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Abstract

Acetylcholinesterase (AChE) is the primary target for organophosphates (OP). Several mu-
tations have been reported in AChE to be associated with the reduced sensitivity against
OP in various arthropods. However, to the best of our knowledge, no such reports are avail-
able for Lepeophtheirus salmonis. Hence, in the present study, we aimed to determine the
association of AChE(s) gene(s) with resistance against OP. We screened the AChE genes
(L. salmonis acela and ace1b) in two salmon lice populations: one sensitive (n=5) and the
other resistant (n=5) for azamethiphos, a commonly used OP in salmon farming. The
screening led to the identification of a missense mutation Phe362Tyr in L. salmonis acela,
(corresponding to Phe331 in Torpedo californica AChE) in all the samples of the resistant
population. We confirmed the potential role of the mutation, with reduced sensitivity against
azamethiphos in L. salmonis, by screening for Phe362Tyr in 2 sensitive and 5 resistant
strains. The significantly higher frequency of the mutant allele (362Tyr) in the resistant
strains clearly indicated the possible association of Phe362Tyrmutation in L. salmonis
acela with resistance towards azamethiphos. The 3D modelling, short term survival experi-
ments and enzymatic assays further supported the imperative role of Phe362Tyrin reduced
sensitivity of L. salmonis for azamethiphos. Based on all these observations, the present
study, for the first time, presents the mechanism of resistance in L. salmonisagainst aza-
methiphos. In addition, we developed a rapid diagnostic tool for the high throughput screen-
ing of Phe362Tyr mutation using High Resolution Melt analysis.

Introduction

Acetylcholinesterase (AChE), encoded by ace genes, is a serine hydrolase that plays a critical
role in neurotransmission at cholinergic synapses and neuromuscular junctions. AChE is a tar-
get for two main classes of anti-cholinergic agents, organophosphates (OP) and carbamates
(CB). OP and CB bind to the active site of AChE, and inactivate the enzyme by phosphorylat-
ing or carbamylating a serine residue in the enzyme’s catalytic center [1]. The binding blocks
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the cleavage of the transmitter, acetyl choline (ACh), and results in elevated levels of ACh in
the synaptic cleft thereby causing excitation, paralysis and death [2].

OPs have been used for treatment against salmon lice (Lepeophtheirus salmonis), a marine
ectoparasitic copepod on salmonid species, in Norwegian salmonid aquaculture since the late
1970s. The first agent used was metrifonate (Neguvon), followed by dichlorvos (Nuvan) in
1986 and azamethiphos (Salmosan) in 1994 [3]. In 1991, the first cases of reduced efficacy of
organophosphate treatments were noted in Mid-Norway [4]. When the use of azamethiphos
was terminated during 1999, the problem of reduced sensitivity in salmon lice against aza-
methiphos was wide-spread. At that time, the cause of resistance was not determined.

Azamethiphos was re-introduced as a treatment agent against salmon lice in 2008 [5]. We
received new reports of reduced efficacy of treatments with azamethiphos from the field in
2009. In 2013, a surveillance program, using bioassays to test for resistance, revealed a wide-
spread distribution of azamethiphos resistance in Norwegian fish farms [5]. Bioassays are toxi-
cological tests performed on live parasites and are thus labor intensive and associated with
several sources of biases. Understanding the biochemical pathways underlying resistance in L.
salmonis would therefore lead to the development of better tools to determine and control re-
sistance. This would possibly improve management strategies and help in preventing economi-
cal loss due to ineffective treatments in the aquaculture industry.

Known resistance mechanisms towards organophosphates in arthropods include behavioral
factors (the arthropod avoids the agent) and metabolic factors (e.g. enhanced activity of glu-
tathion S-transferase or unspecific esterases) [6]. However, point mutations in AChE have
been reported to be the most common mechanism behind reduced sensitivity in arthropods
against OP [7].

Unfortunately, to the best of our knowledge, no study is available in the recent literature on
ACHhE as a target site of OP in L. salmonis. We have recently identified and characterized the
two genes coding for AChE in L. salmonis [8]. The full length cDNA sequences encoding the
two AChEs in L. salmonis were identified and fully characterized. Complete cDNA sequence
encoding the L. salmonis acela (GenBank KJ132368) and acelb (GenBank KJ132369) and the
deduced amino acid sequences were determined. The two AChEs were highly similar to each
other (84% similarity at protein level), an observation quite unique to L. salmonis and has not
been observed in other arthropods previously. Acela was predominantly expressed in different
developmental stages of salmon lice compared to acelb and was active in the cephalothorax, in-
dicating that acela plays the major role in synaptic transmission [8].

In the present study, we aimed to determine the cause of reduced sensitivity in salmon lice
against azamethiphos. This was achieved by screening the two acetylcholinesterase genes
(acela and acelb), in both sensitive and resistant L. salmonis populations. In addition, the ef-
fect of changes identified, on the expression, protein structure, activity of AChE and finally the
survival of L. salmonis was also investigated and accomplished.

Materials and Methods
Salmon lice strains and phenotypic characterization

Salmon lice samples were collected in the field. Four strains were kept in continuous culture
[9] in the laboratory at The Norwegian Institute for Water Research’s Marine Research Station
at Solbergstrand, Drabak (NIVA) or at the Institute of Biology, University of Bergen (UiB).
The fish were anesthetized for handling procedures using Finquel vet (tricain mesilat, Western
Chemical Inc., USA) dissolved in fresh water at final concentration of 125 mgL " sea water.
The fish were sacrificed in an anesthesia bath containing an overdose of the same substance.
The Atlantic salmon applied as parasitic hosts at NIVA came from the commercial supplier
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Table 1. History and phenotypic classification of salmon lice samples included in the study.

Strain  History Lice Small scale fish
bioassay treatment
Ls A Sampled in 2010, cultivated for 10 generations, never treated with azamethiphos 60 min., 24 +
h.
Ls G Sampled in 2004, cultivated for 15 generations, not treated with azamethiphos for 8 years prior to 60 min., 24 _
sampling h.
Ls B Sampled in 2008, site treated 3 times with azamethiphos the last two years prior to sampling 60 min. _
Ls H Sampled in 2011, site treated with azamethiphos more than 5 times for the last two years 60 min., 24 +
h.
Ls H-s  Surviving parasites after a small-scale lab-treatment of Ls H with azamethiphos _ _
LsV Sampled in 2012 immediately after an azamethiphos treatment. The site had been treated with 60 min.* _
azamethiphos more than 5 times for the last two years
Ls F Sampled in 2013, site treated with azamethiphos more than 5 times for the last two years 24 h. +¥*

Ls Surviving parasites after an azamethiphos bioassay selection experiment in 1998, stored at -80°C until

1998 analysis

* Tested at one concentration only

** Performed to identify when the different genotypes detached

doi:10.1371/journal.pone.0124220.t001

Sersmolt in Kragerg, Norway, while the rainbow trout came from the Norwegian University of
Life Sciences (UMB) at As, Norway. The Atlantic salmon at UiB came from the breeding sta-
tion of the Institute of Marine Research at Matre, Norway.

To characterize the salmon lice strains with regard to their sensitivity to azamethiphos,
small scale treatments of fish infested with salmon lice were performed. In addition the sensi-
tivity was tested by performing biological assays (bioassays) on salmon lice detached from the
fish. The different strains of salmon lice included in the current study (Ls A, Ls G, Ls B, Ls H,
Ls H-s, Ls V, Ls F and Ls 1998) are presented in Table 1 with their treatment history prior to
collection, whether small scale treatments have been performed, and which type of bioassays
have been performed.

The eight salmon lice strains included in the current study are presented with their treat-
ment history with azamethiphos prior to parasite collection (Ls A, Ls G, Ls B, Ls H, Ls V and
Ls F) or in the laboratory (Ls H-s and Ls 1998). The salmon lice strains were exposed to aza-
methiphos for 60 minutes and/or 24 hours in biological assays (bioassays) to detect their sensi-
tivity to the chemical. This information is stated in the table. Whether or not salmon infested
with salmon lice from the different strains were subjected to small scale treatment trials to de-
tect treatment efficacies are also given in the table. The small scale treatment of salmon infested
with Ls F was performed to detect which genotypes of the parasite that died at different time
points during and after the treatment.

