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Abstract  

 

Nile tilapia (Oreochromis niloticus) is one of the major farmed fish species, with main 

production in Asia, South and Central America that can tolerate a wide range of 

environmental stress and easily adapt with low quality of feed ingredients. The aims of the 

experiments were to determine effects of feeding frequency on utilization of protein and 

energy in Nile tilapia, to quantify differences in excretion of ammonia and ammonium in Nile 

tilapia fed the same daily ration, distributed over 2 and 4 meals a day. The aims were derived 

from a hypothesis that frequent feeding facilitates higher overlap in absorption of crystalline 

dietary amino acid supplement and protein-bound amino acids, since digestion of protein 

requires time and thereby may improve utilization of dietary protein. Significant differences 

were indicated for P<0.05. 

The fish were kept in indoors rearing tank (70×50×50 cm) with equal water flow (180 l h
-1

) 

supplied with freshwater from a recirculation system. Each tank contained 30 tilapias (mean 

weight ± SEM; 721 ± 0.1 g) with an average weight of individual fish 24 g. All tanks had 24 h 

d
-1

 light. The water temperature and dissolved oxygen were recorded on a daily basis. The 

average water temperature was 27.5 °C with 7.5 mg l
-1 

dissolved oxygen and pH 7 during the 

experimental period. The fish were fed for 46 days 

One plant ingredient based diet was prepared with 31% crude protein, 37% starch and 6 % fat 

in the dry matter. There were two different feeding regimes. One was only twice in a day (at 

10:00 and 20:00) and the other was four times per day (at 08:00, 12:00, 16:00 and 20:00).  

Each meal lasted for 70 min when the fish were fed 2 meals d
-1

, and 35 min for 4 meals d
-1

. In 

three reference tanks feeding was twice per day to satiation level, and the fish in the 

remaining tanks were pair-fed 90 % of the dry matter consumed by the fish fed to appetite the 

previous day. No significant differences were found for growth performance, body 

composition, or feed conversion ratio when the fish received 90% of appetite level in 2 or 4 

meals. However, liver weight in percent of whole body weight was significantly higher for 2 

than 4 meals. Feeding the fish to satiation in 2 meals resulted in higher feed intake, and lower 

protein and energy retentions than feeding 90% of satiation in 2 meals.  

Ammonium (NH4
+
), ammonia (NH3), total ammonia nitrogen (TAN) and nitrite (NO2

-
) were 

measured one hour before the last meal (19:00) and every 2 hours after last meal ( 22:00; 
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00:00; 02:00; 04:00; 06:00) over night at days of 14, 26 and 39. During this measurement 

water samples were collected from the inlet and outlet of tanks. At the end of the experiment 

(day 45) nitrogenous catabolites were allowed to accumulate in a stagnant system (water flow 

closed), following the same sampling intervals as described for the run-through sampling 

approach. From the flow-through system, significant differences were observed between 

feeding frequency, time interval and their interaction in all parameters (TAN, ammonium, 

ammonia) at days 14, 26 and 39. Similarly, significant differences were seen for nitrite 

measurement at different period of time. However, no significant difference was seen for 

feeding frequency and the interaction between feeding frequency and measurement at 

different period. 

In the flow-through system, the highest TAN was found at 4 hours after feeding in 2 meals 

(90% and appetitive) while for 4 meals (90%) it was at 2 hours after feeding during all the 

sampling days. The maximum TAN at 588 µg l
-1

 water was measured at day 39 in 2 meals 

(appetitive), 4 h after feeding. The lowest value at 89 µg l
-1

 was measured at day 14 in 4 

meals (90%), 10 h after last feeding in the day. TAN was consistently highest for to 2 meals 

(appetitive) and lowest for 4 meals (90%). The TAN excretion started immediately after 

feeding, then reached peak value, and thereafter gradually declined to the based level. Nitrite 

accumulation did not follow any particular pattern in the flow-through system, bur tended to 

reach peak value 2 hours after feeding. 

The accuracy of the results obtained from the stagnant system was high, and metabolic 

nitrogen excretion (with or without values for nitrite) over time was described (R
2
=0.98-0.99) 

by 3
rd

 degree polynomial patterns. Maximum nitrogen excretion, with nitrite was maximum at 

4.59, 4.61 and 2.88 h after feeding in 2 meals (appetitive), 2 meals (90%) and 4 meals (90%) 

respectively. The estimates without nitrite included showed maxima at 4.59, 3.64 and 4.02 h 

after feeding in 2 meals (appetitive), 2 meals (90%) and 4 meals (90%) successively. NO2
-
, 

which was not a catabolite increased linearly over time. A probable reason for the observed 

increase in nitrite may be oxidation of TAN from metabolism and/or microbial oxidation of 

nitrogen in intestinal contents and faeces.   

The nitrogen excretion rate over gills (not including excretion of urea via the kidneys) 4 h 

after last feeding was the highest (150 µmoles (kg body weight (BW)* h)
-1

) for 2 meals (90%) 

and the lowest (113µmoles (kg BW * h)
-1

) for 4 meals (90%). Whereas for 2 meals 

(appetitive) showed very close value 145 µmoles (kg body weight * h)
-1

 to 2 meals (90%). 
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Meanwhile, 2 meals (appetitive) reached at peak (149 µmoles (kg BW * h)
-1

) at 6 h after last 

feeding and the lowest (88 µmoles (kg BW * h)
-1

) for 4 meals (90%). Therefore, it was seen 

in all the observations that the maximum level of nitrogen excretion was found in 2 meals 

(appetitive) and lowest in 4 meals (90%). 

In conclusion, there were no significant differences in weight gain, feed utilization, body 

composition, protein and energy retention between 2 and 4 meals restricted. However, 

nitrogen excretion peak values were significantly higher in 2 meals (90%) than 4 meals 

(90%), indicating that the 4 meals (90%) feeding regime facilitated better water quality and 

thereby a better environment for the fish. 
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1.  Introduction 

1.1 Tilapia and its importance 

There are about 100 species of fish named tilapia but the Nile tilapia (Oreochromis niloticus) 

(Linnaeus, 1758), the Mozambique tilapia (Oreochromis mossambicus), and the Blue tilapia 

(Oreochromis aureus) are widely farmed. Among these three, Nile tilapia is the most 

commonly farmed and widely spread species (Pullin et al., 1997), due to its fast growth rate, 

higher fecundity and better flesh quality. The Nile tilapia, Oreochromis niloticus (Linnaues, 

1758) is one of the most important freshwater fish worldwide (Coimbra et al., 2005), belongs 

to cichlidae family. It is native to North Africa and Middle East (Boyd, 2004). It can be 

cultured in many tropical and subtropical countries of the world (Lin et al., 2008). Its farming 

has expanding quickly during last decade and is predicted to grow in coming years (Tveteras 

and Nystøyl, 2011). Tilapias are the second largest fishes after carps in production, in world 

aquaculture (FAO, 2012). Tilapia is produced in more than 100 countries surpassing the other 

farmed fish (Fitzsimmons et al., 2011; EI-Sayed, 2006). The total worldwide production of 

farmed tilapia has increased from 3,83,654 metric tons i.e. 4.5% of total farmed fish 

production to 34,97,391 metric tons or 8.9% of total farmed fish produced between the years 

1990 to 2010 (FAO, 2012). China is the largest producer of tilapia with 1.2 million tons that 

occupy about 40% of total tilapia production in the world (FAO, 2010). Tilapia is an 

omnivorous fish and can digest high fibre content feed. Tilapia can eat phytoplankton, 

periphyton, aquatic plants, invertebrates, benthic fauna, detritus, bacterial films, fish and fish 

eggs (Fitzsimmons and Watanabe 2010; FAO, 2012). The tilapia, therefore, can grow in lower 

protein and higher carbohydrate level in feed as compared to carnivorous farmed species (El-

Sayed 2006). However, some factors including fish size, age, dietary protein source, energy 

content, water quality and culture conditions affect the protein requirement for the tilapia. 

Protein requirement decreases with increasing fish size and age. The protein requirement for 

tilapia ranges from 20- 50% (Nguyen, et al., 2009; El-Saidy and Gaber, 2005; Abdel-Tawwab 

et al., 2010; NRC., 1993; El-Sayed and Teshima, 1992; El-Sayed et al., 2003).  Carbohydrate 

is one of the major dietary components; it does not only supply necessary energy but also 

have a protein-sparing effect in fish (Habib et al., 1994). Tilapia can utilize the high amount 

of starch (22-46%) efficiently (Wang et al., 2005).  The lipid requirement for the tilapia is 

from 5-12% considering the linoleic (n-6) series fatty acids (18:2n-6 or 20:4n-6) because it 
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can enhance the growth better than the n-3 series (18:3n-3, 20:5n-3 or 22:6n-3) (Lim et al., 

2011).  

