 + 7 𝑐𝑚−1 

6 701 𝑐𝑚−1 + 9 𝑐𝑚−1 + 6 𝑐𝑚−1 + 3 𝑐𝑚−1 

7 801 𝑐𝑚−1 + 11 𝑐𝑚−1 + 7 𝑐𝑚−1 + 4 𝑐𝑚−1 

8 899 𝑐𝑚−1 + 14 𝑐𝑚−1 + 10 𝑐𝑚−1 + 5 𝑐𝑚−1 

9 996 𝑐𝑚−1 + 23 𝑐𝑚−1 + 12 𝑐𝑚−1 + 7 𝑐𝑚−1 

 10 1092 𝑐𝑚−1 + 40 𝑐𝑚−1 + 21 𝑐𝑚−1 + 10 𝑐𝑚−1 

11 1187 𝑐𝑚−1 + 54 𝑐𝑚−1 + 38 𝑐𝑚−1 + 28 𝑐𝑚−1 

12 1282 𝑐𝑚−1 + 57 𝑐𝑚−1 + 49 𝑐𝑚−1 + 38 𝑐𝑚−1 

 

As we can see in table 4.9, the displacement of the wavenumbers from program I decrease as 

the grid resolution increases. Hence, the grid resolution for 100x100 seems to be closer to the 

exact solution then the lower grid resolution. This indicates that if the grid resolution is 

further increased, the resonances move closer to the exact result. A visual inspection of the 

wave function plots in  shows that for low wavenumber resonances (mode numbers 5,6 and 

7), WGMs are revealed independently of the grid resolution used, while for high wavenumber 

resonances, a high resolution is required for revealing WGMs. This is due to the fact that for 

higher wavenumber resonances, the mode number and thus the number of nodes increases. 

With increasing mode number, the nodes become smaller and thus a higher grid resolution is 

needed. The size of each pixel depends on the grid resolution. Hence, for a grid resolution of 
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50x50 of a 10 micron radius disk, the pixel size is equal to (0.4x0.4)𝜇𝑚, while for a grid 

resolution of 100x100 for the same disk the pixel size becomes (0.2x0.2)𝜇𝑚. Since the area 

covered by one single node, decreases with increasing mode number, the pixel size need to 

decrease and the grid resolution needs to increase if one wants to achieve the same accuracy. 

This is obvious for the mode number 9 in table 4.5 where the grid resolution 50x50 and 75x75 

resulted in a wavelength displacement for the resonances of 23 𝑐𝑚−1and 12 𝑐𝑚−1, 

respectively (table 4.9) compared to the exact solution. For the grid resolution 100x100 

though, the respective wave function plots (mode number 9 in table 4.5) shows the typical 

WGM pattern and the displacement was reduced to 7 𝑐𝑚−1 shown in table 4.9. In figures 4.7, 

4.8, 4.9 and tables 4.6, 4.7, 4.8 we compared the wavenumber positions of resonances in the 

integral of the absolute value of the wave function over the square framing the disk. High 

discrepancies were found for resonance positions referring to high mode numbers and grid 

resolutions. In addition, wave function plots for the respective resonance positions were 

compared with each other. Another way to compare results is to consider the wavenumber 

positions for the resonances obtained by the analytical solution and plot the wave functions 

obtained by the numerical solution based on the Lippmann Schwinger equation for these exact 

wavenumber positions of the resonances. From the analytical scattering algorithm, program 

III, a Whispering gallery resonance with mode number 𝑁 = 7 and 14 nodes at wavenumber 

801 𝑐𝑚−1 was found (figure 4.1). The same resonance was found in program I 

at 812 𝑐𝑚−1, 808 𝑐𝑚−1 and 805 𝑐𝑚−1 with grid resolution 50x50, 75x75 and 100x100 

(figure 4.4, figure 4.5, figure 4.6) respectably. We observed that the corresponding wave 

function plots deviated considerably for low grid resolutions. In order to study if the 

numerical program based on the Lippmann Schwinger equation can reveal WGMs at the exact 

resonance positions, program I was run with different grid resolutions (50x50, 70x70, 90x90, 

110x110, 130x130 and 150x150) for the resonance wavenumber 801 𝑐𝑚−1. As seen table 

4.10 in the resolution is stepwise changed from 50x50 to 150x150.  
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Table 4.10: Wave function plots for wavenumber 801 𝑐𝑚−1 obtained by the numerical program based on the Lippmann 

Schwinger equation, program I, was run with six different grid resolutions, 50x50, 70x70, 90x90, 110x110, 130x130 and 

150x150. The wavenumber position  𝜈 = 801 𝑐𝑚−1 with mode number N=7 and 14 nodes corresponds to a Whispering 

gallery resonance obtained by the analytical plane wave solution, program III.  

50x50 70x70 

  

90x90 110x110 

  

130x130 150x150 
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In table 4.10 we can observe that the wave inside the disk starts to form a Whispering gallery 

pattern as the grid resolution increases. For the grid resolution 90x90 and higher grid 

resolutions the typical WGM pattern can be observed.  

The wave function plot obtained by program I with a grid resolution of 100x100 was 

autoscaled in MATLAB with color intensity scale 0-14, shown in figure 4.10. 

 

Figure 4.10: Wave function plot of  𝜈 =  801 𝑐𝑚−1 obtained by program I with a grid resolution of 100x100. At right side of 

the plot, a colorbar with the range of intensity values 0 to 14 is displayed. 

