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ABSTRACT 
 

Zambia is one of the major maize producing countries in Africa, and maize 

production in the country has doubled in the last decade. About 10% of the production 

was exported in recent years. Zambia has suitable climate for increased maize cultivation. 

Fumonisin is a mycotoxin produced by Fusarium spp., and maize is the only crop 

contaminated with high amounts of fumonisin. Health of humans and domestic animals 

may be adversely affected by intake of fumonisin contaminated products. There are 

limited data on the fumonisin situation in Zambia, but available results indicate that 

Zambian maize is moderately contaminated with fumonisin. There are uncertainties 

involved in predicting the future climate for Zambia and other South and East African 

countries. It is not possible to predict how climate change during this century will affect 

the risk for fumonisin contamination of maize in Zambia and neighboring countries.  

 

 

1. INTRODUCTION 
 

Fumonisin is a group of mycotoxins, which are secondary metabolites produced by fungi. 

Maize is frequently contaminated and the only crop that contains high amounts of fumonisin. 

Species in the anamorphic fungal genus Fusarium infecting maize kernels in the field are the 

main sources of fumonisin contamination of food and animal feed (Marasas, 1995). 
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Fumonisin may be reduced during food processing, but resistance to thermal degradation is a 

characteristic of fumonisin. Porridge cooking of maize meal reduced fumonisin content by 

only 11.3% (Shepard et al., 2012). More than a century ago mouldy maize was associated 

with animal diseases in the USA, and Sheldon described the fungus Fusarium moniliforme J. 

Sheld. from infected maize (Sheldon, 1904). The name has been changed to Fusarium 

verticillioides (Sacc.) Nirenberg, and F. moniliforme is a synonym that should no longer be 

used (Seifert et al., 2003). In a region of South Africa high incidence of human esophageal 

cancer was related to consumption of maize infected with F. verticillioides (Marasas et al. 

1981). South African scientists isolated a toxin from F. verticillioides cultures and named the 

toxin fumonisin (Gelderblom et al., 1988), and the molecular structure of the toxin was 

published (Bezuidenhout et al., 1988) (Figure 1). Purified fumonisin administered to a horse 

induced equine leukoencephalomalacia (ELEM) (Marasas et al., 1988). Occurrence of 

fumonisin in F. verticillioides infected maize was demonstrated (Sydenham et al., 1990a). 

Association between consumption of fumonisin-contaminated maize and incidence of human 

esophageal cancer was found in the Transkei region of South Africa (Sydenham et al., 

1990b). In USA swine fed on F.verticillioides infected maize died from porcine pulmonary 

edema and hydrothorax (Harrison et al., 1990). The International Agency for Research on 

Cancer (IARC, 2002) classified FB1 as a group 2B carcinogen (probably carcinogenic in 

humans). Phytotoxic effects of fumonisin have been shown on maize seedling growth 

(Doehlert et al., 1994) and tomato (Lamprecht et al., 1994). Seed-borne F. verticillioides did 

not reduce emergence, plant growth and yield of maize in field trials in Zambia (Naik et al., 

1982). The fungus has been linked with the development of symptoms such as necrotic leaf 

lesion, seedling blight, and reduced root development in maize seedlings inoculated with 

fumonisin producing F. verticillioides strains (Williams et al., 2007).  

 

 

Figure 1. Chemical structure of fumonisin B1. 

 

1.1. Fumonisin Producing Fungi 
 

A number of different fumonisin analogues are described from nature or synthesized in 

the laboratory, and they are grouped in the A, B, C and P series. In naturally infected maize 

only members of the fumonisin B (FB) series occur in biologically important quantities 

(Desjardins, 2006). The fumonisins of the B series contaminate maize in the field, while 

fumonisins of the A, C and P series are metabolites produced at low levels on synthetic media 
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in the laboratory (Desjardins, 2006). The fumonisins FB1, FB2 and FB3 are the most abundant 

of the naturally occurring fumonisins, with FB1 being the most toxic, and in infected maize 

FB1 accounts for 70-80% of the fumonisins (Rheeder et al., 2002). In maize F. verticillioides 

and F. proliferatum (Matsush.) Nirenberg are the most important fumonisin producers. Both 

species are widely distributed, and they yield high levels of the toxin. Thirteen other 

Fusarium species are minor fumonisin producers (Rheeder et al., 2002).  

