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Abstract  

Background: 

The research experiments provide data on decay rate of faecal indicator bacteria in water. Such data are 

useful input to transport models to estimate the concentrations of faecal indicator bacteria at beaches in 

the days after sewage discharges. Sample data come from laboratory experiments where sewage was 

added to seawater at different environmental conditions. This research is a part of the project “Impact of 

changing weather patterns on bathing water and seafood quality from the Inner Oslofjord” financed by 

Regionale Forskningsfond Hovedstaden. 

Purpose: This study is aimed to decide what was the best input to the models, to describe the decay 

when we put sewage into the Oslofjord when it is raining and how long time after this events can the 

beaches be used. Then main finding was to know how quickly they died by doing experiments and 

researching the literature. 

 

Methods:  

Hipsey provided a process-based model of microbial pollution used on fresh and seawaters. (Hipsey et 

al. 2008). According to the international requirements and standards for water quality, it is necessary to 

apply the appropriate indicators or parameters to a specific location of water. The raw wastewater from 

Drøbak waste treatment plant used as a typical sewage. We selected surface seawater with high 

biological activity and deep seawater (with probably lower biological activity) because the discharges 

from large CSOs are often at deep water. 

Aim of preliminary experiments: Learn the methods for enumeration of FIB. The Collilert-18 rapid 

method enumerated Escherichia coli (E. coli) by using IDEXX tables (MPN/100mL). Positive 

colonies interpreted as (CFU/100mL) counted Intestinal Enterococci (I. enterococci) using membrane 

filtration method. The Main experiment aims in enumerate the faecal indicators bacteria (FIB) to 

evaluate the possibility of contaminants in surface and deep seawater. New suggestions were 

made to use faster and modern methods to get results at faster pace. The selected methods 

were Collilert-18 for E. coli and Enterolert-E for I. enterococci.  

Results and discussion: 

The results showed that 1-3 log reduction in fecal indicator bacteria from the day of collection 

to the 3rd to 5th day of the laboratory experiment. The deep seawater curve in Escherichia coli, 
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which was stored at 220C, revealed a much better fit to the first order linear model equation. 

While the Intestinal enterococci, at 220C deep seawater was the less fitted curve. The results 

also indicated that the decay rate (kt) of the deep seawater and surface seawater are not 

significantly different when stored at same temperature, but the same types of seawater (deep 

or surface) showed a slightly difference when kept at different temperature. It indicates that 

the temperature is an importance factor in decay of fecal indicator bacteria. The graphs 

showed that the decay of FIB decreased after three days with similar behaviors as in the 

preliminary experiments but using deep and surface water at 4 and 22 degree Celsius (0C). In 

general, the bacteria decay with temperature of 220C was much faster than in 40C, which 

shows the influence of temperature in fate of FIB.  The results showed that E. coli in seawater 

declined faster than those in freshwater. And the same occurs with values for I. enterococci. Those decay 

rates show a difference for values between the seawater and freshwater just in 3 to 5 days at room 

temperature and this correlates with studies where FIB in seawater. 

Conclusion:  

Measurements of indicator bacteria E. coli and I. enterococci in water using Colilert-18, 

Enterolert-E and membrane Filtration methods to predict the decay rate of faecal indicator 

bacteria in water that was polluted with combined sewage water are acceptable and the 

linearity of the curves for the decay rate were a good fit with model equation. FIB decay rate 

results for only 1-2 days to reduce to 1 log10 at warmer temperature (E. coli) and more and 

this was considered useful to show the fate of the bacteria and more that 100 days in cold 

temperature (I. enterococci). Regardless if whether or not we could have used more days to 

test the FIB. However, the faecal indicator bacteria may behave different at cold and harmer 

temperatures and also at different levels of water. 
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1. Introduction 

Clean and safe water is an important issue to all humans. Health problems and direct and indirect costs 

of using contaminated water are broad societal issues. Faecal contamination of bathing waters creates 

twelve billion dollars per year of total economic loss globally through impacts to the health of 

water users (Wade et al. 2006; WHO 2015). Freshwater and coastal water areas continue to be 

popular destinations for recreational activities and tourism. Still many risks involve the use of those 

waters because infectious diseases can be contracted there if fecal contaminants are present (Pond 

2005; Shuval 2003) 

Tourists expose themselves to a diversity of hazardous microorganisms that may cause 

waterborne diseases (Pond 2005). Types of exposures are swimming or other recreational 

activities and water sports. The costs associated with waterborne diseases are high. For example, in 

Orange County and Huntington Beach, California, the cumulative public health cost is 

approximately 3.3 million dollars per year (Dwight et al. 2005). 

 

1.1 Global health challenges and Waterborne Diseases Outbreaks(Snozzi)  

Developing countries are the most affected by waterborne disease outbreaks (WBDO) in the 

world. Yet, WBDO also targets developed countries, especially when strict hygienic 

standards are not maintained (Karanis 2006). Statics related to disease outbreaks and 

improvements still underreport on WBDO cases because cases are often left unregistered. The 

actual global health challenge, however, is to prevent all cases of water quality-related 

diseases. One emerging challenge is the increasing use of wastewater in agriculture. Resulting 

agricultural discharge carries large amounts of pesticides and contaminants from domestic 

animals’ faeces. In this way, the agricultural sector can adversely affect livelihoods and lead 

to public health risks downstream (WHO 2015). 

Waterborne diseases outbreak, infections and illnesses affect large human populations and can 

cause illness or death for other animals and organisms. Humans, who can be carriers for 

parasitic or infectious microorganisms, can excrete more disease-causing organisms that can 

survive residence time in natural water bodies. These organisms include the virus, bacteria, 

protozoan parasites and Helminthes (Ova). 
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More than 4% of waterborne diseases cases are caused by pathogen transmission via the 

fecal-oral route (WHO 2015). The pathogenic strains of Escherichia coli (E. coli), for 

example, pollute the water where related gastrointestinal diseases occur. Diarrheal disease is 

caused by unsafe water due to poor sanitation and hygiene (WHO 2015).  

Dufour (1984), using Bacterial Indicators of Recreational Water Quality, demonstrates the 

differences on the gastrointestinal infection rates for waterborne pathogens. He compared 

illness in seawater swimmers versus freshwater, finding that seawater swimmers contracted 

illnesses twice as often as those using freshwater. Kay et al (1994) used different methods 

than Dufour but reached the same results.  

Through fecal-oral transmission, the pathogens attack immune system of human receptor; 

sometimes causing acute symptoms to occur once the infection has spread. A common 

symptom in humans with bacterial or viral infections is acute diarrhea, although they may 

also cause infections in ear, nose, throat, eye and skin. The symptoms leading to infections 

cause major costs to the responsible health sector. Consequent costs involve the treatment as 

well some extreme cases the hospitalizations costs. There are other permanent economic costs 

because of the deficiencies to the bodies, for example damage of the kidneys (Pond 2005). 

Major pathogens responsible for these costs include salmonella, norovirus and 

cryptosporidium. 

 

1.1.1 Connecting faecal pollution to water borne diseases and outbreaks 

Waterborne diseases pose a serious public health concern in both developed and developing 

countries. There is a high risk factor of obtaining disease infections due to faecal 

contamination when wastewater is released into water bodies without proper treatment. Most 

of the pathogens that may cause waterborne diseases have a faecal-oral transmission route, 

with their transmission stages occurring in human or animal faeces (Pond 2005). Faecal 

indicator bacteria present in an environment indicate the possibility that water has been 

contaminated by untreated fecal waste. The contamination affects the part of the population 

most vulnerable to illness, for example children, people suffering from immune deficiency, 

and the elderly (Pond 2005). When WBDOs occur, faecal indicators can be used to explain 

the presence of diseases. Some strains of the indicator bacteria E. coli may be pathogenic 

themselves; including strain O157- H7, but most of the E. coli bacteria are harmless and 
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useful members of human gut flora. More than 99.9999% of all E. coli in the world are 

harmless.  

The literature documents major cases of disease outbreaks, showing their most serious effects, 

including acute diarrhea, bloody diarrhea, gastric infection and kidney infection (Pond 2005). 

Much statistical information related to disease outbreaks is available, yet many improvements 

still need to reduce the incidence of these illnesses. The number of cases of waterborne 

disease left unregistered means that our knowledge of the true extent and effects of these 

outbreaks is still incomplete and requires further research.  

 

1.1.2 The importance of making of this study 

Microorganisms such as E. coli and salmonella released from untreated wastewater can cause 

and escalate WBDOs. Differences in bacterial exposure can have mild to fatal consequences, 

depending on the health conditions of the affected person (Pepper et al. 2015). Pepper (2015, 

Table 1.2) describes emerging environmentally transmitted microbial pathogens and biological 

agents. He explains the danger of toxigenic E. coli, which can have a virulent increase to 

cause diseases such as enterohemorrhagic fever and kidney failure. Table 1.1 lists the most 

common waterborne diseases and the pathogens that cause them.. 

 

Table 1.1 List of microorganisms, diseases and their effects due to faecal contamination of water (Arnone & 
Walling 2007; Pond 2005; Tchobanoglous et al. 2014; WHO 2003). 

Microorganism Disease Disease symptoms and 
effects 

Bacteria   

Campylobacter ssp. Campylobacteriosis  Acute diarrhea, 
occasionally bloody and 
severe. 

Escherichia coli 0157:H7 

 

Gastroenteritis* Vomiting, diarrhea, Severe 
bloody diarrhea and 
abdominal cramps,  

Leptospira interrogans  Leptospirosis 

(Weil’s disease) 

High fever, severe headache, 
chills, muscle aches, and 
vomiting, and may include 
jaundice (yellow skin and 
eyes), red eyes, abdominal 
pain, diarrhea, or a rash. 
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Salmonella typhi Typhoid fever Fever, malaise, aches, 
abdominal pain, diarrhea or 
constipation, delirium 

Salmonella (1700 serotypes) Salmonellois*  

Shigella (4 spp.)  Shigellosis* Severe abdominal pain, 
watery diarrhea or stools 
containing blood. 

Vibrio cholerae Cholera* Acute diarrhea and lost of 
fluids 

Yersinia entercolitica Yersinosis Diarrhea 

Virus    

Rotavirus  Vomiting, diarrhea 

Hepatitis A Hepatitis  

Adenoviruses  Respiratory disease, gastroenteritis   

 Norwalk viruses   Vomiting, diarrhea 

         Footnote: * human source is one of the main sources of the disease. 

 

1.2 WHO Guidelines for Safe Recreational Water Environments, EU Directive 
and Water Quality Norms for Recreational Water  

 

The guidelines for safe recreational water environment in WHO (2003) describes the present 

state of knowledge regarding “the impact of recreational use of coastal and freshwater 

environments upon the health of users” (WHO 2003). Their main purposes are to maintain 

safe recreational water environments, while also maximizing their benefits to users. The 

information in those guidelines can be used at international, national and local levels, 

although application practices depend on the standards, regulations and norms of each 

country. This publication provides several useful guidelines for controlling potential health 

risks of waterborne pathogens in recreational waters (WHO 2003).  

Implementing the guidelines depends on economic, environmental and other factors that 

define management areas. The coastal and freshwater bathing zones of countries, for example, 

are often regulated differently, but the WHO guidelines can still be used worldwide to target 

contaminated areas with corrective legislation. In 2003, the WHO reported extreme pollution 

on California’s beaches in the United States of America. Measuring against the WHO (2006) 

guidelines, Volume 2, the beaches there had poor water quality.  The unsafe beaches prompt 



	 15	

the inclusion microbial criteria for recreational water pollution and safety. “The Clean Water 

Act (CWA) requires EPA to develop criteria for water “, which “The criteria are designed to 

protect the public from exposure to harmful levels of pathogens while participating in water-

contact activities such as swimming, wading, and surfing in all waters designated for such 

recreational uses” (EPA 2012) as part of the 2012 Recreational Water Quality Criteria 

(RWQC). Conversely, Scandinavian beaches generally have good water quality, but with 

extreme rainfall events and Combined Sewage Overflows (CSOs), water can still become 

contaminated and unsafe for recreational activities.  

To comply with the EU directive from 2006 and Water Quality Norms for Recreational 

Water (WQNRW) “Vannkvalitetsnormer for friluftsbade” must have goals towards 

achieving safer bathing water (Union 2006). The EU Union (2006) is responsible for 

standardizing the information needed for the improvement of the quality bathing waters, 

while the Norwegian norms give directions for evaluating recreational water quality. Water 

quality has been the long-time focal point for the assessment and evaluation for the fate of 

fecal indicators in water use and recreation in general (Union 2006). Because humans often 

use water bodies for recreation purposes in inland and ocean zones during warm months of 

the year, the quality of water must be consistently monitored to respond to contamination by 

pollutants or outbreaks of waterborne diseases. 

The water quality norms for recreational bathing in Norway are laid out in WQNRW 

(Vannkvalitetsnormer for friluftsbade), which gives guidelines for the owners of the water 

bodies or bathing area and institutions in Norway, which make them responsible for the use 

and maintenance of recreational waters. Measures of maintaining good water quality include 

inspections, analyses and sampling in case of sewage spills, extreme rainfall episodes or 

appearance of pollutants in the water. E. coli and I. enterococci are a priority indicator in 

selecting analysis parameters and the choices in the Norwegian water norms. These bacteria 

are also representative fecal indicators recommended in the New EU Bathing Directive for 

testing the quality of bathing waters (Folkehelseinstitutt 2004). The norm suggests taking 

water samples at least 14 days before the bathing season begins and as close to recreational 

use areas as possible (Folkehelseinstitutt 2004). 

 

Currently, the EU directive (2006) is widely applied in Norway. The Directive suggests 

specific guidelines for bathing water quality to reduce the risk of infections and associated 

waterborne illnesses (Tryland et al. 2014). In the EU Directive, they are even stricter 
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although they are based on WHO recommendations themselves. Recreational water 

management and water quality criteria are still governed by the standard WHO guidelines, 

with fecal contamination being assessed by using concentrations fecal indicator bacteria 

(WHO 2003). These WHO guidelines are only recommendations to help countries to set their 

own directives.  

Management approaches such as beach profiling and inspections, risk assessment and public 

health protection are used to control the outbreaks of infections and diseases (WHO 2003).  

The organization promotes counts of E. coli and intestinal enterococci to assess recreational 

waters (Table 1.2) and (Table 1.3). From these basic guidelines, Kay et al. (2004) have 

developed a basic equation to evaluate the state of a water contamination event, incorporating 

an assessment of fecal indicator bacteria (FIB) concentrations and the vulnerability of 

ecosystems to fecal contamination (Kay et al. 2004). 

 

Though, fecal indicators can identify potential contaminants in the water, they do not account 

for all the microbes living in water or provide information about their persistence in natural 

water systems. E. coli and intestinal enterococci parameters are used to define water quality, 

of the beaches, which can be classified as poor, sufficient or good depending on the percentile 

values for microbial enumeration using Colony Forming Units (CFU) per 100ml (Mansilha et 

al. 2009; Tryland et al. 2014; Union 2006). The levels of fecal indicator parameters for 

different quality groups used for classification of beaches are shown in Table 1.1and Table 1.2. 

Table 1.2 Faecal indicator parameters for inland waters. Derived from EU Bathing Water Directive, Annex I and 
II (Union 2006). 

Parameter Excellent 

quality 

Good 

quality 

Sufficient Reference methods of analysis 

Intestinal enterococci 

(cfu/100 ml) 

200 400 330 ISO 7899-1 

Escherichia coli (cfu/100 

ml) 

500 1000 900 ISO 9308  

 

 

 

Table 1.3 Faecal indicator parameters for coastal and transitional waters. Derived from EU Bathing Water 
Directive, Annex I and II (Union 2006). 
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Parameter Excellent 

quality 

Good 

quality 

Sufficient Reference methods of 

analysis 

Intestinal enterococci 

(cfu/100 ml) 

100 200 185 ISO 7899-1 

Escherichia coli (cfu/100 

ml) 

250 500 500 ISO 9308  

 

The EU Directive (2006) in mentioned in article 6, bathing water profiles that it may be 

covered at least one bathing water, be reviewed and updated. In addition, have good use of the 

data from monitoring and assessing those waters. It is described in Annex III.  In the Annex 

III, In Point 1, a) the bathing water profile should include relevant the physical, geographical 

and hydrological characteristics of the possible polluted water (Union 2006). In Point 1, b), 

the causes of pollution are identified and assessed. Also in 1.c) and 1.d) the assessment of 

potential for growth of cyanobacteria and macro-algae are made, respectively. 1.e) If there is 

risk or an effect from short-term pollution, then it should describe the cause, type and how 

often and how long time it occurs. Yet, modeling results will give concentrations disregard 

these high values as long do you warn the people against swimming in specific sites. How 

long time is it needed to say, precaution and elimination period, or to warn against 

contamination? In point 1.f) refers to the location of the monitoring point (Union 2006). 

The bathing water classification can interfere with subsections in Point 1, so in this instance 

the profile needs to be updated accordingly. The nature and severity of the pollution defines 

the scope of the contamination event and how often the profile needs to be reviewed. Table 

1.4 indicates the frequency for these reviews. 

Table 1.4 Classification of bathing water. As seen in Annex III, the bathing water profile (Union 2006). 
Bathing water classification Good Sufficient Poor  

 

Reviews are to take place at least every Four years Three years Two years 

 

Aspects to be reviewed (points of paragraph 1) (a) to (f) (a) to (f) (a) to (f) 
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Bathing water should be monitored at least four times during bathing season. If pollution 

occurs, then additional sampling is required to confirm reduced hazard at the end of the 

incident. Annex IV (WHO, 2006). The EU Bathing Directive (2006) outlines the 

concentrations of faecal bacteria indicators for monitoring water contamination by pathogenic 

microorganisms. Bacterial indicators are used to model the behavior of harmful pathogens 

(Hipsey et al. 2008).  

 

1.3 Norwegian Bathing water and Overview of Oslofjord 

A thorough understanding of processes affecting the Norwegian water within aquatic 

environments is essential for modeling the transport of microorganisms in surface water. 

When pathogens from a faecal source are discharged to surface water, due to CSOs, their fate 

and transport may differ (Tryland et al. 2014). Though some microorganisms may thrive, 

other viruses, parasites and enteric bacteria often die-off. Accounting to their death rate, it 

will depend on species, water temperature, sunlight and other variables. Pathogens’ fate and 

transport may be affected by sedimentation, association with other particles, or consumption 

and/or inactivation of enteric organisms by autochthonous. Pathogenic bacteria causing 

problems in Norwegian recreational waters include Salmonella spp., Shigella spp., Vibrio spp. 

