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Abstract

Despite being a highly studied model organism, most genes of the cyanobacterium

Synechocystis sp. PCC 6803 encode proteins with completely unknown function.

To facilitate studies of gene regulation in Synechocystis, we have developed

Synergy (http://synergy.plantgenie.org), a web application integrating co-

expression networks and regulatory motif analysis. Co-expression networks were

inferred from publicly available microarray experiments, while regulatory motifs

were identified using a phylogenetic footprinting approach. Automatically

discovered motifs were shown to be enriched in the network neighborhoods of

regulatory proteins much more often than in the neighborhoods of non-regulatory

genes, showing that the data provide a sound starting point for studying gene

regulation in Synechocystis. Concordantly, we provide several case studies

demonstrating that Synergy can be used to find biologically relevant regulatory

mechanisms in Synechocystis. Synergy can be used to interactively perform

analyses such as gene/motif search, network visualization and motif/function

enrichment. Considering the importance of Synechocystis for photosynthesis and

biofuel research, we believe that Synergy will become a valuable resource to the

research community.

Introduction

Cyanobacteria are the only prokaryotic organisms that produce oxygen in the

process of photosynthesis, and are the ancestors of higher plant chloroplasts. Not
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only did cyanobacteria establish the aerobic Earth’s atmosphere, they also play a

crucial role in the global biochemical cycle today by fixing CO2 and producing

half of the global biomass. Being prokaryotes, cyanobacteria can be genetically

modified easily and due to their fast photoautotrophic growth, they have a great

potential for large scale production of renewable biofuels [1, 2] and other valuable

products [1, 3, 4]. The popularity of the cyanobacteria phylum in photosynthesis

and biotechnology research is reflected in the high number of sequenced

cyanobacterial genomes available in Cyanobase (http://genome.microbedb.jp/

cyanobase/) [5] and other public databases [6]. After the genome of the

unicellular fresh water cyanobacterium Synechocystis sp. PCC 6803 (hereafter

Synechocystis) was sequenced in 1996 [7], large amounts of gene expression data

have been generated from cells exposed to diverse experimental conditions.

Identifying groups of genes with similar expression patterns (i.e. co-expressed

genes) in such data sets allows inference of functional and regulatory similarities

among genes. For example, light response in Synechocystis has been studied using

gene co-expression networks [8–10]. While these studies give insight into how

cells react to single modifications, only the integration of multiple transcriptome

data sets will allow a holistic understanding of the cellular response. The first

meta-analysis of transcriptomics data in Synechocystis used a co-expression

network inferred from 163 different environmental and genetic perturbations to

identify a large number of genes (referred to as the Core Transcriptional

Response) that are commonly regulated under most perturbations [9]. The

growing interest in integrated transcriptome analysis has also led to the

development of a web database, CyanoEXpress [11]. Although this tool comprises

a vast set of experimental data, and integrates microarray data obtained with

different experimental platforms, its use is restricted to the visualization and

analysis of gene expression clusters. However, genes regulated by the same

transcription factor (i.e. co-regulated genes) should not only be co-expressed, but

also contain similar cis-regulatory elements in their promoter region. In

Synechocystis, co-expression has not yet been linked with motif discovery in order

to obtain a more mechanistic understanding of gene regulation.

We have developed Synergy, a web resource for exploring Synechocystis gene

regulation, which integrates co-expression network analysis with motif analysis.

Synergy is available at http://synergy.plantgenie.org. Considering the importance

of Synechocystis as a model organism in biofuel production [2] and photosynthetic

research [12, 13], we believe Synergy will become a valuable resource to many

researchers.

Results and Discussion

In this article we provide an integrated analysis of co-expression networks,

promoter motifs and existing gene function annotations in Synechocystis. See

Figure 1 for an overview.

