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A B S T R A C T 

This study investigates the hypothesis that the mechanisms of chemical coagulation-

flocculation and electrocoagulation produce specific imprints in nature, and the structure of 

sludge aggregates-floccules  (flocs). Scanning electron microscopy (SEM) methods were used 

to produce 480 images of 32 types of wastewater sludge. The analyzed sludge was obtained 

by chemical coagulation and electrocoagulation of four types of synthetic effluents containing 

four red dyes. Perimeter P and area A of 120-170 differently sized objects were determined in 

256 selected and contrast-enhanced images with the use of Image Analysis software. lgA ~ 

lgP plots revealed that the analyzed sludge samples were made of self-similar aggregates-

flocs with fractal characteristics. The slope s of log plots was used to determine surface fractal 

dimension Da which was extrapolated to volumetric fractal dimension Dv. Dimension Dv was 

applied in a quantitative description of sludge aggregates-flocs. Aggregates-flocs of Al sludge 

group were characterized by higher values of Dv in comparison with Fe sludge group, which 

quantitatively confirmed the compactness of Al sludges and the jagged character of Fe 

sludges observed in SEM analyses. No flocculation of dye alone was observed, but the results  

of the experiment showed that phosphates were required for the destabilization of the 

colloidal system containing dye. In view of the above, a simple model of P-PO4 and dye 

sorption on a colloidal sorbent made of {Al(OH)3} or {Fe(OH)3} was proposed. The structure 

of {Al(OH)3} and {Fe(OH)3} aggregate-flocs was graphically simulated to determine the 

effect of volumetric fractal dimension Dv on sweep flocculation and sludge separation and 

dehydration. The modeled processes of P-PO4 sorption and sweep flocculation of dyes and the 

simulated images of aggregate-flocs confirmed that the analyzed wastewater sludges were 

mainly formed in the process of diffusion limited cluster-cluster aggregation DLCA,  even the 

particle-cluster type aggregation with pre-polymerized coagulants (PAC) could be involved. 
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1. Introduction 

Irreversible aggregation [1] produces larger assemblages which are referred to as 

sludge agglomerates, aggregates, clusters or flocs. Aggregation has important physiological 

and immunological implications [2]. The process is observed in nature, it is used in food 

technology and in the production of polymers. The main stages of aggregation, such as those 

observed during the destabilization of colloidal particles in wastewater, are processes of latent 

coagulation and active heterocoagulation [3] that lead to flocculation [4, 5], i.e. the formation 

of aggregates-flocs [6]. Clusters formed during wastewater flocculation are referred to as 

sludge flocs. The separation of sludge flocs by sedimentation or floating [7] removes various 

pollutants from the liquid phase of treated effluents. Sludge separation is a fundamental 

process in the recovery and recirculation of wastewater nutrients, including phosphorus, and it 

can effectively counteract the growing deficit in this fertilizer component [8]. 

 Image analysis becomes a common methodology in many research areas [9]. Chemical 

coagulation-flocculation [4, 10-11] and electrocoagulation [12-14] leave imprints in nature 

and the structure of sludge aggregates-flocs. Those imprints can be visible also in their 

images. "Self-similarity" [15], i.e. the similarity of observed structures regardless of the 

applied scale of magnification (or reduction), is generally indicative of their fractal character 

[16]. Statistically documented self-similarity of a given group of sludge flocs usually supports 

determinations of their fractal dimension D [17-19]. The value of D can define the degree to 

which space is filled with matter and, consequently, the spatial structure of a sludge 

aggregate-floc. Jagged shape and large surface area should contribute to aggregates-flocs' 

sorption capacity during sweep flocculation [4]. Dense aggregates-flocs should generate 

sludge which is easily separated from the treated effluent phase. Dense sludge should be 

susceptible to dehydration in an ultracentrifuge or a filter press. 

 Variations in D values of the investigated structures could also be indicative of 

similarities and differences in coagulation-aggregation-flocculation mechanisms responsible 

for the formation of manageable sludge [18-22]. Two main models of the aggregation process 

have been proposed: a) particle-cluster aggregation (PA) and b) cluster-cluster aggregation 

(CA). Indirect mechanisms can also be involved, such as PA in initial stages of aggregation 

which is transformed to CA in final stages of the process. Computer models of cluster 

formation [3, 21] suggest that aggregates formed during PA are larger than those created 

during CA. The results of laboratory research investigating natural systems [23], such as 
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municipal sewage, indicate that fractal dimensions of aggregates are determined by coagulant 

concentrations [24]. Computer simulations have demonstrated that the fractal dimension of 

aggregates produced/simulated by CA can vary significantly with regard to aggregation 

speed. Asnaghi [25] identified two types of aggregation processes: a) diffusion-limited cluster 

aggregation (DLCA), b) reaction-limited cluster aggregation (RLCA), whereas c) ballistic 

cluster aggregation (BCA) is also taken into account in theoretical calculations [26]. In most 

cases, aggregates formed by RLCA have higher fractal dimension D than flocs produced by 

DLCA. 

