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Abstract

Accurate estimates of Y-STR haplotype frequencies is an interesting problem
in itself, but is especially important in forensic genetics, where the frequen-
cies are used to calculate the likelihood ratio (LR) for the evidential weight
of a DNA profile found at a crime scene.

In this thesis, four methods for Y-STR haplotype frequency estimation are
compared with respect to accuracy and bias. This is performed on data from
simulated from Wright-Fisher populations with empirical mutation rates and
different sampling factors like sample size and the number of markers com-
prising the haplotypes. Three of the four methods are count based methods
(CBMs) and the last method is an allele based method (ABM), defined by if
the method represent Y-STR haplotypes as indecomposable objects or not.

The first method, named the Count Method (CM) is derived from the em-
pirical frequency of the haplotype. The next two CBMs, the Kappa Model
(KM) and the Good-Turing estimator (GTE) are based on the proportion of
haplotypes observed a particular number of times in the sample. Last, the
Discrete Laplace Method (DLM) identifies subpopulation centers by cluster-
ing and models allele frequencies at each loci with discrete Laplace distri-
butions. Hapltotype frequency estimates are then obtained by multiplying
estimated allele frequencies across loci.

The CBMs underestimated the LR in all scenarios. The DLM have the
highest mean accuracy in general, but also have more variance and a ten-
dency to overestimate the LR slightly when haplotypes are composed of more
markers. More research into which factors significantly affect haplotype fre-

quency estimates is encouraged.






Sammendrag

Ngyaktige estimater for Y-STR haplotype frekvenser er et interessant pro-
blem i seg selv, men er spesielt viktig innen rettsgenetikk, hvor frekvensene
brukes til & beregne ’likelihood ratio’ (LR) for bevisstyrken til en DNA-profil
funnet ved ett asted.

I denne avhandlingen presenterer fire metoder for beregning av Y-STR
haplotype frekvenser, disse sammenlignes med hensyn pa ngyaktighet og
bias. Dette gjennomferes pa data fra simulerte Wright-Fisher populasjo-
ner med empiriske mutasjonsrater og under forskjellige utvalgsfaktorer som
utvalgsstgrrelse og antall markgrer haplotypene bestar av. Tre av de fire me-
todene er ’tellebaserte’ og den siste er ’allelbasert’, definert som om metodene
representerer Y-STR haplotypene som udekomponerbare enheter eller ikke.

Den forste metoden, kalt the Count Method’ (CM) er utledet basert pa
den empiriske frekvensen til haplotypen som undersgkes. De neste to meto-
dene (tellebaserte), 'the Kappa Model’ (KM) og 'the Good-Turing estima-
tor’ (GTE) er basert pa andelen haplotyper som er observert ett gitt antall
ganger i utvalget. Den siste metoden, ’the Discrete Laplace Model’ (DLM)
identifiserer subpopulasjonssentere ved samle lignende haplotyper i klynger
og deretter modellere allelfrekvenser ved hver loci med discrete Laplace for-
delinger. Haplotypefrekvens estimatene beregnes deretter ved & multiplisere
sammen estimerte allelfrekvenser over alle loci.

De tellebaserte metodene underestimerte LR i alle scenarioene. DLM har
hgyest gjennomsnittlig ngyaktighet genrerelt, men hadde ogsa mer varians
og en tendens til & overestimere LR i en liten grad, nar haplotypene bestar
av flere markgrer. Mer forskning pa hvilke faktorer som signifikant pavirker
haplotypefrekvens estimatene oppfordres.
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Chapter 1

Introduction

1.1 Problem

Modern forensic science has progressed rapidly after DNA typing was devel-
oped by Sir Alec Jeffreys around 1985. Continuing advances in both typing
kits and computing power give more certainty to identification of individuals.
The main principle behind DNA typing is to assess the relationship between
two DNA profiles. A common case is paternity cases, where a DNA profile
of an alleged father is compared with a DNA profile from the child in ques-
tion. Further, in many such cases, which in general is termed relationship
inference, the inference is dependent on the distribution of the DNA profiles
in the population. Thus, this field is dependent on statistics to make infer-
ences. In this thesis I will restrict myself to a special case of relationship
inference, where the problem is to assess how likely a DNA profile from a
suspect matches that on a given crime scene. A further restriction is that I

will only focus on the male population. The central part of the thesis will
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be centred around the statistical aspects of this field, but a fair bit of ge-
netics is needed to understand the difficulty with regards to modelling the
distributions needed for inference. I assume some familiarity with genetics,
but I will briefly elucidate the most central concepts when needed during the
thesis, mostly during the introductory part. The statistical aspects of the
thesis, which is the major point of inquiry, will be the focal point after some
context has been established.

DNA profiles from the Y-chromosome is inherited in a patrilineal fashion,
that is, directly inherited from fathers to sons. So, throughout the thesis we
do not consider the small part of the Y chromosome that may recombine. A
set of genetic markers with the property of direct inheritance from either par-
ent is termed lineage markers. The usefulness of lineage markers are common
practice in modern genealogy, but the forensic science applications are also
of great interest. Consider the case where a Y-chromosomal DNA sample is
found at some crime scene and that the sample matches some suspect, then
what is the probability of the crime scene sample matching a person uncon-
nected to the crime scene? This is an important question to answer, since the
evidence should be evaluated according to at least one alternative hypothesis.
It would not be fair to convict the suspect based on this match alone. Lets
go back to the most recent question. Intuitively we can see that, if the crime
scene type is common in the general population (say 0.5 of population has
the type), then it is not unlikely to expect a match with an individual drawn
at random. In the converse scenario, a match is very unlikely if almost all
individuals carries unique types. This illustrates the importance of having a

good estimate for the rarity of a type, thereby having a good estimate for a
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coincidental match between a crime scene type and a arbitrary male. The
problem of obtaining such estimate is called the evidential value of Y-STR
haplotype match probability by Charles H. Brenner. The problem has been
investigated by several people in the last decade (Brenner, 2013). This kind
of DNA evidence can be used in special cases where autosomal DNA is un-
available or where the inference spans across several generations within a
family tree. It can also be used in conjunction with nuclear DNA to gain
more evidential strength. Before formalizing the problem, a small amount
of context is needed, both with respect to genetics and to the practice of

quantifying evidence and principles for making inferences in forensic science.

1.2 Forensic Genetics

This section contains a brief introduction to the most central concepts in
forensic genetics. The purpose of this section is to clarify the forensic genet-
ics terminology I will use. In addition I find it useful to also summarize the
main principles behind relationship inference to provide further context. I.
Evett and B. Weir formulated three principles for evaluation DNA evidence

(Egeland et al, 2016):

1. To evaluate the uncertainty of any given proposition it is necessary to

consider at least one alternative proposition.

2. Scientific interpretation is based on question of the following kind:

What is the probability of the evidence given the proposition?
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3. Scientific evidence is conditioned not only on the competing proposi-
tions, but also by the framework of circumstances within which they

are to be evaluated.

In principle, the number of possible alternative propositions are limited
only by imagination, but in practice (due to the third principle) it often
suffices to state two possible explanations. For example, a suspect S is the
culprit in some rape case or S is not. However, if the brother of S is previously
convicted for a similar crime, then it is wise to consider him as a possible
suspect as well. I will restrict myself to the basis case where the competing
explanations are, first, suspect S is the source of crime scene DNA profile,
against the alternative case that some other arbitrary person is the source
of the DNA profile. So, we condition on a possible relationship between
a DNA sample and a particular person, then compute the probability of
observing the DNA sample given this relationship. Consider the following
silly example to get a sense of how this process is done. Assume you submit a
DNA profile to a company that provides paternity tests for a small fee. They
have also obtained a DNA profile from former North-Korean dictator Kim
Jong-1l. The probability for observing your particular DNA profile, when
conditioning on "Kim Jong-Il is your father”, is very likely to be close to
zero. This is agreement with the second principle. To rephrase, I restrict
myself to the two following hypotheses throughout the thesis, consistently
denoted H; and H,, expressed as:

Hy: Some suspect S is the source of the crime scene DNA profile.
H,: Some other arbitrary male (not connected to crime) is the source of the

crime scene DNA profile.
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A general term for a random match between a particular DNA profile to
an identical one in the population under consideration is called the random
match probability (RMP) (Egeland et al, 2016). In a random draw from a
set of k objects with equal frequency, the RMP for matching a particular

1

one is 3. However, this changes if the count of the various objects are not

uniform.

1.2.1 Likelihood Ratio

The strength of different hypotheses relative to each other can be expressed
as a likelihood ratio (LR)

= gl
where D is our data. Assuming we have we have k hypotheses, , some prior
probabilities Pr(H;) and and some genotype data, then application of Bayes
theorem gives us the following expression for what is called the posterior

probability:
Pr(D|H;)Pr(H;
P'I"(HAD) — - 7"( ‘ Z) r( Z)
Zj:l Pr(D|H;)Pr(H;)

By taking the ratio of the posterior probability of two hypotheses H; and
H; where i # j, we get what is called the posterior odds (Egeland et al,

2016):
M — LR« Pr(H;) _ Pr(D|H;) N Pr(H;)
Pr(H;|D) Pr(H;)  Pr(D|H;) Pr(H;)

The sums in the denominators of the expression for posterior probability

cancels out. Now the posterior odds is a product between the LR and the

prior odds.  The LR takes values in [0,00). Saying that the data is LR
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times more likely given hypothesis ¢ relative to hypothesis j is a reasonable
way to interpret the result. In some judicial cases, there are requests for
representing the evidence in terms of probabilities to the different hypothesis
rather than likelihood ratios. It is sometimes possible to transform the LR’s
into a posterior probability known as the Essen-Moller index W. Assume
that we only have two mutually exclusive hypotheses 7,7 with equal prior
probabilities, then the posterior probability for hypothesis ¢ can be expressed

as
LR

LR+1
For the derivation of general case with k hypotheses, see (Egeland et al,

2016).

