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ABSTRACT 

The purpose of this study was to develop a robust and reliable approach to predict apparent 

digestibility coefficients of fat and protein of individual Atlantic salmon (Salmo salar), based 

on multivariate regression models from measured NIR (Near infrared Reflectance) spectra in 

their faeces. 

The period of the experiment from rearing to faecal analysis was from July 2014 to March 

2015.  A total of 180 faecal samples of protein collected from 10 different experiments and 

115 faecal samples of fat also all collected from 9 different experiments were used to 

calibrate the NIR instrument. Full cross-validation was used for the fat calibration, with 5 

samples randomly selected and chemically analyzed for fat to complement the fat validation. 

23 faecal samples from a different experiment were also used to validate the protein 

calibrations. 

Faeces from 60 Atlantic salmon (Salmo salar) of different families were used for the 

prediction in the study. The developed equation had better prediction precision (R2; 0.97, 

RESD; 0.19, and Bias; -0.002) for protein than for fat (R2; 0.92, RESD; 0.29, and Bias; -

0.02). In comparing with results of other studies performed in similar ways, the protein model 

had good prediction results (15.6, of data set A) and the fat (5.26, of data set A) as compared 

with other studies. However, detailed description explanation of the prediction (data set A) of 

individual is treated in parallel thesis. 

  

 

KEYWORDS: Near infrared, root mean square error of cross-validation, partial least squares, 

coefficient of determination, extended multiplicative scatter correction, protein, fat, faeces. 
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CHAPTER ONE 

INTRODUCTION 

As global demand for high quality Atlantic salmon (Salmon salar) increases, there is also the 

corresponding need for feed that provides macro (fat, protein, carbohydrates) and micro 

(minerals, vitamins) nutrients in their right proportions for growth and development. This 

require the assessment of the nutrient content in feed, and to what extent individual nutrients 

are absorbed and retained in the body of the fish (Morales et al. 1999). 

Feed accounts for a large percentage (50-60%) of the total production cost of 

intensive aquaculture production (Hernández et al. 2007). Therefore, accurate determination 

of macro and micro nutrient digestibility within salmonid feeds is crucial to developing feeds 

that are both efficient at promoting growth and limiting environmental impact (Ward et al. 

2005) and at the same time utilizing minimal but of low cost resources.  

Digestibility, particularly of protein and energy, is an important quality criterion for 

fish feeds (Hatlen et al. 2015). To obtain the digestibility in fish, faeces may be collected by 

different methods, including careful stripping (Austreng 1978), dissection of the intestine or 

different ways of collection from the water outlet (Cho and Slinger 1979; Choubert et al. 

1979, 1982; Glencross et al. 2007). Because the amount of feed ingested cannot be accurately 

measured and recorded as compared to other farm animals, the most useful method of 

determining apparent digestibility content (ADCs) of feed is indirectly, via the inclusion of 

markers in feed to quantify the amount of feed ingested and excreted (Austreng 1978; Cho 

and Slinger 1979; Hillestad et al 1999; Austreng et al. 2000). 

 In the past, chromium oxide was the marker of choice (Austreng 1978; Aksnes et al. 

1996) for determining ADC, but recently various metal oxides, particularly yttrium oxide 

(Y2O3) and ytterbium oxide (Yb2O3) have been used (Sugiura et al. 1998a; Hillestad et al. 

1999; Austreng et al. 2000; Carter et al. 2003). The effectiveness of Y2O3 (Sugiura et al. 

1998a; Hillestad et al. 1999), for determining ingredient ADCs in salmonid feeds have been 

evaluated and accepted (Austreng et al. 2000; Carter et al. 2003; Hatlen et al 2015), but little 

information exists on how to predict nutrients (fat and protein) digestibility and yttrium in 

small enough samples to allow digestibility measurement for individual fish. 

Until now ADCs have been obtained based on chemical analyses of nutrients and 

markers in the feed and faeces collected from several fish to obtain large enough sample size. 

In addition, chemical analyses of nutrients is costly and therefore put limits on the number of 
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the samples that can be analyzed as is the case when studying ADCs of families and in 

particular individuals in a selective breeding programme. 

Near infrared reflectance spectroscopy (NIRS) upon discovery in the 1960’s was first 

used for the rapid characterization of agricultural and food products (Niemoller and Behmer 

2008). Today it’s widely used in the agriculture and food industry for non-destructive 

qualitative and quantitative analysis of raw materials, processed materials, and finished 

products throughout the entire manufacturing process (Niemoller and Behmer 2008). NIRS is 

a non-destructive, rapid, economical, flexible and versatile technique. Sample presentation is 

simple and data (spectra) are collected very rapidly (Sánchez et al. 2013). In particular, the 

benefits associated with NIRS analysis of faeces are associated with decreasing cost, 

timeliness and convenience in handling unpleasant samples (Neumeister et al. 1998; Castrillo 

et al. 2005), and because it's not destructive the samples can be used for other analyses, 

saving time and cost in obtaining new samples. In the NIRS analysis, the sample is 

illuminated by NIRS light, and the absorbance at several wavelengths is measured. 

Near infrared reflectance spectroscopy (NIRS) has been applied widely and numerous 

studies have also used NIR reflectance spectroscopy to examine the composition and 

characteristics of faeces (Dixon and Coates 2009). In agriculture, Meineri et al. (2009) used 

faecal NIR to predict chemical composition of faeces and digestibility of diets. The NIR 

spectroscopy is not only limited to the field of agriculture, but can also be used in the field of 

clinical biochemistry. In the clinical biochemistry, NIR spectroscopy has been used to 

analyze faecal fat, nitrogen and water with conventional methods and faecal energy content 

(Neucker et al. 2002). 

Compared to other studies using NIR spectroscopy on faeces of other farm animals, 

the low amount of faeces obtained in fish poses a major challenge in using the method due to 

their aquatic environment which limits the amount of faeces obtained from single fish as most 

is leached into their aquatic environment. To the best of our knowledge, this is the first work 

dealing with the use of NIR in predicting the digestibility of individual Atlantic salmon. For 

this reason, the objective of the present study is to build a reliable and robust method for the 

prediction of ADCs of fat and protein of individual Atlantic salmon, based on multivariate 

regression models from measured NIR spectra of the respective faeces samples. 
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CHAPTER TWO 

2.0 LITERATURE 

2.1 DIGESTIBILITY, DIET FORMULATION AND FAECES 

Feed stuff is of little value unless it can be digested and its content absorbed. Digestibility, 

particularly of protein and energy, is an important quality criterion for fish feeds (Hatlen et al. 

2015). The increasing production of fish from intensive aquaculture as a result of diminishing 

wild catch corresponds with the increased demand for feed of high digestibility to meet the 

energy needs for growth and production. In meeting this requirement for high digestibility, 

the quantity ingested (total or nutrient) and faecal matter voided are determined, and the ratio 

gives the percentage digestibility of the feed and or the nutrients under consideration. 

  Information of the digestibility of the various feed ingredients is a basic requirement 

for formulating diets (Cho and Kaushik 1990) and to optimize the balance between nutrient 

requirements and cost of feed, and also provide a thorough assessment of the nutritive value 

of a particular protein source in a complete diet (Plakas and Katayama 1981). Nutrient and 

diet composition interactions is also important in assessing the digestibility of nutrients, and 

so the diet formulation. According to De Silva and Anderson (1995) factors such as the 

quality and quantity, energy source and content have significant effect on the requirement and 

metabolism of most nutrients. For example, thiamine (Vitamin B12) availability is known to 

be influenced by fat and protein content of diets of the same caloric value (De Silva and 

Anderson 1995). Similarly, the metabolism of pyridoxine (vitamin B6) is related to dietary 

protein or amino acid metabolism, and magnesium requirement is dependent on the calcium 

and phosphorus content of the diet (De Silva and Anderson 1995; Storebakken, personal 

communication 2013). 