 In this study, we have compared and interpreted the values of fractal dimension D 

determined from SEM images of sludges produced through chemical coagulation and 

electrocoagulation of synthetic wastewater. Though the proposed method for analyzing 

wastewater sludge is probably not a comprehensive method, it supplements the existing 

methods contibuting new and valuable information. It illustrates certain trends which require 

further investigation, development and improvement.  

 

2. Materials and methods  

The presence of red dyes in treated wastewater is highly undesirable. The investigated 

aqueous solutions of Direct Red 6B, Synten Red P-3BL, Gryfalan Red G and Synten Orange 

P-4RL were not susceptible to chemical coagulation or electrocoagulation, but mixtures 

combining the above dyes with phosphate ions, in particular milk powder, were highly 

sensitive to coagulation and electrocoagulation. The analyzed group of 32 sludges was broken 

down into four main categories of synthetic effluents under nearly optimal treatment 

conditions: 

a) DDS – chemically coagulated discharges from dairy plants, dye plants and 

municipal wastewater treatment plants, 

b) DSch – chemically coagulated discharges from dye plants and municipal 

wastewater treatment plants, 

c) DSes – statically electrocoagulated discharges from dye plants and municipal 

wastewater treatment plants, 

d) DSre – recirculated and electrocoagulated discharges from dye plants and municipal 

wastewater treatment plants. 

1 dm3 of DSch, DSes and DSre effluents contained 11-13 drops of saturated NaCl 

solution (to increase specific conductance κ to 0.4 S/m), 100 ml of the respective dye and 100 

mg of P-PO4. 1 dm3 of DDS discharges was additionally mixed with 10 g of Nestle milk 
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powder to produce initial CODo of 15500  200 mg·dm-3 (average from 23 replications). 

Subject to need, the pH of treated wastewater was adjusted with 1M of NaOH or HCl 

solution. 1 dm3 of DDS and DSch was chemically coagulated with 139 mg of Al-based PAC 

coagulant (Flokor 1A [www.dempol.com.pl]) or 171 mg of Fe-based PIX coagulant (PIX113 

[www.kemipol.com.pl]). DDS coagulation was additionally enhanced with Silica Ludox 

[www.sigmaaldrich.com]. Chronopotentiometric electrocoagulation  [14] of DSes (optimal 

time of 256-1024 seconds) and DSre effluents (3840 seconds) was carried out with the use of 

aluminum or iron electrodes at I = 0.3 A [13]. The applied coagulant and electrocoagulant 

doses guaranteed controlled and nearly complete transfer of P-PO4 and dye from the treated 

wastewater solution to sludge separated by sedimentation. Coagulation removed >90% of P-

PO4 and dye from DDS, and sludge contained approximately 55% of organic substances 

responsible for COD. Coagulation and electrocoagulation (chronopotentiometric) procedures 

are described in detail in the Results and Discussion section. 

 Sludges were dried at the temperature of 105°C on mesh screens. The 1-2 mm fraction 

was separated from 32 sludge samples (16 Al sludges and 16 Fe sludges) and examined under 

the Quanta FEG 250 scanning electron microscope 

[www.biotech.iastate.edu/publications/news_releases/images/quanta.pdf]. Images from five 

sample locations were registered in accordance with the diagram presented in Figure 1. 

 

Fig. 1 

 

The above procedure was repeated three times to produce 15 images of every sludge sample, 

of which eight images with a similar structural pattern were selected. Each of the eight images 

was processed using the Image Analysis program (NIS-Elements Basic Research on Nikon 

[www.nis-elements.com/br.html]) to produce images with constant maximum contrast of high 

–106, low – 105. The perimeter (P) and area (A) of 120-170 small, medium and large objects 

were measured. lg A ~ lg P plots were characterized by coefficient of determination R2 in the 

range of 0.937 to 0.976 with average R2 = 0.963 (Table 3). The analyzed objects were self-

similar and their "surface" fractal dimension Da was calculated from the slope of the 

respective lg A = f(lg P) line [18, 27]. Two highest and two smallest values were rejected in 

every set of eight values of Da, and average Da was calculated from the remaining four values. 

Standard deviation was determined from the value of Dv after the conversion of Da  do  Dv. 

The procedure is described in detail in the Results and Discussion section. 
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3. Results and discussion 

Static electrocoagulation was performed chronopotentiometrically at Iconst = 0.3A for 

256 to 1024 s with the use of a simple device presented in Figure 2. 

 

Fig. 2.  

