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Abstract 
Thin film solar cells offer a reduced material usage at the expense of lower efficiency. 
Effective light management in nanostructures can contribute to an increasing efficiency 
and absorption of energy in the devices. Recently, it could be shown that nanoimprints 
on thin film solar cells increase the efficiency of thin-film solar cells considerably, while 
the rationale for the increased efficiency is only partially understood. The aim of this 
thesis was to investigate to what extend a coupling of spheres explains the absorption 
enhancement by spherical nanoimprints. For this purpose different systems of two 
dimensional disks were investigated as a model system. Both the ray dynamics and the 
wave dynamics in these systems were investigated. For the ray dynamics, a ray model 
with a deterministic selection rule was implemented. The wave dynamics was 
investigated by a plane-wave scatter code based on the Lippmann-Schwinger equation.  
The ray model with a deterministic selection rule revealed a chaotic phase space for a 
two-disk system with low refractive indices. For high refractive indices, a phase space 
with strange attractors was observed. An evaluation of the plane-wave scattering code 
showed that it is stable. It allowed the investigation of coupled modes in various 
multiple-disk systems with equally and differently sized disks. Several of the coupled 
modes could be directly related to strange attractors. For this purpose a quantization 
rule was established which connected the strange attractor rays directly to coupled 
modes. This shows that the ray dynamics can potentially be used to understand and 
optimized architectures of nanoimprints. It was further observed that when the ray 
dynamics changed from a chaotic phase space to a phase space with strange attractors, 
the corresponding resonances in the wave mechanics were considerably enhanced. An 
exploration of the ray dynamics for the enhancement of architectures of nanoimprints 
will require a deeper investigation. 
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Sammendrag 

Tynnfilm solceller fører til et lavere materialforbruk, dette på kostnad av effektiviteten. 

Effektiv lysledning i nanostrukturer kan føre til økt effektivitet og energiabsorpsjon i 

solcellene. Det kan vises at sfæriske nanoavtrykk øker effektiviteten til tynnfilm solceller 

vesentlig, men årsaken til den økte effektiviteten er kun delvis forstått. Hensikten med 

denne oppgaven var å undersøke i hvilken grad koblingen mellom sfærene kan forklare 

økningen i absorpsjon grunnet sfæriske nanoavtrykk. Derfor er flere todimensjonale 

disksystemer brukt som modeller i undersøkelsene. Både stråle- og bølgedynamikk har 

blitt undersøkt for disse modellene. For stråledynamikken ble en bølgemodell med en 

deterministisk utvalgsregel implementert. Bølgedynamikken ble undersøkt med en kode 

som viser spredning av en planbølge, koden er basert på Lippmann-Schwingers likning. 

Strålingsmodellen med deterministisk utvalgsregel avslørte et kaotisk faserom for lave 

brytningsindekser. For høye brytningsindekser hadde faserommet rare attraktorer. 

Koden for spredning av planbølgen viser seg å være stabil. Den tillater undesøkelser av 

koblingen mellom systemer som består av flere disker med lik og ulik størrelse. Flere av 

koblingene kan direkte bli knyttet til rare attraktorer. En kvantiseringsregel ble derfor 

etablert, dette for å knytte attraktorene direkte til koblingene. Dette betyr at 

strålingsmodellen potensielt kan brukes til å forstå og optimalisere arkitekturen av 

nanoavtrykket. Det var videre observert at når strålingsdynamikken endret fra et 

kaotisk faserom til et faserom med rare attraktorer, be de korresponderende 

resonansene i bølgedynamikken vesentlig økt. En undersøke av strålingsdynamikken for 

forbedringen av arkitekturen til nanoavtrykk vil kreve videre undersøkelser.  
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Chapter 1  
 
Introduction  
 
The amount of solar energy that every year hits the atmosphere of the Earth is equal to 
5,4 millions EJ. While the atmosphere reflects 30 % of this energy; the rest is available for 
use on Earth4. Photovoltaic solar cells convert the energy of the sunlight into green 
electrical energy. Since decades, the crystalline silicon solar cells with efficiency higher 
than 20 % have dominated the market. Their thickness ranges between 150 and 300 μm. 
The increasing need for clean energy has led to an enforced effort in the development of 
photovoltaic devices to reduce materials usage and production costs. Thin film solar cells 
offer a potential technology that provides a step toward solving these challenges20. 

Traditionally, light trapping has been a method for enhancing short-circuit current by 
enhancing the photo carrier generation of solar cells. This technology is becoming more 
and more effective. The use of light management has led to an increasing efficiency of 
light-trapping strategies and thus increased the efficiency of thin film solar cells20. Thin 
film solar cells offer a reduced material usage and lower production cost at the expense of 
lower efficiency7. Today, several methods of light trapping exist. Light trapping by 
imprinting a texture on the light absorbing material that enhances the absorption 
properties of the material has been identified as a potential solution 8. Nanostructures are 
used in solar cells to enhance the light absorption20. Since different nanostructures 
architectures reveal different light scattering and absorption properties, it is important to 
understand how different parameters effect the efficiency of the structures20. It has for 
example been shown that spherical nanoshells in contact with a photovoltaic device 
absorb significantly more than a flat film solar cell7, 31. These spherical structures also 
accept light from larger angles of incidence7. Recently, Grandidier et al.7 presented 
experimental results for a-Si (amorphous silicon) solar cell with closely packed dielectric 
resonant nanospheres on the top of the device. They showed that an increased spectral 
current density could be obtained for the whole wavelength range when dielectric 
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resonance nanospheres were added to the top of the device. For specific wavelengths the 
increase was up to 12 %. This clearly shows the potential of nanostructures in energy 
converting materials7. The efficiencies of the nanostructures were described by resonant 
Mie electric and magnetic modes of single spheres. These resonant modes correspond to 
whispering gallery modes inside the single spheres of nanostructures7. While the effect of 
Mie resonances of single spheres on the absorption properties has been discussed in 
literature10, the effect of coupling of spheres and the contribution of the coupling to an 
enhancement of the absorption properties has not been given the same attention yet. The 
hypothesis of this thesis is that the whispering gallery modes alone do not explain the 
total enhancement achieved in absorption. It is hypothesized that a coupling of the near 
field between the nanostructures may contribute significantly to the enhancement. Thus, 
the main aim of this thesis was to investigate resonant structures of coupled spheres. Due 
to the complexity of the problem in three dimensions, we restricted our self to the 
investigation of two-dimensional disk systems. 

For coupled modes, analytic solutions of Maxwell equations for coupled nanostructures 
do not exist. To evaluate such structures the finite difference time domain (FDTD) 
technique has been used. Since this simulation technique does not provide a deeper inside 
into how the geometrical arrangement, size of spheres and the materials can influence the 
light management and since it is numerically difficult and time-consuming it was not 
considered as a possible approach in this thesis. 

Another approach for investigating nanostructured light trapping, is an approach 
introduced by Ryu and Hentschel25 to study the coupling of optical microdisks based on a 
classical ray dynamics. They introduced a deterministic selection rule for coupled optical 
microdisks for a two-disk system. Ray dynamics in ray-splitting systems and its 
implications for the corresponding quantum systems have been studied extensively in the 
field of quantum chaos9, 13-17, 26. The advantage of the approach is that by the help of 
classical periodic rays, quantum phenomena could be elucidated and a deeper 
understanding of the system could be obtained. Chapter 2 of this thesis presents an 
investigation of the classical ray dynamics of a two-disk system and for more than two 
disks. For the investigation of the classical ray dynamics, the deterministic selection rule 
introduced by Ryu and Hentschel25 is used.   

In order to investigate absorption resonances in the corresponding wave system a new 
scattering code for multi-disk systems was evaluated. The code is based on the Lippmann-
Schwinger equation where the incoming wave is a plane wave. The theory for the 
scattering algorithm and simulation results are presented in chapter 3. The stability and 
versatility of the program is discussed and evaluated.  
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In the appendix, the codes for the classical two-disk system with a deterministic selection 
rule are presented. The scattering code for multi-disk systems is also given in the 
appendix. 
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Chapter 2  
 
Classical ray dynamics in two-
dimensional systems 
 

2.1 Ray dynamics in two-disk systems 
According to Fermat’s principle, a light beam travelling through a medium with a constant 
refractive index will follows a straight line22. When the ray strikes a boundary that is 
separating two media with different refractive indices, the light is either reflected or 
transmitted22. This situation is illustrated in Fig. 2.1. The transmitted ray is subjected to a 
change in direction. This change in direction depends on the angle of incidence and the 
ratio between the refractive indices of the two media. This phenomenon is called 
refraction 22.  

 

Figure 2.1 A ray incident on the interface of two media. The angle of incidence is denoted by θ1. This angle θ1 
is equal to the angle of reflection θ’1. The transmitted ray is refracted leading to a change in direction. The 
angle of refraction is denoted by an angle θ2. It depends on the angle of incidence and ratio between the 
refractive indices of the media. The refractive indices of the two media are denoted by n1 and n2 are. 
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The angle of incidence 𝜃1 and the angle of refraction  𝜃2 (see Fig. 2.1) are related by Snell’s 
law of refraction22 

𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2   ( 2-1 ) 

where 𝑛1 is the refractive index of the medium in which the incident ray moves and 𝑛2 is 
the refractive index of the medium in which the refracted ray moves Total internal 
reflections can appear when an incoming ray is coming from a medium with high 
refractive index to a medium with lower refractive index, i.e. n1 > n2. In this case  𝜃2 >  𝜃1, 
meaning that for an angle  𝜃1 < 90° and angle  𝜃2 = 90° will be achieved. When 𝜃1 reaches 
 𝜃1 = 90° in Eq. 2-1, we call the corresponding angle  𝜃1 critical angle  𝜃𝑐 . If the incoming 
ray has an angel of incidence larger than the critical angle of total internal reflection, no 
light is transmitted22. When a ray has an angle of incidence equal to the critical angle, the 
light ray continues along the surface of incidence, i.e. the angle of refraction would then be 
𝜋
2

 radians.  

