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Abstract. This paper reports soil development over time in different climates, on time-scales 
ranging from a few thousand to several hundred thousand years. Changes in soil properties 
over time, underlying soil-forming processes and their rates are presented. The paper is based 
on six soil chronosequences, i.e. sequences of soils of different age that are supposed to have 
developed under the similar conditions with regard to climate, vegetation and other living 
organisms, relief and parent material.  The six soil chronosequences are from humid-temperate, 
Mediterranean and semi-arid climates. They are compared with regard to soil thickness 
increase, changes in soil pH, formation of pedogenic iron oxides (expressed as Fed/Fet ratios), 
clay formation, dust influx (both reflected in clay/silt ratios), and silicate weathering and 
leaching of base cations (expressed as (Ca+Mg+K+Na)/Al molar ratios) over time. This 
comparison reveals that the increase of solum thickness with time can be best described by 
logarithmic equations in all three types of climates. Fed/Fet ratios (proportion of pedogenic iron 
Fed compared to total iron Fet) reflects the transformation of iron in primary minerals into 
pedogenic iron. This ratio usually increases with time, except for regions, where the influx of 
dust (having low Fed/Fet ratios) prevails over the process of pedogenic iron oxide formation, 
which is the case in the Patagonian chronosequences. Dust influx has also a substantial 
influence on the time courses of clay/silt ratios and on element indices of silicate weathering. 
Using the example of a 730 ka soil chronosequence from southern Italy, the fact that soils of 
long chronosequences inevitably experienced major environmental changes is demonstrated, 
and, consequentially a modified definition of requirements for soil chronosequences is 
suggested. Moreover, pedogenic thresholds, feedback systems and progressive versus 
regressive processes identified in the soil chronosequences are discussed.  
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1. Introduction 
Assessment of soil-forming processes and their rates is an essential scientific base for several reasons. 
First, it reveals the time scales on which soil-forming processes operate and thus also the time required 
for soil regeneration after disturbance, erosion or degeneration. Soils are a main component of 
terrestrial ecosystems and the base of human and animal nutrition. Their extension on the earth’s 
surface is limited, as the earth’s surface area itself is limited, and because the major part of the earth’s 
surface is covered by water or ice. If only soils are considered that are suitable for crop production, the 
area is further reduced by deserts and high mountain regions. The remaining soil area can hardly be 
increased by any measures (with few exceptions in the Netherlands and Australia’s Sunshine Coast, 
where extreme efforts are undertaken to gain land from the sea). In fact, the area of fertile soils 
steadily decreases in support of housing, logistical and industrial constructions, and due to inadequate 
land-use or over-use, resulting in soil degradation and erosion. At the same time, the world’s 
population continues to increase. Since soils are an essential and limited resource it is important to 
understand how they form, which processes are involved in their formation, at which rates these 
processes proceed and lead to measurable changes in soil properties, and finally, which factors may 
influence the direction and rates of soil-forming processes.  

Second, the quantitative assessment of the direction and rates of soil-forming processes in different 
climates is an important tool for the correct paleo-environmental interpretation of paleosols. The 
environmental conditions and the time-span in which a paleosol developed, can only be retraced, if the 
reconstruction is based on profound actualistic studies on soil development over time under well-
defined climatic and environmental conditions. Paleosols in turn are archives, in which responses of 
former soils to former climatic changes are documented. Therefore, their analysis and interpretation 
may help us understand causal relationships between climatic shifts and the responses of soils. 

Third, quantitative studies of soil development over time provide a scientific base for modelling 
soil formation. Modelling soil formation, in turn, is an essential requirement to take the step from 
description and analysis of soil development towards prediction of future soil development. Such 
prediction is particularly important with regard to possible soil responses to the climatic shifts that are 
going on at present and expected in the near future. Soil responses to these shifts will probably be 
inconsiderable in the central regions of ecotones, such as in most parts of the humid-temperate climate 
of central Europe. In contrast, serious soil responses are to be expected in the peripheral regions of 
more fragile ecotones, such as in dry regions of the Mediterranean (e.g. on the Iberian Peninsula), 
which are supposed to become warmer and drier in the coming decades and that are already at the 
edge of desertification. Modelling soil responses to climatic changes may identify areas at particular 
risk of soil degradation; hence measures (e.g. extensification and adaption of land-use) may be taken 
in time to prevent desertification.  