  

To determine the actual doses of Al and Fe, 100x10x1 mm electrodes were weighed before 

and after use in accordance with the rinsing and drying procedure described in a previous 

study [28]. 

Electrocoagulation in a recirculation system was also performed 

chronopotentiometrically at Iconst = 0.3A for 3840 s with the use of a device presented in 

Figure 3. 

 

Fig. 3.  

 

1 dm3 of DSre wastewater with composition identical to DSes was recirculated between 

reservoir C and electrolyzer E for 3840 s.  

 

Table 1. 

 

Treatment parameters of the analyzed effluents are presented in Table 1. DDS and DSch 

wastewater was chemically coagulated with the use of fixed coagulant doses at 5 drops per 

200 cm3 of effluent, i.e. 139 mg of Al-based PAC coagulant and 171 mg of Fe-based PIX 

coagulant. DDS wastewater was coagulated at the optimal pH of 5. The coagulation process 

was enhanced with optimal doses of Silica Ludox at 0.20-0.40 mg SiO2/dm3 wastewater for 

the PAC coagulant and 0.20-0.40 mg SiO2/dm3 wastewater for the PIX coagulant. Silicon 

dioxide increased COD removal by 15%, dye removal by 68% and P-PO4 removal by 58% 

(Table 2). The above procedure produced eight types of sludge: four sludges for four dyes 

with PAC and four sludges for four dyes with PIX.  

 DSch and DSes effluents were coagulated at optimal pH of 3.5 to 4.5. Owing to the 

simplicity of the laboratory device and the applied electrocoagulant doses, DSes wastewater 

could be estimated gravimetrically during static electrocoagulation. Electrodes were weighed 

before and after electrocoagulation in accordance with the rinsing and drying procedure 

described in [28]. Sludges produced by high doses of the Al electrocoagulant should be rich in 
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{Al(OH)3}. Electrocoagulant doses applied during electrocoagulation of DSre effluents in a 

recirculation system were determined based on Faraday's law: 

m = k·I·t      where:    kAl = 9 g·F-1    and   kAl = 28 g·F-1 

on the assumption that anodic dissolution of aluminum and iron is characterized by 100% 

efficiency. The Fe ion dose was determined at 333 mg/dm3 wastewater, and the Al ion dose at 

107 mg/dm3 wastewater. In view of previous research results [28], the actual Al ion dose was 

probably higher. The optimal pH of DSre effluents treated with Al electrodes was 6.0 and 

with Fe electrodes – 4.0.  

 

Table 2.   

   

 

The percentage of P-PO4 and dye removed and separated from treated wastewater during 

sedimentation is presented in Table 2. The addition of silicon dioxide supported >90% 

removal of P-PO4 and dye from treated DDS effluent, including gryfalan dyes which are 

weakly susceptible to the coagulation of DSch, DSes and DSre effluents. PAC was less 

effective than PIX in removing P-PO4 from DSch wastewater. Electrocoagulation in a 

recirculation system (DSre) was more effective when Al rather than Fe electrodes were 

applied. In general, similar quantities of P-PO4 and dye were removed from treated effluents. 

 The SEM analysis produced 480 sludge images, including 240 with the use of an 

aluminum coagulant or electrocoagulant in Al sludges and 240 with the use of an iron 

coagulant or electrocoagulant in Fe sludges.  

 

Fig. 4.   

             

Nine out of 480 images of sludge produced by chemical coagulation (a, b) and 

electrocoagulation (c, d) are presented in Figure 9. Similar SEM images of wastewater sludge 

were described by Verma [29]. The top four Al images correspond to sludges produced by 

chemical coagulation with PAC or by electrocoagulation with Al electrodes. The bottom four 

Fe images illustrate sludges produced by chemical coagulation with PIX or by 

electrocoagulation with Fe electrodes. Although four electrocoagulated sludges (c, d) were 

obtained with the use of different electrocoagulants (Al and Fe) and under different 

electrocoagulation conditions (c – static, d – recirculation), no significant differences were 

observed in their structure. The structure of four a and b sludges differs from that of four c 
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and d sludges which were produced in different processes of chemical coagulation (a, b) and 

electrocoagulation (c, d). The sludges obtained from DSch effluents (b) were characterized by 

a more homogenous structure than DDS sludges (a), which can be attributed to a less varied 

composition of DDS than DSch effluents. DDS wastewater was represented by "DSch + SiO2 

+ milk", therefore, similarly to DSch effluents, the resulting sludge contained 

{(OH)n(Al)m(PO4)x(dyestuff)y} flocs as well as other chemical bonds with SiO2 and milk 

powder ingredients. The most significant structural variations were reported between sludges 

obtained with PAC (a, b – top) and PIX (a, b – bottom). Structural objects in DDS sludges 

produced with PIX (a – bottom) were small, needle-shaped and jagged, whereas the objects 

forming the structure of sludges produced with PAC (a – top) were round and compact. The 

noted differences can be attributed to the spherical shape of {Al(OH)3} colloidal particles and 

the rod-like and cylindrical shape of {Fe(OH)3} particles [30-31]. Those particles are the 

building blocks of clusters which aggregate and flocculate to produce sludge flocs. The 

remaining four electrocoagulated sludges were characterized by minor structural differences. 