 

2.1.1 Ray model with selection rule for the two-disk system 

In the following, we introduce the two-disk system that will be studied in this thesis. The 
two-disk system is shown in Fig. 2.2. The two disks have a distance d. The radii of the left 
and right disk are 𝑟1 and 𝑟2, respectively. In almost all cases in this thesis the radii r1 and 
r2 are identical and equal. If different radii are used, this is explicitly stated in the text. The 
refractive indices 𝑛1 and 𝑛2 are the refractive indices of the surrounding medium and the 
disks, respectively.  The arc length along the boundary at the left disk is indicated by s. By 
s = 0 we denote the point at the left disk where the array that indicates increasing s 
starts.  

 

Figure 2.2 The two-disk system consists of two equal disks. The radii of the left and right disk are denoted 
by r1 and r2, respectively, d is the shortest distance between the boundaries of the disks. s indicates the arc 
length along the disk boundary. The refractive indices of the surrounding medium and the disks are 
denoted by n1 and n2, respectively. 

s = 0 
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According Snell’s law of refraction (Eq. 2-1), the ratio of the refractive indices is 
determining the direction of the ray after transmission. In this thesis the refractive index, 

n, denotes the refractive ratio 𝑛 = 𝑛2
𝑛1

, i.e. the ratio of the refractive index of the disks and 

the refractive index of the surrounding medium.  

In order to describe the ray dynamics of the two-disk system, we will follow the ray 
dynamics introduced by Ryu and Hentschel25. The ray dynamics of Ryu and Hentschel25 
includes a deterministic selection rule in order to force the rays to continue inside the 
disks. Each time a ray hits the ray-splitting boundary from the inside of one of the disks, 
the ray may be reflected or transmitted. Previously, ray-splitting situations have been 
handled with probabilistic rules2, 5, 14, i.e. based on a probability it is decided, if the ray is 
reflected or transmitted. If the ray is transmitted, the chance to hit the neighboring disk is 
low and all rays may leave the system within short time. In order to keep all rays 
permanently in the two-disk system, Ryu and Hentschel25 defined a deterministic 
selection rule. The deterministic ray splitting rule works as follows: Rays are transmitted 
from the inside to the outside of a disk only if the disk can hit the other disk and thus stay 
in the system. A consequence of this selection rule is that a ray cannot escape from the 
system.  

For the ray model, the ray dynamics does not change if the ratio between the radius of the 
disks and the distance between disks is kept constant. Thus, for the description of the ray 
dynamics, the ratio between these variables is given.  

In order to simulate the ray dynamics for the two-disk system the deterministic ray 
dynamics of Ryu and Hentschel25 was implemented in Matlab. The corresponding Matlab 
script, plot_ray.m24, can be found in the appendix. The deterministic ray dynamics is 
illustrated in Fig. 2.3. The ray starts from top of the left disk, with an angel equal 17.2 
degrees to the left of the normal on the surface of the disk. The refractive index ratio is n 
= 1.9 for the system. The distance between the disks is equal to the radius. 

 

Figure 2.3 The start point of the ray is at the top of the left disk with an angle of 17.2 degrees to left of the 
normal of the surface. The ratio between the refractive indices is n = 1.9. The distance between the disks is 
equal to the radius, i.e. d = r. 
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The coordinate system that is used in this thesis for the classical disk system is the 
Birkhoff coordinate system, which was defined by Berry1.  The Birkhoff coordinate system 
consists of two coordinates. The first coordinate is s, which denotes the arc length, as 
indicated in Fig. 2.2. In this thesis s is given as a fraction of the total length of the upper 
part of the left disk   

𝑠 = 𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 ℎ𝑎𝑙𝑓 𝑑𝑖𝑠𝑘 
𝜋∗𝑟

   ( 2-2 ) 

where r is the radius of the disk and the arc length of the upper half disk is increasing in 
the direction of the array indicated in Fig. 2.2.  Thus, s, is a number between 0 and 1. The 
other coordinate is p, which terms the momentum  

𝑝 = sin(𝜃)  ( 2-3 ) 

where 𝜃 is the angel of incidence measured to the left of the normal on the surface of the 
disk. The momentum p is thus a number between -1 and 1. To allow a ray to escape from 
the inside to the outside of a disk, the angle θ has to be equal or smaller than the critical 
angle. If the momentum p > 0, we say that the ray circulates clockwise, while when p < 0 
we say that the ray circulates counterclockwise 

 

2.1.2 Poincaré Surface of Section for the two-disk system  

By studying the phase space of the ray model in terms of the Poincaré surface of section 
(PSOS) of the upper half of the left disk, the stabile and chaotic regions of the phase space 
can be identified. We following the definition of Ryu and Hentschel25, where the PSOS is 
obtained by plotting s (Eq. 2-2) against p (Eq. 2-3). This is done for the transmissions and 
reflections at the boundary of the upper half of the left disk in a given interval. Because of 
symmetry, it is sufficient to evaluate the PSOS only in the upper half of the left disk.  

The PSOS is obtained after a number of the transmissions and reflections of the ray. This 
is done because a random ray does not immediately adhere to a stationary path. Thus, in 
order to investigate if a system has a chaotic or phase space with attractors, we have to 
study the phase space after the ray has undergone a large number of transmissions and 
reflections. After a sufficient number of transmissions and reflections, we can evaluate if 
the ray has been stabilized into a stabile path or not. The number of the transmissions and 
reflections needed until a ray may adhere to a stable path depends on the refractive index 
ration n and the ratio between r and d.  

The Matlab script PSOS.m24 plots the phase space for the upper half of the left disk. 
PSOS.m can be found in the appendix. The PSOS for the disk system presented in Fig. 2.2 is 
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shown in Fig. 2.4. The start conditions are randomly selected at the upper half of the left 
disk with a random angle that is smaller than the critical angle and with a random 
rotation clockwise or counterclockwise. Visual inspection of the PSOSs in Fig.2.4 reveals 
stable islands. These stable islands are attractors, which are represented by a set of point 
in the PSOS that does not changes when the number of transmissions and reflections for 
each of the randomly stared ray increases29. The basin of attraction is the set of start 
conditions that lead the ray into the same attractor30.  

 

Figure 2.4 The PSOS for a two disk system with r = d and n = 1.9. The regions marked in a) are enlarged in 
b) and c). 

If the Matlab script plot_ray.m24 runs for a higher number of transitions and reflections, 
the ray turns into the stationary regime, as already shown by Ryu and Hentschel25 and 
expected from the phase space in Fig. 2.4. The stable islands are striking in Fig. 2.4b and 
Fig 2.4c.  

Figure 2.5 and Fig. 2.6 show the stationary regime that is obtained when the ray shown in 
Fig. 2.3 is stabilized. The specific ray shown; needs 25 reflections and transmissions to 
find the stable circulation path. The two following figures plot shows the rays behavior in 
the attractor ray for 4000 to 6000 and 30 000 to 50 000 reflections and transmissions. As 
illustrated in the figures, the attractor has a structure of a fractal and is therefore a 
strange attractor29. A fractal has self-similarity11. When inspecting the attractor ray 
between 4000 to 6000 reflections and transmissions and resolving it until single 
trajectories can be seen (Fig. 2.5), the structure revealed is similar to the structure 
obtained when the same ray is resolved after 30 000 and 50 000 reflections and 
transmissions (Fig. 2.6). Thus, an enlarged area always shows same fractal structure11 
independent of how many long the ray is run. 
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Figure 2.5 The ray’s behavior in the space between 4000 and 6000 reflections and transmissions.  The 
parameters s0, p, n, r and d are the same as for Fig. 2.3.  

 

 

Figure 2.6 The ray’s behavior in the space between 30 000 and 50 000 reflections and transmissions. The 
parameters s0, p, n, r and d are the same as for Fig. 2.3. The marked area in each plot is enlarged in the 
subsequent plot. 

The start conditions affect which attractor a ray would stabilize into. Figure 2.7 shows 
different stationary regimes for different start conditions for two disks with the same 
refractive indices. These attractors correspond to different stable islands in the phase 
space.  
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Figure 2.7 Different stabile regimes for different start conditions for two disks with r = d and n = 1.9, 
according to Fig 2.2. The start points for the figures are a) s0 = 0 and p0 = 0.02, b) s0 = 0.2 and p0 = -0.3, c) 
s0 = 0.3 and p0 = 0.3, d) s0 = 0.9 and p0 = 0.1. These plots are plotting the ray's behavior in the interval 
between 4000 and 6000 reflections and transmissions. 

The stabile regimes also change if we change the refractive index of the disks. This is 
because of the angle of refraction depends on the ratio between the refractive index of the 
disk and the media around the disks (according to Snell’s law of refraction, i.e. Eq. 2-1).  

Figure 2.8 illustrates how the stabile regimes changes for a ray with the same start 
conditions but different refractive index of the disks.  
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Figure 2.8 The stabile rays that are in the basin of attractors for four cases with different refractive index of 
the disks. The start point of the ray is s0 = 0.3 and p0 = 0.3 and r = d according to Fig. 2.2. The refractive 
index for the disks is a) n = 1.8, b) n = 2.0 c) n = 2.2 and d) n = 3.0. 

As illustrated in Fig. 2.8 the attractor the ray leads into changes when the refractive ratio, 
n, changes. This change in the structure of single attractors leads to a change of the phase 
space of the disk system. This is illustrated in Fig. 2.9. The result of the attractors shown 
in this thesis are in accordance with the results shown by Ryu and Hentschel25. As Fig. 2.9 
illustrates, the width of the phase space in p-direction that is covered by trajectories is 
reduced with increasing refractive index n. The reason for this is that the maximum angle 
of incidence 𝜃 that allows transmissions from the inside to the outside of the disk reduces 
with increasing refractive index n.  According to Eq. 2-1 and Eq. 2-3 the maximum 

momentum allowing transmission from the inside to the outside of the disk is 𝑝 < 1
𝑛

. 
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Figure 2.9 The PSOS for a two disk system with r = d. The refractive ratio of the two-disk system is  
a) n = 1.5, b) n = 2.0, c) n = 2.5 and d) n = 3.0. 

