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Abstract: It has been suggested that airborne laser scanning (ALS) could be used for 

operational monitoring of vegetation changes in the alpine tree line caused by climate 

change. Because the vegetation is low in such tree-less areas close to the alpine zone, the 

accuracy of the digital terrain model (DTM) becomes crucial for early detection of, e.g., 

pioneer trees representing an ongoing tree migration given that the height of the vegetation 

may be on the same order of magnitude as the DTM uncertainty. The goal of this study was 

to assess and exemplify the vertical height errors of DTMs derived from ALS data under 

varying flying altitudes and pulse repetition frequencies (PRF). Important effects in the 

analysis were local terrain form, terrain surface, ground vegetation height, and terrain slope, 

because they may be correlated with recruitment patterns of pioneer trees. Based on 

426 ground control points collected in a boreal-alpine ecotone, a standard deviation of  

0.07–0.08 m was found for the lowest flying altitudes and lowest PRFs. For the highest PRF 

the standard deviation was 0.13 m. There were statistically significant mean errors for the 

different terrain forms and ground vegetation heights (−0.11 to 0.13 m).  
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1. Introduction 

As a result of global warming, the world’s climate will undergo distinct alterations over the coming 

decades leading to rapid changes in basic growth factors for trees and other vegetation. This will 

influence the boreal forest and its transition zones, leading to an increase in productivity [1]. Because 

OPEN ACCESS



Remote Sens. 2015, 7 4703 

 

the mountain forest, which is found in the transition zones between the boreal forest and the alpine 

region, appears in an area where the trees exist close to their tolerance limit in terms of temperature, 

these areas are characterized by steep temperature-productivity gradients. Even a moderate increase in 

temperature may therefore lead to a rapid increase in growth of existing trees [2,3] as well as colonization 

of tree-less areas and migration of the alpine tree line [4]. Thus, tree line alteration is considered an 

important indicator of climate change, along with factors such as changes in fire regimes and in 

vegetation communities [5]. Migration of the alpine tree line will also influence future carbon pools. A 

need therefore exists to monitor vegetation changes in these ecotones [6]. 

1.1. Tree Line Monitoring with Airborne Laser Scanning 

Airborne laser scanning (ALS) has over the last two decades has become a primary source of remotely 

sensed information for derivation of the terrestrial topography and for characterizing forest resources 

and vegetation. Thus, ALS is nowadays an important tool for operational production of digital terrain 

models (DTMs) as well as for forest resource information [7–11]. The literature also suggests that 

ecological applications may profit from three dimensional data of the land surface and of the vegetation 

layer [12,13].  

Recently, ALS has even been proposed as a technique to monitor subtle changes near the tree lines, 

such as colonization of tree-less areas [14], and to assist in estimation of tree biomass [15]. Numerous 

recent studies [14,16–20] have shown that ALS data with point densities of ~7–11 points·m−2 may be 

applied to detect individual pioneer trees in the alpine tree line. About 90%–100% of the trees with 

heights greater than 1 m are likely to be hit by laser pulses resulting in echoes with height values greater 

than zero, i.e., located above the modelled DTM surface. Echoes with heights >1 m are mainly tree 

echoes. Rees [21] anticipated that ALS could provide a means for discerning individual trees over hundreds 

of square kilometres. In this study, a minimum height of 2 m was used as the definition of a tree. 

For trees < 1 m in height, positive echo height above the terrain surface is a poor discriminator for 

discerning individual trees. Using echo height as a predictor for the smallest trees will lead to large 

commission errors (false positives) [16]. From a monitoring perspective, identification of individual 

trees is not required for a meaningful quantification of tree migration. Næsset and Nelson [14] proposed 

a statistical sampling approach by which the mean difference (net change) in height for all echoes in a 

defined minimum monitoring unit, say, 1 ha, is followed over time. Under such an approach 

identification of individual trees is not a concern. Objects that may cause commission errors in tree 

identification, such as rocks, hummocks, and other terrain structures will remain fairly stable over time, 

which means that net changes in height only will be due to changes in vegetation height. Nevertheless, 

it is indeed a concern to know how quickly after establishment a seedling will contribute to a positive 

height value—in other words, how sensitive the height response derived from ALS is to early changes 

caused by tree migration. As the observed positive height of a laser echo above the modelled DTM 

surface becomes smaller, the confidence of the echo actually being a reflection from an object above the 

terrain surface rather than a part of the terrain itself, becomes smaller. It is therefore important to quantify 

the errors that may typically be associated with the modelled DTM surface in the ecotone in question 

and by that establish at what relative echo height above the DTM an echo with a certain degree of 

confidence can be assumed to represent an object with a vertical extension above the DTM surface. 
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1.2. Derivation of Digital Terrain Models Using Airborne Laser Scanning 

For ecologists and foresters working with the vegetation layer, the DTM is often taken for granted, 

meaning that data of major interest to them is the ALS point cloud of the vegetation, with the height of 

the vegetation echoes relative to the terrain surface as the main attribute. For analysts and land surveyors 

concerned with terrain mapping, the vegetation is seen as an obstacle to accurate classification of the 

ground surface elevation from the ALS data. Ever since the pioneering work by Kraus and Pfeifer [22], 

numerous studies have documented the performance of different algorithms used to derive the terrain 

surface in forests and other vegetated environments. Hyyppä et al. [7] provide an excellent review of 

quality of DTMs derived from ALS with a particular focus on forested environments. Several studies 

indicate that the accuracy of DTMs deteriorates with increasing vegetation cover and terrain slope, cf. [7]. 

 Further, dense ground vegetation like shrubs will tend to increase random errors when compared to 

open grass [23,24]. This effect is more pronounced for certain ground classification algorithms [25]. The 

density of the understory may also influence systematic errors, and even short ground vegetation may 

cause such errors [26]. Reutebuch et al. [27] reported a random error of 16 cm for a clear-felled area 

whereas Hyyppä et al. [7] in their review indicate that a random error of less than 20 cm can be obtained 

in most forest conditions found in the boreal zone, provided that the terrain slope is moderate and ALS 

point density is sufficient. In a study conducted in a boreal wetland environment, Hopkinson et al. [28] 

found a positive bias of 2–6 cm in tree-less vegetation with grass and herbs and low shrubs. The random 

error was 10–12 cm. 

However, it should mentioned that recent progress with open source and other non-commercial 

algorithms to classify ground in ALS point clouds (e.g., [29–31]) may offer improved quality of the 

DTMs, even in such environments as the ecotone under study in the current work, even though it has 

been shown [32] that the algorithm developed by Axelsson [33] performed quite well. This algorithm is 

widely used in proprietary software packages, and is therefore one of the most commonly applied 

algorithms in operational projects. 

Errors in ALS-derived DTMs are affected by many factors. To account properly for the major 

components that contribute to the overall error, a commonly adopted methodology is to assess such 

sources through an error budget, see, e.g., [34]. However, for studies of properties of the vegetation, one 

is mainly concerned with the heights of the laser echoes and their spatial distribution relative to the 

terrain surface extracted from the same ALS acquisition. Thus, a characterization of the absolute errors 

of the modelled terrain surface, which is of major concern for a land surveyor, is less relevant to an 

ecologist. Systematic shifts in a DTM are for the same reason usually not a concern for an ecologist or 

a forester, except for change estimation, for which consistency between DTMs acquired at different 

points in time might be an issue. For the very same reason, errors in x and y are usually of less interest. 