W = Pr(H;|D) =

1.2.2 Forensic Markers and Populations

DNA profiles used in forensic genetics are obviously composed of a very
small portion of a persons total DNA. This portion again is often composed
of small sequences spread across many chromosomes, as the current purpose
of a forensic DNA profile is discriminatory power, not phenotype categoriza-
tion. Same sex humans are approximately 0.99 identical, most of us carries
the same genes, but we have different variants of these genes in various loca-
tions on the chromosome. In forensic genetics settings, we call these selected
locations along the genome forensic markers or loci. Some markers are usu-
ally highly polymorphic, with number of different marker variants are in the
range of 6 to 70 (Egeland et al, 2016). These differing variants are referred to
as alleles. In autosomal DNA, in contrast with allosome (sex chromosome),

there are two allele variants at each marker, one inherited from each parent.
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When both alleles are identical at a marker (see THO1 marker in Table 1.1
as example), we call the genotype homozygous, and heterozygous conversely.
Markers on the autosomes(and possibly allosomes) are assumed to follow an
important population genetic property known as the Hardy-Weinberg Equi-
librium (HWE), first proven mathematically by G. H. Hardy and Wilhelm
Weinberg. HWE states that the allele frequency distribution is at equilib-
rium and is not disturbed by effects like non-random mating, population
substructure, ... , and natural selection (Egeland et al, 2016).  Assume
that a population is in HWE and with population frequencies p; and p; for
a autosomal two allele marker M. Then the probabilities for observing the

following genotypes G in an arbitrary individual is

Pr(G=i/i)=p;

The factor 2 comes from the fact that the genotypes G; =i/j and Gy = j/i
is considered equivalent (Egeland et al, 2016). Also,

Pr(G=i/iUG =i/jUG = j/j) = p + 2pip; + p2 = 1

This can also be modelled with a multinomial distribution with probability

parameter (p?,2p;(1 — p;), (1 — p;)?).
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Repeat Mouth

TPOX 7, 11
D3S1358 | 15, 19
D5s818 | 10, 14
FGA 18, 23
CSF1PO 1z, 13
D7S8820 9, 9
D8S1179 1z, 12
THO1 S, 9
vWA 16, 16
D13S317 10, 13
D165539 10, 10
D18S51 1z, 13
D21S811 28, 30
AMEL Male

Table 1.1. Example of a set of 13 STR markers and one marker commonly

used for sex determination (AMEL).

In contrast with autosomal DNA, the alleles at the Y chromosomal markers
are inherited directly from fathers to sons, and only has one allele per marker.
This means that Y forensic markers is what is called linked markers. One
could imagine the markers in Table 1.1 to be markers on the Y-chromosome,
but at each markers there is only one number. This direct linked inheritance
means that the mechanisms for how Y-chromosomal alleles are distributed

in the population differ from autosomal alleles (Brenner, 2013).

Population substructure

One of the major problems in developing good models for estimating Y hap-
lotype frequency, is the problem of population substructure. This problem is
especially prevalent in frequency estimation based on lineage markers and is

addressed in more detail in section 2.1. Modelling population substructure,
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also known as population stratification (PS) is a major field of research in
itself. The goal of such models is to quantify differences in allele frequencies
in subpopulations. By applying this process, it is possible to gain knowledge
about the phylogeny of the different subpopulations or clusters within the
population. Simple models for dealing with possible subpopulation structure
during computations for forensic inference typically entails introducing a pa-
rameter 6, defined on [0, 1]. 6 aims to correct for the possible substructure
(deviation for HWE) in the population (Egeland et al, 2016). A synonymous
statistic with 0, is the Fixation index Fl;, derived from the Fisher F-statistic,
one of the most frequent used statistics in population genetics. The definition
is commonly defined by the variance of allele frequencies at a loci between
two populations A and B and the average allele frequency p at the same loci
in the total population comprised of A and B. It is also possible to define it
by probability of identity by decent (wiki, Fixation Index). In general it is
defined as

2
g
S
FST: 2
or

The extreme value Fy; = 0 means that there are no difference in population
structure (allele variation at a loci) between A or B and the total population
consisting of A and B combined. Conversely, Fy; = 1 means that the popu-
lation structure of A or B differs completely from the combined population
A and B. In this case, the combined population A and B does not have a
uniform structure. It is possible to estimate both the between population
variance of an allele 0% and the total population variance o2 from the data,
in a similar way to how it is done in ANOVA.

In the paper 'Texas Population Substructure and Its Impact on Estimat-
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ing the Rarity of Y STR Haplotypes from DNA Evidence’, the researchers
pooled three populations (African American, Caucasian, and Hispanic) into
one population, then computed Fgr between the full population and one
subpopulation at the time. Further, by treating each £ Y-STR markers as
one allele, they computed the Fgr for £k = 1,...,16. As we shall see more
in section 2.1, there is a clear trend of Fgr values to be lower when intro-
ducing more Y-STR markers (Budowle et al, 2009). Smaller Fsr indicates
a reduction in population substructure. This can potentially be exploited to
increase the accuracy of models that do not incorporate lineage information

into the haplotype estimate.

1.2.3 YHRD database

The Y chromosome haplotype reference database (YHRD) is an open ac-
cess database of population samples in the form of typed Y chromosome
sequences, also called Y haplotypes. According to their website yhrd.org,
the project has two main objectives. First, generating reliable estimates for
Y-STR haplotype frequencies, in order to compute match probabilities in
forensic and kinship cases. Second, assessing male population stratification
on a macroscopic scale by using Y-STR and Y-SNP frequency distributions
(YHRD, 2015). The first objective is exactly the same problem this thesis
is trying to gain some further knowledge on. Although, the latter problem
may be of interest to gain more precise estimates for computing match prob-
abilities in forensic cases. Here is a summary over the number of different

haplotypes for various number of loci in the YHRD, counted July 2015.
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Number of loci | n Typing kit

9 ~154 000 | PowerPlex

17 102 700 | Yfiler

23 26 100 PowerPlex Y23
27 19 200 Yfiler

Table 2. Approximate number of haplotypes contained in YHRD, provided
the following typing kits.

YHRD has rigorous database sample submission protocols to exclude bad
Y-SNP/Y-STR markers. The population samples are submitted by indi-
vidual laboratories and institutes, then further checked before entering the
database. So far YHRD has collected population samples from 129 different
countries from 250 different institutes and laboratories (YHRD, 2015).
YHRD offers various tools for gathering information from the database like
haplotype search, kinship inference, analysis of molecular variance (AMOVA),
and mixture analysis (YHRD, 2015).

YHRD also has a comprehensive list of papers that reports their findings
about the submitted population samples.

The phylogeny of the Y chromosome can be mapped by the fact that the
Y chromosome is inherited patrilineally without recombination and that all
males are ancestors of a Y chromosomal adam. By careful tracking of random
mutations along Y chromosomal markers, it is possible to cluster haplotypes
into haplogroups and map them to phylogenetic trees (YHRD, 2016). The
figure below gives some idea of how population substructure emerges and

how populations can remain rather homogeneous.
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L \&x
Figure 1. Migration of haplotypes from haplogroup F results in new hap-

logroups over time. (Source: Wikipedia / Human Y-chromosome DNA hap-

logroup)

1.3 Formal problem description

The problem I want to address is how can we get an accurate and conservative
estimate of the frequency of an previously unseen haplotype. I will address
this by using different estimators. More specifically, I want to evaluate how
well methods that only uses the count of the different haplotypes perform
against methods that incorporate lineage information to improve estimates.
My goal is to see how these estimators perform under different degrees of
sample size and also when the haplotypes are comprised of different number
of loci.

More precisely my first goal is to estimate

F, = Pr(Match|H>)



1.3. FORMAL PROBLEM DESCRIPTION 17

where the hypothesis Hy is the same as described in section 1.2 by different
methods and compare them with respect to defined estimator properties like
MSE. It is also assumed that hy is previously unseen, this means that it
is not contained in our current data/database. Let the potential different
estimates of F), be indexed by i = 1,...,k So the expression ﬁx(i) denotes
an estimate from a particular method i, while F, denotes an arbitrary one.
So, for a haplotype h,, the population frequency is F} and it’s estimated
frequency by estimator i is ﬁy(i).
The estimates

F}C(i)

are estimated from haplotypes comprised of different number of loci and with

different degree of sample size and population coverage. Population coverage

N

is defined as 7z,

where N, is the number of distinct haplotypes in a sample
X and N is the number of distinct haplotypes in the population. The perfor-
mance of the estimators can indicate if some method consistently performs
well under diverse conditions and if some methods are preferable given cer-
tain limitations.

Now I will state the problem in a more formal manner. Let P be a pop-
ulation of haplotypes and X, X5...,X,, be m random samples of size n
drawn from P, with the restriction of not containing the unseen haplotype
h, ;, which is also randomly sampled in each of the m trails, with 1 < 57 < m.
Further, let F) ; be the population frequency of our unseen haplotype h, ;
and Fm be the estimate of F} from the j'th sample augmented with h, ;.

Given that the population is simulated, it is possible to compute the mean

squared error MSE(F, ), since F, is known. MSE(F,) can be interpreted
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A

as the prediction error. M SFE(F,) can then be used to evaluate the different
estimators with respect to both bias and accuracy.

Bias is a measure that can characterize if an estimator is conservative given
the current data. Having conservative estimates is important in forensic ge-
netics, because we don’t want the evidence in favour of H; to be stronger

than it actually is.

1.4 Current state of Y-haplotype match prob-
ability and models

There is a lot of discussion of whether to try to build models that uses the
genetic information inherent in the markers in a DNA to improve haplo-
type frequency estimates (Brenner, 2010). The alternative is to only the
use count information in the profile database. This include the count of the
distinct haplotypes and the size of the database. These different categories
of methods will be referred to as lineage based methods (ABMs) and count
based methods (CBMs). The simplest CBM is called the count method (CM)
(Section 1.4.1). Some researchers recommend using the CM along with an
estimated upper bound and subpopulation correction Fj in assessing the
rarity of a haplotype. This procedure gives a simple, conservative estimate.
(Budowle et al, 2007). Analysis of subpopulation structure in Texas gave this
approach further approval, especially when DNA profiles comprised 10-16 or
more markers (Budowle et al, 2009). Other researchers have argued that
using only the count information in the sample of haplotypes entails a sub-

stantial loss of information (Buckleton et al, 2011). This is based on the fact
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that the evolutionary history of a haplotype is encoded in the profile, and its
ancestry can be traced given enough Y-STR data. Their suggested approach
is to model allele frequencies in the same way as it is done in autosomal
work with some correction procedure, but there is now reason to expect that
this approach is hard, but not intractable. However, the frequency surveying
method, which is a ABM has later been questioned by some of the same
researchers who helped developed it (Caliebe et al, 2015).