The wave function plot obtained by the analytical solution (program III) with a pixel 

resolution of 100x100 was autoscaled in MATLAB with color intensity scale 0-20, shown in 

figure 4.11b. In order to visually compare the wave function plot obtained by program I with 

a grid resolution of 100x100 in with the wave function plot obtained by program III with a 

grid solution of 100x100 the color intensity for the wave function plot for program I was 

rescaled from 0-14 to 0-20. Figure 4.11 shows the wave function plot (a) for program I and 

the wave function plot (b) for program III with the same colour scale of 0-20. In figure 4.11 

we can see that the wave function plots displays the same type of pattern with 14 nodes inside 

the disk, while the absolute value of the brightest node to the right is slightly higher in the 

wave function obtained by program III. Comparing the wave function plot for program I with 

color scale 0-14 in figure 4.10 with wave function plot for program III with color scale 0-20 

in figure 4.11b, the absolute value of the brightest node to the right appears to have the same 

brightness. As mentioned earlier the same resonance (mode number 𝑁 = 7) found in program 

I with grid resolution 100x100 appeared at the wavenumber position 𝜈 = 805 𝑐𝑚−1 (figure 

4.6). If program I is run with a higher grid resolution then 100x100 the resonance with 𝑁 = 7 

may move to a wavenumber position of 𝜈 = 801 𝑐𝑚−1, equal to the resonance wavenumber 

position of program III.  Further investigation is necessary to analyse the color intensity scale 
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of the wave function plots of the resonances for program I with a higher grid resolution then 

done in this thesis. 

 

Figure 4.11: a) Wave function plot obtained by program I with a grid resolution of 100x100 and color scale intensity 0-20. b) 

Wave function plots obtained by program III with a pixel resolution of 100x100 and color scale intensity 0-20.  

In order to estimate the error in the wave function plots obtained by program I which is based 

on the Lippmann Schwinger equation, we calculated the mean error of the absolute value of 

the wave function obtained by program I. This is done by subtracting in each pixel the 

squared absolute value of the wave function obtained by program I from the corresponding 

pixel value obtained by program III resulting in the discrepancy for each pixel. We calculate 

then for each pixel the absolute value of the discrepancy (error) and sum the error over all 

pixels. We divide this sum by the mean of the squared absolute value of the wave function 

obtained by the analytical solution (program III). The result we call relative pixel error. This 

is summarized in the two formula: 

∆𝑖𝑗= ∑∑ 
 ||𝛹𝐼𝐼𝐼 𝑖,𝑗|

2
− |𝛹𝐼 𝑖,𝑗|

2
|

𝑚𝑒𝑎𝑛

100

𝑗=1

100

𝑖=1

 

(4.1)

where |𝛹𝐼 𝑖,𝑗|
2
is squared absolute value of the wave function in element i,j obtained by 

program I and |𝛹𝐼𝐼𝐼 𝑖,𝑗|
2
is squared absolute value of the wave function in element i,j obtained 

by program III and 𝑚𝑒𝑎𝑛 =  
∑ ∑ |𝛹𝐼𝐼𝐼 𝑖,𝑗|

2100
𝑗=1

100
𝑖=1

𝑁𝑥 𝑁𝑦
 . The relative pixel error is given by 

∆𝑖𝑗

𝑁𝑥 𝑁𝑦
 

(4.2)

 

where 𝑁𝑥 is number of pixels in x-direction and 𝑁𝑦 is the number of pixels in y-direction. The 

relative pixel error is shown in figure 4.12 for different grid resolutions. 

a. b. 
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Figure 4.12: The relative pixel error gives in percent the difference in wave function plot from program I and the wave 

function plot for the wavenumber 𝜈 = 801 𝑐𝑚−1 for different grid resolutions. 

The relative pixel error troops from grid resolution 50x50 to 90x90. From grid resolution 

90x90 to 130x130 the relative pixel error is quite stable around 0,5%. This indicates that the 

images for program I appearing from grid resolution 90x90 is relative alike the exact solution 

of the WGM pattern from Program III.  
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4.3 Program based on the analytical solution for the spherical wave 

scattering (program II) 

In the following we evaluate the S-matrix for the scattering of a spherical wave at a disk 

(MATLAB script SpericalWave_Scattering.m, called program II) as described in section 3.3 

is shown in Appendix C. From earlier results, we observed that the resonances from the 

numerical solution based on the Lippmann-Schwinger equation (program I) approaches the 

resonances from the analytical plane wave scattering solution (program III). Therefore, it 

made sense to compare the resonances of the S-matrix for the scattering of a spherical wave 

(program II) with the analytical solution for the scattering of a plane wave at a disk (program 

III). Program II was evaluated using a disk with a radius of 10 𝜇𝑚 and a refractive index of 

1.9. In figure 4.13a to figure 4.20a the real part of the denominator of the S-matrix is plotted 

in the region from 500 𝑐𝑚−1 to 1400 𝑐𝑚−1 for the orders 𝑚 = 0 to 𝑚 =  9. Resonances of 

the S-matrix are expected to appear when the real part of the denominator of the S-matrix is 

zero. For order number 0 to 7, the real part of the denominator of the S-matrix became zero 

twice. The corresponding wave functions at the zero-crossings are plotted in figure 4.13b,c-

figure 4.18b,c. For order number 8 and 9 the real part of the denominator becomes zero once. 

The corresponding wave functions at the zero-crossings are plotted in figures 4.19b-4.20b. 

