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Abstract 

Five statistical models were used to analysis genetic variations, heritability and the 

ability to predict survival of Nile tilapia based on challenge test data. 12 full-sib Nile 

tilapia families (1870 individuals) with an average weight of 8g in young group (G8) 

and 35g in older group (G35) were tested. Sire-dam binary threshold (BTH_sire-dam) 

model and Animal model (BTH_Animal) were using test-period survival as the 

univariate trait definition. And sire-dam survival score (SS) model was applied to test-

day survival (one record per fish per day). Also a family mean survival (FMS) model 

and a family mean area (FMA) model were tested with the mean survival rate and 

integral area per family as trait definitions, respectively. Highest heritability was found 

with the FMS model (0.56 ± 0.42), followed by the BTH_sire-dam model (0.45 ± 0.17) 

and the FMA model (0.42 ± 0.34). The BTH_Animal model got a relatively much lower 

value of heritability (0.27 ± 0.11), whereas the SS model (0.07 ± 0.03) was distinctly 

the lowest. The highest Pearson correlation coefficients between predicted breeding 

values for the various models were 0.97 for the BTH_sire-dam model and the 

BTH_Animal model, 0.96 for the SS model, 0.87 for the FMA model and the FMS 

model had the lowest prediction power with a correlation of 0.77. In conclusion, 

BTH_sire-dam model was the best fitted model with a high heritability and the highest 

selection accuracy among these five models. 
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1. Introduction 

Tilapia is one of the most important farmed fish species in the world, only second to 

carp (Linnaeus, 1758) and among the tilapia species, Nile tilapia (Oreochromis niloticus) 

is the preferred one to culture. This African omnivore fish is well known for rapid 

growth, high tolerance for intensive culture and high disease resistance. However, this 

hardiness is of course not without limitations, according to the long time experience 

from fish farming industries and lots of experiment done in the lab. Fish farmers and 

scientists have found that disease may happen to be the first and major difficulty that 

need to be overcame in the future tilapia farming industry 

(http://www.thefishsite.cn/articles/190/streptococcus-in-tilapia/). 

Non-haemolytic group B Streptococcus agalactiae (GBS) is a streptococcal disease 

(Eldar et al., 1995) which has a wide range of host (Joyce et al., 2009). It can not only 

influence human beings to get meningitis but also lead to meningoencephalitis in fish 

and mastitis in cattle (Joyce et al., 2009). It is one of the main causes to streptococcosis 

in Nile tilapia, which can lead to high mortality. Fish can get abnormal behavior, abscess, 

skin hemorrhage, less feed intake, septicaemia and peritonitis after being infected by 

GBS. This specific pathogen has a significant effect on fish central nerve system 

(http://www.thefishsite.cn/articles/190/streptococcus-in-tilapia/).  

The experiment was primarily designed to develop a Streptococcus agalactiae 

challenge model by intraperitoneal (IP) injection and cohabitation in Nile tilapia. But 

the recorded challenge test data is here used for later statistical genetic variance analysis. 

Many models can be found to perform analysis of genetic variance of challenge test 

data in aquatic species, i.e. their resistant to various diseases, dependent on various trait 

definitions (Ødegård et al., 2006). An animal threshold model usually give biased 

heritability in genetic analysis of binary traits. However, problems can be solved with 

a new Gibbs sampling algorithm especially when individual records exist on parents 

(Ødegård et al., 2010). A linear model and a threshold model were used for the test 
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period survival data, i.e. dead or alive (usually scaled 0 or 1) at the end of the test period. 

Linear repeatability model was used for test-day survival and proportional hazards 

Weibull model were used in time until death occasion (Ødegård et al., 2006, Gitterle et 

al., 2006). Different models were using different information obtained from the 

challenge test. That to find a best fitted model for a specific disease resistance challenge 

test in aquatic species was of significant important to predict the breeding value for 

candidates. 

The aim of this thesis was to apply different statistical models for genetic analysis on 

Streptococcus agalactiae resistance in Nile tilapia and make comparison of the model’s 

prediction ability for the survival trait. Animal and sire-dam threshold linear models 

and family mean models were tested and compared. 

2. Material and Methods 

2.1 Experiment 

2.1.1 Fish preparation and experimental design 

All tilapia families used in this experiment originated from Genomar’s facilities in 

the Philippines, and they arrived at ABT Innovia (an independent testing facility located 

in Malta) (http://www.abtinnovia.com/) on 28 May 2015, with an average weight of ca 

0.05g. Different families were separately held in a Recirculating Aquaculture system 

(RAS), and were raised at a temperature of around 28±1℃. This study was designed to 

be a repeated experiment, with the fish size as the only difference between the two 

treatments, i.e. the type of challenge tests. The specific fish sizes were 8g for G8 and 

35g for G35, respectively. Each treatment consisted of 12 families, with 80 individuals 

per family. After a period of on-growing, the two challenge test were commenced on 

the 4th and 25th of August, 2015, respectively (AquaBioTech Group, 2015).  

The mating design is shown in Table 1, and the experimental design is shown in Table 

2. The 80 individuals were separated into 30 fish being intraperitoneally injected (IP) 

with Streptococcus agalactiae (pathogen) and 50 not being injected (Naïve). In each of 

http://www.abtinnovia.com/
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the two challenge options, fish were divided evenly into two groups and put into 

different tanks. It means that two challenge ways were duplicated, i.e. 4 batches per 

family in total (AquaBioTech Group, 2015).  

