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Abstract

Thin film solar cells offer a reduced material usage at the expense of lower efficiency.
Effective light management in nanostructures can contribute to an increasing efficiency
and absorption of energy in the devices. Recently, it could be shown that nanoimprints
on thin film solar cells increase the efficiency of thin-film solar cells considerably, while
the rationale for the increased efficiency is only partially understood. The aim of this
thesis was to investigate to what extend a coupling of spheres explains the absorption
enhancement by spherical nanoimprints. For this purpose different systems of two
dimensional disks were investigated as a model system. Both the ray dynamics and the
wave dynamics in these systems were investigated. For the ray dynamics, a ray model
with a deterministic selection rule was implemented. The wave dynamics was
investigated by a plane-wave scatter code based on the Lippmann-Schwinger equation.
The ray model with a deterministic selection rule revealed a chaotic phase space for a
two-disk system with low refractive indices. For high refractive indices, a phase space
with strange attractors was observed. An evaluation of the plane-wave scattering code
showed that it is stable. It allowed the investigation of coupled modes in various
multiple-disk systems with equally and differently sized disks. Several of the coupled
modes could be directly related to strange attractors. For this purpose a quantization
rule was established which connected the strange attractor rays directly to coupled
modes. This shows that the ray dynamics can potentially be used to understand and
optimized architectures of nanoimprints. It was further observed that when the ray
dynamics changed from a chaotic phase space to a phase space with strange attractors,
the corresponding resonances in the wave mechanics were considerably enhanced. An
exploration of the ray dynamics for the enhancement of architectures of nanoimprints
will require a deeper investigation.
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Sammendrag

Tynnfilm solceller fgrer til et lavere materialforbruk, dette pa kostnad av effektiviteten.
Effektiv lysledning i nanostrukturer kan fgre til gkt effektivitet og energiabsorpsjon i
solcellene. Det kan vises at sfaeriske nanoavtrykk gker effektiviteten til tynnfilm solceller
vesentlig, men drsaken til den gkte effektiviteten er kun delvis forstatt. Hensikten med
denne oppgaven var a undersgke i hvilken grad koblingen mellom sfaerene kan forklare
gkningen i absorpsjon grunnet sfzeriske nanoavtrykk. Derfor er flere todimensjonale
disksystemer brukt som modeller i undersgkelsene. Bade strdle- og bglgedynamikk har
blitt undersgkt for disse modellene. For stradledynamikken ble en bglgemodell med en
deterministisk utvalgsregel implementert. Bslgedynamikken ble undersgkt med en kode
som viser spredning av en planbglge, koden er basert pa Lippmann-Schwingers likning.
Stralingsmodellen med deterministisk utvalgsregel avslgrte et kaotisk faserom for lave
brytningsindekser. For hgye brytningsindekser hadde faserommet rare attraktorer.
Koden for spredning av planbglgen viser seg a vaere stabil. Den tillater undesgkelser av
koblingen mellom systemer som bestar av flere disker med lik og ulik stgrrelse. Flere av
koblingene kan direkte bli knyttet til rare attraktorer. En kvantiseringsregel ble derfor
etablert, dette for a knytte attraktorene direkte til koblingene. Dette betyr at
stralingsmodellen potensielt kan brukes til a forstd og optimalisere arkitekturen av
nanoavtrykket. Det var videre observert at nar stralingsdynamikken endret fra et
kaotisk faserom til et faserom med rare attraktorer, be de Kkorresponderende
resonansene i bglgedynamikken vesentlig gkt. En undersgke av stralingsdynamikken for
forbedringen av arkitekturen til nanoavtrykk vil kreve videre undersgkelser.
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Chapter 1

Introduction

The amount of solar energy that every year hits the atmosphere of the Earth is equal to
5,4 millions EJ. While the atmosphere reflects 30 % of this energy; the rest is available for
use on Earth* Photovoltaic solar cells convert the energy of the sunlight into green
electrical energy. Since decades, the crystalline silicon solar cells with efficiency higher
than 20 % have dominated the market. Their thickness ranges between 150 and 300 pm.
The increasing need for clean energy has led to an enforced effort in the development of
photovoltaic devices to reduce materials usage and production costs. Thin film solar cells
offer a potential technology that provides a step toward solving these challenges20.

Traditionally, light trapping has been a method for enhancing short-circuit current by
enhancing the photo carrier generation of solar cells. This technology is becoming more
and more effective. The use of light management has led to an increasing efficiency of
light-trapping strategies and thus increased the efficiency of thin film solar cells20. Thin
film solar cells offer a reduced material usage and lower production cost at the expense of
lower efficiency’. Today, several methods of light trapping exist. Light trapping by
imprinting a texture on the light absorbing material that enhances the absorption
properties of the material has been identified as a potential solution 8. Nanostructures are
used in solar cells to enhance the light absorption20. Since different nanostructures
architectures reveal different light scattering and absorption properties, it is important to
understand how different parameters effect the efficiency of the structures2?. It has for
example been shown that spherical nanoshells in contact with a photovoltaic device
absorb significantly more than a flat film solar cell”.31. These spherical structures also
accept light from larger angles of incidence’. Recently, Grandidier et al.” presented
experimental results for a-Si (amorphous silicon) solar cell with closely packed dielectric
resonant nanospheres on the top of the device. They showed that an increased spectral
current density could be obtained for the whole wavelength range when dielectric



resonance nanospheres were added to the top of the device. For specific wavelengths the
increase was up to 12 %. This clearly shows the potential of nanostructures in energy
converting materials’. The efficiencies of the nanostructures were described by resonant
Mie electric and magnetic modes of single spheres. These resonant modes correspond to
whispering gallery modes inside the single spheres of nanostructures’. While the effect of
Mie resonances of single spheres on the absorption properties has been discussed in
literaturel9, the effect of coupling of spheres and the contribution of the coupling to an
enhancement of the absorption properties has not been given the same attention yet. The
hypothesis of this thesis is that the whispering gallery modes alone do not explain the
total enhancement achieved in absorption. It is hypothesized that a coupling of the near
field between the nanostructures may contribute significantly to the enhancement. Thus,
the main aim of this thesis was to investigate resonant structures of coupled spheres. Due
to the complexity of the problem in three dimensions, we restricted our self to the
investigation of two-dimensional disk systems.

For coupled modes, analytic solutions of Maxwell equations for coupled nanostructures
do not exist. To evaluate such structures the finite difference time domain (FDTD)
technique has been used. Since this simulation technique does not provide a deeper inside
into how the geometrical arrangement, size of spheres and the materials can influence the
light management and since it is numerically difficult and time-consuming it was not
considered as a possible approach in this thesis.

Another approach for investigating nanostructured light trapping, is an approach
introduced by Ryu and Hentschel?> to study the coupling of optical microdisks based on a
classical ray dynamics. They introduced a deterministic selection rule for coupled optical
microdisks for a two-disk system. Ray dynamics in ray-splitting systems and its
implications for the corresponding quantum systems have been studied extensively in the
field of quantum chaos?® 13-17.26, The advantage of the approach is that by the help of
classical periodic rays, quantum phenomena could be elucidated and a deeper
understanding of the system could be obtained. Chapter 2 of this thesis presents an
investigation of the classical ray dynamics of a two-disk system and for more than two
disks. For the investigation of the classical ray dynamics, the deterministic selection rule
introduced by Ryu and Hentschel?> is used.

In order to investigate absorption resonances in the corresponding wave system a new
scattering code for multi-disk systems was evaluated. The code is based on the Lippmann-
Schwinger equation where the incoming wave is a plane wave. The theory for the
scattering algorithm and simulation results are presented in chapter 3. The stability and
versatility of the program is discussed and evaluated.



In the appendix, the codes for the classical two-disk system with a deterministic selection
rule are presented. The scattering code for multi-disk systems is also given in the
appendix.



Chapter 2

Classical ray dynamics in two-
dimensional systems

2.1 Ray dynamics in two-disk systems

According to Fermat’s principle, a light beam travelling through a medium with a constant
refractive index will follows a straight line?2. When the ray strikes a boundary that is
separating two media with different refractive indices, the light is either reflected or
transmitted?22. This situation is illustrated in Fig. 2.1. The transmitted ray is subjected to a
change in direction. This change in direction depends on the angle of incidence and the
ratio between the refractive indices of the two media. This phenomenon is called

refraction ?2.

I'I.2 I

Figure 2.1 A ray incident on the interface of two media. The angle of incidence is denoted by &:. This angle 8:
is equal to the angle of reflection 8”. The transmitted ray is refracted leading to a change in direction. The
angle of refraction is denoted by an angle &z It depends on the angle of incidence and ratio between the
refractive indices of the media. The refractive indices of the two media are denoted by n;and n-are.



The angle of incidence 8, and the angle of refraction 8, (see Fig. 2.1) are related by Snell’s
law of refraction?2

n,sinf; =n,sinf, (2-1)

where n, is the refractive index of the medium in which the incident ray moves and n, is
the refractive index of the medium in which the refracted ray moves 7otal internal
reflections can appear when an incoming ray is coming from a medium with high
refractive index to a medium with lower refractive index, i.e. nz > nz. In this case 6, > 6,,
meaning that for an angle 8; < 90° and angle 6, = 90° will be achieved. When 6, reaches
6; = 90°in Eq. 2-1, we call the corresponding angle 6, critical angle 6.. If the incoming
ray has an angel of incidence larger than the critical angle of total internal reflection, no
light is transmitted?2. When a ray has an angle of incidence equal to the critical angle, the
light ray continues along the surface of incidence, i.e. the angle of refraction would then be

T .
3 radians.

