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Abstract 

 

Feed cost is the major cost for dairying. So, improving feed efficiency could make dairy 

farming economically more profitable and environmentally viable by reducing methane 

emission. But, measuring feed intake in dairy animals is not only difficult but also expensive. 

So, feed efficiency traits were not considered in the dairy breeding program in past decades. 

One of the solutions of this problem might be the use of feed intake data from nutritional 

experiments. The objectives of the present study were i) to find the best fitted model for 

repeatedly measured daily dry matter intake (DMI) data obtained from different herds and 

experiments across lactations and ii) to get  better estimates of the genetic parameters and 

better genetic evaluations. After editing, there were 572512 daily DMI records of 3495 

animals from 11 different herds across 13 lactations and animals were under 110 different 

nutritional experiments. The fitted model for this dataset was a univariate repeated measure 

animal model in which additive genetic and permanent environmental (within and across 

lactations) effects were fitted as random. Two different models were fitted based on different 

fixed effects. For unscaled data, each model was fitted as homoscedastic (HOM) model at 

first and then heteroscedastic (HET) model. After that, data were scaled by multiplying with 

particular herd’s scaling factors which were calculated by accounting for heterogeneity of 

phenotypic within herd variances. Models were selected based on cross-validation and 

prediction accuracy results. Scaling factors were re-estimated to see the effectiveness of 

accounting herd heterogeneity. Variance components and respective heritability and 

repeatability were estimated based on pedigree based relationship matrix. Spearman’s rank 

correlations of EBVs between scaled and unscaled DMI were also calculated. All the 

analyses were performed using ASReml software package. Results indicated that HOM 

model for scaled data showed better fit than the models (HOM or HET) fitted for unscaled 

data. The heritability and repeatability estimates of daily DMI for the final model (HOM 

model 3 fitted for scaled data) were 0.08 and 0.51, respectively. The re-estimated scaling 

factor after accounting for heterogeneity of residual variances was close to 1.0 indicating the 

stabilization of residual variances and herd accounted for most of the heterogeneity. The rank 

correlation of estimated breeding values (EBVs) between scaled and unscaled data ranged 

from 0.96 to 0.97. 

Keywords: Dry Matter Intake, Heterogeneity, Heritability, Repeatability, Genetic Evaluation, Dairy Cattle
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Chapter 1: Introduction 

 

Feed cost is one of the major recurring costs of dairy farming. It comprises 43 -67% of total 

farming cost found in different countries (Simm et al., 1994, Shalloo et al., 2004, Ho et al., 

2005). It is even higher (about 80% of the total recurring cost) if we consider only milk 

production cost (Board, 1990). So, genetic improvement of feed efficiency traits could make the 

dairy farming economically more profitable and viable. Moreover, the more the cow is efficient, 

the less methane she emits (Hegarty et al., 2007). Although feed efficiency is a complex trait in 

almost all farm animals however it can be still considered in selection program for beef cattle, 

pig and poultry during growing period. But for dairy cattle, it is even more complex because 

many physiological processes such as milk production, reproduction, maintenance of health and 

body and growth in young cows happen simultaneously in dairy cows. Moreover, it is expensive 

and difficult to measure individual feed intake of dairy animals (Veerkamp and Emmans, 1995, 

Arthur et al., 2004) and feed intake data are not easily recorded in commercial dairy herds. So, 

most of the previous estimates of the genetic parameters for feed intake and feed efficiency traits 

were based on small dataset which makes the estimates biased due to large sampling error (Pech 

et al., 2014). For this reason, the traits that were emphasized in selection strategy for dairy 

development in the past decades were mainly related with production and health of dairy cows 

(Weigel).  

With the invention of genomic selection (GS) (Meuwissen et al., 2001) tool, feed efficiency trait 

has become of research interest and been considered in selection program. Because in GS, only 

reference population (sometimes called training population) need to have both phenotypic and 

genotypic information and genomic estimated breeding values (GEBVs) can be estimated for 

candidate animals  having only  genotypic information without phenotype (Meuwissen, 2007) . 