 

 

1.2. Fumonisin Contamination of Maize 
 

In most tropical countries maize is grown in short rotations or in the same field as 

previous year. Fusarium verticillioides is soil borne and seed transmitted, and in maize the 

pathogen causes seedling blight, root and stalk rot, ear rot and fumonisin contamination of the 

kernels (Kucharek and Kommedahl, 1966) (Fig 2). Senescent maize stalks, leaves and cobs 

are important for survival of the pathogens in the field from one season to the next 

(Munkvold, 2003). Fusarium verticillioides and F. proliferatum produce large amounts of 

asexual conidia, while the sexual stage is not commonly detected. Field trials in Iowa, USA 

showed that F. verticillioides survived at least 630 days in maize residues in the field, and the 

pathogen survived equally well when the residue was buried at 30 cm in the soil as on the soil 

surface. (Cotten and Munkvold, 1998).  

Systemic growth of F. verticillioides in maize plants was first shown by Foley (1962). 

The endophytic phase of F. verticillioides was studied by Munkvold and colleagues. Growth 

of the fungus in maize following seed inoculation and silk inoculation was monitored in field 

experiments. Seed infection resulted in systemic infection of plants and kernels, but silk 

inoculation of F. verticillioides was more important for kernel infection than was endophytic 

growth (Munkvold et al., 1997a). Silk inoculation with F. verticillioides resulted in a mean 

kernel infection of 83.7%, and in some ears 100% of the kernels were infected (Munkvold et 

al., 1997b). In controlled environment high temperature resulted in more rapid development 

of F. verticillioides, but temperature did not affect the incidence of kernel infection (Murillo-

Williams and Munkvold, 2008). Field trials at 17 locations in USA showed decrease in 

fumonisin content of maize as the latitude increased, and there is a parallel decrease in 

temperature during the growing season from South to North in the country (Shelby et al., 

1994). When fumonisins were analysed in 26 maize genotypes grown in two African and 

three European countries, there was a positive correlation between high FAO maturity class 

of the genotype and fumonisin contamination (Doko et al. 1995). In field trials at two 

locations in North Carolina, USA accumulation of FB1 was monitored in three maize hybrids 

(Bush et al., 2004). Four weeks after pollination, as kernels neared physiological maturity, the 

FB1 contamination first appeared, and it increased up to the date of harvest (Bush et al., 

2004). Inoculation experiments with F. verticillioides in France revealed that the most 

conducive period for fumonisin biosynthesis in maize kernels is the dent stage (Picot et al., 

2011). 

Several FUM genes for fumonisin biosynthesis in F. verticillioides are known. The 

FUM1 gene catalyzes an early step in fumonisin biosynthesis, and when the FUM1 gene was 

mutated to obtain strains that did not produce fumonisin, the mutants were capable of 

infecting maize ears and cause ear rot like the wild type strains (Desjardins and Plattner, 

2000). Maize ears are commonly attacked by numerous insect species, but the importance of 
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various insects varies from country to country. Insects may be stimulated by F. verticillioides 

infection. At the International Institute of Tropical Agriculture (IITA) in Benin there were 

higher levels of coleopteran beetles and lepidopteran borers in maize inoculated with F. 

verticillioides than in non-inoculated maize (Cardwell et al., 2000). The European corn borer 

(ECB) (Ostrinia nubilalis) larvae develop in the stalks and ears of maize. Genetically 

modified (GMO) maize hybrids which express Bacillus thuringiensis genes coding for the 

Cry1Ab protein had increased level of resistance to feeding by ECB larvae, and the GMO 

maize had reduced ear rot and kernel infection caused by Fusarium spp. compared to non 

GMO hybrids (Munkvold et al., 1997c). In France there was a 90% reduction in fumonisin 

contamination of GMO maize modified to express the Cry1Ab protein compared to non-

GMO isogenic lines (Folcher et al., 2010). In Iowa, USA GMO maize hybrids which 

expressed both the Vip3Aa protein and the Cry1Ab protein to get protection against several 

lepidopteran pests were planted in field experiments, and the average fumonisin content was 

0.56 μg g-
1 

in GMO maize hybrids and 5.47 μg g-
1
 in non-GMO hybrids (Bowers et al., 

2013). 

