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Low temperature is one of the abiotic stresses seriously affecting the growth of
perennial ryegrass (Lolium perenne L.), and freezing tolerance is a complex trait of
major agronomical importance in northern and central Europe. Understanding the
genetic control of freezing tolerance would aid in the development of cultivars of
perennial ryegrass with improved adaptation to frost. The plant material investigated
in this study was an experimental synthetic population derived from pair-crosses
among five European perennial ryegrass genotypes, representing adaptations to a
range of climatic conditions across Europe. A total number of 80 individuals (24 of
High frost [HF]; 29 of Low frost [LF], and 27 of Unselected [US]) from the second
generation of the two divergently selected populations and an unselected (US) control
population were genotyped using 278 genome-wide SNPs derived from perennial
ryegrass transcriptome sequences. Our studies investigated the genetic diversity
among the three experimental populations by analysis of molecular variance and
population structure, and determined that the HF and LF populations are very divergent
after selection for freezing tolerance, whereas the HF and US populations are more
similar. Linkage disequilibrium (LD) decay varied across the seven chromosomes and
the conspicuous pattern of LD between the HF and LF population confirmed their
divergence in freezing tolerance. Furthermore, two Fst outlier methods; finite island
model (fdist) by LOSITAN and hierarchical structure model using ARLEQUIN, both
detected six loci under directional selection. These outlier loci are most probably linked
to genes involved in freezing tolerance, cold adaptation, and abiotic stress. These six
candidate loci under directional selection for freezing tolerance might be potential marker
resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

Keywords: freezing tolerance, population structure, linkage disequilibrium, genetic diversity, outlier SNPs, Lolium
perenne
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INTRODUCTION

Perennial ryegrass (Lolium perenne L.) is an important forage
grass species due to its productivity and high forage quality.
However, with changing climates, improving its resistance to
abiotic stresses is important to sustain grassland production.
Frost is one of the abiotic stresses causing serious concern
to the growth of perennial ryegrass (Galiba et al., 2009).
Coping with abiotic stress is a multifaceted task that requires
physiological adaptations at all levels of the organism (Sandve
et al., 2011). Several quantitative trait loci (QTL) and candidate
genes for freezing tolerance have been identified in perennial
ryegrass and the closely related species meadow fescue (Yamada
et al., 2004; Turner et al., 2006; Xiong et al., 2007; Rudi
et al., 2011; Alm et al., 2011). Still, differential responses of
cultivars to variable environmental conditions are genetically
based, and other QTL/genes need to be identified in order
to explore variation in freezing tolerance among cultivars and
genotypes.

Classical linkage mapping using bi-parental mapping
populations have been successful in detecting QTL and candidate
genes for freezing tolerance, especially in inbreeding species
like barley (Reinheimer et al., 2004) and triticale (Liu et al.,
2014). Such mapping populations suffer from low resolution in
detecting QTL (small population size), and the fact that only
small proportions of the genetic diversity, i.e., only two alleles at
a given locus in bi-parental crosses with inbred parents and up to
four alleles with crosses of completely heterozygous outbreeding
parents, are captured. In addition, self-incompatibility and severe
inbreeding depression is common in forage grass species, thus
recombinant inbred lines, which would be advantageous for
QTL mapping, cannot be developed and utilized. Populations for
QTL mapping in perennial ryegrass have mainly been pseudo-F2
populations from crosses between heterozygous parents (Xing
et al., 2007). Association mapping, also known as linkage
disequilibrium (LD) mapping, has improved mapping resolution
by taking advantage of historical LDs and large population
sizes. However, association mapping in plants is complicated
by population structure, which is common in plant populations
(Flint-Garcia et al., 2003).

Linkage disequilibrium is a non-random association of alleles
between two or more linked loci. The degree of LD in any given
population is dependent on (i) the reproductive biology of the
organism (i.e., outbreeding vs. inbreeding) and (ii) population
history. Inbreeding plant species have high LD-levels due to
high levels of homozygosity, with non-random associations of
alleles spanning large distances. In worldwide accessions of the
inbreeding model plant, Arabidopsis thaliana, LD was estimated
to span between 250 and 10 kb (Nordborg and Tavare, 2002;
Nordborg et al., 2002, 2005; Kim et al., 2007) and in rice between
100 kb to 200 kb (Huang et al., 2010). Studies in perennial
ryegrass have found various rates of LD decay. LD decayed within
less than 0.5 kb in 11 disease resistance genes among 20 diverse
genotypes (Xing et al., 2007), and between 0.5 and 3 kb in herbage
nutritive quality genes among diverse germplasm (Ponting et al.,
2007). However, significant LD extended as long as 1.6 Mb in a
perennial ryegrass cultivar originating from six related parents

but less than 174 kb in a cultivar originating from 336 parents
(Auzanneau et al., 2007).