Brenner argues that using the genetic information in types only observed
once in a sample, can provide very limited amount of information. Therefore,
not using this information should not lead to significant loss of estimation ac-
curacy (Brenner, 2010) thereby indirectly arguing that CBMs are sufficient.
However, he acknowledges that the Discrete Laplace method (DLM) devel-
oped M M. Andersen among others, looks interesting. (Brenner, 2013). The
DLM is a ABM that uses the genetic information encoded at each marker
in each haplotype to cluster similar haplotypes. After clustering, the allele
frequencies at each marker are assumed to follow a discrete Laplace distribu-
tion. These distributions can then be used to compute frequency estimates
for alleles, then be multiplied across loci to achieve an estimate for a partic-
ular haploype. (Andersen et al, 2013).

Other methods have been developed under the following names: C.I from
0, Frequency surveying, Infinite alleles model, Average matching chance, t-

model, Coalescent theory based methods (Brenner, 2013).
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1.4.1 The Count method

The count method is the simplest model for estimating frequency of a pre-
viously unseen haplotype, denoted h, (Section 1.3). It makes no assump-
tions about how the haplotypes are distributed in the population and simply
uses the sample frequency (empirical frequency) of h, as an estimate for the
population frequency. It is presented in ’Fundamental problem of forensic
mathematics - The evidential value of a rare haplotype’ (Brenner,2010) and
'Basic Priniciples for Estimating the Rarity of Y-STR Haplotypes Derived
from Forensic Evidence’ (Budowle et al 2007) and other papers addressing
the same problem (Andersen et al, 2013). It is obviously a CBM and often
called the naive count method due to it’s simplicity
Before h, is observed, consider a database/sample X,,. consisting of n

haplotypes. Now the count of h, is zero. An empirical estimate for h, based
on this sample then becomes

0

n
, which certainly is wrong, because we have observed it in the population.
A more general version of this problem is discussed in Section 2.1.2. One
solution to this problem is to add h, to X,,., thereby forming X consisting
of (n + 1) haplotypes (Brenner, 2010). Now the count of h, is one and the

empirical frequency estimate for h, is

P -

n+1
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The good thing about this estimate is that is found to be very conservative,

meaning that

F, > F,

in most cases (if not all). Thereby not stating that h, is more rare in the

population than it actually is (Budowle et al, 2007).
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Chapter 2

Methods and data

2.1 General problems in Y-STR frequency es-

timation

2.1.1 Interdependence between Y-STR markers

The lack of recombination at Y chromosome markers used in forensic sci-
ence is an indication that a matching probability probably cannot easily be
obtained by multiplication of estimated allele frequencies across loci. So it
is argued that a Y-STR haplotypes is best represented as indivisible units,
akin to alleles (Brenner, 2013). By using this haplotype representation, the
only way to distinguish the rarity of different haplotypes is based on their
sample frequency. So all haplotypes observed once,twice, etc, in the sample
will be treated as equal with respect to their potential population frequency.
The interdependence across the Y-STR loci does not mean that it is im-

possible to decompose a marker set into individual markers (which in my

23
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opinion is the ideal), then further estimate allele frequencies at each marker
separately, like we do in autosomal practice. However, this process is cur-
rently very intractable (Caliebe et al, 2015). Not only are there obvious loci
interdependence because of the lack of recombination, but there is also in-
terdependence that is dependent on the sub-population structure (Caliebe et
al, 2015). Below I summarize previous findings regarding the problems with

Y-STR marker set decomposition.

A paper by Bruce Budowle et al, provides general guidelines for using
forensic evidence based on Y-STR haplotype data. They argue that treating
that haplotypes should be treated as a unit, like an allele, for various reasons.
First failed attempts by others to correct for dependence and using the prod-
uct rule across loci. Second, the effect population sub-structure (Budowle
et al, 2009). The study used data sampled from three of the largest ethnic
populations in Texas, African American (N = 950), Caucasian (N = 957),
and Hispanic (N = 1005), typed for 16 Y-STR markers by using AmpFISTR
Yfiler kit. Although the dependence due to lack of recombination is in-
evitable, the dependence due to sub-population structure was not. By an
incrementing sub-sets of markers up until max at » = 16 loci, the paper
found that the effect of sub-population structure gradually vanished when
r > 10 markers were included along with increased discriminatory power
(Budowle et al, 2009), measured with fixation index (Fy) and PI respec-

2

tively. These quantities are defined as follows, Fy; = ﬁ(‘ljfﬁ) as mentioned

earlier, with p as the average haplotype frequency in the total population.
PD =1- > f; where f; is the ratio between the number of haplotypes of

type i@ over the total number of haplotypes. Their recommended principles
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for using Y-STR as forensic evidence is that, first, one should always use
autosomal evidence if possible. However, as mentioned in the introduction,
Y-STR data is particular powerful in rape cases and cases that spans across
multiple generations. Second, great importance should be placed on getting
databases that included at least » = 10 markers for reducing sub-population
effects. Third, use the count estimate with estimated upper bound since
no sensible reduction can be made so the product rule can be applied yet

(Budowle et al, 2009).

Amke Caliebe, Michael Krawczak, among others, all who have been study-
ing lineage markers and their use in forensic and population genetic studies,
sought out to quantify the assumed interdependence across the most common
Y-STR loci. They studied haplotype data from 21 markers typed with Pow-
erPlex Y23 set, originating from six different populations (four European,
average N = 1533, and two Asian, average N = 650) (Caliebe et al, 2015).
The possible dependence between a set of r markers X = {M;, Ms, ..., M,}

was quantified by using Shannon entropy, defined as
H(X) =Y —filog(f)

where f; haplotype frequency of the marker set under consideration. The
Shannon entropy quantifies how much uncertainty there is in the haplotype
state. To use a more known example, let us consider a coin. If the coin is
fair, then the coin has maximum entropy. So given data from any sequence
of previous coin tosses would not yield any extra predictive power for the

result of the next coin toss. Further, the Shannon entropy H(X) can be used
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to define the shared information distance D(X,Y") (Caliebe et al, 2015)

[HX|Y) + H(Y]X)]

bx.y) = H(X,Y)

where D(X,Y) € [0,1]. Soif D(X,Y) = 1, then X,Y is conditionally in-
dependent. Now it is possible to let X contain one marker M;, 1 < i < r
and let Y contain one marker M; with 7 # j up to a total of r — 1 mark-
ers all different from M;. The study performed pair-wise shared information
computation and plotted them. So two markers that are close, based on
Euclidean distance metric, have high dependence between them. Here is a

excerpt from the study
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Figure 2. Multidimensional scaling analysis based on shared information
distance [D(X,Y)]. Colour class is based on marker mutation rates, red for

slowly mutating markers and blue for rapidly mutating (Caliebe et al, 2015).

There is a consistent pattern of higher marker dependency between mark-

ers with low mutation rates, but even for markers with high mutation rate
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(DYS576, DYS578), the dependency is enough to not be neglected. The
study concludes that the pattern of interdependence between PPY23 mark-
ers is too complex to be broken down into quasi-independent subsets (Caliebe
et al, 2015). This means that current models that assume a negligible amount
of interdependence and obtain match probability by multiplication across loci
are probably invalid.

This means that until more advanced frameworks for modelling this in-
tricate interdependence among common Y-STR markers, a set of Y-STR
markers (i.e a haplotype) should be represented as an indivisible unit. An
analogy is to think of a set of Y-STR markers as one marker, where a haplo-
type is akin to an allele variant. By this analogy, different Y-STR haplotypes

can be viewed as a allele variants at a highly polymorphic marker.

2.1.2 Implications for modelling

The above results implies that all haplotypes that have been observed equally
many times in a database is treated equally. This is however not necessary
a fixed limitation, as mentioned in the previous section. Consider some
database of haplotypes X and two new previously unseen haplotypes y1, ya2.
In reality, it is reasonable to think that the actual distance between the two
new haplotypes to X is a quantity that can further improve the frequency
estimates. This is ideally achievable some time in the future. I restrict myself
to finding good models that does not incorporate this information, hopefully
without a dire loss of information. This means that the only feature that
can distinguish two haplotypes that is observed one time, is the fact that

they are different. What they have in common is that both are observed one
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time. The same reasoning goes for all haplotypes that are observed k times,
where k < n, where n is the size of the database. If k = n, then the database
contains one haplotype which is observed n times, this is however a highly

unrealistic scenario.

Because of the large number of possible haplotypes in a population, a
large part of haplotypes is not represented in the database. As we shall see
later, the Good-Turing estimate includes an estimate for the proportion of
haplotypes not represented in the database. Assume that some haplotype h*
exists in some population. Then it follows that the probability of drawing
the haplotype at random from this population is not zero. But, a probability

estimate for matching h* based on sample frequency leads to a contradiction.

0
ﬁ:—:o
n

Pierre-Simon Laplace faced the same general problem when trying resolve the
"Sunrise problem’ in 18th century. Laplace introduced the rule of succession
in his treatment of the sunrise problem (see wiki), as technique for assigning
non-zero probabilities to empirical events. The rule of secession is stated as
the following. If we repeat an experiment that we know can result in either
success or failure, n times independently, and get s successes, then what is
the probability that the next repetition will succeed? Let X, Xy,..., X1
be conditionally independent rv’s given p, that assume either the value 0 or
1. If we have no other information than their counts, then

s+1
n+2

Pr(X,m=1) X;=s)=

As an example, consider the sunrise problem, if we have observed that the
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sun has risen every day, then Y " X; =s=n,s0 Pr(X,;1 =1|> . X; =s=

n+1

n) = sl

The above estimator is a less general case of what is called additive smooth-
ing. Additive smoothing is a general version of the estimator Laplace de-
veloped for his treatment of the sunrise problem. Additive smoothing has
applications in natural language processing (NLP), specifically for devel-
oping what is known as naive Bayes classifiers and to develop statistical
models for language. The most relevant contribution from NLP is the the-
ory of n-gram models, which is a specific type of language model (LM).
In general, a language model is a probability distribution over a sequence
of words wq,ws,...,w,,. So a LM assigns a probability to the sequence
P* = Pr(ws,...,wy,). So, given a text corpus, and we just randomly select
m words, it is intuitive that the randomly selected sequence has a count of
zero, therefore we see the need for smoothing techniques in this problem too.
The most common approach to deriving an estimate for P* is the use of

n-gram models. This is expressed as the following
P* = Pr(wy,...,w,) = H Pr(w;lwy, ..., w;_1)

The conditional probability of a word given (n — 1) previous words, can be

computed by using frequency counts, represented by the function ¢, as follows

c(wi_(n_l), Ce ,wi)
c(wi,(n,l), Ce ,wi_l)

Pr(wi|wi7(nfl)a e 7wi—1) =

Since in our case (modelling haplotypes), the haplotypes are not ordered,
conditioning on a previous haplotype does not make sense. In contrast,

modelling the probability of a sentence, i.e P*, the sequence (w,,w,) may
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be much more common than (wg, w,) and so on. So, the haplotype esti-
mation problem is a unigram in the n-gram framwork where haplotypes are
akin to words wy, ..., w,,. Since many techniques have been developed too
improve the performance of n-gram models, they can also be applied to the
case of n = 1, i.e unigram models. Examples of this is additive smoothing,
Good-Turing smoothing, simple Good-Turing smoothing, etc. The goal of
smoothing techniques is to use the count of things we have seen once, twice,
..., to help estimate the counts of things we have not observed before.