 Faece from fish is made up of digestive enzymes, epithelial (stomach and intestinal) 

lesions and nutrients from indigested food (Storebakken, personal communication 2013). Fish 

faeces for scientific studies is collected by several methods as stripping (Austreng 1978), 

dissection of the intestine or different ways of collection from the water outlet (Cho and 

Slinger 1979; Choubert et al. 1979, 1982; Glencross et al. 2007). It is difficult to determine 

the digestibility of fish as such determinations are subject to many errors. Foremost amongst 

these is the leaching of faecal material and the difficulty in collecting all the faecal material, 

which tend to break up with time, a process facilitated by aeration and the movement of fish. 

Also, there are fine particles in suspension which is almost impossible to collect. Moreover, 
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the re-ingestion of faecal material and incomplete collection of all faecal matter is avoided. 

To minimize these errors in faeces collection and to obtain a representative value of faeces, 

each method selected should fit the anatomical characteristics of the species in research 

(AQN 250 Lecture 2013). 

 

2.2 ELECTROMAGNETIC ENERGY 

Electromagnetic energy (EM) is the form of energy that can be reflected or emitted in the 

form of electrical or electromagnetic waves that can travel through space. It includes radio 

waves, heat waves, x-rays, ultraviolet light, gamma rays etc. as shown in figure 2.1. 

 

Figure 2.1. Graphical representation of the electromagnetic spectrum showing the wavelength 

(nm) and frequency (Hz) of some of the different energies (Wikimedia Commons, 2013).  

 When molecules are exposed to electromagnetic energy some are absorbed, not 

absorbed or re-emitted based on the wavelength of the energy received. Based on the 

intensity, number and frequency of these absorptions and or emissions, an insight can be 

gained into the structure of the material under consideration. This technique could be used to 

identify an unknown molecule by comparing its absorption to that of other molecules or 

could be used to gain further understanding of the physical properties of a known molecule 

(Ucdavis chemiwiki, N.D). One of the advantage of this method is that it can be done on 

unprepared products in gas, liquid or solid form (Li-Chan et al. 2011).  
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2.3 VIBRATIONAL SPECTROSCOPY 

Vibrational spectroscopy is the science of measuring exactly which wavelengths of light are 

absorbed by a molecule (Ucdavis chemiwiki, N.D). It includes infrared (IR) energy which is 

based on transitions between quantized vibrational energy states of molecules (Li-Chan et al. 

2011). 

 

2.3.1 INFRARED ENERGY 

Infrared (IR) refers to that part of the electromagnetic spectrum between the visible and 

microwave regions. The IR region is further divided into far-infrared (FIR, 200-10cm-1), mid-

infrared (MIR, 4000-200 cm-1) and near-infrared (NIR, 12800-4000cm-1, or 780nm-2500nm) 

(Ucdavis chemiwiki, N.D). When energy is absorbed by a molecule, molecular vibrations are 

induced and transitions occur from a ground vibrational state to an excited vibrational state as 

shown in the figure 2.2 below (Ucdavis chemiwiki, N.D). 

 

 

Figure 2.2: Energy level diagram. A: Rotational transitions, B: Rotational-Vibrational 

transitions, C: Rotational-Vibrational-Electronic Transitions, E0: is the electronic ground state 

and E1: Electronic excited state (Ucdavis chemiwiki, N.D). 
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Whereas MIR deals with the fundamental energy level of functional groups (Ucdavis 

chemiwiki, N.D), NIR deals with the corresponding vibrational overtones (Li-Chan et al. 

2011). 

 

2.3.2 NIR SPECTROSCOPY 

NIR Spectroscopy is a type of vibrational spectroscopy that use the infrared region (780-

2500nm) of the electromagnetic spectrum (Pasquini 2003). NIRs provides an alternative, 

non-destructive technology for measuring constituents of biological materials (Baye et al. 

2006). Organic molecules have specific absorption patterns in the infrared region that can 

report the chemical composition of the materials being analyzed (Williams and Norris 2001).  

NIRs is mostly associated with the measurement of the overtones of C-H, O-H and N-H 

stretching vibrations (Li-Chan et al. 2011). Its overall objective is to probe a sample in order 

to acquire qualitative and or quantitative information coming from the interaction of near-

infrared electromagnetic waves with its constituents (Pasquini 2003).  

Near infrared spectra can be collected either from the reflectance (NIR) of a sample or 

transmittance (NIT) through a sample (Williams 1979; Delwiche 1995). The technique is 

rapid, robust and non-destructive, little or no sample preparation is required. The technique 

enables the use of fiber optical cables and several chemical components can be determined 

simultaneously with a single measurement. It has the advantage of being safe, efficient, more 

economical and environmentally friendly (Zhang et al. 2011). Due to these favourable 

features, the technique is used frequently within food analysis (both on-line and at-line in 

production sites) and the applications cover a broad range. It’s been used for predictions in 

soy, rapeseed meal, sunflower meal, peas, fish meal, meat meal products, and poultry meal 

(Fontaine, Hörr and Schirmer 2001). 

NIR spectroscopy consist of several methods of sampling with transmittance, 

transflectance, diffuse reflectance and interactance as some of the available methods. (Figure 

2.3). 
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Figure 2.3. Modes of measurement employed in NIR spectroscopy. a: Transmittance b: 

Transflectance c: diffuse reflectance and d. interactance (Pasquini 2003). 

The amount of radiation reflected from the sample in NIR spectroscopy is quantified as the 

reflectance (R) of the sample.  The value is usually expressed as log(1/R) as shown in figure 

2.5, which gives higher values at higher levels of absorbance (i.e. lower reflectance). There is 

an almost linear relationship between log (1/R) and the concentration of an absorbing 

component (Hruschka 1987). The log (1/R) curve is comparable to an absorption curve with 

peak values occurring at wavelengths which correspond to absorption bands in the sample 

(Norris et al. 1976). 

 

 

Figure 2.4. NIR plot indicating log (1/R) and wavelength (nm). (Im publications, 2015). 
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According to Dryden (2003), reflectance in the NIR spectrum represents the chemical 

structure of the sample. In particular it indicates the presence of chemical bonds and 

functional groups (e.g. C-H, O-H, N-H, and see Table 2.1). 

The wavelength (spectral region) chosen for NIR spectroscopy should be such that, it 

is absorbed most by the sample under consideration with little interference by other 

constituents in the sample. That is, interference by other samples not under consideration but 

can be obtained at the chosen wavelength. For example, in Table 2.1 the chosen wavelength 

for peptide bonds (2140, 2180) can also be obtained in condensed tanins (2100-2200), so if 

peptide bonds are under consideration the interference from tanins should be minimized and 

peptide bonds maximized. 

 

Table 2.1. Near infrared wavelengths and their association with chemical structures (from 

Barnes 1988; Osborne and Fearn 1986; Smith and Kelman 1997). 

 

Wavelength (nm)                                    Chemical entity 

1143                                                          aromatic compounds, lignin 

1496, 1668, 1976                                      amide bonds 

1660 - 1670, 1720 - 1730, 2100 - 2200    condensed tannins 

1772                                                          ester bonds 

1930                                                          water 

1960, 2180                                                protein 

2140, 2180                                                peptide bonds 

2088, 2410 - 2460                                    cellulose 

2380                                                          hemicellulose 

2461                                                          starch 
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2.4 MEASUREMENT OF THE ABSORBANCE OF RADIATION BY A SAMPLE 

The Beer-Lambert law describes the relationship between the concentration of a solute and 

the amount of light absorbed by the solution: 

 

Cx=Ax/e.l 

 

where: Cx = concentration of the test solute 

 Ax = absorbance of the test solution 

 e 

l 

= 

= 

molar absorptivity of the test solute 

path length travelled by the light through the solution 
 

The important feature of this relationship is that it allows the measurement of Cx directly 

from Ax (Dryden 2003). 

 

When infrared radiation is incident on the surface of a sample, some of it is reflected 

(specular reflectance) from the surface. Another proportion of the radiation enters the sample 

and may be absorbed within it. Radiation not absorbed may be transmitted through the 

sample or reflected from it (diffuse reflectance, Fig. 2.5). 