2.1.1 Ray model with selection rule for the two-disk system

In the following, we introduce the two-disk system that will be studied in this thesis. The
two-disk system is shown in Fig. 2.2. The two disks have a distance d. The radii of the left
and right disk are r; and r,, respectively. In almost all cases in this thesis the radii rz and
rzare identical and equal. If different radii are used, this is explicitly stated in the text. The
refractive indices n; and n, are the refractive indices of the surrounding medium and the
disks, respectively. The arc length along the boundary at the left disk is indicated by s. By
s = 0 we denote the point at the left disk where the array that indicates increasing s
starts.

d

—

Figure 2.2 The two-disk system consists of two equal disks. The radii of the left and right disk are denoted
by rz and rz respectively, dis the shortest distance between the boundaries of the disks. s indicates the arc
length along the disk boundary. The refractive indices of the surrounding medium and the disks are
denoted by n;and nz respectively.
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According Snell’s law of refraction (Eq. 2-1), the ratio of the refractive indices is
determining the direction of the ray after transmission. In this thesis the refractive index,

n, denotes the refractive ration = %, i.e. the ratio of the refractive index of the disks and
1

the refractive index of the surrounding medium.

In order to describe the ray dynamics of the two-disk system, we will follow the ray
dynamics introduced by Ryu and Hentschel?5. The ray dynamics of Ryu and Hentschel?>
includes a deterministic selection rule in order to force the rays to continue inside the
disks. Each time a ray hits the ray-splitting boundary from the inside of one of the disks,
the ray may be reflected or transmitted. Previously, ray-splitting situations have been
handled with probabilistic rules? > 14, i.e. based on a probability it is decided, if the ray is
reflected or transmitted. If the ray is transmitted, the chance to hit the neighboring disk is
low and all rays may leave the system within short time. In order to keep all rays
permanently in the two-disk system, Ryu and Hentschel?> defined a deterministic
selection rule. The deterministic ray splitting rule works as follows: Rays are transmitted
from the inside to the outside of a disk only if the disk can hit the other disk and thus stay
in the system. A consequence of this selection rule is that a ray cannot escape from the
system.

For the ray model, the ray dynamics does not change if the ratio between the radius of the
disks and the distance between disks is kept constant. Thus, for the description of the ray
dynamics, the ratio between these variables is given.

In order to simulate the ray dynamics for the two-disk system the deterministic ray
dynamics of Ryu and Hentschel?> was implemented in Matlab. The corresponding Matlab
script, plot ray.m?4 can be found in the appendix. The deterministic ray dynamics is
illustrated in Fig. 2.3. The ray starts from top of the left disk, with an angel equal 17.2
degrees to the left of the normal on the surface of the disk. The refractive index ratio is n
= 1.9 for the system. The distance between the disks is equal to the radius.

Figure 2.3 The start point of the ray is at the top of the left disk with an angle of 17.2 degrees to left of the
normal of the surface. The ratio between the refractive indices is 7= 1.9. The distance between the disks is
equal to the radius, i.e. d=r.
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The coordinate system that is used in this thesis for the classical disk system is the
Birkhoff coordinate system, which was defined by Berryl. The Birkhoff coordinate system
consists of two coordinates. The first coordinate is s, which denotes the arc length, as
indicated in Fig. 2.2. In this thesis sis given as a fraction of the total length of the upper
part of the left disk

arc length of the upper half disk
s = g f pp f ( 2.2 )

TT*T

where ris the radius of the disk and the arc length of the upper half disk is increasing in
the direction of the array indicated in Fig. 2.2. Thus, s, is a number between 0 and 1. The
other coordinate is p, which terms the momentum

p =sin(8) (2-3)

where 0 is the angel of incidence measured to the left of the normal on the surface of the
disk. The momentum p is thus a number between -1 and 1. To allow a ray to escape from
the inside to the outside of a disk, the angle 6 has to be equal or smaller than the critical
angle. If the momentum p > 0, we say that the ray circulates clockwise, while when p <0
we say that the ray circulates counterclockwise

2.1.2 Poincare Surface of Section for the two-disk system

By studying the phase space of the ray model in terms of the Poincaré surface of section
(PSOS) of the upper half of the left disk, the stabile and chaotic regions of the phase space
can be identified. We following the definition of Ryu and Hentschel?5, where the PSOS is
obtained by plotting s (Eq. 2-2) against p (Eq. 2-3). This is done for the transmissions and
reflections at the boundary of the upper half of the left disk in a given interval. Because of
symmetry, it is sufficient to evaluate the PSOS only in the upper half of the left disk.

The PSOS is obtained after a number of the transmissions and reflections of the ray. This
is done because a random ray does not immediately adhere to a stationary path. Thus, in
order to investigate if a system has a chaotic or phase space with attractors, we have to
study the phase space after the ray has undergone a large number of transmissions and
reflections. After a sufficient number of transmissions and reflections, we can evaluate if
the ray has been stabilized into a stabile path or not. The number of the transmissions and
reflections needed until a ray may adhere to a stable path depends on the refractive index
ration nand the ratio between rand d.

The Matlab script PSOS.m?# plots the phase space for the upper half of the left disk.
PSOS.m can be found in the appendix. The PSOS for the disk system presented in Fig. 2.2 is
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shown in Fig. 2.4. The start conditions are randomly selected at the upper half of the left
disk with a random angle that is smaller than the critical angle and with a random
rotation clockwise or counterclockwise. Visual inspection of the PSOSs in Fig.2.4 reveals
stable islands. These stable islands are attractors, which are represented by a set of point
in the PSOS that does not changes when the number of transmissions and reflections for
each of the randomly stared ray increases?°. The basin of attraction is the set of start
conditions that lead the ray into the same attractor3°.

> 1 -
T

Figure 2.4 The PSOS for a two disk system with = dand n = 1.9. The regions marked in a) are enlarged in
b) and c).

If the Matlab script plot ray.m?# runs for a higher number of transitions and reflections,
the ray turns into the stationary regime, as already shown by Ryu and Hentschel?> and
expected from the phase space in Fig. 2.4. The stable islands are striking in Fig. 2.4b and
Fig 2.4c.

Figure 2.5 and Fig. 2.6 show the stationary regime that is obtained when the ray shown in
Fig. 2.3 is stabilized. The specific ray shown; needs 25 reflections and transmissions to
find the stable circulation path. The two following figures plot shows the rays behavior in
the attractor ray for 4000 to 6000 and 30 000 to 50 000 reflections and transmissions. As
illustrated in the figures, the attractor has a structure of a fractal and is therefore a
strange attractor?. A fractal has self-similarity!l. When inspecting the attractor ray
between 4000 to 6000 reflections and transmissions and resolving it until single
trajectories can be seen (Fig. 2.5), the structure revealed is similar to the structure
obtained when the same ray is resolved after 30 000 and 50 000 reflections and
transmissions (Fig. 2.6). Thus, an enlarged area always shows same fractal structurel!
independent of how many long the ray is run.



Figure 2.5 The ray’s behavior in the space between 4000 and 6000 reflections and transmissions. The

parameters sg, p, n, rand dare the same as for Fig. 2.3.

b

| ==,
i———
= = = ) WP e

Figure 2.6 The ray’s behavior in the space between 30 000 and 50 000 reflections and transmissions. The
parameters sg, p, 1, r and d are the same as for Fig. 2.3. The marked area in each plot is enlarged in the

subsequent plot.

The start conditions affect which attractor a ray would stabilize into. Figure 2.7 shows
different stationary regimes for different start conditions for two disks with the same
refractive indices. These attractors correspond to different stable islands in the phase

space.
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a b

c d
Figure 2.7 Different stabile regimes for different start conditions for two disks with r = dand n = 1.9,
according to Fig 2.2. The start points for the figures are a) so = 0 and po= 0.02, b) so= 0.2 and po=-0.3, c)

so= 0.3 and po = 0.3, d) so = 0.9 and po = 0.1. These plots are plotting the ray's behavior in the interval
between 4000 and 6000 reflections and transmissions.

The stabile regimes also change if we change the refractive index of the disks. This is
because of the angle of refraction depends on the ratio between the refractive index of the
disk and the media around the disks (according to Snell’s law of refraction, i.e. Eq. 2-1).

Figure 2.8 illustrates how the stabile regimes changes for a ray with the same start
conditions but different refractive index of the disks.
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Figure 2.8 The stabile rays that are in the basin of attractors for four cases with different refractive index of
the disks. The start point of the ray is so = 0.3 and po = 0.3 and r = d according to Fig. 2.2. The refractive
index for the disks isa) n=1.8,b) n= 2.0 c) n= 2.2 and d) n= 3.0.