Table 1. Mating design; one sire mated to one dam. 

Family Sire_ID Sire_Family Dam_ID Dam_Family 

F01 447636 G24-158 18221 G24-113 

F02 447203 G24-148 15608 G24-127 

F03 447566 G24-151 401281 G24-117 

F04 446943 G24-161 407580 G24-101 

F05 447554 G24-151 17615 G24-121 

F06 448934 G24-147 18887 G24-117 

F07 448346 G24-138 16081 G24-124 

F08 448919 G24-147 16753 G24-116 

F09 448264 G24-162 403290 G24-107 

F10 447543 G24-134 16263 G24-105 

F11 447379 G24-140 18304 G24-105 

F12 448148 G24-148 18283 G24-127 

 

Table 2. Design of experiment. Fish from different families and treatments were identifiable by 

tags. Fish that was not injected with Streptococcus agalactiae, were challenged by cohabitants. 

The Streptococcus agalactiae challenge isolate code was AL20109-4, which was diluted to 1:5000 

and an injection of 0.05 ml was used.  

Family Tank No. No. of fish Batch Challenge type 

F01 T1 25  1 Cohabitant 

F01 T7 25 2 Cohabitant 

F02 T1 25 1 Cohabitant 

F02 T7 25 2 Cohabitant 

F03 T2 25 1 Cohabitant 

F03 T8 25 2 Cohabitant 

F04 T2 25  1 Cohabitant 

F04 T8 25 2 Cohabitant 

F05* T3 25 1 Cohabitant 

F05* T9 25 2 Cohabitant 

F06 T3 25 1 Cohabitant 

F06 T9 25 2 Cohabitant 

F07 T4 25  1 Cohabitant 

F07 T10 25 2 Cohabitant 

F08 T4 25 1 Cohabitant 

F08 T10 25 2 Cohabitant 

F09 T5 25 1 Cohabitant 

F09 T11 25 2 Cohabitant 
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F10 T5 25  1 Cohabitant 

F10 T11 25 2 Cohabitant 

F11 T6 25 1 Cohabitant 

F11 T12 25 2 Cohabitant 

F12 T6 25 1 Cohabitant 

F12 T12 25 2 Cohabitant 

F01 T1 15 3 Injected 

F01 T7 15 4 Injected 

F02 T1 15 3 Injected 

F02 T7 15 4 Injected 

F03 T2 15 3 Injected 

F03 T8 15 4 Injected 

F04 T2 15 3 Injected 

F04 T8 15 4 Injected 

F05* T3 15 3 Injected 

F05* T9 15 4 Injected 

F06 T3 15 3 Injected 

F06 T9 15 4 Injected 

F07 T4 15 3 Injected 

F07 T10 15 4 Injected 

F08 T4 15 3 Injected 

F08 T10 15 4 Injected 

F09 T5 15 3 Injected 

F09 T11 15 4 Injected 

F10 T5 15 3 Injected 

F10 T11 15 4 Injected 

F11 T6 15 3 Injected 

F11 T12 15 4 Injected 

F12 T6 15 3 Injected 

F12 T12 15 4 Injected 

* Family F05 in G35 (with 35g average fish weight) has only 48 fish available before challenge. 

So only 30 fish were used in IP injection and no fish for Naïve 

 

2.1.2 Tag and challenge 

Materials for challenge was 1 ml vial with Streptococcus agalactiae which was 

stored at -80℃ with isolate coded: AL 20109-4 (7.3×109 cell/ml). 50 ml challenge 

dilution was used (phosphate buffer saline (PBS)) with a density of 1:5000 (1.46×106 

cell/ml)(AquaBioTech Group, 2015).  
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After 24 hours of starvation, all fish were anaesthetized with MS222 (Tricaine 

Pharmaq, Pharmaq Ltd, UK). Then each fish was tagged with a visible implant 

elastomer (VIE) (Northwest Marine Technology Inc., USA); using the red and blue tags 

left for Naïve and orange and green tags right for IP. In IP group, each fish was injected 

with 0.05 ml challenge dilution (7.3×104 cell/fish) between the pelvic fins 

(AquaBioTech Group, 2015). 

2.1.3 Data recording and collection 

Dead fish were picked, labeled and stored at -20℃. Records for dead fish were done 

with tank number, no. of fish died, date and tag. The total duration of the experiment 

was 18 days. For the whole experimental period, three of the newly dead fish were 

randomly selected to have a post mortem kidney test to confirm that for the cause of 

death is infection with Streptococcus agalactiae. 

Table 3. Overall challenge materials 

Challenge material Streptococcus agalactiae 

Challenge dilution Phosphate buffer saline (PBS) 

Amount of challenge material 1ml 

Amount of challenge dilution 50ml 

Cell density of challenge material 7.3×109 cell/ml 

Density of challenge dilution 1:5000 (1.46×106 cell/ml) 

Store temperature for challenge material -80℃ 

Anaesthetic MS222 

Challenge dilution IP injected per fish 0.05ml (7.3×104 cell/fish) 

 

2.2 Statistical analysis 

2.2.1 Trait definition 

Four different kinds of trait definitions were made in this study in order to test 

different models: 
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i. Binary test-period survival (BTS) per individual (Gianola et al., 1983)  

Fish was scored 0 when it dies before the end of the whole experimental period, and 

1 if it stayed for alive. 

ii. Binary test-day survival (BSS) per individual (Veerkamp et al., 2001) 