1.3. Objectives 

The overall objective of the current study was to assess empirically the vertical DTM height errors 

experienced in a boreal-alpine ecotone. The study focused on experimental factors that may be correlated 

with recruitment patterns of pioneer trees in the ecotone, which are factors often overlooked in general 

assessments of DTMs by non-ecologists. The rationale for the entire study rests on the fundamental 
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assumption that large-scale regional ALS campaigns that have been carried out over the last 15 years for 

operational purposes such as DTM production by public agencies—in some countries as part of a 

coordinated, nationwide ALS campaign—will serve as the baseline for future vegetation monitoring. 

Such operational monitoring over large areas will often have to rely on data collected with different sensors 

and under different operating conditions. Previous studies have shown that different instruments and 

different instrument settings (e.g., flying altitude and pulse repetition frequency) may have an impact on 

DTM quality [35] and on the amount of echoes with positive height values from small trees in 

particular [16]. Thus, effects of instruments and flight and sensor configurations are of high relevance for 

operational monitoring. It was of particular interest to quantify and exemplify such effects in this study. 

A number of factors, such as surface material, local terrain form, ground vegetation height, and terrain 

slope could potentially influence errors, and these effects were assessed. It was an important 

consideration in this study to examine terrain models, as they typically would be provided by a 

commercial data vendor, for ecological applications in an operational context. Therefore, DTMs 

produced with a commercially available algorithm were used [33]. It is acknowledged that different 

algorithms may produce different—and sometimes better—DTMs than those algorithms used by many 

commercial vendors in large-scale operational projects, like, for example, Axelsson’s algorithm [33]. It 

was outside the scope of this study to compare algorithms. The analysed ALS data had a point density 

of 7.7–11.0 points·m−2. The point densities in operational projects seem to have increased, at least in 

some countries, in recent years. Point densities in large-scale ALS surveys of at least 5 points·m−2 are 

nowadays common to accommodate needs for higher densities for certain purposes, like detection of 

cultural remains [36]. It is well known that point density will affect the quality of the resulting DTM [37]. 

It was also outside the scope of this study to quantify the effects of point density on DTM quality.  

2. Materials and Methods 

2.1. Study Area 

The study area is located in the municipality of Rollag, southern Norway (60°0′N 9°01′E,  

910–950 m above sea level) (Figure 1). The study was conducted within a rectangle of size  

200 × 600 m. The work took place in the tree line, which at this location is around 900–940 m above sea 

level. The main tree species in the study area are Norway spruce (Picea abies (L.) Karst.), Scots pine 

(Pinus sylvestris L.) and mountain birch (Betula pubescens ssp czerepanovii). The total stem density 

within the study area is estimated to be 97 trees·ha−1, of which only 15 trees·ha−1 are taller than 2 m [14]. 

2.2. Field Measurements 

2.2.1. Establishing and Recording of Ground Control Point Positions 

Field work was conducted in August 2010. The coordinates of a total of 40 sample points were 

predetermined such that they constituted a systematic sample spaced 50 m apart within the 200 × 600 m 

rectangle. These 40 points were intended for subsequent sub-sampling of terrain control points and 

detailed terrestrial measurements. Real-time kinematic (RTK) differential Global Navigation Satellite 

System (GNSS) (Global Positioning System and Global Navigation Satellite System) was used to 
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navigate to the points. A point was reached when the receiver reported a fixed solution. Two Topcon 

Legacy E+ 40-channel dual-frequency receivers observing both pseudo range and carrier phase were 

used as rover and base receivers, respectively. The base station was established at a national reference 

point located within the study area (Figure 1). Based on the accuracy standard for national reference 

points applied by the Norwegian Mapping Authority [38] and the error of the RTK routine, the accuracy 

(RMSE) of the location of the points in the field and the subsequent recording of terrain control points 

(see details below) was expected to be 1.0–1.5 cm horizontally and 1.5–2.5 cm vertically. 

  

Figure 1. (a) Location of the study area in southern Norway (black square); (b) Design of 

the trial. The predefined sample points are marked as circles (n = 40) and those that were 

identified in field (n = 39) and terrain control points (n = 387) are shown as black dots. The 

green area is defined as forest according to the official N50 topographic map series. 

Accordingly, the light area is above the tree line. The black triangle shows the location of 

the national reference point of the Norwegian Mapping Authority (60°00′21.10929″N 

9°01′43.97760″E, 951.904 m above sea level). Contour interval is 5 m. 

For each of the 40 sample points that were identified in the field, the intention was to establish  

10 additional terrain control points. The sampling of the control points was conducted according to a 

strict systematic design. A measuring tape was stretched out on the ground through the initial sample 

point and oriented in the north-south direction by using a hand-held compass. Then a control point was 

established at exactly every 5 m along the measuring tape (i.e., at the 5, 10, …, 25 m mark of the tape) 

in the northern and southern sides of the initial sample point. 

a b 
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For each control point, the x, y and z coordinates were recorded with RTK GNSS measurements 

according to the same RTK routine as used for navigation to the sample points, see details above. Due 

to budget constraints, RTK GNSS was used to determine the reference coordinates for the control points 

as well as for the sample points mentioned above, rather than, for example, using total stations, because 

RTK GNSS was faster and cheaper and the errors indicated above were considered as acceptable relative 

to the error of the DTMs subject to analysis. Unfortunately, it was not feasible to maintain radio contact 

between the base station and the rover receiver for some of the control points and even one of the initial 

sample points. When planning the study, the aim was to collect field data from the 40 sample points and 

400 control points, i.e., a total of 440 points. In practice, field data from 426 points were acquired. In 

this study, these 426 points were used as ground control points. The maximum distance between the base 

station and the ground control points was 345 m. The positional dilution of precision ranged between 

1.5 and 3.2 with a mean value of 1.9. The number of satellites ranged between 6 and 13 with a mean of 

11. The geographical distribution of the measured ground control points is displayed in Figure 1. 

For each point, three variables were recorded. They were “terrain form”, “terrain surface”, and 

“vegetation height”. 

2.2.2. Recording of Ground Control Point Properties 

Relating DTM errors to terrain form was considered important because establishment, survival, and 

growth of pioneer trees are hardly random processes. DTM error levels for different terrain forms may 

be important information when considering the likelihood of detecting occurrences of trees for certain 

terrain forms. Local-scale variability in a population of emerging trees in the forest-tundra ecotone is 

known to depend on variations in the terrain [4]. Terrain form, denoted as TFORM, was defined as a 

categorical variable which attained the values “flat” (TFORMflat), “concave” (TFORMconcave), and 

“convex” (TFORMconvex). These classes were treated as mutually exclusive and assigned to the points 

by assessing the form of the terrain surface within a radius of approximately 1 m centred on the point. 