To summarize, the haplotypes should (given our current knowledge) be treated
as an units, as was argued for in the previous section. This means that we
want to use the count information about the haplotypes in a sample/database
to best estimate the evidential value of a previously unseen haplotype. Be-
low I will introduce the Good-Turing estimator, abbreviated GTE. The GTE
has commonly used in statistical ecology, and has gained more interested
branches of machine learning like linguistics, speech recognition and so on.

In our context, the GTE is classified as a CBM.

2.2 Data

2.2.1 Y-STR haplotype data, structure and represen-

tation

Below we see an excerpt from a Y-STR dataset named danes, that is avail-

able through the R package ’disclap’, created by Mikkel M. Andersen.
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DYS19 DYS3891 DY538911 DYS390 DY5391 DYS5392 DYS393 DYS437 DYS438 DY5439 n
13 13 29 22 10 15 13 14 11 12
13 13 30 25 10 14 13 15 12 12

27 23 1 14 13 15 12 12

13 14 32 24 10 11 13 14 10 12

woE W =
w

1
1
1
1
13 13 30 24 10 1 13 14 10 12 2
1

6 14 13 30 23 11 13 14 15 12 13

Table 2.1 A few Y-STR haplotypes based on » = 10 loci. Each element in

the last column represents the count of the haplotype in corresponding row.

2.2.2 Simulating data

Simulating population dynamics is a very powerful tool for studying popula-
tion genetics, thus it is also highly relevant in forensic science. The R package
fwsim makes it possible to generate large haploid datasets that mimics other
Y-STR haplotype data to a high degree, thus making it a excellent tool for
studying haplotype distributions. (Andersen et al, 2012) Package details can
be found at CRAN.

The main reason for the usefulness of simulated data is that if we can
develop a model that predict simulated data well, then that model is also a
good candidate for predicting real data well too (Andersen et al, 2013). It
is important to note that the data is produced by a process that has some
similar properties with real evolution natural selection, although omitting
many key aspects of evolution, like natural selection. Of course using the
same model that generates the data to predict information about process the
data is generated from is gives us no new knowledge.

Using fwsim to generate data is both easy and computationally fast given

the right range of parameters. Examples of how to use fwsim is included in
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the package documentation-file at CRAN. A more analytical assessment of
the algorithms asymptotic performance can be found in the paper ’Efficient
simulations of Wright-Fisher populations’ (Andersen et al, 2012).

The populations were simulated under a Wright-Fisher model, neutral
single-step mutation model using the R-package ’fwsim’ In total, 2 pop-
ulations were simulated such that they are as equal as possible with the

exception that they differ in number of markers.
e Loci: r=28,11
e Mutation rate: Empirical (see below)
e Initial population size: k = 10°

The expected population size after g generations and with population
growth rate p (default p = 1) is E(N,) = pNy where Ny is the initial
population size (Andersen and Eriksen, 2012). The population growth rate p
was chosen such that F(Ny) = p?Ny = Nepq where N,y = 10, This implies
that p = e 1°B(N)

In order to make populations more realistic, the markers mutation rates
have been parameterized to mimic sets of markers commonly used in Y-STR
forensic cases, minimal (8 markers) and Yfiler (11 markers). At each marker,
the mutation rate is specified to be equal to the empirical estimate for the
marker that are being simulated. After the populations are simulated,
datasets of arbitrary size can be sampled. In order to draw realistic samples,
the samples are drawn with probability relative to their population frequency.
This process usually results in datasets with singleton proportion in the range

(0.6,1.0 — €) where € is a small real number.
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2.2.3 Simulated data

The data used inn all the simulation experiment are sampled from two sim-
ulated populations with the expected properties described above. The only
differing initial parameter is the number of loci. From these populations, 50
samples of size 500, 2000 and 8000 were drawn, producing 6 different cases

in total.

Table 2.2: Summary of the data sets.

sample size n  number of loci r n.sim

200 8 50
11 50
2000 8 50
11 90
8000 8 50
11 50
All 8 150
11 150
All 300

Thus, after the simulation, we have 300 datasets in total, divided into six

categories based on sample size and the number of loci in the data.
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2.3 Methods

2.3.1 Kappa method

A typical property in Y-STR haplotype data, is the large number of haplo-
types observed only once in the sample. We call such haplotypes singletons.
The kappa method takes advantage of about the proportion of singletons
in the database in the derivation of an estimate for the Y haplotype match
probability. The estimation objective is still to estimate F), in the likelihood
ratio LR = Fiz, where F), is defined in Section 1.3. The derivation of the
Kappa method is presented in the next paragraph.

I will first introduce some definitions. Let the crime scene haplotype be
denoted by h, and consider a sample/database X, consisting of n — 1 hap-
lotypes. Assume that h, ¢ X,,.. Next, let the number of singletons in X,,.
be a — 1. By setting the size of the database to be n — 1 and the number of
singletons to be a — 1 does not change the derived result, it just simplifies
computations (Brenner, 2010). Now consider an extended database X, de-
fined as X = h, U X,,. Observe that |X| =n and |{h,,S1,...,Sa_1}| = a.
Also by definition, S; # S for any 0 <,7 < o and ¢ # j. The proportion of
singletons in X is denoted by r, where £ = 2.

The singleton proportion £ = &, depends obviously on the sample size n.
Also, the number of loci defining the sample haplotypes has a tendency to
affect k. A database composed of 23 loci haplotypes will usually have a larger
proportion of singletons than a database composed of 9 loci haplotypes given
that the sample size is equal. One reason is because the number of possible

haplotypes comprised of 23 loci are much larger than 9 loci (assuming a finite
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number of variants at each loci).

It is possible to study the growth of x by treating s as function of n.
However, it is important to note that x is a fixed constant in haplotype
frequency estimation. The growth of x as a function of the sample size

can be fitted to the following function k(n) = where 6 is a constant

i
estimated from the sample (Brenner, 2010). Taking the derivative of this
function with respect to n yields k(n) = —ﬁ. The limit of this function
as the sample size goes to infinity is zero, although this extrapolation is
probably not valid. It does however indicate that the negative growth of
k(n) is very small. Meaning that the number of singletons in a sample is
slowly decreasing as a function of n. Note, this last derivation is not a result
from Brenner, so should it should be interpreted with caution. Because of
this very slow growth of x, the probability that the next observed haplotype
is new, is the same as the probability that the previous haplotype was new.
This probability is x (Brenner, 2010). Brenner justifies this last statement
by referring to a Theorem due to Robbins (Estimating the Total Probability
of the Unobserved Outcomes of an Experiment, Herbert E. Robbins), but
does not explicitly state the Theorem in the paper.

Let T be the haplotype of a suspect unconnected to the crime, i.e, an
innocent man. Now, the problem consist of computing Pr(T = h,). Let M
denote match (7" = h,), O denote observed match (T matches something in
X) and S denote singleton match (T matches some singleton in X). Also,
if T = h,, then all the steps in equations 2.1-2.6 must be true (Brenner,
2010; Page 3) First, Pr(O) = 1 — k, since it is new type with probability

k. Although, I must admit that I don’t understand this step. My guess
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is that because the probability of not being observed is the same as the
probability of being a new haplotype, that is &, it follows from the inclusion-
exclusion principle that Pr(—=0)+ Pr(O) = 1, thus Pr(O) = 1 — k. Second,
Pr(S|0) =~ k. Third, Pr(M|SNO) = +. Last, Pr(M) = Pr(MNSNO).
Putting all this together, we find that

F, = Pr(Match) (2.1)
— Pr(MNSNO) (2.2)
— Pr(M|S N O)Pr(S|0)Pr(0) (2.3)
~ (- R)ns (2.4)
—(1- /{)% (2.5)
therefore

LR~ LR, = —" (2.6)

(1— k)
The factor ﬁ is called the inflation factor.
To summarize, the KM gives the following estimate for the frequency of a

previously unseen haplotype h,

2.3.2 The discrete Laplace method

In addition to the three CBMs (CM, KM and GTE), the DLM will be used

to represent a LBM.
Let h, = (hy, he, ..., h;) be our previously unseen haplotype, where hy € Z
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and 1 < k <r. Then the frequency of h, can be estimated by
Fy =Y 5 T £ = el pie) (2.7)
j=1 k=1
given subpopulation centers {y;};, parameters {p;i};, and prior probabili-
ties {7;} from a converged run of the EM algorithm (Andersen et al, 2013).
The density f is the discrete Laplace distribution, which is a member of the
exponential family of distributions. A full derivation of the method is avail-
able in the paper "The discrete Laplace exponential family and estimation of
Y-STR haplotype frequencies’ (Andersen et al, 2013).
The DLM is implemented in the package ’'disclap’ on CRAN, written by
Mikkel Meyer Andersen and Poul Svante Eriksen. I will use this package to

estimate F).