By studying the PSOS in Fig. 2.9 closer, a rich variety of strange attractors can be found. 
We consider the example with n = 2.0 a bit closer.  We inspected the stable islands in the 
PSOS of Fig. 2.9b and identified strange attractors. The start conditions for rays enclosing 
in attractors are indicated by squares in Fig. 2.10. The start conditions for one ray that 
leads to each of the attractors are listed in table 2.1. The different attractors are plotted in 
Fig 2.11.  
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Figure 2.10 A closer view at the PSOS for n = 2.0 in Fig. 2.9. Some start condition for some attractors are 
indicated. 

 s0 p0 

A 0.005479 0.1825 

B 0.01044 0.02787 

C 0.03721 0.194 

D 0.03441 0.1767 

E 0.03908 0.03284 

F 0.03544 -0.0158 

 
Table 2.1 Start conditions for different stable orbits for n = 2.0 according to Fig 2.10. 
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Figure 2.11 Plots of the 1000 first transmissions and reflections of a two-disk model with r = d and n = 2. 
The start conditions are given in table 2.1.  

 

As the previous figures confirm, a large variety of attractors can be found. The most 
simple of the stabile regimes is shown in Fig. 2.12. 

 

Figure 2.12 The most simple of the stabile regimes is obtained for s0 = 0 and p0 = 0, with r = d and n = 1.9. 
The behavior of the ray is plotted up to 3000 reflections or transmissions 
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Another obvious stabile regime is given in Fig. 2.13. The start angle, 𝜃, of this this periodic 
ray orbit can be found according to the following equation 

 𝜃 = cos−1 ( 𝑛2
2𝑛1

)    ( 2-4 ) 

 

Figure 2.13 Another simple stabile regime, s0 = 0 and p0 calculated in Eq. 2-4, with r = d and n = 1.9. The 
behavior of the ray is plotted up to 3000 reflections or transmissions 

The start position of this ray orbit is given by s0  = 0. A consequence of Eq. 2-4 is that this 

ray exists for n1 = 1, only if the refractive index of the disk, n2, is between √2 and 2. 

As Fig. 2.9a shows, a chaotic phase space is obtained for a ratio of refractive indices equal 
to n = 1.5, while the phase space shown in Fig. 2.9b-d i.e. for n = 2.0, n = 2.5 and n = 3.0, 
respectively, a phase space with fractal attractors are obtained. Figure 2.14 illustrates the 
PSOS for different values of n in the interval where the PSOS changes from a chaotic phase 
space (Fig. 2.14a with n=1.77) to a phase space with fractal attractors. (Fig. 2.14b with 
n=1.78).  

 

Figure 2.14 The PSOS for a two disk system where r = d, in a) n = 1.77 and in b) n = 1.78. 

  

p 

s  

p 

s  
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The phase space and the attractors of the system change also when the distance between 
the disks is changed as illustrated in Fig 2.15. 

 

 

Figure 2.15 Phase space for a two-disk system with n = 2.0 and the relationship between r and d is a) d = 
0.5r, b) d = r, c) d = 2r, d) d = 3r and e) d = 4r. 

Since dielectric resonant nanospheres are closely packed on Si (amorphous silicon) solar 
cells it is interesting to investigate the two-disk system with attached spheres, i.e. d = 0.  
Figure 2.16 and Fig. 2.17 shows such systems for two different refractive indices. Figure 
2.18 and Fig. 2.19 show the phase space for these systems.  

 

Figure 2.16 Attractors for a two disk system with n = 1.9. The start conditions for a ray that leads to each of 
the attractors is for the upper system is s0 = 0.4 and p0 = 0.3, and for the lower s0 = 0.2 and p0 = -0.1 
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Figure 2.17 Attractors for a two-disk system with n = 2.0. The start conditions for a ray that leads to each of 
the attractors is for the upper system is s0 = 0.4 and p0 = 0.3, and for the lower s0 = 0.2 and p0 = -0.1 

 

Figure 2.18 Phase space for a two-disk system with no distance between the disks, n  = 1.8.  

 

Figure 2.19 Phase space for a two-disk system with no distance between the disks, n = 2.0. 

p 
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2.2 Ray dynamics in arrays of disks 
While the focus of the investigation of the classical ray dynamics in coupled disks was put 
on two-disk systems, we will in this section shortly present results on systems containing 
more than two disks. As previously, we apply the deterministic selection rule. As in the 
previous chapter, we define r as the radius of the disks, d is the shortest distance between 
the disks and n is the ratio between the refractive index inside the disks and the refractive 
index of the regions outside the disks. The Matlab script plot_ray.m6 is used for 
investigating the ray dynamics. Figure 2.20 gives the attractors rays with different start 
conditions ahead for some systems with different number of disks and different n.  In this 
figure the ray is plotted between 89 500 and 90 000 reflections or transmissions. The 
reason of this high number is to demonstrate that even after a long time, rays may not 
finds a attractor. 

 

Figure 2.20 Disks systems that consist more than two disks. The start point and refractive index of the 
system is given for each attractor. The behavior of the ray is plotted in the space between 89 500 and  
90 000 reflections or transmissions. The radius of the disks is equal the distance between the, i.e. r = d.  
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Figure 2.21 gives the PSOSs for systems with a different number of disks when the 
refractive index of the disks is n = 1.78.  The Matlab script PSOS.m24 was used to obtain 
the PSOS for the upper part of the left disk. This refractive index is close to the value 
where the chaotic phase space turned into a phase space with attractors as in Fig. 2.14.   

 

 

Figure 2.21 PSOS for systems with a) two disks, b) three disks, c) four disks, d) five disks and e) ten disks. 
The refractive index of the disks is n = 1.8. 

 

  



     20 

Chapter 3  
   
Plane wave scattering in disk 
systems 
 

3.1 Resonances and whispering gallery modes 
in highly scattering systems 

When light impinges on a scatterer, the light is scattered, transmitted in forward direction 
or absorbed. In this thesis, we do not consider the phenomenon absorption. The situation 
is illustrated in Fig. 3.1, where a plane wave (a) moves towards a spherical scatterer (b).  

 

Figure 3.1 a) When light hits a non-absorbing scatterer, the wave is scattered or transmitted forward 
direction. This is illustrated by a plane wave (a) that moves from the right towards a scatterer (b) 

The incoming plane wave is given by may be written as 

𝜑(𝑟) =  𝑒𝑖𝑘⃗⃗𝑟    ( 3-1 ) 
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where |𝑘⃗⃗| = 𝑘 = 2𝜋
𝜆

 is the angular wavenumber, 𝜆 is the wavelength and 𝑟 is the position 

vector.  

When the plan wave hits the scatterer, resonances may arise. This is illustrated in Fig. 3.2. 
Here we assume that the maxima shown in Fig. 3.2 refer to maxima of the wave function. 
Later we will show plots of the square of the absolute value of the wave function, where 
maxima of the square of the absolute value of the wave function refer to both maxima and 
minima of wave functions. Resonances as shown in Fig. 3.2 typically arise in wavelength 
regions, in which the wavelength of the electromagnetic radiation (in our case the plane 
wave) is approximately of the same order as the size of the scatterer. When the 
wavelength match approximately the size of the scatterer, the amount of scattered light is 
high10. In these wavelength regions, the appearance and the type of the resonances 
depends on the actual value of the angular wavenumber 𝑘, the geometry of the scatterer 
and the refractive index of the scatterer and the surrounding medium. In general, 
resonances display very diverse patterns. The resonances shown in Fig. 3.2 are called 
whispering gallery modes. These whispering gallery modes are described by Bessel 
functions of first order. For these resonances the energy is stored in the disks and we say, 
the light is trapped for a period of time. Whispering gallery modes are wave that are 
observed at concave surfaces. They name ‘whispering gallery modes’ derives from the 
study of sound waves that were observed in the whispering gallery of St Paul’s Cathedral 
in London23. They are of high importance in different fields of physics.  

 

Figure 3.2 Whispering gallery modes occurs for specific values of k. 

The whispering gallery modes that are observed in wave mechanics correspond to certain 
rays as illustrated in Fig. 3.3. The rays are periodic rays that bounce a certain number of 
times inside the disk. In the actual case illustrated in Fig. 3.3 the number of bounces is six. 
This corresponds to six maxima of the wave function the disk.  As the number of bounces 
increases or as the refractive index increases, the reflection inside the disk may be due to 
internal reflection.  
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 Figure 3.3 The number of reflections of a ray inside the disk corresponds approximately to the numbers of 
maxima of a wave function.  

In first approximation, we expect that whispering gallery modes appear, when the optical 
length of a ray is a multiple of the wavelength of the incoming plane wave. The optical 
length, leff, is calculated as the actual length of the ray (geometrical length of the ray) 
weighted by the refractive index, n. We denote the multiplicity by Nj,. Thus we obtain the 
relation (quantization rule) 

𝑁𝑗 = 𝑙𝑒𝑓𝑓

𝜆𝑗
= 𝑙∗𝑛

2∗𝜋
𝑘𝑗

 , 𝑁 ∈  ℕ  ( 3-2 ) 

where λj is the wavelength and kj is the angular wavenumber.  As N increases, the optical 
length of the resonant modes approach the circumference of the disk as illustrated in Fig. 
3.3. 

These same considerations are assumed to apply for the attractors described in chapter 2. 
It is assumed that attractor rays correspond to resonant modes in the two-disk wave 
system25 For the simple attractor shown in Fig. 2.12, the optical length for a ray moving 
from left to right (or opposite) is given by  

𝑙𝑒𝑓𝑓 = 𝑛1𝑑 + 4𝑟𝑛2  ( 3-3 ) 

where d is the distance between the disks, r is the radius of the disks, 𝑛1 and 𝑛2 are the 
refractive indices of the surrounding medium and the disks, respectively. 
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3.2 Plane-wave scattering algorithm 
For the two-disk system shown in Fig. 3.4, two wave equations have to be fulfilled: One 
wave equations for the area surrounding the disks and one wave equation for the area 
inside the disks. These wave equations are given in the equations below.  