 

                                                                 Incident radiation   

    

 

 

 

 

 

 

(a)                    (b)                    (c) 

 

Fig. 2.5.  Diagrammatic representation of specular (a) and diffuse (b) reflectance’s, 

and absorption (c) of near infrared radiation from a sample (Givens et al. 1997). 
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While the Beer-Lambert law generally describes the relationship between radiation diffusely 

reflected from a solid sample and characteristics of that sample, the path length of diffusely 

reflected radiation cannot be predicted because it is scattered by random reflections, 

refractions and diffractions within the sample.   

The variations within NIR diffuse reflectance spectra are mainly a result of (1) non-specific 

scatter of radiation, (2) variable path length, and (3) the chemical composition of the sample 

(Barnes et al. 1989). 

As a result, the relationship between reflectance and analyte content cannot be described by 

any mathematical relationship (Givens et al. 1997). Thus while the characteristics of near 

infrared radiation reflected from a sample can be used to predict certain sample 

characteristics, each application of this type must be obtained by calibration. 

 

2.5 DEVELOPING A CALIBRATION MODEL AND VALIDATION OF CALIBRATION 

MODEL 

The steps involved in developing the calibration model from raw samples is summarized into 

these four steps (Williams and Norris 1987). 

1. Response linearization: which aims to ensure the instrument responds linearly to 

chemical changes. 

 

2. Optical correction, yielding quantitative information about the light scatter in each 

sample: This help eliminate near-infrared interferences as light scatter and remaining 

specular reflectance. 

 

3. Data compression of regression factors (linear combination of the spectrum). This 

gives certain estimated parameters (near-infrared loading spectra) that defines how the 

values of the regression factors are to be calculated. It gives various diagnostic checks 

that reveal abnormalities in the data (measurement errors and extreme samples or 

wavelength) and it provides estimates of the ‘‘normal’’ range of variation and level of 

measurement noise in the near-infrared data, which helps in revealing abnormalities. 
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4. Calibration regression: The final step, which establishes linear regression 

relationships between the obtained regression factors and the chemical variables to be 

determined. 

 

2.5.1 DEVELOPING A CALIBRATION MODEL 

Calibration is needed for data set to be usable for quantitative purposes using NIR 

spectroscopy. The calibration turns the wavelength and the corresponding intensities into 

precise and relevant information which can be used for quantification (Martens and Næs 

1989). 

NIR instruments determine protein and other components by measuring log (1/R) 

values, which must then be related to the amount of the component as determined by the 

corresponding values obtained from a reference method (Williams and Norris 1987). 

Establishing this relationship by using a set of samples of known composition is called 

calibration, whereas using the relationship to determine the amount of a component in a new 

sample is called prediction (Williams and Norris 1987). 

The relationship between the log (1/R) values and the reference method values is 

expressed as an approximation, and always involves some form of regression equation. The 

regression equation has regression constants (the Y-intercept and regression coefficients), 

independent variables, and one dependent variable (the reference value). The independent 

variables are mathematical combinations of log (1/R) at various wavelengths. These 

combinations can be so complicated that they're better thought of as a series of steps, so we 

use the term ‘‘data treatment’’ to mean any mathematical treatment that combines log (1/R) 

values into independent variables for use in a regression equation (Williams and Norris 

1987). 

Each data treatment has data treatment constants (such as the derivative parameters, 

or the amount of smoothing). Developing a calibration model involves testing different data 

treatments, data treatment constants, or sets of wavelengths. Calibration means finding the 

regression constants that go into the approximation once the form of approximation, the data 

treatment constants, and the wavelengths have been decided upon.  

There are two main approaches to calibration, namely, univariate calibration and 

multivariate calibration. In univariate calibration, only one independent measurement 
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variable is used and the calibration finds the linear relationship between these variables and a 

given reference value (Næs et al. 2002). Multivariate calibration on the other hand takes into 

account several measurement variables in the calibration (Næs et al. 2002). Multivariate 

calibration take all independent variables into account, and create a multivariate prediction 

model or equation which often has a much higher reliability than a model based on a single 

variable (Næs et al. 2002). 

 

2.5.1.1 PRINCIAL COMPONENT ANALYSIS (PCA) 

Data collected from spectroscopic experiments are usually sorted in an X-matrix with n 

objects and p variables as shown in the equation below: 

  X=(X [n, p]) 

In NIR spectroscopy, n is the number of samples and p is the number of wavelengths used for 

each sample (Esbensen, 2009). Since spectroscopic data often contain several hundreds of 

wavelengths in each spectra, many of these variables are co-varying and thus do not contain 

independent information (Næs et al. 2002).  PCA compresses this spectral data into principal 

components that gives an interpretable overview on the main information (or variations) of 

the data (Esbensen, 2009). The form of a PCA model can be expressed as 

  X=TPI+E 

Here, T denotes the score values, P the loading matrix, and E is the residual matrix 

representing any noise or unexplained variation (Martens and Næs 1989). The first 

component explains the direction of the highest variation of the data, and the second 

component explains the direction of the next highest variation, and so on. PCA removes any 

collinearity in the spectroscopic data, and shows more clearly any outliers that might be in the 

data. 

 

2.5.1.2 PARTIAL LEAST SQUARES (PLS) REGRESSION  

NIR spectra has so many data points in the wavelength dimension such that it creates 

collinearity problems of the spectra. PLS regression often can be an effective way to describe 

latent relationship among spectral variables unlike straight forward general inverse 

techniques like multiple linear regression (MLR) (Ritthiruangdej et al. 2011). PLSR is a 
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method for relating the variations of one or several response or reference variables (Y-

variables) to the variations of for instance the spectral data (X-variables). In PLSR the 

information of the X-data (spectra) is projected onto a small number of underlying variables 

called PLSR components. The Y-data are actively used in this projection procedure and the 

overall procedure is frequently used for calibration of NIR instruments (CAMO PROCESS 

AS, OSLO, NORWAY). 

In PLSR, one of the most important points lies in the fact that spectral data matrix X is 

decomposed into a linear combination of scores T and loading P matrices. For example, the 

decomposition of X is carried out by repeatedly regressing the score along the given 

concentration vector y (Næs et al. 2002). PLS model essentially yields a regression vector b, 

which is often referred to as PLS model (Næs et al. 2002). Consequently it becomes 

y=Xb + e 

Here, X is the observed spectra, y denotes the concentration of corresponding analyte and e 

means residual (Næs et al. 2002). The regression vector b carries the information most 

relevant to the determination of the concentration of the analyte and less sensitivity to the 

overall effect of interference, i.e., chemical components which are not associated with the 

actual quantity of y (Næs et al. 2002). 

 

2.5.2 PREDICTION AND VALIDATION OF CALIBRATION MODEL (PREDICTION 

ABILITY) 

Once the NIR instrument has been calibrated against the reference values, it can be used to 

determine (predict) the percentage of a constituent in different samples (unknown) or 

measure some physical quantity of these samples (Williams and Norris 1987). 

Comparison of NIR predicted and reference values on a new set of samples provides a 

basis for calculation of the true measurement error called the validation (Williams and Norris 

1987). This is done to test the strength of the model created with PLSR.  

Validation is done using data from other samples acquired in the same manner as the 

data in the model. Normally, calibration and initial validation are performed simultaneously 

by splitting the data into one calibration set and one validation set (where the samples are 
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treated as unknowns), or by performing cross-validation (Segtnan et al. 2009). Either test-set 

validation or full cross validation method is used. 

In the test-set validation, data collection is repeated using new samples (Esbensen 

2009). However, this is costly, time consuming and more samples may not be available for 

creating an entire new data set of validation (Esbensen 2009). 

With full cross validation (leave-one-out), one sample from the model is removed and 

estimated with the remainder of the model, and the result is compared with the reference 

value. In the next step, data is replaced and a different sample is removed and used to test the 

model in the same manner. This continues until all samples have been kept out once (Stone 

1974). Giving an average calibration equation to be used for future predictions (Segtnan et al. 