The spatial scale chosen for assessment of terrain form was determined to capture terrain variations that 

for this particular study area were anticipated to be at about the minimum scale of what the DTM would 

be able to capture, yet would be a meaningful scale for detection of vegetation changes in the form of 

small pioneer trees. 

Terrain surface was intended to capture the material on the surface. The idea was that different 

materials would have different reflectivity because of the materials’ compactness, structure, and colour. 

Terrain surface, denoted as TSURF, was defined as a categorical variable with three mutually exclusive 

classes, namely “rock/bare” (TSURFbare), “lichen/heather” (TSURFheather), and “green” vegetation 

(TSURFgreen). Heather comprised common heather (Calluna vulgaris), crowberry (Empetrum nigrum L.), 

cowberry (Vaccinium vitis-idaea), mountain heath (Phyllodoce caerulea), and alpine azalea (Loiseleuria 

procumbens), but not bilberry (Vaccinium myrtillus L.). The latter was classified as green vegetation. 

Vegetation height, denoted as VEGH, was treated as a categorical variable with three classes:  

“<10 cm” (VEGH<10), “10–20 cm” (VEGH10–20), and ”>20 cm” (VEGH>20). A summary of the field data 

is displayed in Table 1. Three examples of ground control points with different properties are displayed 

in Figure 2. 
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Table 1. Frequency distribution of the measured ground control points a on terrain form, 

terrain surface and vegetation height. 

Terrain 

Form 

Terrain Surface/Vegetation Height 

Rock/Bare Lichen/Heather Green 

<10 cm 10–20 cm >20 cm <10 cm 10–20 cm >20 cm <10 cm 10–20 cm >20 cm 

Flat 16 0 0 30 0 0 202 43 51 

Concave 0 0 0 3 0 0 33 14 11 

Convex 1 0 0 3 0 0 15 2 2 

Note: a The sample points (n = 39) and terrain control points (n = 387) constitute the ground control points. 

   

Figure 2. Examples of three ground control points with different characteristics. (a) A flat 

location with green vegetation surface and vegetation height 10–20 cm; (b) A flat location 

with rock/bare surface and vegetation height < 10 cm; (c) A concave location with green 

vegetation surface and vegetation height > 20 cm. 

2.3. Laser Data Acquisition 

Laser scanner data were acquired under leaf-on conditions on two occasions using a fixed-wing 

aircraft. The first acquisition took place on 24 July 2006 using an Optech ALTM 3100C laser scanner 

system. In the present study, this sensor was denoted as “ALTM 3100C”. Average flying altitude was 

700 m above ground level and the pulse repetition frequency (PRF) was 100 kHz. For convenience, this 

acquisition was designated ACQ1. 

The three other ALS data acquisitions were carried out on 11 June 2007. The instrument used in 2007 

was an upgraded version of the Optech ALTM 3100C used in 2006. After upgrade, the system had dual 

pulse capabilities, which implies that it was capable of handling two pulses in the air at a time. In this 

study, it was denoted as “ALTM Gemini”. It should be noticed that sensor-specific properties such as 

pulse width, pulse energy, and peak power were altered during upgrade (Table 2). 

When planning the 2007 acquisitions, the objective was to fly the sensor in such a way that it would 

be possible to (1) compare acquisitions between sensors with sensor and flight properties as similar as 

possible (sensor comparison), (2) compare pulse repetition frequencies, and finally, (3) compare flying 

a b c 
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altitudes. All the four ALS datasets were, therefore, acquired by flying along two north-east/south-west 

oriented and parallel flight lines each time. The coordinates of the flight lines were as similar in the four 

acquisitions as practically feasible. 

Table 2. Summary of laser scanner data and flight parameters of the four laser data acquisitions. 

Parameter 
Acquisition 

ACQ1 ACQ2 ACQ3 ACQ4 

System ALTM 3100C ALTM Gemini ALTM Gemini ALTM Gemini 
Pulse width 14.7 ns >14.7 ns a b b 
Pulse energy 69 μJ <69 μJ a b b 
Peak power 4.7 kW <4.7 kW a b b 
Wavelength 1064 nm 1064 nm 1064 nm 1064 nm 

Repetition frequency 100 kHz 125 kHz 166 kHz 166 kHz 
Scan frequency 70 Hz 70 Hz 70 Hz 70 Hz 

Pulse mode Single Single Single Dual 
Date 24 July 2006 11 June 2007 11 June 2007 11 June 2007 

Mean flying altitude 700 m a.g.l. 700 m a.g.l. 700 m a.g.l. 1130 m a.g.l. 
Flight speed 80 m·s−1 75 m·s−1 75 m·s−1 75 m·s−1 

Max. scan angle 14° 14° 14° 10° 
Max processing angle 14° 14° 14° 10° 

Mean footprint diameter 18 cm 17 cm 17 cm 28 cm 
Mean point density 7.7 m−2 9.1 m−2 11.0 m−2 8.4 m−2 

Proportion of deleted echoes c 0% <0.01%  0.2% 9.3% 

Notes: a Specific values not released by Optech Inc. However, the ALTM 3100C and the ALTM Gemini are 

the same instruments before and after upgrade, respectively. Thus, assumptions about the pulse properties can 

be drawn on the basis of the change in repetition frequency. b Instrument specifications were not released by 

Optech Inc., however, pulse width will be larger than pulse width of the 125 kHz acquisition (ACQ2), whereas 

pulse energy and peak power will be lower. c Low echoes deleted in the terrain classification, see text 

for explanation. 

The major purpose of the ALS acquisitions was to study vegetation, primarily small pioneer trees. 

The operating parameters of the aircraft and instruments were determined for this purpose. A preliminary 

investigation in another study area with mature forest indicated that the best correspondence between 

canopy height distributions derived from the ALTM 3100C data at 100 kHz and from the ALTM Gemini 

could be obtained by flying the ALTM Gemini system with a 125 kHz PRF. The first of the 2007 

acquisitions was, therefore, carried out with an average flying altitude of 700 m above ground level and 

a 125 kHz PRF. This acquisition was designated ACQ2 and it was intended for comparisons of sensors 

(ALTM 3100C versus ALTM Gemini) and pulse repetition frequencies (125 versus 166 kHz). 

Secondly, the ALTM Gemini sensor was flown at 700 m above ground level with a 166 kHz PRF, 

designated ACQ3. This acquisition allowed comparisons of pulse repetition frequencies (125 versus 

166 kHz) and flying altitudes (700 versus 1130 m above ground level). Finally, ALTM Gemini was 

flown at 1130 m above ground level at a PRF of 166 kHz, designated ACQ4, and it allowed comparison 

of flying altitudes (700 versus 1130 m above ground level). It should be noted that dual pulse mode was 

required to capture data at 1130 m with 166 kHz (ACQ4). 
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Seasonality will influence structure and color of the vegetation and may as a result affect the laser 

backscatter signal. A basic requirement for the comparison of sensors was that the trees and other ground 

vegetation were in a similar state on 24 July 2006 when the ALTM 3100C data were acquired and on 

11 June 2007 when the ALTM Gemini data were acquired. In late July, the ground vegetation can be 

expected to be fully developed. In early to mid-June, the state of the ground vegetation is subject to large 

inter-annual variations, depending on snow conditions and temperature. It was important to have full 

control over the conditions when the second acquisition took place in 2007. A field visit therefore took 

place at 11:00 UTC on 10 June 2007—28 h before the ALTM Gemini acquisitions took place  

(15:20–15:55 UTC on 11 June 2007). Across the entire study area it appeared that heather and small 

bushes like dwarf birch (Betula nana) and willow tickets (various Salix species) were fully developed 

(Figure 3). So was also the grass, apart from a few wet spots where the snow had melted recently and 

dead grass from the previous year was still visible. 