 

Tilapia can tolerate a wider range of environmental conditions—including factors such as 

salinity, dissolved oxygen, temperature, pH, and ammonia levels. Tilapia can endure low 

dissolved oxygen concentration about 0.1 mg l-
1
 (Magid and Babiker, 1975) but the optimum 

growth is obtained at 3 mg l
-1

 (Ross, 2000). Temperature plays a major metabolic role in fish. 

The optimal growth temperature for growth is 22-29°C and growth decreases with lowering 

temperature (Teichert-Coddington et al., 1997). The growth of tilapia is poor below 20° C and 

it cannot survive in temperatures below 10° C. Likewise, it cannot stand the temperatures as 

high as 42° C (Morgan, 1972; Mires, 1995). Tilapia can tolerate pH range of 3.7 to 11, but pH 

7 to 9 is the ideal range for achieving the best growth (Ross, 2000).  Ammonia is toxic to 

tilapia at concentrations of 7.1 mg l
-1

 as unionized ammonia (Redner and Stickney, 1979; El-

Sherif et al., 2008) and reduces feed intake and growth at concentrations as low as 0.1 mg l
-1

 

(El- Sherif et al., 2008). Optimum concentrations are estimated to be below 0.05 mg l
-1

 (El-

Sherif et al., 2008). 

1.2 Some important plant protein sources used in tilapia diets 

 

The major plant ingredients used in the fish feeds are pulses and protein concentrate meals 

(peas, lupins), oilseed meals (soybean, sunflower, rapeseed and soybean protein concentrates) 

and cereals and cereal by-products (wheat, maize, rice, barley, sorghum, oats, rye, millet, 

wheat gluten, dry distiller’s grains with soluble, rice bran) (Tacon et al., 2011; Gatlin et al., 

2007). The plant ingredients contain more indigestible organic matter like insoluble 

carbohydrate and fiber that may have harmful effects (Naylor et al., 2009; Gatlin et al., 2007). 

Soybean is the most commonly used feed ingredient for tilapia. Soybean meal is the product 

of soybean after removal of oil from soybean. It is a major alternative plant protein sources 

globally (Hertrampf and Piedad-Pascual, 2000). Soybean meal with Solvent extraction of the 

oil has 44% crude protein and 48% crude protein of soybean hulls and without the hulls 

respectively (NRC, 1993). It has high protein content, and comes with relatively well-

balanced amino acid profiles, a reasonable price and steady supply (EI-Sayed, 1999). The 

most commonly used products are toasted soybean meals, dehulled soybean meal, non-

dehulled soybean meals and ungrounded soybean cakes all around the world. All these 
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products are used depending on availability in the particular locality. Soybean meal is highly 

palatable to the warm water fish (Lowell, 1998). Methionine is the limiting amino acid in 

soybean meal (SBM).  Soybean meal could replace 25% and 30% of fish meal protein  

without any effect on growth performance in tilapia (Jackson et al. 1982) and feed intake in 

seabream (Kissil et al., 2000). Incorporation of soy protein concentrate in carp larvae diets up 

to 40% did not affect the growth (Escaffre et al., 1997).  

 

Corn gluten is another feed ingredient for tilapia. Corn gluten meal is a by-product of the wet-

milling of maize that produces starch or ethanol. Corn gluten meal is mainly used in wet or 

dried form as feed for fish. Corn gluten meal is rich in protein ranging from 62.2-72.5 %, with 

high digestible energy content and low fiber, and well balance amino acid profile. It has also 

no anti-nutritional factors. But it is deficient in lysine contents (Pereira and Oliva-Teles, 

2003). Some studies report that partial replacement of dietary fish meal with corn gluten meal 

(12-26% of the diets) has led to sufficient results of growth rates and feed employment in 

diets for the rainbow trout (Oncorhynchus mykiss) (Robaina et al., 1995). There was not any 

adverse effect in growth or feed efficiency when fish meal replaced by corn gluten meal at 

levels up to 20% in sea bass juveniles (Alliot et al., 1979). 

1.3 Utilization of protein 

 

Protein is the most essential nutrient for maintaining life and promotion of growth for fishes. 

Amino Acids are the building units of proteins, which are organic compounds with an amino 

group at one end and a carboxyl group at the other. Proteins are polymers of amino acids 

linked together by peptide bonds. There are about 300 amino acids occurring in nature but 

only 20 of them enter in proteins synthesis. Each amino acid has 4 different groups attached to 

α-carbon (the C-atom next to COOH). These 4 groups are amino group, COOH, hydrogen 

atom and side chain (R). In fish, the dietary proteins are hydrolyzed to free from amino acids, 

dipeptides and tripeptides in the intestinal lumen. These dipeptides and tripeptides are present 

in high concentrations, which are absorbed either directly or after hydrolysis, to amino acids 

(Bakke et al., 2010; Verri et al., 2010). Peptides are absorbed more rapidly than absorption of 

free amino acids. They are hydrolyzed within the enterocyte. Only free amino acids are 

absorbed and transported to blood and mainly diffusion and Na
+
 independent carriers 

transport them. Amino acids diffuse across the basolateral membrane (Enterocytes → portal 

blood → liver → tissues). Moreover, liver is the major site of amino acid metabolism in the 
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body and the major site of urea synthesis. The liver is also the major site of amino acid 

degradation, and partially oxidizes most amino acids, converting the carbon skeleton to 

glucose, ketone bodies, or CO2. In the liver the primary catabolism of amino acids take place 

in the tricarboxylic acid cycle to generate energy in the form of adenosine triphosphate (ATP). 

In the tricarboxylic acid cycle, the mechanism for degradation of amino acids is trans-

deamination, in which the amino group is transferred to α-ketoglutarate to form glutamate. 

Other metabolic pathways for amino acid catabolism in the liver are gluconeogenesis, with 

glucogenic amino acids being the main source of carbon to form glucose, and lipogenesis, 

with amino acids being the preferred carbon source for lipid synthesis. Ammonia is the main 

end product of amino acid catabolism in fish. 

1.4 Use of crystalline amino acids as dietary supplements 

The most common and complete fish feed ingredient fishmeal was substituted by the plant 

protein sources. These plant protein sources are similar protein content but these sources do 

not have complete amino acids profile like fish meal. Consequently it needs great 

consideration when feed is prepared (Wilson et al. 1981). Dietary protein is actually required 

for amino acids. Amino acids are the building blocks of protein and amino acids are the 

products of protein hydrolysis.  Animals require amino acids for maintenance and growth and 

naturally occurring proteins are the primary source of amino acids. So, fish requires amino 

acids for maintenance and growth. The level of protein needed by fish varies with the species 

and the amino acid composition of the protein fed.  There are over 20 amino acids in body 

protein which are physiologically essential. Fish is unable to synthesize 10 of these amino 

acids that are called essential amino acids (Ketola, 1982; Ravindran and Bryden, 1999). 

Therefore, these amino acids must be supplied in the diet. These essential amino acids are 

arginine, lysine, histidine, threonine, valine, leucine, isoleucine, methionine, phenylalanine 

and tryptophan (Wilson, 1989). Amino acid is very important and we should make sure when 

feed is formulating with different ingredients. 

 

Amino acids can supply in the form of intact and purified, as well as crystalline form as 

dietary supplements. Intact amino acids are those amino acids available in feed ingredients. 

Most of the plant-based ingredients lack some essential amino acids. Inclusion of artificially 

made purified amino acids in crystalline form in the least-cost plant protein ingredients based 

diets are the best way to satisfy those lacking the amino acid profile.  
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Crystalline amino acids have been successfully used to terrestrial livestock’s feed to optimize 

dietary amino acids profile (Lewis and Bayley, 1995). It has also been used in aquaculture 

especially when plant protein sources are used in the fish diets because these sources are 

cheap, also due to the deficiencies of some amino acids (Li and Robinson 1998; Shiau 1998; 

Alam et al. 2002). Essential amino acids in intact protein are utilized more efficiently and 

effectively than those amino acids which are provided in crystalline form. Crystalline amino 

acids are absorbed and catabolized more rapidly than amino acids from intact proteins may be 

possible reason. Amino acid concentration in blood plasma increased immediately in the 

fishes fed with crystalline amino acids in comparison to those fed with intact proteins when 

some researchers conducted amino acids trails in fish (Yamada et al. 1981; Murai et al. 1987; 

Schuhmacher et al. 1995). It is necessary to balance the supply of free amino acids to blood 

plasma and muscle tissues for optimum growth and feed utilization in fish. Large portion of 

amino acids from the diets are deaminated and used in energy and only 30-40 % is retention 

in the body (Cowey, 1994). Yamada et al. (1981) concluded that rainbow trout fed with 

crystalline amino acids showed the inferior growth rate and feed conversion ratio due to the 

rapid uptake of amino acids from the gut into the peripheral blood that lead to deamination of 

the excess amino acids and also high rates of nitrogen excretion. Mixing many different plant 

protein sources and supply the minimum quantity of adequate amino acids can fulfill adequate 

amino acids. 