So, GS would be the perfect choice for difficult and expensive to measure traits like feed intake 

and feed efficiency traits (Pryce et al., 2014). To achieve satisfactory genetic gain from GS, 

accuracy of GEBVs is very important. So far, many research have been conducted to evaluate 

the accuracy of GEBVs (Khansefid et al., 2013). Past research results and theories reveal that the 

numbers of animals genotyped and precision of the phenotype measured are the most important 

factors affecting the reliability of GEBVs (VanRaden et al., 2009). One could increase accuracy 
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of GEBVs by increasing the size of reference population. Incorporation of multi-breed animals 

having genotype and phenotypic information is one of the options to increase the size of 

reference population. But multi-breed reference populations did not work well to increase the 

accuracy of GS (Khansefid et al., 2013) because of  i) breed × quantitative trait loci (QTL) 

interaction ii) variation of linkage disequilibrium (LD) between QTL and single nucleotide 

polymorphisms (SNPs) among breeds and iii) low LD across the breeds and it is even  limited to 

SNPs that are closed to QTL. Another way to increase reference population size is combining 

data from different populations from several countries because each country has a small 

reference population that is not enough to get satisfactory level of accuracy (Verbyla et al., 

2010). Major problems of combining phenotypic data from different countries are genotype × 

environment interaction and definition of traits varies among countries as well (De Haas et al., 

2012). There is very limited opportunity to get enough and accurate phenotypic data for difficult-

to-measure traits like feed intake. So for feed intake, another option of increasing the reference 

population size might be the use of historical nutritional experiment’s data in which people have 

already recorded the difficult to measure and expensive trait like individual feed intake and DMI 

on dairy animals  (Banos et al., 2012, Pryce et al., 2012, Veerkamp et al., 2012). For example, 

the global Dry Matter Initiative (gDMI) was formed to increase the size of the reference 

population by combining international research animal’s phenotype and genotype (Berry, 2013, 

Veerkamp, 2013). The main challenge of using experimental data is the wide variability of the 

phenotypes measured from different nutritional experiments mainly due to different treatments 

used in those experiments and animals are from different herds and parities. An approach was 

developed by Banos et al. (2012) who described in details of combining phenotypic data of dairy 

cattle collected from experimental sources in three different countries. These data were 

successfully used for genome-wide association study (GWAS) by  Veerkamp et al. (2012) to 

detect the significant QTL of feed intake. But they used only first parity data.  The objectives of 

the present study were i) to find the best fitted model suitable for repeatedly measure DMI data 

originated from multiple nutritional experiments across herds, years and  parities in the 

Netherlands and ii)  to get better estimates of the genetic parameters and better genetic 

evaluation of the animals. 
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Chapter 2: Materials and Methods 

2.1 Data Description and Editing 

Original dataset consisted of 637471 records repeatedly measured on 3771 Holstein cows from 

11 herds across 13 parities in Netherlands. Cows were under 110 different nutritional 

experiments subjected to different treatments in those experiments. Data were collected from 

1991 to 2015 on cows calved between 1990 to 2015. Cows having at least single daily DMI 

record were kept in the dataset for further analysis and cows with missing DMI records were 

removed from the dataset. In addition to feed intake data, other related information on individual 

cows such as daily milk yield, live weight, calving interval etc. were also available but these data 

were not sufficient to use. As data collection were not performed specifically for the present 

study, so there were some extreme values in the dataset and some of the values were even 

beyond the biological limit. To remove extreme data, editing was performed manually by setting 

certain biological limits for the different variables or traits as proposed by Banos et al. (2012) 

(Table 1). 

Table 1 Biological limits set for editing the original records 

Trait/Variable Unit of Measurement Acceptable Range 

DMI Kg/d 0.89 to 65 

Days in milk (DIM) Days 1 to 400 

Live weight Kg 400 to 1200 

Milk Yield Kg/d 3 to 100 

No. of lactation Number 1 to 13 

 

After editing, there were 572512 daily DMI records from 3495 cows across 11 herds and each 

cow has at least a single DMI record. Average number of daily DMI records per cow was 168.8. 