Synergy: Exploring Gene Regulation in Synechocystis

PLOS ONE | DOI:10.1371/journal.pone.0113496 November 24, 2014 2 / 18

http://genome.microbedb.jp/cyanobase/
http://genome.microbedb.jp/cyanobase/
http://synergy.plantgenie.org


Co-expression network inference

Co-expression networks were inferred from 371 individual microarray experi-

ments obtained from KEGG Expression (Table 1; http://www.genome.jp/kegg/

expression/; [14]). We used locally corrected mutual information scores (CLR

scores, see Materials and Methods) to measure co-expression between pairs of

genes, and constructed co-expression networks by linking genes with a CLR score

above a preset threshold. Thus, a co-expression network is a set of nodes

representing genes, which are connected by links representing co-expression above

a threshold. Since some of the expression values were missing in the published

data, we decided to investigate their impact by inferring two different networks;

one based on a subset of samples that contained expression values for all the genes

across all microarrays (subset co-expression), and another one based on all

microarrays (complete co-expression). The subset co-expression network

contained 3,077 genes (i.e. nodes) and 59,595 links with a CLR score above 4.0,

while the corresponding complete co-expression network contained 3,067 nodes

and 52,081 links.

Figure 2 shows a simplified version of the complete co-expression network

where highly connected sub-networks are collapsed into single nodes (clusters)

that thus represent several co-expressed genes (see Materials and Methods). Some

of these clusters are associated with Gene Ontology (GO) [15] terms that are

assigned more often to genes in that cluster than what one would expect by chance

Figure 1. Overview of the data and methods used in the study. A co-expression network was inferred from
gene expression, and promoter motifs were identified de novo from the genome sequences of orthologous
species. The motif information was used to investigate if transcription factor neighborhoods were enriched for
motifs compared to random network neighborhoods.

doi:10.1371/journal.pone.0113496.g001
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(false discovery rate (FDR) [16] corrected p-value ,0.05 or, equivalently, q-value

,0.05). We will refer to such statistically significant overrepresentation as

enrichment. The dominating clusters in the network display genes encoding

proteins related to energy metabolism, photosynthesis, translation and protein

folding. These clusters stand out not only because they contain genes with

stringent regulation under the majority of stress conditions tested, but also

because these genes encode proteins with inter-functional dependency. As also

previously noticed [9], the expression of ribosomal genes is correlated with the

expression of energy producing pathways (photosynthesis and energy metabo-

lism); shutting down the major energy producing pathways will result in

temporary translational stop. Protection from reactive oxygen species (ROS) is of

tremendous importance for an oxygen-producing organism like Synechocystis,

which is reflected by the central location of the cluster representing genes coding

for enzymes involved in protein folding.

Co-expression networks can be used to quantify the importance of a gene by

reporting several different measures of network centrality calculated for the node

representing that gene. The degree centrality of a node is defined as the fraction of all

nodes in the network that are directly connected to it (i.e. neighbors). The

betweenness centrality of a node is the fraction of times that node is in the shortest

path between two other nodes in the network (the shortest path between two nodes

in a network is the fewest number of links needed to travel from one node to the

other). The 40 genes with the highest degree- and betweenness- centrality (average

centrality of 0.179 and 0.008, respectively) in the complete co-expression network

were both enriched for genes encoding proteins involved in the photosynthetic

processes (GO:0015979: photosynthesis, q,0.001 and q,0.05, respectively). The

Table 1. References to the microarrays used in this study.

Reference Arrays Conditions

[38] 18 3

[39] 20 4

[40] 4 1

[41] 22 2

[42] 11 3

[43] 46 11

[44] 144 12

[45] 38 10

[46] 4 1

[47] 4 1

[48] 14 4

[49] 28 14

[50] 18 9

Total 371

All data can be found at http://www.genome.jp/kegg/expression/.

doi:10.1371/journal.pone.0113496.t001
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complete results are available in file S1. The central role of these photosynthesis

related genes within the gene regulation of Synechocystis is also supported by the

relatively central location of its gene cluster (Cluster 3) in Figure 2. Functional

enrichment of co-expression in the model plant Arabidopsis thaliana has also found

a cluster of genes encoding proteins involved in photosynthesis in a central position

Figure 2. Clustered co-expression network. A clustered co-expression network derived from the complete co-expression network at a CLR threshold of
4.0. Each node corresponds to a set of clustered genes. The size of the nodes is proportional to the number of genes in the cluster. Two clusters are linked if
they share at least one co-expressed gene pair. The annotations correspond to the most significantly enriched GO terms in the clusters (q,0.05).

doi:10.1371/journal.pone.0113496.g002
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[17]. This confirms the high conservation of photosynthesis related genes; in

particular the regulation of these genes is highly conserved.