The observed variations were quantitatively confirmed in successive parts of this study. 

 A visual inspection of 480 images revealed that the applied dye did not exert a clear 

and unambiguous effect on sludge structure. The only exception was the group of sludges 

formed by static electrocoagulation of DSes effluents containing Synten Orange P-4RL with 

Fe electrodes. For this reason, an additional, ninth image of the above sludge was presented in 

Figure 4 in group c. In the analyzed group of dyes, Synten Orange P-4RL was characterized 

by the smallest particles with relatively linear structure, which could have contributed to the 

formation of cylinder/rod/wire-shaped aggregates-flocs whose structure was characteristic of 

{Fe(OH)3} colloidal particles described by Haas [30] and Rohrserzer [31]. Distinctive 

{Fe(OH)3} structures were not observed in DSes-Fe effluents containing other dyes or DSre-

Fe effluents containing Synten Orange P-4RL. 

 Descriptions of SEM images can be further elaborated, but this approach does not 

produce constructive or fundamental conclusions. The number of sludges was initially 

reduced to 256 (eight images were selected from a group of 15 – refer to the previous section) 

for a quantitative description of structural objects in the analyzed sludges. The images of 256 

sludges were displayed in maximum black and white contrast in the Image Analysis 

application with the following contrast settings:  high - 106, low - 105. The above procedure 

emphasized certain characteristic shapes, traits and differences.  

 

Fig. 5.  
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The images shown in Figure 4 were enhanced with maximum contrast and presented in Figure 

5. The resulting images resemble maps with clear contours of shapes identifiable in SEM 

images. In contrast with cylinder- and rod-shaped structure of Fe aggregates, the spherical 

nature of Al aggregates supports the identification of certain structural "symptoms" under 

maximum contrast. The presence of jagged and uneven structures is difficult to quantify with 

a naked eye, and qualitative and quantitative comparisons supporting the classification of the 

analyzed images into groups are impossible to perform. The NIS-Elements Basic Research 

software (Nikon, Japan) facilitates observations and comparison of complex structures.  

  The above software was used in the successive stage of the study to analyze the 

structure of each of 256 contrasted images. Random white objects, classified as a) very large, 

b) large, c) medium-sized, d) small and e) very small, were selected manually. By clicking on 

a given white image, similar objects were automatically indicated in the analyzed image. The 

selection of a white object eliminated all disturbances caused by black surface cracks which 

were observed in selected images. A total of 120 to 170 white spots were identified in each of 

the 256 images. The predominant size of the analyzed objects and the subjective contrast of 

images shown in Figure 4 did not affect self-similarity. The Image Analysis application 

measured area A and perimeter P of all objects, including manually and automatically 

(majority) selected objects. The resulting data were used to develop lg A ~ lg P plots and 

charts illustrating the distribution of object dimensions.  

 

Fig. 6.  

 

Sample lg A ~ lg P plots of images shown in Figures 4d and 5d (DSre-Al and DSre-Fe) are 

presented in Figure 6. They are accompanied by charts illustrating the distribution of R values 

(in μm) of surface objects to determine fractal dimension Dv. The database in Figure 6 is 

described in detail in successive parts of this paper. It was used in calculations, simulations 

and models of sludge aggregates-flocs obtained by electrocoagulation of DSre effluents in a 

recirculation system.  

 A total of 256 plots and 256 distribution charts were produced for 32 sludge types in 

eight replications, and the respective average values are shown in Table 3. The analysis 

focused on objects characterized by significant variations in diameter from approximately 10 

μm to approximately 100 μm. The range of variations in objects selected from the surface of 

the examined images is sufficient to ascertain the self-similarity of the analyzed objects. The 
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parameter which validates the significant self-similarity of the identified objects is the high 

value of coefficient of determination R2 which was calculated separately for every lg A ~ lg P 

plot. In all 256 plots, R2 always exceeded 0.915. This implies that the applied mathematical 

model of lg A = f(lg P) adequately fits the set of 256 SEM images of sludge.   

 The self-similarity of objects identified on the surface of SEM images of sludge is 

indicative of their fractal nature and structure. The accumulated data support the 

determination of surface fractal dimension Da [27] for every group of analyzed objects, i.e. for 

each of 32 types of sludge. Slope s determined for every lg A ~ lg P  plot and raised to the 

power of 1.5 was adopted as an arbitrary extrapolation of surface fractal dimension Da to 

volumetric fractal dimension Dv. It was assumed that flat jagged edges and uneven sludge 

surfaces can be "extrapolated into space". 