  

Figure 3. Photographs taken from a central part of the study area towards south (a) and north 

(b) showing the stage of vegetation development as observed in the field at 11:00 UTC on 

10 June 2007. The ALS data were acquired at 15:20–15:55 UTC on 11 June 2007. Apart 

from a few wet spots with some dead grass from the previous year still visible, the ground 

vegetation appeared fully developed. 

2.4. Laser Data Processing 

2.4.1. Pre-Processing of Laser Data 

The laser data were pre-processed by the contractor (Blom Geomatics, Norway). Planimetric 

coordinates (x and y) and ellipsoidic height values were computed for all laser points. Since each of the 

four ALS acquisitions consisted of two overlapping strips, a strip adjustment was carried out by the 

contractor using TerraMatch software [39]. The strip-wise elevation was corrected by a constant factor 

ranging from −0.130 m to +0.166 m for the individual strips [40]. The maximum correction difference 

between the two strips of an acquisition was 0.109 m (ACQ4). In the strip adjustment, a constant  

strip-wise roll correction of 0.0023–0.0080 degrees was also applied. 

The laser points used to derive the terrain models were the echoes labelled “last-of-many” and 

“single”. Because of the generally low vegetation in the study area most of the echoes were of the type 

a b 
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“single”. For each of the four ALS acquisitions, TerraScan software [41] was used to classify ground 

points and derive terrain models. In this classification it appeared that a considerable amount of 

anomalous echoes (long ranges below the terrain surface) and echoes with large measurement errors 

were present in the data [40]. The large measurement errors were due to low energy levels at high 

repetition frequencies (125 and 166 kHz) and at high flying altitudes (1130 m above ground level). These 

echoes were identified and discarded by the contractor using standard tools in TerraScan (“low points” 

and “below points” algorithms). Details about the number of discarded echoes in each dataset can be 

found in Table 2. 

2.4.2. Calculating Terrain Models 

After the low echoes were discarded, triangulated irregular networks (TINs) were generated for the 

four ALS acquisitions using the planimetric coordinates, and corresponding height values of the last 

echoes classified as terrain ground points according to the progressive triangular irregular network 

densification algorithm [33] of TerraScan. The classification of ground points to obtain the four different 

TIN models was based on typical parameters used in operational projects. The “iteration distance” [41] 

was set to 1.0 m. The other major parameter controlling the outcome of the classification, i.e., the 

“iteration angle” was assigned a value of 9 degrees. The algorithm starts from below with selected seed 

points (lowest echoes) within grid cells of pre-defined size. These seed points are used to construct an 

initial TIN model. Additional echoes are then added as vertices of the TIN model in subsequent iterations 

in which inclusion of new vertices is controlled by the iteration angle and iteration distance. The iteration 

angle controls the maximum allowable angle between a potentially new vertex, its projection on a 

triangle plane and the closest triangle vertex. A large angle will allow greater vertical variability over 

short distances, with a potential risk of including, for example, above-ground vegetation echoes in the 

model. The iteration distance controls the maximum allowable distance between a potentially new vertex 

and the triangle plan and helps in avoiding big vertical jumps when the triangles are large.  

In the subsequent analysis of DTM errors, the four derived TIN models were the DTMs subject  

to analysis. 

2.4.3. Identifying PRF Shifts in Dual Pulse Mode 

A final manual inspection of the ALS data revealed some unexpected patterns of the backscatter 

intensity for ACQ3. The entire eastern strip (Figure 4) consistently appeared to have higher intensity 

values than the western strip, which is important to account for in the subsequent statistical analysis. It 

appeared that the ALS data were acquired along the western strip at the preset PRF of 166 kHz, whereas 

data along the eastern strip were acquired at 142 kHz due to an automatic PRF shift activated in dual 

pulse mode. The automatic shift in PRF is implemented to avoid a risk of losing data when there is a 

rapid decrease in distance between the aircraft and the ground. This PRF was kept stable as long as the 

aircraft recorded data over the study area. By inspection of the data, it appeared that the PRF returned to 

its initial setting of 166 kHz, approximately 1.2 km south of the study area (Figure 4). 
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Figure 4. Illustration by backscatter intensity of the unexpected automatic shift in pulse 

repetition frequency (PRF) from 166 to 142 kHz for ACQ3. (a) Backscatter intensity for the 

two strips of ACQ3 over the study area. Low backscatter intensity (dark grey) is shown for 

the western strip flown at 166 kHz, as planned. High backscatter intensity (light grey) is seen 

for the eastern strip (142 kHz); (b) Illustration of where the initial PRF (166 kHz) was 

restored in the eastern strip, approximately 1.2 km outside the study area, by a significant 

drop in backscatter intensity. 

2.4.4. Terrain Slope Calculation 

Based on each of the four processed TIN models, the slope was calculated in percent as a continuous 

variable at the location of the control points. However, TINs by their very nature can be spiky in terms 

of slope, since no smoothing is applied, especially at a sub-meter scale. Further, since the TIN models 

were derived from ALS data with point densities of 7.7–11.0 points·m−2 (Table 2), terrain slope derived 

from a TIN model of full density will also lead to a characterisation of the terrain at a geographical scale 

which may be irrelevant for the biological phenomenon motivating this study (vegetation changes 

represented by small pioneer trees in the boreal-alpine ecotone). Thus, the TINs were smoothed as much 

as possible prior to slope calculation, under the condition that the elevation at the vertices of the initial 

TIN models should not deviate by more than 0.2 m from the smoothed TIN models, assuming linear 

interpolation. This smoothing resulted in TIN models for slope calculation with 4.2%–9.7% of the initial 

number of vertices retained, corresponding to an average of one vertex per 4–6 m2. It should be noted 

that a large portion of the study area was located along a fairly flat part of the mountain ridge (see Figures 

1 and 2b), with fewer vertices per unit area along the ridge. However, there were more vertices on the 

sides of the ridge where the local terrain variability was greater. Overall the study area displayed a fairly 

wide range of slope values (Table 3).  

100 m 

a 

166 kHz 

PRF shift 

100 m

142 kHz 

b 
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2.4.5. Overall Calibration of the Laser Data 

Finally, a note on the calibration procedures is appropriate. The calibration affecting potential 

systematic shifts in terrain elevation consists of a three-stage procedure. First, the ALS instrument is 

typically calibrated by test flights and in the laboratory by the system producer during maintenance and 

upgrade (A). Secondly, a calibration is conducted in conjunction with installation in the aircraft (B). 