Clostridium spp., and Staphylococcus. The bacteria used as faecal indicator for Norwegian 

bathing waters are E. coli and I. enterococci (Union 2006). Detecting faecal indicator bacteria 

in these waters is a reliable and simple process (Hipsey et al. 2008). 

The Oslofjord is a narrow and long channel stretching 100 km, dividing on its landward end 

into the inner and outer Oslofjord. Inner Oslofjord, traditionally, has an extensive and many 

areas for recreational bathing waters, but recently large development and construction projects 

in harbor areas have prompted new efforts to make sure that the seawater in inner Oslofjord is 

safe to use (Arnesen 2001). 

Since the 1900s, pollution has spread from the coastal waters surrounding Oslo city to other 

parts of the fjord (Arnesen 2001). Arnesen (2001) discussed relevant information on water 

pollution and protection of Oslofjord. Pollution of water problems in the Oslofjord is largely 

tied to the increase of the discharge of poorly treated sewage, and the geographical positions 

with interface of inner and outer fjords. According to Arnesen (2011), many experts have 

perceived the problems related to the elevated organic matter, nutrients, high levels of 
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bacteria and hydrogen sulfide in seawater. He suggests addressing water pollution issues 

through agreements between technological and scientific institutions that improve the efficacy 

of wastewater treatment plants (WWTPs), including mechanical, chemical and biological 

treatment processes. Arnesen (2011) redefines the goals for sewage treatment according to the 

actual need for safe water. 

 

 

Table 1.5: Simulated concentrations of E. coli for bathing zones in Oslofjord during heavy rainfall and CSOs, 
focusing on the Lysaker and Bekkelaget areas.  Blue indicates no E. coli while dark red areas have maximum 
contamination with E. coli. Source: http://www.niva.no/waterqualitytools. 

 

Through the “Quality water tools project: Impact of changing weather patterns on bathing 

water and seafood quality from the Inner Oslofjord (2012-2015)”, faecal contaminants were 

measured and calculated during different weather conditions. The project also investigated the 

fate of the faecal indicator bacteria and pathogenic contaminants using process models and 

included them into hydrographic model. The concentrations of the microorganisms were 

simulated in an analysis for Oslofjord beaches (Table 1.5), considering climate change and 

different type of discharges in the modeled future scenarios (Tryland et al. 2013). An 

extensive gap exists relating the fate and transport of faecal pathogens originated from CSOs, 
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and poorly treated sewage discharges into the rivers and other point sources on the Oslofjord. 

Most of the faecal pathogenic water pollution in Oslofjord occurs due to CSOs in a event of 

heavy rainfall (Tryland et al. 2014). 

So far, there is not enough information related to total discharges of pollutants in the inner 

Oslofjord. However, few results were determined from related researches (Berge, et al 2011). 

Oslofjord is a recipient for untreated wastewater during stormwater overflows and sewage 

discharge emergency situations. Such heavy rainfalls making it difficult for wastewater 

treatment plants to carter for all the water discharged into the Fjord. There is an increase of 

circa 2 log10 in FIB after heavy rainfall episodes in inner Oslofjord (Tryland et al. 2014). 

When these situations occur, CSOs can cause discharge of large amounts of fecal 

contaminators in the water (Tryland et al. 2014). Andersen and Mounce (2013) have also been 

investigating the impact of CSOs, and how they affect the quality of water recipient during 

rainfall events (Andersen et al. 2013).  

Prioritizing comprehensive water management strategies and applying bathing water quality 

tools to monitor heath risks related to sewage discharges are important steps, along with 

tracking environmental parameters such as sunlight, temperature and different weather 

patterns. In recent studies (Staalstrøm 2014), concerning the VEAS tunnel, a description of 

how the fecal indicator monitoring should be approached in Oslofjord. 

 

1.4 Thesis statements  

Raw sewage collected in Drøbak WWTP, water samples are mixed, and afterwards diluted 

with distilled water to investigate the selected FIB. Because laboratory experiments can only 

mimic few important environmental factors that affect FIB, realistic results for different 

events of faecal pollution can be difficult to achieve. The results obtained can be skewed 

because experimental procedure can’t account for the realistic conditions, however, they are 

still used as the main input for process modeling using FIB bacteria. 

In investigating the fate of FIBs, finding to the fate of harmful bacteria in water and fecal 

contamination at different environmental conditions becomes difficult to assess. This creates 

a problem in how significant can be the laboratory results. Spatial and temporal variations 

also make it challenging to effectively predict the effects of environmental factors on FIB. 
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Consequently, laboratory results and subsequently modeling cannot accurately predict the risk 

posed by CSOs events.  

Water analysis, furthermore, only gives a snapshot of overall water quality. Hygienic water 

quality at beaches exposed to COs may fluctuate over >1000 for a factor of FIB (i.e. water 

transitions from good to poor quality after heavy rainfall) very quickly(Union 2006). Results 

from samples taken the day or week before may not be representative of the water quality 

after rains. For “real time” evaluation of bathing water quality of beaches exposed for short-

term pollution, mathematical models representing the decay rate may therefore be useful.  

Models for predicting bathing water quality after pollutant discharges close to beaches and 

recreation waters (e.g. from CSOs and WWTP) require lots of input data. For example, many 

models must incorporate the decay rate of fecal indicator bacteria (E. coli and I. enterococci). 

Once a greater understanding about the fate of contaminants in water is established, it may be 

easier to predict how quickly the fecal bacteria die off in natural waters under different 

conditions. In this thesis, the fate of FIB due to CSOs is analyzed for better understanding of 

the behavior and how the bacteria die in water at different temperatures and depths. 

 

1.5 Research questions 

Is there a difference between rate of decay of faecal indicator bacteria in deep and surface 

seawater? 

Is the rate of decay of faecal indicators from own laboratory experiments in accordance 

with those values reported in the primary literature (peer-reviewed research)? 

 
Which decay rates/process models should be used to model the decay of fecal indicator 

bacteria to predict bathing water quality after discharges from CSOs?  

 

1.6 Objectives 

Main objective:  Determine the fate and persistence of faecal indicator bacteria in 

seawater as input to models for predicting bathing water quality. 

Specific objectives:  1- Review the literature to get information about the fate of faecal 
indicator bacteria in water, i.e. describe decay constants/models of E. 
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coli and Intestinal enterococci under different environmental 
conditions. 

2- Present the fate/persistence of Escherichia coli and Intestinal 
Enterococci in the laboratory experiments. 

3- Compare laboratory results of the decay of E. coli and Intestinal 
enterococci in seawater with values from the literature review.  
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2. Literature Review 

Norwegian municipalities surrounding the Oslofjord use the enumeration of indicator bacteria to check 

faecal contamination (Sen & Ashbolt 2011).  The two main faecal indicators are Escherichia 

coli and Intestinal Enterococci.  If fecal indicators were detected in water, there could be a risk of 

presence of human pathogens. Then, high levels of fecal indicators show bigger risk of 

presence of human pathogens. However, the correlation between fecal indicator bacteria and 

human pathogens is not always good. For example, when the faecal indicators to the 

pathogenic bacteria originate from harmless sources (e. g. faeces from healthy people or 

animals) or their persistence time is different to the human pathogen (Romero et al. 2006). 

Once the indicators and faecal pathogens enter the surface water, their fate and transport may 

differ. Some bacteria may grow, but viruses, parasites and enteric bacteria will die in general. 

With varying death rates depending on species, temperature, pH, sunlight and other 

environmental variables.  

The layout for the literature review is review of information, description and significance of 

FIB. Reviewing on major factors affecting FIB in water. Then, the rate peer reviews and their 

factors highlight the subtopics bellow. The review also updates the models of faecal indicator 

bacteria in aquatic systems. 

 

2.1 General Information and Importance of Faecal Indicator Bacteria  

Measurement of microbial water quality uses levels of different microorganisms indicators to 

determine the safety of drinking water. The three types are: general microbial indicators, fecal 

indicators and index organisms. From last century, the testing for water pollution water uses 

Escherichia coli and coliform bacteria as FIB for water polluted by animals and human waste 

(WHO 2001). Testing of FIB is important when fecal contamination occurs in water, which 

may be infected with harmful microorganisms (Paruch & Mæhlum 2012). Faecal water 

indicators assess the level of fecal contamination and pollution on surface water. Using 

indicators is challenging because it has been proved that the some pathogenic microorganisms 

have low survival period when living away from their hosts, making it difficult to predict 

their fate on time (Pommepuy et al. 2005). Fate of FIB can be expressed by the decay rate (kt) 

or Log reduction (T90) (Barcina et al. 1990; Pommepuy et al. 2005; Rozen & Belkin 2001). 
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Major contributions to the presence of fecal microorganisms in coastal zones are (Pommepuy 

et al. 2005): 

• The influence of the environmental conditions they face;  

• Some bacteria have their unique characteristics. For example, they are physiologically 

active, absorption onto organic mater. This allow them to be more resistant than others 

and can survive for longer period of time; 

• Pollution outbreaks and COS due to extreme rainfall events; 

According to Griffin (2001), good indicator should have the following characteristics (The list 

of the characteristics of ideal water quality indicator) must have (Griffin et al. 2001): 

1. “ It must occur where the pathogen does live; 

2. It is not able to grow in the environment outside their host; 

3. Disinfection is more efficient in pathogen than the indicator; 

4. It should be easy to isolate and count; 

5. It is found in fecal contaminated waters; 

6. It should show higher numbers than the pathogen; 

7. Its concentration values should be connected to the degree of contamination and health 

hazard.” 

 

Faecal indicator bacteria such as E. coli and intestinal enterococci are used as indicators to 

estimate water contamination due to hazardous pathogens. They may be good indicators for 

several pathogenic bacteria and some viruses. Primary studies have shown that E. coli is a 

much better and preferred indicator of disease risk than others in the Faecal Coliform group 

(American Public Health et al. 2005; Odonkor & Ampofo 2013). As reported in several 

studies, there is a significant mutual relation or correlation between the faecal indicator 

bacteria or parameters of fecal pollution with the pathogens and gastrointestinal bacteria in 

water due to CSOs (Byamukama et al. 2000; Cabral 2010; Charriere et al. 1994; Ferguson et 

al. 1996). 
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Table 2.1 Drawing of sewage effluent entering into the coastal water showing the dilution process and 
environmental factors involved in microbial behavior (Pommepuy et al. 2005). 

 

Pommepuy made a description of how the FIB is introduced into water by outfall in deep 

water using a diagram in Table 2.1. When the microorganisms are discharged into the coastal 

zone, their concentration is reduced by physical dillution and dispersion, as well as dilution 

and other seawater factors, such as nutrient competition, chemical reaction, salinity, sunlight, 

pH and temperature. The combination of many of those factors affects the biological activity 

of the bacteria. 

Escherichia coli is an Enterobacteriaceae, (are oxidase-negative catalase-positive straight 

rods that ferment lactose. E. coli is a natural and essential part of the bacterial flora in the gut 

of humans and animals) (Cabral 2010). Studies reported that E. coli appears in most of the 

species. (Cabral 2010; Gordon & FitzGibbon 1999). E. coli belongs to the faecal coliform 

group and because it originates from the faeces of humans and animals, making it a leading 

indicator for faecal pollution (Odonkor & Ampofo 2013). E. coli is a valuable faecal 

contamination indicator because of the differentiation of non-faecal originated faecal coliform 

bacteria from the ones originated from faeces of humans and animals. Other importance is the 

appearance of modern and rapid methods for the detection of FIB. 

The presence of I. enterococci in water indicates fecal water pollution, simply because water 

is not a normal habitat for them. In particular, enterococci are made of gram-positive and non-

spore forming cells which grow at 37°C and in some cases exceed up to 45°C (Pommepuy et 

al. 2005). The most common enterococci bacteria in humans are E. faecalis and E. faecium 

encountered in urban pollution. Fecal enterococcus survives for longer period than E. coli in water 

((WHO) 2011; Cabral 2010; Payment et al. 2003). I. enterococci are a preferred FIB because 
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of their use in detecting the interaction between human faeces and the seawater, especially in 

urban areas (Boehm 2007). Models predicting enterococci concentration not only reduce the 

impact of contamination and safety of swimmers, but also affect the management, decision-

making and economic improvement of the beaches (Hou et al. 2006).  

 
Table 2.2 List of some (Faecal) indicators, and their concentration in raw sewage or effluent of CSOs (Arnone 
& Walling 2007; Ashbolt 2004; Gerba 2015; Pond 2005; Rechenburg et al. 2006; Tchobanoglous et al. 2014; 
WHO 2003). 

Microorganism  Concentration in Raw sewage (Number /100ml) 

Escherichia coli 105- 107 

Intestinal enterococci 4.7 ×103 – 4 × 105 

Clostridium perfringens spores 6 × 104 – 8 × 104 

Polioviruses 1.8 ×102- 5 × 105 

 

2.2 Source, transport and fate of faecal indicator bacteria in water 

Hipsey (2008) states that the sedimentation and association with particles of enteric 

organisms affects the transport and the fate of pathogenic bacteria. Decay rate of enteric 

bacteria varies with their species and parameters like: temperature, sunlight, salinity, turbidity 

and depth of the water.  

2.2.1 Source of FIB in Water 

The origins of water pollution and fecal contamination in waters are divided into point source 

and non-point source. Point sources are the discharges of raw sewage and effluents from 

domestic and industrial WWTPs, stormwater, rainfall overflows, CSOs, agricultural runoff, 

urban runoff and settlements in mountains or rural areas (De Brauwere et al. 2014; Gagliardi 

& Karns 2000). Discharges of CSOs into a receiving freshwater and seawater water sources 

such as rivers, lakes, estuaries and local beaches may significantly reduce the hygienic water 

quality of the water source during the discharge and the following days (Tryland et al. 2014). 

Point sources of microbial contamination in urban areas are mostly raw water from municipal 

WWTPs. In cities, large numbers of fecal contamination occur mainly from faeces of infected 

humans and animals. Even though some individuals do not show any symptoms of infection 
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for long period of time (Pepper et al. 2006). Non-point sources are infiltrated or seepage 

sewage, drains and leakages from sewer networks and scattered rural areas. In cities, the 

faecal contamination is from point sources to the water bodies (Servais et al. 2007).  

Geographical location for point sources of is well considered and assessed before deciding in 

an actual spot as a source for discharging of wastewater. However, in many cases, this does 

not happen. Then, the faecal contamination occurs in places where water as source of drinking 

water, or popular place for water recreational activities.  

2.2.2 Transport of FIB in Water 

The transport of FIB in water is done differently from pathogenic microorganisms. The 

transport of pathogens in water can be horizontal or vertical. The horizontal transport is 

controlled or defined by inflow, circulation and dispersion or mix of sewage water with 

seawater, wind currents and the internal waves (Brookes et al. 2004). Vertical transport of 

pathogens is the settling to the bottom of the sea. Generally, the pathogens tends to survive 

longer in water the by itself (without a host) than FIB at same environment condition, which 

give them the opportunity to multiply prior parasitizing to their future host.  During rainfall 

events, it allows pathogens to faster transport over longer distances comparing to FIB 

(Bradford et al. 2013). In contrary to, FIB are not able to live long outside their host and do 

not survive well in the environment. Their ability to move is limited to their survival in water 

function. 

 In a study for the transport and fate of microbial pathogens in agricultural settings, the speed 

for the bacteria larger than 400 µms-1 was recorded. However, at closer look, they move much 

slower than the records registered. (Bradford et al. 2013). This information is relevant. It 

means that, we can know how much the bacteria travel and how long it will take them to enter 

the waters, WWTP in relation to the coastal zone, before dispersion or dillution occurs. 

2.2.3 Fate of FIB in Water 

One reason that the fate of faecal indicators in water has been studied in recent years is their 

ability to predict detrimental effects on bathing waters and other uses. It also has received 

considerable attention in relation to water contamination and waterborne disease outbreaks. 

The study of the fate of faecal indicators in water is relevant for the investigation of 

waterborne diseases in surface and recreational waters. Faecal indicators for pathogenic 

bacteria, protozoa and viruses can be used to measure the quality of both surface and 
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recreational (bathing) water. The rates of infections due to faecal pollution vary seasonally, 

and one of the many reasons could be the ability of the microorganisms to survive at 

particular season in relation to the other in the year. However, those reasons are not very well 

understood, so far.  Many factors affect this variability (Pepper et al. 2006). They play a part 

on the differentiation of excretion and its exposure to contaminated water.  

The fate of FIB depends on bacteria themselves and the decay rate depends on the 

environment they live in (Gourmelon et al. 2010). To investigate the fate of FIB is important 

for evaluating their ability to survive in their environment (Vergine et al. 2005). Faecal 

bacteria can die quickly in water due to their own mortality or when they are exposed to 

factors such as temperature, nutrient scarcity and deprivation of natural light, (Brookes et al. 

2004; Servais et al. 2007). Chemical and physical characteristics, atmospheric conditions and 

biotic factors also influence the survival of FIB (Gourmelon et al. 2010). 

The fate of faecal indicator bacteria in our Master Thesis can be studied using laboratory 

experiments, which is affected by biological, chemical and physical factors. Laboratory test 

can be performed to simulate the discharges from the CSOs and urban runoff from rainfall 

episodes. The tests can also check how the fecal indicator bacteria survive in the receiving 

seawater after the discharge. However, these experiments will not fully mimic the real 

conditions, however they are still useful. 