Status of each fish was recorded every day until it died. That means the number of 

record per fish is equal to the number of survival day of fish in the experiment. The 

score method is the same as for BTS above, i.e. 0 is dead and 1 is alive. For instance, 

when a fish died at day 4, the survival score should be [1 1 1 0] and when fish 

survived for the whole 18 days of experimental period, the survival score should be 

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]. Each animal thus gets a record for each day it 

survives, plus eventually the day it dies (except for the fish who survived during the 

whole test period). 

iii. Survival rate (SR) per family 

The number of dead fish were recorded every day, and the survival rate is thus equal 

to the number of fish died divide by total fish number: 

SR =
𝑁𝑜. 𝑓𝑖𝑠ℎ 𝑑𝑖𝑒𝑑

𝑁𝑜. 𝑡𝑜𝑡𝑎𝑙 𝑓𝑖𝑠ℎ
 

Hence, we can calculate the survival rate for each batch and day within the 12 

families. The test day with the highest variance among average survival rates were 

eventually chosen to be the records to be used for this model. 

iv Integral area (IA) of survival rate curve per family 

Survival curves fit well to a reversed logistic curve. The corresponding formula is 

as follow: 

Y =
𝑒𝑧

1+𝑒𝑧 , where z = 𝑏0 + 𝑏1 ∗ 𝑋 
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Y: Survival rate 

X: Experiment day 

b0 and b1: Regression coefficients which were estimated in R studio. 

From the above formula, we can get the relationship function between X and Y: 

𝑌 =
𝑒𝑏0+𝑏1∗𝑋

1 + 𝑒𝑏0+𝑏1∗𝑋
 

IA is then the integral, i.e. the area under the curve for the whole experiment period 

here in this case from day 1 to day 18. 

𝐼𝐴 = ∫
𝑒𝑏0+𝑏1∗𝑋

1 + 𝑒𝑏0+𝑏1∗𝑋
 𝑑𝑋

18

1

 

2.2.2 Statistical model 

Different models were applied in order to make comparison and find the best 

fitted model for challenge test data of streptococcus agalacitae resistance in Nile 

tilapia. Variance components and heritabilities were calculated among the models 

shown as follow: 

a. Sire-dam binary threshold (BTH_sire-dam) model (Gianola et al., 1983): 

This model is based on the first trait definition, BTS, which means that all fish are 

scored 0 for dead and 1 for alive for the duration of the whole test period. Here an 

unobserved normal underlying liability variable, l, (Ødegård et al., 2006) is assumed 

to determine the observed value m (m=0,1) of the trait Yijk . When lijk≤0, Yijk is equal 

to 0 and when lijk > 0, Yijk is equal to 1. This is the standard probability threshold 

model: 
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Pr(𝑌𝑖𝑗𝑘 = m) = Pr(𝑙𝑖𝑗𝑘 > 0)
𝑚

 Pr(𝑙𝑖𝑗𝑘 ≤ 0)1−𝑚 = 𝛷(𝑙𝑖𝑗𝑘)
𝑚

[1 − 𝛷(𝑙𝑖𝑗𝑘)
1−𝑚

] 

Where Φ(.) is the cumulative distribution function. 

If m=0, which means fish died during the test period 

Pr(𝑌𝑖𝑗𝑘 = 0) = Pr(𝑙𝑖𝑗𝑘 ≤ 0) = 1 − 𝛷(𝑙𝑖𝑗𝑘) 

If m=1, which means fish survived during the test period 

Pr(𝑌𝑖𝑗𝑘 = 1) = Pr(𝑙𝑖𝑗𝑘 > 0) = 𝛷(𝑙𝑖𝑗𝑘) 

And the model for underlying liability variable l is as follow: 

𝒍𝒊𝒋𝒌 = 𝐗𝐛 + (𝒁𝒔 + 𝒁𝒅)𝒖 + 𝑾𝒄 + 𝒆 

Where 

lijk     underlying liability of Yijk 

   X      incidence matrix for fixed effects 

b      vector of fixed effects 

Zs     incidence matrix for sire 

Zd     incidence matrix for dam 

u      random additive genetic effects of sires and dams 

W     incidence matrix for common environmental effect 

c      random common environmental effect 

e      random residual effect 

b. Binary threshold animal model (BTH_Animal): 

The BTH_Animal model is using the BTS trait definition as threshold model, as the 

BTH_sire-dam model above. Differences between animal model and sire-dam 

model is that EBVs here are calculated for each animal, instead of for only the 

parents, i.e. sire and dam. Variance of sire is equal to variance of dam and is 1/4 of 

the additive genetic variance in sire-dam model. 

𝒀𝒊𝒋𝒌 = 𝐗𝐛 + 𝐙𝒂 + 𝑾𝒄 + 𝒆 

Z:    incidence matrix for individual animal 
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a:    random animal additive genetic effect 

Other variable components are as described above 

c. Sire-dam survival score (SS) model: 

The SS model is similar to the linear repeatability model (Ødegård et al., 2006) that 

use the binary test-day survival trait definition (BSS, described above) as input data: 

𝒀𝒕 = ∑ 𝜷𝒑𝒁𝒑(𝒕) +

𝟒

𝒑=𝟎

(𝒁𝒔 + 𝒁𝒅)𝒖 + 𝑾𝒄 + 𝒆 

Yt    individual animal survival (0 for dead and 1 for alive) at day t of 

experiment. 