Phylogenetic footprinting

Transcription factors (TFs) bind to regulatory elements in the promoter region of

genes or operons to enhance or repress their transcription. Phylogenetic

footprinting was used to identify conserved DNA motifs within promoters of

orthologous genes, which would indicate functional regulatory elements. We

identified 8,961 groups of orthologous genes in 22 Chroococcales genomes (see

file S2 for a list of organisms) and searched for conserved DNA promoter motifs

using de novo motif finding (see Materials and Methods). Since motifs were

discovered from each group of orthologous genes independently, the resulting

motif set contained as many as 15,306 motifs that could be mapped to

Synechocystis promoters, of which many were very similar or even identical. To

obtain a more representative motif set, we inferred a motif similarity network,

identified clusters in this network and compiled a final library of 4,977 central

motifs; one motif from each cluster (see Materials and Methods). This extensive

motif set displays good coverage of the Synechocystis promoters; already at a q-

value threshold of 0.10 (i.e. less than 10% of the motif mappings are expected to

be false positives), virtually every gene had at least one motif mapped and almost

every motif in the library was mapped to at least one promoter (Figure 3).

Motif enrichment in co-expression network neighborhoods of

regulatory genes

A major aim of our study was to integrate co-expression networks and regulatory

motifs in order to describe gene regulation in Synechocystis. To this end, we rely on

the assumption that genes encoding TFs are co-expressed with their target genes and

that the target genes contain a specific binding site, which is used by the TF to

initiate transcription. Consequently, we tested this assumption for each gene

annotated with a regulatory function or DNA binding by first identifying all genes

directly connected to that putative TF (i.e. the TF neighborhood) and then by

calculating to what degree motifs occurred more often in this neighborhood than

what one would expect by chance (i.e. enriched motifs). This analysis was

performed for different network CLR thresholds and motif q-values in the complete

co-expression network and in the subset network (where experiments with missing

values were removed) using all discovered motifs and the non-redundant set of

central motifs. Figure 4 shows that the library of central motifs resulted in more TF

neighborhoods with enriched motifs (q,0.05) than the set of all motifs, which on

one hand can be explained by the multiple hypothesis correction procedure, but on

the other hand also indicates that the reduced set of central motifs covers all motif

variants. Also, TF neighborhoods in the complete co-expression network contained

enriched motifs more often than in the subset network, indicating that our network

inference procedure copes well with data sets having missing values. Based on these

Synergy: Exploring Gene Regulation in Synechocystis
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results, all analyses are henceforth based on the complete network and the central

motifs. Interestingly, there is a relationship between the network CLR threshold and

the motif q-value threshold, where stricter CLR thresholds require more generous q-

value thresholds in order to maximize the number of motif-enriched TF

neighborhoods. The highest number of enriched TF neighborhoods with the lowest

p-values was observed in the complete network with a CLR threshold of four and a

motif q-value of 0.15. Here, 105 of the 136 investigated genes with a regulatory

function (77%), and 87 of the 118 investigated DNA binding genes (74%), had at

least one enriched motif in its neighborhood. In total, 387 and 445 motifs were

enriched in these analyses, respectively. These results are statistically highly

significant, both, compared to neighborhoods of ordinary genes in the network

(p50.001) and compared to TF neighborhoods in randomized networks

(p,0.001). Thus, we can conclude that co-expression and motif information to a

large degree concur in Synechocystis. The fact that these two completely independent

data sets agree so well also strengthens any biological insight inferred from our data.