 

2.3 Factors influencing the faecal indicator bacteria 

Describing factors of bacteria is important because it can explain how is the fate of the 

bacteria in relation to the factors affecting their own survival. Some of the factors can be more 

influential in the FIB than others at a certain point. Thus, the extent and how they are 

affecting the bacteria is spatial and temporal variable. In addition to the factors affecting the 

survival or decay rate of FIB, seasonal variations and habitat of the bacteria seems to have 

large effects on the decay rate of FIB. These characteristics contribute to different results in 

transport and source tracking models of the FIB. The models also vary with time because of 

the effects of night and day in different parts of the World (Crane & Moore 1986). All the 

parameters listed in the Table 2.3 are responsible for the decrease in number of bacteria in 

water. 
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Table 2.3 Factors affecting the survival of FIB and other microorganisms in the water environment are 
summarized in Table 2.3 (Crane & Moore 1986) 

List of factors  Factors Parameters  

Nature and characteristic of the microorganism itself  

Atmospheric conditions 
 

Sunlight/ solar radiation 
Temperature  
Moisture  (humidity and precipitation) 

Physical and chemical effects of the environment pH 
Temperature 
Organic mater content 
Availability of nutrients 
Elemental composition 

Biological interaction with other organisms 
 

Antibiotic 
Toxic substances 
Competition with indigenous microflora 

Application method 
 

Frequency of discharge 
Technique  

 

Most relevant factors contributing for enteric bacteria survival can be divided into biotic and 

abiotic. Examples of abiotic processes are environmental factors such as temperature, salinity, 

sunlight and pH (Sinton 2005). The effects of temperature, salinity, pH, dissolved Oxygen, 

sunlight, nutrients and turbidity on the mortality of enteric organisms are used to obtain the 

decay rate parameters (Belkin & Colwell 2006; Hipsey et al. 2008). The scarcity of assailable 

nutrients also influences the decay rate. 

By disregarding the limitations of their models, several scholars have tried to dismiss the 

influence of temperature, salinity and pH on mortality rate (kd) values (Mancini 1978; Mayo 

1995; McCorquodale et al. 2004). One of the limitations of such models is that they can only 

be applied in the natural environment of the microorganism being studied. Another is that 

those models studies are considered empirical because there is not specific parameters in the 

equation that do not depend on particular characteristics of the microorganism. (Hipsey et al. 

2008). Hipsey (2008) developed a process-based model (Equation 2.1) to describe the 

influences of temperature (T), salinity (S) and pH (potential hydrogen) on the mortality rate 

(kd). He ignored all other environmental effects on microorganisms and highlighted the 

relationships between these influences and mortality rate. So, the dark decay rate can de 

expresses as a function of temperature, salinity and pH. 
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𝒌𝒅    = 𝒌𝒅 𝑻,𝑺,𝒑𝑯                                                    Equation 2.1 

 

2.3.1 Temperature 

In this thesis experiments (described in chapter 3), temperature is a controlling factor for the 

fate of FIB. The research checks whether the bacteria concentration of the FIB increases or 

decreases in seawater. It is expected to be different for the different temperature and (40C and 

room temperature 220C). 

Temperature is considered the most important environmental factor affecting the fate of FIB, 

and can consistently predict the fate of the bacteria. The lower the temperature, the longer 

survival time the bacteria have (Crane & Moore 1986; Pepper et al. 2006). But, if it reaches 

freezing state, the intestinal bacteria will die. The relationship between the temperature and 

the number of nutrients in mix of sewage water effluent and seawater and decay rate of 

coliform bacteria was observed (Chamberlin & Mitchell 1978; Hipsey et al. 2008). In both 

studies it was concluded that E. coli did not grow as much in comparison to the other 

pathogenic bacteria under the same conditions. In another study, Lopez-Torres et al. (1998) 

used tropical seawater and detected E. coli in water. It which shows a decrease in its activity, 

and considered E. coli a viable FIB for tropical environments (Lopez-Torres et al. 1988). In 

contrary to the assumption that bacteria start decreasing as soon, it is stored in closed 

environment, as closed bottles.  Hendricks and Morrison in 1967 observed growth of 

indicators and pathogenic enteric bacteria in fresh and seawater samples (Hendricks & 

Morrison 1967). They also claimed that the multiplication of bacteria in low nutrient and low 

temperature water environment could be quite large. Bradford (2013) agreed that the die-off 

rates of E. coli increase as the temperature rises. The mortality rate (kd) of E. coli and 

enterococci was graphically represented (Table 2.4) by several researchers and summarized 

from data available in their literature (Hipsey et al. 2008). 
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Table 2.4 Relationship of natural mortality rate and temperature for E. coli and enterococci. The salinity of 3% 
and ph values of 6-8 were used in these analyses. The equations were based on least-square linear regression 
(Hipsey et al. 2008).  

Once all other factors are kept constant and only the temperature variations are used, the 

function of decay rate (kT) is the factor of reference temperature (200C) and empirical 

coefficient can be represented in a model equation.  The decay rate at temperature T of FBI is 

expressed in Equation 2.2 (De Brauwere et al. 2014b). 

𝒌𝑻 = 𝒌𝟐𝟎×𝜽𝑻!𝟐𝟎     Equation 2.2 

 

Where: k20 is the decay rate at temperature of 200C; θ is an empirical temperature coefficient 

and varies (1.013-1.19); T is the temperature.  

 

2.3.2 Sunlight 

The general consensus on the faecal indicator studies is that sunlight is the most effective 

contributor to inactivation or death of faecal indicator bacteria and other microorganisms in 

both freshwater and seawater (Auer & Niehaus 1993; Davies & Evison 1991; De Brauwere et 

al. 2014; Fujioka et al. 1981; Hipsey et al. 2008; Johnson et al. 1997; King et al. 2008; 

Mancini 1978; Mitchell & Chamberlin 1978; Noble et al. 2004; Sinton et al. 1994; Sinton et 

al. 2002; Sinton 2005). Sunlight is an important parameter and is used in researching and 

laboratory experiment for monitoring and enumeration of FIB (Crane & Moore 1986). the 

thesis research, which takes sunlight as a limiting factor in the environment of the FIB, the 

research is expected to explain how their fate of in this thesis. 

The studies for the effect of sunlight on survival of indicator bacteria in seawater, confirmed 

that the presence or absence of sunlight largely affected fecal coliforms and faecal 

streptococci. It also demonstrated that up to 90% of the bacteria were dead after 3 hours after 
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being exposed to sunlight. And in cases where it was no sunlight they could survive for many 

days (Fujioka et al. 1981). E. coli in faecal coliform group has 70% inactivation from the UV-

B wavelength spectrum (280-320 nm). This wavelength has the ability to destroy the DNA of 

microorganisms in cellular level. While Enterococci is more sensitive to the UV-A 

wavelength (320-400 nm) of circa 51%, which has weaker effect on microbes than UV-B 

(Harm 1980; Hipsey et al. 2008; Sinton et al. 1999). Mancini in 1978, made estimates for the 

influence of light on coliforms and concluded that the rate of mortality of coliform reduced 

with increase of time, and he also reported a decline in bacteria population.  

In seawater the rate of mortality tends to be higher because the light extinction is greater in 

lethal portion of spectrum in relation to the total spectrum of light (Mancini 1978). In sunlight 

and survival of enteric bacteria in natural waters, Davies and Evison (1991) found that there 

was a difference on the count of number of bacteria in seawater and freshwater. In the 

seawater decay rates were significant faster than the freshwater, once suffer the effect of 

sunlight (Davies & Evison 1991). Other researchers not only research the simulation of solar 

radiation in marine waters but also used other environmental factors to test the presence of 

enteric bacteria (Alkan et al. 1995). Salinity is more accentuated in the culturable 

microorganism when applied UV radiation and in reverse sunlight effect on bacteria is greater 

at higher salinity levels. (Davies & Evison 1991; Hipsey et al. 2008; Sinton et al. 2002). 

In contrary, Beaudeau (2001), in his research, did not see any improvements in solar 

inactivation and the same occurred for Rippy in 2013.  He realized that the effects of solar 

radiation is considered temporary n relation to temporally and spatial variations. Therefore, 

the decay rate is a dominant factor in inactivation due to sunlight (Beaudeau et al. 2001; De 

Brauwere et al. 2014b). 

FIB exposure to sunlight contributes in different quality and types of water (Korajkic et al. 

2013). By ignoring the sunlight as function of temperature and using equation 2.3 below, this 

judgment provides a first estimate of the coliform bacteria. The equation 2.3 can guide 

calculations of mortality rates in water bodies (Mancini 1978). Mancini suggests that Decay 

rate in Seawater is affected by the solar radiation but could not prove the sunlight effect in 

fresh water at that period. In 1979, Mancini publicizes a paper on influence of light in both 

freshwater and seawater. He concluded that sunlight increases the die off of bacteria in 

seawater but did not reach a conclusion for freshwater (Chojnowski et al. 1979; Mancini 

1978). 
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𝒌𝒕 = 𝟎.𝟖+ 𝟎.𝟎𝟎𝟔 %𝒔𝒆𝒂𝒘𝒂𝒕𝒆𝒓 × 𝟏.𝟎𝟕 𝒕!𝟐𝟎 + 𝑰𝑨
𝒌𝒆𝑯

 𝟏− 𝒆!𝒌𝒆𝑯   Equation 2.3 

 

Where: kt: First estimate mortality rate or Decay rate at temperature t, ke: light extension 
coefficient, t: temperature, H: completed mixed depth of water, IA: Average daily surface 
solar radiation, (Mancini 1978). 

 

Many models for inactivation of pathogenic bacteria were developed in the microbial 

pollution in aquatic systems. In modeling for sunlight, some factors such as wavelength, 

bandwidth regions for the solar spectrum, the presence of dissolved oxygen as well suspended 

material, the effect of pH and lastly the salinity effect of water Hipsey et al. 2008). By 

assuming, that the bacteria population decay is exponential and ignores the lag and recovery 

phases on the decay rate graphs (Harm 1980; Hipsey et al. 2008; Sinton et al. 1994). Hipsey 

(2008) develop an equation (equation 2.4) for a generic model for inactivation of sunlight 

(Hipsey et al. 2008) and suggests the dissolved oxygen and pH to consider the photo-

oxidative effect (De Brauwere et al. 2014b): 

𝑲𝒍 = [𝝋(𝒌𝒃 + 𝒄𝒔𝒃
𝑵𝑩
𝒃!𝟏 𝑺 )𝑰𝒃𝒇𝒃𝑳𝑰𝑴  (𝑫𝑶) 𝒇𝒃

𝑳𝑰𝑴(𝒑𝑯)]  Equation 2.4 

 

Where: NB: number of discrete solar bandwidths to be modeled, b: bandwidth class from 1 to 

NB, φ: constant for conversion of units, cs: coefficient of enhancement of light in seawater, kb: 

freshwater inactivation rate coefficient, Ib: intensity of bandwidth class, fb
LIM (DO): dissolved 

oxygen depended function of light inactivation coefficient, fb
LIM (pH): pH depended function 

of light inactivation coefficient and DO: dissolved oxygen 

Even thought natural sunlight inactivation of bacteria such as E. coli and I. enterococci is not 

costly, it is not enough for the treatment of these bacteria in both fresh and seawater. Since 

there are other factors influencing the survival rate of FIB in water (Byappanahalli et al. 

2012). The Equation 2.2 results maybe limited if they consider only on bandwidth for their 

parameters.  However, it needs large field data and parameters values which introduces more 

uncertainty to the equation (De Brauwere et al. 2014b). They could loose the dynamic of the 

model that is important fro the different organisms behavior (Hipsey et al. 2008). High clarity 

water means good inactivation mechanism Different species have different dynamics of 

sunlight inactivation. Therefore, to consider the processes helping on the inactivation of the 
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microorganisms is fundamental. Besides there still a gap on modeling the dynamic of sunlight 

(Hipsey et al. 2008). 

2.3.3 Salinity 

Bacteria react differently in the presence of salt. E. coli and I. enterococci have distinct 

behavior in presence of ions salt. IE can reproduce it self in salt water better than E. coli and 

other coliform bacteria. Studies have been shown controversial results for the relationship of 

salinity and fecal bacteria. (Byappanahalli et al. 2012) Effect of salinity in the culturable 

bacteria is more intensified when exposed to sunlight (Davies & Evison 1991). Hipsey (2008) 

reported results on influence of salinity in dark death rate for I. enterococci. The results were 

not very significant, while E. coli, results seemed hardly significant.   

In monitoring of E. coli survival in water, It used different salinity values to check and 

confirm that E. coli survival increased as salinity decreased. Other studies reported that decay 

rates of FIB are higher when salinity is also high and lower with lower salinity (Bordalo et al. 

2002; Canteras et al. 1995; De Brauwere et al. 2014b). Equation 2.5 showed the linear 

relationship between the salinity ranging from 0 to 35%0 for I. enterococci and “for E. coli the 

salinity effect appears to be hardly significant”, and the decay rate of microorganisms. This is 

a simple way to model (Equation 2.5) the salinity effect on the decay rate due to salinity of 

FIB in water (De Brauwere et al. 2014b).  

𝒌𝒔 = 𝜷 × 𝑺                                        Equation 2.5 

Where: β is the salinity influence factor and S is the salinity (%0) (De Brauwere et al. 2014b). 

 

At 6.5% NaCl, enterococci will grow very well and this is typical of the genus enterococcus 

(Byappanahalli et al. 2012). The characteristic of enterococci to survive successfully in saline 

environment may increase its performance as faecal indicator used in marine recreational 

waters (Byappanahalli et al. 2012). E. coli is less efficient than enterococci in saline waters. 

But other studies obtained different conclusion on relation of salinity and FIB. 

2.3.4 pH 

If the water environment is kept with neutral pH, the bacteria tend to survive longer and 

extend their life. Despite the environmental conditions, this could also cause their rapid death 
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at same time. “The effects of ionic strength and pH on survival are dependent on the 

microbial species” (Bradford et al. 2013).  

Research articles showed that pH has detrimental effect on bacteria in general. (Crane & 

Moore 1986). 

Researches in seawater and freshwater concluded that alkaline environment was the preferred 

and better environment for inactivation of the microorganisms (Hipsey et al. 2008). While 

Crane et al, 1986, preferred acid conditions as better choice for die-off of bacteria.  

 
Table 2.5 Model parameters of coliform using data from different mortality rate and pH. The graph shows the 
variation of behavior of bacteria at neutral pH and the extremes. (Hipsey et al. 2008, Figure 6). 

 

During studies of coliform groups, some problems were raised in finding out the optimum pH 

value (Figure 2.2). However, the mortality rate increased significantly in the values lower and 

higher than 7. The more acidic the water (pH<7) was, the faster the bacteria died. (Hipsey et 

al. 2008). Alkaline water with pH larger than 7 also accelerates the death of the FIB (Crane & 

Moore 1986). Bradford et al, (2013) agreed that pH values of 6-8 also have lower effect on 

the inactivation of microorganisms (Bradford et al. 2013); whereas, higher effect was shown 

for both acid and alkaline water environments (Table 2.5).  

2.3.5  Turbidity 

The clearer the water, the less debris it can be found in it. Turbidity may influence the quality 

of water because some of the water that seems to be dirty with suspended sediments can be 

judged mistaken for water contamination.  It is difficult for the light to penetrate deeper in 

bottom of the water basin, where normally the sewage from WWTP is positioned. Therefore, 
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this will affect the decay rate of bacteria entering the water. (Gourmelon et al. 2010; Kay et al. 

2004). 

2.3.6 Growth of bacteria  

Literature review on the growth of microorganisms in water bodies has covered little 

information on faecal bacteria in relation to the rate of decay (Hipsey et al. 2008). Hipsey 

(2008) assumed that surface water has limited nutrients for the multiplication of nutrients for 

the multiplication of microorganisms. However, with polluted water originating from the 

receiving waters from nearby WWTP it is possible that the growth of pathogenic 

microorganisms does increase. (Hipsey et al. 2008). This increase can happen because the 

effluents from WWTPs are rich in nutrients and also bacteria can be attached to other 

microorganisms (Tchobanoglous et al. 2014). Using fresh and seawater, the growth of enteric 

bacteria was simulated only 2.5-25% by the presence of sewage (Morgan et al. 1990). 

 

2.4 Models for FIB in water  

Numerical models are used to narrow the gap in microbial science. It can help in issues 

concerning the management of water quality (Hipsey et al. 2008). Many models are used to 

simulate microbial pollution in different water environments, but it difficult to use them 

because they are specific to a particular analytic system (Hipsey et al. 2008). These models 

are also used to forecast the concentration of pathogen in sediments due to settling of 

microorganism in the bottom of the water (Romero et al. 2006). 

Microbial pollution analysis in different water environments use to simulate many other 

microbial models (transport, source tracking and survival) (Brookes et al. 2005). Hipsey made 

a process-based model of microbial pollution used on fresh and seawaters (Hipsey et al. 

2008). The model designs monitoring programs and check the difference between microbial 

species from various literature articles. Model simulations showed that differences in the fate 

(for example growth or decay rate) strongly influenced the concentrations of different species 

in water in the days after the discharge (Hipsey et al. 2008). Therefore, process models are 

important in assessing the level of contamination of pathogenic bacteria in fresh and seawater. 

In this thesis, we adopt regression-based models and basic statistics in Excel as stated in De 

Brauwere (2014) review.  
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With notion of obtaining and linear fitting, a first order linear equation model and coefficient 

of determination (R2) are used to interpret and validate the results of bacteria logarithm FIB 

concentration as the output. The values of decay rate are simple the linear function of the 

Logarithm FIB concentration versus time frame which is limited by the experiment budget 

available.  

2.4.1 Decay rate (kt) of faecal indicator bacteria in water 

kt, Decay rate or mortality rate (kd) or die-off rate or dark-death rate is a parameter, which 

shows the dynamic process of microorganisms in surface and coastal waters. Large variations 

of in the values of mortality rate (Auer & Niehaus 1993; Mayo 1995) are due to the difference 

in environmental conditions where those results came from. Decay rate calculations have 

been used for modeling of FIB because it is important for predicting the fate of FIB in the 

environment. 

Harriete Chick (1908) postulated that first-order kinetics equation that considers mortality of 

bacteria versus time data can be represented as a straight line on a semi-logarithmic graph 

(Chick 1908). The decay rate coefficient is analyzed by using the data and results from the 

laboratory experiments. Light and temperature affects the decay rate in biological model 

processes (Gourmelon et al. 2010).  

Variation on decay rates values have to do with the difference environmental conditions the 

waters are subjected to. Hipsey (2008) makes a collation of several literature data sources and 

gives the best estimates of decay values. The decay rate of FIB in coastal waters is normally 

expressed T90 which is the time the concentration of bacteria takes to decrease by one log unit 

(Gourmelon et al. 2010). First order kinetic model developed by Chick (1908) uses 

integration of decay rate equation to explain the decay model of FIB. By suggesting the use of 

first order inactivation model of virus, Friborg used equation 2.5 to 2.9 to show the decrease 

of concentration by 1 log10 (Friborg 2015). 

Decay rate values and equations for E. coli and intestinal enterococci of different researches 

are shown in Table 2.6. Values of faecal indicators below were removed from several articles. 