 

 

Figure 2. Maize cobs infected with Fusarium verticillioides. Photo: Hadush Tsehaye. 

 

1.3. Fumonisin in Cereals Other Than Maize 
 

The African food crops sorghum (Sorghum bicolor) and pearl millet (Pennisetum 

glaucum) may suffer from Fusarium ear rot and stalk rot. Fusarium nygamai L.W. Burgess & 

Trimboli and F. verticillioides isolated from these crops produced FB1 and FB2 on culture 

media (Leslie et al.,2005). Fusarium spp. isolated from sorghum grains collected at 21 

localities in South Africa during three years were analysed for fumonisin production. 

Fumonisin producing Fusarium spp. were absent in 2007, and the next two years there were 

only small amounts of fungal infection with no fumonisin detected. The authors concluded 

that fumonisin is not a threat to sorghum production in South Africa (Van Janse Rensburg  

et al., 2011). Of 33 Fusarium isolates obtained from finger millet (Eleusine coracana) in 

Uganda 13% were F. verticillioides, and isolates of the fungus produced fumonisins under 

laboratory conditions (Saleh et al., 2012). In Italy F. proliferatum was the most common 

Fusarium species in durum wheat, and in 2007 the levels of fumonisin varied from 0.01 to 

1.25 μg g
-1

, while only very low levels were detected in 2008 (Palacios et al., 2011). Only 

very low levels of fumonisin were detected in rice from retail markets in Thailand (Tansakul 
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et al., 2012). When imported rice samples were analysed for fumonisins in Canada only trace 

levels, average 4.5 ng g
-1

, were detected (Bansal et al., 2011).  

 

 

1.4. Human Exposure to Fumonisins 
 

A survey of human exposure to FB1 in households of rural and urban areas of KwaZulu 

Natal, South Africa showed that rural communities are at a much higher risk of consuming 

FB1 contaminated maize than urban communities (Chelule et al., 2001). Among 50 maize 

samples from rural areas 32% had FB1 levels from 0.1 to 22.2 μg g
-1

, while 6.1% of 49 urban 

maize samples contained FB1 in the range 0.1 to 0.4 μg g
-1

. The exposure of people living in 

KwaZulu Natal was lower than what has been reported from other regions of South Africa, 

and especially in dry areas people eating sorghum-based food have lower risk of FB1 

contamination than people consuming maize (Chelule et al., 2001). In an area of high risk for 

esophageal cancer incidence in the Transkei province, South Africa the daily exposure to 

fumonisins (FB1+ FB2) was 8.67 ± 0.18 μg kg
-1 

body weight, while in an area with low risk 

for oesophageal cancer the daily exposure of fumonisins (FB1+ FB2) was 3.43 ± 0.15 μg kg
-1 

body weight (Shephard et al., 2007). In both the high risk and the low risk areas the mean 

fumonisin exposure was above the provisional maximum tolerable intake of 2.0 μg kg
-1 

body 

weight per day set by the Joint FAO/WHO Expert group (Shephard et al., 2007). When 

monitoring Fusarium spp. and FB1 in maize and porridge prepared from maize by a rural 

population in Limpopo province, South Africa, F. verticillioides was the most prevalent of the 

four Fusarium spp. identified (Phoku et al., 2012). The traditional process of soaking maize-

meal overnight in water and discarding the water prior to cooking porridge reduced the level 

of FB1 by approximately 90 %, because fumonisin is water soluble (Phoku et al., 2012).  