Since it is impossible to directly observe soil formation over thousands of years, the direction and 
rates of soil-forming processes are usually assessed using soil chronosequences, i.e. sequences of soils 
of different ages that are supposed to have developed under similar conditions with regard to climate, 
vegetation and other living organisms, relief, and parent material. Important research on soil 
chronosequences has been done in the Mediterranean climate of California, mainly from the 1970-
1980’s onwards, by Harden [1, 2], who examined the Merced River soil chronosequence in central 
California. There, Harden also developed the profile development index (PDI) that has since been 
widely applied. Other significant soil chronosequence studies in California include those of McFadden 
and Hendricks [3] who analysed pedogenic iron forms in Holocene to middle Pleistocene soils on 
fluvial deposits; Busacca [4] who studied soils ranging from 600 yr to 1.6 Ma in age at Honcut Creek, 
Sacramento Valley; Muhs [5] who investigated a soil chronosequence on Quaternary marine terraces 
(< 3 ka to > 1 Ma), on San Clemente Island; and Aniku and Singer [6] who analysed pedogenic iron in 
a soil chronosequence on marine terraces (105-600 ka). Soil chronosequences in semi-arid climates 
were extensively studied in the southern Great Basin (USA), especially at Silver Lake Playa, Cima 
Volcanic Field, Kyle Canyon, and Fortymile Wash, by McFadden et al. [7, 8]; Reheis et al. [9]; and 
Harden et al. [10]. 
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In the Mediterranean region of Europe, soil chronosequences were investigated mainly in southern 
Spain and Italy. Important studies were done by Alonso et al. [11] and Dorronsoro and Alonso [12] on 
soils on Holocene to Pleistocene fluvial terraces in Spain, and by Scarciglia et al. [13] on soils on 
Quaternary marine terraces in Calabria (southern Italy). 

Soil chronosequences in temperate- and cool-humid climates were studied both in North America 
and Europe. Studies in North America include those of Singleton and Lavkulich [14] who investigated 
soils on beach sand on Vancouver Island; Barrett and Schaetzl [15] and Barrett [16] who examined 
podzolisation in sandy terraces and beach ridges at Lake Michigan; Alexander and Burt [17], and Burt 
and Alexander [18] who analysed soils on moraines of Mendenhall Glacier, SE Alaska. European soil 
chronosequence studies comprise those of Arduino et al. [19] who analysed iron oxides and clay 
minerals in soils on fluvial terraces in northern Italy; Bain et al. [20] who investigated soils on river 
terraces ranging in age from 80-13,000 years in Scotland; and Mokma et al. [21] who studied a 
Holocene Podzol chronosequence in Finland. Sequences of moraine ridges in mountain regions, e.g. in 
the Sierra Nevada (California) and in the European Alps, have also been used for studying soil 
chronosequences.Birkeland and Burke [22] investigated soil catena chronosequences on moraine 
ridges in the eastern Sierra Nevada, California, and Egli et al. [23, 24, 25] who analysed Holocene soil 
chronosequences in the Swiss Alps. 

In contrast to the above-mentioned Mediterranean and temperate to cool climates, where numerous 
soil chronosequences have been studied over the last four decades, soil chronosequence studies in 
tropical regions and some extreme environments such as cold deserts are rare. The few existing studies 
include those of Pillans [26] who investigated soils on basaltic lava flows with ages ranging from 10 
ka to 5.59 Ma in the tropical climate of northern Queensland (Australia), and Muhs [27] who studied 
soils on Pleistocene reef terraces of Barbados. These soils formed in Sahara dust, volcanic ash from 
the Lesser Antilles island arc, and detrital carbonate from the underlying reef limestone. A soil 
chronosequence in a cold desert environment was analysed by Bockheim [28] who studied soils on 
moraines ranging from ca. 6 ka to 250 ka in age in the Transantarctic Mountains. 

This paper compares the direction and rates of soil-forming processes in humid-temperate, 
Mediterranean and semi-arid climates. It aims at contributing to the knowledge on natural soil-forming 
processes that is required for the three main purposes mentioned in the beginning of the introduction. 
For this purpose, six soil chronosequences are presented. In addition to the comparison of three 
climatically different regions, also two diverse pathways of soil formation in different parent materials 
in the same region in humid-temperate climate are included (Figure 1). The sites for these soil 
chronosequences were selected trying to avoid considerable human influence. Man has become a 
major soil-forming factor [29]. This factor is excluded here as far as possible, in order to ensure a good 
understanding of (semi-) natural soil formation first, as a base for unambiguous identification of the 
effect of the soil-forming factor man, separately. However, a certain extent of human influence could 
not be avoided, especially in the Mediterranean soil chronosequence where the soils are largely 
influenced by long-term agricultural use and related erosion. 