The wave functions are plotted by discretizing the disk into 200 grid cells in both x- and y- 

direction and calculating the intensity at every element |Ψ⃗⃗⃗ 𝑗|
2
. All simulations were done on 

the author’s computer.  
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The resonances are summarized in table 4.11 and compared with the resonances in the 

analytical plane wave scatter solution (program III). The resonance wavenumbers of the first 

zero crossings for order number 0 to 9 are marked with red text and placed at the nearest 

wavenumber from the analytical solution of the scattering of a plane wave at a disk (program 

III). The resonance wavenumber of the second zero crossings for order number 0 to7 are 

marked with blue text and compared to the nearest wavenumber from the plane wave scatter 

solution. 

Table 4.11: The resonance wavenumbers from the analytical plane wave scattering resonances (program III) are displayed 

in the first column. The first row shows the resonance wavenumbers obtained by the spherical wave scattering solutions, i.e. 

where the denominator to the S-matrix is equal to zero. This is done for every order number separately. The red 

wavenumbers denote the first zero crossings, while the blue wavenumbers denote the second zero-crossings.   

 

Table 4.11 shows that the resonances obtained by the zero-crossings of the real part of the S-

matrix are not in accordance with the resonances obtained by the program based on the 

analytical solution of the plane wave scattering at the disk (program III). For program III, the 

resonances appears at nine different wavelengths while at for the spherical wave scatter 

solution (program II), the resonances appear once or twice depending on the order number. 

We can also observe that the resonance wavenumbers from program II appear at different 

numbers depending on the order number and resonance wavenumbers increase with 

increasing order.  

Program II was checked to satisfy the properties i) and ii) from section 3.3. These properties 

hold. This indicates that the method was successfully implemented. Since the resonances 

obtained by the zero-crossings of the real part of the denominator of the S-matrix do not agree 

with the resonances obtained by the program based on the analytical solutions for the 

scattering of a plane wave at a disk, we assume that the imaginary part of the denominator 

also needs to be considered. This was unfortunately not possible in the frame of this thesis.  
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Zero order 

 

First order 

 

Figure 4.13: a) The graph shows the real 

part of the denominator of the S-matrix for 

order number 0 as a function of the 

wavenumber. 

b)  Wave function plot of the first zero 

crossing of the denominator of the real 

part of the S-matrix in a). 

c) Wave function plot of the second zero 

crossing of the denominator or the real 

part of the S-matrix in a). 

a. 

b. c. 

a. 

b. c. 

Figure 4.14: a) The graph shows the real 

part of the denominator of the S-matrix 

for order number 1 as a function of the 

wavenumber. 

b)  Wave function plot of the first zero 

crossing of the denominator of the real 

part of the S-matrix in a). 

c) Wave function plot of the second zero 

crossing of the denominator or the real 

part of the S-matrix in a). 
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Second order 

 

Third order 

 

a. 

c. b. 

Figure 4.15: a) The graph shows the real 

part of the denominator of the S-matrix 

for order number 2 as a function of the 

wavenumber. 

b)  Wave function plot of the first zero 

crossing of the denominator of the real 

part of the S-matrix in a).  

c) Wave function plot of the second zero 

crossing of the denominator or the real 

part of the S-matrix in a). 

a. 

b. c. 

Figure 4.16: a) The graph shows the real 

part of the denominator of the S-matrix for 

order number 3 as a function of the 

wavenumber. 

b)  Wave function plot of the first zero 

crossing of the denominator of the real part 

of the S-matrix in a). 

c) Wave function plot of the second zero 

crossing of the denominator or the real part 

of the S-matrix in a). 
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Fourth order 

 

Fifth order  

a. 

b. c. 

Figure 4.17: a) The graph shows the real 

part of the denominator of the S-matrix for 

order number 4 as a function of the 

wavenumber. 

b)  Wave function plot of the first zero 

crossing of the denominator of the real part 

of the S-matrix in a). 

c) Wave function plot of the second zero 

crossing of the denominator or the real part 

of the S-matrix in a). 

 

c. b. 

Figure 4.18: a) The graph shows the real 

part of the denominator of the S-matrix 

for order number 5 as a function of the 

wavenumber. 

b)  Wave function plot of the first zero 

crossing of the denominator of the real 

part of the S-matrix in a). 

c) Wave function plot of the second zero 

crossing of the denominator or the real 

part of the S-matrix in a). 

 

a. 
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Sixth order 

 

Seventh order 

 

 

 

 

 

 

 

 

 

 

 

c. b. 

a. Figure 4.19: a) The graph shows the real 

part of the denominator of the S-matrix for 

order number 6 as a function of the 

wavenumber. 

b)  Wave function plot of the first zero 

crossing of the denominator of the real part 

of the S-matrix in a). 

c) Wave function plot of the second zero 

crossing of the denominator or the real part 

of the S-matrix in a). 

 

b. c. 

a. Figure 4.20 a) The graph shows the real 

part of the denominator of the S-matrix for 

order number 7 as a function of the 

wavenumber. 

b)  Wave function plot of the first zero 

crossing of the denominator of the real 

part of the S-matrix in a). 

c) Wave function plot of the second zero 

crossing of the denominator or the real 

part of the S-matrix in a). 
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Eight order 

 

Figure 4.21: a) The graph shows the real part of the denominator of the S-matrix for order number 7 as a function of the 

wavenumber. b)  Wave function plot of the first zero crossing of the denominator of the real part of the S-matrix in a). 

Ninth order 

 

Figure 4.22: a) The graph shows the real part of the denominator of the S-matrix for order number 9 as a function of the 

wavenumber. b) Wave function plot of the first zero crossing of the denominator of the real part of the S-matrix in a). 