After editing, there were 109 experiments retained subjected to 467 different treatments in those 

experiments. Average (mean ± SD) daily DMI of the cows was 17.95 ± 6.49 kg/d. Data retained 

after editing have been summarized in Table 2. 
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Table 2 Data summary after editing 

Variable Class Size/Range/Average 

Total number of DMI records 572512 

Number of cows having at least single records 3495 

Average number of records per cow 168.80 (1 to 1076) 

Number of herds 11 

Number of experiments 109 

Number of treatments 467 

Lactation Number (LN) 1 to 13 

Year of recording 1991 to 2015 

Calving year 1990 to 2015 

Average DMI (SD*) Kg/d 17.95 (6.49) 

Average age at recording in months  52.64 (21 to 189) 

Average age at calving in months 47.76 (19 to 175) 

Average days in milk (DIM)  126.6  

* SD stands for standard deviation 

2.2 Pedigree Information  

Traditional relationship matrix (A-matrix) was generated based on the pedigree information 

available. The pedigree file consisted of 18566 animals and among which 15867 animals were 

the parents.  

2.3 Model Fitting 

A univariate repeated measure animal model was fitted for this dataset and the model is given 

below in matrix notation. 

y = Xb + Z1p +Z2a + e ……….……………………………………… 1 

Where, y = Vector of n observations; b = Vector of fixed effects; p = Vector of permanent 

environmental effects; a = Vector of additive genetic effects; e = Vector of random residual 

variances; X, Z1 and Z2 are incidence matrices which relate b, p and a to y, respectively. The 

assumptions of random effects of the model are shown below. 

          a                 Aσa
2        0                     0                      G       0                                A σa

2   
      0 

         p      =          0         Idσc
2             0             =                                       G =     

        e                   0         0           Inσe
2                   0        R                                0                 Idσc

2   

where, σa
2   = additive genetic variance; σc

2   = variance due to permanent environment; and σe
2  = 

residual variance; phenotypic variance (σp
2) is the sum of these three variance components; A = 
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Pedigree based relationship matrix, Id is the identity matrix equal to the number of animals 

included in the pedigree and In is the identity matrix equal to the number of observations. 

Usually best fitted models have relatively more parameters but available data do not always 

support the complex model in terms of convergence. There were a number of models tried from 

simple to complex by exploratory exercises but two models (called model 2 and 3) were 

compared and these are shown below in model terms. 

DMI =  µ + a + p +  pol(DIM,3).Herd +  TD + Treat/EXP + lin(LN)/pol(Age_cal,2) + e…………………………… 2 (model 2) 

DMI =  µ + a + p +  pol(DIM,3).Herd +  TD.Herd + Treat/EXP + lin(LN)/pol(Age_cal,2) + e……………….. …….3 (model 3) 

 

Where, DMI is the daily DMI observations; µ is the overall mean; a is the random additive 

genetic effect; p is the random term for combined permanent environmental effect (within and 

across lactations);  pol(DIM,3).Herd is fixed effect for third order polynomial of DIM interact 

with Herd; TD (Test day) is fixed effect; TD.Herd is fixed effect of test day interact with Herds; 

Treat/EXP is the fixed effect of treatment nested within experiment; lin(LN)/pol(Age_cal,2) is 

fixed effect of LN fitted as co-variate and nested in second order polynomial of age at calving in 

months; e is the random residual error. 

2.3.1 First stage 

At first it was assumed that the residual variances for all the observations are homogeneous. So, 

the diagonal elements of matrix R in equation 1 was equal for all observations i.e. σe
2 and the 

fitted model is called homoscedastic model (HOM). As DMI was recorded on animals from 11 

different herds across 13 lactations over 25 years (1991 to 2015) and animals were under 

different nutritional experiments, so it was not realistic to assume the residual variances as 

homogeneous. That is why we also fitted the heteroscedastic model (HET) where we assumed 

different diagonal elements of matrix R for different herds. For example, σei
2 is the residual 

variances to the particular herd of ith different herds. Based on homogeneity or heterogeneity of 

residual variances, we fitted model 2 as two distinct models namely 2A and 2B as HOM and 

HET model, respectively.  
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2.3.2 Second stage 

In the second step, we fitted HET model 2B for herds but excluding additive and permanent 

environmental effect. From these models, we got the residual variances for each herd and 

weighting factor (fi) for each herd was calculated based on the estimated herd residual variances 

as shown in Equation 4.  

   𝒇𝒊 = √
𝑽𝒊
̶

𝑽𝒊
………………………… ……………………..4 

Where, fi = weighting factor for observations of ith herd (i = 1, 2 ………….11); √𝑉̅ 𝑖  = Square 

root of average residual variances for all herds; √𝑉̅𝑖 = Square root of residual variances for ith 

herd;  

Observations of each herd were then multiplied by respective weighting factor to get scaled 

observations. Scaled observations were fitted as homoscedastic model in model 2 which is called 

model 2C. Finally, model 2A, 2B and 2C were compared themselves based on model selection 

criteria (described below).  