2.3.3 Good-Turing frequency estimation

The development of the Good-Turing estimator was driven by trying to pro-
vide accurate estimates for the frequency of different types of objects in a
population, as the Laplace estimator was inadequate (Good, 1953). The
GTE has for example been used widely in statistical ecology, where the clas-
sical example of types of objects are distinct species. Let us say that we have
observed 2 lions, 4 zebras, 1 hyena, 1 giraffe and so on. This data can then
be used to estimate the number of types (number of different species) and
the frequencies of the different species. Types observed equally many times
has the same frequency estimate (Gale, 1995). In later years this method
has gained interest in the field of computational linguistics (Gale, 1995) and
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in machine learning in general. In computational linguistics, types of objects
can be defined as individual words, sequences of words and so on.

The general nature of method makes it suitable as a CBM for estimat-
ing the frequency of a previously unseen type. Since the GTE can estimate
frequencies for objects observed a particular number of times. The main
application of the GTE in this thesis is therefore to estimate the frequency
of objects observed one time, i.e, singletons. This frequency estimate will
therefore represent the frequency estimate of h,. In common with all CBMs,
objects observed the same number of times will have the same frequency es-
timate, since the only property that can distinguish types is their count. As
far as I can see, no other paper has applied this method to estimating the
rarity of h, and it would be interesting to see how it compares with other
CBMs like Brenner’s Kappa model.

The method is described in this paragraph after introducing notation. Let
the the distinct species observed be numbered x = 1,2, ..., X with count of
each species represented by the vecor c, with elements c¢,. This means that
species number one is observed ¢; times, the first element of c,. Further the
number of species appearing ¢ times is ¢, = |[{z : ¢, = t}|. The probability
estimate for a species observed t times is then defined as

(t+1)S(ces1)

P TN S()

where N is the total number of species in the sample and S() is the smoothing
function. As you see, this method is very seems very simple to implement,
but the difficulties lies in the smoothing step. Another paper by Gale and
Church (A comparison of the enhanced GTE and deleted estimation methods
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for estimating probabilities of English bigrams) published in 1991, showed
that for small values of ¢ (in the range 1,...,8) we have a good enough

approximation to set

S(ey) = ¢

I implemented the above estimator in R and tried to implement smoothing,
however, I found a R package that contains Good-Turing estimation with
smoothing on CRAN, so I used that one instead. The GTE is contained in
the R package ’edgeR’, which contains a many functions related to analysis
of gene expression data. Information about this package can be found on

CRAN.

2.4 Simulation experiments

The main purpose of the simulation experiments is to investigate how differ-
ent estimators behave with respect to their accuracy, bias and under different
sampling conditions. Another important goal is to check if certain sampling
factors like sample size and number of loci, affect all the estimators in the
same way consistently. It may be the case that some estimators only perform
well under very limited conditions and other estimators perform well for a
wide range of assumptions. Hopefully, this could provide more understanding
of where further research into Y-STR haplotype frequency estimation should
be focused. It is important to note that the results derived in this thesis are
based on simulated data, thus is not empirical by definition. Researchers in

this field tend to use simulated Y-STR data to explore and validate their
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models (Andersen et al, 2013; Brenner, 2010). Results derived from simu-
lated data, even if simulated from very realistic models should be evaluated
with a degree of skepticism and ideally be tested against real data.  The
simulation study consists of two major parts, both described in more detail
in section 2.5.1 and 2.5.2. The results are reported in chapter 3. First, a
brief overview of the goals of each study.

The simulation study will be devoted to analysing some of the proper-
ties of the estimators under varying conditions. A common way of assessing
the performance of different estimators in Y-STR simulation studies is to
compare estimates 6 derived from sampling with the population parameter 6
(Andersen et al, 2013; Brenner, 2010). This means that we want to compare
how well one estimator does in estimating the population frequency F, of
the previously unseen haplotype h, from a population sample X;.

The second goal, as mentioned in the start of this section, is more ex-
ploratory in nature. By this I mean that the behaviours of the estimators
are still of interest, but is not the main objective. The objective of this part
of the simulation study is to test how sampling factors impacts the estimates,
maybe in a general manner. It may also be the case that some estimators
only performs well under very limited conditions. This estimator property
could be problematic if it were to be used in practice, as it is hard to really

know if the required conditions are satisfied.

2.4.1 Computation of method estimates

Before statistical tests are performed, all the estimates must be computed

from the simulated datasets. All the estimates are computed in R and fur-
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ther stored in a dataframe of results. For the sake of convenience, all the
frequency estimates are then transformed into a dataframe that represents
the estimates in terms of log LR of the frequency estimate. In addition to
the estimated results, the dataframe contains information of about the true
population value of the true population log(LR). The procedure for comput-
ing the estimates will be described in general below. Figure 3.2 in the results
section displays an excerpt of the results.

The essential R code for computing all the data and estimates can be found
in the appendix of this thesis.

In total, we have simulated random samples Xy, Xa, ..., X390 drawn from
the populations described in Section 2.2.2. Each sample X is also augmented
with a random sampled haplotype h, that serves as our previously unseen
haplotype. In mathematical terms, X; = X/ Uh,; and X/ Nh,; = 0,
where j = 1,2,...,300, so the count of h,; in X, is one etc. One reason
for sampling a new random h, ; in each sample is that even if the count in
sample will always be one, the count of h, ; in the population is not necessary
one. For example, consider two haplotypes with count one some database.
Assume that one of the haplotypes belongs to a man with 14 brothers and
the belongs to a man with no brothers. Then it is probable that the popu-
lation frequency of the first haplotype is larger than the latter.

The sample X, together with computed estimates, the true population
frequency / log(LR) of h, ;, the sample coverage and singleton proportion
constitutes one simulation, index under the column sim (Figure 3.2). Each
unique combination of the factors sample size n (minimum, medium and

maximum) and the number of loci 7 (minimum and maximum) is simulated
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m = 50 times according to the scheme above, resulting in 300 simulations in
total.

It is important to note that the singleton proportion, sample coverage, true
population log(LR) and all the estimates in each row j are computed from
the corresponding sample X;.  The experiments in the following section
(Section 2.5.2) are all based on these 300 simulations.

In the next section I will use log(LR) to denote the true population log
likelihood ratio for h, and log(LR;) to denote the estimated log likelihood
ratio of h, by method number k, where k = 1 is CM, k = 2 is BK, and so
on. Also, since the count method is only a function of the sample size, it has
a constant value in all results with equal sample size. Therefore it will be
excluded from tests since it does not have any variance. This implies that
he three methods that are going to be tested are the Kappa model (KM) by
Brenner, Good-Turing esimation, and discrete Laplace model (DLM).

In order to clarify which subsets of the total 300 simulations that are in-
cluded in a particular test, I will use the vector r. r is defined as r = (n;,r;),
where ng = 0,n1 = 500, ...,n3 = 8000 and rqg = 0,77, = 7,7 = 11. The value
no = 0 means all n. For example, r* = (0,7) is all simulations with the num-
ber of loci equal to 7 (150 simulations). Another example, in Table 3.3, sim
55,80 and 90 are 3 out of 50 simulations in the subsets r* = (500, 11). Also, let
ry,ry,...,rg represent the standard cases (500,7), (500,11),...,(8000,11).
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2.4.2 Simulation experiment, Comparison of estima-

tors

The two most common measures of estimator performance in Y-STR haplo-
type frequency estimation is accuracy and bias (Andersen et al, 2013; Brener,
2009). These measures are generally quantified by the mean squared error
(MSE) of an estimator 6 (log(LR)) in our case). The MSE of an estimator
0 is defined as MSE(A) = E[(6 — 0)?] (0 is log(LR) in our case). The MSE
is a sum of the variance of § and the bias (bias(f, 0))? (see wikipedia / MSE
for derivation).

If an estimator has a consistent bias, it is desirable that it underestimate
the LR instead of overestimating it. This is because overestimation would
give more evidential strength in favour of conviction than there actually is
(see Section 1.2). A method that consistently overestimates the LR is said
to be anti-conservative. To see why this is the case, consider the following

general relationship.

LR—LR>0

LR>LR
1 1
>

P F

< F.

>

Which means that we have reported the frequency of h, to be lower than

it actually is in the population. In a forensic case, this would give more
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evidential value for conviction than there really is (see Section 1.2). Note
that this relationship hold for log(LR) as well, since the LR is always greater
than zero.

Also, if an estimator 0, has a smaller MSE than another estimator éQ, it
means that it’s estimates are closer to the true population value of 6, which
is a desirable property in general. However, in our case the value of a small
MSE is not the only property we try achieve. As we saw in the previous
paragraph, we must also see if the bias is consistently skewed in an anti-
conservative direction.

To recap, the two properties we want to investigate when comparing esti-
mators are the MSE and bias. Generally this entails a trade-off, we want to
minimize the MSE of an estimator, but not at the expense of conservative-

ness.

Estimator bias, probability of overestimation

A one-sided t-test with assumed unequal variance is performed between the
log(LR) estimate and the true population log(LR) for all methods and all
six scenarios ri,rs,...,rs. This test can indicate if any of the methods on
average overestimates the log(LR) in any of the scenarios. Let py, be the true
mean [og(LR) in arbitrary scenario, and fix be the estimated mean log(LR)
by method £ in the same scenario. We then test

Ho: fi —p <0

Hy: i —pp >0

at significance level o = 0.05 and degrees of freedom df = n.sim — 1 = 49.

If the alternative hypothesis is true, it means that the method k has overes-
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timated the true population log(LR) on average in that scenario.

Pairwise comparison of MSE

In this test, a pairwise two-sided t-test with assumed unequal variance of the
MSE for all the estimators in all six scenarios ry,rs, ..., rs were performed.
Let L; be the estimated log(LR) for one of the methods i and L; be the
estimated log(LR) for one of the other methods j # ¢ from one of the six
scenarios. Also let L be the true population log(LR) in the same scenario.
The following hypothesis will then tested in each scenario for all methods
i

Hy: MSE(L;) — MSE(L;) =0

H,: MSE(L;) — MSE(L;) # 0

at significance level a = 0.05 and degrees of freedom df = 2x(n.sim—1) = 98.
A rejection of the null hypothesis then means that there is a significant dif-
ference in estimator MSE in that scenario. I.e, one method is more accurate

on average in that particular scenario.