  

b. a. 

a. b. 
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4.4 Summary of the results and discussion 

The results from section 4.1 shows that the analytical plane wave scatter algorithm was 

successfully implemented in MATLAB. The MATLAB program, called program III was 

referred to as the exact solution. Nine distinct resonances were observed in the wavenumber 

region from 500 𝑐𝑚−1 to 1400 𝑐𝑚−1 for a disk with a 10 micron radius and a refractive 

index of 1.9. These resonances could be explained by Whispering gallery modes. WGMs 

resonances are characterized by a pattern of bright nodes arranged in a regular order inside the 

disk. This characteristic pattern could be observed in the wave functions plots for the nine 

resonance wavenumbers. A quantization rule was set up relating the refractive index of the 

disk, the resonance wavelength, the mode number and the length of the ray trapped inside the 

disk, i.e. geometrical length. A comparison of the mode number calculated with the 

quantization rule using the geometrical length for polygonal whispering gallery ray and the 

circumference of an inscribed polygon in the disk showed a large degree of disagreement. 

Hence, the circumference of an inscribed polygon is not a good approximation for the 

geometrical length for a mode number up to 𝑁 = 13. We further investigated if the pixel 

resolution effected the characteristics of the resonances in program I.  The results showed that 

the pixel resolution did not influence the appearance of the resonances. 

Section 4.2 shows the results from the numerical plane wave scatter algorithm (program I) for 

three different grid resolutions, 50x50, 75x75 and 100x100. Eight distinct resonances were 

observed in a disk with a 10 micron radius and refractive index of 1.9 in the wavenumber 

region from 500 𝑐𝑚−1 to 1400 𝑐𝑚−1. At the resonance wavenumbers, the wave function 

plots revealed the characteristic WGM patterns: in mode number 5,6 and 7 for grid resolution 

50x50; in mode number 5,6,7 and 8 for grid resolution 75x75; and in mode number 5,6,7,8 

and 9 for grid resolution 100x100. It is expected, that for a higher grid resolution the WGM 

pattern appears at higher mode numbers. This indicates that the increase of the grid resolution 

also increase the accuracy of program I. 

The numerical results of program I based on the Lippmann Schwinger Equation were 

compared with the analytical solution for the scattering of a plane wave at a disk (program 

III). The results show that the resonances obtained by program I appear at higher 

wavenumbers than the corresponding resonances obtained by program III. As the grid 

resolution in program I increases, the discrepancy between the resonance positions for both 

programs decreases. As a result, the wavenumber positions of the resonances obtained by 
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program I become closer to the wavenumber positions of the resonances obtained by program 

III. We further notice that wave function plots with grid resolution 100x100 obtained by 

program III are in complete agreement with wave function plots obtained by program I for the 

first five resonances and all of them show the characteristic WGM pattern.  

Further, we compared the wave function plots for mode number 7 at wavenumber 801 𝑐𝑚−1 

obtained by program I and program III. The resonance wavenumber of mode number 7 shows 

discrepancy between the resonance positions of 11 𝑐𝑚−1 to 4 𝑐𝑚−1 for a grid resolution of 

50x50 to 100x100, when comparing program I to program III. Nevertheless, already at 90x90 

we can observe by visual inspection that the characteristic WGM pattern appears in the wave 

function plot obtained by program I. The increasing accuracy obtained when increasing the 

grid resolution is further confirmed by calculating the relative pixel error and plot this in a 

graph. From the graph we can see that the relative pixel error in the wave function plot is 

about 0.5% when the grid resolution is higher than 90x90.  

The tests of the properties of the S-matrix in section 4.3 show that the analytical spherical 

wave scatter method was successfully implemented in MATLAB. The MATLAB program 

was called program II. The real part of the denominator of the S-matrix for a disk with 10 

micron radius and refractive index of 1.9 was calculated and plotted against wavenumbers 

from 500 𝑐𝑚−1 to 1400 𝑐𝑚−1. This was done for orders 0 to 9. The S-matrix describes the 

intensity. When the denominator of the S-matrix is equal to zero, the intensity has a 

maximum. Hence, the zero crossing of the denominator is expected to correspond to 

resonances. For order number 0 to 7 two of these resonances appeared and for order number 8 

and 9 one resonance appeared. These resonance wavenumbers were compared to the 

resonance wavenumbers obtained by program III. The comparison revealed no similarities. As 

both compared programs are analytical solutions, the resonance wavenumbers should agree 

for both programs. We assume that the discrepancy is due to the fact that only the real part of 

denominator of the S-matrix was considered in program II.   
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5 Conclusion and outlook 

In this thesis, the focus was on the comparison of the numerical results of program I based on 

the Lippmann Schwinger Equation with the analytical solution for the scattering of a plane 

wave at a disk (program III). In addition, the S-matrix for the scattering of a spherical wave at 

a disk (program II) was considered and resonances of the S-matrix were compared with the 

program based on the Lippmann-Schwinger equation and the analytical solution for the 

scattering of a plane wave at a disk. The analytical plane wave scatter solution was 

successfully implemented as an algorithm (program III) and the results showed high stability. 