Knowledge of the LD structure of populations can be exploited
for different purposes. If the aim is to identify causative
polymorphisms underlying phenotypic variation, low LD ensures
that the resolution of a marker-trait association is limited to
a small section of the chromosome (e.g., within the length of
a gene). This type of study must utilize either extremely high
marker density (if the markers are randomly chosen) or a set of
carefully selected markers which have high likelihood of being
close to causative polymorphisms (i.e., markers in candidate
genes) (Andersen and Lubberstedt, 2003). Conversely, if we are
only interested in finding a genetic marker and use it for breeding
purposes (i.e., marker assisted selection), moderate to high LD-
levels plays to our advantage, as relatively high LD-levels identify
marker-trait association, even if the marker is not situated in
physical close proximity to the causative polymorphism. This
renders it possible to identify population specific genetic markers
with relatively little effort.

Understanding the genetic control of freezing tolerance would
aid in the development of cultivars of perennial ryegrass with
improved adaptation to frost. As part of the EU project ‘GRASP’,
20 heterozygous genotypes (Lolium Test Set, LTS) of diverse
origin were assembled for identification of single nucleotide
polymorphisms (SNPs) in candidate genes for specific traits and
development of SNP assays for candidate gene allele tracing
and validation in selection experiments (Lübberstedt et al., 2003;
Posselt et al., 2006; Xing et al., 2007). Nucleotide diversity
and LD in candidate genes for disease resistance and shoot
morphology among the 20 LTS genotypes were investigated by
Xing et al. (2007) and Brazauskas et al. (2010), respectively.
Genetic differentiation in response to selection for water-soluble
carbohydrate (WSC) content was reported based on divergent
selections for two generations from a synthetic population
established by pair-crosses among four of the LTS genotypes
with contrasting WSC content (Farrar et al., 2012; Gallagher
et al., 2015). A second synthetic population was established
by pair-crosses among five LTS genotypes with contrasting
vernalization requirements, and this population was used in the
present investigation to study genetic differentiation in response
to selection for freezing tolerance.

Our objectives were to: (1) test whether there are genetic
variation for freezing tolerance in the synthetic population
by studying responses to phenotypic selection; (2) study how
divergent selection for freezing tolerance affects levels of allelic
diversity, genetic structure and LD; and (3) identify candidate
genes responding to selection for freezing tolerance that can be
useful in breeding for freezing tolerance.

MATERIALS AND METHODS

Plant Material and Selection for Freezing
Tolerance
A synthetic population was made by pair-crossing five LTS
genotypes (LTS 3, LTS 4, LTS 11, LTS 15, and LTS 16) in all
pairwise combinations, and mixing equal amounts of seeds from
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each cross to establish the Syn1 population (Figure 1). LTS 3
and LTS 4 are the Falster (vernalization sensitive) and Veyo
(vernalization insensitive) genotypes, respectively, grandparents
of the Danish VrnA mapping population (Jensen et al., 2005).
LTS 11 is a colchine induced rhizomatous mutant genotype from
Lithuania, while genotypes LTS 15 and LTS 16 are from ecotypes
from Greece and Sweden, respectively. Details about the five
parental LTS genotypes can be found in Posselt et al. (2006). Due
to time constraints, it was not possible to test the level of freezing
tolerance among the five LTS genotypes before the experiment
started. However, as the genotypes represent adaptations to a
range of climatic conditions across Europe we expected that the
synthetic population would contain sufficient genetic variation
for freezing tolerance.

The Syn2 generation was produced from Syn1 by open
pollination in isolation. Three hundred randomly selected
individual plants from Syn2, hereafter termed C0, comprised the
initial experimental population (Figure 1). The 300 genotypes
were cloned in several ramets; some ramets were used for freezing
tests and some were vernalized during autumn/winter and used
to establish the divergent selections and the random mating,
non-selected Syn3 population by intercrossing the following
summer in pollen-proof isolation greenhouse chambers. Freezing
tests of Syn2, C1+ and C1− were conducted as described by
Larsen (1978) and Alm et al. (2011) with subsequent divergent
phenotypic selection for freezing tolerance. In the freezing test
of the Syn2 population, replication was obtained by using six
ramets of each genotype, while the C1+ and C1− populations
were tested using four ramets and the LTS genotypes by testing

12 ramets of each genotype. A selection intensity of 10% was
used with 30 genotypes selected out of 300 for each round of
recombination in both directions, creating the first generation
high (C1+) and low (C1−), and the second generation high
(C2+) and low (C2−) freezing tolerance populations. In order
to quantify the effect of genetic drift, 100 randomly selected
genotypes among the 300 C0 genotypes were intercrossed to
make Syn3 seeds, from which 100 randomly selected individuals
was selected among 300 individuals and recombined to make
Syn4 (Figure 1). Twenty-four, 29 and 27 genotypes were
randomly selected from the second generation high (C2+), low
(C2−), and US Syn4 population, respectively, and used for
SNP genotyping (Figure 1). In the following presentation, the
C2+ selection is termed high-frost (HF) tolerance, the C2−
is termed low-frost (LF) tolerance and Syn4 is termed US
(Figure 1).