Finally, there is a daily calibration routine in which ground elevation is collected in the field in every 

project (C). In the current study, calibrations A-B were conducted, but not the local calibration against 

field control elevation, because the ALS data were mainly collected for study of vegetation (height 

values relative to the terrain surface). Thus, the current data may be subject to an overall shift in elevation 

which would not be present in a pure commercial product. However, potential systematic differences in 

shifts for different experimental factors (e.g., terrain form and vegetation height), which were subject to 

analysis in the current study, will be unaffected by overall shifts in DTM elevation.  

2.5. Analysis 

2.5.1. Estimation of Error Statistics 

The ground control points were spatially registered to the four respective TIN models according to 

their coordinates. Terrain surface elevation values were computed for each control point by linear 

interpolation from the TINs. The relative error in elevation for each point was computed as the difference 

between the interpolated TIN surface elevation and the ground control elevation and denoted ε. 

Several descriptive statistics were estimated for various parts of the dataset. First, the mean error 

between the TIN elevations and ground control points was estimated for all observations as well as for 

the four acquisitions and slopes. The slope was divided into six classes (Table 3). The mean error ( )̅, 

which quantifies the magnitude of a systematic shift in the DTM relative to the ground control points, 

was estimated as the mean difference between the DTM elevations and the ground control elevations 

according to  

̅
1

 (1)

where εi is the difference between the TIN elevation and the ground control elevation for observation i, 

i = 1, 2, …, n in a given subgroup of the data. Standard deviation, which quantifies the random error 

around the derived terrain surface, was estimated for the differences (paired observations) according to 

∑ ̅
1

 (2)

Recent studies have pointed out that conventional estimators like those presented above, are not 

always suitable for characterising DTM errors because they assume normally distributed errors and that 

no outliers exist [42]. Q-Q plots of the error distributions for the four DTMs were therefore produced 

and inspected visually for assessment of extreme outliers and serious departure from normality. 

Estimates of robust error measures suited for non-normal error distributions were also provided. The 

applied estimators comprised the 50% sample quantile of the errors (P50ε, i.e., the median value), which 
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is a robust estimator for a systematic shift of the DTM [43]. Furthermore, the normalized median 

absolute deviation (NMAD), which can be considered an estimate for the standard deviation resilient to 

outliers in the error distribution [43], was estimated according to 

NMAD = 1.4826 × mediani (|εi − P50ε|) (3)

Finally, the 95% quantile of the absolute value of the errors (P95|ε|) was estimated to gauge the 

magnitude of the errors when excluding the 5% most extreme errors. The mentioned statistics were 

estimated for each acquisition for the individual terrain forms, terrain surfaces, and vegetation heights. 

2.5.2. Regression Analysis of Errors 

The contribution of the various effects (acquisition, terrain form, terrain surface, vegetation height, 

terrain slope) to the errors of the terrain models was assessed by regression analysis. Each of the  

426 ground control points was included as four separate observations in the model, one for each DTM. 

These four observations for each point were likely to be intercorrelated. The model was therefore 

developed by means of a mixed modelling procedure to account for the hierarchical structure of the data. 

Further, terrain form (TFORM), terrain surface (TSURF), and vegetation height (VEGH) were included 

as categorical variables, while terrain slope in percent (SLOPE) was included as a continuous variable. 

Since it was revealed that the pulse repetition frequency for ACQ3 had been unexpectedly and 

automatically shifted from 166 kHz to 142 kHz for some of the control points (see details above), the 

effects for this particular acquisition were allowed to be accounted for in the model. The full model can 

be expressed as the mean (expected value) function 

E ACQ +	 ACQ + ACQ ∗ + ACQ  

+ TFORMconcave 	 TFORMconvex 	+	 TSURFheather 	+	 TSURFgreen 	

+	 VEGH10–20 +	 VEGH 20 + SLOPE  

(4)

where εQi is the error in elevation using observations from acquisition Q, Q = {ACQ1, ACQ2, ACQ3, 

ACQ4} for ground control point i. The betas (β0, β1, …, β11) are parameters for fixed effects to be 

estimated. Correspondingly, the alphas (α0i) represent random effects for ground control point i. In order 

to account for the unexpected shift in PRF from 166 to 142 kHz for ACQ3, † is used to symbolise the 

142 kHz acquisition of ACQ3 whereas * represents the 166 kHz acquisition of ACQ3. The model was 

estimated using the MIXED procedure of the SAS statistical software package [44]. 

It should be noticed that the reference in the model is acquisition ACQ1, terrain form TFORMflat, 

terrain surface TSURFbare, and vegetation height VEGH<10. Thus, all estimated parameters for the 

respective variables express differences relative to this reference. The effects of, for example, the 

concave and convex terrain forms (TFORMconcave and TFORMconvex) relative to flat areas (TFORMflat) 

will be expressed directly by the parameter estimates of the two former variables. 

2.5.3. Tests of Contrast in the Regression Analysis 

Contrasts were constructed in the regression analysis to test if there is a significant difference between 

individual acquisitions in pairs of such acquisitions (ACQ2 versus ACQ3; ACQ2 versus ACQ4; ACQ3 
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versus ACQ4). Contrasts were also constructed to test if there is a significant difference between terrain 

forms (TFORMconcave versus TFORMconvex), terrain surfaces (TSURFheather versus TSURFgreen), and 

ground vegetation heights (VEGH10–20 versus VEGH>20). Finally, to see if there was any effect of  

the unexpected change of pulse repetition frequency for ACQ3, the difference between 142 kHz and  

166 kHz was tested. 

2.5.4. Goodness of Fit of the Regression Model 

Because the four observations for each ground control point were likely to be intercorrelated,  

the conventional R2 statistic does not fulfill general requirements for an R2 statistic proposed by, e.g., 

Kvålseth [45]. Model fit was therefore assessed by the pseudo-R2, which has been used for mixed models 

by others [46]. The pseudo-R2 was computed as 1 minus the ratio between the sum of residual squares 

(SSR) and the corrected total sum of squares (CSST), i.e.,  

Pseudo‐ 1
SSR
CSST

 (5)

3. Results 

3.1. Overall Results 

Visual inspection of the Q-Q plots of the error distributions (Figure 5) revealed that the departure 

from normality was moderate and that the extreme errors were of moderate magnitude for all the four 

DTMs. The extreme errors were smaller than ±0.6 m for all DTM models and even within a range of 

±0.4 m for some of the models. The individual extreme errors were few in number. The error statistics 

assuming normally distributed errors, corresponded quite well with their robust counterparts that did not 

assume normally distributed errors, confirming that non-normality and extreme errors were not a serious 

concern in this study. Thus, the mean error ( )̅ and the 50% quantile of the errors (P50ε) deviated by 

0.04 m or less for all sub-groups of the material and in most cases with only 0.01–0.02 m (Tables 3 and 

4). Likewise, the standard deviation of the errors (s) deviated from the normalized median absolute 

deviation (NMAD) by a maximum of 0.11 m, while in most cases the deviation was smaller than 0.05 m 

(Tables 3 and 4). 

 

Figure 5. Cont. 
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Figure 5. Normal Q-Q plot for the distribution of the individual errors (ε) between TIN 

surface elevation and ground control elevation for the four different TIN models. 