The results displayed distinct resonances in the disk that could be explained by Whispering 

gallery modes. We found a good agreement between the numerical solution (program I) and 

the analytical plane wave scattering solution (program III). First, we observed that the 

wavenumber positions of the resonances obtained by program III were systematically higher 

and that the discrepancy decreased with increasing grid resolution. We further observed that 

the discrepancy was larger for higher mode numbers. The wave function plots of the 

resonances for program I showed the appearance of Whispering gallery mode patterns in the 

first five of eight plots of the wavenumbers positions for resonances for a grid resolution of 

100x100. For the two lower grid resolutions 50x50 and75x75, WGMs pattern appeared in 3 of 

8 and 4 of 8 plots, respectively. These results indicated that the numerical program (program 

I) becomes more and more stable when the grid resolution increases. This shows that the 

wavenumber position for the resonances obtained by program I converges to the wavenumber 

positions for the resonances obtained by program III with increasing grid resolution and that 

the WGM pattern at higher wavenumber positions could also be revealed when the grid 

resolution is further increased. The simplification done for Green’s function in program I, 

namely that the pole of the Green’s function at zero was approximated by zero, seems to have 

little influence on the results. As further investigation, program I should be simulated with 

higher grid resolution then 100x100 for single disk, and check if the resonances appears at 

exactly the same position as the resonances in program III. A higher grid resolution should 

also be checked in program III with nanodisks and other refractive index. There are also other 

numerical methods suggested to solve scattering of a two-dimensional plane wave at multiple 

coupling disks. One is the finite difference time domain (FDTD) technique (Grandidier et al. 

2011). The FDTD technique is very time consuming and requires extensive computation. It 
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would be interesting to compare the analytical results from program III with the FDTD 

technique and check the quality of this approach. 

We compared the results from program II and program III and found no clear connection 

between the wavenumbers where the resonances appeared. The results from program II 

indicated that important information with respect to the resonances is lacking when only the 

real part of the denominator of the S-matrix was considered. Thus, both real and imaginary 

part of the denominator of the S-matrix needs to be considered.  

 

 



65 

 

Bibliography  

Abramowitz, M. & Stegun, I. A. (1972). Handbook of mathematical functions: with formulas, 

graphs, and mathematical tables: Dover Publications, INC. 

Brandsrud, M. A. (2015). Understanding Resonant Structures of Coupled Disks for Light 

Management in Photovoltaics. Master thesis. Ås: Norwegian University of Life 

Sciences Faculty of Environmental Science and Technology, Department of 

Mathematical Sciences and Technology. 78 pp. 

Chen, C. J. (2011). Physics of solar energy: John Wiley & Sons. 

Eisenlohr, J., Benick, J., Peters, M., Bläsi, B., Goldschmidt, J. C. & Hermle, M. (2014). 

Hexagonal sphere gratings for enhanced light trapping in crystalline silicon solar cells. 

Optics Express, 22 (S1): A111-A119. 

Grandidier, J., Callahan, D. M., Munday, J. N. & Atwater, H. A. (2011). Light Absorption 

Enhancement in Thin‐Film Solar Cells Using Whispering Gallery Modes in Dielectric 

Nanospheres. Advanced Materials, 23 (10): 1272-1276. 

Grandidier, J., Weitekamp, R. A., Deceglie, M. G., Callahan, D. M., Battaglia, C., Bukowsky, 

C. R., Ballif, C., Grubbs, R. H. & Atwater, H. A. (2013). Solar cell efficiency 

enhancement via light trapping in printable resonant dielectric nanosphere arrays. 

physica status solidi (a), 210 (2): 255-260. 

Green, G. (1828). An essay on the application of mathematical analysis to the theories of 

electricity and magnetism: Author. 

Kirsch, A. & Hettlich, F. (2009). The Mathematical Theory of Maxwell’s Equations. Lecture 

notes. 

Kokhanovsky, A. A. (2011). Light Scattering Reviews, Vol. 6. Light scattering reviews. 

Dordrecht: Springer. 

Oraevsky, A. N. (2002). Whispering-gallery waves. Quantum Electronics, 32 (5): 377-400. 

Pachauri, R. K., Allen, M., Barros, V., Broome, J., Cramer, W., Christ, R., Church, J., Clarke, 

L., Dahe, Q. & Dasgupta, P. (2014). Climate Change 2014: Synthesis Report. 

Contribution of Working Groups I, II and III to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change. 

Sharma, S. K. & Sommerford, D. J. (2006). Light scattering by optically soft particles: theory 

and applications: Springer Science & Business Media. 

Tipler, P. A. & Mosca, G. (2004). Physics for scientists and engineers. 5th ed., Standard 

version. ed. New York: Freeman. 

Townsend, J. S. (2010). Quantum Physics: A Fundamental Approach to Modern Physics: 

University Science Books. 



66 

 

Wallentin, J., Anttu, N., Asoli, D., Huffman, M., Åberg, I., Magnusson, M. H., Siefer, G., 

Fuss-Kailuweit, P., Dimroth, F., Witzigmann, B., et al. (2013). InP Nanowire Array 

Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit. Science, 

339 (6123): 1057-1060. 

Zhu, J., Hsu, C.-M., Yu, Z., Fan, S. & Cui, Y. (2009). Nanodome solar cells with efficient 

light management and self-cleaning. Nano letters, 10 (6): 1979-1984. 

 



i 

 

Appendix A 

The  MATLAB scripts for program III is enclosed in Appendix A: 

 ProgramIII.m 

The analytical plane wave method is implemented as an algorithm in this script. 

Calculates the squared absolute value of the wave function for series of wavenumbers. 