DNA Isolation and SNP Genotyping
For SNP genotyping, genomic DNA was extracted from the
leaves of a total number of 80 genotypes representing the three
populations. About 100 mg of leaf tissues were crushed with
a pestle and mortar in liquid nitrogen and used for extraction
of genomic DNA using a Qiagen DNeasy Plant Mini Kit
(QiagenCat. no. 69106) following themanufacturer’s instructions
(QIAGEN,Hilden, Germany). The DNA quality was assessed and
normalized using the Nanodrop ND-1000 Spectrophotometer
(Thermo Scientific, USA).

Two hundred and seventy-eight L. perenne genic SNPmarkers
distributed across the seven linkage groups [LG1 (37); LG2 (57);

FIGURE 1 | Selection scheme employed to conduct the divergent selections for freezing tolerance in Lolium perenne. L. Pair-crosses was performed
among the five European L. perenne genotypes (LTS3, LTS4, LTS11, LTS15, and LTS16). Numbers associated with each box represent number of genotypes
phenotyped in each generation and selected/recombined in each selection.
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TABLE 1 | Mean values, range, and broad sense heritability (H2
B) of freezing tolerance of the synthetic base population, the divergent selections, and the

LTS genotypes.

Population N Mean LSD0.5 Range Heritability Selected high frost (HF) Selected low frost (LF)

Mean Range Mean Range

Syn2 (C0) 300 3.23 1.20 0.33–6.47 4.94 4.35–6.47 1.51 0.80–2.07

C1+ 300 5.12 1.85 1.49–7.39 0.18 6.75 6.49–7.39

C1− 300 4.17 1.99 0.48–7.33 0.25 2.61 1.67–3.47

LTS
genotypes

191 4.13 1.58 0.00–6.38 0.45

LTS 03 4.68

LTS 04 −
LTS 11 4.79

LTS 15 4.43

LTS 16 2.95

Freezing tolerance was scored as regrowth on a scale 0 = no regrowth (dead, susceptible to freezing) to 9 = maximum regrowth (no visible injury, freezing tolerant).
1No freezing test data obtained for LTS 04 due lack of vernalization requirement, it flowered during multiplication and died during freeze testing.

LG3 (32); LG4 (40); LG5 (39); LG6 (37); and LG7 (36)] were
selected from the 768 Illumina GoldenGate assay based SNP
markers (Studer et al., 2012). The distribution of the selected
SNPs and their inter-marker distances were mapped across the
linkage groups using the MapDraw software (Liu and Meng,
2003) (Supplementary Figure S1). These Illumina GoldenGate
assay based SNPs were converted to Sequenom MassARRAY
iPLEX platform (Gabriel et al., 2001) SNPs that fall within a
single exon and have sufficient flanking exonic sequence (200–
250 bp) for primer design. The MassARRAY iPLEX system is
based on a region-specific PCR followed by an allele specific
single base extension, where products are analyzed in terms
of their masses by matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS) (Jurinke
et al., 2004; Mollinari and Serang, 2015). The differences in the
mass are automatically translated by the software into specific
genotype calls. In addition, the Sequenom MassARRAY iPLEX
platform is feasible for targeted SNP genotyping with small
sample numbers rather than performing random genotyping by
sequencing, which would be expensive andmight not give the 278
specific SNPs used in these studies.

High-throughput genotyping was performed using the
Sequenom MassARRAY iPLEX platform (Sequenom, San Diego,
CA, USA) at the Centre for Integrative Genetics (CIGENE),
Norwegian University of Life Sciences, Norway. Briefly, multiplex
assays were designed using the MASSARRAYR© Assay Design
software for the 278 SNPs across 12 multiplex panels set
with the following parameters: amplicon length (bp): min:80,
optimum:100, max:120; PCR primer length (bp): min:16,
optimum:20, max:25; extension primer length (bp): min:16,
max:28; hybridization Tm (◦C): min:45, max:65. PCR reactions
were performed using Sequenom iPLEX gold reagent kits
following standard procedures (Supplementary Tabel S1).
Approximately 20 ng of genomic DNA was amplified using
a pool of 278 pairs of PCR primers under cycling conditions
at 95◦C for 15 min, 46 × (95◦C for 25 s, 57◦C for
30 s, 72◦C for 70 s), and final extensions at 72◦C for
3 min.

Genetic Diversity and Analysis of
Molecular Variance (AMOVA)
The set of SNPs was filtered in order to perform molecular
diversity analyses. Markers with more than 10% missing
genotypes and with minor allele frequency (MAF) <5%
were removed. SNP genotyping data obtained after filtering
was used for calculating expected (He), and observed
heterozygosity (Ho) using the ARLEQUIN software 3.5.1.3
(Excoffier et al., 2005). Principal coordinate analysis
(PCoA) based on a dissimilarity matrix was performed for
population differentiation by the GenAlEx software version 6.5
(Peakall and Smouse, 2012). Analysis of Molecular Variance
(AMOVA) was performed to estimate the variance between
populations and among genotypes within populations
using the ARLEQUIN software 3.5.1.3 (Excoffier et al.,
2005).