Similarities and differences between the soil chronosequences in terms of identified soil-forming 
processes and their rates are discussed. Using the example of the Mediterranean soil chronosequence 
from southern Italy, comprising ca. 730 ka, the fact that soils of long chronosequences inevitably 
experienced major environmental changes is demonstrated, and, consequentially a modified definition 
of requirements for soil chronosequences is suggested. 

 

2. Material and methods 
Three soil chronosequences were studied in southern Norway. Two of them were on marine loamy 
sediments in the provinces Vestfold and Østfold, on both sides of the Oslo Fjord, and one was on 
beach sand in Vestfold (Tables 1-3). These areas have been subject to continuous glacio-isostatic 
upward movement, since the ice sheet in the southern Oslo Fjord region melted between ~13000 and 
12000 calendar years ago. As a consequence of the steady uplift since the weight of the ice had gone, 
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All soils were described according to FAO [38] and classified according to WRB [39] (Tables 1-6). 

 

Table 1. Soil chronosequence on beach sand in Vestfold, southern Norway (MAT 6°C; MAP 

975 mm) 
Pedon 

(no., name, 

location) 

Age1 Horizon sequence  

(depth in cm, horizons according to FAO [38] 

Classification according to WRB 

[39] 

Pedon 1 

SVF2.4 

(Gleåbukta) 

2 300  150 

 

organic layer: 0-+5 Oi; 

0-8 Ah1; 8-25 Ah2; 25-46 Bw; 46-56 BC; 56-115 Cg1;  

115-135 2Cg2 

Endoskeletic Brunic Endostagnic 

Umbrisol (Arenic, Colluvic) 

Pedon 2 

SVF3.0 

(Gleåbukta) 

3 800  150 

 

organic layer: 0-+3 Oa; +3-+8 Oe; +8-+9 Oi; 

0-7 AE; 7-16 Bw1; 16-21 Bw2; 21-37 BC; 37-47 Ahb; 47-77 BC; 

77-124 BCg; 124-138 2Cg; 138-180 Cr 

Brunic Arenosol  

(Colluvic, Protospodic) 

Pedon 3 

SVF4.0 

(Haraldsrød) 

4 300  200 

 

organic layer: 0-+0.5 Oe; +0.5-+3.5: Oi 

 0-4 Ah; 4-9 AE; 9-22 Bh; 22-36 Bs; 36-50 Bw; 50-90 BCg; >90 2R 
Endostagnic Endoleptic Cambisol 

(Protospodic) 

Pedon 4 

SVF6.0 (Jåberg) 

6 600  170 

 

organic layer: 0-+3.5 Oa; 3.5-+9 Oe; +9-+13 Oi; 

(0-5 AE)2; 0/5-13 EA; 13-26 Bhs; 26-54 Bs; 54-74 BC; 74-85 Cg 

Endostagnic Folic Podzol 

Pedon 5 

SVF7.2 

(Grønneberg) 

7 650  130 

 

organic layer: 0-+2 Oa; +2-+6.5 Oe; +6.5-+7.5 Oi; 

0-10 AE; 10-24 Bsh; 24-40 Bs1; 40-65 Bs2; 65-105 BCg;  

105-140 2Cg 

Endostagnic Podzol 

Pedon 6 

SVF8.5 (Rauan) 

9 650  100 

 

organic layer: 0-+3.5 Oa; +3.5-+8.5 Oe; +8.5-+10 Oi 

0-5 AE; 5-7 E; 7-30 Bs; 30-76 2Bs2; 76-105 3Cg 

Endoskeletic Endostagnic Folic 

Podzol (Ruptic) 
 

1 ages derived from calibrated 14C datings, given in calendar years before sampling, not BP (i.e. before 1950) 
2 discontinuous horizon 

 

 

Table 2. Soil chronosequence on loamy marine sediments in Vestfold, southern Norway (MAT 5.3-

6.6 °C; MAP 880-1075 mm) 
Pedon 

(no., name, 

location) 

Age1 Horizon sequence  

(depth in cm, horizons according to FAO [38] 

Classification according to WRB 

[39] 

Pedon 1 

VF2.4 (Sem) 