When the input is only one wavenumber a plotted image is displayed.  

 constant_planewave.m 

A function that gives the parameters 𝐴𝑙 and 𝐵𝑙. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    ProgramIII.m                                                       % 
%                                                                       % 
%    Frida H.M Torgersen                                                % 
%                                                                       % 
%    Program III based on the analytical plane wave scattering method   %                           

%             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 
clear all 
close all   

  

  
%% ______ properties that can be changed_________ 
%____________________disk________________________ 

  
n = 1.9; % Refractive index 
a = power(10,-5); % Radius 

  

  
l = -20:1:20;   % Interval of order 
h = length(l); 

  
%%______ Light_______ 

  
nu = 801; % Wavenumber 
kArr = nu*100*2*pi; % angular wavenumber outside the disk 

  

  
betaArr = kArr*n; % angular wavenumber inside the disk 

 

  

  

  
%% Grid 
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Sum_psiArr = zeros(1,length(nu)); 
    aa=1; %Change the frame, aa=1 the frame goes around the disk 
    X0=-aa*a; 
    Y0=-aa*a; 
    Nstep=200; % Grid size 
    step=2*aa*a/Nstep; 

   
for jnu = 1:length(nu); 

  
    Psii = zeros(Nstep,Nstep); 
    Psi=zeros(Nstep,Nstep); 
    absPsii = zeros(Nstep,Nstep); 

     
    k = kArr(jnu); 
    beta = betaArr(jnu); 
    [A_l,B_l]= constants_planewave(l,a,k,beta,n); 

    

  
    for i=1:Nstep 
        x=X0+step*double(i); 
        for j=1:Nstep 
            y=Y0+step*double(j); 
            theta1=atan2(y,x); 
            r1=sqrt(x*x+y*y); 
            for jk = 1:length(l)   
                if (r1<a) 
                    psi=besselj(l(jk),beta*r1)*exp(1i*l(jk)*theta1); 
                    Psi(j,i)= B_l(jk)*psi; 
                    Psii(j,i) = Psii(j,i)+ Psi(j,i); 
                elseif (r1>a) 
                    h1=(1i^l(jk))*besselj(l(jk),k*r1)*exp(1i*l(jk)*theta1); 
                    h2=A_l(jk)*besselh(l(jk),1,k*r1)*exp(1i*l(jk)*theta1); 
                    Psi(j,i)=h1+h2; 
                    Psii(j,i) = Psii(j,i)+ Psi(j,i);        
                end 

              
            end 
        absPsii(j,i) = abs(Psii(j,i)).*abs(Psii(j,i)); 
        end  

         
    end 

  

  

  
B(jnu,:) = sum(absPsii); 
A(jnu) = sum(B(jnu)); 

  
if length(nu) > 1  

     
    filename = 

strcat('program3_n1.9_',num2str(nu(1)),'_',num2str(nu(end)),'_10micron.txt'

); 

  
    g=fopen(filename,'a'); 

     
    fprintf(g,'%f    ',nu(jnu)); 

  
    fprintf(g,'%f\n', A(jnu)); 
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    fclose(g); 

     
else 
filename=['Psii_peak_n1.9_',num2str(nu),'.mat']; 

      
    save(filename); 
end 
end 

  
%___ Plotting the figure____ 

     
nu = k./(2*pi*100); 
ZAbsWaveFunction.d=abs(Psii).*abs(Psii); 

         
if(1) 
    figure; 
    set(gcf,'Color',[1 1 1]); 
    pcolor(ZAbsWaveFunction.d); 
    shading interp; 
    colorbar; 
    string = strcat('Program III: \nu =',int2str(nu),'cm^-1'); 
    title(string); 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    constants_planewave.m                                              % 
%                                                                       % 
%    Frida H.M Torgersen                                                % 
%                                                                       % 
%    A function that gives two constants A_l and B_l.                   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 
function [A_l,B_l] = constants_planewave(l,a,k,beta,n) 

  
for i= 1:length(l) 
    for j = 1:length(k) 
        Jk = besselj(l(i),k(j)*a); 
        JK = besselj(l(i),beta(j)*a); 
        if l(i) == 0 
            dJk = -besselj(1,k(j)*a);    %dJ_0 = -J_1 
            dJK = -n*besselj(1,beta(j)*a); 
        else 
            dJk = 0.5*(besselj(l(i)-1,k(j)*a)-besselj(l(i)+1,k(j)*a)); 
            dJK = 0.5*n*(besselj(l(i)-1,beta(j)*a)-

besselj(l(i)+1,beta(j)*a)); 
        end 

     
        H1 = besselh(l(i),1,k(j)*a); 
        if l(i) == 0 
            dH1 = -besselh(1,1,k(j)*a); % dH1_0 = -H1_1 
        else 
            dH1 = 0.5*(besselh(l(i)-1,1,k(j)*a)-besselh(l(i)+1,1,k(j)*a)); 
        end 

         

     
        NominatorA_l(i,j) = (1i^l(i))*(dJk*JK-Jk*dJK); 
        DenominatorA_l(i,j) = H1*dJK-dH1*JK; 

     
        A_l(i,j) = NominatorA_l(i,j)./DenominatorA_l(i,j); 

     
        NominatorB_l(i,j) = (1i^l(i))*(dH1*Jk-dJk*H1); 
        DenominatorB_l(i,j) = JK*dH1 -dJK*H1; 

     
        B_l(i,j) = NominatorB_l(i,j)./DenominatorB_l(i,j); 

  

  

        
    end 
end 

  
end 
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Appendix B 

The  MATLAB scripts for program I is enclosed in Appendix B: 

 Disk_Scattering20082015vec.m 

The numerical plane wave method is implemented as an algorithm in this script. 

Calculates the squared absolute value of the wave function for series of wavenumbers. 