 It was also assumed that Dv is a "measure" of fractal dimension D of aggregates 

forming the surface structure of the analyzed sludge. In this sense, the value of Dv is not 

suitable for direct calculations, but it can be used to a limited extent in comparisons of the 

analyzed object groups, i.e. Al sludges and Fe sludges.  

 When the two largest and the two smallest values of s were rejected, the value of Dv as 

a mean of four replications (with standard deviation SD) was calculated for every type of 

sludge. The database of Dv  values was ultimately reduced from 256 to 128 items for 32 types 

of sludge in four replications each. 

 

Table 3. 

 

The values of 32 average fractal dimensions Dv with standard deviation SD and 32 average 

values of coefficient of determination R2 are presented in Table 3. Even a cursory evaluation 

of data shown in Table 3 indicates that all Dv values of Al sludges are higher than the Dv 

values of Fe sludges. The above is validated by previous observations of direct SEM images 

(Fig. 4 and 5) of both sludge groups. The condensed structure of Al sludges (higher Dv) and 

the jagged and porous structure of Fe sludges (lower Dv) were thus mathematically validated. 

Dv values of Al sludges ranged from 1.3713 to 1.4858, and Dv values of Fe sludges – from 

1.2478 to 1.3564. The average value of Dv was determined at 1.423±0.027 for Al sludges and 

1.294±0.032 for Fe sludges. The results of a quantitative comparison of spherical {Al(OH)3} 

and rod/wire-shaped {Fe(OH)3} aggregate units had been anticipated in view of the described 

differences in the shape of the compared colloidal particles. The vague differences in the 
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structure of images shown in Figures 4 and 5 (excluding DSes-Fe with Synten Orange P-4RL) 

were thus quantitatively described and documented. 

 The coagulation-flocculation of DDS effluents was the most complex process in the 

group of four analyzed treatment methods. The resulting aggregates contain colloidal particles 

of Al or Fe hydroxide and a) organic substances and other compounds found in milk powder, 

b) colloidal particles (SiO2)n, P-PO4, dyes and pH adjusting agents. Electrocoagulated DSre 

effluents constitute the simplest system for theoretical discussions and modeling because they 

contain only colloidal particles of Al or Fe hydroxide, P-PO4 and dyes. HCl, used as a pH 

adjusting agent, contributes to a minor increase in the ionic strength of the solution which is 

determined by NaCl in every type of wastewater. The unit for modeling aggregation-

flocculation is presented schematically in Figure 7.                                

 

Fig. 7.  

 

At pH < 6, colloidal particles of Al and Fe hydroxides and also hydrolysis species are 

positively charged [4]. The above sols are stable due to electrostatic repulsion between 

particles, and they can act as colloidal adsorbents. The surface of adsorbent particles features 

negatively charged phosphate ions which, in turn, are covered with dye particles. Dye 

particles on the surface of colloidal Al and Fe hydroxides cannot be adsorbed. It was 

experimentally demonstrated that the addition of an aqueous solution of Al3+ or Fe3+ ions to 

an aqueous dye solution does not destabilize the system. Coagulation and electrocoagulation 

do not take place, flocs are not formed in the system, and red pigmentation of the solution 

persists. The system is destabilized by coagulation or electrocoagulation, and dyes are 

completely removed from effluents only in the presence of phosphates. In Figure 7, dye 

particles are bonded to the surface of {Al(OH)3} or {Fe(OH)3} colloidal particles by P-PO4. 

Phosphate adsorption on the surface of a colloidal adsorbent significantly weakens 

electrostatic repulsion which stabilized the colloidal solution. By destabilizing the colloidal 

system, P-PO4 facilitates the initiation of aggregation, and a collision between two new 

particles and adsorbed phosphates produces a dimer. Theoretically, a dimer and a particle can 

form a trimer. Yet in view of the available research findings [32] and our observations, 

collisions where two dimers produce a tetramer, two tetramers produce an octamer or, 

possibly, a tetramer with an octamer, are more probable. This aggregation process leads to the 

complete destabilization of a colloidal system and the formation of aggregates-flocs which 

fall to the bottom of the vessel and become separated from the treated effluent phase. Falling 
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flocs effectively bind/capture dye particles in the process of sweep flocculation, separating 

them from the liquid phase of treated wastewater. The described process leads to the complete 

removal of dyes from treated effluents. The quantity (weight) of pigment particles removed 

during sweep flocculation is similar to that observed during phosphate sorption on a colloidal 

adsorbent. In most cases, > 90% of P-PO4, and > 90% of the pigment are separated from the 

liquid phase of treated wastewater.                