 

Lysine is essential amino acid for fish, which are found highly in carcass of fish (Wilson and 

Cowey, 1985). It is usually limited in plant protein sources such as corn meal, sesame meal, 

zein, gluten or corn-based proteins and casein (Ball et al. 2007, Espe et al. 2007; Mai et al. 

2006; Small and Soares 2000). It is the first-limiting essential amino acid when some plant 

protein sources are used for feed production (Hauler and Carter, 2001). Lysine is the 

precursor for carnitine, which is required for the transport of long-chained fatty acids from the 

cytosol into mitochondria for β-oxidation and plays important role in energy production 

(Harpaz, 2005; Horne et al. 1971; Walton et al. 1984). In addition, lysine also affects collagen 

synthesis, as its hydroxylation product, which is necessary for formation of the intermolecular 

crosslinks in collagen (Eyre, 1980; Piez and Likins, 1957). Furthermore, lysine has highly 

reactive Ɛ-amino group; it is very sensitive to heat damage and non-enzymatic glycolysis 

reactions, resulting in the production of Maillard reaction products (Moughan and Rutherfurd, 

1996). In general, the lysine requirement for Nile tilapia needs 5.0-5.7% (Santiago and Lovell, 
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1988). Methionine is another an essential amino acid and one of the most limiting amino acids 

in many fish diets containing plant protein sources such as soybean meal, peanut meal, copra 

meal, leucaena leaf meal or cassava leaf meal (Coloso, et al., 1999). Supplementing 

commercially available methionine to soybean meal has been shown to improve growth of 

many fish species (Cai and Burtle, 1996). 

 

1.5 Ammonia and its consequences  

 

There are several nitrogenous wastes products in the water environment such as ammonia 

(NH3), nitrite and nitrate in fish tank.  Amongst them, ammonia is more toxic than the other 

two. Between the lateral two, nitrite is more toxic than nitrate.  Ammonia is the nitrogenous 

end- product of amino acid and protein oxidation (Smith and Rumsey, 1976). It could be a 

great obstacle for fish growth and can cause mortality. Contrarily, Nitrite is the nitrogenous 

intermediate formed out of nitrate during the nitrification of ammonia by bacteria. Similarly 

nitrite could be a lethal factor for recirculating system. It also plays a role in interrupting the 

normal structure of blood hemoglobin and converting haeme group into nitrite-bund forms. 

As a result, it adversely affects the oxygen-carrying capacity of hemoglobin (Jensen 1990; 

Margiocco et al., 1983).  

 

Ammonia exists in equilibrium between the two forms in soluble: the soluble ammonia gas 

(NH3) and ammonium ion (NH4
+
), together known as total ammonia. Mainly it will exist in 

ionic form (NH4
+
) and is converted to NH3 when the temperature and pH is increased (Wood 

1993).  Total ammonia nitrogen (TAN= NH3 and NH4
+
) is converted to nitrite (NO2

-
) by 

Nitrosomonas, Nitrosococcus, Nitrosospira and Nitrosolobus bacteria. Under normal 

conditions, nitrites are quickly converted to non-toxic nitrate (NO3
-
) by naturally occurring 

bacteria like Nitrobacter, Nitrococcus, Nitrospira and Nitrospina (Parker, 2002; Timmons et 

al., 2002, Chen et al., 2006; Emparanza, 2009).   

 

 

Likewise, fish excretion is the main source of ammonia (Cheng, 2004). The excretion rate is 

directly related to the feeding rate and the protein level in the feed. The remaining portions of 

the nitrogen that used after the body building energy and excreted through the gills are 

ammonia. It is the dominant product of protein metabolism in fish (Handy and Poxton, 1993) 
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and at least 80% of nitrogenous metabolic waste excreted through fish gills is ammonia. Urea 

generally represents only about 10- 15 % (Kaushik and Cowey, 1991). Urea usually excretes 

through kidney. Ammonia is toxic even at low concentrations, particularly in NH3 (unionized 

ammonia) form (Chew et al., 2006; Felipo and Butterworth, 2002; Ip et al., 2004; Wicks and 

Randall, 2002) and it is a toxic compound which can adversely affect fish health. The main 

internal source of ammonia in fish is through the catabolism of proteins (amino acids) and 

most of ammonia is produced in liver during the transamination of amino acids followed by 

deamination of glutamate (Wicks and Randall, 2002).  

 

Ammonia is mainly excreted through gills (Wilkie, 2002). There is a direct relation between 

protein intake and ammonia excretion in fish (Rychly, 1980; Beamish and Thomas, 1984; Li 

and Lovell, 1992; Ballestrazzi et al., 1994; Chakraborty and Chakraborty, 1998). The rate of 

excretion increases after feeding, and is the highest during the four hours after feeding. 

Excretion continues for one to four days.  After that it declines to the original baseline levels 

(Altinok and Grizzle, 2004; Jobling, 1981; Dosdat et al., 1996; Peres and Oliva-Teles, 2006). 

Ammonia excretion rate varies upon fish species, fish size, protein quality, energy level, feed 

quality, water quality, water temperature and pH (Kaushik and Cowey, 1991; Chakraborty 

and Chakraborty, 1998; Fu-Guang et al., 2009; Kieffer and Wakefield, 2009; Green and 

Hardy, 2008; Peres and Oliva-Teles, 2006) and feeding schedule (Gelineau et al., 1998; 

Wicks et al., 2002; Zakes et al., 2006). Diets formulated with poor amino acids profile also 

influence the excretion of more ammonia (Bureau, 2004).  

 

The nature and degree of toxicity depends on many factors, including the chemical form of 

ammonia, the pH and temperature of the water, the length of exposure, and the life stage of 

the exposed fish. Ammonia exists in NH3 (unionized) and NH4
+
 (ionized) form at dissolved 

water. NH4
+
 is very difficult to enter into the fish body through gills and less bioavailable as 

compared to NH3. NH3 can easily enter from water to fish body and change into NH4
+
 and 

causes cellular damage US EPA (1989). At pH 7-8, NH4
+
 (ionized) is the primary from of 

total body ammonia in fish, which is responsible for toxic effect in the fish body. But NH3 

affects the whole aquatic plants and animals. In higher temperature and pH values, NH3 is 

more toxic (US EPA, 1999). According to US EPA (2009), the ratio of NH3 to NH4
+
 (ionized) 

increased 10 times each unit rise in pH and about 2 times for each 100C rise in temperature 
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from 0-30
0
C. Length of exposure is one of the important factors in ammonia toxicity. Lower 

concentration of ammonia may not inversely affect the fish in short period exposure time but 

fish could be adversely affected under longer exposure. Ammonia toxicity susceptibility 

varies with fish life stage. Susceptibility decreases as fish develop from fry to juveniles and 

increases from juvenile to adults (Thurston et al. 1983). Ammonia enters a fish through it gills 

epithelium in fresh water. It occurs through passive diffusion in solution (Randall and Tsui 

2002; Eddy, 2005).  Ammonia is the end product of metabolism and it also excreted across 

the gill epithelium (Randall and Wright, 1987; Wright, 1995; Randall and Tsui, 2002). When 

excretion of ammonia is lower than entering through gill is higher, it can accumulate in the 

fish body. Ammonia can be very toxic to the fish due to high concentration inside the body. It 

causes loss of equilibrium, hyper excitability, increased breathing, cardiac output, and oxygen 

uptake, and in extreme cases, it also affects the central nervous system causing convulsions 

and death (US EPA, 1989). If the concentration of ammonia is lower, it can cause a reduction 

in hatching success, reduction in growth rate and morphological development, and pathologic 

changes in tissues of gills, livers, and kidneys (US EPA, 1989). 

 

1.6 Objectives of the study 

The first objective of the experiment was to find out effects of feeding frequency on 

utilization of protein and energy in Nile tilapia.  

The second objective was to quantify differences in excretion of ammonia and ammonium in 

Nile tilapia fed the same daily ration, distributed over 2 and 4 meals a day.    
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2. Materials and methods 

2.1 Fish and rearing unit  

The trial was conducted at Fish Nutrition Laboratory (Norwegian University of life sciences) 

during the period from 12
th
 April to 29

th
 May 2014. The experimental fish were hatched at the 

same laboratory and fed on a commercial diet (Aller Aqua, Denmark), until the individual 

body weight was approximately 24 g. The brood stock was GIFT tilapia (Eknath et al., 1993) 

originated from the 12
th
 generation of selection for rapid growth by Genomar AS (Oslo, 

Norway). The indoor rearing tanks (70×50×50 cm) had freshwater recirculation systems with 

a water level of 50 cm in each tank. Each tank was stocked with 30 fish (mean weight ± 

S.E.M; 721 ± 0.1 g). The tanks were subjected to a photo regime 24 h light during the whole 

 

Table 1. Chemical composition of ingredients used in feed (g kg
-1

)*  

Chemical composition Soybean meal Corn Gluten Meal Potato Starch 

DM 888 895 904 

Protein 424 579 12 

Fat 30 41 3 

Starch 20 191 806 

Ash 95 11 2 

Arginine 33 18 1 

Histidine 12 12 0.3 

Isoleucine 21 24 1 

Leucine 33 95 1 

Valine 21 27 1 

Lysine 27 10 1 

Methionine 6 13 0.3 

Phenylalanine 22 36 1 

Threonine 17 20 1 

Tryptophan 6 3 0.2 

*Fôrtabell, 2008 from  NMBU. 
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Table 2. Formulation and chemical composition of the experimental diet. 