(Hipsey et al. 2008; Johnson et al. 1997; Kim & Hur 2010; Walker & Stedinger 1999) 
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Table 2.6 Summary of the decay rate of faecal indicator bacteria in water.   
Type of water E. coli I. enterococci References Remarks 

 kd (day-1) kd (day-1)   

Freshwater 0.48 0.45 (Walker & 
Stedinger 1999) 
and (King et al. 
2005) 

Temperature used 

200C. 

 

Seawater 1.09 0.28 (Johnson et al. 

1997)  

 

Temperature 
used in 
experiment 
200C. 

 0.258  0.276 (Kim & Hur 
2010) 

Originated from 
domestic sewage 
at 200C. 

 

2.4.2 Equations for decay rate, log reduction and half life for estimation fate of FIB 

There are man method to estimate the rate at which a bacteria die. Some of the most common 

methods are describe in equations bellow. These equations were adapted from literature are 

based in rate law in which the various experiment of the same sample and same temperature 

for each decay rate is used (Aus-e-Tute 1997; Chick 1908; De Brauwere et al. 2014b; Friborg 

2015) 

2.4.2.1 Equation for first order decay rate: Based on Concentration: 
 

𝑪𝒕 𝑪𝟎 = 𝟏𝟎!𝒌𝒕       Equation 2.6 

 

Where: Ct: concentration of the bacteria in time t, C0: concentration of bacteria at time 0 and 

t: number of days, t: is the time interval and k: First order decay rate,  

2.4.2.1.1 Graphical Method: 
 

𝑺𝒍𝒐𝒑𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒕𝒉𝒆 𝒈𝒓𝒂𝒑𝒉 = 𝒍𝒐𝒈𝟏𝟎(𝑪𝒕)!𝒍𝒐𝒈𝟏𝟎(𝑪𝟎)
𝒕𝒇!𝒕𝟎

                 Equation 2.7 
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The plot of mean log FIB concentration against time interval gives a straight line and this is 

the slope of the graph is the gradient of that line. 

 

2.4.2.1.2 Decay Rate Method: 
 

𝐥𝐧 𝑪𝒕
𝑪𝟎

=  −𝒌𝒕                                                                     Equation 2.8 

 

𝒍𝒐𝒈𝟏𝟎
𝑪𝒕
𝑪�

  =  − 𝒌𝒕
𝐥𝐧𝟏𝟎

                                                            Equation 2.9 

 

−𝒌 = 𝟐.𝟑𝟎𝟑
𝒕
∗ 𝒍𝒐𝒈𝟏𝟎 𝑪𝒕 −  𝒍𝒐𝒈𝟏𝟎(𝑪𝟎)                       Equation 2.10 

 

2.4.2.1.3 Log-Reduction Method 
 

 
𝑻𝟗𝟎 =

𝒍𝒏𝟏𝟎
𝒌

 =  𝟐.𝟑𝟎𝟑
𝒌

                                                            Equation 2.11 

 

Friborg in his master thesis described T90 is the time needed to reduce 90% of 

microorganisms or “the time necessary for the bacteria counts to decrease by a factor of ten” 

(De Brauwere et al. 2014b). Whereby, T90 = 1 log10  reduction is equivalent to Ct/C0 = 0.1 

 

2.4.2.1.4 Half-Life Method:  
 

           𝒕𝟏/𝟐 =
𝟎.𝟔𝟗𝟑
𝒌

                                                                  Equation 2.12 

  
 

Where: Half-life, t½: is the time taken for half the quantity of bacteria to be consumed. Half-

life of a first order reaction is a constant, i.e., half-life is independent of initial concentration.  

k is the  specific decay rate constant. 

 

The aim of the literature review is to show evidence of the stances and theories evolving the 

study of fate of the fecal bacteria; Descriptions of fecal indicator bacteria and factors affecting 

the rate of decay of fecal bacteria; As well models for decay rate used to evaluates the fate. 
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3. Materials and Methods  

This thesis used laboratory experiments to analyze the decay of FIB in water samples 

collected from different depths. Experimental methods included the standard membrane 

filtration method and the Colilert-18 and Enterolert-E tests. 

Two phases of the laboratory work were performed in water laboratory Fløy V at NMBU. 

Preliminary experiments began in February 2015 to collect and analyze seawater and 

freshwater samples for FIB using the Colilert-18 for coliform and E. coli, and membrane 

filtration methods intestinal enterococci respectively. The main laboratory experiment was 

performed in June 2015 on seawater samples from different depths using Colilert-18 and 

Enterolert-E tests. There we used the lower temperature (40C) to check how is the decay rate 

of FIB so we can compare to the decay rate for the same bacteria at room temperature (220C). 

3.1 Study Area  

Seawater was collected in Drøbak, Norway because of its location along the Oslofjord, which 

extends 20Km south of Oslo. Although away from the main city of Oslo, Drøbak is a popular 

recreation area among local residents and is one of the 22 cities on the coast of Oslofjord 

(Figure 3.1). The geographical position of Drøbak beach allows road runoff – including road 

pollutants – to be washed down to the beach when it rains. The sewage pollution from Drøbak 

WWTP decreases the quality of bathing water, increases the risk of waterborne illness, and 

harms local marine life. During the summer season, large and small boats, swimmers, and 

aquatic bird species heavily use Drøbak harbor.  

For the preliminary phase of laboratory testing, seawater was collected in early 2015 from 

Drøbak beach. Glomma River sample water was collected and used as practice with 

freshwater in the preliminary experiments. Freshwater samples have been stored in cold 

temperature at NMBU laboratory because it is part of a University ongoing project. Deep 

seawater (from 60m) and surface seawater (from 0.3m) samples were collected in June 2015 

from NIVA’s Marine Research Station in Solbergstrand to be used for the main experiments.  

Additional water samples were taken of non-treated, combined sewage from Drøbak WWTP 

because the treatment facility is positioned very close to the recreation area. In the case of 

CSOs during heavy rainfall event and the WWTP gets overwhelmed, and the water could then 

be discharged directly to the beaches and surrounding water bodies. The experiments using 
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water from Drøbak were aimed at studying the concentrations of E. coli and intestinal 

enterococci bacteria found in sewage effluent. 

 

 
Table 3.1 Inner Oslo Fjord. Area for collection of water and sewage Samples in Drøbak beach. Sources: 
https://no.wikipedia.org/wiki/Oslofjorden and http://kart.gulesider.no. 

Inner Oslofjord 

 
 
 
 
 
 
 
 
 
 
 

Outer Oslofjord 

	
	
	
	
	
	

Drobak	beach	
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3.2 Water Samples  

On February 12, 2015, samples of seawater and combined sewage were collected in Drøbak 

for later evaluating the fate of faecal bacteria in the laboratory. Raw wastewater was sampled 

at Drøbak WWTP and seawater was sampled from Drøbak beach. Both locations could be 

easily accessed for sampling. A swimmer’s ramp at Drøbak beach allowed samples to be 

taken almost two meters beyond the shoreline in clear water without debris. At the WWTP, 

there was a collection point from which untreated influent sewage could be sampled. The 

water samples collected in Drøbak and the stored water from the Glomma River had 

temperatures of 7 and 100C, respectively. There was 4.6 l of water from each sample site 

available for testing (Error! Reference source not found.). 

Table 3.2 Quantities and temperatures of water samples collect in Drøbak and Glomma. 

Type of water Quantity of water (L) Temperature (C0) 

Freshwater 4.6  7 

Seawater 4.6 10 

 

 

Table 3.3 The seawater sampling point source for preliminary experiments on FIB.  This is Drøbak beach in 
early spring.  (Picture: Silva, 2015). 
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Drøbak beach (Table 3.3) is a very popular recreation area with local residents, children, and 

tourists who use it as a place to swim and recreate in Oslofjord. It can be considered 

contaminated, however, because effluent from boats and stormwater discharges end up in 

bathing zones.  

Deep and surface seawater samples were collected at Solbergstrand on June 8, 2015 because 

conditions were more similar to those during the summer bathing season. A surface water 

sample from 0.3 m depth and a deep-water sample from 60 m depth were pumped from the 

same water tank at Solbergstrand. Both seawater samples were taken immediately to the 

NMBU (Fløy V) water laboratory for the biological and chemical analyses. Analyzing 

samples from both deep and surface seawater was needed to measure the decay of FIB at 

different temperatures and depths. 

3.3 Methodology for Analyze of Water in Laboratory  

Quantitative methods in water analysis have been developed to quantify the posing effects of 

diseases and oxygen depletion in receiving water bodies Wastewater treatment plants 

discharge infectious microorganisms into lakes, river and oceans which affect the quality of 

water. The methods are also used to evaluate the demand of oxygen in water and degree of 

treatment needed for sewage water before entering water bodies’ recipients.  

Biological, chemical and physical analyses can be used in the laboratory to evaluate the decay 

rate of bacteria over time (Pepper et al. 2006). In this thesis, the effects of sunlight were 

excluded by storing the water samples inside dark bottles.  

The established results and the decay rate calculations were assumed by the following (Crane & 

Moore 1986; Davies et al. 1995; Hipsey et al. 2008): Some growth or a stationary period in the 

bacteria population may occur before they begin to die. Day 3 of the main experiment was used as the 

end of the experiment, but in reality, there was or could have expected some activity in water until all 

the process is completed. If not that, at least it may have been some residual bacterial population, 

which could have been calculated, in more strict research. The decay rate coefficient is the slope of the 

logarithm concentration of FIB against the time in days. For the results, it was important to separate de 

decay into lag phase and differential decrease in bacterial population. 
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3.4 Methods for enumerating E. coli and I. enterococci in water  

When pollution affects the water, the same bacteriological methodologies described in 

Standard methods for the examination of water and wastewater can be applied to both freshwater 

and seawater. Although bacteriological methods in Part 900 of Standard methods for the 

examination of water and wastewater (Rice & Bridgewater 2012) were mainly developed for 

efficient and rapid testing, they are also valuable techniques in water treatment and sanitation 

research. Analyses of both freshwater and seawater samples can be made using membrane 

filtration, Enterolert-E, and Colilert-18. Colilert-18 is a rapid test that requires only few hours 

to get results. Membrane filtration is a longer process because it requires more than 48 hours 

to indicate the presence of (only) enterococci bacteria and an additional two hours to confirm 

Intestinal enterococci bacteria colonies. Enterolert-E gives faster results; 24 hours are 

required to check for the presence of intestinal enterococci (IDEXX-QC enterococci). All of 

these methods provide the independent variable or parameters that are the basis for evaluating 

the decay rate of bacteria populations. 

Enumerations of bacteria obtained from the above-discussed methods are used as indicators to 

confirm the presence of pathogenic microorganisms in water samples and to demonstrate their 

decay over time. Once test results are documented, graphs can be made to help analyze and 

interpret the results. Even with these proven tests, however, accurately quantifying bacterial 

populations can be difficult because of errors in measurements and sample contamination. 

3.4.1 Membrane Filtration  

Membrane filtration (NS–EN ISO7899-2: 2000) was the methodology used for I. enterococci. 

Based on the Laboratory Handbook (NMBU 2015), the research on biological factors inside a 

water laboratory was permitted so long as safety measures are taken while handling 

potentially harmful microorganisms, media, and reagents used in experiments. No risk 

assessments were performed for these methodologies, but a Level 1 risk was assumed based 

on contamination or infection hazard for dealing with FIB. Other working standards for health 

and safety were considered based on the same handbook. 

3.4.2 Enterolert-E  

IDEXX laboratories explains: 

“Enterolert-E uses a Defined Substrate Technology® (DST®) nutrient indicator to 

detect enterococci. This nutrient indicator fluoresces when metabolized by 
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enterococci. DST improves accuracy and avoids the need for hazardous sodium azide 

suppressants used in traditional media. The Enterolert®-E Test was developed for the 

European market and correlates with the EU Bathing Water Directive standard method 

for enterococci, ISO 7899-1”  (IDEXX Laboratories 2015). 

 

 
 

Figure 3.3a      Figure 3.3b 

Table 3.4 a and b Diagram showing how Enterolert-E works. 
Source:https://www.idexx.com/water/products/colilert.html 

 

These enumerated bacteria obtained from the above-discussed methods are used as indicator 

organisms to show decay rate in a given number of days and to confirm the presence of 

pathogenic microorganisms in the actual water sample. Once the experiments are complete 

and data taken, test results are documented; calculations and graphs are made; and finally, the 

results are discussed accordingly. But there are some limitations to consider, for example that 

it is difficult to quantify the bacteria in general even though there have been many studies in 

relation to fecal bacteria and the authenticity of the test is well proved. 

 

3.4.3 Colilert-18  

Colilert-18 is a multi-well enzyme substrate test made for testing the presence of total 

coliform bacteria and E. coli bacteria. The Quanti-tray wells fluoresce under UV light because 

of the chemical reaction between the test’s growth medium and E. coli enzymes. Colilert-18 

gives results after Quanti-trays have been incubated for 18 to 22 hours at 36 to 370C, making 

it a rapid method for detecting Total coliform (yellow counts) and E. coli (fluorescence 

counts) bacteria in water. 
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Figure 3.4a      Figure 3.4b 

                             
Figure 3.4c     Figure 3.4d 

Table 3.5 a, b, c and d Diagrams showing how colilert-18 works. 
Source:https://www.idexx.com/water/products/colilert.html 

In Figures 3.5 a to b above, the transition of the coliform from colorless to yellow is 

demonstrated. This colour change occurs when β-galactosidase enzymes metabolize the 

ONPG nutrient indicator, changing the coliform to a yellow colour. Figures 3.5 c and d show 

how E. coli transitions from colourless to florescent. This colour change occurs because E. 

coli uses β-galactosidase enzymes to metabolize the MUG nutrient indicator, resulting in 

fluorescence when UV light hits the sample (IDEXX Laboratories 2015). In practice, the 

bacteria from water samples react noticeably and significantly with the Colilert-18 test 

medium. 

3.5 Preliminary Laboratory Experiments and Data Analysis   

For this experiment, six mixed-water samples were analyzed for the presence of transmissible 

pathogens. Different pathogens and bacteria were expected in these samples because of the 

variety of wastewater entering the WWTP.  

The Standard Methods Most Probable Number (MPN) model and tables were used to 

determine the values of coliform faecal units (CFU) in 100 mL of water sample (American 

Public Health et al. 2005). The aim of this biological process was to find the concentration of 

CFUs using counts of E. coli and intestinal enterococci in the Quanti-trays and plate dishes 

for both freshwater and seawater water samples. Colitert-18 method and Membrane filtration 

as prescribed in Standard methods for examination of water and wastewater (Rice & 

Bridgewater 2012), and methodologies based on IDEXX-Colilert and NS-EN ISO 7899-

2:2000.  
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Table 3.6 Preliminary experiment flow chart include experiment start up, collection, dilution and laboratory 
experiment levels. (Silva, 2015) 

Preliminary experiment 
Startup and setting up of laboratory instruments  and supplies  

Day 0 
1) Sample Collection of 

 Seawater 
 Sewage 
 Freshwater 

2) Delivery of water samples to laboratory 
3) Dillution of water samples  

 1:100  Serie  
 1:1000 Serie 

4) Experiments: 
 Biological Process: 
 Colillert -18  in 1:100 dillution 
 Menbrane Filtration in 1:100 dilution 
 Physical Process 
 Chemical Process 

Day 1 
 Colillert -18  in 1:100 dillution water sample  
Menbrane Filtration in 1:10 dilution water sample 

Day 2 
Colillert -18  in 1:100 dillution water sample  
Menbrane Filtration in 1:10 dilution water sample 

Day 3 
Colillert -18  in 1:100 dillution water sample  
Menbrane Filtration in 1:10 dilution water sample 

Day 4 
No laboratory experiment 

Day 5 
Colillert -18  in 1:100 dillution water sample  
Menbrane Filtration in 1:10 dilution water sample 

Day 6 
No laboratory experimnet 

Day 7 
No  laboratory experriments 

Process Analyis and Reporting 
using NMP table and Exeel program 
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Table 3.6 illustrates the methodology applied, including sample collection, preparation, and 

dilution as well as the experiments and data recording processes.  Before analysis was started, 

the laboratory instruments and supplies had to be set up. Preliminary work included checking 

for calibration, sanitizing the study area, and sterilizing glassware needed in the experiments.  

3.5.1 Collection, Preparation and Dilution Process of Water Samples 

Materials used for the collection and preparation of water samples included two 5 L plastic 

bottles, one 2 L plastic bottle, two 5 L plastic buckets, and 8 2 L brown glass bottles. 

The following water samples were used in the experiment:  

1. Freshwater collected from Glomma River 

2. Seawater collected from Drøbak beach 

3. Wastewater collected water from Drøbak WWTP 

 

The dilution process, however, used raw (untreated) wastewater from Drøbak WWTP, 

Glomma freshwater, seawater from Drøbak beach, and distilled water. The same procedure is 

used for the seawater samples were prepared by mixing 900 mL of seawater with 100 mL 

inlet wastewater in two 2 L brown glass bottles. One bottle was kept in cold environment at 

40C and the other was kept at room temperature (200C). These water samples were kept in 

dark glass bottles away from light and at a stable temperatures (40C and 220C). The same 

routine was repeated for three Glomma freshwater samples. 

Using the samples from both cold and room temperature environments, each sample was 

diluted into four 100 mL sub-samples for use in the E. coli experiment. The dilution series 

method was used to dilute two samples each of 1 mL and 10 mL sample water with four 90 

mL units of distilled water. These four diluted samples waters were kept for the E. coli 

counting experiment. The remaining water samples remained in two 1000 mL glass bottles to 

be analyzed in the following days. 

The diluted samples containing mixtures with inlet wastewater, freshwater, and seawater were 

used for each day of the experiment. To obtain 1:10 dilution samples, 10 mL of each water 

sample type was poured into 90 mL of distilled water. Using the mixed water samples, the 

1:100 dilutions was performed by removing 10 mL of this sample from the sample bottle and 

transfer to the dilution tube containing already 90 ml of sterilized water. The same procedure 
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was applied to the rest of five samples, after the dilution was done, the solutions were 

transferred to the 100ml small bottles and filled the rest with distilled water.  

3.5.2 Detection and enumeration of E. coli in freshwater and seawater using Colilert-

18 test 

For this experiment purposes, six water samples were analyzed for the presence of 

transmissible pathogens. Different pathogens and bacteria are expected in these water mixes 

because of the variety of wastewater entering the Drøbak WWTP.  