Population Structure Analysis
The “Linkage” model based approach in an ancestry model,
together with a correlated allele frequency model implemented
in STRUCTURE software version 2.3.4 (Pritchard et al., 2000)
was used to infer the population structure. In the linkage
model, a subset of markers, which are outliers and closely
linked markers with a distance of less than 2 cm were excluded
from the analysis. Initial STRUCTURE runs were carried out
with a length of burn-in of 10,000 and MCMC (Markov
Chain Monte Carlo) of 50,000. Ten independent simulations
were conducted allowing K (number of subpopulations) to
vary from 1 to 10. Once inferring the most likely K, we
implemented more stringent parameters with a length of burn-
in and MCMC (Markov Chain Monte Carlo) of 200,000 each
with ten independent simulations of K varying from 1 to 5.
The best K was determined by the log likelihood of the data
(LnP(D)) in the STRUCTURE output and an ad hoc statistic
�K based on the second-order rate of change in LnP(D)
between successive K values (Evanno et al., 2005) using Structure
Harvester (Earl and Vonholdt, 2012) and CLUMPAK (Kopelman
et al., 2015).
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FIGURE 2 | Variation in freezing tolerance among the 300 plants within each of the divergent selections C1- and C1+. (Scale regrowth test after freezing
0 = completely dead, 9 = no visible injury).

TABLE 2 | Genetic diversity of three experimental populations.

Population n H0 He FIS

High Frost (C2+) 24 0.33783 0.34032 −0.03929

Low Frost (C2− ) 29 0.35058 0.37852 0.01731

Unselected (Syn4) 27 0.3182 0.34493 0.00471

n = total number of genotypes; H0 = observed heterozygosity; He = expected
heterozygosity; FIS = the inbreeding coefficient.

Linkage Disequilibrium Analysis
Genome-wide LD analysis was performed in each of the three
population groups (HF, LF, and US) by pairwise comparisons
among the SNP markers distributed across seven linkage groups
using the HAPLOVIEW software version 4.2 (Barrett et al., 2005)
with the following parameters: MAF > 0.05; Hardy–Weinberg
P-value cut-off, 0; and percentage of genotyped lines >0.50.
LD was estimated using squared allele frequency correlations
(r2) between the pairs of loci. The loci were considered to be
in significant LD when P < 0.001, the rest of r2 values was
not considered as informative. The pattern and distribution
of intra-chromosomal LD was visualized and studied from
LD plots generated for each chromosome by HAPLOVIEW
software version 4.2. To investigate the average LD decay in the
whole genome among the panel, significant intra-chromosomal
r2 values were plotted against the genetic distance between
markers.

Fst Outlier Tests for Detecting SNP Loci
under Selection
To detect loci under directional selection, we used the two
coalescent-based simulation methods of Beaumont and Nichols
(1996) and Excoffier et al. (2009). For the method of Beaumont
and Nichols (1996), we used the program LOSITAN (Antao
et al., 2008) to generate 100,000 simulated loci, providing an
expected neutral distribution of Fst values and an estimate of
P-value for each locus. This method detects genes under selection
based on the distributions of heterozygosity and Fst (Beaumont
and Nichols, 1996) by the two options “neutral mean Fst” and
“force mean Fst” as recommended by Antao et al. (2008). Markers
with Fst values higher than 95% of the neutral distribution were
considered to be under divergent selection, and markers with Fst
lower than 95% of neutral distribution were inferred to be subject
to balancing selection.

The hierarchical method of Excoffier et al. (2009), which
is a modification of the approach of Beaumont and Nichols
(1996), was performed as implemented in the ARLEQUIN
software package version 3.5.1.3 (Excoffier and Lischer, 2010).
We simulated a hierarchical island model based on three groups
of three demes with 50,000 simulations to generate the joint
distribution of Fst versus heterozygosity. Loci that fall out of
the 99% confidence intervals of the distribution are identified as
outliers, being putatively under selection. The putative function
of genes with outlier SNPs detected by these two methods was
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TABLE 3 | Results of the Analysis of Molecular Variance (AMOVA) for three experimental populations.