Ingredients, g kg
-1

  

Soybean meal
a
 350 

Corn gluten meal
b
 200 

Potato starch
c
 355 

Threonine
d
 0.6 

Methionine
e
 4.6 

Phenylalanine
f
 0.4 

Taurine
g
 1.35 

Lysine
h
 3.20 

Mono calcium phosphate
i
 10 

Rapeseed oil
j
 45 

Premix
k
 10 

Y2O3
l
 0.08 

Vit-C 35%
m
 0.10 

Sodium alginate
n
 20 

Feed composition, kg
-1

 

   Dry matter, g 949 

   Crude protein, g 292 

   Starch, g 396 

    Lipid, g 44 

    Ash, g 43 

  Energy, MJ 20 

aSoybean meal, Denosoy, Denofa, Fredrikstad, Norway. bMaize gluten, Cargill 13864. cGelatinized potato starch, 

Culinar, LYGel F60. eAdisseo Brasil Nutricao Animal Ltda, Sao Paulo, Brazil. gTaurine-JP8, Qianjiang Yongan 

Pharmaceutical Co., Ltd., Hubei, China. jFood grade Eldorado, Oslo, Norway. kContents per Kg: Vitamin A 

2500.0 IU; Vitamin D3 2400.0 IU; Vitamin E 0.2 IU; Vitamin K3 40.0 mg; Thiamine 15.0 mg; Riboflavin 25.0 

mg; d-Ca-Pantothenate 40.0 mg; Niacin 150.0 mg; Biotin 3.0 mg; Cyanocobalamine 20.0 g; Folic acid 5.0 mg; 

Pyridoxine 15.0 mg; Vitamin C: 0.098 g (Stay-C 35, ascorbic acid phosphate, DSM Nutritional Products, Basel, 

Switzerland); Cu: 12.0 mg; Zn: 90.0 mg; Mn: 35.0 mg; I: 2.0 mg; Se: 0.2 mg; Cd = 3.0 g; Pb = 28.0 g; total Ca: 

0.915 g; total K 1.38 g; total Na 0.001 g; total Cl 1.252 g; Trouw Nutrition, LA Putten, The Netherlands. l Metal 

Rare Earth Limited, Jiaxing, China. m Stay-C 35, ascorbic acid phosphate, DSM Nutritional Products, Basel, 
Switzerland. 
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experimental period. The water temperature and the dissolved oxygen were recorded on a 

daily basis- average temperature was 27.5 °C with 7.5 mg l
-1 

dissolved oxygen during the 

experimental period. Dissolved oxygen was measured daily online by oxygen meter 

(Oxyguard Commander, DO probe, Farum, Denmark). Also around equal water flow was 

kept in all tanks, which was 180 litres per hour in an average. 

 

2.2 Experimental diet 

Only one complete plant based diet was prepared for the experiment. The feed ingredients 

were soybean meal, corn gluten, potato starch, rapeseed oil, some crystalline essential amino 

acids (threonine, methionine, phenylamine and lysine), mono calcium phosphate, taurine, 

premix, yttrium oxide (Y2O3), vitamin C (35%) and sodium alginate.  The diet was formulated 

with 31% crude protein, 7 % fat and 37% starch. The composition and formulation of the 

diets are shown in Tables 1 and 2 respectively. 

 

2.3 Feed Preparation 

Feed was prepared in the feed lab at NMBU and each time 5 kg (total 30 kg) of feed was 

prepared. Preparation of the diets began with grinding the soybean meal and maize gluten 

meal by using 1mm screen (Retsch Gmbh Retsch-Allee 1-5, 42781, Haan, Germany). All the 

ingredients were correctly weighed. After all dry ingredients had been weighed; ingredients 

were mixed properly and carefully. Small amount ingredients were mixed with small portion 

of large quantity, again mixed with another small portion of large quantity. After that uniform 

mixing of all the large and small quantity was possible. The spiral dough mixer (Moretti Forni 

Grain, Italy) was used to mix more uniformly about 15 min. During the mixing time, cold 

water for 40% of total feed weight and all the amount of rapeseed oil were mixed by pouring 

slowly and gently. All the feed dough was transfer to a pasta extruder   (P55DV, Italgy, 

Carasco, Italy) and properly conditioned and mixed than cut in pellet at 2 mm size by using 

the pellet cutter at the edge of the craft opening. The process was repeated thrice. Likewise, 

the temperature of the pasta machine was 54
0
C. The prepared pellets were transferred on the 

dryer at 54
0
C in five hours. Finally, the prepared pellets were cooled and packed air tight and 

stored at -20
0
C.  Feed moisture was measured before storing the feed that was 5%. Each time 

100 g of sample diet was taken for chemical composition analysis. 
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2.4 Experimental layout 

There were two different feeding regimes. One was feeding only twice daily at 10:00 and 

20:00 where 70 min were allocated per feeding. The other was four times a day at 8:00, 12:00, 

16:00 and 20:00 where 35 minutes were allocated per feeding. Each treatment had three tanks. 

Feeding was done by electrically driven band feeding machine. Tilapias in 3 tanks were fed 2 

meals a day in excess of appetite. Dietary dry matter intake was assessed as the difference 

between daily rations fed and the amounts collected from the water outlet during and 

immediately after every meal. Daily collections of uneaten feed were pooled by tank and 

dried at 105
o
C overnight. Fish in the remaining 6 tanks were pair-fed 90% of the average 

previous day dry matter intake of the fish fed in excess. This amount was given to fish in 3 

tanks divided into 2 meals a day, while fish in the remaining 3 tanks were fed 4 meals.  

The dry matter intake was confirmed by the same routine as for the fish fed ad libitum. From 

the value from initial fish weight and expected FCR, daily feed intake percentage per fish and 

daily weight gain were estimated in an MS EXCEL sheet. After end of the experiment, the 

final weight of the fish per tank was measured. Then, the FCR estimate was adjusted so that 

final weight gain was identical to the values obtained by weighing the fish. Based on the 

assumption that FCR was the same throughout the experiment, daily average fish weights 

were estimated. These estimates were used to calculate daily dry matter intake in percent of 

body weight.  

2.5 Sampling Procedures 

Before starting the feeding trail, all the fish were starved for 24 h. All fish were netted with 

minimum disturbance. It was anesthetized by tricanine methanesulfonate (MS-222, 0.1 g l
-1

 

water, buffered with NaHCO3, 0.1 g l
-1

 water, Western Chemical Inc. Washington USA). All 

fish were weighed individually and separated under and oversized fish. Thirty homogenously 

sized fish were stocked in each tank. At the same time, five fish were randomly taken from 

the tank where experimental fish were taken and kept in freezer at -20
o
C for initial whole 

body composition analysis and calculation of retention. At day 28 of the feeding trial, fish in 

each tank were again weighed for calculating for growth and feed utilization. That sampling 

was done after 24 h starvation. At the same time, five fish were randomly taken from each of 

three replicate tanks for body proximate composition analysis (Procedure described in 2.6). 
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After sampling, the remaining fish were readjusted and distributed into the same tanks. It was 

adopted with their respective diets.  

Blood sampling was done at day 41. Blood was collected at 2, 4, 6, 8 and 10 h after the last 

meal. Three individual fish from each tank each time were taken out for blood sampling. So, 

total 15 fish in five times. Analysis of blood is not included in this thesis.  

At the same time after blood sampled, feces were collected at same time as mentioned above. 

Ammonia concentration was measured at days 14, 26, 39 and 45 (Procedure described in 

Figure 2.7). Remaining seven fishes were taken from each tank and weighed the fish and liver 

individually. Liver weight in percentage was calculated. Seven fish were sampled from each 

tank and that was done at day 46 after ammonia measurement. 