1 650  120 0-5 Ah; 5-13 BE; 13-20 E1; 20-40 E2; 40-56 Btg1; 56-95 Btg2;  

95-130 Ctr; 130-155 Cr 

Luvic Endogleyic Stagnosol 

(Siltic) 

Pedon 2 

VF4.5 (Ramnes) 

4 600  70 0-9 Ah; 9-21 Ap; 21-27 E; 27-40 Beg; 40-70 Btg1; 70-100 Btg2;  

100-135 Btg3; 135-170 Cg; 170-230 C 

Luvic Stagnosol (Siltic) 

Pedon 3 

VF6.6 (Fossan) 

6 200  100 0-9 Ah; 9-15 Ap; 15-30 BE; 30-42 E; 42-56 E/Bg; 56-91 Btg1;  

91-195 Btg2; 195-230 C 

Luvic Glossic Albic Fragic 

Stagnosol (Siltic) 

Pedon 4 

VF8.8 (Holmen) 

6 550  200 0-8 Ah; 8-20 Ap; 20-36 BE; 36-40 E; 40-66 E/Bg; 66-90 B/Eg;  

90-113 Btg1, 113-155 2Btg2; 155-175 3Cg 

Luvic Glossic Albic Fragic 

Stagnosol (Siltic) 

Pedon 5 

VF7.3 (Gjein) 

8 100  120 0-4 Ah; 4-18 BE; 8-27 E; 27-40 E/Bg; 40-58 Btg1; 58-105 Btg2;  

105-190 Cg 

Luvic Glossic Albic Fragic 

Stagnosol (Endoeutric) 

Pedon 6 

VF9 (Torp) 

9 000  150 0-6 AE; 6-9 Bs; 9-24 BE; 24-27 E; 27-49 E/Bg; 49-85 Btg;  

85-156 Bg; 214 Cg 

Luvic Glossic Albic Fragic 

Stagnosol (Protospodic) 
1 ages derived from calibrated 14C datings, given in calendar years before sampling, not BP (i.e. before 1950) 
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Table 3. Soil chronosequence on loamy marine sediments in Østfold, southern Norway (MAT 4.6- 

6.4 °C; MAP 770-880 mm) 
Pedon 

(no., name, 

location) 

Age1 Horizon sequence  

(depth in cm, horizons according to FAO [38] 

Classification according to WRB 

[39] 

Pedon 1 

ØF3 (Løkkevika) 

3 000  250 0-8 Ah; 8-30 BE; 30-40 E; 40-80 Btg; 80-110 Bg; 110-155 Cr1;  

155-210 Cr2 

Hyperdystric Alic Endogleyic 

Stagnosol (Siltic) 

Pedon 2 

ØF4 (Tomb) 

3 500  200 0-8 Ah; 8-25 Ap; 25-40 E; 40-77 Btg; 77-116 Btrg; 116-150 Cr Luvic Albic Endogleyic Stagnosol 

(Endosiltic) 

Pedon 3 

ØF7.5 (Husevja) 

6 550  150 0-3 Ah; 3-12 AE; 12-26 Bs; 26-29 BE; 29-38 E; 38-66 E/Bg;  

66-80 Btg; 80-105 Cg 

Luvic Glossic Albic Fragic 

Stagnosol (Episiltic, Protospodic) 

Pedon 4 

ØF5 (Navestad) 

6 650  150 0-6 Ah; 6-16 Ap; 16-25 E; 25-40 E/Bg; 40-66 Btg1; 66-90 Btg2;  

90-170 Cr1; 170-185 Cr2 

Luvic Glossic Albic Endogleyic 

Fragic Stagnosol (Endoeutric) 

Pedon 5 

ØF8 (Os Kirke) 

9 750  150 0-5 Ah; 5-13 EB; 13-30 E1; 30-40 E2; 40-70 E/Bg; 70-127 Btg;  

127-175 BCg; 175-195 Cg 

Luvic Glossic Albic Fragic 

Stagnosol (Endoeutric, Siltic) 

Pedon 6 

ØF11 (Båstad) 

11 050  150 0-6 Ah; 6-10 AE; 10-21 Bs; 21-37 E; 37-60 E/Bg; 

60-77 Btg; 77-90 BCg1; 90-100 BCg2; 

100-175 BCg3; 175-195 C 

Luvic Glossic Albic Fragic 

Stagnosol (Endofluvic, Siltic, 

Protospodic) 
1 ages derived from calibrated 14C datings, given in calendar years before sampling, not BP (i.e. before 1950) 