The Standard Methods Most Probable Number (MPN) model and tables are used to determine 

the values of E. coli. This method requires a 100 ml of water sample and MPN tables 

followed by (American Public Health et al. 2005). 

3.5.2.1 Materials 

The list of materials used in the Colilert-18 test includes: 

1. IDEXX Quanti Sealer Model 2X instruments (sealing machine)  

2. IDEXX Quanti Sealer rubber board  

3. UV lamp  

4. Quanti tray: Plastic Pockets for incubation of water sample  

5. Sterile disposable 100 ml bottles with white lids  

6. Incubator at 35±0.5oC (to keep the Quanti tray for 18 to 22 hours) 

7. Reagents or nutrient substrates (ampoules – Colitert-18)  

8. Distilled water  

9. Mixed water samples 

10. Pipette  

11. Tubes for dilution  

12. Two tables for conversion of number of bacteria to concentration values. 

3.5.2.2 Procedure  

This methodology was based on the Colilert-18 test kit method (IDEXX Laboratories 2015) 

All the control freshwater and seawater samples were kept at 40C and rest of the two each 

freshwater and seawater samples were kept at 220C . 
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a) Obtaining two type of diluted water samples 

The two types of diluted water samples were used only for five days of testing. The 3 

samples contained Glomma Freshwater plus inlet sewage from Drøbak WWTP and 

other 3 samples were made of seawater plus inlet sewage from the WWTP. 

b)  Mixing the Colilert-18 ampoules into water samples and sealing the Quanti-

trays 

One ampoule containing the chemical reagent Colilert-18 was added to a 

disposable bottle of diluted water sample. E. coli nutrient powder reagents for each 

Colilert-18 test were used in 100 ml of mixed water sample. Each bottle was 

gently shaken to combine the powder and water inside a small container. 

Afterwards, the mixtures were transferred to the plastic pocket of the Quanti-trays 

and placed in a rubber board on the IDEXX Quanti Sealer, before ensuring, the 

liquid was distributed evenly to all the pockets. In the IDEXX Quanti Sealer 

machine, the trays were sealed; this process only took a few seconds. 

These trays were put in the incubator for 18 hours. The samples were removed 

from the incubator the next day to count the number of yellow-coloured and 

fluorescent (under UV light) pockets. Using the count and a reference table, the 

concentration values for all the samples could be interpolated. 

 

The steps for the Colillert-18 and Quanti-tray enumeration for E. coli proceeded as follows: 

Day 0 – Water samples were collected and diluted. For the first preliminary 

experiment, only one parallel for 1/100 dilution mixed sample and 1/1000 sample 

were done. According to the Colilert-18 test kit instructions, each water sample was 

poured into Quanti-trays and incubated at 35 ± 0.5oC until the next day. 

Day 1 – Large and small wells exhibiting yellow pockets (for total coliform) or UV 

florescence (for E. coli bacteria) were counted and recorded using the method based 

on MPN/100 mL A new Colillert-18 test was performed to one control and two 

parallel groups for fresh and seawater using a 1:100 dilution. All trays were then 

incubated at 36 ± 0.5oC for 18 to 22 hours. 
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Day 2 – New laboratory experiments were conducted using the Colilert-18 method on 

the freshwater and seawater control groups and 2 of each samples each using 1:100 

dilutions. The Quanti-trays from Day 1 were quantified and recorded. 

Day 3 – The same procedure as Days 1 and 2 was followed and Quanti-trays from 

Day 2 were quantified and given MPN/100 mL values. 

Day 4 – No new experiments were performed during this day, but the large and small 

wells from Quanti-trays prepared on Day 3 were counted and registered. 

Day 5 – New Colilert-18 tests were performed in freshwater and seawater using 1:100 

dilutions. 

Day 6 – No experiments were performed this day, but Quanti-tray wells from the Day 

5 experiment were counted and registered. 

Day 7 – No experiments were performed and the no membrane filtration readings. 

 

Table 3.7 IDEXX Quanti Sealer model 2X and rubber insert for Quanti-tray. (Picture: Silva, 2015) 

 

 

Table 3.8 Quanti-trays, Colilert-18 ampoule, and disposable bottles are the materials used for the Colilert-18 
test. Source:http://www2.idexx.com/view/xhtml/en_us/water/newsletter/201103.jsf 
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Table 3.9 Electronic Incubator set at 36±05 oC. (Picture: Silva, 2015) 

 

Equipment and materials used for the Colillert-18 method are shown in Figures 3.2, 3.3 and 

3.4 above. Figure 3.3 shows the rubber that holds the Quanti-tray in the IDEXX Quanti 

Sealer, while Figure 3.4 shows the material used to perform the test using the ampoules and 

100 mL mixed water samples. These samples are then poured into Quanti-trays and sealed to 

stay in incubator at 36 ± 05oC (Table 3.9) for 18 to 22 hours. 

3.5.3 Detection and enumeration of I. enterococci in freshwater and seawater using 

Membrane filtration method 

To determine the number of coliform faecal units (CFU) in 100mL of water sample, the 

colonies, which turned dark purple to confirm the presence of intestinal enterococci, in 100 

mL water samples were put through a membrane filter with 0.45 µm pores. The composition 

of the membrane filters was mainly to remove contaminants in water. Filter materials are 

made of organic materials that are used to trap the microorganisms such living in the water. 

Filter paper mesh can be used to remove large suspended solids but membrane filters are very 

efficient into removing much smaller sizes smaller than 45µm. Such fine filters are able to 

retain even the smaller of microorganisms and organic mater (Rice & Bridgewater 2012). 

Once incubated the bacteria are inoculated onto the media and grow in the petri plates for two 

days. Afterwards they a re changed into a new media and incubated for another two hours in 

which should reduces significantly the number of pathogens in the water registered by the 

change in darker color of the colonies in the petri-dishes. This method required 48 hours of 

incubation at 36 ± 20C to check enterococci bacteria before transferring the membrane filter 

into a petri dish containing m-HPC agar and incubated to 44±0.50C to positive I. enterococci.  
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3.5.3.1 Materials 

1. Three freshwater samples and three seawater samples 

2. Distilled water 

3. Membrane filter apparatus according to ISO8199 

4. Membrane filters gridded at 0.45µm 

5. Autoclave keeping a temperature of 121 ± 30C 

6. Thermostatic Incubator keeping a temperature of 36 ± 20C and 44 ± 0.50C 

7. Membrane filter instrument 

8. Vacuum pump 

9. Sterile medium petri dishes 

10. m-HPC agar plates dishes 

11. Sterile tweezers 

3.5.3.2 Procedure 

According to NS EU ISO 7899, Part 2 enumerating and isolating intestinal enterococci can be 

done using membrane filtration that removes micro-contaminants in water. Filters are made of 

organic materials that trap microorganisms and organic particles that cannot permeate the 

small pores of the filter media. Filter paper mesh can be used to remove large suspended 

solids, but membrane filters can efficiently remove particle sizes smaller than 0.45 µm. The 

filtered material can be placed into petri plates with m-HPC agar media using sterilized 

tweezers. In this experiment, the plate dishes containing bacterial colonies were put upside 

down inside the incubator for approximately two days. Afterwards, they were transferred into 

new petri dishes with the same media and incubated for another two hours. During this time 

period, a darker colour of the colonies in the petri dishes indicated a significant increase in the 

number of pathogens in the water. All procedures for preparation, filtration of water samples, 

and autoclave the membrane filtration instruments were according to the instructions in ISO 

8199 and NS-EN ISO 6887-1. 

Day 0 – All six water samples were prepared and diluted two samples, one at 1:100 

and the other at 1:1000. Thereafter, the samples were tested and incubated at 36 ± 20C 

for 48 hours.  

Day 1 – Three freshwater and three seawater samples with a 1:100 dilution were 

tested and incubated at 36 ± 20C for 48 hours. 
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Day 2 – The first samples (from Day 0) were removed from incubator after 48 hours 

and Counted of the dark purple colonies of bacteria from the Day 0. After removing 

the filter membrane from the petri dishes using the tweezers, the colonies were 

transferred to a new agar dishes. The dishes were inverted to incubate at 44 ± 0.50C for 

2 hours to obtain the number of positive colonies for intestinal enterococci. New 

experiment was performed and expected from incubator in the day 4. 

Day 3 – Enterococci bacteria from the Day 1 were removed, incubated again, and the 

confirmed I. enterococci dark purple colonies were counted. And in this day the new, 

bacteriological experiments were performed the same as the other days. 

Day 4 – No experiment were performed. Only analyze of confirmation of I.  

enterococci from waters samples of the  day 2. 

Day 5 – Because fewer than 10 colonies had developed since Day 3, the experiment 

was stopped after day 3. I. enterococci colonies from Day 3 were counted and 

registered. 

Day 6 – No experiment were performed. 

Day 7 – No experiment were performed..  

 

Table 3.10 Labeled drawing of membrane filtration apparatus. 
Source:http://water.me.vccs.edu/courses/env211/lab10_print.htm 

 

3.5.4 Chemical and Physical material and methods for freshwater and seawater 

The COD test is used to measure microorganism contamination in water. Simple and rapid 

methods perform to the test for the chemical and physical parameters we used. Spectrometer 

and pH meters were used for this laboratory experiment. 
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3.6 Main Experiment 

This experiment involved combined wastewater and seawater samples to evaluate the decay 

rate of E. coli and intestinal enterococci bacteria from Day 0 to Day 3. Because the 

wastewater was a potential pathogen contamination hazard, protective equipment was used 

during the experiment and NMBU laboratory regulations guided health and safety practices 

(NMBU 2015). 

The hypothesis was that the number of bacteria in the mixed water samples would decline 

significantly after 5 days, making the water safe to use for bathing purposes. Deep and surface 

seawater results were expected to give different curves for the decay rate of bacterial 

populations. The water samples were stored at 4 and 220C.  
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Table 3.11 Designed Main experiment flow chart. From the Start-up to end of the Laboratory experiment levels. 
(Silva, 2015) 

Main experiment 
Startup and setting up of laboratory instruments  and supplies  

Day 0 
1) Sample Collection of 

 Seawater 
 Sewage 

2) Delivery of water samples to laboratory 
3) Dillution of water samples  

 1:10  Serie  
 1:100  Serie  
 1:1000 Serie 

4) Experiments: 
 Biological Process: 
 Colillert - 18  in 1:100 dillution 
 Enterolert - E in 1:10 dilution 
 Physical Process 
 Chemical Process 

Day 1 
Colillert -18  in 1:100 dillution water sample  
Enterolert - E in 1:10 dilution water sample 

Day  2 
Colillert -18  in 1:100 dillution water sample  
Enterolert - E in 1:10 dilution water sample 

Day 3 
Colillert -18  in 1:100 dillution water sample  
Enterolert - E in 1:10 dilution water sample 

Day 4 
No laboratory experiment 
Record Quati-tray MPN/100mL values  from day 2 

Day 5 
No laboratory experiment 
Record Quati-tray MPN/100mL values from day 3  

Process Analyis and Reporting values  
using MPN table and Exeel program 
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3.6.1 Materials and methods main experiment 

3.6.1.1 Preparation and dilution process of water samples 

Seawater samples, in 2 10 L containers (one for deep water and other for surface water), were 

taken immediately to the NMBU Fløy V Laboratory. 1.5 L of raw wastewater from Drøbak 

WWTP was collected and transported as well. 

3.4.3 Enumeration of E coli in Deep and surface seawater at 4oC and 22oC  

Colilert -18 method 

In the main experiment, 6 bottles of mixed water samples were analyzed for the decay of 

faecal bacteria in seawater. Two types of mixed water samples were used for three days of 

testing. The first samples contained deep seawater plus raw wastewater from Drøbak WWTP, 

and the other samples were made of surface seawater plus raw sewage from the Drøbak 

WWTP. The aim of this method was to enumerate E. coli in the mixed samples of deep 

seawater and surface seawater using the Colilert-18 method.  These counts were to be used to 

analyze the relationship between bacteria survival at deep and surface seawater at different 

temperatures.  

3.6.1.2 Materials  
Materials used in the main experiment were the same as in Section 3.3.1 for Colilert-

18 test. 

        - 6 dark bottles for the experiment 

- 48 Colilert 

- 48 Quanti trays 

- 48 small plastic bottles for mixing samples 

3.6.1.3 Procedure 
During Days 0, 1, 2, and 3, twelve parallels of water samples for deep water and 

surface seawater were analyzed and enumerated as per (IDEXX Laboratories 2015). 

The same procedure for the Colilert-18 test (Section 3.3.2) was used for the 

microbiological analysis: 

Day 0 – 3 samples with deep seawater and 3 with surface seawater mixed samples 

were analyzed and incubated at 36 ± 0.50C for 18 to 22 hours. 

Days 1, 2 and 3 – All 12 samples, as described in in Section 3.3.2, were analyzed. 
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3.6.2 Enumeration of I. enterococci in deep and surface seawater at 4oC and 22oC 

3.6.2.1 Materials  
6 dark bottles 

48 ampoules of Enterolert-E 

48 Sterile disposable 100mL bottles 

Incubator set at 41 ± 0.50C 

3.6.2.2 Procedure 

After the mixing and dilution procedure, the samples were placed in Quanti-tray. 

These trays were taken to the incubator for 18 to 22 hours, and then the samples were 

removed from the incubator so the number of pockets that were yellow or fluoresced 

under UV light could be counted. Using these numbers and a table, the values for the 

concentration of all the samples could be interpolated. 

Day 0 – 1:10, 1:100 and 1:1000 dilution samples were tested and incubated. 

Day 1 – One sample of deep seawater control sample plus two parallels of the same 

water. One sample of surface seawater for control sample plus two surface seawater. 

Day 2 – All six samples from Day 1 were removed from the incubators and counted 

for florescence in Quanti-tray pockets. New samples were tested and incubated at 41 ± 

0.50C for the next 18 to 22 hours to obtain the number of wells testing positive for 

intestinal enterococci. 

Day 3 – Reading bacteria from the Day 2 sample group were counted. And the same 

procedure as the days before.  

Day 4 –Reading of results from day 3. 

 
Table 3.12 Incubator machine with Quanti-trays at 41 ± 0.50C for 18 to 22 hours. 
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E. coli and I enterococci bacteria results from the figures below indicate concentrations that 

corresponded to the number of Quanti-tray pockets with yellow coloring or UV fluorescence. 

3.6.3 Statistics method 

The logarithm average method (Equation 3.2) was used to calculate the geometric mean of the 

number of bacterial colonies. The data for each of the experiments was tabulated and the 

mean for each of the values was taken.  

𝑴𝒆𝒂𝒏 𝒍𝒐𝒈𝟏𝟎 =
𝒍𝒐𝒈𝟏𝟎 𝒐𝒇 𝒔𝒂𝒎𝒑𝒍𝒆 𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍

𝒏
                        Equation 3.1 

Where: n is the number of sample parallels for each day of the experiment. 

The calculations for mean (Equation 3.2) and standard deviation (Equation 3.3) apply to the 

Enterolert-E method. 

𝑺𝑫 = (𝒙!𝒙𝒂𝒗𝒈)𝟐

𝒏
                                      Equation 3.2 

Where SD is the standard deviation in each day of the experiment using sample parallels; x is 

the log10 of MPN/100 mL value; Xavg is the mean log10 of MPN/100 mL; n is the number of 

sample parallels for each experiment. 

3.6.4 Chemical and physical equipment for deep and surface seawater and freshwater 

 

Table 3.13 Instrument to measure temperature and pH measurements in pH meter. (Elinga, 2015) 

 

Table 3.14 Spectrometer is a rapid and simple instruments used to measure Total-p, Total-N, COD and of water 
samples mixed with respective reagents. (Picture: Elinga, 2015) 
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3.7 Ethical Considerations 

The first location for seawater sampling in Drøbak was a public beach with no constraints to 

access, even in winter season. Local residents near the beach live a good distance from the 

collection point, so they were not likely to be impacted by sampling. Permission was not 

required to use this water taken from this public beach. Freshwater from the Glomma River 

was available in the laboratory, and permission was granted to the thesis co-supervisor for use 

in these experiments. 

The research area in Solbergstrand is used for scientific purposes and is owned by NIVA. 

Supervisor Ingun Tryland arranged all the permissions needed for obtaining samples for this 

thesis project.  

3.8 Limitations  

Freshwater samples from the Glomma River were used for practice in the preliminary 

experiment and could not be relied upon for acceptable results in the main experiment since 

the water have been stored for more than six months. 

The limitations in the lack of a biochemical marker to separate non-pathogenic 

microorganisms from pathogenic strains and the relationship between serotype and 

pathogenicity are still questionable for both seawater and freshwater. However, primarily it is 

because studies have shown that E. coli was a much better indicator of disease risk than was 

Fecal Coliform, EPA (1986) has recommended that E. coli be used as criteria for classifying 

waters for fresh water contact recreation (Rice & Bridgewater 2012) 
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4. Results  

In this section, all the results are presented and interpreted to express the decay rate of E. coli 

and I. enterococci bacteria. First, I will present the graphical results of the slope of logarithm 

MPN or CFU versus time for preliminary and Main experiments. Then, the results the decay 

rate were selected as average of logarithm values of the concentration, based on linear 

regression. For deep and surface seawater the results are recorded in tables 4.2 and 4.3. 

Finally, the results of the Chemical and physical test of water samples are recorded in table 

4.1 and 4.4. The equation below (Equation 4.1) is used to analyze the constant decrease in the 

graphs; we used the fit of the model curve and coefficient of determination to explain the 

behavior of data of the FIB. We can use these equations for the phases of the graphs. For all 

the stages of the curve slope for both E. coli and I. enterococci,  

Slope of the graph = - (log10 Ct- log10 Co)/ (t0-t1))       Equation 4.1 

 
Where: t1: time at any point after the lag period and t2: time at the end of the experiment. C0 

and Ct is the concentration of bacteria at initial time any time t and they are represented as 

Log10 (MPN/ 100mL). 

The main values of the concentration of the FIB are given in logarithmic scale. Colillert-18 

method Mean values of E. coli are presented in logarithmic scale in MPN/100mL versus the 

number of days used for the experiments.  I. enterococci bacteria counts from the membrane 

filtration method are estimated as CFU/ mL in days and MPN/100mL for Enterolert-E test. 