 

2.6 Chemical composition of diet, fish bodies and feces 

 
  

 Diets and tilapia body composition was done by proximate analysis. The sampled fish were 

removed from the - 20
0
C freezer and half thawed prior to analysis and weigh in (Sartorius 

AG, Göttingen, Germany). After that, the fish were homogenized in a grinder, and ground fish 

was freeze-dried for a week. Then the samples were reground with of CO2 ice finer size.  Dry 

matter content of fish was determined as weight loss after drying the samples at 105
o
C (until 

constant weight) for 20 h in an oven (ISO, 1983). Crude proteins (Kjeldahl N×6.25) were 

determined by Kjeltec auto 1035/1038 system (Tecator, Sweden). Starch was analyzed as 

glucose after starch hydrolysis with a heat tolerant amylo-glucosidase in accordance with the 

procedure of (McCleary et al., 1994). Hydrochloric acid (HCl) hydrolysis followed by diethyl 

ether extraction (Commission dir.98/64/EC) method was used to determine crude fat. Ash 

content was determined by heating at 500
o
C in muffle furnace. Yttrium oxide (Y2O3) was 

quantified in diet and freeze-dried feces by ICP analysis. Fecal nitrogen was analyzed by the 

Dumas method.  
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2.7 Ammonia and nitrite measurements  

 

Ammonium (NH4-N) and nitrite (NO2-N) concentration in water was measured one hour 

before (19:00) the last meal and every 2 h after last meal (22:00, 00:00, 02:00, 04:00 and 

06:00). Ammonia concentration was measured at day 14, 26, 39 and 45 of experiments. At 

days 14, 26 and 39 of the experiments, ammonium (NH4-N) and nitrite (NO2-N) were 

measured from inlet and outlet water of each tank. For actual value, subtract the value of 

outlet and inlet of each tank each time of measurement. After blood sampling, the remaining 

seven fishes in each tank was adjusted. Fishes were continuously maintained on their 

respective diets for 3 days. At day 45, ammonium (NH4-N) and nitrite (NO2-N) were 

measured by closing the inlet and outlet and water sample was taken from inside tank. The 

tanks were covered by black polythene to prevent from evaporation. Spectroquant® NOVA 

60 was used to measure Ammonium (NH4-N) and nitrites (NO2-N). About 50 ml water was 

sampled per tank per measurement. The detail procedures to Ammonium (NH4-N) and nitrites 

(NO2-N) measurements are described in appendixes 1 and 2. Later, NH4
+
 and NO2

- 
  were 

calculated on the basis of conversion Table 3. After that, ammonia (NH3) was calculated 

based on the pH and temperature of the water. The observed average water temperature was 

27.5
0
C and pH was 7. Therefore, the NH4

+
 and NH3 are 99.33% and 0.67% respectively in 

total 100% of total ammonia nitrogen (for details see appendix 3). 

 

Table 3 Conversion table of NH4
+
, NH3 and NO2

- 

NH3 = NH3-N * 1.22 

NH4
+
 = NH4-N * 1.29 

NO2
-
 = NO2-N * 3.28 

 

In the stagnant system at days 45, the total ammonia nitrogen (TAN), ammonium (NH4
+
), 

ammonia (NH3) and nitrite (NO
-
2) were measured in 2 hours interval after feeding. According 

to the Periodic Table, the atomic mass of nitrogen is 14.01, hydrogen is 1.01 and oxygen is 

16.00. So, total mass of NH4
+

 is 14.01 + 4*(1.01) = 18.05.  Likewise, NH3 is 17.04 and NO
-
2 

is 46.01. That means one mole of NH4
+
, NH3 and NO

-
2 are considered as 18.05, 17.04 and 

46.01 grams successively. After that, the entire milligram was changed to micromoles. Then, 

metabolic nitrogen excretion was calculated. For calculating the nitrogen excretion, change in 
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nitrogen excretion per time of sampling should be calculated. We used the formula that is 

shown below: 

   ∆N = (N*V) Tn+2 - (N*V) Tn 

where,  

          N is moles of NH4
+
, NH3, TAN and NO2

-
 

           V = water volume in l 

           Tn = hours past feeding, n = 0, 1, 2, ..10. 

 

Calculations were made for ∆TAN without (∆NH4
+ 
+ ∆NH3) or with ∆NO2

-
.  Finally, the sum 

of those values was divided by body weight (BW, kg) or metabolic weight (mBW, kg
0.8

). The 

use of mBW did not give any increase in R
2
 in the regression analysis (to be described later) 

compared to BW, so BW is used in the presentation of results. Thus two alternative values for 

metabolic nitrogen excretion over the gills are presented in µmoles (kg BW * h)
-1

:  

1. Metabolic nitrogen excretion including ∆NO2
-
 = (∆NH4

+ 
+ ∆NH3 + ∆NO2

-
) * ((BW 

(kg) * time interval of measurement (h)))
-1

  

2. Metabolic nitrogen excretion excluding ∆NO2
-
 = (∆NH4

+ 
+ ∆NH3) * ((BW (kg) * time 

interval of measurement (h)))
-1

  

2.8 Fish growth performance, feed and protein utilization  

Feed conversion ratio  (   )                            ( )             ( )   

 

                  ( )      
(                              ( )                                 ( ))

                       ( )
 

                 ( )      
(                             (  )                                (  ))

                      (  )
 

                         (
                     ( )

                    ( )
) 
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2.9 Digestibility measurement 

At day 41, we took 15 fishes from each tank and dissected and collected feces from the last 10 

cm of intestines by gentle squeezing. Crude protein and yttrium oxide contents were measured 

from the feces (pooled by tank), and the same measurement was also done in feed. 

                               (
                    ( )

                 ( )
 
                ( )

                  ( )
) 

 

2.10  Statistical analysis 

 

One-way and two-way analysis of variance was employed to analyze the results statistically. 

Significant (P<0.05) differences were ranked in SAS by P-diff under Least-square means, and 

are indicated by different superscript letters 
a, b

. Trends are indicated for 0.10 < P < 0.05. Data 

concerning nitrogen excretion in the stagnant system and daily feed intake were subject to 

linear, 2
nd

 or 3rd degree polynomial regression analysis in MS EXCEL. The model chosen 

was based on highest R
2
 values.   
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3. Results 

 

3.1 Daily feed intake in percent of estimated body weight 

 

 Daily feed intake in percent of estimated daily body weight during the four weeks of feeding 

is presented in Fig 1. The regression of weight gain on body weight (range of body weights 

after the fish has adapted to the experimental feeding regimes) is presented in Fig 2. The 

relationship between feed intake (FI, g DM fish
-1

) and weight gain (WG, g fish
-1

) was best 

described by linear regressions, which are presented in Table 4. 

 

 

 Table 4. Regression analysis of feed intake (FI, g DM fish
-1

) on weight gain (WG, g fish
-1

). 

 

 

3.2 Growth performance and feed utilization 

 

In the experiment, only one fish died, in 2 meals (appetitive). Thus, survival rate was not 

significantly different among treatments (P=0.42). The cause of death was that the fish was 

trapped in the outlet.  

 

The initial mean weights of the groups were not significantly different (P=0.67) (Table 5). 

There was a tendency (P=0.06) that appetitive feeding resulted in higher final weight and 

weight gain than the two restricted feeding regimes. Feed intake was higher (P=0.0001) and 

FCR tended (P=0.07) to be higher for the fish fed appetitive than for the ones with a 10% 

restriction in daily ration.  

Feeding regime R
2
, linear Regression, FI =  

Two meals, appetitive 0.84 
 
- 0.049 * WG + 6.47 

Two meals, 90% 0.77 - 0.049 * WG + 6.09 

Four meals, 90% 0.90 - 0.05 * WG + 6.08 
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3.3 Proximate composition of fish 

 

The chemical composition of Nile tilapia is also presented in Table 5.  There were no 

significant differences in whole body dry matter, crude protein, lipid, or energy contents of 

the fish, while ash tended (P=0.09) to differ, with the lowest value for the fish fed ad libitum. 

 

3.4 Protein and energy retention 

 

Protein and energy retention are presented in Table 5. Both retention of protein and energy 

were significantly lower in fish fed ad libitum than in the tilapias subject to feed restriction. 

Among the fish fed 90%, no significant differences were seen. 

 

3.5 Protein digestibility 

 

Protein digestibility is presented at Table 5 and There were significant differences (P=0.04) 

among all treatment.  Protein digestibility was lower in 4 meals (90%) as compared to others. 

 

3.6 Liver weight 

 

 Liver in percent of whole body weight is also presented in Table 5. The ratio on liver weight 

to body weight was similar value from 2 meals (appetitive) and 2 meals (90%) but 4 meals 

(90%) was lowest value. The liver weigh, in percentage of body weight, was significantly 

lower (P=0.04) in the fish fed 4 meals, compared to the tilapias fed 2 meals. 
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Figure 1. Daily feed intake of fish (A) 2 meals (appetitive), (B) 2 meals (90%) and  (C) 4 

meals (90%) during 4 weeks of experimental period which are presented in percentage of 

estimated body weight (mean ± s.e.m. of 3 tanks). 
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Figure 2. Daily feed intake of the tilapias following the period of adaptation (A) 2 meals 

(appetitive), (B) 2 meals (90%) and  (C) 4 meals (90%) with respect to average body size at 

27.5
0
C best fitted at linear regression pattern during 4 weeks of experimental period (mean of 

3 tanks). 
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Table 5. Start weight, final weight, weight gain, feed intake (FI), whole body composition, 

feed conversion energy and protein retentions, protein digestibility and Liver weight
1
. 