 

Figure 3.4 A two-disk system with a refractive index n surrounded by a medium with refractive index  
no = 1. 

𝑂𝑢𝑡𝑠𝑖𝑑𝑒: ∆𝜓 + 𝑘2𝜓 =  0  ( 3-4 ) 

𝐼𝑛𝑠𝑖𝑑𝑒: ∆𝜓 + 𝑘2(𝑛(𝑟))2𝜓 =  0  ( 3-5 ) 

where ψ is the wave function, k is the angular wave number,  𝑛(𝑟) is the refractive index 
of the disks and 𝑟 is the position vector. We assume that the refractive index in the area 
surrounding the disks equals one. In can be easily shown that these equations are 
equivalent to the 

−∆𝜓 + 𝑉(𝑟)𝜓 = 𝑘2𝜓 ( 3-6 ) 

Where 𝑘 is the angular wave number, 𝑟 is the position vector  and 𝑉(𝑟)is the potential of 
the system given by 

𝑉(𝑟) = 𝑘2 ∙ 𝑣(𝑟)  ( 3-7 ) 

The function 𝑣(𝑟) is given as 

𝑣(𝑟) = { (1 − (𝑛(𝑟))2), 𝑖𝑛𝑠𝑖𝑑𝑒 𝑑𝑖𝑠𝑘 
0, 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑑𝑖𝑠𝑘 (𝑛 = 1)

   ( 3-8 ) 

where 𝑛(𝑟) is the refractive index of the disks. Eq. 3-6 can be written as 

[−∆ + 𝑉(𝑟)]𝜓 = 𝑘2𝜓 ( 3-9 ) 
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The scatter problem of a plane wave being scatter at two or more scatterers can be solved 
by the Lippmann-Schwinger equation21. The Lippmann-Schwinger equation writes as 

𝜓(𝑟) =  𝜑(𝑟) −  ∫ 𝐺(𝑟, 𝑟′, 𝑘)𝑉(𝑟′)𝜓(𝑟′)𝑑2𝑟′   ( 3-10 ) 

where 𝜓(𝑟) is the solution for the wave function in the potential 𝑉(𝑟), 𝜑(𝑟) is the solution 
of the free Schrödinger equation,  𝑉(𝑟) is the potential as described in Eq. 3-7 and 𝑟 is the 
position vector and 𝐺(𝑟, 𝑟′, 𝑘) is the Green function for Helmholtz equation, given by 

(Δ + 𝑘2) 𝐺(𝑟, 𝑟′, 𝑘) =  −𝛿(𝑟 − 𝑟′)  ( 3-11 ) 

 where 𝛿(𝑟 − 𝑟′) is the delta function and k is the angular wavenumber. . It can easily be 
proven that the Lippmann-Schwinger equation is a solution of Eq. 3-9. For the proof it can 
to be used that 𝜑(𝑟) is a solution of the free Schrödinger equation 

(𝛥 + 𝑘2)𝜑 = 0  ( 3-12 ) 

For this special case, the Green function is given by18 

𝐺(𝑟, 𝑟′, 𝑘) = 𝑖
4

 𝐻0
(+)(𝑘|𝑟′ − 𝑟|)     ( 3-13 ) 

where 𝐻0
(+) is the Hankel function of first kind of zero order, given by  

𝐻0
(+)(𝑥) = 𝐽0(𝑥) + 𝑖𝑉0(𝑥)  ( 3-14 ) 

where 𝐽0(𝑥) is the Bessel function of first kind of zero order and 𝑉0(𝑥) is the Bessel 
function of second kind of zero order. The incoming wave is now represented by the plane 
wave in Eq. 3-1. This leads to the following explicit equation for 𝜓(𝑟)18 

𝜓(𝑟) =  𝑒𝑖𝑘⃗⃗𝑟 − 𝑖 𝑘2

4 ∫ 𝐻0
(+)(𝑘|𝑟′ − 𝑟|)  𝑣(𝑟′)𝜓(𝑟′)𝑑2𝑟′  ( 3-15 ) 

In order to turn Eq. 3.15 into a form that can be implemented numerically we discretize 
the two-dimensional plane into a lattice structure as illustrated in Fig. 3.5.  

 

Figure 3.5 The plane is divided in a lattice structure in the Matlab scrip Diskscattering_20082015.m.6  
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For the discretization, we write Eq. 3.14 as 

𝜓(𝑟𝑗) =  𝑒𝑖𝑘𝑟𝑗 − 𝑖 𝑘2

4
∑ 𝐻0

(+)(𝑘|𝑟𝑚 − 𝑟𝑗|)  𝑣(𝑟𝑚)𝜓(𝑟𝑚)Δ𝐴𝑁
𝑚=1   ( 3-16 ) 

where the continuous position vectors are turned into a discrete position vectors, i.e. 𝑟 →
𝑟𝑚 and 𝑟′ →  𝑟𝑗 . We denote by N the total number of squares and Δ𝐴 the area of square 

each square in the lattice structure. Eq. 3-16 can be rewritten as 

 𝜓𝑗 = 𝐼𝑗,𝑚 ∙ 𝜓𝑚 =  𝑒𝑖𝑘𝑟𝑗 − 𝑖 𝑘2

4
 Δ𝐴 ∙ 𝐺𝑗,𝑚 ∙ 𝑣𝑚 ∙ 𝜓𝑚  ( 3-17 ) 

where 𝐼𝑗,𝑚 is the (j,m) element in the identity matrix. This can be summarized in matrix 

from to 

𝐌 Ψ⃗⃗⃗⃗ = R⃗⃗⃗   ( 3-18 ) 

where the matrix M is 

𝐌 = 𝐈 + 𝑖 𝑘2Δ𝐴
4

 𝐆 ( 3-19 ) 

an element in the matrix 𝐆 is given by  

G̃𝑗,𝑚 =  𝐺𝑗,𝑚𝑣𝑚  ( 3-20 ) 

and R⃗⃗⃗ is 

R⃗⃗⃗ =  
𝑒𝑖𝑘⃗⃗𝑟1

⋮
𝑒𝑖𝑘⃗⃗𝑟𝑗

  ( 3-21 ) 

By solving Eq. 3.18 for Ψ⃗⃗⃗⃗, it is possible to calculate Ψ⃗⃗⃗⃗.  

The basic algorithm for the plane-wave scatter algorithm was developed by A. Kohler and 
R. Blümel prior to the start of this master thesis. It was implemented in the Matlab script 
Diskscattering_20082015.m6, which is attached in the appendix. 

  



3.3 Plane-wave scattering in two-disk systems 
In order to study the scattering of a plane wave at two equally sized disks we run the 
Matlab script Diskscattering_20082015.m6 using the potential as given in Eq. 3-7 and 
Eq. 3-7. If not otherwise stated we will use a radius 10.0 µm for both disks. This 
corresponds to a wavenumber of 1000cm-1, which is located in the mid-infrared region 
of electromagnetic radiation (wavenumbers are calculated as ! = !

!). In the following we 
will therefore screen wavenumber regions around this wavenumber, namely from 
around 500cm-1 to 1400cm-1. The distance between the disks was set to zero. Figure 3.6 
shows the potential for a two-disk system, where the refractive index of the disks is 2.0.  
Throughout this thesis, we used 50 grid points for the discretization of 20.0 µm in both 
x-direction y-direction. i.e. 50 grid points for the discretization of the diameter of the 
disks in x-direction and y-direction. This discretization led to a good resolution, while at 
the same time the computation time was such that simulations over large wavelength 
regions were possible. Simulations were done at the compute cluster at UiT - The Arctic 
University, the Linux Cluster Stallo, one of the Notur hardware resources, located in 
Tromsø28.  

 
Figure Feil! Det er ingen tekst med den angitte stilen i dokumentet..1 Schematic view of the potential 
given by the two-disk system used in the Matlab script Diskscattering_20082015.m. 

In the following, large wavenumber regions were screened for resonant modes. For each 
wavenumber the wave functions were calculated by using the Matlab script 
Diskscattering_20082015.m6. In order detect resonant modes, we calculated for each 
wave function the integral over the absolute square of the wave function Ψ !. Figures 
3.7-3.14 shows graph of the integral over the absolute square of the wave function Ψ ! 
as 
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disk system. Figures 3.7-3.14 correspond to different refractive indices. The respective 
refractive indices are given in the figure captions. From the graphs, it can be clearly seen 
that certain wavenumbers lead to peaks in the integral over the absolute square of the 

wave functions |Ψ⃗⃗⃗⃗|
2

. Where these peaks appear, depends also on the refractive index 

employed for the disks. In addition, Figures 3.7-3.14 display for each peak, the element-

wise squared wave function |𝜓⃗⃗𝑗|
2

 in insets in proximity to the peaks. In Figures 3.7-3.14, 

the incoming plan wave is coming from the top of the systems. 
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When the wave functions for two-disk systems with refractive indices equal 1.8 or higher 
(i.e. with a phase space with stable islands) were evaluated, the resonance mode type 
displayed as squared absolute wave function in Fig. 3.15 existed in all cases. Since the 
squared absolute value of the wave function is displayed, both maxima and minima are 
indicated as maxima. In the two-disk central ray shown in Fig. 3.15, there are totally 18 
maxima, which correspond to nine wavelengths. We associated the wave function in Fig. 
3.15 with the ray shown in Fig. 2.12 and calculated the optical length of this ray according 
to Eq. 3-3 and compared the optical length with the wavelength were this resonance 
mode type appeared according to the quantization rule of Eq. 3-2 (see table 3.1). The 
quantization rule of Eq. 3-2 gave approximately N = 9 for all of the refractive indices (see 
table 3.1). 