Group Partitioning df Sum of
squares

Variance
components

Percentage
of variation

P-value

Three populations
(HF, LF, and US)

Among populations 2 368.174 2.8907 8.67 0.00001∗∗∗

Among individuals
within populations

77 2338.807 −0.09106 −0.27 0.55425

Within individuals 80 2444.5 30.55625 91.61 0.01466∗∗

Total 159 5151.481 33.35588

HF and LF Among populations 1 265.151 4.48947 13.14 0.00001∗∗∗

Among individuals
within populations

51 1495.698 −0.34573 −1.01 0.652

Within individuals 53 1591 30.01887 87.87 0.03715∗

Total 105 3351.849 34.1626

HF and US Among populations 1 77.831 0.95099 3.08 0.00489∗∗

Among individuals
within populations

49 1445.424 −0.39784 −1.29 0.61584

Within individuals 51 1545 30.29412 98.21 0.43891

Total 101 3068.255 30.84727

LF and US Among populations 1 182.732 2.74835 8.67 0.00001∗∗∗

Among individuals
within populations

54 1567.116 0.05944 0.19 0.48583

Within individuals 56 1618.5 28.90179 91.15 0.07429

Total 111 3368.348 31.70958

HF, high frost (C2+), LF, low frost (C2−), and US, unselected (Syn4). ∗P < 0.050; ∗∗P < 0.010; ∗∗∗P < 0.001.

identified using the Gene Ontology (GO) annotation using the
Blast2GO software tool version 3.0 (Conesa et al., 2005).

RESULTS

Phenotypic Variation for Freezing
Tolerance and Response to Phenotypic
Selection
The results of phenotyping the LTS genotypes, the synthetic base
population (Syn2) and the divergently selected populations for
low (C1−) and high (C1+) freezing tolerance are presented in
Table 1. Visual scoring of regrowth is not comparable across
experiments since it is dependent on experimental conditions,
seasons, and conditions during cold acclimation of the plant
material. The LTS genotypes were all tested in the same freezing
test but independent of the other populations. The freezing scores
for the C1− and C1+ populations can be compared since they
were obtained in the same freezing test, while the freezing scores
of the Syn2 population was obtained in an earlier, independent
test and is not comparable with the others. Therefore, it is
not possible to use the selection differentials and the selection
responses to calculate realized heritability. The broad sense
heritabilities (repeatabilities) presented were calculated using
the between ramet variation as estimate of the environmental
variation, and the variation of genotype means as the genotypic
variation (Table 1). The results show that there is a large variation
for freezing tolerance in the base population, ranging from 0.33
to 6.47 (scale 0–9), actually very similar to the range among
all LTS genotypes (0–6.38). However, the mean value in the

Syn2 population was low (3.23). This is expected in view of
the rather low freezing tolerance among the five LTS genotypes
used to establish the Syn2 population; the four genotypes that
was successfully phenotyped had an average freezing score of
4.21. Freezing tolerance is a complex trait with low heritability,
and proper replication is required in freezing tests. This effect
is evident in the present study. Broad sense heritabilities were
0.18 and 0.25 in the C1+ and C1− populations, respectively, with
four ramets of each genotype tested, while it increase to 0.45 in
the test of the LTS genotypes which were replicated 12 times
each (Table 1). Despite relatively low heritability of the freezing
tolerance, the responses to one generation of selection were clear
as evident from the different mean freezing scores of the C1−
and C1+ populations (Table 1). However, the distributions of
the freezing scores in the two populations was nearly completely
overlapping (Figure 2).

Genotyping, Genetic Variability, and
AMOVA
High-throughput genotyping was performed by Sequenom
MassARRAY iPLEX using 278 L. perenne genic SNP markers
distributed across the seven linkage groups [LG1 (37); LG2 (57);
LG3 (32); LG4 (40); LG5 (39); LG6 (37); and LG7 (36)] in 80
genotypes of HF (24), LF (29), and US (27) (Supplementary
Figure S1). Eleven SNPs failed in genotyping and 27 SNPs
with missing data >5% were removed from the dataset. Of
the remaining 231 SNPs, 181 SNPs (78.3%), 162 SNPs (70.1%),
and 180 SNPs (77.9 %) were polymorphic across the HF, LF
and US populations, respectively. Observed heterozygosity was
slightly lower than expected heterozygosity in all the populations,
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FIGURE 3 | Genetic subdivision among the three frost populations; (1) high, (2) low, and (3) unselected. (A) Bar plots from CLUMPP results aligning 10
structure runs for K = 1 to 5 with an iteration of 10 for each run. Each bar plot accompanied with its statistical K by Pritchard’s (Pritchard et al., 2000) and Evanno’s
method (Evanno et al., 2005). The plots are read from left to right, with bars representing individuals and the color of the bar representing the proportion of individual
markers that originated from certain population. (B) Estimated log likelihood of the data (LnP(D)) and ad hoc �K over 10 repeats of STRUCTURE analysis for
K = 1–5 subpopulations.

indicating either the occurrence of null alleles or a slight level of
inbreeding (Table 2). The FIS (inbreeding coefficient) is negative
in the high frost population, implying a considerable degree of

outbreeding, whereas positive FIS in the low and US populations
showed considerable degree of inbreeding. The AMOVA for
the three populations revealed that 91.6% (P < 0.014) of the
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FIGURE 4 | Principal coordinate analysis (PCoA) of high frost (HF), low frost (LF), and US populations. The different colors represent the three populations.
The first and second principal coordinates account for 23.6 and 8.45% of total variation, respectively.

genetic variation is found within individuals, whereas 8.67%
(P < 0.0001) of the genetic variation is found among populations
(Table 3, Supplementary Figure S2). In addition, AMOVA was
separately conducted between HF and LF, HF and US, and LF
and US populations in order to study genetic variation between
populations. 13.14% (P < 0.0001) of the genetic variation was
found between HF and LF, only 3.08 % (P < 0.0048) between HF
and US, and 8.67% (P < 0.0001) between LF and US (Table 3).