When the input is only one wavenumber a image is displayed.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    Disk_Scattering20082015vec.m                                       % 
%                                                                       % 
%    Achim Kohler                                                       % 
%    Modified by: Rozalia Lukacs                                        % 
%                                                                       % 
%    Program I based on the numerical plane wave scattering solution    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%_____Light_____% 
% Chose the first nu_array if you want a series of wavenumbers, the second 
% nu_array if you want for one wave number. Remember to comment out the one 
% you do not use.  

  
nu_array = [500 1400];    % Series of wavenumbers  
% nu_array = (596);          % One wavenumber 

  
NX=50;     %Grid resolution 
NY=NX; 

  

  
for nu= nu_array(1):1:nu_array(end) 

     
    close all; 

     
    ArrayOfCircles=1; 
    Zebra=0; 

     

  

     
    nu= nu * 100.0; % at 1000cm^(-1) 

     
    phi = pi;   % angle of incident plane wave. For phi=0, the plane wave  
    %is coming from the right. phi=pi/2, the plane wave is coming from the  
    %top. phi = pi, plane wave coming from the left and so on.. 

     
    k=2*pi*nu; 
    kx=k*cos(phi); 
    ky=k*sin(phi); 
    clear phi; 

     
    NCx=1; 
    NCy=1; 
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    R= power(10,-5);  % Radius of the disk 
    Nx=NX; 
    Ny=NY; 
    N=Nx*Ny; 
    a=2*NCx*R; 
    b=2*NCy*R; 
    n_index=1.9; 

     
    dx=a/Nx; % spacing in x-direction 
    dy=b/Ny; % spacing in y-direction 

     
    x0=0; 
    y0=0; 
    % x0=0.1*R;         % Can be used if you want to increase the frame 
    % y0=0.1*R; 
    Nxadd = (2*x0)./dx; 
    Nyadd = (2*y0)./dy; 
    Nx = Nx + Nxadd; 
    Ny = Ny + Nyadd; 
    N = Nx*Ny; 

     
    x=zeros(1,N); 
    y=zeros(1,N); 

         
    indexi=reshape(((1:1:Nx)'*ones(1,Ny))',1,N); 
    indexl=reshape(((1:1:Nx)'*ones(1,Ny)),1,N); 

     
    indexj=(indexl-1).*Nx+indexi; 
    x(indexj)=((indexi-0.5).*dx); % the Descartes coordiante x 
    y(indexj)=((indexl-0.5).*dy); % the Descartes coordinate y 

     
    jj = reshape(((1:1:N)'*ones(1,N))',1,N*N); 
    mm = reshape(((1:1:N)'*ones(1,N)),1,N*N); 

     
    Z = k*sqrt((x(jj)-x(mm)).*(x(jj)-x(mm))+(y(jj)-y(mm)).*(y(jj)-y(mm))); 
    G = reshape(besselh(0,Z),N,N); 
    G(isnan(G)) = 0 ; 

     
    % Establish the potential 

     
    v=zeros(1,N,'double'); 

     
    for m=1:N  
        for nx=1:NCx 
            for ny=1:NCy 

                 
                if (ArrayOfCircles) 
                    % Array of circles 
                    xcircle=(2*nx-1)*R+x0; 
                    ycircle=(2*ny-1)*R+y0; 

                     
                    rn=sqrt((x(m)-xcircle)*(x(m)-xcircle)+(y(m)-

ycircle)*(y(m)-ycircle)); 
                    if (rn<R) 
                        v(m)=1.0-n_index*n_index; 
                    end 
                end 

                 
            end 
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        end 

  
    end 

     
    Gtilde(1:N,:)=G(1:N,:).*reshape(reshape((v'*ones(1,N))',1,N*N),N,N);   

     
    clear G; 
    clear v; 

     
    eikr=exp(1i*(kx*x+ky*y)); 

     
    clear x y; 

     
    IdentityMat=eye(N,N); 
    M=IdentityMat+1i*(k*k*dx*dy*0.25)*Gtilde; 

     
    clear Gtilde; 
    clear IdentityMat; 

    

     

     
    %% Solve Linear Equation by Matlab routine 

    
    psi_complex = linsolve(M,eikr'); 
    psi_complex_reshaped=reshape(psi_complex,Nx,Ny); 

     
    Xplot=abs(psi_complex_reshaped).*abs(psi_complex_reshaped); 

     
    linearIndexXplot=sub2ind(size(Xplot),Nx,Ny); 
    IntegralPsi=sum(Xplot(1:linearIndexXplot)); 

 
%%____Display a image____%%     
% When calculating one wavenumber an image can be displayed if the 
% following is uncommented 

  
%     figure; 
%     pcolor(Xplot'); 
%     set(gcf,'Color',[1 1 1]); 
%     string = strcat('Program I: \nu =',int2str(nu./100),'cm^(Eisenlohr et 

al.)'); 
%     title(string); 
%     shading interp; 

  
%% ___________________________%% 

  

  
    phi=angle(psi_complex_reshaped); % gives angles in the range -pi:pi 

     
    if length(nu_array) == 1 

         
        filename = 

strcat('psi_peak_program1_vec_n1.9_',num2str(Nx),'x',num2str(Ny),'_',num2st

r(nu_array(1)),'_10micron.mat'); 

         
        save(filename,'Xplot','nu'); 
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g=fopen(['program1_vec_',num2str(nu_array(1)),'_',num2str(NX),'x',num2str(N

Y),'_','_n1.9_10micron.txt'],'a'); 
        fprintf(g,'%f    ',nu); 
        fprintf(g,'%f\n',IntegralPsi); 

         
        fclose(g); 
    else 

         
        

g=fopen(['program1_vec_',num2str(nu_array(1)),'_',num2str(nu_array(end)),'_

',num2str(NX),'x',num2str(NY),'_','_n1.9_10micron.txt'],'a'); 
        fprintf(g,'%f    ',nu); 
        fprintf(g,'%f\n',IntegralPsi); 

         
        fclose(g); 

         
    end 
end 
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Appendix C 

The  MATLAB scripts for program II is enclosed in Appendix C: 