The small scale treatments for efficacy evaluation were performed by treating one group of
Atlantic salmon or rainbow trout infested with preadult parasites, of the salmon lice strain to
be tested, with Salmosan (50% w/w azamethiphos, Fish Vet Group, UK) at a concentration of
0.1 mgL ™" azamethiphos and keeping a separate group as untreated controls. The water ex-
change in the tanks was stopped for 30 minutes before the solution was drained and the tank
rapidly refilled. The water was oxygenated during the treatment. The treatment effect was eval-
uated 5-7 days post treatment by counting parasites in both treatment and control groups. The
first small scale treatment of Ls A and the small scale treatment of Ls H was performed at
NIVA on rainbow trout and the results have been reported previously [10]. The second treat-
ment of fish infested with Ls A was performed at UiB treating 6 Atlantic salmon weighing 300
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grams each and keeping 6 fish as untreated control in another 500 liter tank. The fish had ini-
tially been infested with salmon lice in a common infestation trial. The effect of the treatment
was evaluated 5 days post treatment.

The small scale treatment for genotype identification was performed on Ls F to see what ge-
notypes that died at different time intervals during and after treatment. It was performed at
NIVA on three salmon weighing 100 grams each which were infested with Ls F. The treatment
was performed in a 100 liter tank, the same way as the other small scale treatments, but without
a control group. During the exposure period and the first 2.5 hours thereafter, all sea lice de-
tached from the fish were picked out of the tank and put on RNA-later. 24 hours post exposure
all detached lice were removed from the tank and put on RNA-later. Seven days later all re-
maining sea lice were removed from the fish and put on RNA-later. Three parasites had de-
tached from the fish, but were alive and attached to the wall of the tank at 2 hours after
initiation of the treatment. These were excluded from the analysis. After the experiments the
fish were sacrificed in a lethal anaesthesia bath.

The sensitivities of the lab-cultivated strains towards azamethiphos were characterized by
two types of bioassays and small scale treatments.

The 60 minute bioassay was performed on Ls A, Ls G, Ls B, Ls H and Ls V as described by
Helgesen and Horsberg [10]. The results from Ls A and Ls H have been remodeled from data
presented in Helgesen and Horsberg [10]. Preadult parasites were exposed to six different con-
centrations of azamethiphos (0-140 gL, different concentrations in different assays) in poly-
styrene boxes. After 60 minutes exposure, the boxes containing the parasites were rinsed in
fresh sea water and kept in clean, aerated sea water at 12°C for 24 hours before the parasites
were characterized as either alive or dead/immobilized [10].

The 24 hour bioassays were performed on Ls A, Ls G, Ls H and Ls F by exposing preadult
parasites to six different concentrations of azamethiphos (0-2 pgL ™, different concentrations
in different assays) in sea water for 24 hours, using glass bottles kept at 12°C with constant aer-
ation [10]. The results were read after 24 hours exposure by gently turning the bottles and
thereafter pouring the solution into a beaker. Parasites attached to the bottle wall as well as par-
asites able to attach to the beaker wall or swim in a straight line, were characterized as alive. All
other parasites in the beaker were categorized as dead/immobilized. The results from Ls A and
Ls H has previously been presented in Helgesen and Horsberg [10].

Frozen samples (both surviving and immobilized parasites, n = 9) from a bioassay per-
formed in 1998 (a not given concentration of azamethiphos) were also enrolled in the study.

Total RNA extraction and cDNA synthesis

Total RNA was extracted using RNeasy plus Mini kit (Qiagen, CA, USA), from female adult in-
dividuals, as per manufacturer’s protocol. The RNA was quantified and qualified on ND-100
Spectrophotometer (Thermo Fisher Scientific, DE, USA). First strand cDNA was synthesized
from total RNA (1pg) using qScript reverse transcriptase (Quanta Biosciences, MD, USA).

Screening of full length L. salmonis ace1a and ace1b

Full length cDNAs (acela and acelb), from 5 sensitive (Ls A) and 5 resistant (Ls H) adult fe-
male sea lice samples, were amplified using gene specific primers (mentioned below). PCR re-
actions were performed using Phusion high-fidelity DNA polymerase (New England BioLabs,
MA, USA) under the conditions: 98°C for 30 s, followed by 35 cycles at 98°C for 10 s, 55°C for
15 s, 72°C for 2 min followed by a final extension at 72°C for 10 min. Amplicons were then sub-
jected to direct sequencing using BIG Dye Terminator v3.1 cycle sequencing kit (Life
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technologies, Invitrogen, CA, USA) on 3130x] Genetic Analyzer (ABI Prism, Life technologies,
Invitrogen, CA, USA).

Primers used to amplify the whole cDNA

acela forward primer: CTCTGCTGCTACACCGACTCCTGTT

acela reverse primer: TCGAGGATGTTTGACACTGATGGTC

acelb forward primer: TGTTTTAGATGTGGATTCAAGTCCGAA

acelb reverse primer: CGATGGATGGTACGTACGTATGAACATA

Screening of missense changes identified in L. salmonis ace1a and
acelb

50 adult female samples each from 2 sensitive (Ls A and Ls G) and 2 resistant populations (Ls
H, Ls B) were screened by direct sequencing. In addition, 2 L. salmonis populations (24 samples
of Ls H-s and 20 samples of Ls V) that survived the azamethiphos treatment were also screened
for these missense changes by direct sequencing.

Primers to amplify missense change in L. salmonis acela

acela forward primer: GTGGATGGAAGTTTCTTGGATGAGAG

acela reverse primer: CTCAAAAGTTATTGCCTCTCTTCCCATT

Primers to amplify missense change in acelb

acelb forward primer: ACGAGCAAAGTCAGCAGTTG

acelb reverse primer: TTTCATCCGCAGTGTTTCAG

Genotyping

The Phe362Tyr mutation in L. salmonis acela, which corresponds to codon 331 in the Torpedo
californica AChE, was validated by High Resolution Melt (HRM) analyses, which is a simple
rapid tool to screen single base changes (mutations/polymorphisms) with high sensitivity and
accuracy [11]. The methodology included the generation of specific PCR product using gene
specific primers (mentioned below) and Precision Melt supermix (Bio Rad, CA, USA), as per
manufacturer’s instructions, with a sensitive fluorescent dye (EvaGreen) that binds specifically
only to double stranded DNA, followed by subjecting the amplicon to gradual increase in tem-
perature (65°C to 95°C), which led to the denaturation of double stranded amplicon and de-
crease in fluorescence. This change in florescence was recorded by the C1000 Touch thermal
cycler (Bio-Rad, CA, USA) as a melt curve (fluorescence versus temperature). The samples
were assembled into different groups based on difference in the shapes of their melt curves.

HRM primers for the Phe362Tyr mutation

Forward primer: TTTTAATTGGAGCGAATAAGGA

Reverse Primer: TCTGTTCGATCAACATAGACG

The typing of parasites from the small scale treatment for genotype identification were per-
formed by qPCR using TagMan probes specific for the sensitive (S) and resistant (R) geno-
types. The assay was developed for high throughput analyses by PatoGen Analyse AS, based on
the results presented here. By combining the probes, each parasite could be classified as sensi-
tive (SS), heterozygote (RS) or homozygote resistant (RR). Genotyping could be performed in
all except one parasite that was dead at 24 hours after initiation of the treatment.

Alignment of amino acid sequences

Deduced amino acid sequences of L. salmonis AChEla and AChE1b were compared with 33
previously published AChE protein sequences from other species, using CLUSTALW program
with BLOSUM matrix and default settings [12] to obtain Multiple sequence alignment (MSA).
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3D modelling of the enzymes

The three-dimensional structure of the AChEla enzyme from L. salmonis was modeled using
SWISS MODEL in the automated mode [13] (http://swissmodel.expasy.org/). An initial tem-
plate search using the wild-type AChEla from L. salmonis as target revealed several possible
templates. The best fit was found with native AChE from D. melanogaster, PDB-ID 1qo9 [14]
(RMS 0.25 for the whole protein, 0.05 for ten amino acids important for choline binding, the
catalytic triad, the acyl pocket and the oxyanion hole). The Root Mean Square (RMS) for the fit
between template and target were calculated using the Swiss PDB viewer 4.1.0. (http://www.
expasy.org/spdbv/). Azamethiphos was docked to the wild-type and the mutated AChE1la using
the online molecular docking server (http://www.dockingserver.com/web) and the best fit was
illustrated using the UCSF Chimera 1.10.1. software (http://www.cgl.ucsf.edu/chimera/).