Figure 3. Central motifs mapped to Synechocystis promoters. The plots show the total number of times
the central motifs were mapped to promoters (A), the number of unique motifs that were mapped (B) and the
number of unique genes the motifs were mapped to (C) for different FIMO q-value thresholds.

doi:10.1371/journal.pone.0113496.g003
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Conservation of co-expression in photosynthesis genes

Cyanobacteria are the evolutionary origin of the plant chloroplast. Synechocystis

therefore is an important model system for studying photosynthesis. We

investigated to what extent the co-expression of Synechocystis genes coding for

Figure 4. Gene co-expression neighborhoods with significant motif enrichment. The figure plots the fraction of neighborhoods for regulatory genes (A)
and DNA-binding genes (B) with at least one significantly enriched motif (q,0.05) against the q-value threshold for mapping motifs to the genome. The
fractions are calculated from the total number of genes in the respective groups that have gene expression data (118 DNA-binding genes and 136 regulatory
genes). Plots are shown for all motifs and the subset of central motifs as well as for the complete and subset co-expression networks with different CLR
thresholds. P-values are given for each combination of parameters and indicate the probability of observing the reported fraction of enriched neighborhoods
in randomized networks.

doi:10.1371/journal.pone.0113496.g004
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photosynthetic proteins is conserved in plants. 64 Synechocystis genes were

annotated with the GO term photosynthesis (GO:0015979), of which 62 genes

formed a connected co-expression subnetwork (CLR threshold of three,

Figure 5A). 35 of these Synechocystis genes had at least one ortholog in A. thaliana

(E,1e-5), resulting in 30 unique A. thaliana gene models (file S3). We analyzed

these genes in the comparative network tool ComPlEx [18], and indeed confirmed

that all these genes formed a co-expression cluster with the same CLR threshold of

three. Moreover, this co-expression network was highly conserved also in Oryza

sativa and Populus trichocarpa (Figure 5B and 5C).

Web application

We have created a web tool for integrated analysis of co-expression networks and

regulatory motifs called Synergy (http://synergy.plantgenie.org). Available tools

include an interactive co-expression network viewer, Gene Ontology and motif

enrichment tools, precompiled gene lists and the ability to export annotated gene

lists.

The natural starting point on the web site is the gene search tool. From here, the

user can search for genes of interest or upload a list of genes (Figure 6A). There is

also the possibility of using precompiled gene lists; genes annotated to a GO

category, genes associated with a motif, genes in a co-expression cluster (Figure 2)

Figure 5. Conservation of photosynthesis genes. Co-expressed genes related to photosynthesis in Synechocystis (A) were BLASTed against A.
thaliana. The orthologs (BLAST E-value ,1e-5) were compared against P. trichocarpa (B) and O. sativa (C) using the network comparison tool ComPlEx.
This revealed conservation of co-expression across all four species. Note that the A. thaliana genes given in white color were not measurably expressed in
the other species.

doi:10.1371/journal.pone.0113496.g005

Synergy: Exploring Gene Regulation in Synechocystis

PLOS ONE | DOI:10.1371/journal.pone.0113496 November 24, 2014 9 / 18

http://synergy.plantgenie.org


and genes in the immediate co-expression neighborhood of a regulatory gene. For

each of these gene lists, GO and motif enrichment have been pre-calculated.

Genes of interest can be added to the gene basket and these genes will be

available throughout the application. The gene basket page allows the user to

manage the gene basket and to calculate GO and motif enrichment for the genes

currently in the basket.

The network viewer features the possibility to view and explore co-expression

among sets of genes (Figure 6B). Genes that are co-expressed with the gene(s) in

the current co-expression network can be found by expanding the network at any

selected CLR threshold. It is also possible to export the networks in the Graph

Modelling Language (GML) file format, or as publication quality PDFs.

Gene expression profiles of a chosen set of genes can be plotted across the 371

experiments and later downloaded as publication quality PDFs.

Figure 6. Web application screenshots. Gene search interface (A), network viewer (B), gene details (C) and motif details (D).

doi:10.1371/journal.pone.0113496.g006
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For each gene name there is a dedicated page detailing annotations, the

expression profile and a list of motifs in the promoter (Figure 6C).