Zp(t)  pth order orthogonal polynomial of t 

βp    pth order regression coefficient 

Other variable components are as described above 

d. Family mean survival (FMS) model: 

FMS model was using the SR trait definition described above, with family mean 

survival rates as the trait. Since there were four batches per family in both the G8 

and G35 groups, there are four family mean survival rates available in each family 

per group. The model is expressed as follow: 

𝐲 = 𝛍 + 𝐏 + (𝒁𝒔𝒇 + 𝒁𝒅𝒇)𝒖 + 𝑾𝒇𝒄 + 𝒆 

Where 

y   is the mean survival rate per family 

μ   is a vector of overall mean survival rates per batch 

P   is the fixed effect of weight, batch and challenge type 

Zsf  incidence matrix for sire of family mean 

Zdf  incidence matrix for dam of family mean 
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Wf  incidence matrix for common environmental effect of family mean 

Other variable components are as described above 

e. Family mean area (FMA) model: 

FMA model was using the IA trait definition described above, with the integral area 

of the survival curve as the trait. The model is otherwise the same as the FMS model 

above. 

For the respective models above, the random additive genetic effects of sires and 

dams were assumed to have 𝐮~N(0, A𝜎𝑢
2), the random animal additive genetic 

effect were assumed to have  𝐚~N(0, A1𝜎𝑎
2), the random common environmental 

effect were assumed to be 𝐜~N(0, I𝜎𝑐
2) , the random residual variance were 

assumed to be 𝐞~N(0, I𝜎𝑒
2) in the FMS and FMA models, 1 in the BTH_sire- dam 

and BTH_Animal models and finally π2/3~3.3 in the SS model (logistic 

distribution). Where A is the genetic relationship matrix, and I is an identity matrix. 

All the models were analyzed in ASREML 4 (Gilmour et at., 2015). 

2.2.3 Heritabilities 

Calculation of heritability for all models: 

ℎ2 =
𝜎𝐺

2

𝜎𝑃
2 

Where 

𝜎𝐺
2: 𝐺𝑒𝑛𝑒𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

𝜎𝑃
2: 𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

and 

𝜎𝑃
2 = 𝜎𝑎

2 + 𝜎𝑐
2 + 𝜎𝑒

2 in animal model 

𝜎𝑃
2 = 𝜎𝑠

2 + 𝜎𝑑
2 + 𝜎𝑐

2 + 𝜎𝑒
2 in sire-dam model 

𝜎𝑎
2: 𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑛𝑖𝑚𝑎𝑙𝑠 

𝜎𝑐
2: 𝐶𝑜𝑚𝑚𝑜𝑛 𝑒𝑛𝑣𝑖𝑟𝑜𝑚𝑒𝑛𝑡𝑎𝑙 𝑓𝑎𝑚𝑖𝑙𝑖𝑦 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 



11 
 

𝜎𝑒
2: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑡𝑜 1 𝑖𝑛 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑚𝑜𝑑𝑒𝑙 

𝜎𝑠
2: 𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑠𝑖𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

𝜎𝑑
2: 𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑑𝑎𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

The difference of phenotypic variance between animal model and sire-dam model 

lead to a different heritability calculation.  

Animal model (BTH_Animal) 

ℎ2 =
𝜎𝑎

2

𝜎𝑎
2 + 𝜎𝑐

2 + 𝜎𝑒
2
 

Residual variance is strict to 1 

Sire-dam linear model (FMS and FMA) 

ℎ2 =
4𝜎𝑢

2

4𝜎𝑢
2 + 𝜎𝑐

2 + 𝜎𝑒
2
 

𝜎𝑢
2: 𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑠𝑖𝑟𝑒 𝑑𝑎𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, is equal to both sire and dam variance,

𝜎𝑢
2 = 𝜎𝑠

2 = 𝜎𝑑
2 = 1/4𝜎𝑎

2, which means that additive genetic sire-dam effect express 

1/4 of the total additive genetic variance. 

Sire-dam threshold model (BTH_sire-dam and SS)  

ℎ2 =
4𝜎𝑢

2

2𝜎𝑢
2 + 𝜎𝑐

2 + 𝜎𝑒
2
 

Residual variance is restricted to 1 in the BTH_sire-dam model and π2/3 in SS 

model (Ødegård et al., 2010). 

2.2.4 Model comparison - Cross validation and Pearson correlation coefficients 

A direct model comparison for the above five models can for some aspects be done 

through the estimated heritabilities. However, these models are using three different 

survival trait definitions, thus the models cannot be compared well directly through the 



12 
 

estimated heritabilities (Ødegård et al., 2006). An alternative method is to use predicted 

full-sib family (mid-parent) EBV’s estimated in independent subsamples, and compare 

the prediction power by means of cross validation. The main idea is to randomly split 

the dataset into two sub sets (here performed in R; program given in Appendix 3.1) and 

run the same model (performed in AsReml 4) again using the variance components 

obtained from entire data set as posterior variances, and then estimate BVs in one 

iteration (e.g. Bangera et al., 2014). The purpose is to get the predicted breeding values 

of each family from two sub sets of the data and then make comparison. The mid-parent 

full-sib family EBV’s are calculated as follow: 