Same procedure was followed for model 3 and fitted models were named as model 3A (HOM 

model), 3B (HET model) and 3C (HOM for scaled DMI data). 

Heterogeneous herd residual variances and scaling factors were re-estimated in the similar 

manner for the scaled data to see the effectiveness of scaling for herd heterogeneity. 

2.4 Cross-validation and other selection criteria for comparing models 

Initially Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) were 

used to select better fitted models. Then prediction accuracy (correlation between DMI 

observations or scaled DMI and predicted DMI) was calculated. Model giving highest 

correlation was considered as the best predictable model. Additionally and finally, 10-fold cross-

validation was performed for comparing the models. For this purpose, the whole dataset were 

equally and randomly divided into 10-subsets (disjoint). Each time, 9-subsets were considered as 

training dataset and the remaining one was called testing set. After training the model in the 

training set, the model was validated using testing set and mean squared error (MSE) of each 

testing fold were recorded for the models. Then, the MSE of the testing folds were averaged 
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across all 10 testing sets. The model giving the lowest average MSE was considered as the best 

model. 

2.5 Estimation of Variance Components and Genetic Parameters 

Additive genetic (σa
2), permanent environmental (σc

2) and residual (σe
2) variance components 

were estimated for all the models. Relationship matrix used in these models was based on 

pedigree information. Respective heritability (h2) and repeatability (t) were calculated based on 

the estimated variance components. 

   ĥ2 = σâ
2 

 / (σâ
2  

 + σĉ
2  + σê

2 ) = σâ
2  / σp̂

2  
……………………………………………...........................................5 

   t̂ = (σâ
2  

 + σĉ
2 )  / (σâ

2  
 + σĉ

2  + σê
2 ) = (σâ

2  
 + σĉ

2 )  / σ̂p2  
………………………………………………..6 

2.6 Comparing ranking of animals based on EBVs 

We also compared the ranking of the animals based on estimated EBVs between different 

models. Ranking was done by calculating Spearman’s rank correlation using SPSS software 

package.  

All the analyses performed were based on the REML method and the software package used for 

analysis was ASReml 4.1 (Gilmour et al., 2014) except for Spearman’s rank correlation. 

Heteroscedastic models were fitted by ‘sat’ function of ASReml 4.1 package e.g. ‘residual 

sat(Herd).idv(units)’ is a function used to partition heterogeneous residual variances by herd.  

Chapter 3: Results 

3.1 Model Comparison 

AIC, BIC, average MSE of prediction, and prediction accuracy for all fitted models are shown in 

Table 3. For unscaled data, HET model showed a better fit than HOM model according to  AIC, 

BIC and average MSE criteria, and similar trend was found both for model 2 and 3 (Table 3). 

But, the prediction accuracy of unscaled data was same for both the HOM and HET models. 

Although AIC and BIC criteria did not favour HOM model fitted for scaled data but based on 

average MSE and prediction accuracy, HOM model for scaled data was found as best fitted 

model. Scaling of data improved prediction accuracy noticeably regardless of fitting either model 

2 or model 3 but same MSE and prediction accuracy were obtained for model 2 and 3 when 

fitted for scaled data (Table 3).  
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Table 3 AIC, BIC, average MSE and prediction accuracy of the models 

Model 
Type of 

model 
Data type 

 

AIC 

 

BIC 

Average MSE 

of prediction 

Prediction 

accuracy 

2A HOM unscaled 194518.2 194545 14.36 0.81 

2B HET unscaled 189020.6 189074.3 13.68 0.81 

2C HOM scaled 192158.4 192185.2 10.46 0.85 

3A HOM unscaled 194466.4 194493.3 14.36 0.81 

3B HET unscaled 188995.6 189049.3 13.84 0.81 

3C HOM scaled 192019.5 192046.4 10.46 0.85 

3.2 Variance Components 

Estimates of the variance components and respective standard errors (se) are presented in Table 

4. In case of unscaled data, estimate of additive genetic variance (σ̂a
2) was slightly higher for 

HET model than HOM model (Table 4). On contrary when HOM model was fitted for scaled 

data, the estimate of the σ̂a
2 was approximately 2.5 times higher than unscaled data in case of 

model 2. For model 3, there was also a substantial increase of σ̂a
2 but increment was lower in 

comparison to model 2. On the other hand, permanent environmental variance (σ̂c
2) showed an 

opposite trend for both model 2 and 3. For unscaled data, estimate of the σ̂c
2 was lower for HET 

than HOM model and it was even lower for scaled data (Table 4). Residual error variance (σ̂e
2) 

also showed the similar trend likewise σ̂c
2. 