As illustrated in Fig. 2.8 the attractor the ray leads into changes when the refractive ratio,
n, changes. This change in the structure of single attractors leads to a change of the phase
space of the disk system. This is illustrated in Fig. 2.9. The result of the attractors shown
in this thesis are in accordance with the results shown by Ryu and Hentschel?>. As Fig. 2.9
illustrates, the width of the phase space in p-direction that is covered by trajectories is
reduced with increasing refractive index n. The reason for this is that the maximum angle
of incidence 6 that allows transmissions from the inside to the outside of the disk reduces
with increasing refractive index n. According to Eq. 2-1 and Eq. 2-3 the maximum

momentum allowing transmission from the inside to the outside of the disk is p < %
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Figure 2.9 The PSOS for a two disk system with r = d The refractive ratio of the two-disk system is
a) n=1.5,b) n=2.0,c) n=2.5and d) n=3.0.

By studying the PSOS in Fig. 2.9 closer, a rich variety of strange attractors can be found.
We consider the example with n = 2.0 a bit closer. We inspected the stable islands in the
PSOS of Fig. 2.9b and identified strange attractors. The start conditions for rays enclosing
in attractors are indicated by squares in Fig. 2.10. The start conditions for one ray that
leads to each of the attractors are listed in table 2.1. The different attractors are plotted in
Fig 2.11.
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Figure 2.10 A closer view at the PSOS for n = 2.0 in Fig. 2.9. Some start condition for some attractors are

indicated.

S0

po

0.005479
0.01044
0.03721
0.03441
0.03908
0.03544

ST B BN W IS

0.1825
0.02787
0.194
0.1767
0.03284
-0.0158

Table 2.1 Start conditions for different stable orbits for n= 2.0 according to Fig 2.10.
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Figure 2.11 Plots of the 1000 first transmissions and reflections of a two-disk model with = dand n = 2.
The start conditions are given in table 2.1.

As the previous figures confirm, a large variety of attractors can be found. The most
simple of the stabile regimes is shown in Fig. 2.12.

b Y
TR

Figure 2.12 The most simple of the stabile regimes is obtained for so= 0 and po= 0, with r= dand n= 1.9.
The behavior of the ray is plotted up to 3000 reflections or transmissions
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Another obvious stabile regime is given in Fig. 2.13. The start angle, 6, of this this periodic
ray orbit can be found according to the following equation

0 = cos™ ! (:721) (2-4)

Figure 2.13 Another simple stabile regime, so = 0 and po calculated in Eq. 2-4, with r= dand n = 1.9. The
behavior of the ray is plotted up to 3000 reflections or transmissions

The start position of this ray orbit is given by so = 0. A consequence of Eq. 2-4 is that this

ray exists for nz = 1, only if the refractive index of the disk, nz, is between V2 and 2.

As Fig. 2.9a shows, a chaotic phase space is obtained for a ratio of refractive indices equal
to n= 1.5, while the phase space shown in Fig. 2.9b-d i.e. for n= 2.0, n= 2.5 and n = 3.0,
respectively, a phase space with fractal attractors are obtained. Figure 2.14 illustrates the
PSOS for different values of nin the interval where the PSOS changes from a chaotic phase
space (Fig. 2.14a with n=1.77) to a phase space with fractal attractors. (Fig. 2.14b with
n=1.78).

A b N\

Figure 2.14 The PSOS for a two disk system where r=d ina) n=1.77 andinb) n=1.78.
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The phase space and the attractors of the system change also when the distance between
the disks is changed as illustrated in Fig 2.15.

o
)1
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Figure 2.15 Phase space for a two-disk system with 7 = 2.0 and the relationship between rand dis a) d =
0.5nb)d=rc)d=2rd)d=3rande) d=4r.

Since dielectric resonant nanospheres are closely packed on Si (amorphous silicon) solar
cells it is interesting to investigate the two-disk system with attached spheres, i.e. d= 0.
Figure 2.16 and Fig. 2.17 shows such systems for two different refractive indices. Figure
2.18 and Fig. 2.19 show the phase space for these systems.

Figure 2.16 Attractors for a two disk system with n= 1.9. The start conditions for a ray that leads to each of
the attractors is for the upper system is so = 0.4 and po = 0.3, and for the lower so= 0.2 and po=-0.1
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Figure 2.17 Attractors for a two-disk system with 7 = 2.0. The start conditions for a ray that leads to each of
the attractors is for the upper system is so = 0.4 and po = 0.3, and for the lower sp= 0.2 and po=-0.1

Figure 2.19 Phase space for a two-disk system with no distance between the disks, n= 2.0.
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2.2 Ray dynamics in arrays of disks

While the focus of the investigation of the classical ray dynamics in coupled disks was put
on two-disk systems, we will in this section shortly present results on systems containing
more than two disks. As previously, we apply the deterministic selection rule. As in the
previous chapter, we define ras the radius of the disks, dis the shortest distance between
the disks and nis the ratio between the refractive index inside the disks and the refractive
index of the regions outside the disks. The Matlab script plot ray.m¢ is used for
investigating the ray dynamics. Figure 2.20 gives the attractors rays with different start
conditions ahead for some systems with different number of disks and different n. In this
figure the ray is plotted between 89 500 and 90 000 reflections or transmissions. The
reason of this high number is to demonstrate that even after a long time, rays may not
finds a attractor.

$0=0.02,p,=033,n=18

5=0.02, py=0.33,n =2.0 5= 0.02, py=0.03,n =2.0

59=0.8,p,=-0.03,n=1.8 $=0.2,p,=-03,n=18

5o =0.05, p,=-0.04,n=2.0 $5=0.5,p,=0.3,n=2.0
e
5=0.5,p,=03,n=18 50=0.5,p,=03,n=18
| 4'
$9=05,p,=03,n=2.0 5,=0.5,p,=0.3,n=2.0
55=0.5,p,=03,n=138 5=0.1,p,=0.03,n=18

SN
oA

5p=0.1,py=-0.03,n=1.38

50=0.1,p,=0.03,n=18

Figure 2.20 Disks systems that consist more than two disks. The start point and refractive index of the
system is given for each attractor. The behavior of the ray is plotted in the space between 89 500 and
90 000 reflections or transmissions. The radius of the disks is equal the distance between the, i.e. r=d.
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Figure 2.21 gives the PSOSs for systems with a different number of disks when the
refractive index of the disks is n = 1.78. The Matlab script PSOS.m?# was used to obtain
the PSOS for the upper part of the left disk. This refractive index is close to the value
where the chaotic phase space turned into a phase space with attractors as in Fig. 2.14.

la b ' b N lc \
| r ) 7 I Y.
| d hY | . AN
| s ] il

Figure 2.21 PSOS for systems with a) two disks, b) three disks, c) four disks, d) five disks and e) ten disks.
The refractive index of the disks is n=1.8.
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Chapter 3

Plane wave scattering in disk
systems

3.1 Resonances and whispering gallery modes
in highly scattering systems

When light impinges on a scatterer, the light is scattered, transmitted in forward direction
or absorbed. In this thesis, we do not consider the phenomenon absorption. The situation
is illustrated in Fig. 3.1, where a plane wave (a) moves towards a spherical scatterer (b).

Figure 3.1 a) When light hits a non-absorbing scatterer, the wave is scattered or transmitted forward
direction. This is illustrated by a plane wave (a) that moves from the right towards a scatterer (b)

The incoming plane wave is given by may be written as

—

o = e (3-1)
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> 2m . . 5. s
where |k| =k = 7” is the angular wavenumber, 4 is the wavelength and 7 is the position

vector.

When the plan wave hits the scatterer, resonances may arise. This is illustrated in Fig. 3.2.
Here we assume that the maxima shown in Fig. 3.2 refer to maxima of the wave function.
Later we will show plots of the square of the absolute value of the wave function, where
maxima of the square of the absolute value of the wave function refer to both maxima and
minima of wave functions. Resonances as shown in Fig. 3.2 typically arise in wavelength
regions, in which the wavelength of the electromagnetic radiation (in our case the plane
wave) is approximately of the same order as the size of the scatterer. When the
wavelength match approximately the size of the scatterer, the amount of scattered light is
highl0, In these wavelength regions, the appearance and the type of the resonances
depends on the actual value of the angular wavenumber k, the geometry of the scatterer
and the refractive index of the scatterer and the surrounding medium. In general,
resonances display very diverse patterns. The resonances shown in Fig. 3.2 are called
whispering gallery modes. These whispering gallery modes are described by Bessel
functions of first order. For these resonances the energy is stored in the disks and we say,
the light is trapped for a period of time. Whispering gallery modes are wave that are
observed at concave surfaces. They name ‘whispering gallery modes’ derives from the
study of sound waves that were observed in the whispering gallery of St Paul’s Cathedral
in London?23. They are of high importance in different fields of physics.

Figure 3.2 Whispering gallery modes occurs for specific values of k.

The whispering gallery modes that are observed in wave mechanics correspond to certain
rays as illustrated in Fig. 3.3. The rays are periodic rays that bounce a certain number of
times inside the disk. In the actual case illustrated in Fig. 3.3 the number of bounces is six.
This corresponds to six maxima of the wave function the disk. As the number of bounces
increases or as the refractive index increases, the reflection inside the disk may be due to
internal reflection.
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~

Figure 3.3 The number of reflections of a ray inside the disk corresponds approximately to the numbers of
maxima of a wave function.