𝐸𝐵𝑉𝑖𝑗 = (𝑍𝑠𝑖𝑗 + 𝑍𝑑𝑖𝑗)/2 

𝐸𝐵𝑉𝑖𝑗     𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑓𝑎𝑚𝑖𝑙𝑦 𝐸𝐵𝑉′𝑠 𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 𝑖 (1,2, … ,5) 𝑎𝑛𝑑 𝑠𝑢𝑏𝑠𝑒𝑡 𝑗 (1,2) 

𝑍𝑠𝑖𝑗          𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑖𝑟𝑒 𝐸𝐵𝑉′𝑠 𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 𝑖 𝑎𝑛𝑑 𝑠𝑢𝑏𝑠𝑒𝑡 𝑗  

𝑍𝑑𝑖𝑗          𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑚 𝐸𝐵𝑉′𝑠  𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 𝑖 𝑎𝑛𝑑 𝑠𝑢𝑏𝑠𝑒𝑡 𝑗  

Pearson correlation coefficients, 𝑟𝐸𝐵𝑉𝑖 for each model is in this case the correlation 

between two sub sets of the predicted family EBVs (𝐸𝐵𝑉𝑖1 and 𝐸𝐵𝑉𝑖2). In selection 

index theory, the Pearson correlation coefficients are close to the accuracy of selection’s 

square in models (Gitterle et at., 2006). 

𝑟𝐸𝐵𝑉 ≈ 𝑟𝜏
2 

Thus the predicted mid-parent family EBV’s are an independent and unbiased 

estimator of the true breeding value of parents because there had a similar amount of 

information per full-sib family (Gitterle et al., 2006). Hence the predict ability of the 

models can be compared by their accuracy of selections (square root of the estimated 

𝑟𝐸𝐵𝑉). Furthermore, the Pearson correlation coefficients between full-sib family EBV’s 

(obtained from the entire data set per model) were also calculated in order to test the 

similarity in ranking of families among different methods (Bangera et al., 2014). 
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3. Results 

3.1 Overview of survival 

Summary statistics of the dataset used is given in Table 3. The overall survival of 

fish was 44.3% at the end of the experiment. Nile tilapia survival rate per family were 

calculated and plotted for both challenge methods (IP-injected and cohabitation) in G8 

(8g average body weight) and G35 (35g average body weight) groups. Details are 

shown in figure 1 to figure 4 below. It is obvious that cohabitant families had a much 

higher survival than intraperitoneal injected families in both groups. For cohabitant 

families, the overall mean survival rate was 56.2% in the G8 group and 72.2% in the 

G35 group. However, for the IP-injected families the overall mean survival rate was 

16.7% in the G8 group and 33.9% in the G35 group. 

Table 4. Basic statistical data as input parameters 

 

Figure 1. Survival rate during the 18 test period of cohabitant families in G8 group 
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Item  

Total fish, no. 1870 

Full-sib families, no. 12 

Sire, no. 12 

Dam, no. 12 

Fish per family, no. 80 

Average mortality (%) 55.7 

Length of recording period for both trails, days 18 

Average weight at the beginning of the test day (G8) 8g 

Average weight at the beginning of the test day (G35) 35g 
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Figure 2.Survival rate during the 18 test period of cohabitant families in G35 group 

 

 

Figure 3.Survival rate during the 18 test period of IP-injected families in G8 group 

 

 

Figure 4.Survival rate during the 18 test period of IP-injected families in G35 group 
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3.2 Variance components and heritability  

Variance components and heritabilities with standard errors for the different models 

above are showed in Table 5. The linear family mean models have a relative higher 

heritability with the FMS model h2= 0.56 ± 0.42 and the FMA model h2= 0.42 ± 0.34. 

The BTH_sire-dam model also gave a high heritability 0.45 ± 0.17, followed by the 

BTH_Animal model (0.27 ± 0.11) and the SS model (0.07 ± 0.03).  

Table 5. Variance components and heritability with standard errors for five models 

Parameters Models     

 
BTH_ 

sire-dam 
BTH_Animal SS FMS FMA 

𝒉𝟐 ± 𝑺𝑬 0.45 ± 0.17 0.27 ± 0.11 0.07 ± 0.03 0.56 ± 0.42 0.42 ± 0.34 

𝛔𝐜
𝟐 ± 𝑺𝑬 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.05 ± 0.24 0.003 ± 0.16 

𝛔𝐚
𝟐 ± 𝑺𝑬 0.58 ± 0.28 0.06 ± 0.03 0.26 ± 0.12 0.04 ± 0.05 8.8 ± 10.25 

𝒄𝟐 ± 𝑺𝑬 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.003 ± 0.01 0.07 ± 3.28 

 

 

 

Table 6. Pearson correlation coefficients between family EBV’s of different models 

Models 
BTH_ 

sire-dam 

BTH_ 

Animal 
SS FMS FMA 

BTH_sire-dam - ≈1.00a 0.97 0.88 0.82 

BTH_Animal ≈1.00a - 0.96 0.87 0.80 

SS 0.97 0.96 - 0.96 0.92 

FMS 0.88 0.97 0.96 - 0.95 

FMA 0.82 0.80 0.92 0.95 - 
a The Pearson correlation coefficient is very close to 1, but not the exact value 1. 

 

 

 

Table 7. Pearson correlation coefficients within models (between estimated family EBV’s from 

two sub set data) and accuracy of selections (𝑟𝜏 = √𝑟𝐸𝐵𝑉). 