 SpericalWave_Scattering.m 

The analytical spherical wave scatter method is implemented as an algorithm in this 

script. Calculates the S matrix and finds the maximum points, and the zero points to 

the denominator of the S matrix, which gives the same point. An plot the images at 

this points.  

 constants.m (function) 

A function that gives the constants 𝐴, 𝑆 and the denominator of S. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    SpericalWave_Scattering.m                                          % 
%                                                                       % 
%    Frida H.M Torgersen                                                % 
%                                                                       % 
% Program II based on the analytical spherical wave scattering solution % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
%% ______ properties that can be changed_________ 

  

  
n = 1.9; % Refractive index 
a = power(10,-5); % radius of the disk 
M = 0; % order number 

  
nu = (500:1:1400)*100; %wavenumber in cm^-1 
lambda = 1./nu; 

  
K = length(nu); 

  
k=2*pi./lambda; % angular wavenumber outside the disk 

  
beta = k*n; % angular wavenumber inside the disk 

  
[A,S,DenominatorS] = constants(M,a,k,beta,n); % Constants from a function 

  
f = real(DenominatorS); 

  
%% _______________Plotting S_m____________________ 
y = strcat('S_' ,int2str(M)); % Write S_m(k) for m = 0,1,2 or 3 
figure() 
plot(nu*0.01,real(S),'lineWidth',1.5) 
grid on 
legend(y,'Location','Best') 
title(y) 
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xlabel('nu') 
ylabel(y) 
%% ______________________ Plott denominator of S_m_____________________ 
y = strcat('denominator of S_' ,int2str(M)); % Write S_m(k) for m = 0,1,2 

or 3 
figure() 
plot(nu*0.01,f,'lineWidth',1.5) 
grid on 
legend(y,'Location','Best') 
title(y) 
xlabel('nu') 
ylabel(y) 
%% __________________ find zeros to the denominator of S_m_____________ 

  
[indx] = cross_points(f); % function cross_points.m  finds the index to the 

point before cross point y=0 

  
k_a = k(indx); % gives the x-point before the cross point 
k_b = k(indx+1); % gives the x-point after the cross point 

  
for i = 1:length(k_a) 
    x_1 = k_a(i); 
    x_2 = k_b(i); 
    k_zeros(i) = find_zeros(x_1,x_2,n,a,M); 
end 

  

  

  
%% Plot of the den_S = 0 

  
    % Plot the wave functions 
for p = 1:length(k_zeros) 
    k = k_zeros(p); 
    beta = k*n; 
    [A,S,DenominatorS] = constants(M,a,k,beta,n); 
    X0=-2*a; 
    Y0=-2*a; 

     
    Nstep=200; % Choose a even number for section plot! 
    Psi=zeros(Nstep,Nstep); 
    step=4*a/Nstep; 

     
    for i=1:Nstep 
        x=X0+step*double(i); 
        for j=1:Nstep 
            y=Y0+step*double(j); 
            theta1=atan2(y,x); 
            r1=sqrt(x*x+y*y); 
            if (r1<a) 
                psi=besselj(M,beta*r1)*exp(1i*M*theta1); 
                Psi(j,i)= A*psi; 
            elseif (r1>a) 
                h1=besselh(M,2,k*r1)*exp(1i*M*theta1); 
                h2=S*besselh(M,1,k*r1)*exp(1i*M*theta1); 
                Psi(j,i)=h1+h2; 

                 
            end 
        end 
    end 



xi 

 

    nu = k./(2*pi*100); 
    ZAbsWaveFunction.d=abs(Psi).*abs(Psi); 

      

     
    if(1) 
        figure; 
        set(gcf,'Color',[1 1 1]); 
        pcolor(ZAbsWaveFunction.d); 
        shading interp; 
%         colorbar; 
        k_string = strcat('S_', int2str(M),':','nu_' ,int2str(p), ' = ',  

int2str(nu),'cm^(Eisenlohr et al.)'); 
        title(k_string); 
    end 

     

     
end   

 

  



xii 

 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%    constants.m                                                        % 
%                                                                       % 
%    Frida H.M Torgersen                                                % 
%                                                                       % 
%    A function that gives three constants A, S and the DenominatorS.   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
function [A,S,DenominatorS] = constants(M,a,k,beta,n) 

  
    for j = 1:length(k) 
        J = besselj(M,beta(j)*a); 
        if M == 0 
            dJ = -n*besselj(1,beta(j)*a);    %dJ_0 = -J_1 
        else 
            dJ = 0.5*n*(besselj(M-1,beta(j)*a)-besselj(M+1,beta(j)*a)); 
        end 

     
        H1 = besselh(M,1,k(j)*a); 
        H2 = besselh(M,2,k(j)*a); 
        if M == 0 
            dH1 = -besselh(1,1,k(j)*a); % dH1_0 = -H1_1 
            dH2 = -besselh(1,2,k(j)*a); % dH2_0 = -H1_2  
        else 
            dH1 = 0.5*(besselh(M-1,1,k(j)*a)-besselh(M+1,1,k(j)*a)); 
            dH2 = 0.5*(besselh(M-1,2,k(j)*a)-besselh(M+1,2,k(j)*a)); 
        end 

         

     
        NominatorA(j) = H1*dH2-H2*dH1; 
        DenominatorA(j) = dJ*H1-J*dH1; 

     
        A(:,j) = NominatorA(j)./DenominatorA(j); 

     
        NominatorS(j) = H2*dJ - J*dH2; 
        DenominatorS(j) = J*dH1 -dJ*H1; 

     
        S(:,j) = NominatorS(j)./DenominatorS(j); 

  

  

        
    end 

  
end 

 

 



 

  



 

  



 



  