Correspondingly, there is a dedicated page for each motif containing the motif

logo, the set of genes that contain the motif in their promoters, the possibility of

searching for this motif in existing motif databases and the position specific

probability matrix for use in other software (Figure 6D).

To make sure that feedback from users reaches the developers by the shortest

path possible, a public issue tracker is available at Github (https://github.com/

maehler/Synergy/issues). Here, users can file tickets for bugs and enhancements.

Documentation for the tools can be found at http://synergy.plantgenie.org/

documentation.

Below we describe a number of case studies that illustrate different uses of

Synergy:

Case study 1: identification of genes regulated by a known

transcription factor

Synergy can be used to analyze motif occurrences in order to find candidate genes

regulated by a known transcription factor. Previously, a spaced motif in the

upstream region of genes involved in phosphate limitation had been identified

in Synechocystis as well as the transcription factor recognizing this

motif [19]. The consensus motif contained the direct repeat sequence

[CT]TTAA[CT][CT][TA]NNN[CT]TTAA[CT][CT][TA] (Figure 7). Comparing

the central region of the motif (TTAA[CT][CT][TA]NNN[CT]TTAA) with

existing motifs in Synergy identified the motif NP_442272.1_1 (E-value 1.61e-5).

A total of 56 genes contained this motif in their promoter sequence, including

Figure 7. Synergy case study 1. A regulatory motif and its transcription factor were extracted from the
literature [19]. Searching for the motif in Synergy identified a number of genes that were experimentally
determined to be regulated by this transcription factor.

doi:10.1371/journal.pone.0113496.g007
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slr0447 (urtA), slr1247 (pstS2) and sll0679 (sphX) that have been reported to be

up- or down-regulated under phosphate limiting conditions [19]. However,

slr1247 and sll0679 are leading genes in two operons according to information in

Cyanobase. Assuming that the downstream genes in these operons are also

regulated by the motif, we identified 11 of the 13 genes reported by [19].

Case study 2: motif analysis to reveal protein function

Synergy further can be used to investigate the relationship between a set of genes

by integrated analysis of both motifs and co-expression. A search for genes coding

for proteins related to the two photosystems in the Synergy gene search tool

resulted in 51 genes that subsequently were tested for regulatory motif

enrichment. The motif NP_441569.1_8 was ranked as the second most enriched

motif (q-value ,0.001), and its best match in the Prodoric database was

MX000068 in Bacillus subtilis. A sigma factor is known to bind to this motif, and

using protein BLAST revealed a number of sigma factors with highly significant E-

values (,1e-10) in Synechocystis.

With this information in hand, a new gene search was performed, in which all

genes coding for proteins annotated as sigma factors were added to the existing

selection of genes. Looking at the co-expression network for these genes revealed

that genes coding for photosystems together with those coding for sigma factors

formed a connected subnetwork (CLR threshold of three). Our analysis thus

supports previous data showing that sigma factors play a vital role in controlling

the stoichiometry of the photosystems within the thylakoid membrane [20, 21].

Case study 3: functional role of hypothetical proteins

Synergy can be used to assign functions to unknown or hypothetical proteins

based on co-expressed genes with known function. The CP12 protein encoded by

ssl3364 is highly conserved in all photosynthetic organisms, but is annotated as a

hypothetical protein in Cyanobase. In higher plants and algal species (reviewed by

[22]) it was found to be involved in the thioredoxin-mediated regulation of the

Calvin-Benson cycle [22]. Moreover, additional functions are hypothesized for

this protein in plants [22] and a comparative analysis of 126 cyanobacterial

genomes reveals functional diversity among its orthologues [23]. A co-expression

neighborhood analysis of ssl3364 (CLR threshold of four with an expansion

threshold of five) generated a densely connected cluster of 54 genes and 798 links.

The neighborhood is dominated by genes encoding proteins of the oxidative stress

response like chaperones and proteases, and is enriched in genes coding for

enzymes involved in protein folding (GO:0006457, q-value ,0.01). We

hypothesize a new biological function for the CP12 protein in Synechocystis, i.e.

protection from oxidative stress, similar to the function of its orthologues in A.

thaliana and Chlamydomonas reinhardtii, which have been shown to protect

Calvin-Benson enzymes from oxidative stress [24].