Inhibition of enzymatic activity

Two approaches were used to assess inhibition of AChE activity and possible differences be-
tween OP-susceptible and-resistant L. salmonis strains. In both the experiments, only preadult
females were used. Lice from the susceptible strain (Ls A) were all expected to be SS. This was
based on the frequency of the genotype SS (100%) in the screening of this strain. All the sam-
ples from the resistant strain were individually cut in two with a sterile scalpel. One half was
put in RNA later for subsequent genotyping, whereas its counterpart was stored at -80°C for
enzymatic assay. This allowed the use of only confirmed RR-lice in the assays.

In vitro treatment

To assess the importance of the Phe362Tyr mutation (corresponds to Phe331 in Torpedo cali-
fornica AChE) in vitro, a slightly modified version of a protocol developed by the World Health
Organization (WHO) to detect insecticide resistance mechanisms in mosquitoes (WHO/CDS/
CPC/MAL/98.6) was used [15]. The modifications were needed to optimize the protocol for
sea lice. In brief, samples (one whole or two half preadult II/ two whole or four half preadult I)
were homogenized in 75 ul deionized (18 M(Q) water with a pestle. To reduce the influence of
protease activity, the samples were prepared just a few minutes before the assay was started and
were kept on ice at all times. The enzymatic activity was analyzed using the principle of Ellman
et al. (1961) on 96 wells microtitre plates [16]. The wells contained phosphate buffer (0.1 M,
pH 7.8) with 1% Triton X-100 (140 pl), 5,5'-Dithiobis-(2-nitrobenzoic acid) in phosphate buff-
er (10 mM work solution; 10 pl) and 10 mM acetylthiocholine iodide (ATC) in deionized water
(10 mM work solution; 25 pl). In a parallel series, propoxur (0.1 M in acetone) was added to
the ATC work solution giving a concentration of 0.2 mM propoxur. The ingredients in the
wells were gently mixed before the addition of lice homogenate (25 ul) to both parallels. This
allowed for comparison of AChE activity with and without propoxur inhibition (n = 21 for RR
and n = 20 for SS). The microtitre plates were shaken for 1 minute and immediately read in ki-
netic mode for 10 minutes at 405 nm (Epoch spectrophotometer, BioTek, USA). The individual
slopes were calculated based on the best linear fit (Gen5 version 2.00) and a standard curve pre-
pared from AChE from electric eel (SigmaAldrich) was used to calculate the enzymatic activity.
One unit (U) is the amount of enzyme expected to catalyze 1 pmole substrate per minute. For
each sample the activity is expressed relative to the protein content in the homogenate (Umg ™
protein). Protein content was measured on a Take3 plate in an Epoch spectrophotometer (Bio-
Tek Instruments Inc., USA) and calculated in Gen5 version 2.0 using a build-in standard curve
for bovine serum albumin (BioTek Instruments Inc., USA). Inhibition in percent of normal
AChE activity was calculated for each sample (= 100-(activity with propoxur*100)/ activity
without propoxur).
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In vivo treatment

Preadult female lice were collected alive and randomly assigned to either a 0 ugL ™" or 2 ugL™’
azamethiphos bath exposure for 24 hours. The exposures were carried out on the detached par-
asites in filtered and continuously aerated sea water in 1 liter glass bottles kept at 10°C. Suscep-
tible and resistant strains were kept in separate bottles. After 24 hours the lice were collected
and sampled as described above. Residual AChE activity was measured following the modified
WHO protocol (see in vitro section). Because azamethiphos was used to block AChE activity,
no propoxur was added to the mixtures. AChE activity could not be measured before and after
treatment in the same individual, hence the results are presented as absolute values instead of
relative values.

Statistics

All bioassay results were modelled using probit analysis in the statistical software JMP 10 (SAS
Institute Inc., Cary, NC, USA) and ECsq-values (the concentration immobilizing 50% of the
parasites) with 95 percent confidential intervals were calculated. The mean treatment efficacies
in the small scale treatments were calculated using bootstrapping with 2500 simulations calcu-
lating the difference (in %) of parasites between the treated groups and their respective control
groups using JMP. The 95% confidence intervals (CI) for efficacy were constructed using the
number of fish per treated group as N.

An analysis of survival versus time for the three genotypes was then conducted with a
Kaplan-Meier survival analysis including a Wilcoxon test (JMP).

The results from the enzymatic inhibition studies were statistically compared (JMP) with
ANOVA after root transformation (in vitro study) or the non-parametric multiple comparison
Steel-Dwass method (in vivo study).

Ethics Statement

The studies were approved by the NIV A local ethics committee, ID 2995, in accordance with
the guidelines set by The Norwegian Animal Research Authority. The research station is ap-
proved as a fish research facility by the Norwegian Animal Research Authority.

Results
Bioassays and small scale treatment for phenotypic characterization

All results from small scale treatments and bioassays, performed to characterize the salmon lice
strains with regard to their sensitivity to azamethiphos, are given in Table 2. Ls A showed high
mortalities in the two small scale treatments, 100% and 98%, respectively. Both Ls A and Ls G
showed low ECsq-values (< 3 ugL " in the 60-minutes and < 0.2 ugL™" in the 24-hour bioassays).
Fifty percent of the sea lice from Ls H died in the small scale treatment. The ECsy-values
(60-minutes assay) from this strain was more than 28 times higher than the values from Ls A
and Ls G. The ECsy-value (60-minutes assay) from Ls B was higher than the corresponding value
in the 60-minutes assay on Ls A but much lower than the Ls H ECs,-values from the 60-minutes
bioassay. The strain used in the small scale treatment experiment for genotype identification, Ls
F, demonstrated sensitivity that was lower than Ls A and Ls H in a 24-hour bioassay.

The results from bioassays with 60 minutes and 24 hours exposure to azamethiphos are
given as ECso-values (the concentration that immobilizes 50% of the parasites) in ugL ™" with
95% confidence intervals (CI). The bioassay results were modelled using probit modelling in
JMP 10 (SAS Institute Inc., Cary, NC, USA). The results from the small scale treatments of
salmon infested with Ls A and Ls H in a 30 minute bath treatment with 0.1 mgL™
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Table 2. The results from bioassays with 60 minutes and 24 hours exposure to azamethiphos.

Sea lice strain

Ls A
Ls G
Ls B
Ls H
Ls V
Ls F

ECs50, 60-min bioassay ECso, 24-h bioassay Percent efficacy, small scale treatment Classification

2.1 (1.3-3.5)* 0.12 (0.11-0.14)* 100 (90-100)*, 98 (82—100) Sensitive

1.8 (1.4-2.5) 0.16 (0.10-0.27) Sensitive

4.5 (1.9-10.7) _ _ Reduced sensitivity
60 (17-216)* 2.1 (1.5-2.7)* 50 (39-61)* Resistant

>50** _ _ Resistant

_ 3.3 (1.9-5.6) _ Resistant

*Remodeled from data presented in Helgesen and Horsberg [10]
**Tested at one concentration only

doi:10.1371/journal.pone.0124220.1002

azamethiphos and an untreated control group The results from the small scale treatments were
calculated using bootstrapping and are given as percent effect with 95% CI.

Screening of the L. salmonis ace1a and ace1b genes for polymorphisms

The screening of whole cDNA sequence of both the genes in five sensitive (Ls A) and five resis-
tant (Ls H) salmon lice revealed one non-synonymous change and two silent changes in L. sal-
monis acela. The non-synonymous change led to an amino acid change: phenylalanine to
tyrosine at codon 362, which corresponds to codon 331 in the Torpedo californica amino acid
sequence. The two other substitutions were silent changes (Fig 1).