                  

Fig. 8.   

 

Two extreme structures of a model wastewater floc, described by fractal dimensions 1.4727 

for DSre-Al  and 1.2655 for DSre-Fe, are presented schematically in Figure 8. DSre effluents 

were selected because electrocoagulation in a recirculation system has a variety of practical 

applications, and the quality and structure of sludge is an important technological parameter. 

Distribution charts in Figure 6 indicate that aggregates with diameter of up to 150 μm were 

the predominant "fraction" in >80% of the studied objects. Within the above range, the 

average size of a DSre-Al aggregate-floc was determined at 58.5 μm (18-150 μm), which was 

equal to its diameter, and the average size of a DSre-Fe aggregate-floc – at 69.5 μm (30-150 

μm). The structure of DSre-Al and DSre-Fe sludge objects was simulated with model 

{Al(OH)3} colloidal particles with average diameter of R = 165 nm proposed by Macedo [33] 

and cylindrical {Fe(OH)3} particles. Due to an absence of uniform data regarding the size of 

{Fe(OH)3} cylinders [30-31], the length of a colloidal {Fe(OH)3} particle equal to the 

diameter of a spherical {Al(OH)3} particle, i.e. 165 nm, was used in calculations. The data 

were used to model statistical DSre-Al and DSre-Fe aggregate-flocs. The number of units per 

floc was calculated:  

 a) DSre-Al aggregate-floc           1.4727 = 5685 {Al(OH)3} units, 

 

 b) DSre-Fe aggregate-floc           )1.2655 = 2095 {Fe(OH)3} units. 

 

A comparison of DSre-Al and DSre-Fe aggregates-flocs indicates that every volumetric unit 

contains 2.7-fold more spherical {Al(OH)3} units than {Fe(OH)3} cylindrical and rod-shaped 

units. The differences between the examined objects were quantified. The respective number 

of units in the analyzed aggregates was extrapolated to the projection of a given aggregate-

floc onto a plane: 
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 a) DSre-Al aggregates-flocs      (5685)0.66 = 318 {Al(OH)3}, 

 b) DSre-Fe aggregates-flocs      (2095)0.66 = 163 {Fe(OH)3}. 

 

A total of 318 spherical {Al(OH)3} units and 163 cylindrical {Fe(OH)3} units obtained by 

cluster-cluster aggregation were arranged in a circle with the same diameter (simulated 

volumetric unit). The diagrams of CA-formed flocs are similar to the models obtained by 

DLCA [25].{Al(OH)3} flocs have a more compact structure (Fig. 8a), whereas {Fe(OH)3} 

flocs are characterized by jagged edges (Fig. 8b). 

 The quality and structure of various sludges can be compared quantitatively based on 

the determined values of fractal dimension Dv of aggregates in a given sludge. The variations 

in the value of Dv are determined by at least three principal sludge parameters: a) sorption 

capacity during sweep flocculation [1, 4], b) susceptibility to sedimentation or floating 

separation from the treated wastewater phase [22], and c) susceptibility to dehydration in an 

ultracentrifuge or a filter press. Sludge flocs with well-developed and jagged surface 

structure, i.e. flocs characterized by a lower value of Dv, have a greater ability to absorb 

pollutants during sweep flocculation than flocs characterized by a more compact structure, 

higher value of Dv and smaller specific surface area. In this respect, aggregates with a low 

value of Dv should increase the effectiveness of wastewater treatment during sweep 

flocculation. Sludges formed by aggregates with a lower value of Dv should be easier to 

separate from the phase of effluents treated by floatation than sedimentation. The 

sedimentation of such aggregates-flocs is slower, and the resulting sludge is characterized by 

high volume. In theory, sludges with lower Dv should be less susceptible to dehydration than 

sludges with higher Dv, which could be less technologically efficient. It could seem that dense 

sludge aggregates which have a higher value of Dv and contain less water should be more 

susceptible to dehydration or "self-dehydration" [15]. This observation is debatable because 

Waite [22] argued that SO4
2- ions present in PIX are responsible for "structural" 

decomposition of sludge flocs and that "looser" aggregates support filtration (sludge 

separation) and dehydration of filtered sludge. The above considerations lead to a dilemma of 

choice between sludges with lower Dv which more effectively absorb pollutants during sweep 

flocculation and sludges with higher Dv which are more susceptible (or not) to separation and 

dehydration. Further research is needed to work out a compromise. 