46

CHAPTER 2. METHODS AND DATA



Chapter 3

Results

This chapter will present the results from the simulation studies. The first
section is devoted to a brief summary and exploration of the computed es-
timates and the data. Further, the next sections reports the results from
the experiments designed in the previous chapter. Note, I will also use log
LR to represent the estimation results. As explained in Section 2.4.1, this
is no problem, as the LR is always (in my restricted case) the inverse of the
frequency of the haplotype under consideration. To see this, let E, be the
estimated haplotype frequency of x, then E, € (0,1) and also by definition
LR, = Fiz > (. Positive numbers are also more convenient to work with, and
can be used to avoid some rounding errors when dealing with small numbers.
So if the reader is interested in the frequency representation, it is easy to
convert back using the inverse relationship just described and the fact that

the natural logarithm is always injective on R.o. The log(LR) will be de-

noted with L to make the notation more concise.
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Table 3.1: Mean sample coverage and singleton proportion in all

simulation scenarios.

Notation | Meaning

L True population log(LR)
Ly CM estimated log(LR)
L, KM estimated log(LR)
Ls GTE estimated log(LR)

DLM estimated log(LR)

3.1 Computed estimates and data character-

istics

3.1.1 Sample singleton proportion and coverage

From figures 3.1;3.2, we see there that there is a trend of increased sample

coverage when the sample size is larger and a decrease when the haplotypes

are composed of more markers. Both these results are expected. Full sample

coverage is certainly attained when n is equal to the population size N and

possibly much sooner, depending on the haplotype diversity in the popula-

tion. The same sampling factors also seem to affect the sample singleton

proportion  in the opposite manner.
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Figure 3.1: Simulations with n = 500, 2000, 8000 pooled and grouped

under the factor loci.
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Figure 3.2: Simulations with » = 8,11 pooled and grouped under the

factor n.

Table 3.1 gives a more precise representation of what was discussed in the
beginning of this section. Given a fixed value of r, mean coverage always
increases with larger sample size and the singleton proportion decreases. For
r = 8, there is a mean increase of 0.029 and 0.079 in coverage when sample
size is increased from 500 to 2000 and 2000 to 8000 respectively. For For
r = 11, there is a mean increase of 0.0133 and 0.045 in coverage when sample
size is increased from 500 to 2000 and 2000 to 8000. This indicates that
coverage increases faster with sample size when haplotypes consists of fewer

markers.
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Maximum and minimum mean sample coverage occurs when n = 8000

(maximum sample size used), r = 8 (minimum number of loci used) and

n = 500 (minimum sample size used), r = 11 (maximum number of loci

used) respectively.

Table 3.2: Mean sample coverage and singleton proportion in all

simulation scenarios.

coverage singleton.prop
sample size n number of locir n.sim  mean mean
500 8 50  0.013046 0.776972
11 50 0.004747 0.962709
All 100 0.008897 0.869841
2000 8 50  0.043041 0.579630
11 50  0.018087 0.884226
All 100 0.030564 0.731928
8000 8 50  0.122143 0.350052
11 50  0.063613 0.708753
All 100 0.092878 0.529403
All 8 150 0.059410 0.568885
11 150  0.028816 0.851896
All 300  0.044113 0.710390
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3.1.2 Summary of simulation estimates

Table 3.3: Summary of log-LR estimates for 10 random simulations of a

CHAPTER 3. RESULTS

total of 300 simulations with sample size n, number of loci r.

sim n r S K L [:1 [:2 ng Ly

55 500 11 0.005 0.942 12.40 6.219 9.070 7.221 9.554
80 500 11 0.005 0.964 13.09 6.219 9.547 7.809 11.035
90 500 11 0.005 0.960 12.40 6.219 9.441 7.528 10.918
111 2000 8 0.043 0.579 13.83 7.602 8.468 7.684 9.608
148 2000 8 0.043 0.578 13.83 7.602 8.466 7.656 8.113
175 2000 11 0.018 0.897 13.78 7.602 9.871 8.067 12.485
193 2000 11 0.018 0.894 13.78 7.602 9.843 8.416 12.469
224 8000 8 0.122 0.347 13.83 8.987 9.413 8.896 12.407
228 8000 8 0.122 0.350 13.83 8.987 9.418 8.845 9.694
281 8000 11 0.064 0.715 11.59 8.987 10.243 9.372 14.006

None of the methods appear to overestimate the true population LR con-

sistently and have the following relationship with respect to conservativeness:

The same pattern is also appear to be consistent in the simulation cases

where n = 500 and the number of loci r = 8, 11.

Count > Good-Turing > Brenner > DiscLap
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Figure 3.3: Log likelihood ratio estimates for all the methods based on

m = 50 simulations and the true population log likelihood ratios of the
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Figure 3.4: Log likelihood ratio estimates with the all the same simulation

properties as in Figure 3.3, with the exception of the number of loci r = 11.

In the simulation case with n = 500 and r = 8, the plot (Figure 3.3) in-
dicate that all estimators are conservative. However, in the analogous case
with n = 500 and r = 11 (Figure 3.4), the DLM appears to overestimate the
LR. Also for the sample mean values, we have in both of these scenarios the
following relationship, |L, — L| < |L; — L| for the other estimators j # 4,
suggesting that the DLM is the most accurate estimator. The figures also
suggests that the DLM have higher variance than the other estimators.
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Figure 3.5: Good-Turing log likelihood ratio estimates based on different

number of loci.
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Figure 3.6: Discrete Laplace log likelihood ratio estimates based on

different sample size.



3.1. COMPUTED ESTIMATES AND DATA CHARACTERISTICS 57

20

o True population log(LR)
®  Good-Turing estimate

— 15 1

o

=

D

o

go]

)

£

;'a 10 7

5 . {m=100 =im pr level, =7, 11 loci pooled)

n=500 n=2000 n=8000
Sample size

Figure 3.7: Good-Turing log likelihood ratio estimates based on different

sample size.

The log LR tend to increase as more loci are included in the frequency
estimates (Figure 3.5). The log LR estimates based on DLM is close to
the population log LR, but seems to have high variability in the estimates
(Figure 3.6). In contrast, log LR estimates based on GTE tends to underes-
timate the population log LR (conservative) (Figure 3.7). Also, the log LR
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estimates based on GTE appear to have low variance and slowly approach

the population log LR as the sample size increases.

3.2 Experiment results, comparison of esti-

mator performance

3.2.1 MSE differences

Table 3.4: MSE and Variance computed for the KM(2), GTE(3) and

DLM(4) based on 50 simulation in each scenario.

n.sim n.sample n.doci MSE.2 wvar2 MSE.3 var.3 MSE4 var.4

20 500 8 20.10 146.62 30.63 253.09 11.83 288.69
20 500 11 8.794  39.73 2329 120.52 12.558 436.98
50 2000 8 16.796 106.67 23.48 16591 10.106 110.49
20 2000 11 8.938  32.26 18.65 85.07 12.507 504.59
20 8000 8 8.241  56.36 11.06 86.06  6.138  43.77

50 8000 11 6.397  24.03 11.06 48.16  7.290  92.02
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Table 3.5: Results from pairwise two-tailed t-tests with 49 degrees of
freedom between the mean log LR for all methods in all simulation
scenarios at sign level o = 0.05 with df = n.sim — 1 = 49. Unequal variance
was assumed. First, KM(2) is tested against GTE(3), then KM(2) against
DLM(4), ..., until exhaustion.

n.sim n.sample n.doci py3 da 3 D2.4 ds 4 P34 ds 4
50 500 8 0 10.523 0.005 8.268 0.000 18.791
50 500 11 14.498 0.244 3.764 0.005 10.734

0
20 2000 8 0 6.682 0.000 6.689 0.000 13.371
50 2000 11 0 9.708 0.289 3.569 0.086  6.139
20 8000 8 0 2.822 0.038 2.103 0.000  4.925
20 8000 11 0 4664 0.593 0.893 0.049 3.771

In Table 3.5, d; ; is defined as d;; = |[MSE(L, Li) — MSE(L, Lj)|, i.e, the
absolute MSE difference between method ¢ and j and p; ; is p-value for the
corresponding test in difference. Table 3.5 summarizes the results of a test
for significant differences in MSE. Differences in MSE was highly significant
in many cases, except between KM and DLM in scenarios rs 4 ¢ and between
GTE and DLM in scenario ry Increases in sample size seems to decrease the

MSE difference of estimators in general.
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3.2.2 Probability for overestimation
Pair-wise t-test for overestimation

Table 3.6: Results from pairwise one-tailed t-tests with 49 degrees of
freedom between the population log LR and the estimated log LR for all
methods in all simulation scenarios at sign level a = 0.05 with

df =n.sim — 1 = 49. Unequal variance was assumed. The last three

columns display the p-values from the experiment.
n.sim samplesize r p.KM p.GTE p.DLM

50 500 8 1 1 0.999
50 500 11 1 1 0.040 *
50 2000 8 1 1 1.000
50 2000 11 1 1 0.014 *
50 8000 8 1 1 0.825
50 8000 11 1 1 0.008 **

The DLM was the only method that significantly overestimated the popu-
lation log(LR). This occurred in scenarios ro46. The tendency of DLM to
overestimate appears to increase with haplotypes comprised of more loci. It
is encouraged to further investigate if this tendency manifests itself on real

Y-STR data and under different simulated conditions.



Chapter 4

Discussion

4.1 Brief summary of the thesis, problem and

findings

Accurate estimates of Y-STR haplotypes frequencies is an important problem
in forensic genetics, since the estimates are used to compute the likelihood
ratio for the evidential weight of a DNA profile found at a crime scene. Esti-
mating Y-STR haplotypes is more intricate than it is for haplotypes found on
autosomal DNA due to the lack of recombination on Y-STR markers selected
for use in forensic genetics and there is currently no evidence to suggest that
there is an easy method for decomposing haplotypes into individual markers
(Caliebe et al 2015). This result that motivated me to compare methods
that do not decompose haplotypes into individual markers, i.e CBMs, with
a method that do (ABM), namely the discrete Laplace method (Andersen

et al, 2013). CBMs are based on less assumptions about the underlying dis-
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tribution of haplotypes than ABMs in general, and therefore requiring less
conditions to be satisfied (they are more general) when applying the model to
a problem. Also, it is hard to know what conditions like haplotype diversity,
population substructure, etc, that affect the estimates the most. Based on
this property, a CBM is preferable to an ABM if the difference in accuracy
and bias is negligible and are the only properties of interest. CBMs also
appear to have less variance in the estimates. However, ABMs can compute
different frequency estimates for two haplotypes only observed once, a highly
wanted property that CBMs do not have. This is not possible with CBMs
since they do not differentiate between types observed equally many times in
a sample. The ability to discriminate between types observed equally many
times is important in cases where there are multiple possible suspects with
haplotypes only observed once in the sample. This property can also be used
to identify the most likely contributors to a mixture of Y-STR profiles. The
paper 'Identifying the most likely contributors to a Y-STR mixture using the
discrete Laplace method’, by Andersen et al, provides a framework for this
procedure using the DLM. This could be done by any ABM in theory.