Table 4 Variance components and respective standard errors (within parenthesis) estimates of unscaled and scaled 

data for different HOM and HET models 

Model Type of model Data type σâ
2 (se) σĉ

2 (se) σê
2 (se) σp̂

2  (se) 

2A HOM unscaled 
3.22  

(0.30) 

11.53 

(0.26) 

14.68 

(0.02) 

29.43 

(0.30) 

2B HET unscaled 
3.83 

(0.33) 

11.31 

(0.26) 

10.72 

(0.19) 

25.86 

(0.40) 

2C HOM scaled 
8.42 

(0.46) 

9.42 

(0.23) 

10.69 

(0.02) 

28.53 

(0.43) 

3A HOM unscaled 
1.29 

(0.19) 

10.84 

(0.23) 

14.67 

(0.02) 

26.80 

(0.62) 

3B HET unscaled 
1.45 

(0.19) 

10.61 

(0.23) 

10.67 

(0.18) 

22.72 

(0.33) 

3C HOM scaled 
1.69  

(0.20) 

9.32 

(0.21) 

10.68 

(0.02) 

21.69 

(0.62) 
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3.3 Heritability and Repeatability 

Both the heritability and repeatability estimates of model 2 were higher for HET model than 

HOM model in case of unscaled data and it was even higher when HOM model fitted for scaled 

data (Figure 1). Model 3 showed almost similar trend but the estimates of the heritability for 

model 3 were much lower compared to model 2. Estimates of the ĥ2(se) for model 2A, 2B and 

2C were 0.11 (0.009), 0.15 (0.01) and 0.30 (0.01), respectively. Heritability estimates were 0.05 

(0.07), 0.07 (0.008) and 0.08 (0.008), respectively for model 3A, 3B and 3C. Repeatability 

estimates were almost similar between model 2 and 3 and it ranged from 0.45 to 0.63.  

 

Figure 1 Heritability and repeatability estimates from different models 

 

From HET model 2B and 3B, within herd ĥ2 and t̂ were obtained and it has been shown in Figure 

2. Although the trend of ĥ2 and t̂ across herds were similar for both models but estimates of 

model 2B was higher for both the heritability and repeatability. Estimates of ĥ2 ranged from 0.11-

0.21 and 0.05 -0.09 for model 2B and 3B, respectively. Repeatability estimates ranged from 0.40 

to 0.80.  
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Figure 2 Within herd heritability and repeatability estimates from unscaled data (model 2B & 3B) 

 

3.4 Rank Correlations of EBVs 

Table 5 shows the Spearman’s rank correlations of EBVs among different models. Rank 

correlation of EBVs between model 2A and 2B or model 3A and 3B was approximately 1.0 

indicating similar ranking of animals between HOM and HET models fitted for unscaled data 

(Table 5). But EBV ranking of the animals changed after scaling data. Rank correlations for 

EBVs between scaled and unscaled data were 0.91-0.92 for model 2 and 0.96-0.97 for model 3.  

Table 5 Spearman's rank correlation of EBVs 

 

 

Models 

Spearman's rank correlations 

2A 2B 2C 3A 3B 3C 

2A 1.0 0.99** 0.92** 0.77** 0.73** 0.74** 

2B 0.99** 1.0 0.91** 0.74** 0.72** 0.73** 

2C 0.92** 0.91** 1.0 0.63** 0.61** 0.68** 

3A 0.77** 0.74** 0.63** 1.0 0.99** 0.96** 

3B 0.73** 0.72** 0.61** 0.99** 1.0 0.97** 

3C 0.74** 0.73** 0.68** 0.96** 0.97** 1.0 

** Level of significance at 1% 
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3.5 Comparison of heterogeneous residual herd variance before and after scaling data 

Heterogeneous residual variances by herds before and after scaling the data are presented in 

Figure 3. Before scaling the data, there was a wide variability of residual variances across herds 

found for both models (Figure 3). For scaled data, although there was a little bit variability of 

residual variances but it seemed to be similar across herds for both models indicating the 

stabilization of heterogeneous herd residual variances (Figure 3). 