Urinary FB1 was detected in 96% of 148 children, aged 12-22 months, from three 

geographically distant villages of Tanzania, and the mean levels of urinary FB1 ranged from 

82.8 ppb to 327.2 ppb (Shirima et al., 2013). In Northern Tanzania the carry-over of FB1 from 

contaminated feed into dairy milk and from contaminated food into human breast milk were 

studied. Of 131 breast milk samples 44.3% contained FB1 and of the contaminated samples 

10.3% had FB1 levels above the EU maximum tolerable intake of 200 ppb fumonisins in 

infant food (Magoha et al., 2014). In Uganda finger millet contaminated with fumonisin 

represents a potential health risk when used as weaning food for infants (Saleh et al., 2012). 

Studies of exposure to fumonisins in 215 infants consuming maize-based food in Tanzania 

revealed that exposure to fumonisin in ready-to-cook maize flour was associated with growth 

retardation (Kimanya et al., 2010). Maize consumed by 131 of the infants contained 

 0.02-3.20 μg g
-1 

of FB1 and exceeded the provisional maximum tolerable FB1 daily intake of 

2.00 μg kg
-1 

body weight in 26 of the infants. At one year of age infants exposed to fumonisin 

contaminated maize above 2.00 μg kg
-1 

FB1 were 1.3 cm shorter and 328 g lighter than the 

control group (Kimanya et al., 2010). Co-exposure of fumonisin with aflatoxin was detected 

in 29%, and co-exposure of fumonisin and deoxynivalenol was found in 41% of a group of 57 

children at weaning age in a Tanzania village (Kimanya et al., 2014). 
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2. FUMONISINS IN AFRICA 
 

Cultivation of maize is expanding in the tropical and subtropical climates of Africa, and 

the crop is commonly contaminated with fumonisin (Bankole et al., 2006). A fumonisin 

incidence of 92.5% was detected in 40 randomly selected samples from cereals and cereal 

based products from nine countries in East and South Africa (Doko et al., 1996). The levels of 

FB1 + FB2 + FB3 ranged from 0.02 μg g
-1

 to 2.74 μg g
-1

, and linear regression analysis 

showed no correlation between the contents of fumonisins and zearalenone in cereals from 

the nine countries (Doko et al., 1996). Wagacha and Muthomi discussed intervention 

strategies in management of mycotoxins in Africa, and they considered prevention of 

exposure, decontamination and surveillance of moulds in stored commodities as important 

control strategies (Wagacha and Muthomi, 2008). The authors emphasized that there is need 

for efficient cost effective sampling and analytical methods that can be used for detection of 

mycotoxins in developing countries. Early harvesting, proper drying, sanitation, proper 

storage, and insect management were listed as good agricultural practices to reduce the risk 

for fumonisin contamination (Wagacha and Muthomi, 2008). In African countries the 

occurrence of aflatoxin is highest (43.8%) followed by fumonisins (21.9%), ochratoxin 

(12.5%), nivalenol (6.3%) and beauvericin (6.3%) (Darwish et al., 2014). Based on the 

limited data available for mycotoxin contamination of food in Sub-saharan Africa, fumonisin 

levels appear to be higher in maize from West Africa, compared to fumonisin in maize from 

East and South Africa (Bankole et al., 2006). 

 

 

2.1. Fumonisins in Zambia 
 

Maize is the most important food crop in Zambia, and maize is grown throughout the 

country. Production has increased over the past years, and in the 2012 crop season the total 

maize harvest was 2.85 million tons (FAOSTAT, 2012). Ear rot is one of the most important 

maize diseases in Zambia, and when four 20 kg samples of white, dent maize grown in 

Zambia during 1974-75 were sampled, F. verticillioides and Diploida macrospora were the 

dominant fungi isolated from maize kernels (Marasas et al., 1978). In maize meal F. 

verticillioides was the most prevalent fungus, and isolates of the fungus were acutely toxic in 

feeding trials with ducklings and rats (Marasas et al., 1978). In locally produced maize 

hybrids in Zambia F. verticillioides was present in 38.5 % of seed samples, and the fungus 

was the most important ear rot pathogen (Naik et al., 1982). Samples of 20 maize genotypes 

supplied by the Golden Valley Regional Research Station, Lusaka, Zambia were analysed for 

FB1 and FB2. The incidence of fumonisin contamination was 100%, and the FB1 + FB2 

content of the samples ranged from 0.02 μg g
-1

 to 1.71 μg g
-1

, with median FB1 + FB2 content 

of 0.10 μg g
-1

 (Doko et al., 1995). In a survey of mycotoxins from East Africa a Zambian 

sample of maize contained 1.21 μg g
-1

 of FB1 + FB2 + FB3, and a pellets sample from Zambia 

contained 0.07 μg g
-1

 FB1 (Doko et al., 1996). 