PhedsaTyr

TATTH

Fig 1. Nucleotide alignment of ace7a. Nucleotide alignment of L. salmonis ace1a from sensitive (Ls A) and
resistant (Ls H) salmon lice strains. The changes identified are boxed. Of the three nucleotide changes
identified, two were silent changes, Arg80Arg and Ser235Ser, corresponding to G/lu49 and Ser176in T.
californica AChE, respectively. The non-silent T->A change led to the substitution of Phe to Tyr residue at
362 amino acid position corresponding to Phe331 in T. californica AChE.

doi:10.1371/journal.pone.0124220.g001
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Fig 2. Nucleotide alignment of ace1b. Nucleotide alignment of L. salmonis ace1b from sensitive (Ls A) and resistant (Ls H) salmon lice strains. The only
change identified in L. salmonis ace1b is boxed. This non silent T->C change led to the substitution of lle to Thr at 433 amino acid position, corresponding to
le401 in the T. californica AChE.

doi:10.1371/journal.pone.0124220.g002

In acelb, a single change was identified in codon 433, leading to Isoleucine-> Threonine
substitution (Fig 2), which corresponds to codon Ile401 in the T. californica amino acid se-
quence. The frequencies of this change is listed in the supporting information, S1 Table.

Association of missense changes in ace1a and ace1b with resistance
against azamethiphos

Both the non-synonymous changes (Phe362Tyr in acela and Ile433Thr in acelb) were
screened, by direct sequencing, in laboratory cultured sea lice populations, including the two
sensitive strains (Ls A, Ls G) and the two strains with reduced sensitivity (Ls B, Ls H) to deter-
mine their association with resistance against azamethiphos. Fifty samples from each popula-
tion were enrolled for screening. None of these populations were under any treatment pressure
when enrolled. In addition, 20 parasites that survived a normal field treatment with azamethi-
phos (Ls V) along with 24 samples from Ls H surviving a small scale azamethiphos treatment
were also screened for the Phe362Tyr change. The results (Table 3) demonstrated a clear associ-
ation between the sensitivity classification and the frequency of the Phe362Tyr mutation. How-
ever, no such association was observed for the Ile433Thr change in L. salmonis acelb and the
sensitivity classification (S1 Table).

Phe362Tyrin samples collected in 1998

The salmon lice samples (n = 9) after the selection experiment with azamethiphos in 1998 were
also screened for the Phe362Tyr change. The screening revealed that this change was present in
all the salmon lice (n = 4) that survived the exposure (SS = 0, RS = 3 and RR = 1) at that time.
None of the samples that died during azamethiphos exposure harbored the mutation (n = 5).
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Table 3. Frequency of the Phe->Tyr change in codon 362 of ace1a (L. salmonis), corresponding to codon 331 in T. californica.

Strain Sensitivity Wild type Phe362/Phe362 Heterozygote Phe362/362Tyr Homozygote 362Tyr/362Tyr
frequency (SS) frequency (RS) frequency (RR)
Ls A Sensitive 100% 0% 0%
Ls G Sensitive 96% 4% 0%
Ls B Reduced 72% 26% 2%
sensitivity
LsH Resistant 44% 36% 20%
Ls H-s (azamethiphos Resistant 0% 92% 8%
treatment)
LsV Resistant 5% 35% 60%
doi:10.1371/journal.pone.0124220.1003
Phe362Tyr

The alignment of the L. salmonis AChE1la protein with 33 AChE amino acid sequences from
other species revealed that the Phe362Tyr in acela is homologous to Phe331 of AChE in T.cali-
fornica and is located in the acyl pocket neighboring the catalytic center in the active site gorge.
It is a highly conserved residue among the species as evident from multiple sequence alignment
(MSA) of AChEs from different species (Fig 3).

Phe331Tyr

1_acela

L:sal_acelb

Fig 3. Amino acid alignment. Alignment of the deduced amino acid sequence of both L. salmonis acela
and ace1b in the region where the Phe362Tyr change was found, with previously published
acetylcholinesterases (AChE) from other insects, arachnida and vertebrates (Insects: Liposcelis entomophila
Lip_ent, Bemisia tabaci Bem_tab, Blattella germanica Bla_ger, Nephotettix cincticeps Nep_cin,
Ctenocephalides felis Cte_fel, Culex pipiens Cul_pip, Chilo suppressalis Chi_sup, Apis mellifera Api_mel,
Cimex lectularius Cim_lec, Bombyx mandarina Bom_man, Bombyx mori Bom_Mor, Leptinotarsa
decemlineata Lep_dec, Drosophila melanogaster Dros, Musca domestica Mus_dom, Anopheles gambiae
Ano_gam, Aedes albopictus Aed_alb, Culex quinquefasciatus Cul_qui, Arachnida: Tetranychus urticae
Tet_unt, Rhipicephalus decoloratus Rhi_dec, Vertebrates: Torpedo californica Tor_cal, Homo sapiens
Homosap. Phe362Tyr corresponds to Phe331 in Torpedo californica AChE. Phenylalanine at 331 is a highly
conserved amino acid in the acetylcholinesterases among all species included. The Phe331Tyr change

is boxed.

doi:10.1371/journal.pone.0124220.g003
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3D modelling of the enzyme

The 3D modeling was performed using SWISS MODEL http://swissmodel.expasy.org/ [13],
http://swissmodel.expasy.org/. The 3D structure of the native enzyme from Drosophila melano-
gaster (PDB ID: 1qo9) was used as a template. The protein from L. salmonis could fit the tem-
plate, but the fit was not optimal. The QMEAN4 score (a parameter between 0 and 1 where a
higher number indicates a better fit) was 0.541. However, the Root Mean Square (RMS) values
were low, 0.25 for the whole protein and 0.05 for ten essential amino acids. Thus, the models
were still considered useful.

The generated pdb files are included in the supplementary material (S1 File and S2 File).
The 3D model (Fig 4) revealed that the change to Tyr at position 362, resulted in interfer-
ence with the entrance to the catalytic triad of the enzyme (Ser230, Glu358 and His472 in L. sal-
monis, corresponding to Ser200, Glu327and His440 in T. californica). The aromatic ring of Tyr
is turned approximately 50 degrees compared to the aromatic ring of Phe. Tyrosine has a hy-

droxyl group in the para-position, which enters the groove leading to the catalytic triad,

His472

Ser230

Fig 4. 3D model of important amino acids. Overlay of the predicted three-dimensional positioning of
functionally important amino acids in AChE1a wild-type and mutated enzyme from Lepeophtheirus salmonis.
The changed amino acid (362Tyr, corresponding to codon 331 in T. californica) is displayed in white. The
other amino acids, Trp115, Tyr152, Ser230 and His472 (Trp84, Tyr130, Ser200 and His440 in T. californica)
are displayed in grey. Other amino acids are not displayed. The Phe362Tyr mutation alters the structure and
the polarity of the enzymatic pocket. According to the ligand docking model, azamethiphos (green in the wild-
type AChE1a, red in the mutated AChE1a) binds differently in the pocket, with H-bonds to both Tyr152 and
362Tyr in the mutated enzyme. No H-bonds were predicted between azamethiphos and these two amino
acids in the wild-type enzyme. SWISS MODEL in the automated mode [13] (http://swissmodel.expasy.org/)
was used for modelling of the protein, the molecular docking server (http://www.dockingserver.com/web) was
used to dock azamethiphos to the protein, and Chimera 1.10.1. (http://www.cgl.ucsf.edu/chimera/) was used
to illustrate the positions.

doi:10.1371/journal.pone.0124220.g004
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decreasing the volume of the pocket. The substitution of the nonpolar Phe with the polar Tyr
also changes the polarity of the active gorge and thereby the binding site for organophosphates,
most likely affecting binding of these molecules in the enzyme. The best fit of azamethiphos in
the catalytic gorge of the wild-type and in the mutated enzyme implied hydrogen (H) bonds
between 362Tyr and azamethiphos, and between Tyr152 and azamethiphos. The model did not
predict H-bonds between Phe362 and azamethiphos, or between Tyr152 and azamethiphos in
the wild-type enzyme.