2009). 

There are a few validation criteria for prediction performance measure in NIR 

spectroscopy such as standard error of cross-validation (SECV), root mean square error of 

calibration (RMSEC), root mean square error of prediction (RMSEP), and root mean square 

error of cross-validation (RMSECV) etc. (Næs et al. 2002). However, RMSEP, SECV, Bias, 

R2 and RMSECV were used in this experiment.  

R2 is a dimensionless number between 0-1.00 that say something about the correlation 

between the x and y values (Esbensen 2009). It should be as close as possible to 1, and the 

closer R2 is to 1.00, the more of the variation in the y-values can be explained by the 

measured x-values (Esbensen 2009). The RMSECV and RMSEP are virtually the same, 

however, RMSECV is reported when a full cross-validation is used. They on the other hand, 

say something about the error expected from any predictions made using the model 

(Esbensen 2009). RMSECV/RMSEP and Bias are expressed as 

2
N

1i

ii )y(y
N

1
RMSEP/CV 





           And 

 

Here, i denotes the samples from 1 to N, yi the reference value, and 
i

y


the predicted value.  
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2.6 USING ESTABLISHED PREDICTION EQUATION ON NEW SAMPLES 

Prediction consists of predicting the chemical composition of a sample from near-infrared 

measurements using calibration equation (Williams and Norris 1987). Before using the 

prediction on new samples, the samples (spectral data) must pass through the same processes 

as during the calibration process. That is, measurements from the NIR instrument are 

submitted to response linearization (Williams and Norris 1987). Secondly, the data are passed 

through the optical correction step, yielding quantitative information about the light scatter in 

each sample (Williams and Norris 1987). Thirdly, the values of the regression factors, which 

are linear combinations of the spectrum, are computed in the data compression step. This step 

may also give various warning diagnostics for samples that appear abnormal (Williams and 

Norris 1987). Fourth, the desired chemical variables are determined linearly from the 

computed regression factors, using chemical loadings found in the calibration (Williams and 

Norris 1987).   

 

2.7 SOURCES OF ERROR IN NIR SPECTROSCOPY 

Errors are defined as the estimated difference between the predicted value and true or 

observed value (e.g. chemical analyzed) value. Though NIR spectroscopy is rapid and 

technically simple to carry out, there are nearly 40 sources of error (Williams 1987). These 

errors are dependent on the interaction of many sources, and may be categorized as sampling 

error, reference value error and NIR method error. 

 

2.7.1 SAMPLING ERROR 

 Sampling error is caused by lack of homogeneity in the material being sampled (Williams 

and Norris 1987). Williams (1987) listed sources of error (summarized in table 2.2) and 

described ways in which these may be controlled. 
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Table 2.2. Procedural sources of error in NIR spectroscopy (selected from Williams 1987)  

 

Instrument factors   Sample factors 

Instrument noise    variation in water content 

Stray light     bulk density, texture, packaging characteristics 

Non-linearity of signal   sample temperature 

Static electricity    sub sampling procedures 

Instrument temperature control  mean particle size 

Fluctuations in power supply   mixing after preparation 

Instrument geometry    sample storage 

Cell window characteristics 

 

According to Williams and Norris (1987), although it is rarely practicable to measure 

accurately all the kinds of sampling error in a particular application, it is useful to know 

where they occur and the approximate contribution of each source to the total sampling error. 

This can result in savings by indicating where to repeat the sampling. 

 

2.7.2 REFERENCE VALUE ERROR 

Reference value errors arise from using different sub samples to conduct the NIR 

spectroscopy and reference analysis, and from random and systematic errors in the method 

used to obtain the reference value (Hruschka 1987; Sorensen 2002). The difference between 

the errors measured by the NIR instrument and that measured by the reference value should 

be identified and removed because they inflate the errors associated with the prediction 

equations (Williams and Norris 1987). These may include errors relating to the chemistry of 

the reference determination such as the loss of N from refractory substances in the Kjeldahl N 

determination or use of an inappropriate factor to convert N to protein (Dryden 2003). 

 

2.7.3 NIR METHOD ERROR 

NIR method errors are caused by spectral measurement errors, lack of intrinsic correlation 

between spectral and reference methods data, and poor choice of data (Williams and Norris 

1987). Noise (any disturbance, especially a randomly distributed and persistent disturbance 
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that influences the quality and clarity of the electronic signal) associated with NIR instrument 

markedly affect its efficiency. This noise include that which affects the instrument output on 

a standard background and that caused by interaction between instrument and sample. These 

instrumental noise can be caused by temperature, stray light (light energy that reaches the 

detector from wavelengths other than those at which the device is designed to take reading or 

from sources other than the sample) etc. 

Errors associated with wavelength selection is also critical to NIR analysis, as this 

affects the regression coefficients of the calibration. For example, according to Williams and 

Norris (1987), as a wavelength becomes farther away from the optimum point, the associated 

regression coefficient changes and tends to compensate for the wavelength difference. Above 

a certain deviation from optimum, the regression coefficient no longer compensates for the 

deviation and the accuracy of determination and measurement suffer. 

Also, the accumulation of electrical charge (static electricity) affects the orientation of 

particles of ground material (example is faeces) in sample cells. It makes particles of dust 

attracted and become closely associated with the surface, making it difficult to clean and 

allowing sample to sample contamination (Williams and Norris 1987). These static electrical 

charges makes samples (e.g. fibrous particles) strongly oriented at the cell surface, affecting 

the intensity and pattern of the diffuse reflectance signal and, as a result, the precision and 

accuracy of the NIR analysis. 

Sample cells of most NIR instruments interpose an optical glass or quartz window 

between the sample and the detector to ensure uniformity of the surface (Williams and Norris 

1987). According to Williams and Norris (1987) the thickness and refractive index of the 

window can affect the accuracy of the testing because they are rarely completely planar or of 

uniform thickness. 
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2.8 NIR SPECTROSCOPY OF FAT, PROTEIN AND FAECES 

Due to the high cost of feed in aquaculture production coupled with the decreasing sources of 

feed materials, knowledge of the chemical composition of faeces is important in determining 

the animal requirements and the efficiencies of feed conversion. Subsequently, it is needed 

for feed formulation to provide the right amount of nutrient needed for growth whilst making 

little use of the already limited feed sources. Existing chemical procedures are time 

consuming and expensive (Maja et al., 2010) compared to NIR spectroscopy. In preparing 

faecal samples for NIR analysis, it’s particularly important to homogenize faecal samples 

before NIR analysis to ensure efficient scattering of light and detection from the analyzer. 

 Because it’s non-destructive (preserving samples to be used for other analysis), 

timeliness in obtaining samples and results, flexibility and economical in saving cost of 

obtaining new samples. It’s been widely applied in the prediction of fat and protein in the 

food industry.  

In using NIR spectroscopy to predict protein and fat contents in samples, the 

wavelengths at which the overtones for protein and fat are observed is chosen to obtain the 

desired objective. For example, in the food industry, Maja (2010) used NIR spectroscopy to 

predict the chemical composition of different raw meat and meat products. In the study, 294 

muscle and meat products were analyzed within the wavelength range of 400-2500nm. They 

obtained coefficient of determination in prediction (R2
p) for intramuscular fat and protein as 

0.94-0.99 and 0.87-0.96 respectively.  

 Bázár et al. (2010) also used NIR spectroscopy (wavelengths from 1100-2500nm) to 

predict protein and intramuscular fat content of rabbit hind leg meat and found R2 of 0.99 and 

0.97 for fat and protein respectively. 

 NIR spectroscopy has never been used to predict protein and fat content in faeces in 

individual Atlantic salmon. 
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CHAPTER THRE 

3.0 MATERIALS AND METHODS 

3.1 DESCRIPTION OF THE EXPERIMENT 

The work of this study was divided into three parts, namely, the experimental setup to faecal 

acquisition (Data set A), establishing the prediction equation (Data set B (from the protein 

samples) and Data set C (from the fat samples)) and using the prediction equation to predict 

protein and fat contents of the experimental faeces samples (Data set A). The whole process 

is summarized in the figure 3.1 below. 