4.1 Preliminary Results – Freshwater and seawater at 220C 

4.1.1 Total coliform for freshwater and seawater  
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Table 4.1 Logarithm concentrations of Total coliforms in freshwater and seawater at room temperature 20 0C for 
preliminary experiment. 

Results for water samples (Kept at 220C) were plotted in MPN/100mL of total coliforms per 

ml against the time for the bacteria to die-off over 5 days.  

In total coliform counts, the mean logarithm initial concentration of bacteria was 5.08 log 

reduction (log10) and decreased to 4.03 log10 after 5 days for freshwater sample. The 

freshwater sample linear graph did not show much change from day 0 to day 2. In fact, it 

seemed to increase suddenly by 0.2 log reduction for those two days. Thereafter, it declined 

another 0.7 log10 until day 5 (Table 4.1). Day 5 Quanti-trays had less than 20 large and 5 small 

positive yellow wells. With exception of sample 2, this did not show any changes in the 

results of large wells in Quanti-tray  from day 1 (Table 8.1). 

The seawater samples started with a mean value of 5.05 log10 (MPN/100mL). It only 

decreased 0.5 log reduction in the first three days, and in the next two days reduced 1.5 log10 

The total reduction in concentration of the seawater bacteria is of 2 log reduction (Table 4.1).   
For the seawater day 5 results, total coliform yellow positive Quanti-tray wells were below 20 

for large wells and below 10 for small wells (Table 8.2). No standard deviation was applied to 

these graphical analyses because the yellow count of total bacteria was only used for 

reference purposes.  

4.1.2 E. coli in freshwater and seawater 

 
Table 4.2 Graph of logarithm concentrations of Escherichia coli in freshwater and seawater for preliminary 
experiment.  

The number of positive wells, which shined when a UV lamp was reflected upon them, 

resulted into E. coli mean logarithm concentrations versus Time (days) (Table 8.2). The 
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number of freshwater bacteria rose slightly for 2 days before they began to die-off. During the 

following 3 days, they decreased to the mean value 3.12 log10 (Table 8.2). Seawater samples 

decayed more than 2 log10 during the five days. At first glance, the standard deviations are 

quite large, therefore this result is a poor representation of water sample values.   

4.1.3 Intestinal enterococci using membrane filtration method 

 
Table 4.3 Graph of logarithm concentrations of Intestinal enterococci bacteria in fresh and seawater water 
samples using membrane filtration method during three days of laboratory analysis.  

The linear graphs in the Table 4.3 show the I. Enterococci bacteria results obtained by the 

membrane filtration method. The bacteria counts represent are the number of colonies faecal 

unit (CFU) per 100 mL of water sample. The intestinal bacteria colonies turned purple after 

the second incubation of two hours at 44±0.50C, as described in membrane filtration 

subsection in chapter 3. Freshwater starting value was 3.91 log10 and seawater was 3.96 log10. 

Freshwater and seawater samples for the I. Enterococci showed similar rates of decay and 

their slopes were almost parallel. This indicates that there was not much difference between 

the fates of the bacteria for the different types of water.  

4.1.4 Results for chemical and physical analysis of freshwater and seawater  

The chemical and physical properties of water samples used during the laboratory analysis 

were used to obtain readings of temperature, chemical oxygen demand (COD), total 

Phosphorous, total Nitrogen, electro-conductivity (EC), pH, turbidity and colour of both fresh 

and seawater samples (Table 4.4). Freshwater and seawater results are presented as 

concentrations of milligram per liter for COD, total Nitrogen and total Phosphorous in 

columns three, four and five. In those columns, the seawater values are larger than freshwater 

values. 
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Table 4.4 Chemical and physical parameters for freshwater and seawater measured in the first day of laboratory 
data collection. 

Type of Waster 

sample 
T COD Total N Total P EC pH Turbidity 

Colour 

  0C mg/l mg/l mg/l     FNU   

Freshwater 7 9,27 0,658 0,052 23 MS/cm 7,41 2,03 26mg/lpt 

Seawater 10 165 0,997 0,073 24,81 mS/cm 7,84 1,59 17mg/lpt 

COD: Chemical Oxygen Demand 

EC: Electro Conductivity 

T: Temperature 

4.2 Main Experiment in Deep and Surface seawater 

In 1908, Chick used Log-linear models to estimate the decay rate of FIB (Chick 1908).  The 

bacteria experiments and analysis used different temperatures, namely 4°C and 22°C, for both 

deep and surface water samples. Decay rate results were compared and adjusted to the models 

at the two different temperatures and they showed a similar pattern between the deep and 

surface waters 24 hours detention methods for Colllilert-18 were used to test E. coli and 

Enterolert-E for I. enterococci using the both types of seawater samples (IDEXX Laboratories 

2015; Rice & Bridgewater 2012; WHO 2006). Wastewater used for the mixture of water 

samples came from sewage from Drøbak WWTP.  

4.2.1 Escherichia coli in deep and surface seawater at 4°C 

 

Table 4.5 Results of the fate of E. coli bacteria in deep and surface seawater at 40C 
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From day 0 to day1, the graph of E. coli experience a lag phase, which means that the bacteria 

seem to be stationary for the first day. The E. coli in surface seawater was less than 0.1 log 

reduction. The decay rate equal 0.162 day-1 for the E. coli surface water samples at 4°C 

temperature. While at same temperature, the deep seawater sample decay rate for E. coli was 

with 0.265 day-1 (Table 4.7). The graph shows that the numbers of E. coli bacteria dying were 

not significant at this low temperature during the experiment. Overall, E. coli in deep 

seawater was inactivated with 0.32 log10. The main reasons for these discrepancies in the E. 

coli graph curves were not enough parallel samples to make a mean value with better-fit 

model and the accumulation of error in the experiment. However, with the number of bacteria 

decreasing faster, steeper decline in the slope graph for both deep and surface seawater was 

also implied. With an approximately linear graph compared to the deep seawater, the surface 

seawater samples of E. coli decayed circa 0.21 log10 for the tree days experiment (Table 4.5). 

This is a case of very small change between the E. coli initial concentration and the 

concentration at the end of the experiment. 

 

Table 4.6 Results of the fate of E. coli bacteria in deep and surface water at 220C during tree day’s experiment 
using Solbergstrand sample seawater. 

The E. coli behave differently at a temperature of 22°C, then at 4°C. For the E. coli in deep 

seawater, the value was of 1.46 log10 in just 3 days. While the surface samples started 

reducing as much as 2.49 log10 during the experiment. The highest E. coli in deep seawater 

decay rate was 1.049 day-1, and the E. coli in surface decay rate was 1.914 day-1 (Table 4.7). 
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Results of the same type of water sample were not agreed if the storage temperature changes. 

In case of E. coli in the deep seawater slope graph at 4°C declined less than the E. coli at 

22°C. This suggests that temperature played a role in decreasing the bacteria population. In 

the E. coli of  the surface water sample at 40C showed little difference in decay rate from day 

0 to day 3 of the experiment. When the water sample kept at 220C, the indicator bacteria 

decreased rapidly after two days at 2.5 log10. 

Table 4.7 Results for the E. coli for the deep and surface seawater. 

Type of water 
Slope of the graph Decay rate Half time Log reduction 

  

Mean Log 
reduction/day kt (day-1) T1/2 (days) T90 (days) 

Deep seawater 4°C    0,11 0,265 2,62 9 

Surface seawater 4°C    0,07 0,162 4,27 14 

Deep seawater 22°C    0,46 1,049 0,66 2,2 

Surface seawater 22°C    0,83 1,914 0,36 1,2 

 

4.2.2 Intestinal enterococci in deep and surface seawater 

 

Table 4.8 Results of fate of Intestinal enterococci bacteria in deep and surface water at 40C. 

Results for I. enterococci of deep and surface seawater graphs at 40C have similar pattern. 

They superimpose onto each other. They also both have very small decay rate values and to 
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be stationary during the whole experiment. This may be because the cold environment did not 

allow I. enterococci to die faster. A very small difference in the I. enterococci slope showed 

from the first day of the experiment to day 3, it was less than 0.1 log10. Standard deviations in 

the graph are very small, except in the beginning of the experiment. 

 

Table 4.9 Results of fate of Intestinal enterococci bacteria in deep and surface seawater at 220C 

From day 0 to day 1, the bacteria experienced a lag phase and could have increase instead of 

decay. At 220C, the I. enterococci in deep and surface seawater samples, as showed in Table 

4.9, reduced 0.2 log10 and 0.4 log10 after the first day of the experiment, respectively. Deep 

seawater at different temperatures (4 and 220C) showed small changes in the decay of the I. 

enterococci. While in the bacteria of the surface seawater samples, at some extent, only 

experience decay of I. enterococci after the day 1 of the experiment.  

Table 4.10 Results for I enterococci in deep and surface seawater. 

Type of water 
Slope of the graph Decay rate Half time Log reduction 

 

Mean Log 
reduction/day kt (day-1) T1/2 (days) T90 (days) 

Deep seawater 4°C    0,0 0 >100 >100 

Surface seawater 4°C    0,023 0,052 13,37 44 

Deep seawater 22°C    0,091 0,210 3,29 11 

Surface seawater 22°C    0,240 0,553 1,25 4,2 
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4.2.3 Chemical and physical characteristics of seawater 

Chemical characteristics of water samples for deep and surface seawater are shown in (Table 

4.11). The test analysis results for COD would be within the range of 100 to 200 mg/L. Even 

though more stable water samples were used, still all the results were above 200 mg/L COD. 

 Table 4.11 Chemicals and physical parameters of deep and surface untreated seawater analyzed in first day of 
experiment. 

Type of Waster sample COD Total N Total P EC pH Turbidity 

  mg /l mg /l mg /l mS /cm   FNU 

Surface ocean water 909 N/A N/A 19,72 7,2 1,92 

Deep (60m) ocean water 2407 N/A N/A 29,41 7,4 3,02 

              

Surface ocean water with sewage 905 N/A N/A 19,18 7,7 2,95 

Deep (60m) ocean water with sewage 2460 N/A N/A 28,67 7,7 3,1 
NB: Surface Deep water is bellow 60m.water ranges  (0-0.3m). 

 EC: Electro conductivity 

Total P was out of the range so that the results are negative. 
 
The main results and findings found above an the theory related to this thesis can be discussed 
in the chapter 5. 
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5. Discussion  

In the thesis of the fate of faecal indicator bacteria, he more specific and stronger results given 

in the chapter 4 are discussed and thereafter, are also discussed. Therefore, the general 

implications of those results, the factors affecting these experiments are discussed. Whether 

they agree or not with peers review from previous studies cited in the introduction and 

Literature review.  

5.1 Factors influencing FIB Results 

The literature review discussed the main factors influencing fate of faecal indicator bacteria,, 

however many aspects of the research still remain  to be discussed in this chapter. As shown 

in the literature review, when considering the results obtained from experiments the 

temperature, sunlight and salinity of the FIB seem most relevant for analyzing the fate of FIB 

in coastal waters. The selected factors were examined in the results and confirmed previous 

statements in literature review. Lower temperatures increased the survival period of the 

bacteria while higher temperatures seemed to increase the rate of death of the bacteria (Crane 

& Moore 1986). Temperature, in fact, is used as the controlling parameter and for storing the 

water samples (chapter 3). The results for E. coli and I. enterococci in colder temperature 

(4°C) demonstrated that the faecal bacteria can lived longer than the number of days of the 

experiments. While the FIB in seawater kept at warmer temperature (22°C) died faster. If we 

look at the cold temperature at Norwegian coastal waters in most of the year, it is possible to 

say that if FIB can survive longer, then maybe the pathogenic microorganisms also are 

affected by the cold temperatures living longer, which affect their fate in environmental water 

or at their host. 

From the light deprived experimental conditions, the decay of the bacteria decreased at a 

more rapid rate for seawater than freshwater. This could have been because of the influence of 

other factors such as: salinity of seawater and temperature at which the water samples were 

kept. This was in favor of the s the experiment to avoid the die-off of the bacteria. From 

earlier studies, it is well proved that the presence of sunlight does increase the mortality of 

bacteria (De Brauwere et al. 2014a; Hipsey et al. 2008). Keeping the samples away from 

sunlight allowed us some time to analyze the decay of the bacteria. 

Not enough data was gathered in this thesis to evaluate the optimum pH for the FIB. Instead 

they use pH=7 to incorporate in decay rate function by depriving the bacteria from solar 
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radiation. Almost any data is available to analyze pH and the only data used in those 

experiment form figure 6 were the ones calculated by the scientist themselves (Hipsey et al. 

2008, Figure 6). pH values, for both experiments, varies from 7 to 8 which will give decay 

rate fraction close to 1 by adapting those values in Table 2.5. 

5.2 Rapid Methods and their Effectiveness   

Although many studies have revealed that changes in season affect the rate of decay of FIB 

(Crane & Moore 1986). The same was not shown, but not so significant, in the results of the 

decay rate of E. coli done from preliminary and main experiments. Reflection on 

effectiveness of different methods used has some impact on the trustfulness of the results. 

In our study with FIB, the results of concentration of the bacteria in 100mL indicated that 

there is no significant difference between the results from deep and surface seawater. 

However, there was not enough funding to continue the experiments for more days and 

explore further the behavior or death of all faecal bacteria in water. After the preliminary 

results, with very few bacteria in the water sample, the supervisors decided to limit the test for 

three days.  The agreed assumption was that after 3 days there was not enough data to 

calculate the concentration of the FIB in water for both the seawater and the freshwater 

samples. The purpose of the design of this study was to investigate the fate of faecal indicator 

bacteria in the Oslofjord. The main study used the decay rate values of E. coli and I. 

Enterococci at two different temperatures and water surfaces. Several other studies have also 

used similar approaches to evaluate the mortality of faecal indicator bacteria (Hipsey et al. 

2008).  

The sewage discharges into the freshwater bodies and ocean affect the quality of water at 

deep and surface levels, contrary to the statement that  “the sewage system and size of the 

combined sewage overflows do not affect the microbiological quality of the discharged water 

during storm water events” (Rechenburg et al. 2006). What it is really important to focus on is 

how polluted or contaminated the CSOs entering the water bodies are. Boehm (2007) 

investigated how the variability of FIB can affect their concentration. Errors occurred in the 

calculations of FIB because it varies over a 24-hour period. To solve this problem, one could 

use rapid detection methods to reduce the presence of errors (Boehm 2007). Confirmation of 

the presence of E. coli and I. enterococci in water using Colilert-18 and Enterolert-E, 

respectively, is beneficial to the experiments described in chapter 3 Those are simple and fast 
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methods to enumerate bacteria in both fresh and seawater, since results can be obtained just 

after 20 hours.  

5.3 Statistical analyze  

Standard deviation (SD) of the experimental data can interpret the data and provide a form to 

check the results. So, “the smaller the SD the lower the uncertainty, thus providing more 

confidence in the experiment, and this increases the reliability of the experiment’’ 

(Mendenhall & Sincich 2012). The standard deviations found in this experiment were less 

than 0.5 and the highest was the last experiment for surface water at 220C with SD = 0.4, that 

is only circa 40% of the value falling within the mean value and is fairly uniform, even 

though there were just two parallels used in the experiment in each day. A reason for these 

discrepancies could be that in the graph the curves did not to make a good fit.   The 

accumulation of error in the experiment, may also contribute to such an effect. Besides this 

SD, the rest of the experiments gave smaller SD and we can conclude that the mean values of 

the experiments are viable. For all the experiments except I. enterococci at 40C, the log 

reduction was quicker in the end of the experiment than the days before and leads us to agree 

with the hypothesis that as the nutrient decreases this compromises the bacterial survival. 

E. coli at 40C did not reduce in concentration since the log reduction after 3 days was less 

than 0.5. Deep seawater R2= 0.942 and surface seawater R2= 0.90 had both a good fit and 

linearity. Decay rate was: for deep seawater, k4= 0.265 day-1and surface seawater, k4=0.162 

day-1. It was difficult to find information on decay rate at cold temperatures in the Literature 

from other peers. It may be because and like in our experiments, the decay rate at 40C did not 

chance much for the 3 days of experiment, therefore not very significant results. 

Throughout the experiment, the concentration of the deep and surface seawater E. coli at 220C 

for deep and surface seawater decreased faster linearly than the waters at 40C. This implicates 

a stronger evidence of influence of temperature in fate of FIB. Deep seawater had a slightly 

better fit with model equation than E. coli kept at colder temperature (R2= 0.97105) , but the 

opposite in surface seawater (R2= 0.8977). Deep seawater, k22= 1.049 day-1 and surface 

seawater, k22 =1.914 day-1.  Comparing those values with literature review (k= 1.09 and 0.258 

at 200C) (Johnson et al. 1997; Kim & Hur 2010) we can see that one is close to our decay rate 

but the other is very low. This just confirms that results are variable depending where and 

when they obtained, regardless whether they had both use 200C in their experiments. As the 
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temperature increased (4 to 220C), we also saw an increase in the decay rate values of the E. 

coli curves in both deep and surface water. 

For I. enterococci at 40C, it showed almost same decay rate during the main experiment. Deep 

seawater with k4= 0 day-1 and R2= 0.02626, which is close to zero. This value indicates poor 

fit and a curve with a very low linear relationship with the model equation. Surface seawater 

also had a small linearity and very small decay rate value, R2= 0.28 and k4 = 0.052day-1, 

respectively. I. enterococci at 220C. Deep seawater showed R2= 0.864 and k22= 0.210 day-1, 

and Surface seawater R2=0.929 with k22 =0.553 day-1. Both of them indicate linearity and a 

good fit (R2 close to 1) and much better decay rates than at colder temperature.   

5.4 Implications of the results  

In the study with faecal bacteria indicators, we want to use decay rates values into the models 

when there is discharges of sewage into the Oslofjord and using them to decide how long 

time, it would take for the recover of the water in fjord. Then the decay will be different 

depending on whether we put in cold or warm water closed environment (water samples 

flasks). This would have an effect in experiment for surface seawater if there was sunlight 

inactivation and increase of the temperature. But if we put in the deep seawater at cold 

temperature, the FIB will have long survival time, 9 days 2.5 days to reduce by 50%. If we 

put at surface water, which has high biological activity, then the decay is more rapid, only 1 

day is need to get 1 log10. Therefore, the temperature effect is stronger when there is a 

combination of high temperature and surface, where the microorganisms also participate. But 

our results for the deep water did not show a significant difference at warmer temperature for 

E. coli , which led us to believe that maybe for the same bacteria there can be similar in the 

fate regardless I the sewage is discharged in deep or surface. Looking at decay rate values, 

there is a significant difference on the values for surface water at temperature of 4 and 220C, 

i.e. for 1 day they decay much faster that the same water at 40C that took 14 days, which is 

not entirely bad. I. enterococci followed the same, but it could take many days for the bacteria 

to die at cold temperature. This could not be so exact, since the values in the literature varies 

largely depend in theit experiments. 