High Resolution Melt analysis (HRM)

High Resolution Melt analysis (HRM) was performed to validate the sequencing results and in an
attempt to develop a rapid diagnostic tool for the detection of Phe362Tyr mutation in L. salmonis
acela. After standardizing the technique with samples of known genotypes, determined by direct
sequencing (wild type, heterozygous and homozygous for Phe362Tyr mutation), samples with
unknown genotypes were run to confirm the results obtained. These were also confirmed by di-
rect sequencing. HRM analysis could distinguish between the samples of different genotypes with
high accuracy. As shown in Fig 5, the samples were very well separated based on their genotypes.

Treatment trial for genetic characterization

The frequency of live and dead parasites from Ls F within each genotype is given in Table 4. All
parasites of the SS genotype died within two hours after initiation of the treatment, while no
parasites of the RR genotype died within eight days after the treatment. The mortality rate of
the RS genotype was 44%.

The Kaplan-Meier survival analysis of the SS genotype demonstrated that the median survival
time was 25 minutes (95% CI: 15-30 min). A Wilcoxon test showed highly significant differ-
ences between the groups (x° = 64.7, DF = 2, p< 0.0001). The survival plot is displayed in Fig 6.
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Fig 5. High resolution melt plots. High Resolution Melt (HRM) Analysis separated the samples with and without the Phe362Tyr mutation (numbering from
L. salmonis). HRM was based on differences in the shapes of their melt curve that reflects the differences in their genotypes. The Green cluster represents
samples homozygous (RR) for the Phe362Tyr mutation, Blue cluster represents samples heterozygous (RS) for the Phe362Tyr mutation and Red cluster
represents the wild type (SS) samples without the Phe362Tyr mutation, respectively. All the three clusters were clearly separated from each other on the
HRM plot.

doi:10.1371/journal.pone.0124220.9005
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Table 4. Mortality frequency of homozygote sensitive (SS), heterozygote (RS) and homozygote resis-
tant (RR) parasites over eight days following a 30 minute bath treatment with 0.1 mgL™" azamethiphos.

Genotype Dead Alive
SS 10 0

RS 11 14
RR 0 16

Mortality frequency of homozygote sensitive (SS), heterozygote (RS) and homozygote resistant (RR)
parasites over eight days following a 30 minute bath treatment with 0.1 mgL™" azamethiphos. Three salmon
infested with Ls F were treated and all detached salmon lice were removed during the exposure and the
following 2.5 hours. Detached parasites were also removed 24 hours later. They are presented in the
“dead” column except two parasites which were excluded as they attached to the tank wall after detaching
from the fish. The rest of the parasites were picked off the fish 8 days post treatment and these are
presented in the “alive” column. All salmon lice were genotyped by PatoGen AS in Alesund, Norway using
a TagMan assay.

doi:10.1371/journal.pone.0124220.t004

Enzyme inhibition assay

The degree of enzymatic inhibition was assessed both in vitro (with propoxur added to lice ho-
mogenates) and in vivo (with azamethiphos exposure of live salmon lice). One azamethiphos-
susceptible and one-resistant strain of parasites were used, representing the genotypes SS and
RR, respectively.

O
(o))
1

Surviving

=
i
1

0.0 Il L al L T L . 1
0 50 100 150 200 250 300

Minutes

Fig 6. Survival analysis plot. Kaplan-Meier survival plot of all three genotypes: homozygote sensitive (SS),
heterozygote (RS) and homozygote resistant (RR). Three salmon infested with Ls F were treated for 30
minutes with 0.1 mgL™" azamethiphos in a bath treatment. All detached salmon lice were removed during the
exposure and the following 2.5 hours. Detached parasites were also removed 24 hours later. Two parasites
were excluded from the analysis as they attached to the tank wall after detaching from the fish. The rest of the
parasites were picked off the fish 8 days post treatment. These salmon lice were regarded as alive, while the
detached were regarded as dead. All salmon lice were genotyped by PatoGen AS in Alesund, Norway using
a TagMan assay. The upper dotted line is the RR group, the solid line is the RS group, while the lower broken
line is the SS group. One of the RS parasites died between 200 minutes and 24 hours after start of exposure,
but the exact time is unknown. In this plot the time of death is set to 250 minutes. The cut-off limit is set to

300 minutes.

doi:10.1371/journal.pone.0124220.g006
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Fig 7. Residual enzyme activity after in vitro inhibition. The relative residual AChE activity with or without
propoxur in susceptible (SS, n = 20) and resistant (RR, n = 21) lice is displayed. A statistically significant
effect on residual AChE activity was found between the two groups, indicating a protective effect of the
Phe362Tyr mutation against propoxur inhibition in homogenates (p<0.0001, ANOVA). The box plots indicate
the group median, 75% and 25% quantiles, and whiskers (JMP, SAS Institute). Different letters indicate a
statistically significant difference.

doi:10.1371/journal.pone.0124220.g007

In the in vitro assay, residual activity was calculated in homogenates with propoxur added
to the wells and normalized to the activity in the non-inhibited fraction. A statistically signifi-
cant difference was found in residual activity between the two genotypes SS and RR
(p<0.0001). The arithmetic means of the residual activities were 21.1% and 37.3% with confi-
dence intervals (95%) of [16.1; 26.2] and [32.4; 42.2] for SS and RR, respectively (Fig 7).

Inhibition with azamethiphos was done on live lice (in vivo); hence one louse could only be-
long to one of the treatment groups. In contrast to the in vitro experiments, residual activity
could therefore not be normalized. Instead, the absolute values of enzyme activity were used to
compare the four groups (Fig 8). Azamethiphos, 2 ugL ™', inhibited AChE activity in both the
susceptible strain (SS; p<0.0001) and the resistant strain (RR; p<0.0001). In the susceptible
strain (SS) the median activities were 61.6 mU/mg protein (0 ng’l) and 7.0 mU/mg protein
2 ng’l) and in the resistant strain (RR) the median activities were 72.7 mU/mg protein
(0 ugL™") and 16.9 mU/mg protein (2 ugL ), respectively. No statistically significant difference
was found between SS and RR control groups (not exposed to azamethiphos). After exposure
to 2 ugL ' azamethiphos, there was a significant difference in absolute residual activity between
the two genotypes (p = 0.019), indicating that the L. salmonis mutation Phe362Tyr is involved
in the protection against azamethiphos. All the lice in the SS-2 gL' group were immobilized
when sampled. In the RR-2 pgL™" group, the behavior was not notably different from the con-
trol group (RR-0 pgL™"), as only 6.8% and 4.7% were immobilized at the end of the observation
period, respectively. The AChE activities in all of the samples from the SS group were below
the median value in the RR group.

Discussion

Decreased sensitivity for various chemotherapeutics has become a major issue in controlling
the sea lice problem worldwide with Norway being no exception [5]. Azamethiphos has been
one of the most commonly used chemical treatment agents against sea lice in Norway for
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Fig 8. Residual enzyme activity after in vivo inhibition. AChE activity (mU/mg protein) in susceptible (SS)
and resistant (RR) lice after treatment with 0 pgL™" (control) or 2 ugL™" azamethiphos for 24 hours. No
difference was observed between the control groups. A statistically significant decrease in the residual
activity after 2 ugL™" azamethiphos treatment was found in both strains (p<0.0001, Steel-Dwass method). In
addition, there was a statistically significant difference between the two treated groups (SS-2 ugL™" and RR-
2ugL™; p=0.019, Steel-Dwass method) indicating a protective effect of the Phe362Tyr mutation against
azamethiphos bath treatment). The box plots indicate the group median, 75% and 25% quantiles, and
whiskers (JMP, SAS institute). Different letters indicate a statistically significant difference.

doi:10.1371/journal.pone.0124220.g008

decades [3]. However, the development of resistance over the years, attributed to its overuse,
has affected the fish farm industry a lot. Unfortunately, no tool is yet available to identify resis-
tance because of the lack of knowledge about the molecular mechanisms involved in resistance.

As per the existing literature, resistance towards azamethiphos is mostly associated with
mutations in AChE genes in various arthropods [7]. Among these, point mutations are the
most commonly found mutations [7]. Around 70 different mutations have been reported in
AChE genes to be associated with decreased sensitivity against azamethiphos in various species
[7]. Majority of these missense mutations have been found in or around the active gorge site of
the enzyme, making it a hot spot for mutations [7].