 

Table 4. Soil chronosequence on marine terraces near Metaponto, Gulf of Taranto, southern Italy 

(MAT 16.2 °C; MAP 456 mm at Marina di Ginosa) 
Pedon 

(no., name, location) 

Age1 Horizon sequence  

(depth in cm, horizons according to FAO [38] 

Classification according to WRB 

[39] 

Pedon 1 

T0; Lido di Metaponto 

1901 0-2 C; 2-13 AC; 13-31 CB1; 31-46 2CB2; 46-67 Cw1; 67-95 Cw2;  

95-158 C 

Calcaric Brunic Arenosol (Ochric)

Pedon 2 

T1; Petrulla (Loess) 

16 0001 0-30 Ap; 30-60 Bw; 60-120 Bk1; 120-185 Bk2; 185-240 2Bk3;  

240-450 3C 

Endocalcic Luvisol (Loamic) 

Pedon 3 

T2; San Teodoro I 

100 000 0-23 Ap; 23-60 Bt1; 60-93 Bt2; 93-130 Ck1; 130-180 Ck2;  

180-280 2Bk1; 280-325 3Bk2; 325-350 4Bk3; 350-400 Ckm;  

>400 5Cw 

Endocalcic Luvisol (Cutanic) 

Pedon 4 

T3; San Teodoro II 

120 0002 0-25 Ap; 25-70 Ap/Bt (tilted); 70-100 Bt/Ap (tilted); 100-112 Bt;  

>112 Bk 

Bathicalcic Luvisol (Cutanic) 

Pedon 5 

T4; Marconia 

195 000 0-25 Ap1; 25-42 Ap2; 42-58 Bt1; 58-116 2Btk1; 116-133 Btk2;  

133-151 Bt2; 151->223 3Bt3 

Endocalcic Alisol (Clayic, 

Cutanic) 

Pedon 6 

T5-SE 

310 000 0-30 Ap; 30-54 Bt1; 54-83 Bt2; 83-108 Btk1; 108-174 2Bt3;  

174->206 Btk2 

Endocalcic Alisol (Cutanic) 

Pedon 7 

T5-NW 

330 000 0-33 Ap; 33-80 Bt; 80-127 2Btk1; 127-168 Btk2; 168->205 Btk3 Endocalcic Alisol (Cutanic) 

Pedon 8 

T6; Tinchi I 

405 000 0-20 Ap; 20-36 Bt1; 36-50 2Bt2; 50-108 Bt3; 108-165 Bw1;  

165-182 3Bw2; 182-215 Cw; 215->250 C 

Chromic Luvisol (Clayic, Cutanic)

Pedon  9 

T7; Tinchi II 

500 000 0-33 Ap; 33-54 Bt1; 54-73 Bt2; 73-160 2Bt3; 160-290 Bt4;  

290-330 Bw; 330-338 Bg; 338-380 Ck/Ckm; 380-410 3C 

Chromic Luvisol (Cutanic) 

Pedon 10 

T8; Pisticci 

575 0003 0-22 Ap; 22-47 AB; 47-65 2Btk1; 65-109 Btk2; 109-200 Btk3;  

200-239 Btk4; 239-259 Btk5; 259-286 CB1; 286-323 CBk;  

323->380 CB2 

Chromic Alisol (Cutanic) 

Pedon 11 

T9; Bernalda 

670 000 0-10 Ah; 10-26 Ah/Bw; 26-70 Bt; 70-100 Btk1; 100-117 Btk2;  

117-140 Btk3; 140-220 Btk4; 220->230 2Bw 

Chromic Luvisol (Cutanic) 

1 OSL dating from [40]; 2 age based on occurrence of Senegalese fauna (Eemian); age based on tephra chronology; all other ages estimated 

according to Pleistocene glacial-interglacial cycles and related sea level fluctuations 
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Table 5. Soil chronosequence on beach ridges with substantial dust accumulation along the 

Patagonian East coast (MAT 12.6 °C; MAP 287 mm) 
Pedon 

(no., name, location) 

Age1 Horizon sequence  

(depth in cm, horizons according to FAO[38] 

Classification according to WRB 

[39] 

Pedon 1 

R1 (Bust.); Pa’04/12b 
2241 ± 46 0-1 (dp); 1-4 Ah; 4-8 AC1; 8-18 AC2; 18-30 C(h); 30-42 C(h)k;  