3.2. Detailed Results for Individual Effects 

The overall mean error between the TIN elevation and the elevation of the ground control points 

across all ALS acquisitions was 0.01 m (Table 3), which was identical to the P50ε value. For the four 

DTMs the mean error ranged between −0.04 and 0.08 m (Table 3). In the regression analysis, all the four 

mean errors of the individual acquisitions differed statistically from each other (p < 0.001, Table 5) 

significantly. The standard deviation of the errors in elevation ranged between 0.07 and 0.08 m for the 

100–125 kHz acquisitions (ACQ1–ACQ2) and was 0.13 m for the 166 kHz acquisitions (ACQ3–ACQ4) 

(Table 3). The somewhat larger random errors for the 166 kHz acquisitions were reflected in higher 

values of the 95% quantile of the absolute value of the errors (P95|ε|) (Table 3). There was no statistically 

significant effect of the unexpected shift in PRF from 166 to 142 kHz for ACQ3 (p = 0.103, Table 5). 

Table 3. Mean error of TIN surface elevation ( )̅, standard deviation of the errors (s), 50% 

quantile of the errors (P50ε), normalized median absolute deviation (NMAD), and 95% quantile 

of the absolute value of the errors (P95|ε|) for different acquisitions and terrain slopes. 

Effect n  (m) s (m) P50ε (m) NMAD (m) P95|ε| (m) 

Acquisition       

700 m 100 kHz (ACQ1) 426 −0.03 0.07 −0.03 0.07 0.14 

700 m 125 kHz (ACQ2) 426 0.08 0.08 0.07 0.11 0.22 

700 m 166 kHz (ACQ3) a 426 0.04 0.13 0.05 0.12 0.28 

1130 m 166 kHz (ACQ4) 426 −0.04 0.13 −0.04 0.12 0.25 

Slope       

<10% 359 0.00 0.09 0.00 0.08 0.18 

10%–20% 560 0.01 0.11 0.01 0.10 0.21 

20%–30% 387 0.02 0.12 0.02 0.10 0.23 

30%–40% 205 0.03 0.13 0.04 0.13 0.25 

40%–50% 98 0.04 0.15 0.04 0.13 0.35 

>50% 95 0.05 0.16 0.04 0.16 0.32 

Overall 1704 0.01 0.12 0.01 0.10 0.24 

Note: a Comprises data acquired at 166 kHz along the western strip and data acquired at 142 kHz along the 

eastern strip, see Figure 4. 



Remote Sens. 2015, 7 4717 

 

Table 4. Mean error of TIN surface elevation ( )̅, standard deviation of the errors (s), 50% 

quantile of the errors (P50ε), normalized median absolute deviation (NMAD), and 95% 

quantile of the absolute value of the errors (P95|ε|) for different effects (terrain form, terrain 

surface, vegetation height). 

Acquisition Effect n  (m) s (m) P50ε (m) NMAD (m) P95|ε| (m) 

 Terrain form (TFORM)       

700 m 100 kHz (ACQ1) Flat 342 −0.03 0.06 −0.04 0.07 0.13 

700 m 100 kHz (ACQ1) Concave 61 0.02 0.08 0.01 0.05 0.14 

700 m 100 kHz (ACQ1) Convex 23 −0.07 0.06 −0.07 0.11 0.17 

700 m 125 kHz (ACQ2) Flat 342 0.08 0.07 0.07 0.10 0.20 

700 m 125 kHz (ACQ2) Concave 61 0.13 0.09 0.13 0.20 0.31 

700 m 125 kHz (ACQ2) Convex 23 0.01 0.10 −0.01 0.08 0.13 

700 m 166 kHz (ACQ3) a Flat 342 0.03 0.13 0.04 0.12 0.27 

700 m 166 kHz (ACQ3) a Concave 61 0.11 0.13 0.12 0.19 0.30 

700 m 166 kHz (ACQ3) a Convex 23 −0.02 0.17 −0.02 0.11 0.32 

1130 m 166 kHz (ACQ4) Flat 342 −0.04 0.12 −0.05 0.12 0.23 

1130 m 166 kHz (ACQ4) Concave 61 0.04 0.12 0.03 0.12 0.26 

1130 m 166 kHz (ACQ4) Convex 23 −0.11 0.19 −0.15 0.24 0.37 

 Terrain surface (TSURF)       

700 m 100 kHz (ACQ1) Rock/bare 17 −0.09 0.04 −0.08 0.12 0.20 

700 m 100 kHz (ACQ1) Lichen/heather 36 −0.04 0.04 −0.04 0.06 0.11 

700 m 100 kHz (ACQ1) Green 373 −0.02 0.07 −0.03 0.06 0.14 

700 m 125 kHz (ACQ2) Rock/bare 17 0.01 0.06 0.00 0.08 0.12 

700 m 125 kHz (ACQ2) Lichen/heather 36 0.06 0.05 0.06 0.09 0.15 

700 m 125 kHz (ACQ2) Green 373 0.09 0.08 0.08 0.12 0.23 

700 m 166 kHz (ACQ3) a Rock/bare 17 −0.06 0.12 −0.02 0.07 0.32 

700 m 166 kHz (ACQ3) a Lichen/heather 36 −0.01 0.14 0.02 0.15 0.29 

700 m 166 kHz (ACQ3) a Green 373 0.05 0.13 0.05 0.13 0.28 

1130 m 166 kHz (ACQ4) Rock/bare 17 −0.11 0.09 −0.11 0.18 0.22 

1130 m 166 kHz (ACQ4) Lichen/heather 36 −0.06 0.08 −0.05 0.09 0.19 

1130 m 166 kHz (ACQ4) Green 373 −0.03 0.13 −0.04 0.13 0.25 

 Vegetation height (VEGH)       

700 m 100 kHz (ACQ1) <10 cm  303 −0.04 0.05 −0.04 0.06 0.12 

700 m 100 kHz (ACQ1) 10–20 cm 59 0.00 0.06 −0.01 0.06 0.13 

700 m 100 kHz (ACQ1) >20 cm  64 0.03 0.11 0.01 0.11 0.24 

700 m 125 kHz (ACQ2) <10 cm  303 0.07 0.07 0.07 0.10 0.17 

700 m 125 kHz (ACQ2) 10–20 cm 59 0.09 0.09 0.09 0.14 0.26 

700 m 125 kHz (ACQ2) >20 cm  64 0.13 0.11 0.12 0.18 0.31 

700 m 166 kHz (ACQ3) a <10 cm  303 0.02 0.13 0.04 0.11 0.28 

700 m 166 kHz (ACQ3) a 10–20 cm 59 0.07 0.12 0.06 0.14 0.26 

700 m 166 kHz (ACQ3) a >20 cm  64 0.12 0.16 0.11 0.19 0.37 

1130 m 166 kHz (ACQ4) <10 cm  303 −0.06 0.11 −0.06 0.12 0.23 

1130 m 166 kHz (ACQ4) 10–20 cm 59 −0.03 0.11 −0.03 0.10 0.27 

1130 m 166 kHz (ACQ4) >20 cm  64 0.06 0.14 0.07 0.14 0.26 

Note: a Comprises data acquired at 166 kHz along the western strip and data acquired at 142 kHz along the 

eastern strip, see Figure 4. 
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Table 5. Fixed effects and tests of contrasts in the regression analysis of the error in TIN 

surface elevation (ε) estimated according to Equation (4). 