 

 

 

 

Figure 3 Heterogeneous residual variances by herd before and after scaling of data for (i) model 2 and (ii) model 3  
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Chapter 4: Discussion 

4.1 Model Selection 

For unscaled data, HET model fitted slightly better than HOM model based on AIC, BIC and 

average MSE criteria but the prediction accuracy was same for both HOM and HET model 

(Table 3). Similar trends were noticed for both model 2 and 3. The findings of a previous study 

on body weight traits in beef cattle by Neves et al. (2012) disagree with our results i.e. they 

found HOM model is better than HET model according to BIC and average MSE criteria. But 

they also found better fit of the HET model than HOM model when considered AIC as selection 

criteria. Moreover, when fitted sex specific model they also found the higher predictive ability 

(lower average MSE) of HET model than HOM model for body weight in female. Although 

scaling slightly increased AIC and BIC values for HOM model fitted for scaled data but scaling 

of data decreased the average MSE and increased prediction accuracy of the model. Increase of 

prediction accuracy was not surprising. Because it was expected that scaled data will fit better 

than unscaled data. Clearly it indicates that HOM models fitted for scaled data were the best 

fitted models. From a past study with swine body weight and backfat thickness trait, it was 

concluded that the scaled data accounting for heterogeneous herd variances fit better than 

unscaled data which is in consistent with our findings (MR et al., 1998)   

4.2 Estimation of Variance Components 

In case of unscaled data, the estimates of variance components were almost similar for HOM and 

HET model. Neves et al. (2012) also found the similar estimates of variance components for 

HOM and HET model for body weight traits in Nellore beef cattle. After scaling data, there was 

a slight increase of additive genetic variances for model 3 but the increment was triple for model 

2 (Table 4). In model 2, fixed effect of TD (Test Day) was fitted within herd which might be one 

of the reasons of getting higher estimate of additive genetic variance in this model. On contrary, 

TD-by-Herd interaction effect was included as fixed term in model 3 which is more realistic 

because TD effect varies from herd to herd. Another reason of getting model sensitive estimates 

might be that models had faced difficulty in separating fixed effect, permanent environmental 

effect and additive genetic effect due to lack of connectedness between TD and Herd. Previous 

study also pointed a slight increase of variance components estimate for weight trait of swine 

after scaling the data which is in complete agreement with the results of model 3 (MR et al., 

1998). On the other hand, estimates of both permanent environmental and residual variance 
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components decreased after accounting for heterogeneity of herd variances indicating a better fit 

of the model for scaled data (Table 4).  

4.3 Heritability and Repeatability 

Increase of heritability was double to triple for both model 2 and 3 after scaling data but 

repeatability estimates were almost similar for both scaled and unscaled data. For the final model 

(i.e. HOM model with scaled data), the estimate of the heritability from model 3 (0.08) was 

much lower than model 2 (0.30). It may be due to the same reasons as explained for estimates of 

additive genetic variances in previous paragraph. The heritability estimates of model 2 are 

consistent with the past estimate (0.27 to 0.34) reported by Berry (2013). Although heritability 

estimate of model 3 was much lower but it falls still in the range of within country heritability 

estimates (0.08 to 0.52) which was also documented by Berry (2013). Banos et al. (2012) found 

the heritability ranging from 0.15 to 0.22 for daily DMI in dairy cows but they estimated using 

first lactation DMI records. When only first lactation DMI data were included in our analysis, 

estimates of heritability increased slightly. The heritability estimates for final model (i.e. HOM 

model fitted for first lactation scaled DMI) were 0.39 and 0.10 for model 2 and model 3, 

respectively. Berry (2013) also reported the substantial increase of DMI heritability from 0.08 to 

0.16 when pedigree based relationship matrix was replaced by combined pedigree and genomic 

relationship matrix indicating the potentiality of using genomic information to improve 

heritability.  