42-50 2Ck1; 50-60 2Ck2; 60-73 2Ck3; 73-100 3C 
Calcaric Skeletic Regosol  

(Protocalcic, Yermic) 

 

Pedon 2 

R2 (Cam.); Pa’04/8 
3372 ± 48 0-1 (dp); 1-4 Ah; 4-26 AC; 26-55 C(h)k; 55-65 2Ck; 65-75 2C Calcaric Skeletic Regosol  

(Protocalcic, Yermic) 

Pedon 3 

R3 (Bust.); Pa’04/4e 
4052 ± 50 0-1 (dp); 1-4 Ah1; 4-17 Ah2; 17-44 AC; 44-65 C(h)k1;  

65-80 2C(h)k2; 80-87 2Ck1; 87-100 2Ck2; 100-140 2C 
Calcaric Skeletic Regosol  

(Protocalcic, Yermic) 

Pedon 4 

R4 (Bust.); Pa’04/2 
6238 ± 51 0-1 (dp); 1-5 Ah; 5-20 AC; 20-60 C(h); 60-95 2C1; 95-100 2Ck1; 

100-135 2C2; 135-139 2Ck2; 139-160 2C3; 160-164 2Ck3; 

164-176 2C4 

Calcaric Skeletic Regosol  

(Protocalcic, Yermic) 

 
1 ages are uncalibrated radiocarbon ages of molluscs from each beach ridge 

 

Table 6. Soil chronosequence on beach ridges with minor dust accumulation along the Patagonian 

East coast (MAT 12.6 °C; MAP 287 mm) 
Pedon 

(no., name, location) 

Age1 Horizon sequence  

(depth in cm, horizons according to FAO [38] 

Classification according to WRB 

[39] 

Pedon 1 

L1 (Cam.); Pa’04/6 
1376 ± 47 0-3 (dp)3; 3-5 Ah; 5-8 AC; 8-22 C(h); 22-50 2C Calcaric Hyperskeletic Leptosol 

(Yermic) 

Pedon 2 

L2 (Cam.); Pa32 
2618 ± 92 0-1 (dp); 1-4 Ah; 4-25 AC; 25-30 2Ck; 30-60 2C Calcaric Hyperskeletic Leptosol 

(Protocalcic, Yermic) 

Pedon 3 

L3 (Bust.); Pa’04/1b 
5400 ± 25 0-2 (dp); 2-7 Ah; 7-20 C(h)1; 20-50 C(h)2; 50-80 Ck; 80-100 C Calcaric Hyperskeletic Leptosol 

(Protocalcic, Yermic) 
1 ages are uncalibrated radiocarbon ages of molluscs from each beach ridge 

 

2. Comparison of soil property changes in the different chronosequences 

2.1. Soil thickness increase 
Soil thickness was calculated according to [12] as thickness of A horizons + thickness of B horizons + 
½ thickness of transitional AC/CA/BC/CB horizons. Soil thickness increase over time can be best 
described by logarithmic functions in all studied soil chronosequences (Figure 2). The rates of increase 
in soil thickness are clearly influenced by climate and parent material. The highest rate is observed for 
the Mediterranean climate (Figure 2; green triangles). The humid-temperate climate of southern 
Norway allows for medium rates of soil thickness increase over time, whereby rates in the loamy 
marine sediments (Figure 2; red squares) are higher than those in the sandy beach deposits (Figure 2; 
orange squares). The lowest rates of soil thickness increase are found in the semi-arid climate of 
Patagonia (Figure 2; green diamonds), where the mean annual temperature (12.6 °C) is in between 
those of the two other regions, but the low amount of precipitation (MAP = 287 mm) limits the rates of 
weathering and primary plant and animal productivity, and increase in soil thickness. 

In general, it was attempted to establish all soil profiles comprised in the chronosequences in flat 
positions, showing minimum erosion. This approach worked well in the Holocene chronosequences in 
Norway and Patagonia, whereas in the Holocene-Pleistocene chronosequence in southern Italy, 
spanning ~730 ka, it was impossible to include only soils that were not or only slightly eroded because 
erosion was ever-present. A theoretical function of increase in soil thickness over time was obtained 
by including only maximum soil thicknesses (Figure 3). However, very few of the soils included in 
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Figure 5. Thin section photograph of profile Bernalda, terrace T9, 82.5-86.5 cm depth (width = 
2.2 mm; left with plane polarised light, right with crossed polarisers). The middle Pleistocene soils of 
the Italian chronosequence are characterised by neo-formed reddish brown clay and illuvial clay (il). 
This soil (ca. 670 ka-old) moreover shows accumulation of secondary calcite needles (cn) in many 
voids. 
 