In the present study, we investigated the molecular mechanisms of azamethiphos resistance
in L. salmonis. Based on our results we could substantially state that L. salmonis acela is the
primary target for azamethiphos and that the Phe362Tyr replacement (corresponding to
Phe331 in T. californica) is primarily responsible for conferring reduced sensitivity in L. salmo-
nis against azamethiphos.

Phe362 position in L. salmonis is homologous to Phe331 position in T. californica and is lo-
cated in the acyl pocket neighboring the active centre in the active site gorge (Fig 4) [17]. The
acyl pocket is responsible for ligand specificity via two properties. The first property is related
to the formation of the enzyme-substrate intermediate complex. The acyl pocket is located at
the bottom of the active site and surrounded by side chains of hydrophobic aromatic residues.
Because of its location and surroundings, acyl pocket attracts and orientates the acyl group of
the substrate and inhibitors through its hydrophobicity during the catalytic reaction [17, 18].
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The second property of the acyl pocket derives from its electrostatic field. In T. californica,
the pocket forming the side chain of Phe331 attracts the catalytic His440 by cation-m interac-
tion. Phe331 is considered to arrange the catalytic histidine so that proper conformational
change of the histidine can occur in the hydrolyzing step. Mutagenesis studies followed by
computer simulation demonstrated that the orientation of His447 in human AChE (corre-
sponds to His440 in T. californica) is changed by substitution from the wild type Phe338
(Phe331in T. californica) to aliphatic residues [19, 20]. However, whether a substitution with
Tyr at this position affects the cation- 7 interaction is not known. Nevertheless, this substitu-
tion in the L. salmonis AChEla is considered to affect the inhibitor enzyme interaction either
by changes in inhibitor affinity or interaction with the catalytic histidine, or both.

In the present study, the 3D model of the AChEla in L. salmonis revealed that the Phe362-
Tyr substitution makes the acyl pocket smaller and more polar (Fig 4), which could alter the ac-
cessibility of azamethiphos to the site. The docking of azamethiphos to the enzyme also
suggested that both 362Tyr and Tyr152 formed H-bonds with azamethiphos in the mutated en-
zyme, thereby interfering with the capability of azamethiphos to bind to serine in position 230
(Ser200 in T. californica). In addition, the mutation screening revealed a significantly higher
frequency of 362Tyr in resistant samples compared to the sensitive samples (Table 3). More-
over, all the survivors of azamethiphos treatment of the Ls H strain, (Ls H-s) carried 362Tyr
mutant allele (Table 3); increasing the frequency of 362Tyr from 56% to 100% (92% samples
with one mutant allele (RS) and 8% samples with both the mutant alleles (RR). This clearly in-
dicates the importance of 362Tyr in the survival of sea lice under azamethiphos exposure.

The association between the mutation Phe362Tyr and salmon lice resistance against OPs
was further supported by enzymatic assays of AChE activity using the two inhibitors (propoxur
and azamethiphos) in one in vitro and one in vivo assay, respectively. Propoxur inhibited
AChE activity at a significantly lower degree in resistant L. salmonis with the Phe362Tyr muta-
tion (RR) compared to salmon lice without the mutation (SS). This is in accordance with a
standardized assay developed by the World Health Organization (WHO) to assess insecticide
resistance in mosquitoes [15] although the cut-off for classifying resistance in mosquitos does
not apply to salmon lice. An important reason for this is the presence of two AChEs in salmon
lice [8]. The assay was done on homogenate of whole louse, thus both AChEla and AChE1b
contributed to the total enzymatic activity measured. However, the relative contribution be-
tween the two AChEs and their significance for the salmon lice to survive has not yet been clar-
ified. In mosquitos only one AChE has been characterized. Therefore, a resistance-related
mutation would be significantly more effective in preventing propoxur inhibition, as shown in
Anopheles subpictus [21], Anopheles maculipennis [22] and Culex quinquefasciatus [23]. The in
vitro results suggest a substantial contribution of AChE1b to the total AChE-activity in L. sal-
monis. As no resistance-associated mutations were found in AChE1b, this enzyme was as-
sumed to be fully inhibited by propoxur in both the SS and the RR group. Thus, it is the
AChE1la residual activity in 362Tyr samples compared to Phe362 samples that renders the par-
asite capable of surviving an azamethiphos treatment. This was examined in the in vivo experi-
ment and ties the link between the biochemical effect alone and the survival after azamethiphos
treatment. The results confirm that there was a difference in residual activity also after expo-
sure of live parasites to azamethiphos. The somewhat greater dispersion of the data points in
the RR group suggest that the relative contribution of AChEla and AChE1b can vary between
individuals. Thus, a cut-off limit for the total AChE activity cannot be used as an indicator for
the Phe362Tyr mutation until more knowledge on the different contribution of the two pro-
teins, both quantitatively and qualitatively, has been generated.

The low frequency of 362Tyr in the samples without azametiphos treatment (Ls G, 4%)
could be explained by the theory suggested by Shi et al. (2004), which states that even though
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there is a fitness cost associated with mutations in AChE, conferring resistance towards OP,
the alleles might still survive without selection pressure [24]. The frequency of the mutant allele
in the natural population (without treatment pressure) depends on the alteration caused by
mutant allele on the protein. The point mutations cause a low level of alteration in the protein,
which is the main driving force responsible for the maintenance of resistant alleles in natural
populations [24]. This theory is supported by the fact that most of the mutations reported in
AChE are point mutations [7]. Further, the presence of 362Tyr in the samples from 1998 is an-
other evidence in support of the theory, as this ascertains the presence of mutant (362Tyr) allele
in the salmon lice population, without selection pressure, for eight (2000-2007) years [25, 26].

Around 70 different missense mutations have been reported to be associated with OP resis-
tance in ace genes from other species [7]. Interestingly, none of these missense mutations were
found in the acela gene in our resistant samples, neither in the samples from 1998, nor in later
samples. This observation suggests a single origin of Phe362Tyr mutation, which dispersed in-
tensively due to the immense selection pressure caused by repeated OP treatments in salmon
farms. As the first cases of OP resistance in salmon lice were reported in 1991 [4], it is most
likely that the mutation was originated at that time.

The observations of the present study very well supported the theory by Shi et al. (2004) [24].
As the mutant allele could affect the fitness of the salmon lice (without azamethiphos treatment),
the frequency of samples carrying 362Tyr goes down (4%) in the natural population (Ls G).
However, the mutant allele (362Tyr) persists in the natural population along with the wild type
allele (Phe362) as the fitness cost is limited. After treatment the frequency of 362Tyr shoots up
(100% in Ls H-s, Table 3; of which 92% carried one mutant allele and the remaining were homo-
zygous for 362Tyr) i.e. only the carriers of the mutant allele (362Tyr) survived the treatment.

The mutation screening experiment was further validated by the small scale treatment ex-
periment (Fig 6), which showed that all the samples without Phe362Tyr substitution (SS) died
within 2 hours of the treatment whereas no mortality was seen among the homozygous sam-
ples (RR) for 362Tyr substitution. 44% of the samples that carried only one mutated allele (RS)
died. This observation again indicated that 362Tyr plays a vital role in the survival of salmon
lice under azamethiphos treatment.

Phe331 (numbering from T. californica) is highly conserved among AChE1 and AChE2
from various species as shown in Fig 3. The high conservation of Phe331 and its location in
AChE at an important site, signals its potential significance in the protein function and in turn
the survival of organism (Fig 3 and Fig 4).

Together, all the observations of the present study, clearly point towards a strong associa-
tion of the Phe362Tyr substitution in L. salmonis with decreased sensitivity of sea lice
towards azamethiphos.