 

Figure 3.15 The square of absolute value of the wave function for wavenumber equal 1250 cm-1 for a two-
disk system with a refractive index 1.8. We associate this resonant mode type with the ray shown in Fig. 
2.12. 
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Refractive 
index 

Wavenumber 
[cm-1] 

N 

1.8 1250 9.0 
1.9 1189 9.04 

1.95 1161 9.06 
2.0 1134 9.07 
2.1 1084 9.11 

Table 3.1 The wavenumber in the first column corresponds to the wavenumber where the resonant mode 
type of Fig. 3.15 appears. The number of wavelengths, N, is calculated according to Eq. 3.2. 

In the Figs. 3.7-3.14, a variety of whispering gallery modes with 12, 14 and 16 maxima 
(this indicates 6, 7 or 8 wavelengths inside, as explained in last paragraph) can be found. 
The whispering gallery modes that occur for the different refractive indices are given in 
table 3.2. 
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Whispering 
gallery modes  

Refractive 
index 

Wavenumber 
[cm-1] 

12 

 

 
2.1 

 
640 

14 

 

 
1.8 

 
1.9 

 
1.95 

 
2.0 

 
836 

 
798 

 
780 

 
763 

16 

 

 
1.7 

 
1.8 

 

 
998.5 

 
942 

Table 3.2 Whispering gallery modes in the Fig. 3.7-14.  

At the contact point between the two disks the coupling of the disks is large. The 
whispering gallery modes in the two disks are in phase, as the plots in table 3.2 shows. 
This coherent superposition at the touching point sums up in phase leading to an 

enhancement factor four in |Ψ⃗⃗⃗⃗|
2

. 
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3.4 Plane-wave scattering in three-disk system 
The graph in Fig. 3.16 shows the integral over the absolute square of the wave function 
for the wavenumber region 800 cm-1 to 1200 cm-1 for a three-disk system. The radius of 
the disks is set to 10.0 μm, which is chosen to be the radius for all disks if nothing else is 
stated. The distance between the disks is zero.  As for the previous section, the squared 
absolute value of the wave function is shown for the peaks. The superposition at the 
touching points can also be observed for three-disk system. According to the results from 
section 2.2, it is expected that the coupling between the disks is more complex than for a 
two-disk system. In the Fig. 3.16 the incoming plan wave is coming from the top of the 
system. 
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3.5 Plane-wave scattering in two-disk system 
with differently sized disks 

The Matlab script DiskScattering_20082015.m6 was modified to allow for systems of disks 
with different radius. An example is shown if Fig. 3.17, where the upper disk has a radius 
of 5 μm and the lower disk has a radius of 10 μm. As refractive index we used n=1.9.  

 

Figure 3.17 A schematic view of the potential used in the modified Matlab script 
DiskScattering_differentR.m. The radius of the upper disk is 5 μm and for the lower disk 10 μm. 

Figure 3.18 shows the integral over the absolute square of the wave function for 
wavenumbers in the interval 550 to 1400 cm-1 for the system. As for the previous, section 
the wave function plots shown in the insets correspond to maxima in the integral Also for 
the system with disks of different sizes a coupling between the resonances in the disks 
can be observed. The incoming plan wave is coming from the top of the system.
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3.6 Plane-wave scattering in one-disk systems 
To investigate if the whispering gallery modes in the two-disk system with different radii 
(Fig. 3.18), e.g. at ν = 917 cm-1 and 𝜈 = 1012 cm-1, have a connection with whispering 
gallery modes that occur in single-disk system, two different single-disk systems with 
different radii (10 μm and 5 μm) have been investigated. As refractive index we chose n = 
1.9 for both of the systems. The graph of the integral over the absolute square of the wave 
function for wavenumbers in the interval 550 cm-1 to 1400 cm-1 for the single-disk 
systems is plotted in Figs 3.19-3.21. As previously, the insets show the wave functions 
that correspond to peaks in the graph of the integral. In Fig. 3.19 and Fig. 3.20 the radius 
of the disk is 10 μm, in Fig. 3.21 the radius of the disk is 5 μm. The incoming plan wave is 
coming from the top of the systems. 
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We further wanted to study if for the two whispering gallery modes that are present in 
the wave function plots in Fig. 3.18 at. 𝜈 =  917 cm−1 and 𝜈 = 1012 cm-1, corresponding 
whispering gallery modes can be found in the respective single-disk systems. Wave 
function plots of wave functions at. 𝜈 =  917 cm−1 and 𝜈 = 1012 cm-1 for the single-disk 
systems are represented in Fig. 3.22 and 3.12.  

 

Figure 3.22 The square of the absolute value of the wave function for a single-disk system with radius 10 μm 
for wavenumber 917 cm-1 and 1012 cm-1. The refractive index is 1.9 

 

Figure 3.23 The square of the absolute value of the wave function for a single-disk system with radius 5 μm 
for wavenumber 917 cm-1 and 1012 cm-1. The refractive index is 1.9. 

It is obvious that the wave functions in the single-disk systems do not display whispering 
gallery modes at the same wave numbers as the corresponding two-disk system with 
radii 10 μm and 5 μm. The positions of the whispering gallery modes seem to be shifted 
due to the coupling of the disks. This is expected when the coupling is strong. The 
whispering gallery mode at 𝜈= 708 cm-1 in Fig. 3.18 shows a rather week coupling. The 
plot of the wave function shows a strong whispering gallery mode in the large disk, while 
the intensities in the small disk are rather week. When inspecting the graph of the integral 
over the absolute square of the wave function of the single disks, we see that the 
respective peak in the integral is insignificantly for the largest disk. For the larger disk we 
find the corresponding whispering gallery mode at 𝜈 = 709.5 cm-1 in Fig. 3.20. 
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3.7 Effect of the direction of the incoming plane 
wave on resonances in the two-disk system 

For all examples we considered so far, the incoming plane wave was coming from the top 
of the disk systems. In order to investigate the stability of the plane-wave scatter 
algorithm, we investigated if a change in the direction of the incoming wave changes the 
position of the peaks in the graphs of the integrals of the absolute value of the wave 
functions. In Fig. 3.24 and 3.25, the plane wave is coming from the right of the two-disk 
system in leftward direction. As refractive index we chose 2.0 and the disks have equal 
radius. As previously, we plot the graph of the integrals of the absolute value of the wave 
functions in the interval 550 to 1400 cm-1 in the figures. The insets correspond to the 
resonant modes at the peak positions of the graph of the integral  
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In the table 3.3 and table 3.4, the resonances for the incoming plane wave from the top in 
Fig. 3.12 and Fig. 3.13 are compared with the resonances for the incoming plane wave 
from the right in Fig. 3.24 and Fig. 3.25. It can be seen that the resonances appear at 
nearly the same wavenumbers.   

 

Incoming plane wave 
from the top 

Incoming plane wave 
from the right 

𝜈 = 570.5 cm-1 

 

𝜈 = 570.5 cm-1

 
𝜈 = 668 cm-1 

 

𝜈 = 665 cm-1 

 
𝜈= 763 cm-1 

 

𝜈 = 764 cm-1 

 
𝜈 = 969 cm-1 

 

𝜈 = 969 cm-1 

 
Table 3.3 Comparison of the resonances in a two-disk system with different direction of the incoming plane 
wave. The refractive index of the disks in both systems is 2.0.  
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Incoming plane wave 
from the top 

Incoming plane wave 
from the right 

𝜈 = 1080 cm-1 

 

𝜈 = 1072 cm-1 

 
𝜈 = 1183.5 cm-1 

 

𝜈 = 1184 cm-1 

 
𝜈 = 1209 cm-1 

 

𝜈 = 1209 cm-1 

 
𝜈 = 1256.5 cm-1 

 

𝜈 = 1258 cm-1 

 
𝜈 = 1343 cm-1 

 

𝜈 = 1348 cm-1 

 
Table 3.4 Comparison of the resonances in a two-disk system with different direction of the incoming plane 
wave. The refractive index of the disks in both systems is 2.0. 
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Chapter 4  
 
Discussion 
 

The selection rule for the ray dynamics presented in chapter 2, has clear implications for 
the phase space of the ray dynamics. The selections rule leads to attractors, when the 
ratio between the refractive indices of the disks and the area around the disks is 1.78 or 
higher. From Fig. 2.5 and Fig. 2.6 it can be clearly seen, that the attractors have fractal 
structures. Due to the ray dynamics with a deterministic selection rule, the two-disk 
system goes from a chaotic phase space into a phase space with fractal attractors when 
the refractive index increases. For the parameters applied in this thesis, this transition 
occurs, when the refractive ratio equals 1.78. According to Ryu and Hentschel25, the 
appearance of attractors is due to the ray model with a deterministic selection rule. Each 
ray that is started with a momentum 𝑝 =  ±1/𝑛 has to stay in the system according to the 
ray model with a deterministic selection rule. Thus, all rays started within the momentum 
range 𝑝 =  ±1/𝑛 represent the basin of attraction25. A ray that is started within the 
momentum range 𝑝 =  ±1/𝑛 approaches the attractor after some time. Since no ray can 
leave the system, any ray that is started close to an attractor can never leave the 
attractor25. Similar phase space behavior as for the two-disk system could be observed for 
systems with more than two disks, when the ray model with a deterministic selection rule 
was employed. For systems with more than two disks, the placement of the Poincare 
surface of section not as obvious as for the two-disk system.  

For solving the plane wave scattering problem different methods can be found in 
literature. For example the Maxwell equations can be solved by the finite difference time 
domain (FDTD) technique19.  The FDTD technique is very time consuming and the 
stability of the technique is depending strongly on the geometry of the scatterers3, 18. 
Other common solutions are based on partial wave equations21. Solutions based on partial 
wave equations are also prone to stability problems3, 18. The methods evaluated in this 
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thesis are based on the discretization of the Lippmann-Schwinger equation. It shows 
surprisingly high stability given the simplicity of the solutions. The method could be used 
to produce the stable wave function results for different two-dimensional multiple-disk 
arrangements. The system program allows easily to change the direction of the incoming 
plane wave and differences in the wave function as a function of the incoming wave could 
be studied. It turned out that the position of the peaks in the integral over the square of 
the absolute value of the wave function did not depend on the direction of the incoming 
wave, which gave another proof of the stability of the method. 