Synergy: Exploring Gene Regulation in Synechocystis

PLOS ONE | DOI:10.1371/journal.pone.0113496 November 24, 2014 12 / 18



Case study 4: TF neighborhoods contain biologically relevant motifs

We have shown that the neighborhoods of TFs in our co-expression networks

contain common motifs more often than by chance (enriched motifs). To see

whether experimental data support that these automatically discovered promoter

motifs in fact bind TFs, external motif databases were explored. The gene sll0998,

for example, encodes a LysR family transcription regulator. In the co-expression

network (complete network, CLR threshold of 4) this TF is connected to eight

neighboring genes with three enriched motifs in their promoters (q,0.05). One of

the motifs was NP_440076.1_5. Searching for motifs similar to NP_440076.1_5 in

Prodoric resulted in the motif MX000155 known to be regulated by OxyR in E.

coli. Using protein BLAST to search for homologs of OxyR in Synechocystis gave a

highly significant hit (E51e-26) to the protein product of sll0998.

Conclusions

We have developed a web tool, Synergy, allowing interactive analysis of the Synechocystis

genome by integrating co-expression networks, regulatory elements and existing

knowledge such as functional annotations and known regulatory genes and elements.

Furthermore, we have demonstrated the usefulness of this tool in finding both

previously published and new biologically relevant regulatory links in Synechocystis.

Materials and Methods

Microarray data

A total of 371 individual microarray experiments were downloaded from Kyoto

Encyclopedia of Genes and Genomes (KEGG; http://www.genome.jp/kegg/

expression/). All of the data were based on the Takara microarray chips that

covers 83% (3,079/3,726) of the genes in Synechocystis [25]. The data were

combined into a single data set and normalized with the limma package [26] in R;

a software environment for statistical computing and graphics.

Annotations

Gene annotations were retrieved from Cyanobase. In total, 146 genes were

annotated as coding for enzymes with a regulatory function. In this study, these

genes were treated as coding for known transcription factors. In Cyanobase, there

were also functional annotations translated into GO terms. In total, 2,040

Synechocystis genes were annotated to 2,076 GO terms.

Co-expression inference

Mutual Information (MI) and Context Likelihood of Relatedness (CLR) were

used to infer co-expression networks from the microarray data. MI is a metric that

does not assume linearity or continuity when measuring the dependence between

Synergy: Exploring Gene Regulation in Synechocystis
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two variables. This makes it possible to detect relationships that would be

undetected by other methods, such as the Pearson correlation coefficient. CLR

then finds the most statistically significant co-expression neighbors of each gene

based on the local background distribution of MI scores to all other genes [27].

From the z-scores produced by the CLR algorithm, a co-expression network was

constructed. A co-expression network can be defined as a collection of nodes

(genes) and links (co-expression relationships) where the links are weighted

according to the strength of the co-expression.

To account for the large number of missing values in the complete dataset, two

different co-expression networks were constructed: the complete co-expression

network using all samples (i.e. all 371 microarray experiments) and the subset co-

expression network using only the samples with no missing values (67 samples).

Phylogenetic footprinting

MEME [28] was used to find potential regulatory motifs in groups of orthologs

(so-called phylogenetic footprinting). The proteomes of 22 organisms in the

Chroococcales taxon (file S2) were downloaded from NCBI and clustered with

OrthoMCL [29]. MEME was then used to find conserved motifs in the promoter

regions of the corresponding genes in each group. A promoter was defined as the

400 bp sequence upstream of the transcription start site, and the promoters were

retrieved using Regulatory Sequence Analysis Tools (RSAT) [30]. MEME was

instructed to find motifs between 8 and 20 bp in length with an E-value threshold

of 100. The MEME motifs were then mapped back to the Synechocystis promoters

using FIMO [31] and motifs with a q-value below 0.3 were kept.