Because of the xeric moisture regime and variable re-carbonatisation through dust influx, the general 
pH trend with time in the Metaponto chronosequence shows a slow decrease with some scatter and 
even increased pH values in the older soils of the sequence (Figure 6). Pleistocene alternations 
between Mediterranean forest (during interglacial periods) and steppe environments (during glacial 
periods) in southern Italy [41, 42] must have been accompanied by alternating leaching and non-
leaching or slight leaching conditions. However, the influence of paleo-environmental changes on the 
time courses of soil chemical parameters is difficult to reconstruct. It is likely that the rates of 
decarbonatisation and pH decrease in the upper 50 cm were considerably decreased and even 
temporarily reversed during glacial periods with steppe environments and enhanced dust influx rates. 
Also the environmental conditions within glacial periods were not constant but included, for example 
shifts between Artemisia steppe and forest steppe, which must have been related to different soil 
moisture regimes and hence different carbonate dynamics.  

The Patagonian soil chronosequences are located in the driest environment included in this work. 
However the gravelly beach ridges, on which the soil chronosequences in Patagonia were established, 
are highly water permeable. Therefore, decarbonatisation is taking place in the upper 20 to 40 cm of 
these soils, and pH decreases towards the soil surface, indicating that some leaching processes are 
active. Both chronosequences show a slow but distinct pH decrease with time, whereby a clear 
difference in pH levels is observed between the soil chronosequence on beach ridges with > 10 % fine 
earth, i.e. the Regosol sequence (Figure 4; dark blue diamonds), and the sequence on beach ridges with 
≤ 10 % fine earth in the upper 75 cm, i.e. the Leptosol sequence (Figure 4; light blue diamonds). The 
pH values of the Regosols are 0.8 to 0.9 pH units higher than those of the Leptosols. The higher 
amounts of fine earth in the Regosols point to greater dust accumulation at these sites, compared to the 
Leptosol sites; it can thus be concluded that the higher pH level of the Regosol sequence is also due to 
the higher input of calcareous dust. 

 

il 

cn 
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il 

cn 
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50 cm show decreasing trends in all climates and parent materials, whereby the general level of pH is 
higher in drier climates and in areas with substantial influx of calcareous dust than in humid climates. 
Formation of pedogenic iron oxides proceeds with time, usually leading to increasing Fed/Fet ratios, 
except for regions, where the influx of dust (having low Fed/Fet ratios) prevails over the process of 
pedogenic iron oxide formation, which is the case in the Patagonian chronosequences presented here. 
Dust influx has also a substantial influence on the time courses of clay/silt ratios and on element 
indices for silicate weathering. Variable dust influx and sediment inhomogeneity of pedons may lead 
to large scatter of data so that chronofunctions are difficult to obtain. 

Five of the six soil chronosequences presented here are Holocene soil chronosequences, comprising 
time-spans of ca. 7 ka (Patagonia) to ca. 11 ka (Norway). These soils experienced some climatic shifts 
such as the mid-Holocene climatic optimum, and the Little Ice Age, but this climatic variation was 
within a range that appears to have no measureable effect on the soil chronofunctions. 

In contrast, the Mediterranean soil chronosequence comprises ca. 730 ka, thus spanning a number 
of glacial-interglacial cycles. This means that the soil-forming factors climate and organisms were 
subject to major changes over the residence time of most of the soils comprised in the soil 
chronosequence. In the case of southern Italy, the environmental conditions alternated between 
Mediterranean conditions during interglacial periods and open Artemisia steppe to forest steppe 
environments during glacial periods [41, 42]. It is evident that rates of base leaching and formation of 
pedogenic oxides must have been significantly lower under steppe conditions than under 
Mediterranean conditions. It seems most likely that existing Mediterranean soils of several meters 
depth did not show any further deepening during periods of steppe environments. Instead, it can be 
assumed that enhanced dust influx and increased accumulation of soil organic matter took place in the 
uppermost part of the existing Mediterranean soils, and steppe soils such as Phaeozems and 
Chernozems formed. Each following shift to an interglacial period with Mediterranean conditions led 
to soil organic matter decomposition and hence degradation of the steppe soils. Mediterranean soil 
formation that had been interrupted during glacial periods continued, characterised by carbonate 
leaching, clay migration, and rubification. These conclusions are in agreement with Scarciglia et al. 
[13] who studied chronosequences of typical Mediterranean soils on Early to Late Pleistocene marine 
terraces along the northwestern coast of Calabria (southern Italy). A combination of chemical, 
mineralogical and micromorphological analyses revealed that soil-forming processes in those soils did 
apparently not proceed continuously but polycyclically. The authors thus concluded that the soils 
mainly developed during interglacial periods. 