Population Structure
To infer the population structure from multilocus genotype data
among the three populations, we implemented the linkage model
in the STRUCTURE software. Overall, this model retains the
main elements of the admixture model and reports the overall
ancestry for each individual, taking account of the linkage.
However, the model is not designed to deal with background
LD between very tightly linked markers (Pritchard et al., 2000).
Hence, we discarded 94 SNP markers closely linked with a
minimum distance of 2 cm and 32 outlier SNP markers from
the analysis. In total, 105 SNP markers were used to estimate
the population structure. The LnP(D) value for each given K
(number of subpopulations) increased from 1 to 2 and gradually
decreased between 3 and 4 and slight increase in 5, showing
evidence of maximum at K = 2 (Figure 3B). The second order
likelihood, �K was calculated and observed the maximum �K
value at K = 2. Both Pritchard’s and Evanno’s methods confirmed
the K-value as 2 (Figure 3B), however, we plotted the barplots
from K = 1 to 5, as LnP(D) value was slightly higher at
K = 5. The barplots showed higher proportion of presumably

alleles for freezing tolerant (blue) and lower proportion of
presumably alleles for low freezing tolerant (orange) in HF and
US populations, whereas, high proportion of orange and low
proportion of blue was observed in LF population. This pattern
was observed consistently from K = 2 to 5 (Figure 3A).

The PCoA based on the dissimilarity matrix clearly separates
the HF and LF populations, whereas the US population overlaps
nearly completely with the HF population. The first and second
principal coordinates explained 23.36 and 8.45% of the molecular
variance (Figure 4).

Linkage Disequilibrium
A random subset of markers spanning across all seven
chromosomes (see Materials and Methods) of L. perenne was
used to calculate LD decay. Interalleleic r2 values (association
between any pairs of alleles from different loci) were calculated
after removing the low frequency alleles (<0.05). The r2 values
for the linked loci were plotted against the genetic distance to
observe the LD decay (Supplementary Figure S3). Slow LD
decay was observed on chromosomes 4 and 7, exceeding 90 cM,
whereas rapid LD decay was observed in chromosome 5, below
the significant threshold (r2 ≥ 0.03) within 0.5 cM. However, the
pattern of LD decay varied between HF, LF, and US across the
chromosomes. LF has low decay in chromosomes 2, 4, and 6 with
significant threshold (r2 ≥ 0.10), compared to HF and US. In
addition, we also observed the LD around the important frost
candidate genes LpCBFVb (Chr.1), LpPHYC (Chr. 4), LpCBF6
(Chr.5), and Lp6FT (Chr.7) between HF, LF, and US populations
(Figure 5). No LD was observed at LpCBFVb for HF, whereas
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FIGURE 5 | Linkage disequilibrium among the three experimental populations (HF, LF, and US) across four important frost related genes
(A) LpCBFVb, (B) LpPHYC, (C) LpCBF6, and (D) Lp6FT. Left side maps shows the location of the gene and the markers on linkage groups. Right side shows the
LD distribution. Red blocks denote high LD.

very high LD was observed in LF with several tightly linked
markers, and moderate LD was observed in US with few tightly
linked markers. LD at LpPHYC was almost similar in the three
populations. LD at LpCBF6 was high in US and LF, but low in
HF. At Lp6FT, very high LD was observed in HF and US, where
all five SNP markers are in high LD, but no LD was observed in
LF (Figure 5).

Loci under Selection
Signatures of directional and balancing selection were identified
at 41 loci among the three populations using the programs
LOSITAN and ARLEQUIN (Figure 6). Putative balancing
selection was detected at 15 loci (Figure 6). Directional selection
was detected for 20 loci by LOSITAN and 6 loci by ARLEQUIN
(Figure 6; Table 4). Although footprints of directional selection
were differently identified for some loci with these two outlier
methods, six loci were indicated to be under directional selection
by both hierarchical methods employed in ARLEQUIN and

LOSITAN. Putative functions of these loci are described in
Table 4.