The phylogenetic footprinting approach resulted in many motifs that were

similar to each other. To eliminate duplicates, a motif similarity network was

constructed. The similarities were calculated by CompariMotif [32] using the

consensus motifs derived from the position specific scoring matrices (PSSMs) as

input. The motif network was then clustered using MCL [33]. The motif with the

highest betweenness centrality was chosen as a representative motif from each

cluster (central motif).

Motif and GO enrichment

To calculate enrichment of motifs or GO terms in a set of genes, Fisher’s exact test

was used. The test was implemented using the Python library scipy (v0.13.3)

(http://www.scipy.org). To correct for multiple testing, false discovery rate (FDR)

adjustment was used and q-values were reported.

Motif enrichment in network neighborhoods

For genes of interest, the immediate co-expression neighborhood was extracted

and motif overrepresentation was calculated for these neighbors. The analysis was

performed on genes annotated with regulatory function and genes annotated with

DNA-binding. As a negative control, 1,000 random gene lists with 100 genes in

Synergy: Exploring Gene Regulation in Synechocystis

PLOS ONE | DOI:10.1371/journal.pone.0113496 November 24, 2014 14 / 18

http://www.scipy.org


each were used. In all gene sets, genes without expression values were excluded

since they will not be present in the co-expression networks. Both, the complete

and the subset co-expression networks were used with CLR thresholds of 3, 4 and

5. We also tested different sets of motifs mapped to the genome as defined by

different FIMO q-value thresholds. For each neighborhood and parameter

combination, motif enrichment was calculated using Fisher’s exact test and FDR

correction as described above, excluding the gene from which the neighborhood

was created. If a neighborhood had at least one overrepresented motif with

q,0.05, the neighborhood was considered to be enriched. To test for significance

of the enrichment in the context of networks, motif enrichment was also

performed in networks where node labels had been randomly shuffled.

Web application implementation

The Synergy web application was developed with the PHP framework CodeIgniter

(http://ellislab.com/codeigniter). The network viewer was implemented with the

JavaScript library Cytoscape.js (http://cytoscape.github.io/cytoscape.js/), the

successor of the Flash interface Cytoscape Web [34].

TOMTOM [35] was used for comparing motifs to known regulatory elements

in other organisms. The PRODORIC [36] and RegTransBase [37] prokaryotic

motif databases were downloaded from the MEME website.

Supporting Information

File S1. GO enrichment of the genes with the highest centrality.

doi:10.1371/journal.pone.0113496.s001 (XLS)

File S2. Number of coding regions vs. genome size for the organisms used

during the phylogenetic footprinting.

doi:10.1371/journal.pone.0113496.s002 (XLS)

File S3. Best sequence alignments with Arabidopsis genes.

doi:10.1371/journal.pone.0113496.s003 (XLS)

Author Contributions

Conceived and designed the experiments: SN NM TRH. Analyzed the data: CF

OC TRH SN NM. Wrote the paper: CF OC TRH NM SN.

References

1. Lee H-S, Vermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and
challenges. Trends Biotechnol 28: 262–271. Available: http://www.ncbi.nlm.nih.gov/pubmed/20189666.
Accessed 2014 Mar 21.

2. Machado IMP, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162: 50–56. Available:
http://www.ncbi.nlm.nih.gov/pubmed/22446641. Accessed 2013 May 28.

Synergy: Exploring Gene Regulation in Synechocystis

PLOS ONE | DOI:10.1371/journal.pone.0113496 November 24, 2014 15 / 18

http://ellislab.com/codeigniter
http://cytoscape.github.io/cytoscape.js/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113496.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113496.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113496.s003
http://www.ncbi.nlm.nih.gov/pubmed/20189666
http://www.ncbi.nlm.nih.gov/pubmed/22446641


3. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in
cyanobacteria, using Synechocystis as the model organism. Metab Eng 12: 70–79. Available: http://
www.ncbi.nlm.nih.gov/pubmed/19833224. Accessed 2013 Jun 2.

4. Englund E, Pattanaik B, Ubhayasekera SJK, Stensjö K, Bergquist J, et al. (2014) Production of
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