 Start  

sample 

2 meals 

appetite 

2 meal 

90% 

4 meal 

90% 

Pooled  

s.e.m. 

P<F 

Survival rate, % - 99.9 100 100 0.11 0.42 

Fish
-1

 

   Start weight, g - 24.0 24.0 24.0 0.01 0.67 

   Final weight, g - 70.7 66.9 66.9 2.4 0.06 

   Weight gain, g - 46.7 42.9 42.9 1.8 0.06 

   Feed intake, g  - 49.1
a
 42.3

b
 41.8

b
 0.47 <0.0001 

Body composition, Kg
-1

 

   Dry matter, g 297 325 325 322 40 0.52 

   Crude protein, g 166 133 135 136 23 0.22 

   Lipid, g 93 116 114 121 48 0.27 

   Ash, g 41 25 27 26 6 0.09 

Energy, MJ 79 83 82 83 12 0.34 

Feed utilization 

   FCR - 1.06 0.99 0.97 0.04 0.07 

 Retention , Kg
-1

 

      Protein, g - 405
a
 450

b
 449

b
 15 0.02 

      Energy, g - 410
 a
 438

 b
 432

 b
 12 0.02 

Protein digestibility, % - 98.3
b
 98.5

b
 97.6

a
 0.46 0.01 

Liver weight,% - 4.7
b
 4.3

b
 3.6

a
 0.4 0.04 

1
The values are given as mean of 3 tanks of fish.

 
Different superscript letters

a,b
 indicate 

significant (P<0.05) differences, ranked by P-diff in the LS means procedure in SAS (1991)
 

  

3.7 Ammonia and Nitrite measurement in flow through system 

 

Pre and postprandial TAN, ammonium, ammonia and nitrite excretion rates µg l
-1

 of water in 

some particular days and hours are presented in Figs. 3, 4, and 5 constantly. Unlike, 

postprandial TAN, ammonium, ammonia and nitrite excretion rates µg l
-1

 of water is 

presented in Fig. 6 which was accumulation in tank during 10 hours of analysis. The same 

patterns of change in 2 meals (appetitive), 2 meals (90%) and 4 meals (90%) were observed at 

days 14 and 39. According to the Figs 3 and 5, we could see the level of TAN, ammonium 
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and ammonia was higher at one hour (19:00) earlier than two hours (22:00) later of last 

feeding, while it was opposite at days 26 which is presented in Fig. 4. However, the highest 

rate of production with a rapid increased was after 4 hours ( 00:00) of last meal, which was 

the same for all of the observation days. Similarly, TAN, ammonium and ammonia excretion 

were speedily decreased till 10 hours (06:00) in all the observed days. Unlike, at days 14 and 

39, nitrite production was increased 8 hours (04:00) after last feeding and reached to the peck. 

Whereas, it was not the same at day 26. Based on two-way ANOVA there were significance 

difference (P<0.05) between feeding frequency, measurement time and their interaction in all 

parameters (TAN, ammonium, ammonia) at days 14, 26 and 39. Likewise, there was 

significantly different (P<0.05) among nitrite measurement at different period. However, 

there were not significantly different (P>0.05) among feeding frequency and their interaction 

(feeding frequency and measurement at different period). 

 

3.7.1 Measurement at day 14 

 

Production of TAN, Ammonium and Ammonia were observed at 2, 4, 6, 8 and 10 hours after 

last feeding, which showed the highest value in 2 meals (appetitive) and lowest in 4 meals 

(90%) successively. It was medium in 2 meals (90%) during the whole observed time 

compare to others. The rate was increased speedily, which was the highest after 4 hours 

(00:00) of feeding then it was gradually decreased and reached at lowest value after 10 hours 

(06:00). At the same time the level of nitrite was also observed. Similar pattern was found for 

all meals, which was increased rapidly after 2 hours (22:00) of feeding and reached to 

maximum level after 8 hours (04:00). Then it was decreased slowly and went to the lowest 

level at 10:00. 

 

3.7.2 Measurement at day 26 

 

During all the observed time the highest level of TAN, ammonium and ammonia was after 4 

hours (00:00) of last feeding for all sorts of meals and 2 meals (appetitive) reached the 

maximum level. Contrary, the 2 meals (90%) and 4 meals (90%) were observed almost the  
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 Figure 3. Measurement of TAN, NH4
+
, NH3 and NO2

-
 from inlet and outlet in different time 

interval. (hrs.) at 2 meals (appetitive), 2 meals (90%) and 4 meals (90%) at day 14. (Mean of 

3 tanks ± s.e.m). 
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Figure 4. Measurement of TAN, NH4
+
, NH3 and NO2

-
 from inlet and outlet in different time 

interval. (hrs.) at 2 meals (appetitive), 2 meals (90%) and 4 meals (90%) at day 26. (Mean of 

3 tanks ± s.e.m). 
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Figure 5. Measurement of TAN, NH4
+
, NH3 and NO2

-
 from inlet and outlet in different time 

interval. (hrs.) at 2 meals (appetitive), 2 meals (90%) and 4 meals (90%) at day 39. (Mean of 

3 tanks ± s.e.m). 
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Figure 6. Measurement of TAN, NH4
+
, NH3 and NO2

-
 from inlet and outlet in different time 

interval. (hrs.) at 2 meals (appetitive), 2 meals (90%) and 4 meals (90%) at day 45. (Mean of 

3 tanks ± s.e.m). 
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 same value that time. Then the rate of production for all meals decreased significantly and 

reached to the lowest level after 10 hours (06:00). On the other hand, maximum level of 

nitrite was measured after 2 hours (22:00) in 4 meals (90%), whereas it was after 6 hours 

(02:00) for 2 meals (appetitive) and 2 meals (90%). Then it decreased with some fluctuation 

and reached to the lowest level after 8 hours (04:00) in all meals. 

 

3.7.3 Measurement at day 39 

 

The highest level of TAN, ammonium and ammonia were found after 4 hours (00:00) of last 

feeding for 2 meals (appetitive), 2 meals (90%) and 4 meals (90%) respectively. Then the rate 

of production decreased similarly in all group of meals and reached to the lowest 10 hours 

(06:00) after last feeding. However, the lowest level of nitrite were observed after 2 hours 

(22:00) of feeding, whereas the highest level were observed after 8 hours (04:00) in the 2 

meals (appetitive), 2 meals (90%) and 4 meals (90%) consecutively. 

 

3.8 Measurement at day 45 (stagnant system) 

 

The accumulative TAN, ammonium, ammonia, and nitrite (µg l
-1

) are presented in Fig. 6. 

After feeding, the production of TAN, ammonium and ammonia increased rapidly and 

reached to the peak level after 10 hours (06:00). The highest value was always for 2 meals 

(appetitive) and lowest for 4 meals (90%), while 2 meals (90%) gave intermediate values. The 

same ranking among feeding regimes was seen for nitrite. No time-dependent decrease in 

nitrite was observed.         

 

Metabolic nitrogen excretions, with or without nitrite included are presented in Figs. 7 and 8. 

The relationship between nitrogen excretion (including NO2
-
, Nex, µmoles (kg body weight, 

hour)
-1

 and time intervals (t, hour
-1

) was best described by 3
rd

 degree polynomial patterns are 

presented in Table 6. R
2
 showed that the model was well fitted with the data. When we 

calculated the derivatives, we found the rate of change of meals with respect to time. It 

showed that maximum excretion was at 4.59, 4.61 and 2.88 hours in 2 meals (appetitive), 2 

meals (90%) 
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Figures 7. Individual measurement of Metabolic nitrogen excretion (including NO2
-
) ((∆NH4

+
 

+∆NH3 +∆NO2
-
) /fish weight * 2) from stagnant system in different time interval (hours) at 2 

meals (appetitive) (A), 2 meals (90%) (B) and 4 meals (90%) (C) at day 45.  

y = 0.5099x3 - 14.504x2 + 101.27x - 54.947 

R² = 0.9871 

0

20

40

60

80

100

120

140

160

180
µm

ol
es

 (
kg

 b
od

y 
w

ei
gh

t 
* 

ho
ur

)-
1 

(A) 

y = 0.4133x3 - 8.3583x2 + 37.892x + 69.902 

R² = 0.9988 

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12

µm
ol

es
 (

kg
 b

od
y 

w
ei

gh
t 

* 
 h

ou
r)

-1
 

Time interval in hour 

(C) 

y = 0.9522x3 - 21.53x2 + 129.99x - 81.302 

R² = 0.9909 

0

20

40

60

80

100

120

140

160

180

µm
ol

es
 (

kg
 b

od
y 

w
ei

gh
t 

* 
ho

ur
)-

1 

(B) 



 
 

29 
 

 

 

 

Figure 8. Individual measurement of Metabolic nitrogen excretion (excluding NO2
-
) ((∆NH4

+
 

+ ∆NH3) /fish weight *2) from stagnant system in different time interval (hours) at 2 meals 

(appetitive) (A), 2 meals (90%) (B) and 4 meals (90%) (C) at day 45. 
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and 4 meals (90%) respectively. After that it was declining with increasing of time intervals. 