The integral over the square of the absolute value of the wave function directly related to 
the light absorption by the disks and has thus relevance for understanding the 
effectiveness of architectures of nanoimprints on thin solar films. It is therefore 
interesting to compare the integral over the square of the absolute value of the wave 
function for different parameters. The graph of the integral over the square of the 
absolute value of the wave function changes according to changes in phase space of the 
two-disk systems. For the system in Fig. 3.7 (n = 1.7, i.e. chaotic phase space according to 
the experiences in this thesis), the maximum value the integral is close to 4 × 104. For the 
systems in Fig. 3.8-14 (n ≥ 1.8, i.e. a phase space with attractors), the maximum value of 
the integral is between 2×106 and 108. This could indicate that a higher coupling is 
present in systems in which the phase space contains strong attractors. When evaluating 
the integral over the square of the absolute value of the wave function for a three-disk 
system with a refractive index of n=1.7, the maximum value of the integral was 3 × 105, 
which is higher than for the corresponding two-disk system. This may indicate that the 
higher number of disks leads to higher absorption and thus a higher effectivity in 
corresponding thin solar films with nanoimprints. 

The maximum value of the integral over the squared absolute value of the wave function 
changes when the direction of the incoming plane wave changes. For a two-disk system 
with refractive index 2.0 and an incoming ray from the top, the maximum value of the 
integral is 108. For a two-disk system with refractive index 2.0 and an incoming ray from 
the right is 9 × 106. For two-disks systems with refractive index higher than 1.8 with an 
incoming plan wave from the top, a wave function is illustrated in Fig. 3.15. This 
particular wave function in Fig. 3.15 was with the two-disk central ray shown in Fig. 2.12 
according to the quantization rule of Eq. 3-2 (see table 3.1). For a two-disk system with an 
incoming plane wave from right (section 3.7) this wave function did not occur. This fact 
may be interpreted with the help of ray dynamics. A ray entering the system from the 
right hand side, is not able to approach the attractor Fig. 2.12, since its momentum is zero 
in the x-direction.  

ef%iciency
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The whispering gallery modes in the two-disk system (Fig. 3.4 and Fig. 3.5) are 
summarized in table 3.2. It is possible to follow the same whispering gallery mode type 
for different wavenumbers as the refractive index changes. This may allow in future to 
relate whispering gallery modes to strange attractor by the help of the quantization rule 
of Eq. 3-2.  

For a two-disk system with refractive index 1.9 a whispering gallery mode with 14 
maxima appeared at 𝜈 = 798 cm-1 (Fig. 3.9). When this whispering gallery mode was 
compared with the corresponding whispering gallery mode in the one-disk system with 
radius 10 μm (Fig. 3.19), the corresponding whispering gallery mode with 14 maxima 
was observed at 𝜈= 812 cm-1. Thus, it could be clearly seen that the coupling between the 
two disks leads to a shift in wavelength for the resonance. 

When evaluating three-disk systems, similar resonances could be observed. Figure 3.16 
illustrates examples of such resonances in three-disks systems. The coupling between the 
disks is obvious. The resonances for systems with three or more disks or with disks in a 
lattice structure will be an interesting subject for future investigations. Visually, the 
plane-wave scattering program reveals meaningful plots of wave functions also for three 
disk systems.  

The plane-wave scattering program was further used to study two disks with different 
radii. Whispering gallery modes that appear in two-disk systems with different disk 
radii (Fig. 3.18) could be connected to the corresponding one-disk whispering gallery 
modes. As for the two-disk systems with equal radii of the disks, a shift in the 
wavenumber could be observed due to the coupling. The coupling of resonances in the 
two-disk system with different radii is nicely illustrated in Fig. 3.18.  

For all calculations of the wave function in chapter 3, the distance between the disks was 
kept zero. When investigating the ray dynamics according to the ray model with a 
deterministic selection rule, two-disk systems with different distances between the disks 
were investigated. The ray dynamics shows clear changes, when the distance of the disks 
varies (Fig. 2.15). For two-disk systems with a distance zero and a refractive index of 2.0 
(see Fig. 2.16 and Fig. 2.17) the phase space consists of a smaller number of stable islands, 
i.e. fewer attractors. According to Ryu and Hentschel25 there is a shift in type of resonance 
as the distance between the disks changes. The strange attractors shown in Fig. 2.11 do 
not exist when the distance between the disks is zero. The strange attractors in Fig. 2.11 
are reminiscent of lens27. They collapse to the central attractor ray, when the distance 
between the lenses becomes zero. A further investigation of plane-wave scattering at 
disks with different distances may reveal the implications of the these changes in the 
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phase space of the ray dynamics for the absorption properties of thin film solar cells with 
nanoimprints.  

An error source that could influence the results in the calculations of the wave functions 
for the different disk-systems may be that the disks are located in the boarder of the area 
where the potential is defined. To investigate this error, these systems should be 
compared with systems that have a “frame” of zero potential around the original system.  

Materials used in solar cells are usually TiO2 or SiO219. The refractive index of these 
materials in the infrared region is around 2.5 and 1.5 and shows dispersion12, where a 
changing refractive index is assumed. By changing the radius of the disks, it should be 
possible to obtain other resonances of the systems for these materials. 

Materials used in solar cells are usually TiO2 or SiO219. The refractive index of these 
materials in the infrared region is around 2.5 and 1.5 and shows dispersion12. By 
investigating different architectures of nanoimprints for these materials with ray 
dynamics and plane wave scattering algorithms it may in future be possible to perform 
targeted light management 
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Chapter 5  
 
Conclusion and outlook 
 

The aim of this thesis was to investigate to what extend the increased efficiency in thin 
film solar cells with spherical nanoimprints could be explained by a coupling of spheres. 
In order to study this subject in the frame of this thesis, it was decided to study the 
coupling in two-dimensional model systems, i.e. systems with two and more disks. Both 
the ray dynamics and the wave dynamics in these systems were investigated. For the ray 
dynamics, a deterministic selection rule was implemented. The ray model with a 
deterministic selection rule allowed studying the phase space. It was shown that a chaotic 
phase space could be obtained for low refractive indices. For higher refractive a phase 
space with strange attractors was obtained, i.e. the attractors showed fractal structures. A 
plane-wave scattering algorithm based on the Lippmann-Schwinger equation was 
evaluated for different disk systems. The plane wave-scattering algorithm turned out to 
be very stable. Its stability allowed following the appearance of specific whispering 
gallery mode types with increasing refractive index. The whispering gallery mode types 
appeared at specific wavenumbers and were subjected to systematic wavenumber shifts, 
when the refractive index of the respective system changed. The stability of the algorithm 
was further confirmed, when we studied incoming plane waves impinging on the disk 
systems from different directions. The positions of the whispering gallery modes in the 
wavenumber space were nearly independent on the direction of the incoming plane wave. 
A comparison of the ray dynamics with the plane wave scattering results, revealed clear 
connections. When the phase space of the ray dynamics with a deterministic selection 
rule changed from a chaotic phase space to a phase space with strange attractors, a clear 
change in the intensity of the integral over the square of the absolute value of the wave 
function could be seen. Future investigations are necessary to investigate how this 
knowledge over the changes in the phase space behavior and its implications for the wave 
dynamics can be utilized for thin film solar cells with nanoimprints. Several of the coupled 
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mode types that were observed when investigating the wave dynamics could be directly 
related to the strange attractors by a quantization rule. This shows that the ray dynamics 
can potentially be used to understand and to optimize architectures of nanoimprints. 
Further research is necessary, in order to understand how the knowledge about the 
relevance of strange attractors for absorption properties can be exploited for solar cells 
with nanoimprints. The wave functions of the multiple-disk system presented in this 
thesis, gave further indications that a coupling between the disks influences the 
absorption significantly. This seems to be valid for disk-systems with both equally and 
differently sized disks.  

In summary, we can conclude that the coupling of disks is important for the absorption 
properties of nanoimprints in thin film solar cells. The study of the ray dynamics with a 
deterministic selection rule in coupled systems revealed a deeper understanding of the 
significance of the coupling for the enhancement of absorption properties.   
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Appendix 
 

In this appendix Matlab codes is given. The scripts24 that is used in chapter 2 is: 

x plot_ray.m  
Plots the pattern a ray will follow in a disk system with the deterministic selection 
rule.   

x PSOS.m 
Plots the phase space for a  

x disk.m (function) 
Gives the positions for transmission/refraction for plot_ray.m  
Gives the p and s for PSOS.m 

x test_hit.m (function) 
Check if the ray will hit the other disk or not (selection rule) 

x new_values.m (function) 
Calculates the point where the disk will hit the new disk 

For calculations of the wave function Disk_Scattering20082015.m6 in chapter 3. To 
calculate the wave function for a system with different radius of the two disks, this code 
was modified to Disk_Scattering_differentR.m6. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% plot_ray.m                                                              % 
%                                                                         % 
% Plot a ray in a disk-system with the deterministic selection rule       % 
% found bye Ryu and Hentschel.                                            %  
%                                                                         % 
% The disks if established in a line of disks, 1 x n disks.               % 
%                                                                         % 
% The rays start in the upper half of one of the disks.                   % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
close all 
  
%% INPUT 
no_of_disks = 2;        % The total number of disks 
n1 = 1.0;               % The refractive index of the medium around the  
    disks 
n2 = 1.9;               % The refractive index of the disks 
no_of_bounces = 300;    % The total number of transmissions/reflections 
r = 1.0;                % The radius of the disks 
start_disk = 1;         % The disk the rays starts from 
disk_no_PSOS = 1;       % The disk where the phase space is found. Not used  
    in this plot. 
start = 25;             % The transmission/reflection where the plotting  
    starts.  
d = r;                  % The distance between the disks (distance between  
    to center points = d + 2*r) 
  