To recapitulate, there seems to be a trade-off in selecting either of the two
classes of methods, this will be discussed more in Section 4.3. I will now
summarize the findings of the simulation study. Regardless of method cate-
gory (CBM or ABM), the goal of the simulation study was to estimate the
haplotype frequencies F, of haplotypes randomly sampled from a given pop-
ulation, from the corresponding random samples with different sample size
and composed of different number of markers (Section 1.3, 2.4.1). This was

done in many different scenarios (Section 2.2.3, 2.41) with different methods.
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When all the estimates were computed, statistical tests were performed in
order to test for significant differences in accuracy (MSE) and bias (overes-
timation). Note, the results can be reproduced and all the necessary R code
are provided in Appendix (Section 5.2). Having said that, simulating the
populations is a stochastic process even if the input parameters are constant.
The populations used in the study is therefore stored on a hard drive and
can provided by request.

The study revealed that the DLM performed best in terms of accuracy in
general in all simulation scenarios. However, the DLM also appeared to be
the estimator with the highest variance and with more variance when hap-
lotypes comprised r = 11 markers than » = 8 markers. Given fixed number
of loci r, the variance appear to decrease substantially, from 504.59 to 92.02
when sampled size is increased from 2000 to 8000 (Table 3.4, column 8). This
can indicate that the DLM require relatively large samples when dealing with
a sufficient number of markers. It is also important to point out that the
DLM was the only method that overestimated the LR significantly (Table
3.6). This happend only when haplotypes comprised = 11 markers. More
rigorous testing of this phenomenon is suggested, as modern Y-STR kits can
provide haplotypes consisting of up r = 27 markers (Yfiler plus). Overall,
the DLM appears to be the superior method with respect to all measures of
performance with the exception of a potential anti-conservative tendency for
haplotypes composed of » = 11 markers.

With regard to the CBMs, the KM and GTE, there are no results that
favour GTE over KM. Both methods are conservative across all scenarios

(Table 3.6), but the KM is more accurate and has less variance on average
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in all scenarios (Table 3.4).

4.2 Study limitations

The major limitation of the study is that all results were derived from simu-
lation. It is assumed that the simulated populations approximate real pop-
ulations to a sufficient degree. This requires empirical knowledge about the
properties of the system to be simulated. So the derived results are com-
pletely dependent on how well simulated Wright-Fisher populations maps
on to real populations. Simulated Wright-Fisher populations are generally
thought to be very powerful for studying population dynamics and that key
insights can be derived from them (Andersen et al, 2012). More research into
how to parameterize the simulations in order to achieve good approximations
could be interesting. I tried to mimic the mutation rates by using empirical
mutation rates, hopefully yielding more realism. Another approach is to di-
versify the populations. The DLM is for example verified using 12 different
simulated populations (Andersen et al, 2013). However, all the twelve popu-
lations was defined by r = 7 markers, thus not addressing the accuracy and
bias for haplotypes composed of more markers. This was shown to have a
significant impact on the estimates in this paper.

Also, to further test the effect of different sampling factors like sample size
and number of markers comprising the haplotypes, a factorial experiment
could have been implemented. By doing this, we could statistically evaluate

the effect of each factor on the frequency estimates. This would especially
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be interesting with respect to the factor number of markers, since the DLM
appears to be sensitive to this factor. Including a population with haplo-
types comprised of markers of size » > 17 could challenge the methods even
further. This could be defined as a third level(maximum) the factor r (num-
ber of loci). Estimates derived from samples from this population would
then indicate if the DLM have problems with overestimation given larger r
or if this is just a coincidence. The reason for not implementing the last
suggestion, is that the computation of haplotype estimates from this type o
population never stopped. No asymptotic upper bound on the running time
of the DLM are provided in the paper deriving it. It is important to establish
the expected running time of the DLM in terms of asymptotic bounds if the
method should be used in practice. If this is hard to derive analytically, then
estimates should be made. Haplotype frequency estimation based on coales-
cent theory is a real example of this problem, as the running time increases
exponentially with sample size and number of loci (Andersen, Caliebe, et al,
2013). Hopefully, the running time of DLM do not increase exponentially,
which would limit the practical applications substantially.

In my opinion, continuing to use simulation studies requires a more rigorous
assessment of their validity in order to judge whether a simulated distribution
is a good approximation of some empirical distribution. If this is found to be
the case (by some method), I speculate that a huge number of possibilities
are made available by the amount of data that can be generated. Such tests
can be performed on one-dimensional data, like the counts of the various
haplotypes in real Y-STR data and the counts in simulated data. For illus-

tration, consider the KolmogorovSmirnov test (wiki, Kolmogorov Smirnov
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test), which is one such test. The test can be done with the following test
statistic

D,y = sup | F1 . (2) — Fo o (2)]

T

and by defining Fj ,,(x) as the empirical count distribution and Fys,/(z) as
the simulated count distribution, with rejection region specified in the wiki

article.

o o o
IS () [

Cumulative Probability
o
o

Figure 4.1: K-S test with two empirical distributions. (wiki, Kolmogorov

Smirnov test)

However, the similarities between the empirical and simulated count distribu-
tions do not necessarily (probably not) entail that the haplotype distributions
are the same, so some multi-variable alternative would be needed.

Because of the possible limits with simulation studies, estimator proper-
ties should also be tested on real Y-STR with theoretical expectation of
behaviour as it is done in ’Estimating Haplotype ...” (Egeland and Salas,
2008). This paper also proposes some pragmatic solutions to haplotype fre-

quency estimation by highlighting the importance of sample coverage in this
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problem.

4.3 Related and future research

Another method that has been proposed for haplotype frequency estimation
is the A model (Tillmar et al, 2011). The model was developed for estimat-
ing haplotype frequencies on X-chromosomal markers, making it a plausible
candidate for Y-STR haplotype frequency estimation as well. The frequency
of a haplotype 7 according to this model is

G Ap;
O+

where ¢; is the count of the haplotype in the database and p; is the expected
frequency of the haplotype. In the problem of estimating the probability of
observing an previously unseen haplotype, the count of the haplotype is one.
Further, the total count is defined as the following, C' = Z c;, where ¢; is the
count of some haplotype 7. Both the expected frequencyjand lambda can be
estimated from the data. The latter estimate is based on a procedure sug-
gested in (Egeland et al, 2016), that resembles techniques for estimating 6,
used in theta correction problems. A major advantage of this model is that is
accounts linkage and linkage disequilibrium (LD). Considerable differences in
the LR were observed depending on whether linkage and LD were taken into
account. It would be very interesting to study if these results would transfer
to Y-haplotype frequencies, since linkage and LD is deemed to complex to

correct for in Y-STR markers (Caliebe et al, 2015).
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4.4 Final remarks

More research into the validity of simulation studies in evaluating methods
for Y-STR haplotype frequencies is needed. Simulation studies should best
be used as a powerful exploratory tool in my opinion, due to the uncertainty
in transferring conclusions to real data. Having said that, the results based
on this simulation study revealed some interesting findings. Most noteworthy
is the exceptional performance of the DLM relative to the other methods.
Also, the relative poor performance of the GTE is interesting. The GTE is
known to perform well on other problems with similar count data, like word
frequency estimation (Gale, 1995). The GTE also provides an estimate for
the sample coverage (Good, 1953). This may be a more proper use of GTE

in haplotype frequency estimation problems in general.
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Chapter 5

Appendix

5.1 Notation

5.1.1 Mathematical Notation

Symbolic Conceptual

Crime scene haplotype (prev unseen haplotype).

Frequency of previously unseen haplotype.

Estimated frequency of previously unseen haplotype.
Data/database augmented with prev unseen haploype (size n+1).
Vector of counts of the haplotypes in database.
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5.1.2 Abbreviations

Abbreviation Concept

CM Count method
KM Brenner’s Kappa model
GTE Good-Turing estimator

DLM Mikkel M. Andersen’s Discrete Laplace Method




5.2. R CODE

5.2 R code

5.2.1 Methods for estimating haplotype frequencies

ComputeCountEstimate <— function(x) {
x <— x$N
N <— sum(x)
f.hat <- (1/(N+1))

}

ComputeKappaEstimate <— function(x) {
x <— x$N

N <— sum(x)
alpha <— sum(x =— 1L)
kappa <— (alpha+1)/(N+1)

brenner <— list ()
f.hat <— (1—kappa)/(N+1)

brenner [[1]] <— f.hat
brenner [[2]] <— kappa
return(brenner)
}
require (disclapmix)
# Input: Haplotype data x
# QOutput: Estimate of singleton of interest frequency

5
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ComputeDisclapEstimate <— function(x) {
k <— 1
x.mat <— as.matrix(x[rep(lL:nrow(x), x$N),
1L:(ncol(x)—k)])
possible. fits <— disclapmix (x.mat, cluster = 1L)
#(ncol(x.mat)
possible. fits <— lapply (1L:5L, function(clusters) {
fit <— disclapmix(x.mat, clusters = clusters, verbose = 0L,
iterations = 200L)
return(fit)
1)
BICs <— unlist (lapply (possible. fits , function(fit) fit$BIC_margina
best . fit .BIC <— possible. fits [[which.min(BICs)]]
disclap .match. prob <— predict(best.fit.BIC, newdata = as.matrix(su

f.hat <— disclap .match.prob[length(disclap .match.prob)]
}
# Haplotype frequency estimates based on Good—Turing estimation
# with non—parametric bootstrap (based on function from packege edgel
# This is tmplemented by rewriting the C code for simple good—turing
# http ://www. grsampson . net/RGoodTur. html
library (edgeR)
ComputeGoodTuringEstimate <— function(x) {
x <— x$N



5.2. R CODE

freq <— goodTuring(x,5)
f.hat <— freq$proportion [2]