Though, Nitrogen excretion was reached at 2.88 hours after feeding in 4 meals (90%) and 

excretion rate was decreased very slowly 

 

Table 6. Regression analysis of nitrogen excretion (including NO2
-
) on time intervals (t, hour

-

1
). 

 

 

Again, the relationship between nitrogen excretion without NO2
-
, Nex, µmoles (kg body 

weight, hour)
-1

 and time intervals (t, hour
-1

) was best described by 3
rd

 degree polynomial 

patterns are presented in Table 7.  Here, R
2
 indicated that the model was well fitted with the 

data. It was showed variation in meals. Once we calculated the derivatives, it showed that 

maximum excretion at 4.59, 3.64 and 4.02 hours in 2 meals (appetitive), 2 meals (90%) and 4 

meals (90%) respectively. After that, it was declining with increasing of time intervals. When 

we observed the graphs (Fig. 7 and 8), Nitrogen excretion with nitrite (Fig 7) was showed 

more value with flat curves.  

  

Feeding regime R
2
, linear R

2
, 2

nd
 

degree 

R
2
, 3

rd
 

degree 

Regression, Nex =  

Two meals, 

appetitive 

0.40 0.97 0.99 0.51* t
3 
– 14.50 * t

2 
+ 101.3 * t – 55.0 

Two meals, 90% 0.54 0.92 0.99 0.95 * t
3 
– 21.53 * t

2
 + 130 * t - 81.3 

Four meals, 90% 0.94 0.98 0.99 0.41 * t
3 
– 8.36 * t

2
 + 37.9 * t + 69.9  
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Table 7. Regression analysis of nitrogen excretion (including NO2
-
) on time intervals (t, hour

-

1
). 

Feeding regime R
2
, linear R

2
, 2

nd
 

degree 

R
2
, 3

rd
 

degree 

Regression, Nex =  

Two meals, 

appetitive 

0.38 0.95 0.99 0.64 * t
3 
– 17.2 * t

2 
+ 117 * t – 95.9 

Two meals, 90% 0.50 0.92 0.98 0.65 * t
3 
– 21.98 * t

2
 + 134.3 * t -10.95 

Four meals, 90% 0.94 0.97 0.99 0.43 * t
3 
– 8.46 * t

2
 + 38.6 * t + 50.19  
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4. Discussions 

 

Water quality was within adequate ranges for growth of Nile tilapia during the whole feeding 

trial. The average water temperature was 27.5
0
C, pH (7), and dissolved oxygen (7.5 mg l

-1
) of 

this experiment was optimum for tilapia production which was also described by Popma and 

Lovshin (1996). Bergheim (2007) also conducted the experiment on ten g to 1 kg Nile tilapia 

and best growth was found at 26-28
0
C and pH 6.5 to 7. The time interval between the feeding 

frequencies is an important factor for feed intake, because it is related to stomach capacity, 

digestion rate and evacuation (Brett, 1971; Kono and Nose, 1971). Similarly, evacuation time 

is related to feeding sequence and fish size (Pandian, 1967; Noble, 1973; Fänge and Grove, 

1979). Tilapia has small stomach and it can eat small portion of feed continuously (Moriarty, 

1973). So tilapia needs feeding frequency for maximum growth and development. However, 

tilapia return in appetite following a satiation meal is approximately 4 hours (Riche et al., 

2004). 

The feed intake was found linear with weight gain. About 4.5% of estimated body weight was 

seen for 2 meals (appetitive) at initial, which was end with around 3.25%. Whereas, initially 2 

meals (90%) and 4 meals (90%) were started approximately 4% of estimated body weight and 

end with about 3.0%. During the experiment of 4 weeks, at first week the daily feed intake 

was increased rapidly up to almost 0.5% of body weight, and then gradually decline with 

increasing body weight of fish in all groups. Fig. 2(A) presents satiation level with maximum 

feed intake. Thus, this is indicative of the feed intake potential of Generation 12 tilapia under 

the current experimental regime.  

Two meals (appetitive) was the satiation level of feeding to fish and others two were about 

90% of that. With respect to feed intake, there was a tendency (P=0.06) that appetitive feeding 

resulted in higher final weight and weight gain than the two restricted feeding regimes. As 

previous studies also explained that fish growth rate is directly proportional to feeding level 

(Zuanon et al., 2004) in a certain feeding point (Tesser and Sampaio, 2006). In this study FI 

rate was lower for the two and four meals (90%) and, however, growth was efficient and the 

FCR was lower. 

Results of the present study indicate that feeding frequency did not significantly affect 

proximate composition of O. niloticus. The more efficient (lower) FCR was observed in this 

study. It tended (P=0.07) to be higher for the fish fed appetitive than for the ones with a 10% 



 
 

33 
 

restriction in daily feed allotment.  But FCR, in this study, did not influence by feeding 

frequency. Some researcher like Webster et al. (1992) conducted research in channel catfish 

with one to four meals in a day and Wang et al. (1998) reared hybrid sunfish with 1 and 2 

meals a day. Giberson and Litvak (2003) also reared Atlantic sturgeon and shortnose Sturgeon 

with four and eight meals and revealed that there were not significantly different on FCR. 

FCR did not influence by the frequency on those experiments. The current study is in 

agreement with those findings.  

 

Protein and energy retention were significantly higher when meals were fed appetitive at 2 

times a day than restricted feeding with 2 and 4 times a day. Riche et al. (2004) explained that 

the return of appetite succeeding a satiation level in Nile tilapia approximately 4 hour at 28
o
C.  

The present study also followed four or more hours of feeding interval. There was also higher 

protein and energy retention observed in 2 meals (appetitive) because feeding interval and 

feed intake both were higher. Unlikely, there was no different 2 meals (90%) and 4 meals 

(90%) protein and energy retention, even there were difference in feeding frequencies. 

Therefore, feed intake rate could be important for nutrients retention. 

 

In the present study, 4 meals (90%) had lower digestibility as compared to 2 meals (appetitive 

and 90%). Therefore, feeding frequency and rate could affect protein digestibility in tilapia. 

Liu and Liao (1999) explained that when the intervals between meals are shorter, the feed 

passes through digestive tract more quickly and causes less effective digestion. Moreover, 

Hudon and de La Noue (1984) did not find any difference in apparent digestibility of protein 

when feeding frequency was increased from two to six times per day in rainbow trout.  

 

The liver is metabolic organ. So, the ratio of liver weight to body weight is a useful biomarker 

to detect the hazardous effects of the environmental stressors (Pait and Nelson, 2003). In the 

current study, the ratio of liver weight to body weight was observed the lowest value in 4 

meals (90%) than others value from 2 meals (appetitive) and 2 meals (90%). So, comparing 

liver weight with body weight indicates that liver size was affected by the feeding frequency 

and level of feeding. 2 meals and 4 meals had taken equal amount of feed during experiment, 

but liver size was smaller in 4 meals. The reason behind the enlargement of liver should be 

more nutrients (lipid, glycogen) storing in 2 meals (appetitive and 90%).  Likewise, liver 

deamination where excess amino acids converted into functional resources such as hydrogen, 

oxygen and carbon, one of the body's energy-production mechanisms could be deaminated for 

http://www.wisegeek.org/what-is-hydrogen.htm
http://www.wisegeek.org/what-is-carbon.htm
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these. Pyle et al. (2005) also explained that liver weight percentage as compared to fish body 

is associated with an indication of the status of energy reserve in an animal and metabolic 

activity. 

 

The excretion values obtained in this experiment were lower than those observed in others 

study. The diets used in the present study was highly digestible (>96%) protein with a good 

crystalline essential amino acid balance. Hence, this could affect ammonia excretion. 

Ammonia excretion rate is not relative to the amount of feed ingested, but relative to the 

amount of protein ingested from the feed (Forsberg 1996; Pruszyński 2003). Protein amount 

in terms of AA balance, nutritional composition of ingredients, and their digestibility are the 

main factors affecting ammonia excretion in fish (Cho and Bureau, 2001; Green and Hardy, 

2008; Peres and Oliva-Teles, 2006). Un-ionized ammonia concentration higher than 2000 µg 

l
-1

 of water that flow in the tank causes mass mortality of tilapia in a few days (Lim and 

Webster, 2006). If tilapias are exposed to un-ionized ammonia concentration above 1000 µg l
-

1
 over a prolonged period of time, particularly fry and juveniles may die when the dissolved 

oxygen (DO) is low (Lim and Webster, 2006). Un-ionized ammonia begins to depress 

appetite of tilapia when the concentration in water is as low as 80 µg l
-1

 (Popma and Masser, 

1999).  