Coefficient Estimate p-Value 

Intercept (β0) −0.098 <0.001 
ACQ2 0.107 <0.001 

ACQ3, 142 kHz a 0.049 <0.001 
ACQ3, 166 kHz a 0.068 <0.001 

ACQ4 −0.010 0.066 
TFORMconcave 0.058 0.009 
TFORMconvex −0.050 0.014 
TSURFheather 0.045 0.020 
TSURFgreen 0.055 0.017 
VEGH10–20 0.024 0.014 
VEGH>20 0.081 <0.001 
SLOPE  0.003E-3 0.981 

Tests of contrasts:   

ACQ2 versus ACQ3  <0.001 
ACQ2 versus ACQ4  <0.001 
ACQ3 versus ACQ4  <0.001 

ACQ3: 142 kHz versus 166 kHz  0.103 
TFORMconcave versus TFORMconvex  <0.001 

TSURFheather versus TSURFgreen  0.400 
VEGH10–20 versus VEGH>20  <0.001 

Pseudo-R2 0.30  

Note: a Comprises data acquired at 166 kHz along the western strip and data acquired at 142 kHz along the 

eastern strip, see Figure 4. 

According to the regression analysis, the mean error differed significantly between the three terrain 

forms: flat, concave, and convex (Table 5). The TIN elevations were 0.058 m (p = 0.009) higher above 

the control heights for concave surfaces as compared to flat surfaces. Similarly, the TIN elevations for 

flat surfaces were 0.050 m (p = 0.014) higher above the control heights compared to convex surfaces 

Consequently, the difference between the concave and convex surfaces was on average 0.108 m  

(p < 0.001) since the effects are additive. This finding indicates that the TIN models were not fully 

capable of following the terrain variation at the fine geographical scale deemed relevant for detecting 

vegetation changes in the form of small pioneer trees. Potential causes for these patterns of mean errors 

for different terrain forms are: (1) the limited probability of hitting the absolute bottom of a terrain 

depression and the absolute peak of a convex surface, even when the point density is high; further, (2) for 

the geographical scale considered in the current study (~1 m, see details in Section 2.2.2), the spatial 

extent of an individual laser footprint (0.17–0.28 m, Table 2) represents an inherent averaging of the 

elevation within a footprint, although the central part of a footprint will dominate the footprint’s 

elevation due to the uneven (Gaussian) distribution of energy across a footprint; and lastly, (3) there is 

an algorithm-specific effect that should be kept in mind. For the TIN-based algorithm applied in the 

current study, linear interpolation was used to compute elevation in-between vertices of a triangle. If 

there is a non-linear curvature of the terrain, linear interpolation may lead to those error patterns reported 
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above. Other algorithms, like, for example, those based on certain forms of splines may therefore give 

slightly different results at very fine geographical scales. Non-linear interpolation could even have been 

used with the current TIN models. 

The regression analysis revealed that the mean errors were less related to terrain surface 

characteristics than to terrain form. The difference between TIN elevations and ground control did not 

differ significantly between vegetated surfaces, i.e., surfaces with heather and green vegetation, 

respectively (p = 0.400, Table 5). However, there was a statistically significant effect of bare rock 

relative to the vegetated surfaces of 0.045–0.055 m (p = 0.017–0.020), with the TIN surfaces for 

vegetated areas located relatively higher than for bare rock. 

The effect of vegetation height on TIN elevation was very pronounced. The TIN elevations relative 

to the ground control elevation for the tallest vegetation (>20 cm) was 0.057 m (p < 0.001) higher than 

for the intermediate vegetation height class (10–20 cm) and 0.081 m (p < 0.001) higher than for the 

lowest vegetation (<10 cm), which are reasonable and logical findings. 

Detailed studies of the errors for different terrain forms, terrain surfaces, and vegetation heights for 

each individual acquisition (Table 4) revealed that random errors (standard deviation) tended to be larger 

for concave and convex terrain forms than for flat surfaces, regardless of acquisition. For flat surfaces 

the standard deviation ranged from 0.06 to 0.13 m, whereas for concave and convex surfaces 

corresponding standard errors were 0.06–0.19 m. Likewise, the standard deviations across all 

acquisitions tended to be higher for green vegetation than for the other vegetation types, presumably 

because green vegetation had a higher proportion of tall ground vegetation than the other surface  

types (Table 1). The tallest ground vegetation (>20 cm) showed, indeed, the highest standard deviations 

among all the sub-groups of the three experimental factors, with a standard deviation ranging between 

0.11 and 0.16 m. 

The analysis showed that the effect of slope on the difference between TIN elevation and ground 

control elevation was not statistically significant (p = 0.981, Table 5). The standard deviation seemed to 

be relatively stable across the entire range of slope angles (Table 3).  

4. Discussion 

4.1. General Considerations 

The analysis showed that there was a mean error of −0.04 to 0.08 m (Table 3) for the various  

ALS-derived DTMs. As noted above, the so-called daily calibration routine, by which ground elevation 

is collected in the field in the survey area, was ignored in the current study. Such global calibrations aim 

at eliminating the overall shift in the modelled terrain surface, but local effects may remain even when 

a global calibration is undertaken. The main merit of the current study is (1) the quantification of the 

relative effects of the various factors affecting the surface elevation and (2) the reported random errors, 

since these quantities are unaffected by the overall calibration. Thus, some caution should be exercised 

when assessing the mean errors for the entire material and for individual classes, since these quantities 

most likely have been affected by systematic shifts that are expected to be reduced in operational projects 

by daily calibration. 
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Further, the error of the ground control itself deserves some attention. As noted above, the accuracy 

of the ground control was expected to be 1.0–1.5 cm horizontally and 1.5–2.5 cm vertically. The vertical 

accuracy (RMSE) is around 10%–35% of, for example, the reported standard deviation of the four DTMs 

(0.07–0.13 m, Table 3) and obviously less than 10%–35% of the accuracy (RMSE) of the DTMs. The 

magnitude of the reported standard deviation of the modelled terrain surfaces is therefore only 

marginally affected by the uncertainty of the ground control, and seems to satisfy generally 

recommended standards of at least three times more accurate positions of the control points than the 

DTMs being evaluated [43]. 
The noticeable increase in random errors with increasing PRFs was as expected. It is worth noting 

though, that while the standard deviation was fairly stable for 100 and 125 kHz (0.07–0.08 m), it 

increased substantially for the 166 kHz acquisitions (0.13 m). The terrain models derived from the 

166 kHz acquisition at 1130 m flying altitude (ACQ4) in particular would most likely have suffered from 

much more serious errors had not 9.3% (Table 2) of all echoes been deleted from the dataset. The 

standard deviation of the terrain models of the dual pulse mode data is therefore overly optimistic 

compared to an operational survey with less intensive and time-consuming manual inspection of the 

data. There was only a marginal or negligible effect of varying flying altitude on the standard deviation, 

but it should be noted that all acquisitions were carried out at relatively low flying altitudes. 