In first approximation, we expect that whispering gallery modes appear, when the optical
length of a ray is a multiple of the wavelength of the incoming plane wave. The optical
length, /s is calculated as the actual length of the ray (geometrical length of the ray)
weighted by the refractive index, n. We denote the multiplicity by A;. Thus we obtain the
relation (quantization rule)

le .

N =<L=32, N €N (32)
] k:

]

where J;is the wavelength and 4;is the angular wavenumber. As N increases, the optical
length of the resonant modes approach the circumference of the disk as illustrated in Fig.
3.3.

These same considerations are assumed to apply for the attractors described in chapter 2.
It is assumed that attractor rays correspond to resonant modes in the two-disk wave
system?25 For the simple attractor shown in Fig. 2.12, the optical length for a ray moving
from left to right (or opposite) is given by

ler =nyd +4rn, (3-3)

where d is the distance between the disks, ris the radius of the disks, n, and n, are the
refractive indices of the surrounding medium and the disks, respectively.
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3.2 Plane-wave scattering algorithm

For the two-disk system shown in Fig. 3.4, two wave equations have to be fulfilled: One
wave equations for the area surrounding the disks and one wave equation for the area
inside the disks. These wave equations are given in the equations below.

n,=1,n¥1

Figure 3.4 A two-disk system with a refractive index n surrounded by a medium with refractive index
no=1.

Outside: AY + k*p = 0 (3-4)
Inside: A + k2(n(?)2 = 0 (3-5)

where ¢ is the wave function, kis the angular wave number, n(7) is the refractive index
of the disks and 7' is the position vector. We assume that the refractive index in the area
surrounding the disks equals one. In can be easily shown that these equations are
equivalent to the

—AY + V(Y = k*P (3-6)

Where k is the angular wave number, 7 is the position vector and V (#)is the potential of
the system given by

V(E) = k2 v(P) (3-7)

The function v(7) is given as

() = { 1- (n(f"))z), inside disk (3-8)
0, outside disk (n =1)

where n(7) is the refractive index of the disks. Eq. 3-6 can be written as

[-A+ V@Y =k (3-9)
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The scatter problem of a plane wave being scatter at two or more scatterers can be solved
by the Lippmann-Schwinger equation?l. The Lippmann-Schwinger equation writes as

Y@ = 0@ — [GE T, VE)PE)A ' (3-10)

where Y (7) is the solution for the wave function in the potential V (#), ¢ (#) is the solution
of the free Schrodinger equation, V(7) is the potential as described in Eq. 3-7 and 7 is the
position vector and G (7,7, k) is the Green function for Helmholtz equation, given by

(A+k2) GFEF k)= —6GF—7") (3-11)

where §(7 — 7') is the delta function and k is the angular wavenumber. . It can easily be
proven that the Lippmann-Schwinger equation is a solution of Eq. 3-9. For the proof it can
to be used that ¢ (%) is a solution of the free Schrodinger equation

A+k>p=0 (3-12)
For this special case, the Green function is given by18
G 7, k) =1 H{P(kIF' = 7)) (3-13)
where Hé+) is the Hankel function of first kind of zero order, given by
HgP () = Jo(0) + iVo(x) (3-14)

where J,(x) is the Bessel function of first kind of zero order and V,(x) is the Bessel
function of second kind of zero order. The incoming wave is now represented by the plane
wave in Eq. 3-1. This leads to the following explicit equation for (7)18

Y@ = ¥ — i O EIF - 7) v@ () (3-15)

In order to turn Eq. 3.15 into a form that can be implemented numerically we discretize
the two-dimensional plane into a lattice structure as illustrated in Fig. 3.5.

Figure 3.5 The plane is divided in a lattice structure in the Matlab scrip Diskscattering 20082015.m.
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For the discretization, we write Eq. 3.14 as

o 2
W(#) = ™ — Sy HEP (k| — 7]) vEDY(E)AA (3-16)

where the continuous position vectors are turned into a discrete position vectors, i.e. 7 —
m and 7' — 7. We denote by N the total number of squares and AA the area of square

each square in the lattice structure. Eq. 3-16 can be rewritten as

-y 'kZ
Y =lim ¥Ym = elkr]_lTAA'Gj,m'vm'lpm (3-17)

where [; ,, is the (jm) element in the identity matrix. This can be summarized in matrix

from to

—

MW =R (3-18)
where the matrix M is

2 ~
M=1+i"G(3-19)

an element in the matrix G is given by
Gim = GjmVm (3-20)
and R is
R= : (3-21)
ik7)
By solving Eq. 3.18 for ¥ itis possible to calculate v

The basic algorithm for the plane-wave scatter algorithm was developed by A. Kohler and
R. Bliimel prior to the start of this master thesis. It was implemented in the Matlab script
Diskscattering 20082015.m°, which is attached in the appendix.
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3.3 Plane-wave scattering in two-disk systems

In order to study the scattering of a plane wave at two equally sized disks we run the
Matlab script Diskscattering 20082015.m¢ using the potential as given in Eq. 3-7 and
Eq. 3-7. If not otherwise stated we will use a radius 10.0 pm for both disks. This
corresponds to a wavenumber of 1000cm1, which is located in the mid-infrared region

of electromagnetic radiation (wavenumbers are calculated as v = %). In the following we

will therefore screen wavenumber regions around this wavenumber, namely from
around 500cm to 1400cm 1. The distance between the disks was set to zero. Figure 3.6
shows the potential for a two-disk system, where the refractive index of the disks is 2.0.
Throughout this thesis, we used 50 grid points for the discretization of 20.0 pm in both
x-direction y-direction. i.e. 50 grid points for the discretization of the diameter of the
disks in x-direction and y-direction. This discretization led to a good resolution, while at
the same time the computation time was such that simulations over large wavelength
regions were possible. Simulations were done at the compute cluster at UiT - The Arctic
University, the Linux Cluster Stallo, one of the Notur hardware resources, located in
Tromsg?8.

Figure Feil! Det er ingen tekst med den angitte stilen i dokumentet..1 Schematic view of the potential
given by the two-disk system used in the Matlab script Diskscattering 20082015.m.

In the following, large wavenumber regions were screened for resonant modes. For each
wavenumber the wave functions were calculated by using the Matlab script
Diskscattering 20082015.m°. In order detect resonant modes, we calculated for each

—2
wave function the integral over the absolute square of the wave function |‘P| . Figures

—2
3.7-3.14 shows graph of the integral over the absolute square of the wave function |‘P|

as
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disk system. Figures 3.7-3.14 correspond to different refractive indices. The respective

refractive indices are given in the figure captions. From the graphs, it can be clearly seen

that certain wavenumbers lead to peaks in the integral over the absolute square of the
—2

wave functions |‘P| . Where these peaks appear, depends also on the refractive index

employed for the disks. In addition, Figures 3.7-3.14 display for each peak, the element-

- 2
wise squared wave function |1,bj| in insets in proximity to the peaks. In Figures 3.7-3.14,

the incoming plan wave is coming from the top of the systems.
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When the wave functions for two-disk systems with refractive indices equal 1.8 or higher
(i.e. with a phase space with stable islands) were evaluated, the resonance mode type
displayed as squared absolute wave function in Fig. 3.15 existed in all cases. Since the
squared absolute value of the wave function is displayed, both maxima and minima are
indicated as maxima. In the two-disk central ray shown in Fig. 3.15, there are totally 18
maxima, which correspond to nine wavelengths. We associated the wave function in Fig.
3.15 with the ray shown in Fig. 2.12 and calculated the optical length of this ray according
to Eq. 3-3 and compared the optical length with the wavelength were this resonance
mode type appeared according to the quantization rule of Eq. 3-2 (see table 3.1). The
quantization rule of Eq. 3-2 gave approximately N = 9 for all of the refractive indices (see
table 3.1).

Figure 3.15 The square of absolute value of the wave function for wavenumber equal 1250 cm! for a two-
disk system with a refractive index 1.8. We associate this resonant mode type with the ray shown in Fig.
2.12.
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Refractive Wavenumber N
index [cm1]
1.8 1250 9.0
1.9 1189 9.04
1.95 1161 9.06
2.0 1134 9.07
2.1 1084 9.11

Table 3.1 The wavenumber in the first column corresponds to the wavenumber where the resonant mode
type of Fig. 3.15 appears. The number of wavelengths, A, is calculated according to Eq. 3.2.

In the Figs. 3.7-3.14, a variety of whispering gallery modes with 12, 14 and 16 maxima

(this indicates 6, 7 or 8 wavelengths inside, as explained in last paragraph) can be found.

The whispering gallery modes that occur for the different refractive indices are given in

table 3.2.



Whispering Refractive Wavenumber
gallery modes index [cm1]
12

2.1 640
1.8 836
1.9 798
1.95 780
2.0 763
1.7 998.5
1.8 942

Table 3.2 Whispering gallery modes in the Fig. 3.7-14.

38

At the contact point between the two disks the coupling of the disks is large. The

whispering gallery modes in the two disks are in phase, as the plots in table 3.2 shows.