 

After the feeding, the rate of ammonia excretion increases rapidly in response to feed intake 

(Jobling, 1981; Ballestrazzi et al., 1994; Handy and Poxton, 1993). Similarly, ammonia 

excretion rate of Nile tilapia was increased rapidly around 4-5 hours after feeding and 

maintained the highest and then excretion rate was decreased in this study. This is supported 

by previous studies (Altinok and Grizzle, 2004; Jobling, 1981., Dosdat et al., 1996; Peres and 

Oliva-Teles, 2006). Ten hours after last feeding, ammonia excretion rate was almost the same 

as one hour before last feeding for 2 meals. This is because of the same time interval between 

first and last meal. In case of 4 meals, the first measurement before one hour of last feeding 

was 3 hours later of third meals. That is why, NH3, TAN, NH4
+
 measurements were the 

highest.  

 

The majority of nitrogen from catabolism of amino acids is excreted through the gills as NH3 

and NH4
+
, while the kidney as urea excretes a small proportion. This experiment focus was 

only on excretion through gills, because the fish laboratory at NMBU did not have the 

facilities to analyse urea. Indigestible nitrogen is excreted by the intestine, and may be 
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oxidized by heterotrophic intestinal bacteria such as Nitrosomonas, Nitrosococcus, 

Nitrosospira, Nitrosolobus, and Nitrosovibrio (Watson et al. 1981). The rate of bacterial 

activity in freshwater is limited by soluble phosphate, and the amount of autotropic bacteria 

growing in the water body of a freshwater recirculating aquaculture system is limited. As 

phosphorus levels increase, the amount of algae increases too. Therefore, phosphate generally 

limits the growth of freshwater autotropic bacteria (Nitrobacter, Nitrospina, Nitrococcus, and 

Nitrospira) and there is little activity of autotropic bacteria to utilize the produced nitrite 

(Watson et al. 1981). So, nitrite is mainly diluted and accumulated in water. 

 

In this study, the excretion rate of ammonia after feeding increased, reached at peak value, 

and thereafter decreased. Nevertheless, there was consistent increase in nitrite over the whole 

sampling time. As the tilapias are expected to have an apparent digestibility of phosphorus at 

40-50% from the current feed formulation (Storebakken personal communication), the rest 

passes undigested through the intestine. The undigested phosphorus provokes low solubility 

in water. However, due to microbial activities in intestine and feces the insoluble phosphorus 

may have been converted to soluble phosphorus and, which may have cause increasing NO2
-
. 

Thus, it may be that some of the nitrite originates from oxidation in the intestine. Another 

explanation may be that nitrogen is oxidized by bacterial activity in floating and sedimented 

feces, both ―packed‖ in a mucous ―bag‖ when released from the gut of the tilapia. Oxidative 

activity in feces may both have resulted in oxidation of nitrogen in feces, and eventually 

oxidation of ammonia and ammonium from metabolism, since phosphate does not limit 

bacterial growth in feces. The design of this experiment, however, does not permit the 

identification of the sources of the nitrite in the water. 

The nitrogen excretion rates (including or excluding nitrite) showed an increasing trend after 

last feeding and gradually decreased after a certain time. The highest value was seen for 4 

meals (90%) and the lowest for 2 meals (Appetitive) after 2 hours of last feeding. The values 

were 116 and 95 µmoles (kg body weight * hour)
-1 

(including nitrite); 96 and 76 µmoles (kg 

body weight * hour)
-1

 (excluding nitrite). While for 2 meals (90%) it was 101 µmoles (kg 

body weight * hour)
-1 

(including nitrite) and 80 µmoles (kg body weight * hour)
-1

 (excluding 

nitrite). Similarly, after 4 hours of last feeding, it was found maximum for 2 meals (90%) and 

the lowest for 4 meals (90%). The values were 150 and 113 µmoles (kg body weight * hour)
-1

 

(including nitrite); 132 and 98 µmoles (kg body weight * hour)
-1

 (excluding nitrite), whereas 

it was 145 µmoles (kg body weight * hour)
-1

 (including nitrite) for 2 meals (appetitive). 
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However, the value (excluding nitrite) (132 µmoles (kg body weight * hour)
-
1) was the same 

for 2 meals appetitive and 2 meals 90%). On the other hand, after 6 hours of last feeding the 

peak value was seen in 2 meals (appetitive) and the lowest in 4 meals (90%) which were 149 

and 88 µmoles (kg body weight * hour)
-1

 (including nitrite); 136 and 66 µmoles (kg body 

weight * hour)
-1

 (excluding nitrite).  In the same time it was 137 µmoles (kg body weight * 

hour)
-1

 (including nitrite) and 121 µmoles (kg body weight * hour)
-1

 (excluding nitrite) for 2 

meals (90%).  Moreover, for 4 meals (90%) a decline trend was seen after 4 hours of last 

feeding whereas, for the 2 meals (appetitive and 90%) it was seen after 6 hours of last feeding. 

Likewise, the highest nitrogen excretion was found for 2 meals (appetitive) and the lowest for 

4 meals (90%).  The values were 82 and 48 µmoles (kg body weight * hour)
-1

 (including 

nitrite); 64 and 37 µmoles (kg body weight * hour)
-1

 (excluding nitrite), while it was 63 

µmoles (kg body weight * hour)
-1

 (including nitrite) and 46 µmoles (kg body weight * hour)
-1

 

(excluding nitrite) for 2 meals (90%). Furthermore, after 10 hours of last feeding for 2 meals 

(appetitive and 90%) showed the lowest value compare to 4 meals (90%), which were 18.7, 

19.0 and 27 µmoles (kg body weight * hour)
-1

 (including nitrite); 2, 1 and 15 µmoles (kg body 

weight * hour)
-1

 (excluding nitrite) respectively. Hence, after all observations it was seen that 

2 meals (appetitive) had the maximum level of nitrogen excretion and the lowest for 4 meals 

(90%). 

Excretion of nitrogen from the fish is higher with less frequent feeding. Nitrogen influences 

the growth of microorganism in water. Excess nitrogen play role for faster growth of 

microorganism. Significant increases of microorganisms affect water quality, food resources 

and the oxygen level. It severely decreases the level of dissolved oxygen, leading to increase 

diseases and can causes death a large numbers of fish. Therefore, restricted feeding with more 

frequency can reduce the level of nitrogen excretion and compose a higher water quality. 

Good water quality gives better production that can be beneficial for the farmers. 

Materials from this study are being followed up by blood plasma amino acid pattern analysis, 

and analysis of transcription for amino acid catabolic enzymes in the liver (MSc thesis of 

Elena Gusokova). The combination of the results from this thesis and the follow-up analysis 

will hopefully give answer to the question if frequent feeding of Nile tilapia reduces amino 

acid catabolism. This continuation of our research may also contribute to explaining the 

observed differences in liver weight. 
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5. Conclusions 

 

Distributing the same daily feed allotments to tilapias in two or four meals a day did not result 

in significantly differences in weight gain, feed utilization, body composition, protein or 

energy retention. However, the rate of nitrogen excretion was lower when the fish were fed 4 

than 2 meals. This may have positive consequences for the water quality and thereby the farm 

environment.  
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Appendix  

1. Measurement of ammonium 
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2. Measurement of nitrite 
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3. Percent of un-ionized NH3 in aqueous ammonia solutions for 27.5
0
C - 30

0
C and 

P
H 6.2 – 7.8 

Temperature, 
0
C 

pH  25.5 26.0 26.5 27.0 27.5 28.0 23.5 29.0 29.5 30.0 

6.2  .0933 .0967 .100 .104 .107 .111 .115 .119 .123 .129 

6.3  .117 .122 .126 .130 .135 .140 .145 .150 .155 .160 

6.4  .148 .153 .159 .164 .170 .176 .182 .189 .195 .202 

6.5  .186 .193 .200 .207 .214 .221 .229 .237 .246 .254 

6.6  .234 .242 .251 .260 .269 .279 .289 .299 .309 .320 

6.7  .295 .305 .316 .327 .339 .351 .363 .376 .389 .402 

6.8  .371 .384 .397 .4ll .426 .441 .456 .472 .489 .506 

6.9  .466 .483 .500 .517 .536 .554 .574 .594 .615 .636 

7.0  .586 .607 .628 .651 .674 .697 .722 .747 .772 .799 

7.1  .737 .763 .790 .818 .846 .876 .907 .938 .970 1.0O 

7.2  .926 .958 .992 1.03 1.06 1.10 1.14 1.18 1.22 1.25 

7.3  1.16 1.20 1.25 1.29 1.33 1.38 1.43 1.48 l.53 1.58 

7.4  1.46 1.51 1.56 1.62 1.67 1.73 1.79 1.85 1.92 1.98 

7.5  1.83 1.89 1.96 2.03 2.10 2.17 2.25 2.32 2.40 2.48 

7.6  2.29 2.37 2.46 2.54 2.63 2.72 2.81 2.91 3.01 3.11 

7.7  2.87 2.97 3.07 3.18 3.29 3.40 3.5l 3.63 2.75 3.88 

7.8  3.59 3.71 3.84 3.97 4.10 4.24 4.38 4.53 4.68 4.84 
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