7
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5.2.2 Simulate data

library (fwsim)
require (disclap)
require (disclapmix)
# Functions for generating populations and samples simulated under F
# by using the package ’“fwsim’
SimulatePopulation <— function(r, mut) {
r <— as.integer(r)
g <— 200L # default
n.null <- 100000L

n.end <— 1000000L

prop.end <— n.end/n.null
rho <— exp((1/g)=*log(prop.end))

# Founder haplotype median of Y-STR data danes
temp .data <— data(danes)

hap .mean <— round(as.vector ((apply(danes|[,1:10], 2, mean))))

#H. null <— as.integer (sample(hap.median,r, replace=TRUE, prob = (h
H.null <~ as.integer (sample(hap.mean,r, replace=ITRUE))

rm(temp . data)

mutation.rate <— rep(0.003,r)

sim <~ fwsim(G = g, H.null, NO = n.null, mutmodel = mutation.rate ,
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pop <— sim$population

return (pop)

# Generate all 12 populations required for simulation experiments
SimulatePopulations <— function() {

populations <— list ()

mut . models <— list ()

mutl <— ¢(0.001,0.00186, 0.00242, 0.00311, 0.00265, 0.00052, 0.00076, 0.(
mut2 <— ¢(0.00265, 0.00186, 0.00242, 0.00477, 0.00055, 0.00099, 0.001, O
mut. models [[1]] <— mutl

mut . models [[2]] <— mut2

loci <~ c(length(mutl), length(mut2))

idx <— 1

for (i in 1:2) {
pop <— SimulatePopulation(loci[i],mut. models[[1]]) # replace with pop
populations [[idx]] <— pop
idx <— idx+1
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return (populations)

}

# Generating samples from a population

# types <— sample(x = 1:nrow(pop), size = n.sample, replace = TRUE,

—

GenerateSample <— function(x, n.sample)

pop <— X

types <— sample(x = l:nrow(pop), size = n.sample, replace = TRUE,
types.table <— table(types)

sample. dataset <— pop|as.integer (names(types.table)) ]

sample. dataset SN <— as.integer (types.table)

#sample. dataset <— cbind (sample. datasetl ,as.integer (types.table))
#colnames (sample. dataset )[n. col] <— "N”

#transform (sample. dataset ,)

#sample. dataset$N <— as.numeric(as.vector (types.table))

s <— list ()
s[[1]] <— sample.dataset
s[[2]] <— types

return(s)
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5.2.3 Compute haplotype frequencies based on popu-

lation

require (disclap)
require (disclapmix)

library (fwsim)

(
(
(
require(tables)
require (ggplot2)
# Function for computng haplotype frequency estimates based on various met,
# Input: Population P and sample coverage coverage(sample size)
# QOutput: Results as described in header
# NOTE, CHANGE FUNCTION $ IT TAKES coverage LOW or HIGH instead of n.size
ComputeResults <— function (P, n.size) {
result <— data.frame(hap.idx=numeric(), coverage=numeric(), p=numeric(),
count=numeric(), brenner=numeric(), gt=numeric(), d
n.types.pop <— dim(P)[1]
r <— dim(P)[2] -1
n.sim <— 50
for(i in 1l:n.sim) {

sample. computed <— GenerateSample (P, n.size)

s <— sample.computed [[1]] # sample as data.frame

t <— sample.computed [[2]] # indices of sampled haplotypes
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unseen . hap <— GenerateSample (P[—t,],1)
h <— unseen.hap [[1]]

unseen .idx <— unseen.hap|[[2]]

# add unseen hap to database
s <— rbind (s, h)

unseen . idx .sample <— dim(s)[1] # last row

n.types.sample <— dim(s)[1]

sample. coverage <— n.types.sample/n.types.pop

# singleton proportion in sample
brenner <— ComputeKappaEstimate(s)
kappa <— brenner [[2]]

while (kappa =— 1) {
sample. computed <— GenerateSample (P ,n.size)
s <— sample.computed [[1]] # sample as data.frame

t <— sample.computed [[2]] # indices of sampled haplotypes
unseen . hap <— GenerateSample (P[—t,],1)
h <— unseen.hap [[1]]

unseen .idx <— unseen.hap [[2]]

# add unseen hap to database
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s <— rbind (s, h)

unseen .idx .sample <— dim(s)[1] # last row

n.types.sample <— dim(s)[1]

sample. coverage <— n.types.sample/n.types.pop

# singleton proportion in sample
brenner <— ComputeKappaEstimate (s)

kappa <— brenner [[2]]

}

# real population frequency of unseen haplotype =
p.x <— P$N[unseen.idx | /sum(P$N)

p.hat. gt <— ComputeGoodTuringEstimate (s)

p.hat.count <— ComputeCountEstimate(s)

p.hat .kappa <— brenner [[1]]

p.hat. disclap <— ComputeDisclapEstimate(s)

#p. hat. disclap <— 1

result <— rbind(result , data.frame(hap.idx=unseen.idx, coverage=sample

brenner=p.hat .kappa, gt=p.hat.gt, d

}

return(result)
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5.2.4 Statistical tests

OverestimationTest <— function(res) {

# Test for overestmation

R.all .LR <— res
t.overest <— list ()
t.brenner <— list ()
t.gt < list ()
t.disclap <— list ()
cl <~ 0

c2 <— 0

for (i in 1:6) {
cl <— (i—1)%50 + 1
c2 <— ¢2 + 50
LR <— R. all .LRSLR.pop[cl:c2]
LR.brenner <— R. all .LR$LR. brenner [c1:¢2]
tt.brenner <— t.test (LR.brenner, LR, paired = TRUE, alternative :

t.brenner [[i]] <— tt.brenner
LR.gt <— R.all .LRSLR.gt[cl:c2]

tt.gt <— t.test(LR.gt, LR, paired = TRUE, alternative = ”greater
togt[[i]] <= tt.gt

LR.disclap <— R. all .LR$LR. disclap [cl:c2]
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tt.disclap <— t.test (LR.disclap , LR, paired = TRUE, alternative = ”gre:
t.disclap [[1]] <= tt.disclap

.overest [[1]] <— t.brenner

.overest [[2]] <— t.gt

+ et ot =

2
.overest [[3]] <— t.disclap

test.results <— OverestimationTestExtract(t.overest)

return(test.results)

estimatorMSE <— function(res) {
test.results <— data.frame(MSE.KM=numeric (), var .KM=numeric(),
MSE.GTE=numeric (), var.GITE=numeric (), MSE.DLM:

R.all . LR < res

cl <~ 0
c2 <~ 0
for (i in 1:6) {
cl <— (i—1)%50 + 1
c2 <— ¢2 + 50
LR <— R. all .LRSLR.pop[cl:c2]
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LR.brenner <— R. all .LR$LR. brenner [c1:c¢2]
SE.brenner <— (LR.brenner—LR)"2
MSE. brenner <— mean(SE. brenner )

var. brenner <— var(SE. brenner)

LR.gt <— R.all .LR$LR. gt [cl:c2]
SE.gt <~ (LR.gt-LR)"2

MSE. gt <— mean(SE. gt )

var. gt <— var(SE.gt)

LR.disclap <— R.all.LRSLR. disclap [cl:c2]

SE. disclap <— (LR.disclap—-LR)"2

MSE. disclap <— mean(SE. disclap)

var. disclap <— var(SE. disclap)

test.results <— rbind(test.results , data.frame(MSE.KVEMSE. brenne
MSE.GTE=MSE. gt , var .GTE=var. gt , MSE.DLVEMS

n.s <— as.factor(c(500,500,2000,2000,8000,8000))

n.r <— as.factor(c(8,11,8,11,8,11))

test.results <— cbind(test.results, n.sample=n.s, n.loci=n.r)
test.results <— test.results|[c(7,8,1:6)]

rownames (test.results) <— 1:6

return(test.results)
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# Two sided t—test to test for sign differences between the estimators in |
SignDiffMSETest <— function(res) {

R.all .LR <— res

t .MSE <— list ()

MSE. brenner . gt <— list ()

MSE. brenner . disclap <— list ()

MSE. gt . disclap <— list ()

cl <~ 0
c2 <~ 0
for (i in 1:6) {
cl <— (i—-1)%50 + 1
c2 <— ¢2 + 50
LR <— R. all .LRSLR.pop[cl:c2]

LR.brenner <— R. all .LR$SLR. brenner [cl:c2]
SE.brenner <— (LR.brenner—LR)"2

LR.gt <— R.all .LRSLR. gt [cl:c2]
SE.gt <— (LR.gt—LR)"2

LR.disclap <— R.all .LR$LR. disclap [cl:c2]



38 CHAPTER 5. APPENDIX

SE. disclap <— (LR.disclap—-LR)"2

tMSE. brenner. gt <— t.test (SE.brenner, SE.gt, paired = TRUE, mu=(
tMSE. brenner . disclap <— t.test (SE.brenner, SE.disclap, paired ="
MSE. brenner. gt [[i]] <— tMSE. brenner.gt

MSE. brenner . disclap [[i]] <— tMSE. brenner . disclap

tMSE. gt <— t.test(SE.gt, SE.disclap, paired = TRUE, mu=0)
MSE. gt . disclap [[1]] <— tMSE. gt

}

t MSE[[1]] <— MSE. brenner.gt

t MSE[[2]] <— MSE. brenner.disclap

t MSE[[3]] <— MSE.gt.disclap

test.results <— SignDiffMSETestExtract (t.MSE)

}

# Investigating factors important for MSE differences
OneFactorMSETest <— function(res) {

t .MSE <— list ()

MSE. brenner <— list ()

MSE. gt <— list ()

MSE. disclap <— list ()

cl <~ 0

c2 <— 0
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for (i in 1:6) {
cl <— (i—1)%50 + 1
c2 <— ¢2 + 50
LR <— R. all .LRSLR.pop[cl:c2]

LR.brenner <— R. all .LRSLR. brenner[cl:c2]
SE.brenner <— (LR.brenner—LR)"2

LR.gt <— R.all .LRSLR.gt[cl:c2]
SE. gt <— (LR.gt—LR)"2

LR.disclap <— R. all .LR$SLR. disclap [cl:c2]
SE. disclap <— (LR.disclap—LR)"2

}

t MSE[[1]] <— MSE. brenner.gt

t . MSE[[2]] <— MSE. brenner. disclap
t MSE[[3]] <— MSE.gt.disclap
return (t.MSE)

}

[language=R]
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