 In the introduction, two principal types of aggregation were identified: particle-cluster 

aggregation (PA) and cluster-cluster aggregation (CA). The involvement of indirect 
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mechanisms was stipulated, e.g. PA in the initial stages of aggregation and CA in the final 

stages of the process. It has been widely documented [34] that aggregates formed during PA 

are characterized by higher fractal dimension D than aggregates produced during CA. The 

results of sludge analyses described in this study do not support unambiguous determination 

of processes responsible for the formation of sludge aggregates which have been described by 

SEM and Image Analysis. Al aggregates are characterized by higher fractal dimensions  Dv 

than Fe aggregates. Numeric values of Dv were obtained by data conversion, therefore, they 

are only a measure of fractal dimension D, and they can only be used in comparisons of 

structures analyzed by the same method. 

  Earlier research has showed [35] that pre-polymerized coagulants favour the 

“adsorption-charge neutralization” mechanism. The Al-coagulant used in this research (PAC) 

is a pre-polymerized coagulant, while the Fe-coagulant (PIX) is ferric sulphate with no 

polymerization. Thus it can be expected that Fe-coagulant was predominantly forming CA 

type aggregates due to hydroxide-hydroxide aggregation, while Al-coagulants might form 

also PA type aggregates, where particles aggregate with hydroxides. In view of the above and 

based on experimental data, it can be assumed that PA could be involved more into Al 

aggregates-flocs formation than into Fe aggregates-flocs.   

The principles of coagulation, aggregation and flocculation and fractal dimensions of 

sludge aggregates formed by coagulation-flocculation [24] point to diffusion-limited cluster-

cluster aggregation (DCLA) whose rate is determined by cluster diffusion. Reaction-limited 

cluster-cluster aggregation (RLCA) can be ruled out due to low values of D and low 

concentrations of potential reagents. 

 

4. Conclusions 

The applied image analysis method revealed that the examined wastewater sludges 

were composed of self-similar aggregates-flocs with fractal properties. lgA ~ lgP plots (A - 

area, P - perimeter) support the determination of surface fractal dimension Da which is 

statistically justified by the high value of the coefficient of determination R2. SEM images and 

the value of volumetric fractal dimension Dv (extrapolated from Da) quantitatively describe 

sludge aggregates-flocs. Al sludge aggregates were characterized by higher values of Da and 

Dv than Fe sludge flocs. The higher density of Al sludges and jagged structure of Fe sludges, 

which were observed in SEM analyses, were thus quantitatively validated. Our experiment 

revealed that phosphate ions are required for the destabilization of colloid-dye systems. A 

model for P-PO4 and dye sorption on a colloidal sorbent comprising Al(OH)3} or {Fe(OH)3} 
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was proposed. The results also indicate the particle-cluster type aggregation could be involved 

into Al aggregates-flocs forming, while cluster-cluster type aggregation was predominating in 

Fe agggreagtes-flocs formation. The technological consequences of the impact exerted by Dv 

on sweep flocculation, effluent separation and dehydration were determined based on a 

graphic simulation of aggregates-flocs made of {Al(OH)3} and {Fe(OH)3} particles. The 

modeled processes of P-PO4 sorption and dye sweep flocculation as well as the simulated 

images of aggregates-flocs confirmed that DLCA was the process responsible for the 

formation of the examined sludge. 
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 Tab. 1.     

 

        dyestuff    

 

 

waste- 

water  

red  synt.  

P-3BL 

red direct  

6B 

red  

gryf. G 

orange synt.  

P-4RL 

 

DDS 

PAC 

pH 

139±0.8% 

5.0 

139±0.8% 

5.0 

139±0.8% 

5.0 

139±0.8% 

5.0 

PIX 

pH 

171±0.4% 

5.0 

171±0.4% 

5.0 

171±0.4% 

5.0 

171±0.4% 

5.0 

 

DSch 

PAC 

pH 

139±0.8% 

4.5 

139±0.8% 

4.0 

139±0.8% 

3.5 

139±0.8% 

4.0 

PIX 

pH 

171±0.4% 

4.0 

171±0.4% 

4.0 

171±0.4% 

3.5 

171±0.4% 

4.0 

 

DSes 

Al 

pH 

601±2.5% 

4.5 

613±2.8% 

4.0 

614±3.4% 

3.5 

618±3.4% 

4.0 

Fe 

pH 

225±2.2% 

4.0 

221±2.7% 

4.0 

554±1.6% 

3.5 

234±3.4% 

4.0 

 

DSre 

Al 

pH 

107.14 

6.0 

107.14 

6.0 

107.14 

6.0 

107.14 

6.0 

Fe 

pH 

332.93 

4.0 

332.93 

4.0 

332.93 

4.0 

332.93 

4.0 
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 Tab. 2.     