Models 𝑟𝐸𝐵𝑉 𝑟𝜏 

BTH_sire-dam 0.97 0.98 

BTH_Animal 0.97 0.98 

SS 0.96 0.98 

FMS 0.77 0.88 

FMA 0.87 0.93 

 

 



16 
 

3.3 model comparison by Pearson correlation coefficients 

Pearson (rank) correlation coefficients were calculated both between and within 

family EBV’s, for the five statistical models. Results are showed in Table 6 and Table 

7 above. 

4. Discussion 

The BTH_sire-dam and the BTH_Aniaml models are using the same trait definition, 

and the estimated heritabilities were in this case similar. Higher heritability in the 

BTH_sire-dam model indicates a better ability to get unbiased additive genetic 

variances with the sire-dam model compared to the animal model. For a cross sectional 

animal threshold model, applied to a small data set, Ødegård et al., (2010) found large 

biases, especially when combined with an unfavorable fix effect structure. The 

heritability value 0.07 for the SS model is the lowest among the five models. However, 

it is reasonable compared to the heritability estimates of disease resistance to bacteria 

disease found in other aquatic species with the same model. For instance, h2 = 0.024 

was estimated in Atlantic salmon (Salmo salar) for resistance to furunculosis using a 

linear repeatability model, which is similar to the SS model (Ødegård et al., 2006). 

Large standard errors of the heritability estimates occurred in Table 5, especially for 

the FMS (0.42) and FMA (0.34) models, and they ranged from 0.03 to 0.42 among the 

five models. The main reason for that could be the small data set, with only 12 full-sib 

families. Although the total number observations were quite high, with 1870 

individuals recorded (i.e. 80 individuals per family). To increase the number of full-sib 

families is likely to lower the standard errors considerably. For the FMS and FMA 

models, the average survival rate and the integral area were made as dependent 

variables per batch (4 batches in one family), respectively.  

No common environmental effects were found in the BTH_sire-dam, BTH_Animal 

and SS models. Although different fish families were separately held in different tanks 

until tagging, the environmental conditions were kept almost the same, and the common 
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environmental variances were thus ignorable. As for the common environmental effects, 

which occurred in the FMS (0.003 ± 0.01) and FMA (0.07 ± 3.28) models, preliminary 

analysis of the original data that making batch mean survival rate and the integral of 

survival curve should account for the deviations.  

Table 6 gives the correlation between family EBV’s of the entire data set for pairwise 

comparison of the five specific models. Overall, high correlations (ranging from 0.80 

to ≈1.0) were obtained for all the models. The highest rank coefficient was found 

between the BTH_sire-dam and BTH_Animal models, which was close to 1. Also, high 

rank coefficients were found between the SS and BTH_sire-dam models (0.97), and the 

SS and BTH_Animal models (0.96), respectively. This indicate that these three models 

had a very similar ranking of families (Gitterle et al., 2006). The result is coherent with 

the fact that the BTH_sire-dam and BTH_Animal models were using test-period 

survival as input trait definition, while the SS model was using test-day survival. 

Likewise, rank coefficient between FMS and FMA models was 0.95, which is logical 

because they were using the same type of family mean data. 

Table 7 shows the Pearson correlation coefficients between estimated family (mid-

parent) EBV’s (𝑟𝐸𝐵𝑉) within each model and also the corresponding selection accuracy 

(𝑟𝜏) for each model. The high 𝑟𝜏 (0.88 to 0.98) obtained, indicate that predictive ability 

(accuracy) of the model is 88% to 98% of the theoretical maximum family selection 

accuracy (Bangera et al., 2014). The ranking of models were comparable for both the 

BTH_sire-dam and the BTH_Animal models (0.98), followed by the SS model (0.98), 

the FMA model (0.93) and the FMS model (0.88).  

Such high selection accuracies were not expected, especially with the limited data 

available. As the data sub-set for cross validation was randomly separated into two even 

parts, it could possibly be more precise to perform a 5 fold or even more cross validation 

analysis.  
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5. Conclusion 

All models were performed relatively well, both by the perspective of heritability for 

resistance to Streptococcus agalactiae in Nile tilapia and by the perspective of 

predictive ability (accuracy of selection). For the data structure that we have 

investigated, the Binary threshold sire-dam (BTH_sire-dam) model is the best choice 

among the tested models, with a heritability of 0.45 and selection accuracy of 0.98. 

More full-sib families and individual per families were recommended to be involved in 

this genetic analysis in order to get more accurate calculated EBVs.  
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Appendix 

Appendix 1. Variance components and heritability calculation in AsReml 

 

a) BTH_ sire dam 

Sire & Dam binary threshold model  

individual  !A !P 

sire !A !P 

dam  !A !P 

weight 

tankno      

batch      8 

challenge 

BTH  

challcode !I 

 

#pedigree 

pedigree.csv !SKIP 1 !ALPHA !MAKE 

  

#data 

BTH.csv !SKIP 1 !SAVE 

  

BTH !BIN !PROBIT ~ tankno.batch weight challcode !r -individual sire and(dam,1) fac(sire,dam) 

Residual units 

Predict challcode 

VPREDICT  !DEFINE 

F VarA sire * 4 

F VarC fac(sire,dam) 

F VarP  VarC + VarA*0.5 + Residual               

H h2 VarA VarP   

H C2 VarC VarP 

 

 

 

b) BTH_Animal 

Univariate BTH Animal model 

individual !A !P 

sire !A !P 

dam !A !P 

weight 

tankno 

batch !I 

challenge 
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BTH 

challcode !I 

#pedigree 

pedigree.csv !SKIP 1 !ALPHA !Make 

#data 

BTH.csv !SKIP 1 !SAVE !EXTRA 4 !MAXIT 100 

BTH ~ tankno.batch weight challcode !r individual fac(sire,dam) 