To the best of our knowledge, Phe362Tyr mutation (codon 331 in T. californica) has not
been reported earlier. However, there are reports about other resistance-associated point muta-
tions at the same amino acid position. For example, substitution of Ser with Phe in this position
in AChE2 of Myzus persicae was found to be associated with insensitivity towards pirimicarb
[27], and towards pirimicarb and omethoate in AChE1 of Ashbya gossypii (Ser431Phe in this
species) [28]. Alon et al. (2008) have reported Phe392Trp (Phe331 in T. californica) substitution
in AChEL1 of Bemisia tabaci [29]. A similar mutation, Phe455Trp (Phe331 in T. californica),
was reported in AChE2 of Culex tritaeniorhynchus, in association with extreme insecticide in-
sensitivity (30-fold) and was considered to be solely responsible for the insecticide—resistance
of AChE in these mosquitoes [30, 31]. Expression of this mutation in AChE1 from C. tritae-
niorhynchus in a baculovirus-Sf9 cell system and subsequent treatment of the expressed pro-
teins with OP and carbamate inhibitors revealed extremely reduced sensitivity to OP
compounds [31]. Anazawa et al. (2003) observed a 140 fold decrease in sensitivity towards the
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OP dichlorvos in Tetranychus urtricae with a change from Phe to Cys at the same position
[32]. Similarly, Kwon et al. (2012) found a 99 fold decrease in sensitivity to monocrotophos
and a significant decrease in catalytic efficiency of the enzyme in T. urticae carrying a
Phe439Trp (Phe331Trp in T. californica) mutation [33].

Mutagenesis studies with human AChE also demonstrated that Phe338 (Phe331 in T. cali-
fornica) to Ala replacement conferred a 2-fold decrease in edrophonium-senstivity [34].

Various studies involving the mutagenized and naturally occurring substitutions in insect
AChEs have also inferred the importance of positions homologous to the T. californica Phe331
position, for reduced sensitivity towards AChE-inhibiting insecticides. For example, an in vitro
mutagenesis study carried out with Drosophila melanogaster ace2, demonstrated that substitu-
tions of Phe371 (homologous position in D. melanogaster ace2 to Phe331 in T. californica) to
Ala, Gly, Ile and Tyr resulted in 10-100 fold decrease in carbamate sensitivity. Interestingly, a
100 fold decrease in carbaryl, malaoxon and paraoxon sensitivity with Phe371Tyr (Phe331Tyr
in T. californica) substitution was observed by site-directed mutagenesis [35]. This engineered
mutation is homologous to the natural mutation described in the current study and further
strengthens the importance of Phe331 in sensitivity towards OPs, as well as the significance of
the described Phe362Tyr mutation in L. salmonis.

In conclusion, four lines of evidence for the significance of the Phe362Tyr (L. salmonis) mu-
tation in relation to salmon lice resistance towards azamethiphos are presented here. Firstly,
the significantly high frequency of 362Tyr in L. salmonis samples resistant to azamethiphos in-
dicated a clear association of Phe362Tyr with reduced sensitivity towards azamethiphos
(Table 3). Secondly, the 3D modelling suggested that 362Tyr could affect the access and bind-
ing of azamethiphos at the active site (Fig 4). Thirdly, the treatment trial for genetic characteri-
zation with azamethiphos showed 0% mortality in samples with both the mutated (362Tyr)
alleles (Table 3). And finally the enzymatic assay revealed a significantly higher residual activity
in resistant (RR) versus the sensitive (SS) samples (Fig 7 and Fig 8) both in vitro and in vivo.
Taken together, all these observations provide a strong argument in favor of Phe362Tyr muta-
tion being the culprit behind azamethiphos resistance in L. salmonis.

Supporting Information

S1 File. PDB-file of the wild-type AChEla in Lepeophtheirus salmonis.
(TXT)

S2 File. PDB-file of the mutated AChEla in Lepeophtheirus salmonis.
(TXT)

S1 Table. Frequency of the Ile433Thr change in AChE1b in Lepeophtheirus salmonis.
(DOCX)

Acknowledgments

We would like to thank Stian Merch Aaen for carrying out one of the small scale treatment on
Ls A. We would also like to thank PatoGen Analyse AS for performing analyzes of the samples
from the treatment trial for genetic characterization.

Author Contributions

Conceived and designed the experiments: KK KH MB TH. Performed the experiments: KK
KH MB TH. Analyzed the data: KK KH MB TH. Contributed reagents/materials/analysis
tools: KK KH MB TH. Wrote the paper: KK KH MB TH.

PLOS ONE | DOI:10.1371/journal.pone.0124220  April 20, 2015 18/20


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124220.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124220.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124220.s003

@' PLOS ‘ ONE

Azamethiphos Resistance in Salmon Lice

References

1.

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

Aldridge WN. Some properties of specific cholinesterase with particular reference to the mechanism of
inhibition by diethyl p-nitrophenyl thiophosphate (E 605) and analogues. Biochem J. 1950; 46: 451—
460. PMID: 15420172

Fournier D, Mutero A. Modification of acetylcholinesterase as a mechanism of resistance to insecti-
cides. Comp Biochem Phys C. 1994; 108: 19-31.

Torrissen O, Jones S, Asche F, Guttormsen A, Skilbrei OT, Nilsen F et al. Salmon lice—impact on wild
salmonids and salmon aquaculture. J Fish Dis. 213; 36: 171-194.

Denholm I, Devine GJ, Horsberg TE, Sevatdal S, Fallang A, Nolan DV et al. Analysis and management
of resistance to chemotherapeutants in salmon lice, Lepeophtheirus salmonis (Copepoda: Caligidae).
Pest Manag Sci. 2002; 58: 528-536. PMID: 12138619

Grentvedt RN, Jansen PA, Horsberg TA, Helgesen K, Tarpai A. The surveillance programme for resis-
tance to chemotherapeutants in L. salmonis in Norway. Surveillance programmes for terrestrial and
aquatic animals in Norway. Annual report 2013. Oslo: Norwegian Veterinary Institute 2014.

Riaz MA, Chandor-Proust A, Dauphin-Villemant C, Poupardin R, Jones CM, Strode C et al. Molecular
mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the
dengue vector Aedes aegypti. Aquat Toxicol. 2013; 126: 326—337. doi: 10.1016/j.aquatox.2012.09.010
PMID: 23058251

Hotelier T, Negre V, Marchot P, Chatonnet A. Insecticide resistance through mutations in cholinester-
ases or carboxylesterases: data mining in the ESTHER database. J Pestic Sci. 2010; 35: 315-320.

Kaur K, Bakke MJ, Nilsen F, Horsberg TE. Identification and molecular characterization of two acetyl-
cholinesterases from the salmon louse, Lepeophtheirus salmonis, PLOS ONE. 2015. In press

Hamre LA, Glover KA, Nilsen F. Establishment and characterisation of salmon louse (Lepeophtheirus
salmonis (Krayer 1837)) laboratory strains. Parasitol Int. 2009; 58: 451-460. doi: 10.1016/j.parint.2009.
08.009 PMID: 19732850

Helgesen KO, Horsberg TE. Single-dose field bioassay for sensitivity testing in sea lice,
Lepeophtheirus salmonis: development of a rapid diagnostic tool. J Fish Dis. 2013; 36:261-272. doi:
10.1111/jfd.12053 PMID: 23298397

Reed GH, Kent JO, Wittwer CT. High-resolution DNA melting analysis for simple and efficient molecular
diagnostics. Pharmacogenomics 2007; 8: 597—608. PMID: 17559349

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res. 1994; 22: 4673—4680. PMID: 7984417

Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: A web-based environment
for protein structure homology modelling. Bioinformatics 2006; 22:195-201. PMID: 16301204

Harel M, Kryger G, Rosenberry TL, Mallender WD, Lewis T, Fletcher RJ et al. Three-dimensional struc-
tures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors.
Protein Sci. 2000; 9:1063—-1072. PMID: 10892800

WHO (World Health Organization). Techniques to detect insecticide resistance mechanisms (field and
laboratory manual). WHO/ CDS/CPC/MAL/98.6. 1998

Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination
of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7: 88-95. PMID: 13726518

Hosea NA, Berman HA, Taylor P (1995) Specificity and orientation of trigonal carboxyl esters and tetra-
hedral alkylphosphonyl esters in cholinesterases. Biochemistry 1995; 34:11528-11536. PMID:
7547883