Results (Table 4.2 and 4.3) indicated that there was no significant difference between the deep 

and surface seawater at 40C for both E. coli and I. Enterococci, but a significant difference 

with more than 1 log10 for indicators at 220C. Unfortunately, due to lack of funds to extend 

the number of days and continue the experiments for more days and see further the behavior 



	 73	

of Faecal bacteria in water. The curve for I. enterococci at 40C did show a low value for R2, 

which represents a poor fit of the slope of the curve to the linear model equation. The lag 

phase, which compromises from the start of the experiment with no change in rate of the 

bacteria, and the position where and the steep decline of the curve begins. The horizontal 

behavior of the curve is more evident for I. Enterococci that E. coli. The same was seen in 

other decay rate graphs where they seemed to have two distinguished phases (Crane & Moore 

1986).  

One of the main particularities in this study was to compare the results of the decay rate from 

FIB and the decay rate of same indicators of similar peer research. In the analysis of the decay 

rate of seawater samples we adopted the notion of first order decay rate as first designed by 

Chick (Chick 1908). The results reveal that the concentration of the fecal indicator bacteria 

are a function of time and can be modified by difference in temperature.  From those results, 

it is possible to confirm decrease of FIB and get knowledge about environmental conditions, 

such as temperature affecting the fate FIB due to faecal pollution (Schulz & Childers 2011). 

Shellenbarger proved in his 2008 article that during the summer season FIB concentration 

levels increase in water (Shellenbarger et al. 2008). Our results did not show seasonal 

variation in the quality of water, or significant differences at initial stages in the decay rate 

curves of the bacteria. They showed different behavior two days after having been put under 

the same conditions (warm or cold room). The results of different fate of FIB confirms that 

they can be largely different from each other (Shibata et al. 2004), and for this reason it is 

difficult to predict accurately how particular detrimental bacteria will behave in a natural 

environment. 

Information still lacking in regard to how FIB die in water. A general acceptance that 

indicator bacteria and in particular, E. coli and I. enterococci will die-off even under the most 

polluted and variable environmental conditions (Nemerow 1991). Therefore, in the 

experiment to analyze the fate of FIB, it was expected to explain how they die. As well 

researched indicators, they also inform of the existence of other pathogens in the water. As 

discussed previously in chapter 1, Health problems due to poor water quality, poor sanitation and 

hygiene, and water contamination and pollution are extensive in many parts of the world. The faecal 

contamination of bathing waters and exposure to detrimental microorganisms lead to infectious 

diseases (Pond 2005; Shuval 2003). Those global issues impact recreational waters in many parts of 

the world. (WHO 2014). 
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In general, the I. enterococci persisted/survived  longer in warmer water than E. coli in both 

preliminary and main experiments. No other factors were considered in besides temperature, 

sunlight deprivation and time during experiments. Biological microorganisms may compete 

the nutrients existent in water, and this may influence the fate of E. coli even though other 

environmental parameters are kept constant. For these reasons, like other studies, some of the 

results in our experiments could be untruthful (Korajkic et al. 2013). The presence of I. 

enterococci bacteria in water can be the explained by high probability of getting faeces from 

toilet visits, runoff from roads and animal droppings, and contaminated sewage water. 

Large concentration values for the E. coli and I. enterococci indicated that the waters were 

highly contaminated during the laboratory procedure. The bacteria indicators of faecal 

bacteria are highly represented in all the water samples. Yellow colour and florescence had 

showed from all the Quanti trays until day 5, even though very few were confirmed, maybe 

because they wee so few that the test could not detect them. Mixed freshwater samples gave 

values above 104 in concentrations for each 100 ml for the first two days for dilution of 1/100 

(Table 8.1 and Table 8.2), while the results of seawater samples by the same dilution showed 

mostly lower levels of presence faecal bacteria. So, both methods were quite effective and 

controlled the levels of bacterial decay. Bacterial concentration per 100 ml should have been 

reduced the amount of faecal bacteria in water considerably once the raw water samples were 

diluted several times. Instead, the opposite was observed with FIB around 5 log10 as starting 

point. Maybe due to the fact humans’ faeces from the water collected in Drøbak WWTP are 

highly contaminated with bacteria and other pathogens, one continues to find intestinal 

bacteria in water. This is quite peculiar, because these bacteria should have been dissipated 

when diluted in water. My interpretation of the results and additional information from the 

laboratory analyzes and results should help to explain the fate of the bacteria from the 

beginning and the throughout the experiment. As seen from the results for both preliminary 

and main experiments, E. coli and I. Enterococci are very small number of MPN values just 

after three days and for the preliminary laboratory there almost no signs of positive results for 

Escherichia coli or Intestinal Enterococci. These results in the thesis can provide evidence to 

support my interpretation of researched fate of indicator bacteria in water. 

5.5 Limitations  

Errors in measurement and reading of bacterial colonies for I. enterococci and contamination 

of the Quanti-trays during the laboratory sections are blamed for any type of over or 
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underestimation in reading the positive wells. And therefore affecting the results obtained 

from the laboratory experiment. Standard deviation values were very large due to the fact that 

just two parallels were used for the mean and they enabled elimination of large errors 

encountered in laboratory procedure 

5.6 Recommendations  

Future research studies could use the results and information of this thesis to expand the 

knowledge on FIB in seawater due to CSOs. Modern, efficient and rapid methods open the 

possibility to explore Fib at the atomic level and get results even more viable. 
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6. Conclusion  

The presence of bacteria indicators indicates the presence of faecal microorganisms in sea and 

fresh water. This was confirmed by the tests made in laboratory. The fate of FIB was 

interpreted by the results as log10, or decay rate, or half time, and same time as T90 that also 

shows how much reduction of FIB occurs in water samples after a number of days.  

Preliminary experiments 

After completing the laboratory analysis and report the results, it is possible to conclude, from 

reading the graphs, that most of E. coli bacteria were reduced by 2 log10 in freshwater and 

even above 2 log10 for seawater samples from Drøbak beach. I. enterococci concentration 

values declined very slowly. The values of I. Enterococci ranged from 0.5 log10 for both 

freshwater and seawater samples in both experiments. 

Although there was a visible difference in the results between the seawater and freshwater, 

the correlation between the results found in laboratory analysis and the literature reviewed are 

the following: 

1. The decay rate of Escherichia coli bacteria in seawater is faster declining than in 

freshwater; 

2. The fate of Intestinal enterococci is faster in seawater than in freshwater 

3. The comparison of laboratory experiments will also indicate that I. Enterococci and E. 

coli did not reduce at same rate. 

4. Temperature does have an influence in the survival rate of FIB. 

5. Most of FIB will die-off after 3 days if the samples are left at room temperature. 

The above correlations cannot be applied to all situations because the source of the FIB varies 

spatially and with time. In addition, there are also others environmental factors that must be 

considered when fate of FIB are being studied.  It means that the knowledge on fate of FIB 

can be used to draw conclusions about possible outcomes in similar conditions in Oslofjord 

and therefore be applied to modeling processes such as transport of FIB in coastal waters and 

track sourcing of FIB in those waters. 
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Main Experiments 

The fate of FIB in in Oslo fjord was confirmed that it will take at least 14 days before it 

reaches of 1-2 log10 in surface water FIB in relation to 9 days, which is the same as a halftime 

of 2.6 before we can reach 1 log10 in the deep seawater at 40C, while water samples kept at 

room temperature (220C) reached reduction up to 3 log10 after 2 to 3 days (Table 4.7 and Table 

4.10). 

Some of the gaps encountered in the peer journals are:  

• Microbial hazard in recreational waters has not been a priority in most scientific articles 

in most of scientific articles related to water contamination from sewage and faeces 

(Pond 2005).  

• Information regarding the microbiological quality of water is available to the public but 

much still needs to be done to spread awareness of the monitoring practices even further 

(Pond 2005). 

 

The results of this thesis are not enough to evaluate the overall situation of the FIB in the 

coastal Drøbak area due to the simple fact that one grab of sample is not sufficient to explain 

the behavior of the waters and assess the microbial quality of the water in relation to health 

risks associated to the water. It would be wiser to take several samples after the occurrence of 

CSOs and test them as soon as possible with methods that are even more rapid.  

The above correlations cannot be applied to all situations because the source of the FIB varies 

spatially and with time. In addition, there are also others environmental factors that must be 

considered when fate of FIB are being studied.  It means that the knowledge on fate of FIB 

alone can be used to draw conclusions about possible outcomes in similar water conditions in 

Oslofjord. Maybe we can use results of the decay rate to get a more significant and scientific 

information about their fate in addition with modeling processes such as transport of FIB in 

coastal waters and track sourcing many other models requiring decay rate of FIB. Where it is 

possible  
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method at 220C and control at 40C 
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Appendix C: Preliminary experiment data and calculations  

 
Footnotes: All control samples were kept at 40C 

Day 5, sample 2 was a possible contamination during the experiment 

Table 8.1: Freshwater samples data and calculation for Total coliform and E coli using Colilert- 18 test sat 220C and control at 40C 
 

Time 
Sample 
number  

Sample 
Dilution   Total coliforms (TC) as Yellow counts       E. coli (UV Fluorescence counts)  

      Wells   MPN/mL MPN/100 mL 
 

Wells   MPN/mL MPN/100 mL 
Log10 

 
Mean Log10 

 
Standard 
deviation 

Days     Large Small Diluted Undiluted 

Log10 
MPN/100

mL Large Small Diluted Undiluted 
 (MPN/ 
100mL) 

 
(MPN/100mL)    

0 Control 1 1:100 49 41 1203,3 1,20E+05 5,08 49 21 365,4 3,65E+04 4,56     
  Control 2 1:1000 44 10 125,9 1,26E+05 5,10 29 6 51,2 5,12E+04 4,71 4,56 0 
        

 
  

  
        

 
    

        
 

  
 

          
 

    
1  Control 1:100 49 43 1413,6 1,41E+05 5,15 49 26 488,4 4,88E+04 4,69     
  Sample 1  1:100 49 45 1732,0 1,73E+05 5,24 49 21 365,4 3,65E+04 4,56     
  Sample 2 1:100 49 42 1299,7 1,30E+05 5,11 49 23 410,6 4,11E+04 4,61     
        

 
Mean = 1,52E+05 5,18       3,88E+04 4,59 4,59 0,04 

        
 

  
 

          
 

    
2  Control 1:100 49 40 1119,9 1,12E+05 5,05 49 22 387,3 3,87E+04 4,59     
  Sample 1  1:100 49 42 1299,7 1,30E+05 5,11 49 19 325,5 3,26E+04 4,51     
  Sample 2 1:100 49 46 1986,3 1,99E+05 5,30 49 31 648,8 6,49E+04 4,81     
        

 
Mean = 1,64E+05 5,22       4,87E+04 4,69 4,69 0,21 

        
 

  
 

          
 

    
3  Control 1:100 49 43 1413,6 1,41E+05 5,15 49 28 547,5 5,48E+04 4,74     
  Sample 1  1:100 0 0 0,0 0 0 0 0 0 0 0     
  Sample 2 1:100 49 21 365,4 3,65E+04 4,56 34 8 68,9 6,89E+03 3,84     
        

 
Mean = 1,83E+04 4,56       6,89E+03 3,84 3.84 0 

        
 

  
 

          
 

    
4  Control 1:100 0 0 0 0 0 0 0 0 0 0     
  Sample 1  1:100 0 0 0 0 0 0 0 0 0 0     
  Sample 2 1:100 0 0 0 0 0 0 0 0 0 0  0  0 
        

 
          

 
  

 
    

5  Control 1:100 49 38 980,4 9,80E+04 4,99 49 25 461,1 4,61E+04 4,66     
  Sample 1  1:100 18 4 26,9 2,69E+03 3,43 1 0 1,0 1,00E+02 2,00     
  Sample 2 1:100 49 24 435,2 4,35E+04 4,64 47 12 172,3 1,72E+04 4,24     
          Mean = 2,31E+04 4,36       8,67E+03 

 
3,12 1,58 
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Control 2 sample were diluted at 1:1000 
 
Table 8.2: Seawater samples data and calculation for Total coliform and E coli using Colilert – 18 tests at 220C and control at 40C 

Time 
Sample 
number  

Sample 
Dilution   Total coliforms (Yellow counts)       E. coli (UV Fluorescence counts)  

      Wells   MPN/mL MPN/100 mL 
 

Wells   MPN/mL MPN/100 mL Log10 
Mean Log10 

 
Standard 
deviation 

Days     Large Small 
 

Diluted 
 

Undiluted 
Log10 

MPN/100 mL Large Small Diluted Undiluted 
 (MPN/ 
100mL) (MPN/100m)    

0 Control 1 1:100 49 40 1119,9 1,12E+05 5,05 49 26 488,4 4,88E+04 4,69     
  Control 2 1:1000 39 8 88,4 8,84E+04 4,95 29 2 44,8 4,48E+04 4,65 4,69 0 
      

 
        

 
            

      
 

        
 

            
1  Control 1:100 49 33 727,0 7,27E+04 4,86 49 16 275,5 2,76E+04 4,44     
  Sample 1  1:100 49 32 686,7 6,87E+04 4,84 49 12 224,7 2,25E+04 4,35     
  Sample 2 1:100 49 31 648,8 6,49E+04 4,81 47 15 191,8 1,92E+04 4,28     
      

 
    6,68E+04 4,82 

 
    2,08E+04 4,32 4,32 0,05 

      
 

        
 

      
 

    
2  Control 1:100 49 31 648,8 6,49E+04 4,81 49 19 325,5 3,26E+04 4,51     
  Sample 1  1:100 49 31 648,8 6,49E+04 4,81 46 21 210,5 2,11E+04 4,32     
  Sample 2 1:100 49 33 727,0 7,27E+04 4,86 49 20 344,8 3,45E+04 4,54     
      

 
    6,88E+04 4,84 

 
    2,78E+04 4,44 4,44 0,15 

      
 

        
 

      
 

    
3  Control 1:100 49 27 517,2 5,17E+04 4,71 47 16 198,9 1,99E+04 4,30     
  Sample 1  1:100 49 25 461,1 4,61E+04 4,66 39 8 88,4 8,84E+03 3,95     
  Sample 2 1:100 27 8 49,6 4,96E+03 3,70 8 1 9,7 9,70E+02 2,99     
      

 
    2,55E+04 4,41 

 
    4,91E+03 3,69 3,69 0,68 

      
 

        
 

      
 

    
4  Control 1:100 0 0 0 0 0 0 0 0 0 0     
  Sample 1  1:100 0 0 0 0 0 0 0 0 0 0     
  Sample 2 1:100 0 0 0 0 0 0 0 0 0 0 0   0 
      

 
        

 
      

 
    

5  Control 1:100 17 2 22,8 2,28E+01 1,36 3 0 3,1 3,10E+02 2,49     
  Sample 1  1:100 11 6 19,1 1,91E+03 3,28 0 0 <1 <1 0,00     
  Sample 2 1:100 17 2 22,8 2,28E+01 1,36 3 0 3,1 3,10E+02 2,49     
            9,66E+02 2,99       3,10E+02 2,49 2,49 1,76 

      
    

  
          

 
Footnotes: All control samples were kept at 4 degree celsius.     

  
          

  
Control 2 sample were diluted at 1:1000     

  
          

  
Dy3, sample 1 was a possipble contamination     
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Table 8.3: Freshwater samples data and calculations for intestinal Enterococci using Membrane filtration method  

  Time Sample number  Sample Dilution Number of Colonies (CFU)     
 

Standard deviation 
  

 
  Enterococci Intestinal enterococci Intestinal enterococci Mean Log10     

Days     CFU/mL CFU/ mL CFU/100mL 
Log10 

(CFU/100mL) (CFU/100mL)    
0 Control 1 1:100 81 81 8,10E+03 3,91     
  Control 2 1:1000 7 7 8,10E+04 4,91 3,91 0 
  

 
          

 
  

  
 

          
 

  
1  Control 1:100 52 52 5,20E+03 3,72 

 
  

  Sample 1  1:100 53 51 5,10E+03 3,71 
 

  
  Sample 2 1:100 48 47 4,70E+03 3,67 

 
  

  
 

     Mean = 4,90E+03 3,69 3,69 0,03 
  

 
          

 
  

2  Control 1:100 59 54 5,40E+03 3,73 
 

  
  Sample 1  1:100 47 42 4,20E+03 3,62 

 
  

  Sample 2 1:100 41 36 3,60E+03 3,56 
 

  
  

 
      Mean = 3,90E+03 3,59 3,59 0,05 

  
 

          
 

  
3  Control 1:100 52 31 3,10E+03 3,49 

 
  

  Sample 1  1:100 16 10 1,00E+03 3,00 
 

  
  Sample 2 1:100 15 13 1,30E+03 3,11 

 
  

          Mean = 1,15E+03 3,20 3,06 0,08 

      
    

 
 

Footnotes: All control samples were kept at 4 degree Celsius. 
  

    
 

  
Control 2 sample were diluted at 1:1000 

     

  
CFU are the number of colonies forming units obtained by the total numbers of positive colonies formed in pettry-dishes 
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Table 8.4: Seawater samples data and calculations for intestinal Enterococci using Membrane filtration method 

  Time Sample number  Sample Dilution Number of Colonies     
 

Standard deviation 

  
 

  Enterococci 
Intestinal 
enterococci Intestinal enterococci Mean log10     

Days     CFU/100 mL CFU/100 mL CFU/100mL 
Log10 

(CFU/100mL  CFU/100mL    
0 Control 1 1:100 75 72 7,20E+03 7,20E+03     
  Control 2 1:1000 6 6 6,00E+03 6,00E+03   0 
      

 
      3,86   

      
 

          
1  Control 1:100 52 50 5,20E+03 5,00E+03     
  Sample 1  1:100 45 43 5,10E+03 4,30E+03     
  Sample 2 1:100 44 43 4,70E+03 4,30E+03     
      

 
  4,90E+03 4,30E+03 3,63 0,00 

      
 

    
 

    
2  Control 1:100 38 34 5,40E+03 3,40E+03     
  Sample 1  1:100 49 47 4,20E+03 4,70E+03     
  Sample 2 1:100 43 40 3,60E+03 4,00E+03     
      

 
  3,90E+03 4,35E+03 3,64 0,05 

      
 

    
 

    
3  Control 1:100 54 38 3,10E+03 3,80E+03     
  Sample 1  1:100 41 29 1,00E+03 2,90E+03     
  Sample 2 1:100 11 5 1,30E+03 5,00E+02     
          1,15E+03 1,70E+03 3,25 0,54 

         
 

Footnotes: All control samples were kept at 4 degree Celsius. 
  