 

VPREDICT !DEFINE 

F VarA individual 

F VarC fac(sire,dam)  

F VarP VarA + VarC + Residual 

H h2 VarA VarP  

H c2 VarC VarP 

 

c) SS_Sire dam 

Survival score (SS) model 

individual !A !P 

sire !A !P 

dam !A !P 

weight 

tankno 

batch !I 

challenge 

ss 

day 

challcode !I 

pedigree.csv !SKIP 1 !ALPHA !Make 

#data 

SS.csv !SKIP 1 !MAXIT 200 

ss !BIN !PROBIT ~ tankno.batch weight challcode pol(day,-4) !r  sire and(dam,1)  fac(sire, dam) 

 

VPREDICT !DEFINE 

F VarA sire*4 

F VarE Residual*3.3 

F VarC fac(sire,dam) 

F VarP VarA*0.5 + VarC + VarE 

H h2A VarA VarP  

 

d) FM_Survival 

family mean model 

family  !A  !P 

sire !A !P 

dam  !A !P 
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batch !I 

mean_SR 

No_obs !I 

weight !I 

chal_T !I 

area  

     

#pedigree 

pedigree1.csv !SKIP 1  !ALPHA   !MAKE 

  

#data 

family mean.csv !SKIP 1 

  

mean_SR !WT No_obs ~ mu weight batch chal_T !r sire and(dam,1)  fac(sire,dam) 

 

VPREDICT  !DEFINE 

F VarA sire * 4 

F VarC fac(sire,dam) 

F VarP VarA + VarC + Residual 

H h2 VarA VarP 

H C2 VarC VarP 

 

e) FM_Area 

family mean model 

family  !A !P 

sire !A !P 

dam  !A !P 

batch !I 

mean_SR  

No_obs !I 

weight !I 

chal_T !I 

area 

     

#pedigree 

pedigree1.csv !SKIP 1  !ALPHA   !MAKE 

  

#data 

family mean.csv !SKIP 1 

area !WT No_obs ~ mu weight batch chal_T !r sire and(dam,1) fac(sire,dam) 

 

VPREDICT !DEFINE 

F VarA sire * 4 

F VarC fac(sire,dam) 
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F VarP VarC + VarA + Residual 

H h2 VarA VarP 

H C2 VarC VarP 
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Appendix 2. Pearson correlation coefficient between family EBV’s for 

different models in R Studio 

 

EBV <- read.table("new4.sln",header = T) 

PED <- read.csv('Pedigree_ind.csv') 

EBVsire <- rep(0,1870) 

EBVdam <- rep(0,1870) 

 

EBVlevel <- as.character(EBV$Level) 

PEDsire <- as.character(PED$sire) 

PEDdam <- as.character(PED$dam) 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDsire[i]) 

  EBVsire[i] <- EBV$Effect[idx] 

} 

 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDdam[i]) 

  EBVdam[i] <- EBV$Effect[idx] 

} 

FamilyEBV <- cbind(PED,EBVsire,EBVdam) 

MeanEBV4 <- (EBVdam+EBVsire)/2 

FamilyEBV <- cbind(FamilyEBV,MeanEBV4) 

write.csv(FamilyEBV,'Pro4.csv') 

 

EBV <- read.table("new7b.sln",header = T) 

PED <- read.csv('Pedigree_ind.csv') 

EBVsire <- rep(0,1870) 

EBVdam <- rep(0,1870) 

 

EBVlevel <- as.character(EBV$Level) 

PEDsire <- as.character(PED$sire) 

PEDdam <- as.character(PED$dam) 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDsire[i]) 

  EBVsire[i] <- EBV$Effect[idx] 

} 

 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDdam[i]) 

  EBVdam[i] <- EBV$Effect[idx] 

} 
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FamilyEBV <- cbind(PED,EBVsire,EBVdam) 

MeanEBV7b <- (EBVdam+EBVsire)/2 

FamilyEBV <- cbind(FamilyEBV,MeanEBV7b) 

write.csv(FamilyEBV,'Pro7b.csv') 

 

EBV <- read.table("new9b.sln",header = T) 

PED <- read.csv('Pedigree_ind.csv') 

EBVsire <- rep(0,1870) 

EBVdam <- rep(0,1870) 

 

EBVlevel <- as.character(EBV$Level) 

PEDsire <- as.character(PED$sire) 

PEDdam <- as.character(PED$dam) 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDsire[i]) 

  EBVsire[i] <- EBV$Effect[idx] 

} 

 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDdam[i]) 

  EBVdam[i] <- EBV$Effect[idx] 

} 

FamilyEBV <- cbind(PED,EBVsire,EBVdam) 

MeanEBV9b <- (EBVdam+EBVsire)/2 

FamilyEBV <- cbind(FamilyEBV,MeanEBV9b) 

write.csv(FamilyEBV,'Pro9b.csv') 

 

EBV <- read.table("new10.sln",header = T) 

PED <- read.csv('Pedigree_ind.csv') 

EBVsire <- rep(0,1870) 

EBVdam <- rep(0,1870) 

 

EBVlevel <- as.character(EBV$Level) 

PEDsire <- as.character(PED$sire) 