1. EXPERIMENTAL SETUP      2. DEVELOPING THE PREDICTION EQUATION

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

3. PREDICTION OF SAMPLES 

 

 

Figure 3.1: Chart showing the description of the study. Data set A (Experimental faeces 

samples), Data set B (180 samples of protein), Data set C (115 samples of fat), Data set D (23 

additional samples for protein validation) and Data set E (Randomly selected 5 samples to 

complement the fat validation). 

Rearing of Atlantic salmon (60 fish) 

Stripping of faeces (Austreng 1978) 

Freeze drying of faeces 

NIR acquisition of faeces 

(Data Set A) 

 

DA 

Calibration set (180 protein samples and 

115 Fat samples 

Equations (PLSR Models): Data Set B and C 

Validation of established equation (PLSR 

model) 

Protein model (Data set D) 

Fat model: Full cross-

validation and Data set E) 

Established equations (Data Sets B and C) used 

to predict Protein and Fat content of Data Set A 
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3.2 MATERIALS 

3.2.1 DIET AND CHEMICAL COMPOSITION OF FEED 

Dietary composition of compound feeds used in the experiment is shown in the table 3.1 

while the chemical composition is shown in table 3.2. 

Table 3.1: Dietary composition of the diet used in the experiment 

Diet name Control (%) 

Norse Nat LT 38.53 

SPC 16/13 12.00 

Fish oil (herring) O1/13 10.00 

Rapeseed oil O1/11 12.00 

Horse beans 53/13 5.45 

Wheat 3/14 8.00 

Sun seed meal 88/12 3.33 

Wheat gluten 36/13 5.00 

Betafin T 4/13 1.00 

Soy lecithin T21/13 1.00 

Vitamin mix T3/13 2.00 

Mineral mix T1/14 0.52 

Monosodium phosphate T49/10 (24% P) 
1.00 

Carop. Pink (10%) T 35/10 
0.01 

Yttrium oxide T20/13 
0.150 
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Table 3.2: Chemical composition of the diet used in the experiment 

CHEMICAL ANALYSIS PERCENTAGE (%) 

Ash 7.49049 

Dry Matter (DM) 95.197 

Nitrogen (7.05*6.25) 44.0625 

Energy 23.38 

Crude fat 28.1 

Y2O3 0.09798 

 

3.2.2 EXPERIMENTAL SET UP  

60 salmon (Salmo salar) from a total of 434 salmon breed full-sib families from Nofima, 

Sunndalsøra, of which prediction equations were developed for were reared in the same tank 

during the experimental period. They were reared for 56 days under the same management 

conditions of water temperature, oxygen content, pH etc.  

The fish were fed ad libitum extruded pelleted feed made from the feed plant at Nofima, 

Bergen. 

Dry Matter (DM), Crude Protein (CP), Crude Fiber (CF) and ash were determined in diet 

samples and CP, CF and ash in dried faeces were treated in parallel thesis. 

 

3.2.3 FAECAL SAMPLING: 

At sampling, fish were netted at random using a sweep net and anaesthetized in Finquel 

(Finquel vet. 1000mg/g, Scan Aqua AS, Årnes, Norway). Faeces samples were obtained by 

the stripping method (Austreng 1978). Fish were stripped three times during the experimental 

period (02.10.2014, 12.10.2014 and 21.10.2014). Weight of the stripped faeces was recorded 

and placed in a desiccant and were freeze dried at -40oC for 1-7days before being sent to the 

laboratory (Nofima, Ås, Norway) where it was grounded into powder for the spectroscopic 

analysis.  Materials involved in the sampling and preparation are shown in the picture below 

(Figure 3.2). 

http://upload.wikimedia.org/wikipedia/commons/e/e7/Sunndalsoera.ogg
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a.  b.    c.

  

Figure 3.2: Materials used in the faecal collection and sampling a: Finquel anaesthetizer, b: 

Marel Scale and c: Desiccant 

 

3.2.4 NIR CALIBRATION 

The NIR instrument was calibrated using reference freeze-dried fish faeces sample containing 

known chemical analyzed protein crude protein (Nx6.25, combustion according to the Dumas 

principle, ISO 16634-1) and fat (Folch et al., 1957, after acid hydrolysis) values obtained 

from multiple feeding experiments performed at Nofima, Sunndalsøra.  

For the protein equation, a total of 180 samples were from 10 different feeding experiments, 

while for fat a total of 115 samples were obtained from 9 different feeding experiments. 

The NIR spectra of faeces samples were obtained using NIR Systems Model XDS Rapid 

Content Analyzer module (Foss NIR Systems, Silver Spring, MD, USA), Nofima. 

Validation of predicted protein was done using 23 additional samples from a different 

experiment also performed at Nofima, Sunndalsøra. Full cross-validation was used for fat. 

Because we had the least samples (115) for developing the fat equation and to get an 

indication of the quality of the equation, five samples were randomly chosen from the 

experimental samples and chemically analyzed for fat content to check the prediction ability 

of the developed fat equation. 

 

 

 

http://upload.wikimedia.org/wikipedia/commons/e/e7/Sunndalsoera.ogg
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3.2.5 ANALYTICAL SOFTWARE 

Spectral data were collated into Vision spectral analysis software for windows (Copyright 

2006 FOSS NIRsystems, Inc. www.foss.dk) and imported into Unscramble X (Version 10.3) 

statistical analysis software (CAMO PROCESS AS, OSLO, NORWAY) for data processing 

and equation development. 

Reference data were treated in Microsoft excel software (2007) and imported into 

Unscramble X where it was analyzed against the spectral data.  
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3.3 METHODS 

3.3.1 NIR SPECTRA ACQUISITION 

All NIR spectra were recorded with NIR Systems Model XDS Rapid Content Analyzer 

module (Foss NIR Systems, Silver Spring, MD, USA) equipped with a quartz halogen lamp 

and a PbS detector where spectral data was taken. The DCM (data collection method) had a 

spot-size of 9.5mm.  

In this process, a quarter teaspoon of faeces was loaded unto the optic vial and the 

magnetic interference neutralized using METTLER TOLEDO (HAUG GmbH & CO. KG).  

It was then placed in the NIR instrument and spectral measurement taken. Each sample 

measurement was repeated three times and the corresponding spectra averaged. All 

measurements were done at room temperature (22°C). Samples were analyzed in the period 

from January 2015 until March 2015. Materials involved in this process are shown in the 

picture below (Figure 3.3).  

 

a.    b.  

Figure 3.3: Materials used in the spectra acquisition a: Toledo static electricity neutralizer and 

b: NIR system. 

 

3.3.2 DATA ANALYSIS 

Pre-processing of spectra was done to transform the data into forms easy to analyze 

(Esbensen 2009) and for the relationship between the measurements and the given reference 
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value. All NIR spectra were pre-processed the same way prior to regression analysis. First, all 

replicate spectra (3 replicates) were averaged and imported into Unscramble.  

The spectra were then subjected to scatter correction based on the method of 

Extended Multiplicative Signal Correction (EMSC). Pre-processed NIR spectra covering the 

spectral region 1150 – 2450 nm were used to develop multivariate regression models based 

on partial least-squares regression (PLSR) to obtain the calibration equation.  

Validation was done to test the strength of the model created with PLSR. The 

optimum number of PLSR components was determined using full cross-validation (leave-

one-out-validation). The reference value, yi, and the predicted value, 
i

y


, of every sample 

were used to calculate the prediction error of the cross-validated calibration model, expressed 

as the root mean square error of cross-validation (RMSECV). The RMSECV value is defined 

in the following way:  

 

2
N
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  

 

Where i denotes the samples from 1 to N. Both the RMSECV and the multivariate correlation 

coefficient (R2) between reference and predicted values, the ratio of RMSECV and the 

standard deviation (SD) for the chemical analyzed (‘true’) values for the same samples 

(RESD) were used to evaluate the performance of the regression models. Bias and RMSEP 

were used to check the protein validation. RESD, Bias and RMSEP are defined as; 

RESD = (RMSECV)/SD 
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Here, i denotes the samples from 1 to N, yi the reference value, and 
i

y


the predicted value.  
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CHAPTER FOUR 

4.0 RESULTS  

4.1 CALIBRATION DATA SETS B AND C 

180 samples of chemical analyzed crude protein and 115 samples of chemical analyzed fat 

were used to calibrate the equation. The minimum, maximum, mean and standard deviation 

were calculated. The results are shown in table 4.1.  