  
  

  
Control 2 sample were diluted at 1:1000 

     

  

CFU are the number of colonies forming units obtained by the total numbers of positive colonies formed in preti--
dishes 
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Appendix D: Main experiment data and calculations for Deep seawater and surface seawater  

 
 
Table 8.5: Deep seawater samples for Total coliform and E coli using Colillert-18 Quanti-Tray method at 4 0C  

    
Time 

Water 
sample 

Sample 
Dilution   Total coliforms (Yellow counts)         E coli (UV Fluorescence counts)    

  
 

  Wells   Diluted Undiluted Log10 Wells   Diluted Undlluted Log10 
Mean 
Log10 SD 

Days     Large Small 
MPN/ 
mL  

MPN/ 
100 mL  

 (MPN/ 
100 mL) Large Small 

MPN/ 
100 mL  

MPN/ 
100 mL  

 (Ecoli/ 
100 mL) 

 (Ecoli/ 
100 mL)   

0 Control* 1:10 1 1 2,0 2,00E+01 1,30 0 0 <1 N/A N/A     
  Sample 1  1:100 49 42 1299,7 4,20E+03 3,62 49 28 547,5 5,48E+04 4,74     
  Sample 2 1:100 48 46 913,9 4,60E+03 3,66 49 28 547,5 5,48E+04 4,74     
  Sample 3 1:1000 46 10 146,7 1,00E+04 4,00 37 8 79,8 7,98E+04 4,90     
  

 
  

   
Mean = 3,80   

 
Mean = 6,31E+04   4,79 0,09 

  
 

  
   

      
 

          
1 Sample 1  1:100 49 33 727,0 7,27E+04 4,86 49 20 344,8 3,45E+04 4,54     
  Sample 2 1:100 49 40 1119,9 1,12E+05 5,05 8 30 613,1 6,13E+04 4,79     
  Sample 3 1:100 49 42 1299,7 1,30E+05 5,11 49 26 488,4 4,88E+04 4,69     
  

 
  

   
Mean == 5,02   

 
Mean = 4,82E+04 4,68 4,67 0,13 

  
 

  
   

  
 

  
 

          
2 Sample 1  1:100 49 40 1119,9 1,12E+05 5,05 49 30 613,1 6,13E+04 4,79     
  Sample 2 1:100 49 33 727,0 7,27E+04 4,86 49 22 387,3 3,87E+04 4,59     
  Sample 3 1:100 49 37 920,8 9,21E+04 4,96 49 22 387,3 3,87E+04 4,59     
  

 
  

   
Mean = 4,96   

 
Mean == 4,63E+04 4,67 4,65 0,12 

  
 

  
   

  
 

  
 

          
3 Sample 1  1:100 49 29 579,4 5,79E+04 4,76 49 19 325,5 3,26E+04 4,51     
  Sample 2 1:100 49 30 613,1 6,13E+04 4,79 49 21 365,4 3,65E+04 4,56     
  Sample 3 1:100 49 30 613,1 6,13E+04 4,79 48 11 186 1,86E+04 4,27     
      

   
Mean = 4,78     Mean == 2,92E+04 4,47 4,45 0,16 

 
Footnotes: SD is Standard deviation 
   *Control sample in day zero did not add sewage 
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Table 8.6 Deep seawater sample for Total coliforms and E. coli using Colilert-18 test at 220C 

       Time Water 
sample 

Sample 
Dilution   Total coliforms (Yellow counts)         E coli (UV Fluorescence counts)    

      Wells   Diluted Undiluted Log10 Wells   Diluted Undiluted Log10 Mean Log10 SD 

Days     Large Small MPN/mL MPN/ 100 
mL 

 (MPN/  
100 mL) Large Small MPN/mL)  MPN/  

100 mL 
MPN/100
mL MPN/100mL)   

0 Control* 1:10 1 1 2,0 2,00E+01 1,30 0 0 <1 N/A N/A 
  

 
Sample 1 1:100 49 42 1299,7 4,20E+03 3,62 49 28 547,5 5,48E+04 4,74 

  
 

Sample 2 1:100 48 46 913,9 4,60E+03 3,66 49 28 547,5 5,48E+04 4,74 
  

 
Sample 3 1:1000 46 10 146,7 1,00E+04 4,00 37 8 79,8 7,98E+04 4,90 4,79 0,09 

               1 Sample 1 1:100 49 34 770,1 7,70E+04 4,89 47 18 214,2 2,14E+04 4,33 
  

 
Sample 2 1:100 49 33 727,0 7,27E+04 4,86 49 20 344,8 3,45E+04 4,54 

  
 

Sample 3 1:100 49 27 517,2 5,17E+04 4,71 48 13 201,4 2,01E+04 4,30 4,39 0,13 

               2 Sample 1 1:100 47 11 166,4 1,66E+04 4,22 44 4 105,4 1,05E+04 4,02 
  

 
Sample 2 1:100 49 27 517,2 5,17E+04 4,71 47 16 198,9 1,99E+04 4,30 

  
 

Sample 3 1:100 48 17 238,2 2,38E+04 4,38 38 11 91,0 9,10E+03 3,96 4,09 0,18 

               3 Sample 1 1:100 35 2 60,5 6,05E+03 3,78 18 1 23,1 2,31E+03 3,36 
  

 
Sample 2 1:100 42 11 113,7 1,14E+04 4,06 27 5 45,0 4,50E+03 3,65 

  
 

Sample 3 1:100 24 6 40,2 4,02E+03 3,60 13 3 18,3 1,83E+03 3,26 3,43 0,20 
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Table 8.7: Surface seawater samples for Total coliform and E coli using Colillert-18 test at 4sC  
     Time Water 

sample 
Sample 
Dilution   Total coliforms (Yellow counts)         Ecoli (UV Fluorescence counts)    

      Wells   Diluted Undiluted Log10 Wells   Diluted Undiluted Log10 Mean Log10 SD 

Days     Large Small  (MPN/  
mL) 

 (MPN/ 
100 mL) 

 (MPN/ 
100 mL) Large Small (MPN/ 

100 mL) 
 (MPNi/ 100 

mL) 
 (MPN/100 

mL) 
 (MPNi/ 100 

mL)   

0 Control* 1:10 20 1 26,2 2,62E+02 2,42 0 0 <1 N/A N/A 
  

 
Sample 1 1:100 49 43 1413,6 1,41E+04 4,15 49 32 686,7 6,87E+04 4,84 

  
 

Sample 2 1:100 49 46 1986,3 1,99E+04 4,30 49 30 613,1 6,13E+04 4,79 
  

 
Sample 3 1:1000 47 10 160,7 1,61E+05 5,21 34 3 59,4 5,94E+04 4,77 4,80 0,03 

               1 Sample 1 1:100 49 43 1413,6 1,41E+05 5,15 49 27 517,2 5,17E+04 4,71 
  

 
Sample 2 1:100 49 42 1299,7 1,30E+05 5,11 49 29 579,4 5,79E+04 4,76 

  
 

Sample 3 1:100 49 41 1203,3 1,20E+05 5,08 49 23 410,6 4,11E+04 4,61 4,70 0,08 

               2 Sample 1 1:100 49 37 920,8 9,21E+04 4,96 49 20 344,8 3,45E+04 4,54 
  

 
Sample 2 1:100 49 39 1046,2 1,05E+05 5,02 49 26 488,4 4,88E+04 4,69 

  
 

Sample 3 1:100 49 37 920,8 9,21E+04 4,96 49 23 410,6 4,11E+04 4,61 4,61 0,08 

               3 Sample 1 1:100 49 37 920,8 9,21E+04 4,96 49 25 461,1 4,61E+04 4,66 
  

 
Sample 2 1:100 49 27 517,2 5,17E+04 4,71 49 21 365,4 3,65E+04 4,56 

  
 

Sample 3 1:100 49 31 648,8 6,49E+04 4,81 49 20 344,8 3,45E+04 4,54 4,59 0,07 
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Table 8.8: Surface seawater samples for Total coliform and E coli using Colillert Quanti-Tray method at 22 0C 
Time Water 

sample 
Sample 
Dillution   Total coliforms (Yellow 

counts)         Ecoli (UV Fluorescence counts)    

      Wells   Dilluted Undilluted Log10 Wells   Dilluted Undilluted Log10 Mean 
Log10 SD 

Days     Large Small  (MPN/ 
mL) 

 (MPN/ 
100 mL) 

 (MPN/ 
100 mL) Large Small MPN/ 

mL  
 (Ecoli/ 

100 mL) 
 (Ecoli/ 

100 mL) 
 (Ecoli/ 

100 mL)   

0 Control*  1:10 20 1 26,2 2,62E+02 2,42 0 0 <1 N/A N/A     
  Sample 1  1:100 49 43 1413,6 1,41E+05 5,15 49 32 686,7 6,87E+04 4,84     
  Sample 2 1:100 49 46 1986,3 1,99E+05 5,30 49 30 613,1 6,13E+04 4,79     
  Sample 3 1:1000 47 10 160,7 1,61E+05 5,21 34 3 59,4 5,94E+04 4,77 4,80 0,03 
                

 
            

1 Sample 1  1:100 49 40 1119,9 1,12E+05 5,05 49 28 547,5 5,48E+04 4,74     
  Sample 2 1:100 48 39 658,6 6,59E+04 4,82 48 29 416,0 4,16E+04 4,62     
  Sample 3 1:100 49 38 980,4 9,80E+04 4,99 49 22 387,3 3,87E+04 4,59 4,65 0,08 
                

 
      

 
    

2 Sample 1  1:100 47 12 172,3 1,72E+04 4,24 27 3 42,0 4,20E+03 3,62     
  Sample 2 1:100 49 27 517,2 5,17E+04 4,71 29 6 51,2 5,12E+03 3,71     
  Sample 3 1:100 46 21 210,5 2,11E+04 4,32 34 7 67,0 6,70E+03 3,83 3,72 0,10 
                

 
      

 
    

3 Sample 1  1:100 8 1 9,7 9,70E+02 2,99 1 0 1,0 1,00E+02 2,00     
  Sample 2 1:100 8 0 8,6 8,60E+02 2,93 0 0 <1 N/A N/A     
  Sample 3 1:100 13 3 5,2 5,20E+02 2,72 4 1 4,1 4,10E+02 2,61 2,31 0,43 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xi 

 
 
 
Table 8.9: Deep seawater samples for I.enterococci using Enterollert-E Quanti-Tray method at 4 0C  

  
Time 

Water 
sample Sample Dillution   Intestinal Enterococci  (UV Fluorescence counts)      

    
 

Wells 
 

Dilluted Undilluted Log10 Mean Log10 SD 

Days     Large Small MPN/ mL MPN/ 
100mL ( MPN/100mL)  (MPN/100mL)   

0 Control*  1:10 27 7 48,1 4,81E+02 2,68     
  Sample 1  1:10 49 40 1119,9 1,12E+04 4,05     
  Sample 2 1:10 49 37 920,8 9,21E+03 3,96     
  Sample 3 1:100 34 3 59,4 5,94E+03 3,77 3,93 0,14 
    

 
  

 
  

 
      

1 Sample 1  1:10 49 42 1299,7 1,30E+04 4,11     
  Sample 2 1:10 49 45 1732,9 1,73E+04 4,24     
  Sample 3 1:100 36 6 71,7 7,17E+03 3,86 4,07 0,20 
    

 
  

 
  

 
      

2 Sample 1  1:10 49 41 1203,3 1,20E+04 4,08     
  Sample 2 1:10 49 35 816,4 8,16E+03 3,91     
  Sample 3 1:10 49 36 866,4 8,66E+03 3,94 3,98 0,09 
    

 
  

 
  

 
      

3 Sample 1  1:10 49 35 816,4 8,16E+03 3,91     
  Sample 2 1:10 49 35 816,4 8,16E+03 3,91     
  Sample 3 1:10 49 35 816,4 8,16E+03 3,91 3,91 0,00 
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Table 8.10: Deep seawater samples for I. enterococci using Enterolert-E Quanti-Tray method at 220C  
  

Time 
Water 
sample Sample Dilution   Intestinal Enterococci  (UV Fluorescence counts)      

    
 

Wells   Diluted Undiluted Log10 Mean Log10 SD 
Days     Large Small MPN/ mL MPN/ 100mL  (MPN/100mL)  (MPN/100mL)   
0 Control* 1:10 27 7 48,1 4,81E+02 2,68 

 
  

  Sample 1 1:10 49 40 1119,9 1,12E+04 4,05 
 

  
  Sample 2 1:10 49 37 920,8 9,21E+03 3,96 

 
  

  Sample 3 1:100 34 3 59,4 5,94E+03 3,77 3,93 0,14 
  

        
  

1 Sample 1 1:10 49 40 1119,9 1,12E+04 4,05 
 

  
  Sample 2 1:10 49 42 1299,7 1,30E+04 4,11 

 
  

  Sample 3 1:100 29 7 52,8 5,28E+03 3,72 3,96 0,21 
  

        
  

2 Sample 1 1:10 49 30 613,1 6,13E+03 3,79 
 

  
  Sample 2 1:10 48 32 478,6 4,79E+03 3,68 

 
  

  Sample 3 1:10 49 33 727,0 7,27E+03 3,86 3,78 0,09 
  

        
  

3 Sample 1 1:10 49 27 517,2 5,17E+03 3,71 
 

  
  Sample 2 1:10 49 19 325,5 3,26E+03 3,51 

 
  

  Sample 3 1:10 49 28 547,5 5,48E+03 3,74 3,65 0,12 
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Table 8.11: Surface seawater samples for Enterococci using enterolert Quanti-Tray method at 4 0C  
  

Time 
Water 
sample Sample Dillution   Intestinal Enterococci  (UV Fluorescence counts)      

    
 

Wells 
 

Dilluted Undilluted Log10 Mean Log10 SD 

Days     Large Small MPN/mL MPN/ 
100mL  (MNP/100mL)  (MPN/100mL)   

0 Control* 1:10 48 15 218,7 2,19E+03 3,34 
  

 
Sample 1 1:10 49 45 1732,9 1,73E+04 4,24 

  
 

Sample 2 1:10 49 41 1203,3 1,20E+04 4,08 
  

 
Sample 3 1:100 29 4 48,0 4,80E+03 3,68 4,00 0,29 

          1 Sample 1 1:10 49 37 920,8 9,21E+03 3,96 
  

 
Sample 2 1:10 49 43 1413,6 1,41E+04 4,15 

  
 

Sample 3 1:100 41 6 93,3 9,33E+03 3,97 4,03 0,11 

          2 Sample 1 1:10 49 42 1299,7 1,30E+04 4,11 
  

 
Sample 2 1:10 49 35 816,4 8,16E+03 3,91 

  
 

Sample 3 1:10 49 41 1203,3 1,20E+04 4,08 4,04 0,11 

          3 Sample 1 1:10 49 35 816,4 8,16E+03 3,91 
  

 
Sample 2 1:10 49 40 1119,9 1,12E+04 4,05 

  
 

Sample 3 1:10 49 32 686,7 6,87E+03 3,84 3,93 0,11 
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Time 
Water 
sample Sample Dillution   Intestinal Enterococci  (UV Fluorescence counts)      

    
 

Wells 
 

Dilluted Undilluted Log10 Mean Log10 SD 

Days     Large Small 
MPN/ 
100mL 

MPN/ 
100mL  (MPN/100mL)  (MPN/100mL)   

0 Control* 1:10 48 15 218,7 2,19E+03 3,34 
    Sample 1 1:10 49 45 1732,9 1,73E+04 4,24 
    Sample 2 1:10 49 41 1203,3 1,20E+04 4,08 
    Sample 3 1:100 29 4 48,0 4,80E+03 3,68 4,00 0,29 

  
           
         1 Sample 1 1:10 49 37 920,8 9,21E+03 3,96 

    Sample 2 1:10 49 40 1119,9 1,12E+04 4,05 
    Sample 3 1:100 37 4 71,2 7,12E+03 3,85 3,96 0,10 

  
           
         2 Sample 1 1:10 49 23 410,6 4,11E+03 3,61 

    Sample 2 1:10 49 25 461,1 4,61E+03 3,66 
    Sample 3 1:10 48 22 298,7 2,99E+03 3,48 3,58 0,10 

  
           
         3 Sample 1 1:10 49 7 179,3 1,79E+03 3,25 

    Sample 2 1:10 45 7 179,3 1,79E+03 3,25 
    Sample 3 1:10 45 11 214,3 2,14E+03 3,33 3,28 0,04 
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Appendix A - Laboratory Log  

Preliminary experiment 

Laboratory analysis: Colillert- Quanti-tray 2000 and Membrane Filtration Methods 

Site Name 1: Drøbak Beach and WWTP   

Collection sample date:  12/02/2015 

Site Name 2: Drøbak Wastewater Treatment Plant 
Time:  10:30 
Analyzed by:  Fasil Eregon     
First analysis Date: 12/02/2015 
Read by: EKC  Da Silva      

 

Main experiment 

Laboratory analysis: Colillert-18 and Enterolert- E Quanti-tray 2000 

Site Name 1: Solbergstrand Research facility  

Collection sample date:  08/06/2015 

Site Name 2: Drøbak Wastewater Treatment Plant 
Time:  11:00 
Laboratory analysis:  
Analyzed by:  EKC Da Silva     
First analysis Date:08/02/2015 
Read by: EKC  Da Silva    
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Appendix B:  Quanti-tray with yellow wells and Florescence wells 
 

 
Figure 8.1 Quanti trays showing positive large and small well yellow pockets for coliform bacteria 

from day o laboratory experiments. (Silva 2015) 

 

 
Figure 8.2 Example of Confirmation of E coli bacteria by the UV florescence. (Silva, 2015) 
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