During the 2006 harvest maize was sampled from 114 farms, randomly selected in 11 

districts in the Lusaka and the Southern provinces of Zambia. At each farm both symptomatic 

and asymptomatic maize cobs were collected, and fungal infection and fumonisin content 

were determined. Fusarium verticillioides and Stenocarpella maydis (Berk.) B. Sutton were 
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the dominant causes of ear rot, and the incidence of F. verticillioides ranged from 2% to 21% 

in diseased maize kernels (Mukanga et al., 2010). Most symptomless infections in healthy 

kernels were caused by F. verticillioides and F. subglutinans. Analysis revealed large 

variation in fumonisin content among districts, and in six of the eleven districts the fumonisin 

contamination was above the 2.0 μg g
-1 

level recommended by FAO/WHO (Mukanga et al., 

2010). Farmers in four districts of Central Zambia were interviewed on their perception and 

management of maize ear rot (Mukanga et al., 2011). Most farmers cultivate maize hybrids, 

and they regarded high precipitation, planting of susceptible hybrids and lack of crop 

rotations as the most important factors responsible for ear rot in maize (Mukanga et al., 2011). 

Maize samples from household storage facilities and growers cooperatives in all three 

agroecological zones of Zambia were analysed for fungi and fumonisin (Muimba-

Kankolongo et al., 2009). Zone I is semi-arid with annual precipitation of less than 800 mm, 

zone II is the central plateau with precipitation of 800 to 1200 mm and zone III in the north 

has annual precipitation over 1200 mm. In each zone samples were grouped according to 

three ecosystems: closed forest, valley and savannah grassland, and while there was no 

difference in fumonisin content of maize from the three agroecological zones, fumonisin 

contamination was highest in samples from the forest ecosystems (Muimba-Kankolongo  

et al., 2009). In 96.4% of the samples the fumonisin levels were between 0.02 μg g
-1 

and 

21.44 μg g
-1

, and some samples contained fumonisin above the level acceptable for human 

consumption (Muimba-Kankolongo et al., 2009). Maize hybrids were artificially inoculated 

with Zambian strains of F. verticillioides in field experiments at Misamfu Regional Research 

Station, Kasama, Northern Province and at Golden Valley Regional Research Station, 

Chisamba, Central Province (Schjøth et al., 2009). Kasama is located in the high rainfall zone 

III, and Chisamba is in the medium rainfall zone II. Maize from the high rainfall zone had 

low incidence (mean 41%) of FB1 + FB2 positive samples, while maize from the medium 

rainfall zone had 67% incidence and higher concentration as 40 % of the samples contained 

>1.0 μg g
-1

 FB1 + FB2 in two years of comparison (Schjøth et al., 2009). At both experimental 

sites there were large variation in fumonisin content between years, and maize from the 

medium rainfall zone had mean FB1 + FB2 content of 1.02 μg g
-1

, while maize from the high 

rainfall zone had mean FB1 + FB2 content of 0.13 μg g
-1

 for two years of field experiments 

(Schjøth et al., 2009). When the kernel infection was determined in field experiments at the 

Misamfu and Golden Valley research stations, the Fusarium spp. kernel infections were 37% 

and 14%, respectively, and F. verticillioides was the dominant species at both sites (Schjøth 

and Sundheim, 2013). 