%% Start conditions:   
s0 = 0.5;  
p0 = 0.3;  
  
%% Plotting the disk system:  
xs = 0; 
ys = 0; 
ang=0:0.0001:2*pi;  
xp=r*cos(ang); 
yp=r*sin(ang); 
  
for i =1:no_of_disks 
    plot((xp+(i-1)*(2*r+d)),(yp), 'r'); 
    axis( [-(1.5*r) ((no_of_disks-1)*(d+2*r)+1.5*r) -(1.5*r) (1.5*r)]); 
    grid on  
    hold on 
end  
  
%% Plotting the rays behavior into the disk system: 
[z, s, p] = disks(s0, p0, no_of_disks, n1, n2, no_of_bounces, r, start_disk, 
disk_no_PSOS,start,d);  
for n = start:no_of_bounces 
    plot([real(z(n-1)) real(z(n))], [imag(z(n-1)) imag(z(n))], 'b'); 
end  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% PSOS.m                                                                  % 
%                                                                         %  
% Finding the phase space for a disk system in terms of the Poincarè      % 
% surface of section (PSOS).                                              % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear all 
  
%% INPUT 
no_of_disks = 2;        % The total number of disks 
n1 = 1.0;               % The refractive index of the medium around the  
    disks 
n2 = 1.9;               % The refractive index of the disks 
no_of_bounces = 300;    % The total number of transmissions/reflections 
r = 1.0;                % The radius of the disks 
start_disk = 1;         % The disk the rays starts from 
disk_no_PSOS = 1;       % The disk where the phase space is found. Not used  
    in this plot. 
start = 25;             % The transmission/reflection where the plotting  
    starts.  
d = r;                  % The distance between the disks (distance between  
    to center points = d + 2*r) 
n = 10;                % The total number of attractors in the PSOS 
  
  
  
%% Random generation of p, x0 and alpha 
  
close all 
s0 = []; 
p0 = []; 
s = zeros(n,1); 
p = zeros(n,1); 
z = zeros(n,1); 
  
% Generation of random start points 
for b = 1:n; 
    rng = ('shuffle'); 
    random_s0 = rand; 
    random_p0 = rand; 
    p0(b) = random_p0*(n1/n2)*2 - (n1/n2) ;     % p = sin(theta2) 
    s0(b) = random_s0;                          % S/Smax 
end 
  
%% Make s-matrix and p-matrix (and z-matrix) 
for k = 1:n 
    [z_array, s_array, p_array] = disks(s0(k), p0(k), no_of_disks, n1, n2, 
no_of_bounces, r, start_disk, disk_no_PSOS,start,d) ; 
    for j = 1:length(s_array) 
        s(k,j) = s_array(j); 
        p(k,j) = p_array(j); 
    end 
     
    % The z-array can be saved and plotted for investigations of the  
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    % different attractors the rays stabilize into 
%     for g = 1:length(z_array)   
%         z(k,g) = z_array(g); 
%     end  
end  
  
%% Plot of the PSOS 
for k = 1:n 
    for l = 1:length(s(k,:)); 
        if s(k,l) == 0 
        else 
            plot(s(k,l), p(k,l) , 'b.'); 
            grid on 
            hold on 
        end  
    end  
end  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% disk.m                                                                  % 
%                                                                         %  
% Find the pat the ray will follow. Put it together i a vector            % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
function [z, s, p] = disks(s0, p0, no_of_disks, n1, n2, no_of_bounces, r, 
start_disk, disk_no_PSOS,start,d)  
  
% Gives the behavior of the disk in  
  
z = [];     % The position (in complex numbers) 
p = [];     % The p-value of the selected disk (For plotting of PSOS) 
s = [];     % The s-value of the selected disk (For plotting of PSOS) 
f = 0;      % The length of the p and s vector 
k = 1;      % No bounces inside one disk 
hit = 0;    % Gives indications of transmission or reflection.  
  
% In case of total reflection: 
if abs(p0) > n1/n2 
    error('p is to high'); 
end 
  
for n = 1:no_of_bounces  
    if n == 1           % The first point                        
        theta2 = asin(p0); 
        theta1 = asin(sin(theta2)*n2/n1); 
  
        if theta2 < 0   % The direction of rotation 
            dir = 1;    % counterclockwise 
        else 
            dir = -1;   % clockwise 
        end 
         
        phi = pi - s0*r*pi; % The complex angle 
        z(n) = r * exp(1i * phi) + (start_disk-1)*(d+2*r); 
        disk_no = start_disk; 
     
    % When it is change of disk. Find point where the disk hits. 
    elseif disk_no == 0  
        k = 1;  
        hit = 0;  
        [disk_no, z(n), phi, theta1, dir] = new_values(disk_no_old, z(n-1), 
abs(theta1), dir, r, d); 
     
    % Calculations inside disk 
    else 
        k = k + 1; 
        theta2 = asin(sin(abs(theta1))*n1/n2) * (-dir); % if dir = -1, 
theta2 > 0 
        delta_phi = pi - 2*abs(theta2); 
        point = r * exp(1i*(phi+dir*(k-1)*delta_phi)); 
        z(n) = point + (disk_no-1)*(d+2*r); 
        ang = acos(real(point)/r); 
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        % Deterministic selection rule 
        if disk_no == 1 && real(point) < 0  
        elseif disk_no == no_of_disks && real(point) > 0  
        else 
            [hit] = test_hit(z(n), abs(theta1), d, r, dir, disk_no); 
        end        
    end  
     
    % Data to the PSOS 
    if disk_no == disk_no_PSOS && imag(z(n)) > 0 && n > start  
        v = pi - angle(z(n) - (disk_no-1)*(d+2*r)); 
        f = f + 1; 
        s(f) = v/pi;        %S/Smax 
        theta2 = asin(sin(abs(theta1))*n1/n2) * (-dir); 
        p(f) = sin(theta2); %p = sin(theta) 
    end 
     
    % In case of changing disk. Indicate a change of disk.  
    if hit == 1 
        disk_no_old = disk_no; 
        disk_no = 0; %between the disks.  
    end 
end         
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% hit.m                                                                   % 
%                                                                         % 
% Check if the ray will hit one of the other disks or not.                % 
%                                                                         % 
% No hit: hit = 0                                                         % 
% Hit: hit = 1                                                            % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [hit] = test_hit(z, theta1, d, r, dir, disk_no) 
  
h = []; 
hit = 0;    % Sets hit to 0   
  
x = real(z) - (2*r + d)*(disk_no-1); 
y = imag(z); 
  
%Transfer situation 
if x < 0 %flip 
    x = - x; 
    dir = - dir; 
end  
  
if dir == -1 
    y = - y; 
    dir = -dir; 
end  
  
%% Finding angles of the ray 
psi = acos(abs(x/r)); 
alpha = acos(abs(y/r)); 
     
%% Check of hit of not 
if  y < 0         
    if (abs(theta1) + alpha) < pi/2 
         
        phi = pi/2 - (theta1 + alpha); 
         
        ang = pi:0.0001:(3*pi/2); % The accuracy 
        yp = r*sin(ang); 
        xp = r*cos(ang); 
             
        for n = 1:length(xp) 
            if alpha < pi/4 
                h(n) = ((d + (r-x) + (r-xp(n))) * tan(phi)) +  abs(y); 
            else 
                h(n) = ((d + (r-x) + (r-xp(n))) / tan(pi/2 - phi)) +  
abs(y); 
            end  
             
            if h(n) < abs(yp(n)) 
                hit = 1; 
                return 
            end  
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        end 
         
        else   
            phi = (alpha + theta1) - pi/2; 
             
            ang = (pi/2):0.0001:(3*pi/2); % The accuracy 
            yp = r*sin(ang); 
            xp = r*cos(ang); 
             
            for n = 1:length(xp) 
                if phi < pi/4 
                    h(n) = ((d + (r-x) + (r-abs(xp(n)))) * tan(phi)) - 
abs(y); 
                else 
                    h(n) = ((d + (r-x) + (r-abs(xp(n)))) / tan(pi/2 - phi))- 
abs(y); 
                end  
                 
                if h(n) < 0  
                    hit = 1; 
                    return 
                elseif h(n) <= yp(n)  
                    hit = 1; 
                    return 
                end  
                 
            end         
    end 
    
else 
    phi = theta1 + psi; 
     
    if (phi) > acos(r/((r-x)+r+d)) 
        return 
    end  
         
    ang = (pi/2):0.0001:pi; 
    yp = r*sin(ang); 
    xp = r*cos(ang); 
         
    for n = 1:length(xp) 
        if phi < pi/4 
            h(n) = y + ((d + (r-x) + (r-abs(xp(n)))) * tan(phi)); 
        else 
            h(n) = y + ((d + (r-x) + (r-abs(xp(n)))) / tan(pi/2 - phi)); 
        end  
         
        if h(n) < yp(n) 
            hit = 1; 
            return 
        end  
    end 
     
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% new_values.m                                                            % 
%                                                                         %                                           
% Calculates the point where the ray will hit the next disk in case of    % 
% transmission, i.e. hit = 1 in test_hit.m                                % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [disk_no_new, z_new, phi_new, theta1_new, dir_new ] = 
new_values(disk_no_old, z, theta1, dir, r,d) 
  
% Transfer into a Cartesian coordinate system 
x = real(z) - (2*r + d)*(disk_no_old-1); 
y = imag(z); 
  
% Angles in the system 
psi = acos(abs(x/r)); 
alpha = acos(abs(y/r)); 
A = (d + 2*r) - abs(x); 
dir_new = 0; 
k = 1; 
  