DISCUSSION

Genetic Structure and Variation in Three
Populations
In our studies, observed heterozygosity was slightly lower than
expected heterozygosity in all the populations indicating a minor
level of inbreeding (Table 2). These results are consistent with
the genetic diversity studies of the same LTS genotypes for
WSC content (Gallagher et al., 2015) and for disease resistance
(Xing et al., 2007). In theory, open pollination should ensure
random mating (panmixis) between all individuals in the parent
population. However, some level of assortative mating, especially
during crossing to produce the Syn2 and the divergently
selected populations, is likely due to differences in pollen
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FIGURE 6 | Candidate loci under selection were identified using two Fst based outlier approaches. (A) Hierarchical structure model using Arlequin 3.5. Fst :
locus –specific genetic divergence among the populations; Heterozygosity: measure of heterozygosity per locus. Loci significant at the 1% level are indicted by red
dots. (B) Finite island model (fdist) by LOSITAN. Loci under positive selection above 95% percentile (red area), neutral loci (gray area) and loci under balancing
selection (yellow area).

production, variation in flowering time and self-incompatibility
alleles. Contrary to Gallagher et al. (2015), we did not observe
any reduction in heterozygosity levels, which could have been
expected after strong selection (Table 2; Remington et al., 2001;
Beissinger et al., 2014).

Although we did not test the HF (C2+), LF (C2−), and
US (Syn4) populations for freezing tolerance, we see effect of
selection already in the first generation of high (C1+) and low
(C1−) populations (Figure 2) and we expect that there has been
further differentiation in the following generation. The effect on
genetic differentiation was largest in the LF population (negative
selection). The LF population is almost entirely separated from
HF and US populations in the PCO (Figure 4), and in the
Structure analysis with K = 5 we see that the population is
dominated by one of the five parental genotypes (orange in
Figure 3). One of the parental genotypes, LTS16, has markedly
lower freezing tolerance than the others (Table 1) and this
genotype most likely contributes more to the LF population than
the other parental genotypes do. Individuals with higher freezing
tolerance in C0 and C1− probably have more of the genomes
from the other, more freezing tolerant parents, and they will be
selected against. Moreover, contributions from LTS16 is probably
selected against in the HF population, making the HF and LF
populations highly differentiated (Table 3). Remarkably, in spite
of phenotypic divergence there is little genotypic divergence
between the HF and US populations. Only 3.08% of the variation
is found between the groups (in contrast to the 8.675% found
between LF and US) and there is nearly complete overlap
between the HF and US in the PCO plot (Figure 4). The
parental genotypes LTS03, LTS11 and LTS15 all have medium
levels of freezing tolerance, however, they vary in their genetic
background and probably harbors variation for freezing tolerance
resulting in approximately equal contribution (probably also

TABLE 4 | Candidate single nucleotide polymorphisms (SNPs) under
selection for freezing tolerance.

SNP ID Chromosome Gene function

PTA_817_C1 2 Elongation factor G-2, chloroplastic

PTA_1219_C2 3 60S ribosomal protein L37-2-like

PTA_475_C1 4 ATP phosphoribosyltransferase

PTA_1433_C1 5 40S ribosomal protein S29

PTA_450_C1 5 Beta 1,6-glucanase

PTA_1254_C1 7 Vesicle-associated protein 4-1-like

from LTS04 and to some extent LTS16, see Figure 3) to the HF
population. Consequently, divergence from US will be minimal.
This is opposite to what was found in Gallagher et al. (2015)
who identified larger differentiation between the population
selected for high WSC content (positive selection) and the US
population compared to the population selected for low WSC
content (negative selection) and the US population.

Linkage Disequilibrium
In synthetic populations/cultivars based on few founder
genotypes, we expect very high LD compared to natural
populations. Auzanneau et al. (2007) showed that after three
generations of random mating, LD in synthetic populations
based on contrasting numbers of founding parental genotypes
varied from 174 Kb in a synthetic cultivar based on 336
founding individuals to 1.4 Mb in a synthetic based on six
related individuals. These LD estimates were established
using a few SSR markers (6) and a sequence variation in a
candidate gene (GAI). In the present study, we used five founder
genotypes and employed relatively strong selection pressures
for two generations. The selection regime reduces effective
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population size, which leads to reduction in genetic variation
and thus an increase in LD in the selected populations.
This should create extensive LD, which is also evident
from our results. LD observed in the selected populations
in this study was substantially higher than observed by
Auzanneau et al. (2007) in populations of comparable founder
sizes.

We also observed high LD for the HF and US populations
in Lp6FT, for the low frost population in LpCBFVb (Figure 5),
similar to the previous studies on the gibberelic acid insensitive
gene (GAI) region in a collection of 47 Eurasian ryegrass
ecotypes (Auzanneau et al., 2007), and the LpHD1 gene
associated with flowering time in perennial ryegrass (Skot
et al., 2007). One possible explanation for this high LD,
also mentioned by Brazauskas et al. (2011), is that strong
directional selection and population bottlenecks might have
created islands of long-range LD in the genome of perennial
ryegrass. Another explanation is that if there are segregating
alleles/QTL in the populations with strong associations with
freezing tolerance, it is likely that long-range haplotypes or
whole chromosomes are selected for or against, and this creates
strong LD. This might be the reason for the high LD found
on chromosome 4 where the vernalization gene (LpVRN1) is
located (Jensen et al., 2005), since two of the parental LTS
genotypes have very different vernalization requirements. In
Festuca pratensis it has been shown that FpVRN1, located
in a syntenic position to LpVRN1 on LG4 is very close
to (or is itself) a QTL for freezing tolerance (Alm et al.,
2011).