This coherent superposition at the touching point sums up in phase leading to an

— 2
enhancement factor four in |¥| .
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3.4 Plane-wave scattering in three-disk system

The graph in Fig. 3.16 shows the integral over the absolute square of the wave function
for the wavenumber region 800 cm-! to 1200 cm-! for a three-disk system. The radius of
the disks is set to 10.0 um, which is chosen to be the radius for all disks if nothing else is
stated. The distance between the disks is zero. As for the previous section, the squared
absolute value of the wave function is shown for the peaks. The superposition at the
touching points can also be observed for three-disk system. According to the results from
section 2.2, it is expected that the coupling between the disks is more complex than for a
two-disk system. In the Fig. 3.16 the incoming plan wave is coming from the top of the
system.
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3.5 Plane-wave scattering in two-disk system
with differently sized disks

The Matlab script DiskScattering 20082015.m° was modified to allow for systems of disks
with different radius. An example is shown if Fig. 3.17, where the upper disk has a radius
of 5 um and the lower disk has a radius of 10 um. As refractive index we used n=1.9.

Figure 3.17 A schematic view of the potential used in the modified Matlab script
DiskScattering differentR.m. The radius of the upper disk is 5 pm and for the lower disk 10 pm.

Figure 3.18 shows the integral over the absolute square of the wave function for
wavenumbers in the interval 550 to 1400 cm-! for the system. As for the previous, section
the wave function plots shown in the insets correspond to maxima in the integral Also for
the system with disks of different sizes a coupling between the resonances in the disks
can be observed. The incoming plan wave is coming from the top of the system.
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3.6 Plane-wave scattering in one-disk systems

To investigate if the whispering gallery modes in the two-disk system with different radii
(Fig. 3.18), e.g. at v =917 cm'! and v = 1012 cm!, have a connection with whispering
gallery modes that occur in single-disk system, two different single-disk systems with
different radii (10 pm and 5 pm) have been investigated. As refractive index we chose n=
1.9 for both of the systems. The graph of the integral over the absolute square of the wave
function for wavenumbers in the interval 550 cm to 1400 cm-! for the single-disk
systems is plotted in Figs 3.19-3.21. As previously, the insets show the wave functions
that correspond to peaks in the graph of the integral. In Fig. 3.19 and Fig. 3.20 the radius
of the disk is 10 pum, in Fig. 3.21 the radius of the disk is 5 pm. The incoming plan wave is
coming from the top of the systems.



‘wirl QT SIYSIP Y3 Jo snipexay, ‘papofd st _|/rh| uonouny saem ay jo axenbs snjosqe oy yead yoes 104 ‘¢’ T=u [enba
A4

Xopul 9ANDRIJDI B YIIM WSISAS YSIP-9UO 10 JOQUINUSAEM 3} JO UONIUNJ B S_| 4| UOnOUN saBM 93 Jo S1enbs a1njosqe a1 140 [e18a1ul oYL, 61°E dnBL]
LI

[, wo] Jsqunuanep
0oPl 00E1 0021 001t 0001 006 00e 002 009 008

I 1:\ | | | | <H | |

WO ZI8 =N

]

W TPCT =A
1 | | | | 1 | 1
w.oL=16L=U waysAs ys|p-auQ p

(]}

4%



‘wrl 0T SIYSIp 9Y3 Jo sniped ay, ‘pano[d st _.§_ uonounj aAem a3 jo arenbs aynjosqe ay3 yead yoes 10 ‘6’ T=u [enba
2l
XopUI 9AIDEIJDI B Y3IM WIISAS HSIP-9UO 10J JaqUINUIABM JY) JO UO[DUNJ B SE _ &_ uonOUNj 9ABM 33 Jo alenbs aynjosqe a3 1940 [e1da3ul 9y, 0Z'E 2SI
A8
[ . wo] Jsquinuanepm

oo¥l DOEL Dozi 00LE 0001 006 008 00L 009

| I I I [ I | I

-Wd2 909 =A

W GEET = A W ZETT =n W2 6TOT = A W ETE6=A

W G'60L = A

W THPZT = A

= | | | | | | | | ol
w . 0L=1 ‘6" = U wayshs ysip-auQ ;

St



‘wn G SIYSIp 93 JO snipeaay], .Uouuo_g ST _\ﬂ_ uonounj aAem ayj Jo aJenbs ajnjosqe ayy MN@Q yoea 1oy '6'1=U RSUO
AR
Xapul aAndedJal e M Wa)SAS 3}SIp-auo0 J0J JoaqunuaAeM al] JO uondunj e se _9_ uonounj aAem ayl jo alenbs oynjosqe ayj IaA0 _mhwgﬁ_ UL IZ'S whzm_m
N —
T,Eo_ JBQUINUSABAA

DOS1 001 DOEL 0021 0oLt D0oL 006 008 o0 noa 006
0

T 1 T I T I T 1

-Wd 9Z00T =A

LW ZTZT =A

T —] 0o0otL

| I 1 | | | | 1 | .
WD BTHT =A W 01 ,6'0=1"6"L=Uuwajshs ys|p-aup

9%



47

We further wanted to study if for the two whispering gallery modes that are present in
the wave function plots in Fig. 3.18 at. v = 917 cm™* and v = 1012 cm'}, corresponding
whispering gallery modes can be found in the respective single-disk systems. Wave
function plots of wave functions at. v = 917 cm™! and v = 1012 cm-! for the single-disk
systems are represented in Fig. 3.22 and 3.12.

v=917 cm ; v=1012 cm?

Figure 3.22 The square of the absolute value of the wave function for a single-disk system with radius 10 pm
for wavenumber 917 cm! and 1012 cmL. The refractive index is 1.9

v=917 cm? v=1012cm?

Figure 3.23 The square of the absolute value of the wave function for a single-disk system with radius 5 pm
for wavenumber 917 cm-t and 1012 cm-L. The refractive index is 1.9.

It is obvious that the wave functions in the single-disk systems do not display whispering
gallery modes at the same wave numbers as the corresponding two-disk system with
radii 10 um and 5 pm. The positions of the whispering gallery modes seem to be shifted
due to the coupling of the disks. This is expected when the coupling is strong. The
whispering gallery mode at v= 708 cm! in Fig. 3.18 shows a rather week coupling. The
plot of the wave function shows a strong whispering gallery mode in the large disk, while
the intensities in the small disk are rather week. When inspecting the graph of the integral
over the absolute square of the wave function of the single disks, we see that the
respective peak in the integral is insignificantly for the largest disk. For the larger disk we
find the corresponding whispering gallery mode at v = 709.5 cm-! in Fig. 3.20.
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3.7 Effect of the direction of the incoming plane
wave on resonances in the two-disk system

For all examples we considered so far, the incoming plane wave was coming from the top
of the disk systems. In order to investigate the stability of the plane-wave scatter
algorithm, we investigated if a change in the direction of the incoming wave changes the
position of the peaks in the graphs of the integrals of the absolute value of the wave
functions. In Fig. 3.24 and 3.25, the plane wave is coming from the right of the two-disk
system in leftward direction. As refractive index we chose 2.0 and the disks have equal
radius. As previously, we plot the graph of the integrals of the absolute value of the wave
functions in the interval 550 to 1400 cm™ in the figures. The insets correspond to the
resonant modes at the peak positions of the graph of the integral
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In the table 3.3 and table 3.4, the resonances for the incoming plane wave from the top in
Fig. 3.12 and Fig. 3.13 are compared with the resonances for the incoming plane wave
from the right in Fig. 3.24 and Fig. 3.25. It can be seen that the resonances appear at

nearly the same wavenumbers.

Incoming plane wave
from the top

Incoming plane wave
from the right

v =570.5 cm!

v =570.5 cm!

v =668 cm!

v = 665 cm!

v=763 cm!

v =764 cm!

v =969 cm!

v =969 cm!

Table 3.3 Comparison of the resonances in a two-disk system with different direction of the incoming plane
wave. The refractive index of the disks in both systems is 2.0.



Incoming plane wave
from the top

Incoming plane wave
from the right

v =1080 cm™!

vy =1072 cm!

vy =1183.5cm!

v=1184 cm™!

v=1209 cm?

v =1209 cm?

v=1256.5 cm1!

v =1258 cm!

v=1343 cm!

v =1348 cm™!

52

Table 3.4 Comparison of the resonances in a two-disk system with different direction of the incoming plane

wave. The refractive index of the disks in both systems is 2.0.
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Chapter 4

Discussion

The selection rule for the ray dynamics presented in chapter 2, has clear implications for
the phase space of the ray dynamics. The selections rule leads to attractors, when the
ratio between the refractive indices of the disks and the area around the disks is 1.78 or
higher. From Fig. 2.5 and Fig. 2.6 it can be clearly seen, that the attractors have fractal
structures. Due to the ray dynamics with a deterministic selection rule, the two-disk
system goes from a chaotic phase space into a phase space with fractal attractors when
the refractive index increases. For the parameters applied in this thesis, this transition
occurs, when the refractive ratio equals 1.78. According to Ryu and Hentschel?>, the
appearance of attractors is due to the ray model with a deterministic selection rule. Each
ray that is started with a momentum p = +1/n has to stay in the system according to the
ray model with a deterministic selection rule. Thus, all rays started within the momentum
rangep = t1/nrepresent the basin of attraction?s. A ray that is started within the
momentum range p = t1/n approaches the attractor after some time. Since no ray can
leave the system, any ray that is started close to an attractor can never leave the
attractor?>. Similar phase space behavior as for the two-disk system could be observed for
systems with more than two disks, when the ray model with a deterministic selection rule
was employed. For systems with more than two disks, the placement of the Poincare
surface of section not as obvious as for the two-disk system.