4.2. Consequences for Vegetation Monitoring 

This study has contributed to a quantification of the uncertainty of the terrain surface. An overall 

standard deviation of around 0.07–0.15 m seems to be achievable in an operational context under robust 

sensor and flying configurations (Table 3). For certain surfaces, such as flat and non-vegetated 

(rock/bare), or low vegetation areas (lichen/heather; <20 cm tall) (Table 5), the random errors may be 

reduced even more—to a standard deviation of, say, 0.05–0.10 m. This represents a similar or slightly 

smaller random error than previously reported for vegetated but tree-less surfaces (0.16 m [27];  

0.10–0.12 m [28]) and under forest canopies (0.20 m [7]). Taller ground vegetation will tend to reduce 

this precision, which is also consistent with previous findings [26]. These numbers exemplify the lower 

limits of what possibly can be expected to be detected in terms of changes in low vegetation over time.  

Nevertheless, there are two particular factors in the current experiment that may merit some attention. 

First, the study was restricted to a rather small area of 0.12 km2. Under operational conditions, literally 

thousands of square kilometres may be mapped during several acquisitions, resulting in greater 

variability in land forms and terrain morphology influencing the overall quality of the DTM. Second, 

the scanning angle was restricted to 14° in three of the ALS acquisitions and 10° in the fourth acquisition 

(Table 2). In operational projects, at least for terrain mapping, the scanning angle is often larger than the 

ones used in the current study. It is well known that laser shots closer to nadir will have a higher accuracy 

due to the smaller incidence angle with the terrain, and a reduction in the propagation of orientation (roll, 

pitch, and yaw) and scan angle errors into the coordinates. Thus, the errors reported in this study are 

likely to be in the lower range of what can be expected in surveys on larger scales.  
The main focus of this study was to quantify DTM errors that may influence the success of detection 

of changes in low vegetation, in particular pioneer trees in the boreal-alpine ecotone. It was emphasised 

that the context was operational monitoring, which often will involve data from different sensors and 
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acquisitions and use of commercially available algorithms to derive the DTMs as they are applied by 

commercial data vendors. Therefore, the algorithm by Axelsson [33] was the only one considered in this 

study. As shown by, e.g., Meng et al. [32], other algorithms may produce different results and the 

differences between algorithms may even vary with some of the factors examined in the current study, 

like, for example, terrain form. Nevertheless, for a given ALS acquisition, systematic shifts in the DTM 

in particular—caused by any of the factors under study in the current analysis or by differences between 

terrain classification algorithms—may not necessarily be a serious concern because the relative height 

above the terrain surface of vegetation echoes indicating a tree may still be unaffected by systematic 

errors. However, for monitoring (estimation of change over time) it has been advocated that a common 

DTM should be applied over time to reduce the influence of random differences in the DTMs on the 

estimated vegetation response [47]. In a sub-alpine environment in which the trees exist close to their 

tolerance limits, the annual height growth may be rather small, say, 0–5 cm per year [14]. Significant 

systematic shifts in the DTMs in the ranges found in this study may therefore become important because 

they may be of the same magnitude as the annual change in tree height which one would want to quantify. 

It therefore remains an open question if change estimation for slow-growing and low vegetation in 

environments like the boreal-alpine ecotone and the arctic forest-tundra interface, should be based on a 

common DTM over time to reduce the influence of random DTM errors, or, as an alternative, separate 

DTMs for each point in time should be used to reduce the influence of systematic errors in the DTMs. 

The random errors associated with the DTM surface define a lower limit of the potential for detection 

of small trees according to ALS-derived height values. Based on the current findings, a 95% confidence 

bound around the modelled terrain surface would be approximately 0.15–0.30 m. For the smallest trees 

(<1 m in height) that were analyzed in the tree study conducted in the current study area, [16] it was 

reported that 35%–59% of the trees were hit by at least one laser pulse resulting in a positive height value, 

i.e., indicating an object located above the modelled terrain surface. Presumably, most of these trees were 

in the upper end of the 0–1 m range, because for those trees in the 0–1 m height range that were hit by at 

least one pulse the maximum recorded echo height underestimated the tree height measured in the field by 

approximately 0.5 m. For the smallest trees, say, <0.3 m in height, terrain model uncertainty, pulse density 

and pulse travel distance from the apex of a tree to an echo is triggered (with discrete return systems) are 

critical factors limiting the ability to measure tree height by ALS. Higher pulse densities than those used 

in the current studies can mitigate the sampling density problem. Full waveform systems may help improve 

the sensitivity of the height recording. Thus, 0.15–0.30 m in height seems to remain a lower bound of tree 

sizes that one potentially can expect to detect under ideal conditions. For certain terrain forms, like terrain 

depressions with tall ground vegetation, even these numbers may be overly optimistic. For monitoring of 

tree migration it must be assumed that positive detection may lag a few years behind the real migration, 

say, at least 5–15 years depending on the annual tree growth.  

4.3. A Comment on Slope Effects 

Different terrain characteristics, as represented by aspect and slope, have an influence on the potential 

presence and height growth of small pioneer trees [4,48,49]. It is therefore important that trees can be 

identified equally well on slopes as in more flat terrain in order to avoid bias in estimates of tree 

recruitment in the boreal-alpine ecotone. The current analysis showed that the effect of slope was not 
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significant in the statistical sense—at least not for the moderate range in slope values that is present in 

the current study area. Clearly, common causes of elevation errors in steep terrain, like offset in the x, y 

plane, were not very pronounced due to the gentle terrain. 

Further, the relatively stable DTM standard deviation across slope angles suggests that success in 

vegetation change detection for moderate slopes is hardly influenced by the slope. It should be noted though, 

that a previous study indicated a somewhat faster deterioration of the random errors with increasing 

slopes [35]. Surfaces with rough terrain and discontinuous slopes are also still identified as being problematic 

to model with most ground filtering algorithms [25]. This should be kept in mind for vegetation studies under 

more challenging topographic conditions than those experienced in the current study. 

5. Conclusions 

This study has demonstrated that a terrain model standard deviation of 0.15 m or better can be 

achieved from ALS data with densities of ~8–10 pulses·m−2 in fairly tree-less areas in the boreal-alpine 

ecotone with gentle terrain, provided that the laser is operated at a robust pulse repetition frequency (low 

noise level) and moderate flying altitudes. Increasing pulse repetition frequency will tend to increase the 

random errors. Systematic shifts in a terrain model will be impacted by terrain form, the type of ground 

vegetation, and its height. Statistically significant effects of these factors in the range of up to −0.11 to 

0.13 m were found in this study. Terrain models will tend to be positively biased for concave surfaces 

and negatively biased for convex surfaces. The mean difference between these two extreme terrain forms 

relative to the ground control was 0.108 m. Tall ground vegetation will tend to elevate the modelled 

terrain surface. It was found that the terrain models relative to the ground control elevation were 

systematically shifted 0.081 m upwards for tall vegetation (>20 cm) compared to low vegetation (<10 

cm). However, the random errors of a terrain model are only to a limited extent influenced by these 

factors, except for taller ground vegetation, for which one must expect a higher uncertainty of the 

modelled terrain surface. 
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