 

 

2.2. Fumonisins in Some Other East and South African Countries 
 

In Botswana maize and sorghum are the most important food crops. Analysis of six 

samples of maize meal and maize kernels showed that they contained from 0.04 to 0.53 μg g
-1

 

fumonisin, while two samples of sorghum meal both contained 0.02 μg g
-1 

fumonisin. The 

fumonisin contamination in the eight maize and sorghum samples was from 0.02 to 0.53 μg g
-

1
 (Doko et al., 1996). Analysis of samples from the maize crops in Botswana showed that 85 

% of the samples were contaminated with FB1 with concentrations from 0.02 to 1.27 μg g
-1

 

(Siame et al., 1998). Sorghum is commonly used for beer production in Botswana, and when 
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142 sorghum malt samples were analysed for FB1 only three samples were contaminated and 

contained from 0.05 to 1.32 μg g
-1

 FB1 (Nkwe et al., 2005).  

When Ethiopian cereals, including barley, wheat, sorghum and teff (Eragrostis tef) were 

analysed for mycotoxins, only sorghum samples contained fumonisins with a maximum 

concentration of 2.12 μg g
-1

 (Ayalew et al., 2006). The Ethiopian practice of storing sorghum 

in underground pits increases moisture content in the grain, which supports growth of fungi 

producing fumonisin in the grain (Ayalew et al., 2006). Microbiological investigation 

identified F. verticillioides as the most common Fusarium spp. on maize in Ethiopia, and of 

17 maize samples 4 contained fumonisin at 0.3, 0.3, 0.7 and 2.4 μg g
-1

, respectively (Ayalew, 

2010). In Southern Ethiopia one-hundred maize samples had a mean fumonisin contamination 

of 1.68 μg g
-1

 (Alemu et al., 2009). 

The highland of Western Kenya is a maize growing region, and maize is the most 

important cereal crop of the country. Fusarium incidence and FB1 contamination were 

determined in 197 maize samples from smallholder farm storage facilities (Kedera et al., 

1999). Almost half of the samples (47%) contained FB1 levels above the detection limit of 0.1 

μg g
-1

, and the range of FB1 was from 0.11 μg g
-1 

to 11.60 μg g
-1

 in the positive samples, with 

a mean FB1 content of 0.67 μg g
-1

 for the samples. Only 5% of the maize samples had > 1.0 

μg g
-1

 FB1 (Kedera et al., 1999). Fusarium verticillioides is the dominant cause of maize ear 

rot in Kenya, and 74 % of F. verticillioides isolates produced FB1 in the range of 0.07 to >5.0 

μg g
-1

 with a mean of 1.51 μg g
-1

 (Alakonya et al., 2008). The FB1 contamination in maize 

increases after physiological maturity, and mean FB1 levels in one district of Kenya 4, 8, and 

12 weeks after physiological maturity were 0.04 μg g
-1

, 0.18 μg g
-1

 and 0.59 μg g
-1

, 

respectively (Alakonya et al., 2009). In symptomless maize at one site the FB1 levels varied 

from 0.04 to 1.38 μg g
-1

, while in rotten maize the FB1 content was from 0.04 to above 5.00 

μg g
-1

(Alakonya et al., 2009). In the Eastern province of Kenya F. verticillioides was isolated 

from 39.9 % and F. proliferatum from 15.1 % of maize samples obtained in two districts (Bii 

et al., 2012). Most samples contained >1.0 μg g
-1

 of FB1, and there was significant correlation 

between Fusarium spp. count and fumonisin levels. In the Makueni district of Kenya the 

mean fumonisin content of the maize samples was 1.2 μg g
-1

, and in maize from the Kitui 

district the mean fumonisin content was 0.9 μg g
-1

 (Bii et al., 2012).  

When eight samples of maize kernels from Malawi were analysed, seven samples 

contained from 0.03 to 0.14 μg g
-1

 fumonisin, the mean fumonisin content was 0.07 μg g
-1 

(Doko et al., 1996). Higher incidence of Stenocarpella maydis (Berk.) B. Sutton than of F. 

verticillioides was detected, when evaluating causes of maize cob rot on smallholder farms in 

Malawi (Kapindu et al., 1999).  