For solving the plane wave scattering problem different methods can be found in
literature. For example the Maxwell equations can be solved by the finite difference time
domain (FDTD) techniquel®. The FDTD technique is very time consuming and the
stability of the technique is depending strongly on the geometry of the scatterers3 18,
Other common solutions are based on partial wave equations?!. Solutions based on partial
wave equations are also prone to stability problems3 18, The methods evaluated in this
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thesis are based on the discretization of the Lippmann-Schwinger equation. It shows
surprisingly high stability given the simplicity of the solutions. The method could be used
to produce the stable wave function results for different two-dimensional multiple-disk
arrangements. The system program allows easily to change the direction of the incoming
plane wave and differences in the wave function as a function of the incoming wave could
be studied. It turned out that the position of the peaks in the integral over the square of
the absolute value of the wave function did not depend on the direction of the incoming
wave, which gave another proof of the stability of the method.

The integral over the square of the absolute value of the wave function directly related to
the light absorption by the disks and has thus relevance for understanding the
effectiveness of architectures of nanoimprints on thin solar films. It is therefore
interesting to compare the integral over the square of the absolute value of the wave
function for different parameters. The graph of the integral over the square of the
absolute value of the wave function changes according to changes in phase space of the
two-disk systems. For the system in Fig. 3.7 (n= 1.7, i.e. chaotic phase space according to
the experiences in this thesis), the maximum value the integral is close to 4 X 10 For the
systems in Fig. 3.8-14 (n > 1.8, i.e. a phase space with attractors), the maximum value of
the integral is between 2x106 and 108. This could indicate that a higher coupling is
present in systems in which the phase space contains strong attractors. When evaluating
the integral over the square of the absolute value of the wave function for a three-disk
system with a refractive index of n=1.7, the maximum value of the integral was 3 X 105,
which is higher than for the corresponding two-disk system. This may indicate that the
higher number of disks leads to higher absorption and thus a higher efficiency in
corresponding thin solar films with nanoimprints.

The maximum value of the integral over the squared absolute value of the wave function
changes when the direction of the incoming plane wave changes. For a two-disk system
with refractive index 2.0 and an incoming ray from the top, the maximum value of the
integral is 108. For a two-disk system with refractive index 2.0 and an incoming ray from
the right is 9 x 10°. For two-disks systems with refractive index higher than 1.8 with an
incoming plan wave from the top, a wave function is illustrated in Fig. 3.15. This
particular wave function in Fig. 3.15 was with the two-disk central ray shown in Fig. 2.12
according to the quantization rule of Eq. 3-2 (see table 3.1). For a two-disk system with an
incoming plane wave from right (section 3.7) this wave function did not occur. This fact
may be interpreted with the help of ray dynamics. A ray entering the system from the
right hand side, is not able to approach the attractor Fig. 2.12, since its momentum is zero
in the x-direction.
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The whispering gallery modes in the two-disk system (Fig. 3.4 and Fig. 3.5) are
summarized in table 3.2. It is possible to follow the same whispering gallery mode type
for different wavenumbers as the refractive index changes. This may allow in future to
relate whispering gallery modes to strange attractor by the help of the quantization rule
of Eq. 3-2.

For a two-disk system with refractive index 1.9 a whispering gallery mode with 14
maxima appeared atv =798 cm (Fig. 3.9). When this whispering gallery mode was
compared with the corresponding whispering gallery mode in the one-disk system with
radius 10 pm (Fig. 3.19), the corresponding whispering gallery mode with 14 maxima
was observed at v= 812 cm-L Thus, it could be clearly seen that the coupling between the
two disks leads to a shift in wavelength for the resonance.

When evaluating three-disk systems, similar resonances could be observed. Figure 3.16
illustrates examples of such resonances in three-disks systems. The coupling between the
disks is obvious. The resonances for systems with three or more disks or with disks in a
lattice structure will be an interesting subject for future investigations. Visually, the
plane-wave scattering program reveals meaningful plots of wave functions also for three
disk systems.

The plane-wave scattering program was further used to study two disks with different
radii. Whispering gallery modes that appear in two-disk systems with different disk
radii (Fig. 3.18) could be connected to the corresponding one-disk whispering gallery
modes. As for the two-disk systems with equal radii of the disks, a shift in the
wavenumber could be observed due to the coupling. The coupling of resonances in the
two-disk system with different radii is nicely illustrated in Fig. 3.18.

For all calculations of the wave function in chapter 3, the distance between the disks was
kept zero. When investigating the ray dynamics according to the ray model with a
deterministic selection rule, two-disk systems with different distances between the disks
were investigated. The ray dynamics shows clear changes, when the distance of the disks
varies (Fig. 2.15). For two-disk systems with a distance zero and a refractive index of 2.0
(see Fig. 2.16 and Fig. 2.17) the phase space consists of a smaller number of stable islands,
i.e. fewer attractors. According to Ryu and Hentschel?5 there is a shift in type of resonance
as the distance between the disks changes. The strange attractors shown in Fig. 2.11 do
not exist when the distance between the disks is zero. The strange attractors in Fig. 2.11
are reminiscent of lens?’. They collapse to the central attractor ray, when the distance
between the lenses becomes zero. A further investigation of plane-wave scattering at
disks with different distances may reveal the implications of the these changes in the
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phase space of the ray dynamics for the absorption properties of thin film solar cells with
nanoimprints.

An error source that could influence the results in the calculations of the wave functions
for the different disk-systems may be that the disks are located in the boarder of the area
where the potential is defined. To investigate this error, these systems should be
compared with systems that have a “frame” of zero potential around the original system.

Materials used in solar cells are usually TiO2 or SiO21°. The refractive index of these
materials in the infrared region is around 2.5 and 1.5 and shows dispersion?, where a
changing refractive index is assumed. By changing the radius of the disks, it should be
possible to obtain other resonances of the systems for these materials.

Materials used in solar cells are usually TiO2 or Si021°. The refractive index of these
materials in the infrared region is around 2.5 and 1.5 and shows dispersionl2. By
investigating different architectures of nanoimprints for these materials with ray
dynamics and plane wave scattering algorithms it may in future be possible to perform
targeted light management
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Chapter 5

Conclusion and outlook

The aim of this thesis was to investigate to what extend the increased efficiency in thin
film solar cells with spherical nanoimprints could be explained by a coupling of spheres.
In order to study this subject in the frame of this thesis, it was decided to study the
coupling in two-dimensional model systems, i.e. systems with two and more disks. Both
the ray dynamics and the wave dynamics in these systems were investigated. For the ray
dynamics, a deterministic selection rule was implemented. The ray model with a
deterministic selection rule allowed studying the phase space. It was shown that a chaotic
phase space could be obtained for low refractive indices. For higher refractive a phase
space with strange attractors was obtained, i.e. the attractors showed fractal structures. A
plane-wave scattering algorithm based on the Lippmann-Schwinger equation was
evaluated for different disk systems. The plane wave-scattering algorithm turned out to
be very stable. Its stability allowed following the appearance of specific whispering
gallery mode types with increasing refractive index. The whispering gallery mode types
appeared at specific wavenumbers and were subjected to systematic wavenumber shifts,
when the refractive index of the respective system changed. The stability of the algorithm
was further confirmed, when we studied incoming plane waves impinging on the disk
systems from different directions. The positions of the whispering gallery modes in the
wavenumber space were nearly independent on the direction of the incoming plane wave.
A comparison of the ray dynamics with the plane wave scattering results, revealed clear
connections. When the phase space of the ray dynamics with a deterministic selection
rule changed from a chaotic phase space to a phase space with strange attractors, a clear
change in the intensity of the integral over the square of the absolute value of the wave
function could be seen. Future investigations are necessary to investigate how this
knowledge over the changes in the phase space behavior and its implications for the wave
dynamics can be utilized for thin film solar cells with nanoimprints. Several of the coupled
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mode types that were observed when investigating the wave dynamics could be directly
related to the strange attractors by a quantization rule. This shows that the ray dynamics
can potentially be used to understand and to optimize architectures of nanoimprints.
Further research is necessary, in order to understand how the knowledge about the
relevance of strange attractors for absorption properties can be exploited for solar cells
with nanoimprints. The wave functions of the multiple-disk system presented in this
thesis, gave further indications that a coupling between the disks influences the
absorption significantly. This seems to be valid for disk-systems with both equally and
differently sized disks.

In summary, we can conclude that the coupling of disks is important for the absorption
properties of nanoimprints in thin film solar cells. The study of the ray dynamics with a
deterministic selection rule in coupled systems revealed a deeper understanding of the
significance of the coupling for the enhancement of absorption properties.
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Appendix

In this appendix Matlab codes is given. The scripts?4 that is used in chapter 2 is:

plot ray.m

Plots the pattern a ray will follow in a disk system with the deterministic selection
rule.