The problem of major changes in climate and vegetation that is discussed here, using the example 
of the Italian soil chronosequences, holds true for all soil chronosequences that extend back to pre-
Holocene periods. Hotchkiss et al. [13], for example, discuss the impact of Pleistocene environmental 
changes on soil and ecosystem development in Hawaii. In such long soil chronosequences, the factor 
climate per se cannot be kept constant over time, as demanded in the original definition of soil 
chronosequences, specifying soil chronosequences as sequences of soils of different age that are 
supposed to have developed under similar conditions with regard to climate, vegetation and other 
living organisms, relief and parent material (see introduction). We thus need to accept that climate and 
vegetation varied over the time-spans comprised in these long soil chronosequences and that (at least) 
all soils of pre-Holocene age are polygenetic [29]. Hence, the requirements for these long soil 
chronosequences need to be modified as follows: soil chronosequences are sequences of soils of 
different age that are supposed to have developed under similar environmental conditions, or have 
experienced similar environmental changes through time, e.g. through glacial-interglacial cycles, with 
regard to the soil-forming factors climate, vegetation and other living organisms, relief and parent 
material. 

In addition to the inevitable environmental variability in time discussed above, it is important to 
consider that, even under constant environmental conditions pedogenesis would not proceed uniformly 
over long time-spans. Instead, pedogenic thresholds and feedback systems naturally occur in the 
course of soil development. Examples for major pedogenic thresholds that occur in the soil 
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chronosequences comprised in this paper include the: threshold of acidification and availability of 
organic complexing agents that has to be reached before podzolisation starts in the soil 
chronosequence on beach sand in Norway; and the threshold of calcium leaching that has to be 
reached before clay illuviation starts in the soil chronosequences on loamy sediments in Norway and 
in southern Italy. Feedback systems are operating in the chronosequences involving clay illuviation (in 
Norway and southern Italy), since clay accumulation in the developing Bt horizons will lead to a 
progressively finer pore system in the Bt horizons, which in turn will favour further accumulation of 
clay. Feedback systems are also effective in the Norwegian soil chronosequence on beach sand, where 
the precipitation of the first metal-organic colloids that precipitate in the subsoil will attract other 
colloids and thus self-enhance the development of spodic horizons. Similarly, the first carbonate 
crystals, precipitating in the Patagonian soils will form nuclei, on which further carbonates will 
precipitate. 

Besides progressive pedogenic processes such as silicate weathering and formation of clay minerals 
and pedogenic oxides, also regressive processes need to be taken into account. The main regressive 
process, particularly in the Mediterranean study area, is erosion. Johnson [44] explained soil thickness 
as a result of the interplay of: 1) deepening through weathering; 2) upbuilding (e.g. by dust influx); 
and 3) erosion. According to Johnson and Watson-Stegner [45], upbuilding can be regressive if 
unweathered fresh material accumulates at a rate that exceeds the weathering rate, or it can be 
progressive if weathering keeps pace with sedimentation and the sediments do not lead to profile 
rejuvenation or simplification. In the case of the Italian chronosequence, upbuilding by dust deposition 
represents a regressive process, because dust introduces fresh carbonates to previously decarbonated 
and clay illuviated soils. In the Patagonian chronosequences, upbuilding by dust deposition can be 
regarded as a regressive process with respect to Fed/Fet and clay/silt ratios because both ratios are 
decreased by dust accumulation, whereas they should generally increase with proceeding soil 
development including neoformation of clay minerals and pedogenic iron oxides. On the other hand, 
the dust that accumulated in the interstitial voids between the pebbles in the Patagonian beach ridges 
in many sites, represents the only fine earth at all. Dust accumulation in these cases is an essential 
process to increase the water holding capacity of the extremely gravelly soils and allow for the 
succession of higher plants. From this point of view, dust accumulation in this particular environment 
may be rather regarded as a progressive, than a regressive, process. 
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