Research groups in South Africa have been very active in elucidating the occurrence of 

fumonisins and exposure of people and domestic animals to the toxins. In an extensive 

sampling of maize highest levels of FB1 and FB2 were found in areas with high rates of 

esophageal cancer (Rheeder et al., 1992). In low esophageal cancer rate areas the mean FB1 

contents were 0.67 μg g
-1 

and 4.05 μg g
-1 

in healthy looking and mouldy maize, respectively, 

while in the high esophageal cancer rate areas the mean FB1 contents were 1.84 μg g
-1 

and 

53.74 μg g
-1

 in healthy looking and mouldy maize, respectively. The highest levels they 

recorded were 117.52 μg g
-1

 of FB1 and 22.96 μg g
-1 

of FB2 in areas with high rates of 

esophageal cancer (Rheeder et al., 1992). In 142 maize samples obtained from a village in 

Limpopo province, South Africa F. verticillioides was the most prevalent fungus in maize 

grains, porridge made from maize and in fecal samples from individuals in households 
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consuming maize products (Phoku et al., 2012). A quantitative method for detection of F. 

verticillioides DNA was developed and proved useful in determination of daily fumonisin 

intake by subsistence farmers (Waalwijk et al., 2008). In maize samples collected from 

subsistence farming in South Africa fumonisin contamination levels ranged from undetectable 

to 21.8 g g
-1 

(Ncube et al., 2011). Highest fumonisin levels were found in samples obtained 

from the KwaZulu-Natal province, where 52% of the samples exceeded 2 g g
-1 

in 2006, and 

17% of the samples in 2007 exceeded 2 g g
-1

. In commercial animal feeds contamination of 

fumonisins ranged from 0.104 to 3 g g
-1

 (Njobeh et al., 2012).  

Maize is the staple food for most of the people in Tanzania, but there are limited data on 

fumonisin contamination in the country. When nine samples of maize kernels from Tanzania 

were analysed, eight samples contained from 0.03 to 0.23 μg g
-1

 fumonisin, and the mean 

fumonisin content of the samples was 0.09 μg g
-1

 (Doko et al., 1996). A survey in Tanzania 

revealed that 52% of 120 samples were contaminated with FB1 at levels up to 4.92 μg g
-1

, 

median 0.49 μg g
-1

. Total FB1 + FB2 ranged from 0.06 to 11.05 μg g
-1

 (median =0.36 μg g
-1

), 

and in 15% of the samples the fumonisin content exceeded 1.0 μg g
-1 

(Kimanya et al., 2008). 

The highest fumonisin content was in the Kilimanjaro region of Tanzania with a median 

fumonisin content of 0.52 μg g
-1

 (Kimanya et al., 2008). In a study of mycotoxin 

contamination of maize and cassava collected at markets in Tanzania the level of fumonisin in 

maize ranged from 0.02 μg g
-1

 to 9.4 μg g
-1

, while cassava samples contained up to 0.07 μg g
-

1
 fumonisin (Manjula et al., 2009).  

In Uganda maize is the dominant crop and provides about 40% of the calories consumed 

per capita, and maize is an important export commodity (Atukwase et al., 2009). Maize grain 

stored in traditional structures were analysed for Fusarium spp and fumonisins, and the 

results showed that all maize samples analysed contained fumonisins in the range of 0.27 μg 

g
-1

 to 10.0 μg g
-1

 (Atukwase et al., 2009). Studies of fumonisin contamination and occurrence 

of Fusarium spp. in maize from three agro-ecological zones of Uganda revealed that maize 

from the high altitude zone had higher Fusarium spp. incidence than maize from the mid 

altitude zone (Atukwase, 2009). All samples from farmers contained fumonisin and the 

fumonisin content varied from 0.27 to 10.0 μg g-
1
. Maize from the high altitude zone had 

higher fumonisin content, mean total fumonisin 4.93 μg g-
1
, than maize from dry mid altitude 

zone, mean 4.50 μg g-
1
 and the moist mid altitude zone, mean 4.53 μg g-

1
 (Atukwase, 2009). 