In our study, repeatability (within and across lactations) estimates ranged from 0.51 to 0.63 for 

the final model (i.e. HOM model with scaled DMI). When within and across lactations 

repeatability was separated, it did not affect the estimates of repeatability and heritability (Table 

7 in Appendix I). Although there is not much information available for across lactations DMI 

repeatability but our finding agrees with the previous repeatability (across lactations) estimate of 

0.51 reported by Søndergaard et al. (2002) in Denmark for 293 dairy cows from three different 

breeds. Findings of Berry (2013) was also consistent to our results and they found across 

lactations  repeatability of 0.66 (ranging from 0.46 to 0.84) using experimental DMI data 

collated from 9 different countries of 6957 dairy cows. They also reported identical repeatability 

estimates using either only pedigree information or combined pedigree and genomic information 

for generating relationship matrix.  
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4.4 Scaling of Data 

Estimated scaling factor for 11 different herds varied from 0.68 to 1.29 for model 2 and 0.77 to 

1.22 for model 3 indicating a wide variability among herds. This signifies the necessity of taking 

into account the herd heterogeneity in consideration. Re-estimated within herd residual variances 

of scaled DMI were almost similar across herds and this is reflecting the variability stabilization 

due to adjustment for herd heterogeneity (Table 6 in Appendix I). In other words, one could say 

that most of the heterogeneity came from herds. In fact, re-estimated scaling factors using scaled 

DMI were close to 1.0 which is the proof of the effectiveness of data scaling. 

4.5 Comparison of EBV ranking of cows  

For unscaled data, the spearman’s rank correlation between EBVs of HOM and HET model was 

0.99 (close to 1.0). This indicates that there were not much changes of overall EBV ranking due 

to fitting HOM or HET model. But, the rank correlations between EBVs before and after scaling 

the data were 0.92 for model 2 and 0.97 for model 3. This means that the EBV ranking of cows’ 

changes due to scaling of data and the change was more prominent in model 2 than in model 3.  

The rank correlation of EBVs before and after scaling the data for swine production traits was 

0.98 and this result is in agreement with the results of model 3 in our study (MR et al., 1998). 

The results also suggest that the scaling of data accounting for heterogeneity of residual herd 

variances reduces the biasness of genetic evaluation of dairy cows.  

4.6 Conclusions 

Although HET model fitted better than HOM model in case of unscaled data but HOM models 

for scaled data were the best fitted models. As the estimate of model 2 was not stable, so HOM 

model 3 fitted for scaled data was considered as the final model for this dataset. The heritability 

and repeatability estimates of the final model were 0.08 and 0.51, respectively which agree with 

the previous findings found in literature. The re-estimated scaling factor after accounting for 

heterogeneity of residual variances was close to 1.0 which indicates the stabilization of residual 

variances and herd accounted for most of the heterogeneous variances. The rank correlation of 

EBVs between scaled and unscaled data ranged from 0.96 to 0.97 which means a bit change of 

ranking of the animals. So, scaling data accounted for heterogeneity of herd variances may 

reduce the biasness of genetic evaluations.  
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Appendix I 

 

Table 6 Estimates of heterogeneous residual variances within herd for model 2 and 3 before and after scaling data 

Herd 
Model 2 Model 3 

Before scaling After scaling Before scaling After scaling 

AH 14.35 11.98 14.21 11.99 

BZ 14.65 10.38 12.06 10.36 

CD 14.19 8.37 14.19 8.37 

DM 23.29 12.1 23.00 11.1 

HO 26.66 10.82 26.67 10.83 

M1 12.77 10.59 12.69 10.59 

M2 13.30 10.58 12.68 10.55 

M3 10.75 9.11 10.75 9.12 

M4 38.90 9.57 20.53 9.62 

V1 10.82 11.23 10.79 11.22 

ZV 18.58 11.09 18.33 11.05 

 

Table 7 Estimates of heritability and repeatability with respective standard errors (within parenthesis) when within 

and across lactations permanent environment effects were separated for final models i.e. HOM model fitted for 

scaled DMI 

Parameters Model 2 Model 3 

Heritability 0.30 (0.012) 0.07 (0.011) 

Repeatability   

i)  Within lactation 0.30 (0.012) 0.081 (0.008) 

ii) Across lactations 0.63 (0.005) 0.50 (0.012) 

 



  