The LD decay varied across chromosomes in the
three populations (Supplementary Figure S3). Similar
interchromosomal heterogeneity in LD was observed in
rice (Mather et al., 2007), loblolly pine (Brown et al., 2004)
and in pigs (Nsengimana et al., 2004). One explanation
could be the ‘Bulmer effect’ describing a higher LD between
genomic regions harboring QTL undergoing selection (Bulmer,
1971). Another explanation for different rates of decay in
LD between chromosomes is that the precision of linkage
map distances differs between chromosomes because of
different number of markers used, marker variability, and
genotyping errors (Li and Merila, 2010). However the overall
LD decay close to r2 < 0.1 within a length of 0.5 cM is
similar to previous studies using populations of diverse
L. perenne genotypes (Ponting et al., 2007; Xing et al.,
2007).

Signatures of Selection for Freezing
Tolerance
Fst outlier approaches have been applied to many crops, e.g.,
tomato (Sim et al., 2011) and common bean (Papa et al., 2007)
for identifying adaptive differentiation. Markers detected in these
crops were mapped to genomic regions with known QTL/genes
related to domestication. In the present study, we employed
two Fst outlier methods; finite island model (fdist) by LOSITAN
and hierarchical structure model using Arlequin to detect true
positive loci under selection (Figure 6). Tsumura et al. (2012)

used four different Fst outlier models to weed out false positive
loci in conifers.

The present study identified six candidate loci (2.59 %)
under positive selection based on Fst values that displayed
differentiation higher than the 99% limit of the confidence
intervals (Figure 6; Table 4). These six loci, i.e., PTA_817_C1,
PTA_1219_C2, PTA_475_C1, PTA_1433_C1, PTA_450_C1, and
PTA_1254_C1 may be directly under selection. Annotation of
these SNP sequences revealed the putative functions of all these
six candidate loci (Table 4). PTA_817_C1 was identified as an
elongation factor G-2, chloroplastic which might be involved
in freezing tolerance. A previous transcriptome study of barley
leaves revealed that the induction of several elongation factors
and the chloroplast function in the leaf were the key differences
between a frost tolerant and a frost-susceptible cultivar (Janska
et al., 2014). Two candidate SNP loci, PTA_1219_C2, and
PTA_1433_C1, a 60s ribosomal protein L37-2 like and 40S
ribosomal proteins S29, respectively, might be involved in cold
adaptation. The role of ribosomal proteins in de novo protein
synthesis necessary for cold response and for the integrity
of the translation machinery, which is an important factor
for cold acclimation, have been demonstrated by Kim et al.
(2004).

PTA_1254_C1 was identified as a vesicle-associated protein 4-
1 like possibly involved in abiotic stress. Genes involved in vesicle
transport have been studied extensively (Mazel et al., 2004; Ma
and Bohnert, 2007). Over-expression of AtRab7, a gene involved
in regulation of vesicle trafficking, increased endocytosis in roots,
as well as salt and osmotic stress tolerance (Mazel et al., 2004).
This indicates the importance of regulated vesicle trafficking for
acquisition of abiotic stress tolerance.

CONCLUSION

The selection scheme employed here by establishing an
experimental synthetic population from five diverse L. perenne
genotypes and selecting divergently for freezing tolerance
has been successful in producing phenotypic and genotypic
divergences. We found that the population selected for HF
tolerance and the population selected for LF tolerance are
very divergent, whereas HF and the unselected (US) control
population are most similar. LD decay varied across the seven
chromosomes and patterns of LD between the HF and the LF
population are signs of divergence relative to freezing tolerance.
Finally, six candidate loci detected independently by two Fst
outlier methods were candidates for loci being under directional
selection for frost and might be potential marker resources for
breeding perennial ryegrass cultivars with improved freezing
tolerance.

DATA ACCESSIBILITY

Single nucleotide polymorphisms genotyping raw data and
processed data are deposited in DRYAD Digital Repository along
with the input files for running Arlequin and Structure softwares
(http://datadryad.org/resource/doi: 10.5061/dryad.sd1dt).
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TABLE S1 | List of primers used for SNP genotyping.

FIGURE S1 | Selected genic SNP markers distributed across the seven
linkage groups in Lolium perenne.

FIGURE S2 | Graphical representation of relationships between the high
frost (HF), low frost (LF), and unselected (US) population as described by
average number of pairwise differences and a matrix of pairwise Fst

values. (A) Orange–red on the diagonal corresponds to pairwise differences
within populations, green above the diagonal corresponds to between population
(x and y-axes), blue below the diagonal corresponds to genetic distance (d)
between populations. (B) Population relatedness was determined by Fst values
between populations.

FIGURE S3 | Pattern of triangle plots depicting LD values across
chromosomes using r2 in three populations (high, low, unselected). Red
blocks denote high LD. Seven rows from top to down, represents chromosomes
one to seven.
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