Further studies in Uganda revealed that after harvest the Fusarium incidence level increased 

from 61.9% to 77.5% during the first two months of storage and then decreased to 31.9% by 

the sixth month (Atukwase et al., 2012a). Investigation on the fumonisin producing potential 

of the Gibberella fujikuroi species complex indicated that most isolates, twenty three out of 

twenty five, able to produce the toxin ranging from 19.4 to 99.8 g g
-1

 (Atukwase et al., 

2012b). 

 

 

3. CLIMATE EFFECTS ON FUMONISIN PRODUCING FUNGI 
 

Humidity and temperature are the important climatic factors for infection and growth of 

Fusarium spp. and accumulation of fumonisin in maize. Field experiments in the eleven 

major maize producing states of USA showed that June precipitation was the most important 

climatic factor for the fumonisin contamination of maize, and fumonisin content was 
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inversely correlated with June rainfall (Shelby et al., 1994). Field data from Argentina and the 

Philippines showed that the most important factors for fumonisin contamination of maize 

were weather (47%), insect damage to the ear (17%) and hybrid (11%), and weather around 

silking were identified as critical for fumonisin contamination at harvest (de la Campa et al., 

2005). In the state of São Paulo, Brazil thirty maize cultivars were planted at three locations 

during two years, and the fumonisin contamination of the maize was negatively correlated 

with precipitation in the period from silking to kernel milky stage, while precipitation in the 

month before harvest increased the fumonisin content of maize (Camaragos et al., 2001). In 

Spain wet and cool conditions around silking limited F. verticillioides infection and 

fumonisin contamination, while high temperatures during silking increased fumonisin content 

(Cao et al., 2014). Parsons and Munkvold studied climatic conditions and insect infestation in 

six field trials in four states of the USA, and they concluded that dry weather after pollination 

and thrips infestation of the ears increased the risk for fumonisin contamination (Parsons and 

Munkvold, 2012).  

 

 

3.1. Predicted Climate Changes 
 

The Intergovernmental PaneI on Climate Change (IPPC) has published the opinion that 

increased concentrations of greenhouse gases and aerosols in the atmosphere will result in 

warming of the environment and changes in the precipitation patterns. There is high 

confidence in temperature increase in the Northern Hemisphere and low confidence in 

warming in other parts of the world (Stocker et al., 2013). There is medium confidence in 

changes of precipitation patterns in tropical and subtropical climate. Precipitation will 

increase at higher latitudes, but in the major maize producing areas of the world increased 

precipitation will not compensate for the temperature-driven increase in evaporation, which 

will result in more droughts for most maize producing countries. The risk for summer drought 

will be greatest in mid-continental areas (Stocker et al., 2013).  

The UNU-WIDER working paper No 2013/040 analysed the likelihood of changes in 

precipitation and temperature for the greater Zambezi River Basin through the middle of this 

century based on IPPC Fourth Assessment Report (Schlosser and Strzepek, 2013). The 

authors concluded that with unconstrained emissions there is a likelihood of reduced spring 

precipitation by 2050, while for summer precipitation a few models predicts widespread 

drying and the remaining models show a mixture of drier and wetter weather conditions as 

climate warms (Schlosser and Strzepek, 2013). The models employed predicted warming 

over the entire Zambezi River Basin region, and most of the models predicted a stronger 

regional warming during spring than in summer. The authors of the UNU-WIDER working 

paper emphasized that there are uncertainties involved in predicting future climate in the 

region (Schlosser and Strzepek, 2013). The complex interactions between the maize plant and 

its endophytic, fumonisin producing pathogens in the genus Fusarium are not well 

understood. Strains of F. verticillioides that lack the ability to produce fumonisin are 

pathogenic and cause ear rot on maize (Desjardins and Plattner, 2000). The relationship 

between fungal growth in the host plant and fumonisin production is not elucidated, and a 

better insight into the relationship between F. verticillioides and the maize plant is required to 

understand the epidemiology of the disease (Munkvold, 2003).  
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Based on the current state of knowledge it is not possible to conclude how climate change 

during this century will affect the risk for fumonisin contamination of maize in Zambia and 

other countries of East and South Africa.  
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