Table 4.1: Calibration data statistics showing the parameters under consideration, number of 

samples used, minimum, maximum, mean and standard deviation (STD). 

 Calibration data statistics 

Parameter No. of samples Min  Max Mean  STD 

Protein 180 8.8 38.4 21.9 8.4 

Fat 115 5.2 12.6 7.3 2.4 

 

As shown in table 4.1, there is a high gap between the minimum, maximum, mean and 

standard deviation of both protein and fat data. And this is to be expected as the samples were 

collected from different experiments (10 experiments for protein and 9 experiments for fat) 

significantly spanning the variation range of the data sets. This is a positive sign for 

developing the model (equation), as a much greater variation will assure a more robust 

model. 

 

The figures below (4.1.1, 4.1.2 and 4.1.3) shows a line plot of the averaged NIR spectra of 

the calibration data sets (Data set B and data set C) and the pre-processed spectra of the 

calibration data set used in the PLSR analysis after estimated multiple scatter correction 

(EMSC) respectively. For each faecal sample, three replicates of measurements were made 

within the wavelength 1105-2450nm respectively. The spectra absorbance peaks are 

associated with the main constituents of the faeces.  
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Figure 4.1.1: NIR spectra of protein calibration data (Data set B). 

 

 

Figure 4.1.2: NIR spectra of fat calibration data (Data set C). 
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Figure 4.1.3: Spectra of pre-processed calibration data set 

 

4.2: PREDICTION DATA SET A 

Three replicates of measurements were made within the wavelength 1105-2450nm 

respectively. The spectra absorbance peaks are associated with the main constituents of the 

faeces. The figure below shows the NIR spectra of data set A after scatter correction. 

 

 

Figure 4.2: NIR spectra of experimental samples (Data set A). 
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4.3: PREDICTED VS TRUE VALUES FOR THE CALIBRATION DATA SETS B AND C 

PLSR OF PROTEIN 

PLSR and Regression coefficient analysis of protein is shown in the figure 4.3.1 and figure 

4.3.1.1 below. Pre-processed spectra were connected to the reference using PLSR. 

 

Figure 4.3.1: Predicted vs reference plot for protein 

 

 

 

Figure 4.3.1.1: Regression coefficient for the PLSR model for protein 
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PLSR OF FAT 

These figures below (figure 4.3.2 and figure 4.3.2.1) also show the PLSR analysis and 

regression coefficient of fat. Pre-processed spectra was also connected to the reference using 

PLS regression.

 

Figure 4.3.2: Predicted vs reference plot for fat 

 

 

 

Figure 4.3.2.1: Regression coefficient for the PLSR model for fat 
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Table 4.3: Calibration results statistics showing the coefficient of determination (R2), root 

mean square error of cross validation (RMSECV), factors (number of PLS factors), ratio of 

RMSECV or RMSEP and Standard deviation (RESD) and Bias. 

 Calibration results 

Parameter R2 RMSECV factors RESD Bias 

Protein 0.97 1.6 4 0.19 -0.002 

Fat 0.92 0.7 9 0.29 -0.02 

 

Regression coefficient relating to functional groups outside the absorption bands for protein 

and were observed and this could be attributed to variations in particle size, moisture (from 

sample handling) and different analytical groups (Williams 2001). Bands associated with 

protein (1940nm, 2058nm and 2166nm) and fat (1730nm, 1764nm, 2310nm and 2350nm) as 

reported by Decaruyenaere et al. (2001) and Núñez-Sánchez et al. (2012) were also 

identified. Also, the wavelength of protein from faecal spectra (2321nm and 1356nm) was 

observed (Norris et al. 1996; Showers 1997; Givens and Deauville 1999). Wavelength of fat 

as observed by Mathias et al. 1987 (2100nm and 2139nm) for percent fat in fish carcasses 

was also identified. From the figures 4.3.1.1 and 4.3.2.1, the wavelengths between 2134.5-

2236.5nm and 1105-1220nm seems to be the most important region for protein and fat 

absorbance’s respectively. 

 

4.4 VALIDATION DATA SETS D AND E 

PROTEIN 

In testing for the strength of the model created with PLS, 23 samples of known protein 

content (reference) were taken to validate the reference test (equation) for proteins. Three 

replicates were made for each sample of protein and the mean, standard deviation, RMSEP 

and were calculated and the results shown in table 4.4.1. The result of the predicted and the 

reference protein is shown in figure 4.4.1.  
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Table 4.4.1: Validation test of protein (data set D) showing the minimum, maximum, mean, 

standard deviation (STD), RMSEP and Bias. 

Sample No. of 

samples 

Min. Max. Mean STD RMSEP Bias 

Predicted 23 14.77 25.05 19.85 2.69 1.82 -0.72 

Reference 23 16.06 22.69 19.12 2.03 

 

 

Figure 4.4.1: Chart showing the validation protein test 

. 

FAT 

Full cross-validation was used for fat. Because there wasn’t much samples for the fat 

calibration compared to the protein calibration, five samples were selected at random and 

chemically analyzed for fat to compare the predicted results with. The results of the predicted 

experimental samples (5 selected) and its corresponding chemically analyzed content are 

shown in table 4.4.2 and figure 4.4.2.  
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Table 4.4.2: Predicted and chemically analyzed selected samples for fat validation. Showing 

number of samples used, minimum, maximum, mean and standard deviation (STD). 

 No. of samples Minimum Maximum Mean S. D 

Chemical 5 6.1 8.7 7.2 0.95 

Predicted 5 4.7 12.4 8.3 2.78 

 

 

Figure 4.4.2: Chart showing chemically analyzed and predicted fat content of selected 

samples used in comparing the fat validation. 

 

4.5 PREDICTION EQUATION (DATA SET B AND C) PREDICTION OF PREDICTION 

SET (DATA SET A). 

The created PLSR model (equation) was used to predict protein and fat content of the faeces 

of the individual Atlantic salmon from the experiment. The results are shown in table 4.5 and 

in figure 4.5 and figure 4.5.1 for easy representation in a chart graph. 
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Table 4.5: Prediction results for protein and fat showing the minimum, maximum, mean and 

standard deviation (STD) of individual Atlantic salmon. 

Parameter Minimum Maximum Average STD 

Protein 13.71   17.4 15.64 0.80 

Fat 3.31 9.74 5.26 0.91 

 

 

 

Figure 4.5: Chart showing the average predicted protein content of individual Atlantic 

salmon. Even numbered fish ID numbers are coloured red for easy identification and 

consistency of numbers. 
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Figure 4.5.1: Chart showing the average predicted fat content of individual Atlantic salmon. 

Even numbered fish ID numbers are coloured red for easy identification and consistency of 

numbers. 
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CHAPTER FIVE 

DISCUSSION 

5.1 NIR SPECTRA 

All the spectra (figures 4.1.1-4.2) had bands corresponding to fatty acids or protein content 

which are located around 1209nm and is related to the C-H second overtone, around 1500nm 

due to N-H stretch, first overtone, at 1727nm and 1764nm associated with the C-H first 

overtone, at 2308nm and 2348nm due to the C-H combinations (Ritthiruangdej et al. 2011; 

Osborne, Fearn and Thindle 1993; Williams 2001).  

The highest absorption is at wavelengths 1930-2415nm. Consequently, the spectral features 

observed in this study are very similar to those reported for Ruminants by Decaruyenaere et 

al. 1993, for non-ruminants by Ritthiruangdej et al. 2011 and for fish carcasses by Mathias et 

al. 1987. 