 

                     dyestuff   

 

 

waste- 

water             

 

red 

 synt. P-3BL 

 

red 

direct 6B 

 

red  

gryf. G 

 

orange  

synt. P-4RL 

 

DDS 

PAC: P-PO4 

      dyestuff 

95 ± 3.6 

94 ± 11 

95 ± 8.9 

97 ± 4.5 

96 ± 4.8 

96±15.1 

94.5 ± 13.3 

90±6.9 

PIX:  P-PO4  

      dyestuff 

97.5±2.7 

96±16.5 

96±6.8 

98±17.7 

98±12.6 

97±8.6 

97±14.7 

91±6.2 

 

DSch 

PAC: P-PO4 

      dyestuff  

38±7.7 

99±16.7 

41±8.8 

99±9.9 

37±4.2 

86±14.4 

39±4.5 

98±11.1 

PIX:  P-PO4  

      dyestuff 

95±15.5 

97.5±14.5 

85±7.7 

91±10 

56±11.3 

20±11.2 

92±17.8 

92.5±10.9 

 

DSes 

Al:   P-PO4  

      dyestuff 

88±4.4 

97±14.6 

73±9.4 

67±12.1 

38±1.5 

14.0±2.3 

90±11.6 

94±18.2 

Fe:   P-PO4  

      dyestuff 

95±18.2 

95.5±17.7 

90±7.3 

89±4.0 

70±3.0 

76±5.0 

93±6.8 

92±9.8 

 

DSre 

Al:   P-PO4  

      dyestuff 

91±5.2 

98±15.4 

98±10.5 

99±3.5 

65±1.4 

21±9.9 

95±20.3 

97.5±9.1 

Fe:   P-PO4  

      dyestuff 

89±7.5 

79±4.5 

81±16.6 

76±13.7 

66±4.7 

25±13.5 

93±19.7 

88±14.8 
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Tab. 3.     

 

 

         dyestuff  

       

 

waste- 

water             

red 

 synt. P-3BL 

red 

direct 6B 

red  

gryf. G 

orange  

synt. P-4RL 

Dv 

±SDD 

R2 

±SDR 

Dv 

±SDD 

R2 

±SDR 

Dv 

±SDD 

R2 

±SDR 

Dv 

±SDD 

R2 

±SDR 

 

DDS 

PAC 1.4196 

±0.0216 

0.9624 

±0.0147 

 

1.4322 

±0.0396 

0.9765 

±0.0118 

1.4066 

±0.0067 

0.95895 

±0.0112 

1.4383 

±0.0248 

0.9509 

±0.0195 

PIX 1.2478 

±0.0105 

0.9653 

±0.0066 

1.2814 

±0.0058 

0.93705 

±0.0196 

1.2832 

±0.0121 

0.9431 

±0.0106 

1.2784 

±0.0116 

0.9507 

0.0071 

 

DSch 

PAC 1.4394 

±0.0579 

0.9757 

±0.0072 

1.4417 

±0.0109 

0.968 

±0.0200 

1.3713 

±0.0063 

0.9747 

±0.0061 

1.3996 

±0.0172 

0.9713 

±0.0074 

PIX 1.2588 

±0.0102 

0.9584 

±0.0119 

1.2843 

±0.0139 

0.9591 

±0.0121 

1.2868 

±0.0276 

0.9673 

±0.0155 

1.2811 

±0.0373 

0.9707 

±0.0035 

 

DSes 

Al 1.4127 

±0.0352 

0.9667 

±0.0106 

1.3867 

±0.0124 

0.9751 

±0.0086 

1.4125 

±0.0211 

0.9612 

±0.0048 

1.4201 

±0.0257 

0.9697 

±0.0085 

Fe 1.2783 

±0.0273 

0.9618 

±0.0103 

1.3412 

±0.0051 

0.9741 

±0.0079 

1.2635 

±0.0349 

0.9474 

±0.0203 

1.2920 

±0.0096 

0.9632 

±0.0065 

 

DSre 

Al 1.4402 

±0.0268 

0.9617 

±0.0138 

1.4243 

±0.0256 

0.9656 

±0.0034 

1.4858 

±0.0052 

0.9743 

±0.0086 

1.4449 

±0.0208 

0.9674 

±0.0165 

Fe 1.2876 

±0.0180 

0.9570 

±0.0121 

1.3416 

±0.0062 

0.9429 

±0.0123 

1.3275 

±0.0166 

0.9616 

±0.0071 

1.3564 

±0.0304 

0.9568 

±0.0155 
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Graphical Abstract (for review)



  

Highlights  

Scanning electron microscopy (SEM) images of sludge obtained by chemical treatment and 

electrocoagulation of wastewater are presented. log(Area)~ log(Perimeter) plots of self-similar 

objects give the fractal dimension D. Al-aggregates made of spherical units are always 

characterized by a higher value of D than Fe-aggregates comprising cylindrical units. 

Flocculation of the sol-dye system was not observed, and it constitutes the basis for modeling the 

removal of P-PO4 and dyes from treated wastewater.  
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