Ordentlich A, Barak D, Kronman C, Benschop HP, De Jong LP, Ariel N et al. Exploring the active center
of human acetylcholinesterase with stereomers of an organophosphorus inhibitor with two chiral cen-
ters. Biochemistry 1999; 38: 3055-3066. PMID: 10074358

Shafferman A, Ordentlich A, Barak D, Stein D, Ariel N, Velan B. Aging of phosphylated human acetyl-
cholinesterase: catalytic processes mediated by aromatic and polar residues of the active centre. Bio-
chem J. 1996; 318: 833—-840. PMID: 8836126

Bar-On P, Millard CB, Harel M, Dvir H, Enz A, Sussman JL et al. Kinetic and structural studies on the in-
teraction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry 2002; 41: 3555—
3564. PMID: 11888271

Surendran SN, Jude PJ, Weerarathne TC, Parakrama Karunaratne SHP, Ramasamy R. Variations in
susceptibility to common insecticides and resistance mechanisms among morphologically identified
sibling species of the malaria vector Anopheles subpictus in Sri Lanka. Parasit Vectors 2012; 5:34. doi:
10.1186/1756-3305-5-34 PMID: 22325737

PLOS ONE | DOI:10.1371/journal.pone.0124220  April 20, 2015 19/20


http://www.ncbi.nlm.nih.gov/pubmed/15420172
http://www.ncbi.nlm.nih.gov/pubmed/12138619
http://dx.doi.org/10.1016/j.aquatox.2012.09.010
http://www.ncbi.nlm.nih.gov/pubmed/23058251
http://dx.doi.org/10.1016/j.parint.2009.08.009
http://dx.doi.org/10.1016/j.parint.2009.08.009
http://www.ncbi.nlm.nih.gov/pubmed/19732850
http://dx.doi.org/10.1111/jfd.12053
http://www.ncbi.nlm.nih.gov/pubmed/23298397
http://www.ncbi.nlm.nih.gov/pubmed/17559349
http://www.ncbi.nlm.nih.gov/pubmed/7984417
http://www.ncbi.nlm.nih.gov/pubmed/16301204
http://www.ncbi.nlm.nih.gov/pubmed/10892800
http://www.ncbi.nlm.nih.gov/pubmed/13726518
http://www.ncbi.nlm.nih.gov/pubmed/7547883
http://www.ncbi.nlm.nih.gov/pubmed/10074358
http://www.ncbi.nlm.nih.gov/pubmed/8836126
http://www.ncbi.nlm.nih.gov/pubmed/11888271
http://dx.doi.org/10.1186/1756-3305-5-34
http://www.ncbi.nlm.nih.gov/pubmed/22325737

@' PLOS ‘ ONE

Azamethiphos Resistance in Salmon Lice

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Muhammet MA. Malathion and Propoxur Resistance in Turkish Populations of the Anopheles maculi-
pennis Meigen (Diptera: Culicidae) and Relation to the Insensitive Acetylcholinesterase. Turkiye Para-
zitol Derg. 2014; 38:111-115. doi: 10.5152/tpd.2014.3388 PMID: 25016118

Low VL, Chen CD, Lee HL, Tan TK, Chen CF, Leong CS et al. Enzymatic characterization of insecticide
resistance mechanisms in field populations of Malaysian Culex quinquefasciatus Say (Diptera: Culici-
dae). PLOS ONE 2013; 8:€79928. doi: 10.1371/journal.pone.0079928 PMID: 24278220

Shi MA, Lougarre A, Alies C, Frémaux |, Tang ZH, Stojan J et al. (2004) Acetylcholinesterase alter-
ations reveal the fitness cost of mutations conferring insecticide resistance. BMC Evol Biol. 2004; 4: 5.
PMID: 15018650

Grave K, Horsberg TE, Lunestad BT, Litleskare |. Consumption of drugs for sea lice infestations in Nor-
wegian fish farms: methods for assessment of treatment patterns and treatment rate. Dis Aquat Organ.
2004; 60: 123—131. PMID: 15460856

Helgesen KO, Bravo S, Sevatdal S, Mendoza J, Horsberg TE.Deltamethrin resistance in the sea louse
Caligus rogercresseyi (Boxhall and Bravo) in Chile: bioassay results and usage data for antiparasitic
agents with references to Norwegian conditions. J Fish Dis 2014; 37: 877—-890. doi: 10.1111/jfd.12223
PMID: 24697556

Nabeshima T, Kozaki T, Tomita T, Kono Y. An amino acid substitution on the second acetylcholinester-
ase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochem Biophys Res
Commun. 2003; 307:15-22. PMID: 12849975

Benting J, Nauen R. Biochemical evidence that an S431F mutation in acetylcholinesterase-1 of Aphis
gossypii mediates resistance to pirimicarb and omethoate. Pest Manag Sci. 2004; 60:1051-1055.
PMID: 15532677

Alon M, Alon F, Nauen R, Morin S. Organophosphates' resistance in the B-biotype of Bemisia tabaci
(Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and
overexpression of carboxylesterase. Insect Biochem Mol Biol. 2008; 38: 940—949. doi: 10.1016/j.ibmb.
2008.07.007 PMID: 18721883

Nabeshima T, Mori A, Kozaki T, Iwata Y, Hidoh O, Harada S et al. An amino acid substitution attribut-
able to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito,
Culex tritaeniorhynchus. Biochem Biophys Res Commun 2004; 313:794-801. PMID: 14697262

Oh S-H, Kozaki T, Mizuno H, Tomita T, Kono Y (2006) Expression of Ace-paralogous acetylcholinester-
ase of Culex tritaeniorhynchus with an amino acid substitution conferring insecticide insensitivity in
baculovirus-insect cell system. Pestic Biochem Phys 2006; 85: 46-51.

Anazawa Y, Tomita T, Aiki Y, Kozaki T, Kono Y. Sequence of a cDNA encoding acetylcholinesterase
from susceptible and resistant two-spotted spider mite, Tetranychus urticae. Insect Biochem Mol Biol.
2003; 33: 509-514. PMID: 12706630

Kwon DH, Choi JY, Je YH, Lee SH. The overexpression of acetylcholinesterase compensates for the
reduced catalytic activity caused by resistance-conferring mutations in Tetranychus urticae. Insect Bio-
chem Mol Biol. 2012; 42: 212-219. doi: 10.1016/j.ibmb.2011.12.003 PMID: 22198354

Shafferman A, Velan B, Ordentlich A, Kronman C, Grosfeld H, Leitner M et al. Substrate inhibition of

acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center.
EMBO J. 1992; 11: 3561-3568. PMID: 1396557

Boublik Y, Saint-Aguet P, Lougarre A, Arnaud M, Villatte F, Estrada-Mondaca S et al. (2002) Acetylcho-
linesterase engineering for detection of insecticide residues. Protein Eng. 2002; 15: 43-50. PMID:
11842237

PLOS ONE | DOI:10.1371/journal.pone.0124220  April 20, 2015 20/20


http://dx.doi.org/10.5152/tpd.2014.3388
http://www.ncbi.nlm.nih.gov/pubmed/25016118
http://dx.doi.org/10.1371/journal.pone.0079928
http://www.ncbi.nlm.nih.gov/pubmed/24278220
http://www.ncbi.nlm.nih.gov/pubmed/15018650
http://www.ncbi.nlm.nih.gov/pubmed/15460856
http://dx.doi.org/10.1111/jfd.12223
http://www.ncbi.nlm.nih.gov/pubmed/24697556
http://www.ncbi.nlm.nih.gov/pubmed/12849975
http://www.ncbi.nlm.nih.gov/pubmed/15532677
http://dx.doi.org/10.1016/j.ibmb.2008.07.007
http://dx.doi.org/10.1016/j.ibmb.2008.07.007
http://www.ncbi.nlm.nih.gov/pubmed/18721883
http://www.ncbi.nlm.nih.gov/pubmed/14697262
http://www.ncbi.nlm.nih.gov/pubmed/12706630
http://dx.doi.org/10.1016/j.ibmb.2011.12.003
http://www.ncbi.nlm.nih.gov/pubmed/22198354
http://www.ncbi.nlm.nih.gov/pubmed/1396557
http://www.ncbi.nlm.nih.gov/pubmed/11842237