The highest absorption is at wavelengths 1930-2415nm for data set A. Consequently, the 

spectral features observed in this study are very similar to those reported for Ruminants by 

Decaruyenaere et al. 1993, for non-ruminants by Ritthiruangdej et al. 2011 and for fish 

carcasses by Mathias et al. 1987. 

 

5.2 PARTIAL LEAST SQUARE REGRESSION MODEL 

For the results of the model created with PLS as shown in table 4.3. 4 PLS factors was used 

for protein and 9 PLS factors used for fat to avoid over-fitting of the model created.  

For NIRs equations to be considered acceptable, it should have an R2>0.80. The protein and 

fat models had high correlation rates. But, the prediction equation is better for protein 

(R2=0.97) than for fat (R2=0.92) and low bias (-0.002, protein and -0.02, fat) indicating a high 

precision though protein had a high RMSECV. The high RMSECV of protein can be 

attributed to the large number of samples used, increasing the errors associated with the 

cross-validation. However, for a very illustrative statistics protein had low (0.19) ratio of 

RMSECV and standard deviation than fat (0.29). The lower the value of the ratio of 

RMSECV and standard deviation, the better the prediction equation, as also illustrated by 

their respective R2’s. 
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5.3 VALIDATION SET 

PROTEIN 

Just as with the calibration data (Table 4.3), the variation range for the predicted protein is 

good comparing favourably with the already known samples (reference) with minimal bias 

between the predicted and reference. And this confirms the good prediction performance for 

the protein model. However, it had a slightly higher RMSEP (1.82) which could have arisen 

from sample preparation and handling and other functional groups interlocking at the same 

wavelengths. 

 

FAT 

The chemically analyzed fat didn’t compare favourably with its corresponding prediction 

with the model as illustrated by the large difference in standard deviation further iterating a 

weaker fat model. However, it should be noted that the uncertainty of the chemical analysis is 

very high as a result of the purity of reagents used, assumed stoichiometry, measurement 

conditions, operator effect etc. all affecting the chemical results. 

 

5.3 PREDICTION RESULTS OF PREDICTION DATA SET 

Because, to our knowledge, there was no previous work on faecal NIRs to directly predict the 

digestibility of individual salmon to compare the results with, the prediction results were 

compared to other studies using near infrared spectroscopy on faeces. The average prediction 

for protein was above that obtained by Sánchez et al. 2013 (11.82) and Li et al 2007 (11.97, 

12.04) for rabbit and sheep faecal samples respectively. Also, the average prediction for fat 

compared favourably with that obtained by Hernandez-Martinez et al. 2013 (5.29). However 

detailed explanation of the observed variations as well as the digestibility of the predicted 

contents is treated in parallel thesis.  
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CHAPTER SIX 

6.0 CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORKS 

The objective of this study was to develop prediction equation for protein and fat in 

individual Atlantic salmon using NIR spectroscopy. 

The statistics of the equations are satisfactory, however, the equation for protein showed high 

precision of prediction and therefore useful for predicting protein of individual Atlantic 

salmon. The large variation in the calibration data (table 4.1) is good for developing 

prediction equations as it spans the range of several wavelengths. Consequently, the source of 

the data from several experiments makes the developed equation robust with a very high 

predictive ability as it spans several wavelengths with a high probability of finding the 

wavelength of the constituents under consideration. 

The good prediction results obtained for the protein (Table 4.5) further validates the 

potential of the developed equation for prediction in individual Atlantic salmon.  

With this study serving as a foundation for future faecal predictions in individual 

Atlantic salmon, I recommend further works be done using the same or similar method to 

develop new equation for fat to better compare the developed equation with. Also, to use fish 

of the same families to access the prediction results also within families. 
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CHAPTER EIGHT 

8.0 APPENDICES 

 

Table 8.1: Table showing the predicted and reference (validation) protein  

 
Protein predicted (%) Reference Protein (%) 

307.b1 22.42417 21.375 

307b1  24.71613 22.4375 

308.b1 19.25731 18 

308b1  19.99459 18.875 

309.b1 16.12472 16.6875 

309b1  18.15656 18.5 

311.b1 25.04253 20.9375 

311b1  21.2302 22.6875 

312.b1 18.06159 17.6875 

312b1  18.31725 19.625 

313.b1 15.42277 16.125 

314.b1 19.63698 17.1875 

314b1  19.7338 18.375 

315.b1 19.77802 17 

315b1  20.66568 20.1875 

316.b1 17.65016 16.0625 

316b1  14.76538 18.0625 

317.b1 24.5435 21.3125 

317b1  21.38691 22.625 
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318.b1 19.82629 18.0625 

318b1  20.58947 20 

319.b1 18.993 18.5625 

319b1  20.13437 19.4375 

 

 

Table 8.2: Table showing the prediction results of averaged NIR samples for protein 

and fat content of faeces. 

Sample ID Protein Predicted Fat Predicted  Sample ID Protein Predicted Fat Predicted 

1 
16.29447 4.6403  27 15.34291 6.3358 

2 16.79815 4.2632  28 14.91126 5.7517 

3 15.01933 5.865  29 15.8203 6.057 

4 15.61309 3.8035  30 17.00941 5.2467 

5 17.62198 3.9685  31 15.04215 5.0284 

6 14.96263 5.2622  32 16.32381 5.0928 

7 16.28295 5.5169  33 16.82598 5.5372 

8 15.23842 5.5944  34 16.78425 5.2832 

9 17.22538 5.9827  35 14.96218 5.7322 

10 15.62425 5.2004  36 15.61623 4.2652 

11 16.47167 6.3702  37 17.02757 5.3461 

12 15.02166 5.5469  38 15.80364 5.192 

13 15.59468 5.4545  39 16.0761 5.5432 

14 14.60761 6.2864  40 15.66051 5.4799 

15 16.41623 4.595  41 13.84982 5.6666 
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16 16.34821 6.9204  42 17.23637 4.7666 

17 15.91954 5.7475  43 15.64416 5.3407 

18 15.31604 5.0711  44 17.12207 5.1561 

19 15.34681 4.7884  45 14.31061 6.5209 

20 16.98812 5.2865  46 14.21144 5.2483 

21 17.56816 5.6637  47 14.85427 5.7655 

22 15.61249 5.2258  48 15.45566 5.1641 

23 15.16419 3.6913  49 10.73997 5.1141 

24 16.58562 4.1611  50 17.03703 4.9471 

25 15.05275 7.7201  51 16.19741 5.5814 

26 15.62337 6.5761  52 16.40339 5.7868 

Sample ID Protein Predicted Fat Predicted  Sample ID Protein Predicted Fat Predicted 

53 15.16493 5.0613  82 15.58202 4.0314 

54 15.76699 5.7687  83 14.91834 4.5987 

55 15.39905 4.8231  84 16.28123 4.7468 

56 15.80315 4.9596  85 14.48049 5.0022 

57 15.10229 5.6777  86 15.32943 4.3271 

58 15.60404 5.1677  87 13.01869 6.634 

59 14.86071 6.077  88 14.25455 5.0382 

60 16.99891 9.1179  89 15.56142 5.1935 

61 15.02083 4.9234  90 15.51433 4.7937 

62 16.39461 3.6655  91 16.0923 5.1407 

63 15.21621 6.0203  92 15.6549 4.2907 
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64 14.6831 5.3835  93 15.23449 4.4758 

65 15.78904 5.3421  94 15.83729 5.6982 

66 16.98036 7.7744  95 13.57823 4.7911 

67 15.63179 4.5544  96 15.46441 4.5133 

68 15.88293 5.003  97 14.72019 5.5443 

69 13.72932 5.4668  98 17.85735 5.2758 

70 17.43812 3.2085  99 15.83101 4.7695 

71 13.95299 4.76  100 14.71721 5.304 

72 17.51303 4.4066  101 14.35806 4.2738 

73 15.63796 4.3643  102 14.61303 7.7122 

74 14.06629 4.3603  103 15.09476 4.2801 

75 14.53893 5.6958  104 13.56696 6.18 

76 15.53518 5.3934  405 17.29992 5.2751 

77 14.67498 4.6157  106 14.54087 4.4626 

78 14.83868 4.1379  107 14.30013 4.5781 

79 14.97043 3.5388  108 15.26267 5.171 

80 15.33167 5.6765  109 15.23573 4.1521 

81 15.30532 4.2156  110 15.73446 4.67 

Sample ID Protein Predicted Fat Predicted  Sample ID Protein Predicted Fat Predicted 