PSOS.m

Plots the phase space for a

disk.m (function)

Gives the positions for transmission/refraction for plot ray.m
Gives the p and s for PSOS.m

test_hit. m (function)

Check if the ray will hit the other disk or not (selection rule)
new_values.m (function)

Calculates the point where the disk will hit the new disk

For calculations of the wave function Disk Scattering20082015.m¢ in chapter 3. To
calculate the wave function for a system with different radius of the two disks, this code
was modified to Disk Scattering differentR.mo°.



% plot ray.m %
; Plot a ray in a disk-system with the deterministic selection rule ;
% found bye Ryu and Hentschel. %
; The disks if established in a line of disks, 1 x n disks. ;
; The rays start in the upper half of one of the disks. 2

no of disks = 2; % The total number of disks

nl = 1.0; % The refractive index of the medium around the
disks

n2 = 1.9; % The refractive index of the disks

no of bounces = 300; % The total number of transmissions/reflections

r =1.0; % The radius of the disks

start disk = 1; % The disk the rays starts from

disk no PSOS = 1; % The disk where the phase space is found. Not used
in this plot.

start = 25; % The transmission/reflection where the plotting
starts.

d = r; % The distance between the disks (distance between
to center points = d + 2*r)

%% Start conditions:
= 0.5;
= 0.3;

%% Plotting the disk system:
xs = 0;

ys = 0;

ang=0:0.0001:2*pi;

Xp=r*cos (ang) ;
yp=r*sin(ang);

for i =l:no_of disks
plot ((xp+ (i-1)*(2*r+d)), (yp), 'r');
axis( [-(1.5*r) ((no_of disks-1)*(d+2*r)+1.5*r) - (1.5*r) (1.5*r)]);
grid on
hold on
end

%% Plotting the rays behavior into the disk system:
[z, s, p] = disks(s0, p0, no of disks, nl, n2, no of bounces, r, start disk,
disk no_ PSOS,start,d);
for n = start:no_of bounces
plot([real(z(n-1)) real(z(n))], [imag(z(n-1)) imag(z(n))], 'b");
end
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Finding the phase space for a disk system in terms of the Poincare

surface of section (PSOS). %
ear all
INPUT
~of disks = 2; % The total number of disks
= 1.0; % The refractive index of the medium around the
disks
=1.9; % The refractive index of the disks
~of bounces = 300; % The total number of transmissions/reflections
=1.0; % The radius of the disks
art disk = 1; % The disk the rays starts from
sk no PSOS = 1; % The disk where the phase space is found. Not used
in this plot.
art = 25; % The transmission/reflection where the plotting
starts.
= r; % The distance between the disks (distance between
to center points = d + 2*r)
= 10; % The total number of attractors in the PSOS
Random generation of p, x0 and alpha
ose all
[1;
= [1;
zeros(n,1);
zeros(n,1);
= zeros(n,1l);

Generation of
r b l:n;
rng ("shuffle');
random_sO = rand;
random p0 rand;
p0(b) = random pO0* (nl/n2)*2 -
s0 (b) random_s0;
d

random start points

oe

(nl/n2) sin (theta2)

/Smax

’ P
S

oe

Make s-matrix and p-matrix (and z-matrix)
r k l:n
[z array, s _array, p_array] disks(s0(k), pO(k), no of disks, nl, n2,
~of bounces, r, start disk, disk no PSOS,start,d)
for j l:length(s_array)
s(k,J) = s_array(j);
p(k,J) = p_array(j);

’

end

o

°

The z-array can be saved and plotted for investigations of the



% different attractors the rays stabilize into

o° o©

o

end

%% Plot
for k =
for

end
end

for g = l:length(z array)

z(k,g) = z array(g);

end

of the PSOS

1:n

1 = 1l:length(s(k,:));

if s(k,1) ==

else
plot(s(k,1), p(k,1) , 'b.");
grid on
hold on

end
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function [z,
start disk,

s, pl disks (s0, pO,
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o
]

Gives the behavior of the disk in
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position (in comp
p-value of the se
The s-value of the se
The length of the p a
No bounces inside one
Gives indications of

o oNe e
Ne Ne N
o o oe

oe

’

0;

o~ Hh 0 TOON
I P O——= —

o

% In case of total reflection:
if abs(p0) > nl/n2

error('p is to high');
end

for n
if

l:no of bounces
1
theta?
thetal

The first

theta2) *n

if theta2 < 0 The direc

dir = 1; % countercl
else

dir = -1; % clockwise
end
phi = pi - sO0*r*pi; % The c
z(n) = r * exp(li * phi) +
disk no = start disk;

o
o

When it is change of disk. Fi

Put it together i a vector

no_of disks, nl, n2,

lex numbers)
lected disk
lected disk
nd s vector
disk

transmission or reflection.

point
2/nl);

tion of rotation
ockwise

omplex angle

(start _disk-1)*(d+2*r);

nd point where the disk hits.

no_of bounces,

elseif disk no == 0
k =1;
hit = 0;
[disk no, z(n), phi, thetal, dir] = new values(disk no old,
abs (thetal), dir, r, d);

Calculations inside disk
else

k k + 1;

theta? asin(sin (abs (theta
theta2 > 0
delta phi pi 2*abs(thet
point r * exp(li* (phi+dir
z (n) point + (dlsk no-1)*
ang acos (real (point) /r) ;

1))*nl/n2) * (-dir); % if dir =
az);

*(k-1) *delta phi));

(d+2*r) ;

(For plotting of PSOS)
(For plotting of PSOS)

z(n-1),

-1,



end

o)

% Deterministic selection rule

if disk no == 1 && real(point) < 0
elseif disk no == no_of disks && real(point) > 0
else
[hit] = test hit(z(n), abs(thetal), d, r, dir, disk no);
end

end

% Data to the PSOS

if disk no == disk no PSOS && imag(z(n)) > 0 && n > start
v = pi - angle(z(n) - (disk no-1)*(d+2*r));
f=1f+ 1;
s(f) = v/pi; %S/ Smax
theta2 = asin(sin(abs(thetal))*nl/n2) * (-dir);
p(f) = sin(theta2); %p = sin(theta)
end

% In case of changing disk. Indicate a change of disk.

if hit ==

disk no old = disk no;

disk no = 0; %between the disks.
end
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o s

5 hit.m

% Check if the ray will hit one of the other di

% No hit: hit = 0
% Hit: hit =1

function [hit] = test hit(z, thetal, 4, r, dir,
h = 1[1;

hit = 0; % Sets hit to O

x = real(z) - (2*r + d)*(disk no-1);

y = imag(z);

$Transfer situation
if x < 0 %flip

X = - X;
dir = - dir;
end
if dir == -1
Yy = - Y¥s
dir = -dir;
end

%% Finding angles of the ray
i = acos(abs(x/r));
pha = acos(abs(y/r));

(U]
= w0

o©°

% Check of hit of not
if y <0
if (abs(thetal) + alpha) < pi/2

phi = pi/2 - (thetal + alpha);

ang = pi:0.0001: (3*pi/2); % The accurac
yp = r*sin(ang);
Xp = r*cos(ang);

for n = 1l:length (xp)
if alpha < pi/4
h(n) = ((d + (r-x) + (r-xp(n)))
else
h(n) = ((d + (r-x) + (r-xp(n)))
abs (y);
end

if h(n) < abs(yp(n))
hit = 1;
return

end

sks or not.

y

* tan(phi)) + abs(y):;

/ tan(pi/2 - phi))

+

A% o o° o o° oP

o°



abs (y);

abs (y);

else

end

end

phi

if

end

ang
yp
Xp

for

end

end

else

= th

(phi)

retu

=(p
r*s
r*c

n:
if p

else

if h

end

% The accuracy

(r-abs(xp(n)))) * tan(phi)) -

(r-abs(xp(n))))

phi = (alpha + thetal) - pi/2;
ang = (pi/2):0.0001: (3*pi/2);
yp = r*sin(ang);
Xp = r*cos(ang);
for n = 1l:1length (xp)
if phi < pi/4
h(n) = ((d + (r-x) +
else
h(n) = ((d + (r-x) +
end
if h(n) < 0
hit = 1;
return
elseif h(n) <= yp(n)
hit = 1;
return
end
end
etal + psi;
> acos (r/ ((r-x)+r+d))
rn
i/2):0.0001:pi;
in(ang) ;
os (ang) ;
l:length (xp)

hi < pi/4

h(n) =y + ((d + (r-x) +
h(n) =y + ((d + (r-x) +
(n) < yp(n)

hit = 1;

return

(r-abs(xp(n))))

(r-abs (xp(n))))

* tan(phi));

/ tan(pi/2 - phi));
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% new values.m %
o o
o o
N . . . . . N
% Calculates the point where the ray will hit the next disk in case of %
o . . . L . . o
% transmission, i.e. hit = 1 in test hit.m 5
o o
o o
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function [disk no new, z new, phi new, thetal new, dir new ] =
new values(disk no old, z, thetal, dir, r,d)

oe

Transfer into a Cartesian coordinate system
real(z) - (2*r + d)*(disk no old-1);
imag(z);