% Transfer situation, flip 
if x < 0 
    dir = -dir; 
    x = -x; %all x-values > 0.  
end  
  
  
if y > 0  
    if dir == -1 
        if (alpha + theta1) > pi/2 
            u = -1; 
            ang = (alpha + theta1) - pi/2; 
        else 
            u = 1; 
            ang = pi/2 - (alpha + theta1); 
            dir_new = -1; 
        end  
    else %dir = 1 
        ang = theta1 + psi; 
        u = 1;  
        dir_new = -1; 
    end  
else % y < 0 
    if dir == -1 
        u = -1; 
        ang = theta1 + psi; 
        dir_new = 1; 
        k = -1; 
    else %dir = 1 
         if (alpha + theta1) > pi/2 
            u = 1; 
            ang = (alpha + theta1) - pi/2; 
            k = -1; 
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        else 
            u = -1; 
            ang = pi/2 - (alpha + theta1); 
            dir_new = 1; 
            k = -1; 
        end  
    end 
end 
  
delta_x = min(roots([1 (u*2*cos(ang)*sin(ang)*y - 2*A*(cos(ang))^2) ((A^2 + 
y^2 - r^2)*cos(ang)^2)]));         
  
x_new = -(A-delta_x); 
  
if ang < pi/4 
    y_new = y + u*delta_x * tan(ang); 
else 
    y_new = y + u*delta_x / tan(pi/2 - ang); 
end 
  
if dir_new == 0 
    alpha_new = acos(abs(x_new/r)); 
    if y > 0 && y_new < 0 
        dir_new = 1; 
        k = - 1 ; 
    elseif y < 0 && y_new > 0 
        dir_new = - 1; 
        k = 1; 
    elseif y > 0 
        if alpha_new > ang 
            dir_new = -1; 
        else 
            dir_new = 1; 
        end 
    else  
        if alpha_new > ang 
            dir_new = 1; 
        else 
            dir_new = -1; 
        end 
    end  
end 
  
theta1_new = acos(abs(x_new/r))+u*ang*k; 
  
if theta1_new < 0 
    theta1_new = -theta1_new; 
    dir = -dir; 
end  
  
if real(z) - (2*r + d)*(disk_no_old-1) < 0  
    disk_no_new = disk_no_old - 1; 
    x_new = -x_new; 
    dir_new = -dir_new; 
else 
    disk_no_new = disk_no_old + 1; 
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end  
  
%% The point at the new disk 
phi_new = angle(x_new + 1i*y_new); 
z_new = x_new + 1i*y_new + (2*r + d)*(disk_no_new-1); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Disk_Scattering20082015.m                                               % 
%                                                                         %  
% Calculates the wave function for a two-dimensional system               % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear all; 
close all; 
  
ArrayOfCircles=1; 
  
nu= 1323 * 100.0;    % The wavenumber nu (cm^(-1) * 100) 
phi=pi/2.0; 
k=2*pi*nu; 
kx=k*cos(phi); 
ky=k*sin(phi); 
clear phi; 
  
NCx=1;              % No of disks in x-direction  
NCy=2;              % No of disks in y-direction 
  
R=power(10,-5);     % Radius 
Nx=50;              % Resolution in x-direction     
Ny=100;             % Resolution in y-direction 
N=Nx*Ny;             
a=2*NCx*R; 
b=2*NCy*R; 
n_index=1.7;        % Refractive index of the disk(s) 
  
dx=a/Nx; % spacing in x-direction 
dy=b/Ny; % spacing in y-direction 
  
  
x=zeros(1,N); 
y=zeros(1,N); 
for i=1:Nx 
    for l=1:Ny 
  
        j=(l-1)*Nx+i; 
        x(j)=(i-0.5)*dx; 
        y(j)=(l-0.5)*dy; 
         
    end 
end 
  
G=zeros(N,N); 
  
for j=1:N 
    for m=1:N 
         
        % H is not defined for zero argument 
        if (j==m) 
            G(j,m)=0.0; 
        else 
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            Z=k*sqrt((x(j)-x(m))*(x(j)-x(m))+(y(j)-y(m))*(y(j)-y(m))); 
            G(j,m)=besselh(0,Z);   %besselh(nu,Z) gives Hankel function  
      H_0^+ 
        end 
  
    end 
end 
  
  
% Establish the potential 
v=zeros(1,N); 
for m=1:N 
     
    for nx=1:NCx 
        for ny=1:NCy 
             
            if (ArrayOfCircles) 
                % Array of circles 
                xcircle=(2*nx-1)*R; 
                ycircle=(2*ny-1)*R; 
                 
                rn=sqrt((x(m)-xcircle)*(x(m)-xcircle)+(y(m)-ycircle)*(y(m)-
ycircle)); 
                if (rn<R) 
                    v(m)=1.0-n_index*n_index; 
                end 
            end 
             
        end 
    end 
  
end 
  
Gtilde=zeros(N,N); 
  
for j=1:N 
    for m=1:N 
         
        Gtilde(j,m)=G(j,m)*v(m);  
     
    end 
end 
  
clear G; 
clear v; 
  
eikr=zeros(1,N); 
for j=1:N 
    eikr(j)=exp(1i*(kx*x(j)+ky*y(j))); 
end 
clear x y; 
  
M=zeros(N,N); 
IdentityMat=eye(N,N); 
M=IdentityMat+1i*(k*k*dx*dy*0.25)*Gtilde; 
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clear Gtilde; 
clear IdentityMat; 
  
  
  %% Solve Linear Equation by Matlab routine 
psi_complex = linsolve(M,eikr'); 
psi_complex_reshaped=reshape(psi_complex,Nx,Ny); 
  
Xplot=abs(psi_complex_reshaped).*abs(psi_complex_reshaped); 
  
figure; 
pcolor(Xplot'); 
set(gcf,'Color',[1 1 1]); 
  
phi=zeros(Nx,Ny); 
phi=angle(psi_complex_reshaped); % gives angles in the range -pi:pi 
  
figure; 
pcolor(phi'); 
set(gcf,'Color',[1 1 1]); 
  
% Integrating over the absolute square of the wave function 
linearIndexXplot=sub2ind(size(Xplot),Nx,Ny); 
IntegralPsi=sum(Xplot(1:linearIndexXplot)); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Disk_Scattering_differentR.m                                            % 
%                                                                         %  
% Calculates the wave function for a two-dimensional two-disk system.     % 
% The radii of the two disks can be changed.                              % 
%                                                                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear all; 
close all; 
  
ArrayOfCircles=1; 
  
nu= 750 * 100.0;     % The wavenumber (cm^(-1) * 100) 
phi=pi/2.0; 
k=2*pi*nu; 
kx=k*cos(phi); 
ky=k*sin(phi); 
clear phi; 
  
NCx=1;  %do not change 
NCy=2;  %do not change 
  
r1 = 10^-5;     % Disk no 1 
r2 = 0.5*r1;    % Disk no 2 
  
R=max(r1,r2);    
Nx=50;          % Resolution in y-direction 
Ny=100;         % Resolution in y-direction 
N=Nx*Ny; 
a=2*NCx*R; 
b=2*NCy*R; 
n_index=1.7;     % Refractive index of the disk(s) 
  
dx=a/Nx; % spacing in x-direction 
dy=b/Ny; % spacing in y-direction 
  
  
x=zeros(1,N); 
y=zeros(1,N); 
for i=1:Nx 
    for l=1:Ny 
  
        j=(l-1)*Nx+i; 
        x(j)=(i-0.5)*dx; 
        y(j)=(l-0.5)*dy; 
         
    end 
end 
  
G=zeros(N,N); 
  
for j=1:N 
    for m=1:N 
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        % H is not defined for zero argument 
        if (j==m) 
            G(j,m)=0.0; 
        else 
            Z=k*sqrt((x(j)-x(m))*(x(j)-x(m))+(y(j)-y(m))*(y(j)-y(m))); 
            G(j,m)=besselh(0,Z);   %besselh(nu,Z) gives Hankel function  
      H_0^+ 
        end 
  
    end 
end 
  
  
% Establish the potential 
v=zeros(1,N); 
for m=1:N 
     
    x1circle=r1; 
    y1circle=r1; 
     
    x2circle=r1; 
    y2circle=r1*2+r2; 
     
    rn1=sqrt((x(m)-x1circle)*(x(m)-x1circle)+(y(m)-y1circle)*(y(m)-
y1circle)); 
    rn2=sqrt((x(m)-x2circle)*(x(m)-x2circle)+(y(m)-y2circle)*(y(m)-
y2circle));     
  
    if (rn1<r1) 
        v(m)=1.0-n_index*n_index; 
     
    elseif (rn2<r2) 
        v(m)=1.0-n_index*n_index; 
    end 
  
end 
  
%plots the potential 
v_reshaped=reshape(v,Nx,Ny); 
figure; 
pcolor(v_reshaped'); 
set(gcf,'Color',[1 1 1]); 
  
  
%vMat=reshape(v,Nx,Ny); 
Gtilde=zeros(N,N); 
  
for j=1:N 
    for m=1:N 
         
        Gtilde(j,m)=G(j,m)*v(m);  
     
    end 
end 
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clear G; 
clear v; 
  
eikr=zeros(1,N); 
for j=1:N 
    eikr(j)=exp(1i*(kx*x(j)+ky*y(j))); 
end 
clear x y; 
  
M=zeros(N,N); 
IdentityMat=eye(N,N); 
M=IdentityMat+1i*(k*k*dx*dy*0.25)*Gtilde; 
  
clear Gtilde; 
clear IdentityMat; 
  
  
  %% Solve Linear Equation by Matlab routine 
psi_complex = linsolve(M,eikr'); 
psi_complex_reshaped=reshape(psi_complex,Nx,Ny); 
  
Xplot=abs(psi_complex_reshaped).*abs(psi_complex_reshaped); 
  
figure; 
pcolor(Xplot'); 
set(gcf,'Color',[1 1 1]); 
  
phi=zeros(Nx,Ny); 
phi=angle(psi_complex_reshaped); % gives angles in the range -pi:pi 
  
figure; 
pcolor(phi'); 
set(gcf,'Color',[1 1 1]); 
  
% Integrating over the absolute square of the wave function 
linearIndexXplot=sub2ind(size(Xplot),Nx,Ny); 
IntegralPsi=sum(Xplot(1:linearIndexXplot)); 
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