111 15.91753 5.7653  141 15.9063 5.6029 

112 15.31582 6.3579  142 18.76843 3.9461 

       

113 13.62536 4.2855  143 16.61989 5.3106 
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114 15.08791 5.7514  144 15.78176 4.8826 

115 14.30715 6.446  145 16.27584 5.2611 

116 15.02917 5.2035  146 15.77682 6.0759 

117 16.49677 5.3986  147 17.57863 4.3864 

118 16.52819 4.5394  148 17.5519 5.3229 

119 17.18195 5.6712  149 16.23173 6.0553 

120 16.54337 4.5599  150 15.21444 4.7916 

121 17.64654 4.584  151 16.234 4.2367 

122 14.26487 8.8469  152 15.34289 4.9842 

123 18.16652 4.1228  153 15.05055 5.1836 

124 16.39437 4.1849  155 15.67785 5.9032 

125 16.49784 6.1094  156 17.23634 3.5369 

127 14.31045 7.3238  157 16.17658 5.717 

128 13.20737 8.8513  158 15.71122 5.197 

128 17.52579 4.366  159 14.70447 3.7969 

130 16.24381 6.0373  160 14.18527 5.9992 

131 16.63609 4.8484  161 16.30571 5.421 

132 15.71708 5.3705  162 16.13836 5.9084 

133 15.15955 2.8718  163 15.95242 5.1956 

134 15.25464 5.5564  164 11.05383 4.4965 

135 14.19917 5.9884  165 14.92229 6.3889 

136 16.34302 4.2766  166 16.07507 4.6131 

137 17.14201 5.4613  167 15.58014 5.6218 
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138 15.23386 1.4209  168 15.04357 6.9151 

139 17.08615 5.2295  169 15.24209 5.3074 

140 16.0901 12.3915  170 18.09166 4.4151 

Sample ID Protein Predicted Fat Predicted     

171 17.09249 5.7487     

172 16.49868 5.8884     

173 15.03315 5.841     

 

 

 

Table 8.5: Table showing the predicted protein and fat content of individual Atlantic salmon. 

PROTEIN (% Dry Matter) 

Average 

DM 

Protein 

(%) 

FAT 
Average 

Fat 

15.91954 17.29992 17.57863 16.933 5.748 5.275 4.386 5.136 

17.23637 15.46441 E 16.350 4.767 4.513 E 4.640 

15.60404 15.63179 17.14201 16.126 5.168 4.554 5.461 5.061 

15.45566 13.62536 17.08615 15.389 5.164 4.285 5.230 4.893 

13.84982 13.57823 Died 13.714 5.667 4.791 Died 5.229 

16.40339 15.02917 11.05383 14.162 5.787 5.203 4.497 5.162 

15.76699 15.91753 16.39437 16.026 5.769 5.765 4.185 5.240 

15.31604 15.23573 17.52579 16.026 5.071 4.152 4.366 4.530 

14.96263 14.30013 14.92229 14.728 5.262 4.578 6.389 5.410 

16.47167 15.88293 18.16652 16.840 6.370 5.003 4.123 5.165 

15.34291 16.0923 17.09249 16.176 6.336 5.141 5.749 5.742 

17.12207 15.32943 15.71708 16.056 5.156 4.327 5.371 4.951 

10.73997 14.6831 15.77682 13.733 5.114 5.383 6.076 5.524 
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15.61623 14.54087 17.23634 15.798 4.265 4.463 3.537 4.088 

16.99891 14.61303 16.0901 15.901 9.118 7.712 12.391 9.741 

17.02757 17.85735 16.23173 17.039 5.346 5.276 6.055 5.559 

14.85427 15.33167 15.58014 15.255 5.765 5.677 5.622 5.688 

14.96218 16.39461 16.17658 15.844 5.732 3.665 5.717 5.038 

15.02166 15.53518 15.34289 15.300 5.547 5.393 4.984 5.308 

16.0761 14.72019 14.19917 14.998 5.543 5.544 5.988 5.692 

15.80364 15.63796 18.76843 16.737 5.192 4.364 3.946 4.501 

16.34821 14.30715 14.31045 14.989 6.920 6.446 7.324 6.897 

15.39905 15.23449 15.78176 15.472 4.823 4.476 4.883 4.727 

14.86071 15.21621 16.13836 15.405 6.077 6.020 5.908 6.002 

16.79815 13.56696 Died 15.183 4.263 6.180 Died 5.222 

15.64416 13.72932 14.18527 14.520 5.341 5.467 5.999 5.602 

15.16493 Died Died 15.165 5.061 Died Died 5.061 

17.00941 15.6549 15.95242 16.206 5.247 4.291 5.196 4.911 

15.34681 E 16.49868 15.923 4.788 E 5.888 5.338 

16.28295 15.78904 16.27584 16.116 5.517 5.342 5.261 5.373 

15.62425 14.48049 16.23399 15.446 5.200 5.002 4.237 4.813 

16.29447 15.83101 16.54337 16.223 4.640 4.769 4.560 4.657 

16.58562 15.08791 14.70447 15.459 4.161 5.751 3.797 4.570 

14.60761 15.83729 16.24381 15.563 6.286 5.698 6.037 6.007 

15.66051 14.06629 15.21444 14.980 5.480 4.360 4.792 4.877 

15.61309 13.95299 16.49677 15.354 3.803 4.760 5.399 4.654 

15.10229 15.02083 15.05055 15.058 5.678 4.923 5.184 5.262 

15.05275 16.98036 16.34302 16.125 7.720 7.774 4.277 6.590 

15.59468 15.26267 18.09166 16.316 5.455 5.171 4.415 5.014 

17.03703 14.83868 15.24209 15.706 4.947 4.138 5.307 4.797 

15.01933 15.58202 17.5519 16.051 5.865 4.031 5.323 5.073 

15.8203 14.67498 15.25464 15.250 6.057 4.616 5.556 5.410 

15.80315 14.97043 15.23386 15.336 4.960 3.539 1.421 3.306 

15.62337 13.01869 14.26487 14.302 6.576 6.634 8.847 7.352 

17.56816 E 17.18195 17.375 5.664 E 5.671 5.667 
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16.82598 15.73446 16.30571 16.289 5.537 4.670 5.421 5.209 

15.61249 17.43812 17.64654 16.899 5.226 3.208 4.584 4.339 

16.32381 15.31582 15.15955 15.600 5.093 6.358 2.872 4.774 

15.16419 E E 15.164 3.691 E E 3.691 

16.78425 14.25455 15.03315 15.357 5.283 5.038 5.841 5.387 

17.62198 15.09476 16.52819 16.415 3.968 4.280 4.539 4.263 

15.23842 14.35806 13.20737 14.268 5.594 4.274 8.851 6.240 

16.41623 15.51433 16.63609 16.189 4.595 4.794 4.848 4.746 

16.98812 17.51303 16.61989 17.040 5.287 4.407 5.311 5.001 

14.91126 16.28123 15.9063 15.700 5.752 4.747 5.603 5.367 

14.31061 14.53893 15.04357 14.631 6.521 5.696 6.915 6.377 

14.21144 14.91834 16.07507 15.068 5.248 4.599 4.613 4.820 

16.19741 15.56142 15.67785 15.812 5.581 5.193 5.903 5.559 

15.04215 15.30532 15.71122 15.353 5.028 4.216 5.197 4.814 

17.22538 14.71721 16.49784 16.147 5.983 5.304 6.109 5.799 
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