<X
Il

oe

Angles in the system
psi = acos(abs(x/r));
alpha = acos(abs(y/r));
A = (d + 2*r) - abs(x);
dir new = 0;

k =1;

% Transfer situation, flip
if x < 0

dir = -dir;

X = -x; %all x-values > 0.
end

if y >0
if dir == -1
if (alpha + thetal) > pi/2
u = -1;
ang = (alpha + thetal) - pi/2;
else
u = 1;
ang = pi/2 - (alpha + thetal);
dir new = -1;
end
else %dir =1
ang = thetal + psi;
u = 1;
dir new = -1;
end
else % y <0
if dir == -1
u = -1;
ang = thetal + psi;
dir new = 1;
k = -1;
else %dir =1
if (alpha + thetal) > pi/2
u = 1;
ang = (alpha + thetal) - pi/2;
k= -1;



else
u = -1;
ang = pi/2 - (alpha + thetal);
dir new = 1;
k = -1;
end

end
end

delta x = min(roots ([l (u*2*cos(ang)*sin(ang)*y - 2*A*(cos(ang))"2)
y*2 - r~2)*cos(ang)”"2)1));

x new = - (A-delta x);

if ang < pi/4

y new = y + u*delta x * tan(ang);
else
y new = y + u*delta x / tan(pi/2 - ang);
end
if dir new == 0
alpha new = acos(abs(x_new/r));
if y > 0 & y new < 0
dir new = 1;
k=-1;
elseif y < 0 && y new > 0
dir new = - 1;
k =1;

elseif y > 0
if alpha new > ang

dir new = -1;
else
dir new = 1;
end
else
if alpha new > ang
dir new = 1;
else
dir new = -1;
end
end
end
thetal new = acos (abs(x_new/r))+u*ang*k;

if thetal new < 0

thetal new = -thetal new;
dir = -dir;
end
if real(z) - (2*r + d)*(disk no _old-1) < 0
disk no new = disk no_old - 1;
X _new = -X nNew;
dir new = -dir_ new;
else

disk no new = disk no_old + 1;
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end

%% The point at the new disk
phi new = angle(x new + 1li*y new);
Zz new = x new + li*y new + (2*r + d)*(disk no new-1);

72



clear all;
close all;

ArrayOfCircles=1;

nu= 1323 * 100.0; %
phi=pi/2.0;

k=2*pi*nu;

kx=k*cos (phi) ;
ky=k*sin (phi) ;

clear phi;

NCx=1;
NCy=2;

o° o©

R=power (10, -5) ;
Nx=50;

Ny=100;
N=Nx*Ny;
a=2*NCx*R;
b=2*NCy*R;
n_index=1.7;

o oo oo

o

spacing in
spacing in

o
°
o
°

for i=1:Nx
for 1=1:Ny
J=(1-1) *Nx+1i;
x(3)=(1i-0.5) *dx;
y(3)=(1-0.5) *dy;
end
end

G=zeros (N, N) ;

for j=1:N
for m=1:N

The wavenumber nu

(cm” (-1)

No of disks in x-direction
No of disks in y-direction

Radius
Resolution in x-direction
Resolution in y-direction

x-direction
y-direction

% H is not defined for zero argument

if (J==m)
G(j,m)=0.0;

else

0% o° oo o°
Q
O
=
Q
e
=
)
part
()
9]
o+
j=p
()
=
]
<
()
H
c
ol
Q
s
-
]
=]
Hh
o
[n}
V)
o+
=
o
|
Q.
-
3
D
=]
0]
-
O
=]
U]
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9]
=
0]
pars
D
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* 100)
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Z=k*sqrt ((x(3)-x(m))* (x(J)-x(m))+(y(F)-y(m))*(y(I)-y(m));
G(j,m)=besselh (0,2); %besselh (nu,Z) gives Hankel function
H 0"+
end

end
end

% Establish the potential
v=zeros (1,N);
for m=1:N

for nx=1:NCx
for ny=1:NCy

if (ArrayOfCircles)
% Array of circles
xcircle=(2*nx-1) *R;

ycircle=(2*ny-1) *R;

rn=sqgrt ((x (m)-xcircle) * (x (m) -xcircle)+ (y(m)-ycircle) * (y (m) -
ycircle));
if (rn<R)
v(m)=1.0-n_index*n_index;
end
end

end
end

end
Gtilde=zeros (N,N) ;

for j=1:N
for m=1:N

Gtilde (j,m)=G(j,m) *v (m) ;

end
end

clear G;
clear v;

eikr=zeros(1,N);
for j=1:N
eikr (j)=exp (1i* (kx*x(3)+ky*y(3)));
end
clear x y;

M=zeros (N,N) ;
IdentityMat=eye (N, N) ;
M=IdentityMat+1li* (k*k*dx*dy*0.25)*Gtilde;



clear Gtilde;
clear IdentityMat;

%% Solve Linear Equation by Matlab routine
psi complex = linsolve(M,eikr');
psi complex reshaped=reshape (psi_complex, Nx,Ny) ;

Xplot=abs (psi complex reshaped) .*abs (psi complex reshaped) ;

figure;
pcolor (Xplot') ;
set (gcf, "Color', [1 1 11);

phi=zeros (Nx,Ny) ;
phi=angle (psi_complex reshaped); % gives angles in the range -pi:pi

figure;
pcolor (phi');
set (gcf, '"Color', [1 1 11);

% Integrating over the absolute square of the wave function
linearIndexXplot=sub2ind(size (Xplot), Nx,Ny) ;
IntegralPsi=sum(Xplot(l:1linearIndexXplot));
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% Disk Scatterin
o

]

o

o
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clear all;
close all;

ArrayOfCircles=1

nu= 750 * 100.0;
phi=pi/2.0;
k=2*pi*nu;
kx=k*cos (phi) ;
ky=k*sin (phi) ;
clear phi;

NCx=1;
NCy=2;

%$do not
%$do not

rl
r2

10~-5;
0.5*r1;

R=max (rl, r2);
Nx=50;
Ny=100;
N=Nx*Ny;
a=2*NCx*R;
b=2*NCy*R;
n_index=1.7;

dx=a/Nx;
dy=b/Ny;

spaci
spaci

o
o
<3
o

x=zeros (1,N);

y=zeros (1,N);

for i=1:Nx
for

end
end

G=zeros (N, N) ;

for j=1:N
for m=1:N

’

o

s The wavenumber (cm” (-1)

change
change

no
no

Resolution in y-direction
Resolution in y-direction

o° oo

o

°

ng in x-direction
ng in y-direction

* 100)

Refractive index of the disk(s)

Calculates the wave function for a two-dimensional two-disk
The radii of the two disks can be changed.
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% H is not defined for zero argument

if (j==m)
G(j,m)=0.0;

else
Z=k*sqrt ((x(J)-x(m))*(x(J)-x(m))+(y(3)-y(m))*(y(3)-y(m)));
G(j,m)=besselh (0,2); %besselh (nu,Z) gives Hankel function

H 07+
end

end

% Establish the potential
v=zeros (1,N);
for m=1:N

xlcircle=rl;
ylcircle=rl;

x2circle=rl;
y2circle=rl*2+r2;

rnl=sqgrt ((x(m)-xlcircle)* (x(m)-xlcircle)+ (y(m)-ylcircle)* (y(m)-
ylcircle));

rn2=sqrt ((x(m)-x2circle) * (x (m) -x2circle)+(y(m)-y2circle) * (y (m) -
y2circle));

if (rnl<rl)
v(m)=1.0-n_index*n index;

elseif (rn2<r2)
v(m)=1.0-n_index*n index;
end

end

%plots the potential
v_reshaped=reshape (v, Nx,Ny) ;
figure;

pcolor (v_reshaped');

set (gcf, 'Color',[1 1 11);

$vMat=reshape (v, Nx,Ny) ;
Gtilde=zeros (N,N);

for j=1:N
for m=1:N

Gtilde (j,m)=G(j,m)*v (m) ;

end
end
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clear G;
clear v;

eikr=zeros(1l,N);
for j=1:N
eikr (j)=exp (1i* (kx*x (3)+ky*y(3)));
end
clear x y;

M=zeros (N,N) ;
IdentityMat=eye (N, N) ;
M=IdentityMat+1li* (k*k*dx*dy*0.25)*Gtilde;

clear Gtilde;
clear IdentityMat;

%% Solve Linear Equation by Matlab routine
psi complex = linsolve (M,eikr'");
psi complex reshaped=reshape (psi complex, Nx,Ny) ;

Xplot=abs (psi complex reshaped) .*abs(psi complex reshaped) ;

figure;
pcolor (Xplot');
set (gcf, 'Color',[1 1 11);

phi=zeros (Nx,Ny) ;
phi=angle (psi complex reshaped); % gives angles in the range -pi:pi

figure;
pcolor (phi');
set (gcf, 'Color',[1 1 11);

% Integrating over the absolute square of the wave function
linearIndexXplot=sub2ind(size (Xplot), Nx,Ny);
IntegralPsi=sum(Xplot(l:linearIndexXplot)):;
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