PEDdam <- as.character(PED$dam) 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDsire[i]) 

  EBVsire[i] <- EBV$Effect[idx] 

} 

 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDdam[i]) 

  EBVdam[i] <- EBV$Effect[idx] 

} 
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FamilyEBV <- cbind(PED,EBVsire,EBVdam) 

MeanEBV10 <- (EBVdam+EBVsire)/2 

FamilyEBV <- cbind(FamilyEBV,MeanEBV10) 

write.csv(FamilyEBV,'Pro10.csv') 

 

EBV <- read.table("new10b.sln",header = T) 

PED <- read.csv('Pedigree_ind.csv') 

EBVsire <- rep(0,1870) 

EBVdam <- rep(0,1870) 

 

EBVlevel <- as.character(EBV$Level) 

PEDsire <- as.character(PED$sire) 

PEDdam <- as.character(PED$dam) 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDsire[i]) 

  EBVsire[i] <- EBV$Effect[idx] 

} 

 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDdam[i]) 

  EBVdam[i] <- EBV$Effect[idx] 

} 

FamilyEBV <- cbind(PED,EBVsire,EBVdam) 

MeanEBV10b <- (EBVdam+EBVsire)/2 

FamilyEBV <- cbind(FamilyEBV,MeanEBV10b) 

write.csv(FamilyEBV,'Pro10b.csv') 

 

Correlation <- cbind(MeanEBV4,MeanEBV7b,MeanEBV9b,MeanEBV10,MeanEBV10b) 

Cor <- cor(Correlation, use='complete.obs',method = 'pearson') 

write.csv(Cor,'Correaltion.csv') 
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Appendix 3 Pearson correlation within models calculation (Cross 

Validation) 

Appendix 3.1 First split the data into two part evenly in R Studio 

 

BinTH <- read.csv("BTH1.csv") 

library(pls) 

CVs <- cvsegments(1870,2,type="random") 

CV1 <- as.vector(CVs[[1]]) 

CV2 <- as.vector(CVs[[2]]) 

as.factor(BinTH$sire) 

as.factor(BinTH$dam) 

BinTh1 <- BinTH[CV1,] 

BinTh2 <- BinTH[CV2,] 

write.csv(BinTh1,"CV1_BTH.csv") 

write.csv(BinTh2,"CV2_BTH.csv") 

# same process for SS.csv data 

 

Appendix 3.2 Rerun the separated data one by one correspond to the 

same model in AsReml by just Adding ‘! CONTINUE !BLUP’ after the data 

line. (e.g.in BTH_Sire dam model) 

 

Sire & Dam binary threshold model  

individual  !A !P 

sire !A !P 

dam  !A !P 

weight 

tankno      

batch      8 

challenge 

BTH  

challcode !I 

 

#pedigree 

pedigree.csv !SKIP 1 !ALPHA !MAKE 

  

#data 

BTH.csv !SKIP 1 !SAVE !CONTINUE !BLUP 
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BTH !BIN !PROBIT ~ tankno.batch weight challcode !r -individual sire and(dam,1) fac(sire,dam) 

Residual units 

Predict challcode 

VPREDICT  !DEFINE 

F VarA sire * 4 

F VarC fac(sire,dam) 

F VarP  VarC + VarA*0.5 + Residual               

H h2 VarA VarP   

H C2 VarC VarP 

 

Appendix 3.3 Mid-parent full-sib family EBVs and Pearson correlation 

coefficients between the predicted family EBV’s. Calculated in R studio (Eg. 

for BTH_Sire dam model) 

 

EBV <- read.table("new4 set1.sln",header = T) 

PED <- read.csv('Pedigree_ind.csv') 

EBVsire <- rep(0,1870) 

EBVdam <- rep(0,1870) 

 

EBVlevel <- as.character(EBV$Level) 

PEDsire <- as.character(PED$sire) 

PEDdam <- as.character(PED$dam) 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDsire[i]) 

  EBVsire[i] <- EBV$Effect[idx] 

} 

 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDdam[i]) 

  EBVdam[i] <- EBV$Effect[idx] 

} 

FamilyEBV <- cbind(PED,EBVsire,EBVdam) 

MeanEBV1 <- (EBVdam+EBVsire)/2 

FamilyEBV <- cbind(FamilyEBV,MeanEBV1) 

write.csv(FamilyEBV,'Pro4 set1.csv') 

 

EBV <- read.table("new4 set2.sln",header = T) 

PED <- read.csv('Pedigree_ind.csv') 

EBVsire <- rep(0,1870) 

EBVdam <- rep(0,1870) 
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EBVlevel <- as.character(EBV$Level) 

PEDsire <- as.character(PED$sire) 

PEDdam <- as.character(PED$dam) 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDsire[i]) 

  EBVsire[i] <- EBV$Effect[idx] 

} 

 

for (i in 1:1870){ 

  idx <- which(EBVlevel==PEDdam[i]) 

  EBVdam[i] <- EBV$Effect[idx] 

} 

FamilyEBV <- cbind(PED,EBVsire,EBVdam) 

MeanEBV2 <- (EBVdam+EBVsire)/2 

FamilyEBV <- cbind(FamilyEBV,MeanEBV2) 

write.csv(FamilyEBV,'Pro4 set2.csv') 

 

Correlation <- cbind(MeanEBV1,MeanEBV2) 

 

COR <- cor(Correlation, use='complete.obs',method = 'pearson') 

 

 



  


